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Abstract. We study an energy given by the sum of the perimeter of a set, a Coulomb repulsion

term of the set with itself and an attraction term of the set to a point charge. We prove that

there exists an optimal radius r0 such that if r < r0 the ball Br is a local minimizer with respect

to any other set with same measure. The global minimality of balls is also addressed.

1. Introduction

In this paper we study the minimizers under the volume constraint |E| = m of the functional

(1.1) I(E) = P (E) + V (E)−KR(E),

where

V (E) =

ˆ
E

ˆ
E

1

|x− y|n−2
dxdy

is a Coulombic repulsive potential of the set with itself and

(1.2) R(E) =

ˆ
E

1

|x|n−2
dx

is a repulsive term of the set with a point charge. Here P (E) stands for the standard Euclidean

perimeter in the De Giorgi sense and K ≥ 0. In the three dimensional case this functional has

been studied by Lu and Otto in [13]. In that paper they prove that if m is sufficiently large then

the constrained minimum problem has no solutions. They also show that there exists a critical

value mc such that if m < mc the ball centered at the origin is the unique global minimizer. This

result is obtained using a quantitative version of the isoperimetric inequality with a Coulombic

term proved by Julin in [11] .

In case K = 0 functional (1.1) reduces to the Thomas-Fermi-Dirac-von Weizsäcker model

and it has been studied for n = 2, 3 in [7], [16], [14] and in any dimension in [11], [12] and [6]. In

particular, the latter paper shows that there exists a critical mass m0 such that if m < m0 balls are

local minimizers. Moreover, in [6] it is also proved that there exists a critical value 0 < m1 ≤ m0

such that if the volume is smaller than m1, balls are the unique global minimizers.

In this paper we extend the above mentioned results of [6] and [13] to the case K > 0 and

n ≥ 3. Precisely, we prove that there exists a critical radius r0 > 0 such that if r < r0 the ball

Br centered at the origin is a local minimizer of the constrained minimum problem and that this

property fails when r > r0. As in [6], we show also the global minimality of balls Br when r < r1,

for some 0 < r1 < r0. Note that both critical radii r1 and r0 tend to infinity as K → ∞ and an

argument provided in the last section, see Lemma 6.3, shows that the ratio r0/r1 stays bounded

indipendently of K.

The paper is organized as follows. After a short section where we fix the notation and give

some preliminary results, in Section 3 we provide a Fuglede type estimate for the functional I, see

Theorem 3.1. Precisely, we prove that if r < r0 the ball Br is a local minimizer with respect to

small C1 variations.
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In Section 4, after calculating the second variation of I, we show that the radius r0 provided

by Theorem 3.1 is indeed optimal since balls of radius r > r0 are not local minimizers. Note that

while the formula of the second variation of V can be obtained by more or less standard arguments,

see for instance [6], the calculations leading to the second variation of the attractive term turn out

to be more delicate due to the presence of a singularity in the integrand in (1.2).

In section 5 we pass from the local minimality of the ball Br with respect to small C1 variations

to the full local minimality result. As usual in this framework, we follow a strategy first devised

by Cicalese and Leonardi in [5], see also [1], based on the regularity theory for quasi minimizers of

the perimeter. However, in our setting this approach turns out to be more complicated. Indeed,

the main difficulty comes from the fact that, differently from most cases studied in the literature,

see [5], [1], [10], [3], [6], [4], our functional is not translation invariant. Overcoming this difficulty

requires a delicate estimate of the behavior of the repulsive term R on sets which are C1 close to

a ball centered at the origin.

2. Notation and preliminary results

In the following we shall denote by Br(x) the ball in Rn of radius r centered at x. If the center

is the origin we shall simply write Br, while the unit ball centered at 0 will be denoted by B. By

ωn we denote the Lebesgue measure of the unit ball in Rn.

We recall some basic definitions of the theory of sets of finite perimeter. If E is any measurable

subset of Rn and Ω ⊂ Rn is an open set, the perimeter of E in Ω is defined by setting

P (E; Ω) = sup

{ˆ
E

divϕdx : ϕ ∈ C∞c (Ω;Rn), ‖ϕ‖∞ ≤ 1

}
.

The perimeter of E in Rn is denoted by P (E). We say that E has locally finite perimeter if

P (E; Ω) < ∞ for all bounded open sets Ω. It is well known, see [2, Ch. 3], that E is a set of

locally finite perimeter if and only its characteristic function χ
E

has distributional derivative Dχ
E

which is a vector-valued measure in Rn with values in Rn. Thus, from the above definition we have

immediately that P (E; Ω) = |Dχ
E
|(Ω) for every open set Ω.

From Besicovitch derivation theorem we have that for |Dχ
E
|-a.e. x ∈ Rn there exists

(2.1) νE(x) := − lim
r→0

Dχ
E

(Br(x))

|Dχ
E
|(Br(x))

and |νE(x)| = 1.

The set ∂∗E where (2.1) holds is called the reduced boundary of E, while the vector νE(x) is the

generalized exterior normal at x. For all the properties of sets of finite perimeter used herein we

refer to the book [2].

A set E ⊂ Rn is said to be nearly spherical if there exist a ball Br and a Lipschitz function

u : Sn−1 → (−1/2, 1/2) such that

(2.2) E = {y = rx(1 + u(x)) : x ∈ B, },

where here and in the following we have tacitly assumed that the function u, originally defined

only on the unit sphere, is extended to Rn \ {0} by setting u(x) = u
(
x
|x|
)
.

For any measurable set E ⊂ Rn we define the Coulombic potential V (E) and the repulsive

term R(E) as follows

V (E) =

ˆ
E

ˆ
E

1

|x− y|n−2
dxdy, R(E) =

ˆ
E

1

|x|n−2
dx.

We are interested in minimizing the nonlocal energy given by

(2.3) I(E) = P (E) + V (E)−KR(E),
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where K is a positive constant that will be fixed throughout the paper.

Note that in order to avoid trivial statements, we shall assume throughout that the dimension

of the ambient space Rn is greater than or equal to 3, unless specified otherwise.

It is easily checked that if E is defined as in (2.2) then its measure and perimeter are given,

respectively, by the following formulas

|E| = rn
ˆ
B

(1 + u(x))n dx =
rn

n

ˆ
Sn−1

(1 + u(x))n dHn−1,(2.4)

P (E) = rn−1

ˆ
Sn−1

(1 + u(x))n−1

√
1 +

|Dτu(x)|2
(1 + u(x))2

dHn−1,

where Dτu stands for the tangential gradient of u on Sn−1 and Hn−1(·) stands for the Hausdorff

(n− 1)-dimensional measure.

Similarly, V (E) and R(E) can be also represented as

V (E) =

ˆ
E

ˆ
E

1

|x− y|n−2
dxdy = rn+2

ˆ
B

ˆ
B

(1 + u(x))n(1 + u(x))n

|x(1 + u(x))− y(1 + u(y))|n−2
dxdy

= rn+2

ˆ
Sn−1

dHn−1
x

ˆ
Sn−1

dHn−1
y

ˆ 1+u(x)

0

dρ

ˆ 1+u(y)

0

ρn−1σn−1(
|ρ− σ|2 + ρσ|x− y|2

)n−2
2

dσ

R(E)

r2
=

ˆ
B

(1 + u(x))2

|x|n−2
dx =

1

2

ˆ
Sn−1

(1 + u(x))2 dHn−1.

For any integer k ≥ 0, let us denote by yk,i, i = 1, . . . , G(n, k), the spherical harmonics of order k,

i.e., the restrictions to Sn−1 of the homogeneous harmonic polynomials of degree k, normalized so

that ||yk,i||L2(Sn−1) = 1, for all k ≥ 0 and i ∈ {1, . . . , G(n, k)}. The functions yk,i are eigenfunctions

of the Laplace-Beltrami operator on Sn−1 and for all k and i

−∆Sn−1yk,i = λkyk,i .

where λk = k(k + n− 2). Moreover if u ∈ L2(Sn−1) we have

u =

∞∑
k=0

G(n,k)∑
i=1

ak,iyk,i, where ak,i :=

ˆ
Sn−1

u(x)yk,i(x) dHn−1.

Therefore, for a function u ∈ H1(Sn−1) we have that

(2.5) ‖u‖2L2(Sn−1) =

∞∑
k=0

G(n,k)∑
i=1

a2
k,i, ‖Dτu‖2L2(Sn−1) =

∞∑
k=1

G(n,k)∑
i=1

λka
2
k,i.

If s ∈ (−1, 1) and u ∈ L2(Sn−1), we set

[u]2s,Sn−1 :=

ˆ
Sn−1

ˆ
Sn−1

|u(x)− u(y)|2

|x− y|n−1+2s
dHn−1

x dHn−1
y .

Also these seminorms can be represented using the Fourier coefficients of u and suitable sequences

of eigenvalues. In particular, see formulas (7.12) and (7.5) in [6], we have

(2.6) [u]2− 1
2 ,Sn−1 =

ˆ
Sn−1

ˆ
Sn−1

|u(x)− u(y)|2

|x− y|n−2
dxHn−1 dHn−1

y =

∞∑
k=1

G(n,k)∑
i=1

µka
2
i,k,

where the eigenvalues µk are given, for an integer k ≥ 0, by the following expressions

(2.7) µk :=
4π

n
2

Γ(n−2
2 )

(
Γ(n−2

2 )

Γ(n2 )
−

Γ(k + n−2
2 )

Γ(k + n
2 )

)
.
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It is easily checked that the above sequence is bounded and strictly increasing. Moreover, see [6,

Prop. 7.5],

(2.8) µ1 = 2(n+ 2)
V (B)

P (B)
, µ2 =

2n

n+ 2
µ1.

Finally, we recall the following useful estimate, proved in [6, Appendix C],

(2.9)
λk − λ1

µk − µ1
≥ λ2 − λ1

µ2 − µ1
∀k ≥ 2.

Let us now define a function P : [0,∞)→ R setting for r ≥ 0

(2.10) P(r) := inf
k≥2

{
λk − λ1

µk − µ1
rn−3 − rn +

K(n− 2)

µk − µ1

}
.

Lemma 2.1. The function P defined in (2.10) is continuous. Moreover there exists r0 > 0 such

that

(2.11) P(r0) = 0,

P(r) > 0 for 0 < r < r0 and P(r) < 0 for r > r0.

Proof. Observe that from (2.8) and (2.7)

(2.12)
2(n− 2)V (B)

P (B)
≤ µk − µ1 ≤

2(n− 2)P (B)

n
∀k ≥ 2.

From this inequality we have that (λk − λ1)/(µk − µ1) → ∞ as k → ∞, hence for any interval

a > 0 there exists ka ≥ 2 such that

P(r) = inf
2≤k≤ka

{
λk − λ1

µk − µ1
rn−3 − rn +

K(n− 2)

µk − µ1

}
for all r ∈ [0, a].

This proves that P is continuous. Observe also that from (2.8), (2.9) and the second inequality in

(2.12)

P(r) ≥ (n+ 1)P (B)

2(n− 2)V (B)
rn−3 − rn +

Kn

2P (B)
,

hence P > 0 in a right neighborhood of the origin. Note also that P(r)→ −∞ as r → +∞.

Let us now set for any integer k ≥ 2 and any r ≥ 0

(2.13) Pk(r) :=
λk − λ1

µk − µ1
rn−3 − rn +

K(n− 2)

µk − µ1
.

It is easily checked that Pk has exactly one zero rk > 0 and that Pk(r) < 0 for r > rk. Therefore,

denoting by r0 > 0 the first zero of P and by k0 ≥ 2 an integer such that P(r0) = Pk0(r0) = 0, we

have that P(r) ≤ Pk0(r) < 0 for all r > r0. Hence, the proof follows. �

3. Nearly spherical sets

In this section we prove the local minimality of balls Br with r < r0 with respect to small

variations in C1.

Theorem 3.1. Let σ ∈ (0, r0/2), where r0 is defined as in (2.11). There exist two positive constants

ε0 and c0, depending only on n and σ, with the following property. If E is a nearly spherical set as

in (2.2), with |E| = Br and barycenter at the origin, r ∈ (σ, r0 − σ) and ‖u‖W 1,∞(Sn−1) ≤ ε0, then

(3.1) I(E)− I(Br) ≥ c0‖u‖2L2(Sn−1).



AN ISOPERIMETRIC PROBLEM WITH A COULOMBIC REPULSION AND ATTRACTIVE TERM 5

Proof. We are going to prove (3.1) by an argument similar to the one introduced by Fuglede in [8].

To this end, it is convenient to rephrase the assumption replacing E by the set

Et : {y = r(1 + tu(x)) : x ∈ B},

with u ∈W 1,∞(Sn−1), ‖u‖W 1,∞(Sn−1) ≤ 1/2,

|Et| = |Br|,
ˆ
Et

x dx = 0,

t ∈ (0, 2ε0), where the constant ε0 < 1/2 will be determined at the end of the proof. Thus, our

assertion (3.1) becomes

(3.2) I(Et)− I(Br) ≥ c0t2‖u‖2L2(Sn−1),

for a suitable constant c0 > 0 depending only on n and σ. In order to prove this inequality we

estimate the differences between various quantities appearing in the definition (2.3) of I. We start

by the perimeter term. In this case, see for instance the proof of Theorem 3.1 in [9], we have,

provided ε0 is sufficiently small,

(3.3)
P (Et)− P (Br)

rn−1
≥ t2

2

(ˆ
Sn−1

|Dτu|2 dHn−1 − (n− 1)

ˆ
Sn−1

u2 dHn−1

)
− C(n)t3‖u‖2L2 ,

for some constant C(n) depending only on n. The difference between the two potential terms is

estimated in [6, (5.20)] as follows

V (Et)− V (Br)

rn+2
≥ t2

2

(
2(n+ 2)

V (B)

P (B)
‖u‖2L2 − [u]2− 1

2

)
− C(n)t3

(
‖u‖2L2 + [u]2− 1

2

)
.(3.4)

Let us now estimate the remaining difference.

R(Et)−R(Br)

r2
=

1

2

ˆ
Sn−1

(
(1 + tu(x))2 − 1

)
dHn−1 =

1

2

ˆ
Sn−1

2tu+ t2u2 dHn−1(3.5)

= t

ˆ
Sn−1

u dHn−1 +
t2

2

ˆ
Sn−1

u2 dHn−1.

Using now the assumption |Et| = |Br|, from (2.4), after expanding (1 + tu)n we obtain

(3.6) n

ˆ
Sn−1

tu dHn−1 +
n(n− 1)

2

ˆ
Sn−1

t2u2 dHn−1 +

n∑
k=3

(
n

k

)
tk
ˆ
Sn−1

ukdHn−1 = 0.

Inserting in (3.5) the expression of the integral of u on Sn−1 obtained from this identity, and

recalling that |u| < 1/2 and 0 < t < 2ε0 < 1, we get

R(Et)−R(Br)

r2
≥ −n− 2

2

ˆ
Sn−1

t2u2dHn−1 − C(n)t3‖u‖L2 .

Collecting this inequality, (3.3) and (3.4), we have

I(Et)− I(B) ≥ t2rn−1

2

(
‖Dτu‖2L2 − (n− 1)‖u‖2L2

)
+
t2rn+2

2

(
2(n+ 2)

V (B)

P (B)
‖u‖2L2 − [u]2− 1

2

)
(3.7)

+
t2r2K(n− 2)

2
‖u‖2L2 − C(n)t3

(
‖u‖2L2 + [u]2− 1

2

)
.

We now write all the norms in the previous inequality in terms of the Fourier coefficients ak,i of

u. To this end, observe that from (3.6), using the fact that |u| ≤ 1/2 and 0 < t < 1, we have in

particular that

(3.8) |a0| ≤ C(n)t‖u‖2L2 .
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From the condition that the barycenter of Et is at the origin we haveˆ
Sn−1

x(1 + u(x))n dHn−1 = 0.

Therefore, arguing as in the proof of (3.6) we get

(3.9) sup
i=1,...,n

|a1,i| ≤ C(n)t‖u‖2L2 .

Finally, recalling that the eigenvalues µk are all bounded, from (2.6) we get that

[u]− 1
2
≤ C(n)‖u‖L2 .

Using this inequality, recalling (2.5), (2.6) and that λ1 = n− 1 and µ1 = 2(n+ 2)V (B)/P (B), see

(2.8), from the estimate (3.7) we get

I(Et)− I(B) ≥ t2r2

2

∞∑
k=2

G(k,n)∑
i=1

(
(λk − λ1)rn−3 + (µ1 − µk)rn +K(n− 2)

)
a2
k,i − C(n)t3‖u‖2L2

≥ t2r2

2

∞∑
k=2

G(k,n)∑
i=1

(µk − µ1)
(λk − λ1

µk − µ1
rn−3 − rn +

K(n− 2)

µk − µ1

)
a2
k,i − C(n)t3‖u‖2L2 .

From this estimate, using (3.8), (3.9) and recalling that Lemma 2.1, we readily obtain

I(Et)− I(B) ≥ (n− 2)V (B)t2r2

P (B)

( (n+ 1)P (B)

2(n− 2)V (B)
rn−3 − rn +

Kn

2P (B)

) ∞∑
k=2

G(k,n)∑
i=1

a2
k,i − C(n)t3‖u‖22

≥ c(n, σ)t2
∞∑
k=2

G(k,n)∑
i=1

a2
k,i − C(n)t3‖u‖2L2 ≥ c(n, σ)t2‖u‖2L2 − C(n, σ)t3‖u‖2L22,

for some suitable constants c(n, σ), C(n, σ) depending only on n and σ.

From the inequality above, taking t, hence ε0, sufficiently small we get (3.2). This proves the

theorem. �

Observe that there exists a constant C(n) depending only on n such that if E is a nearly

spherical set as in (2.2) then

|E∆Br|
C(n)

≤ ‖u‖L2(Sn−1) ≤ C(n)|E∆Br|.

In view of the above inequalities we may rewrite the previous theorem in the following equivalent

way.

Theorem 3.2. Let σ ∈ (0, r0/2), where r0 is as in (2.11). There exist two positive constants ε0 and

c1, depending only on n and σ, such that if E is a nearly spherical set satisfying the assumptions

of Theorem 3.1, then

(3.10) I(E)− I(Br) > c1|E∆Br|2.

4. Second variation

In this section we will calculate the second variation of the functional I(E). The resulting

formula will be used to show that a ball Br with r > 0 is never a local minimizer for the functional

I with respect to L1 variations.
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First, we fix some notation. Given a vector field X ∈ C2
c (Rn,Rn), the associated flow is defined

as the solution of the Cauchy problem
∂

∂t
Φ(x, t) = X(Φ(x, t))

Φ(x, 0) = x.

(4.1)

In the following we shall always write Φt to denote the map Φ(·, t). Note that for any given X

there exists δ > 0 such that for t ∈ [−δ, δ], the map Φt is a diffeomorphism coinciding with the

identity map outside a compact set.

If E ⊂ Rn is measurable, we set Et := Φt(E). Denoting by JΦt the n-dimensional jacobian

of DΦt, the first and second derivatives JΦt are given by

(4.2)
∂

∂t
JΦt|t=0

= divX,
∂2

∂t2
JΦt|t=0

= div((divX)X).

From this formulas we have in particular that if E is a sufficiently smooth open set then

d

dt
|Et| =

ˆ
∂Et

X · νEt dHn−1,
d2

dt2
|Et| =

ˆ
∂Et

(X · νEt)divX dHn−1.

If the flow is volume preserving, i.e., |Et| = |E| for all t ∈ [−δ, δ], then in particular we have that

for all t ∈ [−δ, δ]

(4.3)

ˆ
∂Et

X · νEt
dHn−1 = 0,

ˆ
∂Et

(X · νEt
)divX dHn−1 = 0.

Finally, given a sufficiently smooth bounded open E and a vector field X we recall that the first

variation of the perimeter of E at X is defined by setting

δP (E)[X] :=
d

dt
P (Φt(E))|t=0

,

where Φt is the flow associated with X. The second variation of the perimeter of E at X is defined

by

δ2P (E)[X] :=
d2

dt2
P (Φt(E))|t=0

.

The first and second variations of the functionals R, V and I are defined accordingly.

If E is a C2 open set we denote by H∂E its scalar mean curvature of ∂E, i.e., the sum of

the principal curvatures of ∂E. We denote by B∂E the second fundamental form of ∂E and recall

that the square |B∂E |2 of its euclidean norm is equal to the sum of the squares of the principal

curvatures of ∂E.

As we shall see below, the second variation of V involves some nonlocal variants of H∂E and

|B∂E |2. To this end, if E is a bounded open set of class C2, we set for every x ∈ ∂E

H∗∂E(x) := 2

ˆ
E

1

|x− y|n−2
dy.

The quantity H∗∂E plays the role of H∂E , while the analogue of |B∂E |2 is defined by setting for

x ∈ ∂E

(4.4) C2
∂E(x) :=

ˆ
∂E

|νE(x)− νE(y)|2

|x− y|n−2
dHn−1

y .

We start by calculating the first and second variation of R.

Lemma 4.1. Let E ⊂ Rn be a bounded open set of class C2. Assume that X ∈ C2
c (Rn;Rn). Then

(4.5) δR(E)[X] =

ˆ
∂E

X · νE
|x|n−2

dHn−1.
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Moreover, if 0 6∈ ∂E,

(4.6) δ2R(E)[X] =

ˆ
∂E

(
(X · νE)divX

|x|n−2
− (n− 2)

(X · νE)(X · x)

|x|n

)
dHn−1.

Proof. Given X ∈ C2
c (Rn;Rn), let Φt be the associated flow defined as in (4.1). Let δ > 0 be such

that the map Φt is a diffeomorphism for all t ∈ [−δ, δ]. As above, we set Et = Φt(E) and denote

by ∂t and ∂tt the first and second partial derivatives with respect to t, respectively.

In order to prove the formulas (4.5) and (4.6) we regularize R by setting for ε > 0

Rε(E) =

ˆ
E

1

|x|n−2 + ε
dx.

Since Φt+s(x) = Φs(Φt(x)), changing variable, we have

d

dt
Rε(Et) =

d

ds
Rε(Et+s)|s=0

=
d

ds

(ˆ
Et

JΦs
|Φs|n−2 + ε

dx

)
|s=0

=

(ˆ
Et

∂sJΦs
|Φs|n−2 + ε

dx− (n− 2)

ˆ
Et

|Φs|n−4Φs · ∂sΦs
(|Φs|n−2 + ε)2

JΦs dx

)
|s=0

.

Therefore, recalling the first identity in (4.2), we have

d

dt
Rε(Et) =

ˆ
Et

(
divX

|x|n−2 + ε
− (n− 2)

(X · x)|x|n−4

(|x|n−2 + ε)2

)
dx =

ˆ
∂Et

X · νEt

|x|n−2 + ε
dHn−1.

From this formula it follows that the functions Rε(t) converge uniformly in [−δ, δ], together with

their first derivatives, as ε→ 0. Thus, (4.5) follows immediately letting ε→ 0.

Let us differentiate R(Et) once again. Arguing as before we have

d2

dt2
R(Et) =

d2

ds2
Rε(Et+s)|s=0

=

(ˆ
Et

∂ssJΦs
|Φs|n−2 + ε

− 2(n− 2)
|Φs|n−4Φs · ∂sΦs

(|Φs|n + ε)2
∂sJΦs dx

)
|s=0

+

(ˆ
Et

∂2

∂s2

( 1

|Φs|n−2 + ε

)
JΦs dx

)
|s=0

= J1(t) + J2(t).(4.7)

Recalling the identities (4.2), we have

J1(t) =

ˆ
Et

div(XdivX)

|x|n−2 + ε
dx− 2(n− 2)

ˆ
Et

|x|n−4(X · x)divX

(|x|n−2 + ε)2
dx

=

ˆ
Et

div

(
XdivX

|x|n−2 + ε

)
dx− (n− 2)

ˆ
Et

|x|n−4(X · x)divX

(|x|n−2 + ε)2
(4.8)

=

ˆ
∂Et

(X · νEt
)divX

|x|n−2 + ε
dHn−1 − (n− 2)

ˆ
Et

|x|n−4(X · x)divX

(|x|n−2 + ε)2
,

where the last equality follows from the divergence theorem. Differentiating twice 1/(|Φt|n−2 + ε)

with respect to t, we have, using again the divergence theorem,

J2(t)

n− 2
= −

ˆ
Et

|x|n−4|X|2 + |x|n−4〈DXX,x〉+ (n− 4)|x|n−6(X · x)2

(|x|n−2 + ε)2
dx

− 2(n− 2)

ˆ
Et

(|x|n−4(X · x))2

(|x|n−2 + ε)3
dx

= −
ˆ
Et

div

(
|x|n−4X(X · x)

(|x|n−2 + ε)2

)
dx+

ˆ
Et

|x|n−4divX(X · x)

(|x|n−2 + ε)2
dx

= −
ˆ
∂Et

|x|n−4(X · νEt
)(X · x)

(|x|n−2 + ε)2
dHn−1 +

ˆ
Et

|x|n−4divX(X · x)

(|x|n−2 + ε)2
dx.
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Then, from this last equality, (4.7) and (4.8), we have

d2

dt2
R(Et) =

ˆ
∂Et

(X · νEt
)divX

|x|n−2 + ε
dHn−1 − (n− 2)

ˆ
∂Et

|x|n−4(X · νE)(X · x)

(|x|n−2 + ε)2
dHn−1.

As before the validity of (4.6) follows by observing that since 0 6∈ ∂E also the second derivatives

of Rε(Et) converge uniformly in a neighborhood of the origin as ε→ 0. �

Let us now recall the first and second variation formulas for P and V . To this end, we shall

denote by divτ the tangential divergence and by Xτ the tangential component of the vector field

X. For a proof of the next lemma we refer to [6, Sect. 6].

Lemma 4.2. Let E ⊂ Rn be a bounded open set of class C2 and X ∈ C2
c (Rn;Rn). Then

δP (E)[X] =

ˆ
∂E

H∂E(X · νE) dHn−1,(4.9)

δ2P (E)[X] =

ˆ
∂E

(
|Dτ (X · νE)|2 − |B∂E |2(X · νE)2

)
dHn−1

+

ˆ
∂E

H∂E(divX(X · νE)− divτ ((X · νE)Xτ ).

Moreover,

δV (E)[X] =

ˆ
∂E

H∗∂E(X · νE) dHn−1,(4.10)

δ2V (E)[X] = −
ˆ
∂E

ˆ
∂E

|X · νE(x)−X · νE(y)|2

|x− y|n−2
dHn−1

x dHn−1
y

+

ˆ
∂E

C2
∂E(X · νE)2dHn−1 +

ˆ
∂E

H∗∂E(divX(X · νE)− divτ ((X · νE)Xτ ))dHn−1.

Definition 4.3. We say that a set of locally finite perimeter E ⊂ Rn is a constrained, strict L1-

local minimizer for the functional I if there exists δ > 0 such that whenever F is a set of locally

finite perimeter such that |F | = |E| and 0 < |E∆F | ≤ δ, then

I(F ) > I(E).

Using (4.5), (4.9) and (4.10), it is easily checked that if E is a C2, bounded constrained local

minimizer for I, there exists λ ∈ R such that

(4.11) H∂E +H∗∂E −
K

|x|n−2
= λ on ∂E.

Conversely, any C2 bounded open set satisfying (4.11) will be called a constrained critical set for

the functional I. Note that any ball Br centered at the origin trivially satisfies (4.11), hence it

is a constrained critical set for I. Moreover, if 0 6∈ ∂E and the flow associated with X is volume

preserving, then, setting φ := X · νBr , we have, recalling (4.3),

δ2I(Br)[X] := ∂2I(Br)[φ] =

ˆ
∂Br

(
|Dτφ|2 −

n− 1

r2
φ2

)
dHn−1 +

K(n− 2)

rn−1

ˆ
∂Br

φ2dHn−1

−
ˆ
∂Br

ˆ
∂Br

|φ(x)− φ(y)|2

|x− y|n−2
dHn−1 + rC2

Sn−1

ˆ
∂Br

φ2dHn−1.(4.12)

Given a function φ ∈ H1(∂Br) with
´
∂Br

φ = 0, it is always possible to construct a sequence of

vector fields Xj ∈ C∞c (Rn;Rn), such that div Xj = 0 in a ball BR with R > r and such that

Xj · νE → φ in H1(∂Br), see for instance [1, Cor. 3.4]. Since the flows associated with the vector
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fields Xj are all volume preserving, from this approximation result and (4.12) it follows immediately

that for any function φ ∈ H1(∂Br) with
´
∂Br

φ = 0

(4.13) ∂2I(Br)[φ] ≥ 0.

Next result shows that for r sufficiently large the ball Br is a never a constrained local minimizer

for I.

Theorem 4.4. Let r0 > 0 be as in (2.11). If r > r0 the ball Br is not a constrained local minimizer

of I.

Proof. Fix r > 0. From lemma 2.1 it follows that there exists k ≥ 2 such that

(4.14)
λk − λ1

µk − µ1
rn−3 − rn +

K(n− 2)

µk − µ1
< 0.

For every x ∈ ∂Br set φ(x) := yk(x/r), where yk is the restriction to Sn−1 of a homoge-

neous harmonic polynomials of degree k, normalized so that ||yk||L2(Sn−1) = 1. Recalling that

‖Dτyk‖L2(Sn−1) = λk, from (4.13) we have

∂2I(Br)[φ] = (λk − λ1)rn−3 +K(n− 2)−
ˆ
∂Br

ˆ
∂Br

|φ(x)− φ(y)|2

|x− y|n−2
dHn−1 + rnC2

Sn−1 .(4.15)

On the other hand from (2.6) we have

(4.16)

ˆ
∂Br

ˆ
∂Br

|φ(x)− φ(y)|2

|x− y|n−2
dHn−1 = µkr

n

ˆ
Sn−1

φ2dHn−1 = µkr
n.

From the definition (4.4), using again (2.6) and recalling that the first order normalized spherical

harmonic are the functions xi/
√
ωn, we have

C2
Sn−1 =

1

nωn

ˆ
Sn−1

ˆ
Sn−1

|x− y|2

|x− y|n−2
dHn−1

x dHn−1
y =

1

nωn

n∑
i=1

ˆ
Sn−1

ˆ
Sn−1

|xi − yi|2

|x− y|n−2
dHn−1

x dHn−1
y

=
1

nωn
µ1

n∑
i=1

(ˆ
Sn−1

x2
i√
ωn

dHn−1

)2

= µ1.

Therefore, from the equality above, (4.15), (4.16) and (4.14) we get that

∂2I(Br)[φ] = (λk − λ1)rn−3 +K(n− 2)− (µk − µ1)rn < 0.

Hence, the result follows. �

5. L1-local minimality

In this section we show the main result of the paper, i.e., the strict L1-local minimality of balls

centered at the origin with radius smaller than the radius r0 defined in (2.11). This result will be

proved using Theorem 3.1, following a strategy first introduced in this framework in [5] and later

on improved in [1]. Our result goes as follows.

Theorem 5.1. Let n ≥ 3, σ ∈ (0, r0/2), where r0 is defined as in (2.11). There exist δ, γ,

depending only on n,K, σ, such that if E ⊂ Rn is a measurable set such that |E∆Br| ≤ δ and

|E| = |Br|, then

I(E) ≥ I(Br) + γ|E∆Br|2.

Before giving the proof, we recall some key definitions and results from the regularity theory

for sets of finite perimeter.
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Definition 5.2. Let n ≥ 2,Λ, r > 0. We say that a set E ⊂ Rn of locally finite perimeter is a

(Λ, r)-almost minimizer of the perimeter if for every ball B%(x) with % < r and any set F such that

E∆F ⊂⊂ B%(x), then

P (E;B%(x)) ≤ P (F ;B%(x)) + Λ|E∆F |.

Next result is an important application of the regularity estimates for almost minimizers of the

perimeter. For a proof, we refer to [15, Th. 26.6] and to [17]. To this end, we recall that a sequence

of measurable sets Eh ⊂ Rn is said to converge in measure in an open set Ω to a measurable set

E ⊂ Rn if

lim
h

∣∣(Eh∆E) ∩ Ω| = 0,

that is if the characteristic functions χ
Eh

converge to χ
E

in L1(Ω).

Theorem 5.3. Let n ≥ 2 and let Eh ⊂ Rn be a sequence of equibounded (Λ, r)-almost minimizers

converging in measure to an open set E of class C2. There exists h0 such that, for h ≥ h0, ∂Eh is

of class C1, 12 and

∂Eh = {x+ ψh(x)νE(x) : x ∈ ∂E}.
Moreover, ψh → 0 in C1,α for all α ∈ (0, 1

2 ).

We start with a simple lemma on the potential energy V .

Lemma 5.4. Let F,E ⊂ Rnbe measurable sets and |F | <∞. Then

(5.1) V (F )− V (E) ≤ n

ωn
|F | 2n |F \ E|.

Proof. Denote by r the radius of a ball with the same measure of F . Note that for every measurable

set G with |G| = |Br| ˆ
G

1

|x|n−2
dx ≤

ˆ
Br

1

|x|n−2
dx.

Thus we have

V (F )− V (E) ≤ 2

ˆ
F\E

dx

ˆ
F

1

|x− y|n−2
dy = 2

ˆ
F\E

dx

ˆ
x−F

1

|z|n−2
dz

≤ 2|F \ E|
ˆ
Br

1

|x|n−2
dx = |F \ E|nωnr2.

Hence, (5.1) follows. �

Let us now state another simple lemma which we be useful to treat the perimeter term and

the attraction term in the energy. In all the remaining part of this section we shall always assume

n ≥ 3.

Lemma 5.5. Let σ ∈ (0, r0/2), where r0 is defined as in (2.11). There exists Λ0, depending on

n,K, σ, such that if Λ ≥ Λ0 and r ∈ [σ, r0], the ball Br is the unique minimizer of the functional

P (E)−KR(E) + Λ||E| − |Br||

among all sets of finite measure.

Proof. Recall that for every set E of finite measure, we have

P (BrE )−KR(BrE ) ≤ P (E)−KR(E),

where BrE is the ball with the same volume of E. Therefore, to prove the lemma it is enough to

show that if Λ is sufficiently large, then the function

f(%) := n%n−1 − Kn%2

2
+ Λ

∣∣%n − rn∣∣
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has a unique minimum in [0,∞) at % = r. Indeed if 0 ≤ % ≤ r

f ′(%) = n(n− 1)%n−2 −Kn%− Λn%n−1 ≤ 0,

provided Λ ≥ (n− 1)/r0. Similarly, if % ≥ r

f ′(%) = n(n− 1)%n−2 −Kn%+ Λn%n−1 ≥ 0,

provided Λ ≥ K/σn−2. Then the conclusion follows from the two previous estimates choosing

Λ ≥ max{(n− 1)/r0,K/σ
n−2}. �

Lemma 5.6. There exists C1 > 0, depending only on n, such that, if η ∈ (0, 1) and E ⊂ Rn is a

measurable set such that |E \ Br| < η for some r > 0, then we can find r ≤ rE ≤ r + C1η
1
n such

that

(5.2) P (E ∩BrE ) ≤ P (E)− |E \BrE |
C1η

1
n

Proof. For any % > 0 we set u(%) := |E \ B%|. By the area formula u′(%) = −Hn−1(∂B% ∩ E) for

L1-a.e. % > 0. We set

(5.3) C1 :=
2n+ 1

(nωn)
1
n

.

If u(r + C1η
1
n ) = 0 then (5.2) trivially holds with rE = r + C1η

1
n .

If u(r + C1η
1
n ) > 0 we argue by contradiction assuming that for every r ≤ % ≤ r + C1η

1
n

−2u′(%)− P (E \B%) = P (E ∩B%)− P (E) > − u(%)

C1η
1
n

.

Using the isoperimetric inequality we have that for all % ∈
(
r, r + C1η

1
n

)
−u′(%) >

1

2
(nωn)

1
n |E \B%|

n−1
n − u(%)

2C1η
1
n

=
1

2
(nωn)

1
nu(%)

n−1
n − u(%)

2C1η
1
n

.

Since u(%) ≤ |E \Br| < η, recalling the definition (5.3) of C1, we get

−u′(%) >
n

C1
u(%)

n−1
n for all r ≤ % ≤ r + C1η

1
n .

Integrating this inequality in
(
r, r + C1η

1
n

)
we obtain

u(r)
1
n − u(r + C1η

1
n )

1
n > η

1
n ,

which contradicts the assumption η > |E \Br|. Hence the result follows. �

The following lemma will be used in the proof of Theorem 5.1.

Lemma 5.7. Let σ ∈ (0, r0/2), where r0 is defined as in (2.11), and let Λ1 ≥ 2nω
2−n
n

n r2
0, Λ2 ≥ Λ0,

with Λ0 as in Lemma 5.5. There exists ε0 > 0 such that if 0 ≤ ε ≤ ε0 and r ∈ [σ, r0 − σ], then the

minimum problem

min
{
I(E) + Λ1||E∆Br| − ε|+ Λ2||E| − |Br|| : |E| <∞

}
as at least a solution F ⊂ BR, with R = r0 + C1, where C1 is the constant in Lemma 5.6.

Proof. Given a set of finite perimeter and finite measure E, we define for ε > 0

Jε(E) := I(E) + Λ1||E∆Br| − ε
∣∣+ Λ2||E| − |Br||.

Let Eh be a minimizing sequence for Jε such that

Jε(Eh) ≤ inf Jε +
1

h
.
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From this inequality, recalling Lemmas 5.4 and 5.5, we have,

Jε(Eh) ≤ I(Br) + Λ1ε+
1

h
≤ I(Eh) + V (Br)− V (Eh) + Λ1ε+ Λ2||Eh| − |Br||+

1

h

≤ I(Eh) + nω
2−n
n

n r2|Br \ Eh|+ Λ1ε+ Λ2||Eh| − |Br||+
1

h
.

Therefore, from this inequality, recalling that Λ1 ≥ 2nω
2−n
n

n r2
0, we have

Λ1||Eh∆Br| − ε| ≤
Λ1

2
|Br \ Eh|+ Λ1ε+

1

h
,

hence

|Eh∆Br| ≤ 4ε+
2

hΛ1
.

Assume now that ε ≤ ε0 < 1/5, with ε0 to be chosen. Set η := 5ε0. For h so large that

4ε + 2/(hΛ1) < η, denote by rh := rEh
∈ [r, r + C1η

1
n ] the radius provided by Lemma 5.6. Thus,

recalling (5.2), we estimate for h large

Jε(Eh ∩Brh) ≤
(
P (Eh)− |Eh \Brh |

C1η
1
n

)
+ V (Eh)−KR(Eh) +KR(Eh \Brh) + Λ1||Eh∆Br| − ε|

+ Λ1||(Eh ∩Brh)∆Br| − |Eh∆Br||+ Λ2||Eh| − |Br||+ Λ2|Eh \Brh |

≤ Jε(Eh) +
( K

rn−2
h

+ Λ1 + Λ2 −
1

C1η
1
n

)
|Eh \Brh | ≤ Jε(Eh),

provided we choose η, hence ε0, sufficiently small. Thus also Eh∩Brh is a minimizing sequence for

Jε. Since for h large the sets Eh ∩ Brh ⊂ BR are equibounded and have equibounded perimeters,

a standard argument shows that up to a not relabelled subsequence theyconverge in measure to a

set E ⊂ BR who is an absolute minimizer for Jε. �

In order to make the presentation clearer we split the proof of Theorem 5.1 in several lemmas.

We will argue by contradiction.

Let r0 be defined as in (2.11). Given σ ∈ (0, r0/2), we assume that there exists a sequence Eh
of sets such that |Eh| = |Brh |, with rh ∈ [σ, r0 − σ] and

(5.4) lim
h
|Eh∆Br| = 0, I(Eh) ≤ I(Brh) + C0|Eh∆Brh |2 for all h ∈ N,

for some C0 > 0 to be fixed later.

The idea of the proof is to replace the sets Eh with a sequence of sets still satisfying (5.4),

possibly with a larger constant, and converging in C1 to a ballBr with 0 < r < r0. This convergence

will then contradict the quantitative estimate (3.10), provided C0 is sufficiently small.

To this end we consider the functionals

(5.5) Jεh(E) := I(E) + Λ1||E∆Brh | − εh|+ Λ2||E| − |Brh ||,

where εh := |Eh∆Brh |, and Λ1,Λ2 satisfy the assumptions of Lemma 5.7. Thanks to this lemma

we may conclude that for h sufficiently large the functional Jεh has an absolute minimizer Fh
contained in BR, where R is the radius provided by the lemma.

Next lemma shows that the above minimizers Fh converge in measure to a ball.

Lemma 5.8. Let the sets Fh be defined as above. Then, up to a subsequence, they converge in

measure to a ball Br with r ∈ [σ, r0 − σ].

Proof. Recall that for h large the sets Fh are equibounded. Moreover, still assuming h sufficiently

large,

Jεh(Fh) ≤ Jεh(Brh) = I(Brh) + Λ1εh ≤ C,
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for some C > 0 independent of h. Thus, the Fh have equibounded perimeters. Therefore, up to a

not relabeled subsequence, we may assume that they converge in measure to a set F∞ ⊂ BR and

that rh → r ∈ [σ, r0 − σ]. It is easily checked that F∞ is a minimizer of the functional

J(E) = I(E) + Λ1|E∆Br|+ Λ2||E| − |Br||.

Let us now show that F∞ = Br. To this end we estimate, using Lemmas 5.5 and 5.4 ,

J(F∞) = P (F∞) + V (F∞)−KR(F∞) + Λ1|F∞∆Br|+ Λ2||F∞| − |Br||
≥ P (Br) + V (F∞)−KR(Br) + Λ1|F∞∆Br|
= J(Br) + V (F∞)− V (Br) + Λ1|F∞∆Br|

≥ J(Br)− nω
2−n
n

n r2
0|Br \ F∞|+ Λ1|F∞∆Br|.

Then the conclusion follows by recalling that Λ1 ≥ 2nω
2−n
n

n r2
0. �

The next lemma provides a density estimate for Fh. We give only a sketch of the proof since

it follows quite closely a standard argument in the regularity theory of sets of finite perimeter.

Lemma 5.9. There exist %0 > 0 and ϑ0 > 0 such that if Fh ⊂ BR is a minimizer of Jεhand

0 < % ≤ %0 then for all y ∈ ∂∗Fh

(5.6)
|Fh ∩B%(y)|
|B%(y)|

≤ 1− ϑ0.

Proof. From the minimality of Fh we have that Jεh(Fh) ≤ Jεh(Fh ∪B%(y)) for all % ∈ (0, 1). From

this inequality we get that for L1-a.e. % ∈ (0, 1)

P (Fh;B%(y)) ≤ Hn−1(∂B%(y) ∩ Fh) + V (B%(y) \ Fh)− V (Fh) +KR(Fh)−KR(B%(y) ∪ Fh)

+ Λ1||(B%(y) ∪ Fh)∆Brh | − |Fh∆Brh ||+ Λ2||B%(y) ∪ Fh| − |Fh||

≤ Hn−1(∂B%(y) \ Fh) + C|B%(y) \ Fh|,

where the constant C depends only on n, r0,Λ1 and Λ2. Starting from this estimate, the conclusion

then follows arguing exactly as in [15, Th. 16.14]. �

Lemma 5.10. Let σ ∈ (0, r0/2), Λ1, Λ2 and εh be as above and let Fh ⊂ BR be a minimizer of

the functional Jεh defined in (5.5). There exist Λ, r > 0 and a not relabelled subsequence Fh such

that every Fh is a (Λ, r)-almost minimizer of the perimeter.

Proof. Observe that by Lemma 5.8 it follows that, passing possibly to a subsequence, we may

assume that Fh converge in measure to a ball Br with r ∈ [σ, r0 − σ]. We set %̄ := min{σ/2, %0},
where %0 is the radius provided by Lemma 5.9. We claim that there exists h0 such that

(5.7) |B%̄ \ Fh| = 0 for all h ≥ h0.

Indeed, if the above claim were not true we could find a subsequence Fhk
such that |B%̄ \ Fhk

| > 0

for all k. Since Fh converges in measure to Br and r ≥ 2%̄, we may also assume that |B%̄∩Fhk
| > 0

for all k. Therefore, by the relative isoperimetric inequality we get that P (Fhk
;B%̄) > 0. Hence, for

all k there exists yk ∈ ∂∗Fhk
∩B%̄. Passing possibly to another to a subsequence, we may assume

that yk → y ∈ B%̄. By applying the estimate (5.6) we the get

|B%̄(y)| = lim
k
|Fhk

∩B%̄(yk)| ≤ (1− ϑ0) lim
k
|B%̄(yk)| = (1− ϑ0)|B%̄(y)|.

This contradiction proves (5.7).
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Let us now set r = %̄/3. Let E ⊂ Rn such that E∆Fh ⊂ B%(y), with % < r and h ≥ h0. If

|y| ≤ 2r/3, then, since B%(y) ∩ Fh = B%(y) by (5.7), we have P (Fh;B%(y) = 0, hence, trivially

P (Fh;B%(y)) ≤ P (E;B%(y)).

If instead |y| > 2r/3, we are going to show that

P (Fh;B%(y)) ≤ P (E;B%(y)) + Λ|E∆Fh|,

for some Λ > 0 that will be chosen below. From the minimality of Fh we get, recalling (5.1),

P (Fh;B%(y)) ≤ P (E;B%(y)) + V (E)− V (Fh)−KR(E) +KR(Fh)

+ Λ1||Fh∆Br| − |Eh∆Br|+ Λ2||Fh|| − |E||

≤ P (E;B%(y)) +
n

ωn
|E| 2n |E \ Fh|+K

ˆ
Fh∆E

1

|x|n−2
dx+ (Λ1 + Λ2)|Fh∆E|.

Since |E| ≤ |Fh| + |Br| ≤ C(n, r0) and Fh∆E ⊂ Rn \ Br/3 from the above estimate we easily get

that

P (Fh;B%(y)) ≤ P (E;B%(y)) + C(n, r0,Λ1,Λ2)|Fh∆E|+ C(n)r2−nK|Fh∆E|,

for some postive constants C(n) and C(n, r0,Λ1,Λ2). From this inequality the conclusion imme-

diately follows by taking Λ sufficiently large. �

We are ready now to prove Theorem 5.1.

Proof of Theorem 5.1. Step 1. Given σ ∈ (0, r0/2), we argue by contradiction, assuming that

there exists a sequence of sets of finite perimeter Eh satisfying (5.4). Then, we take Λ1 ≥ 2nω
2−n
n

n r2
0

and Λ2 ≥ max{2Λ0, 4Λ1} and consider a sequence Fh of minimizers of the functionals (5.5), where

εh = |Eh∆Brh |. Thanks to Lemma 5.7 and Lemma 5.8 we may assume, passing possibly to

a subsequence, that Fh ⊂ BR for all h and that they converge in measure to the ball Br for

some r ∈ [σ, r0 − σ]. Then by Lemma 5.10 we may also assume that the Fh are all (Λ, r)-almost

minimizers of the perimeter for some Λ, r > 0. Therefore, Theorem 5.3 yields that the sequence Fh
converges in C1,α to Br. In particular, denoting by r̃h the radius of the ball such that |Fh| = |Br̃h |,
we may assume that r̃h ∈ [σ/2, r0 − σ/2] for all h and that there exists a sequence ψh ∈ C1(Sn−1)

converging in C1 to 0 such that for all h

(5.8) Fh = {y = r̃hx(1 + ψh(x)) : x ∈ B}.

By the minimality of the Fh, recalling Lemma 5.5 and Lemma 5.4 we have

I(Fh) + Λ1||Fh∆Brh | − εh
∣∣+ Λ2||Fh| − |Brh || ≤ I(Eh) ≤ I(Brh) + C0|Eh∆Br|2(5.9)

≤ I(Fh) + V (Brh)− V (Fh) + Λ0||Fh| − |Brh ||+ C0ε
2
h

≤ I(Fh) + nω
2−n
n

n rn0 |Brh \ Fh|+ Λ0||Fh| − |Brh ||+ C0ε
2
h

≤ I(Fh) +
Λ1

2
|Brh∆Fh|+

Λ2

2
||Fh| − |Brh ||+ C0ε

2
h,

where the last inequality follows from the choice of Λ1 and Λ2. From the above inequality we then

get easily that

εh +
Λ2

2Λ1
||Fh| − |Brh || ≤

3

2
|Brh∆Fh|+

C0

Λ1
ε2
h.
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Note that in particular we have that for h large εh ≤ 2|Brh∆Fh|. Therefore, passing possible to

another subsequence if needed, we may assume without loss of generality that for all h

εh +
Λ2

2Λ1
||Fh| − |Brh || ≤ 2|Brh∆Fh| ≤ 2|Fh∆Br̃h |+ 2||Br̃h | − |Brh ||

= 2 |Fh∆Br̃h |+ 2||Fh| − |Brh ||.

Recalling that we have chosen Λ2 ≥ 4Λ1 from the above inequality we have that for all h

(5.10) εh ≤ 2|Fh∆Br̃h |.

Thus, using the second inequality in (5.9) we have that for all h

I(Fh) + Λ1||Fh∆Brh | − εh
∣∣+ Λ2||Fh| − |Brh || ≤ I(Brh) + C0ε

2
h

≤ I(Br̃h) + C(n, σ)|r̃h − rh|+ C0ε
2
h,

for a positive constant C(n, σ) independent of h. Note however that there exists another constant

c(n, σ) still depending only on n and σ, such that

c(n, σ)|r̃h − rh| ≤ ||Fh| − |Brh ||.

Therefore, choosing Λ2 ≥ C(n, σ)/c(n, σ), and Λ1 accordingly, we have, recalling (5.10),

(5.11) I(Fh) ≤ I(Br̃h) + 4C0|Fh∆Br̃h |2.

Let us now denote by xh the barycenter of Fh and observe that

|xh| =
1

|Br̃h |

∣∣∣∣ˆ
Fh

x dx

∣∣∣∣ ≤ 1

|Br̃h |

ˆ
Fh∆Br̃h

|x| dx→ 0 as h→∞.

We set Gh := Fh − xh. Since xh is converging to 0, from (5.8) we deduce that there exists a

sequence ϕh ∈ C1(Sn−1) converging in C1 to 0 such that for all h

(5.12) Gh = {y = r̃hx(1 + ϕh(x)) : x ∈ B}.

Step 2. We now estimate R(Fh) − R(Gh). To this end we use Lemma 4.1 (note that 0 6∈ ∂Gh),

observing that Fh = Φ1(Gh), where the flow is given by Φt(x) := x + txh. Thus, recalling (4.5)

and (4.6) we have

(5.13) R(Fh)−R(Gh) =

ˆ
∂Gh

xh · νGh

|x|n−2
dHn−1 − n− 2

2

ˆ
∂Gh,th

(xh · νGh,th
)(xh · x)

|x|n
dHn−1,

where Gh,th = Gh + thxh for some th ∈ (0, 1). Observe now that∣∣∣∣ˆ
∂Gh,th

(xh · νGh,th
)(xh · x)

|x|n
dHn−1 −

ˆ
∂Gh

(xh · νGh
)(xh · x)

|x|n
dHn−1

∣∣∣∣
=

∣∣∣∣ˆ
∂Gh

(xh · νGh
(x))

(xh · (x+ thxh)

|x+ thxh|n
− xh · x
|x|n

)
dHn−1

∣∣∣∣ ≤ C|xh|3.
Therefore, from (5.13) we have

R(Fh)−R(Gh) =

ˆ
∂Gh

xh · νGh

|x|n−2
dHn−1 − n− 2

2

ˆ
∂Gh

(xh · νGh
)(xh · x)

|x|n
dHn−1 + o(|xh|2).(5.14)

Recalling (5.12), we have that at the point y = r̃hx(1 + ϕh(x)) with x ∈ Sn−1,

νGh
(z) =

x(1 + ϕh(x))−Dτϕh(x)√
(1 + ϕh(x))2 + |Dτϕh(x)|2

.
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Thus, denoting by divτ the tangential divergence on the sphere and using the divergence theorem,

we get
ˆ
∂Gh

xh · νGh

|x|n−2
dHn−1 = r̃h

ˆ
Sn−1

xh · (x(1 + ϕh(x))−Dτϕh(x)) dHn−1

= r̃h

ˆ
Sn−1

(xh · x)ϕh dHn−1 − r̃h
ˆ
Sn−1

divτ (xhϕh) dHn−1

= −(n− 2)r̃h

ˆ
Sn−1

(xh · x)ϕh dHn−1.

Since Gh has barycenter at the origin, arguing as in the proof of (3.9) we have that for h large

(5.15)

∣∣∣∣ˆ
∂Gh

xh · νGh

|x|n−2
dHn−1

∣∣∣∣ = (n− 2)r̃h

∣∣∣∣xh · ˆ
∂Sn−1

xϕ(x) dHn−1

∣∣∣∣ ≤ C(n)|xh|‖ϕh‖2L2(Sn−1).

Let us now estimate the second integral on the right hand side of (5.14). To this end we estimate

ˆ
∂Gh

(xh · νGh
)(xh · x)

|x|n
dHn−1 =

ˆ
Sn−1

(
xh · (x(1 + ϕh)−Dτϕh)

)
(xh · x)

1 + ϕh(x)
dHn−1

≥
ˆ
Sn−1

(
xh · (x(1 + ϕh)−Dτϕh)

)
(xh · x) dHn−1 − C(n)|xh|2‖ϕh‖H1(Sn−1)

≥
ˆ
Sn−1

|xh · x|2 dHn−1 − C(n)|xh|2‖ϕh‖H1(Sn−1) = ωn|xh|2 − C(n)|xh|2‖ϕh‖H1(Sn−1).

From this estimate and from (5.15) we finally obtain, recalling (5.14), that for h large

R(Fh)−R(Gh) ≤ C(n)|xh|‖ϕh‖2L2(Sn−1) −
n− 2

2
ωn|xh|2 + C(n)|xh|2‖ϕh‖H1(Sn−1)

≤ C(n)|xh|‖ϕh‖2L2(Sn−1) −
n− 2

3
ωn|xh|2.

Therefore, for h large, we have

I(Gh) = I(Fh) +KR(Fh)−KR(Gh) ≤ I(Fh) + C(n)K|xh|‖ϕh‖2L2(Sn−1) −
K(n− 2)

3
ωn|xh|2.

Therefore, using (5.11), from the above inequality we have for h large, recalling that xh → 0,

I(Gh) ≤ I(Br̃h) + 4C0|Fh∆Br̃h |2 + C(n)K|xh|‖ϕh‖2L2(Sn−1) −
K(n− 2)

3
ωn|xh|2

≤ I(Br̃h) + 8C0(|Gh∆Br̃h |2 + |Gh∆Fh|2) + C(n)K|xh|‖ϕh‖2L2(Sn−1) −
K(n− 2)

3
ωn|xh|2

≤ I(Br̃h) + 9C0|Gh∆Br̃h |2 + 8C0|Gh∆Fh|2 −
K(n− 2)

3
ωn|xh|2

≤ I(Br̃h) + 9C0|Gh∆Br̃h |2,

where the last inequality follows by observing that

8C0|Gh∆Fh|2 −
K(n− 2)

3
ωn|xh|2 ≤ C(n)8C0|xh|2 −

K(n− 2)

3
ωn|xh|2 < 0,

provided C0 is sufficiently small. In conclusion we have shown that for h large

I(Gh) ≤ I(Br̃h) + 9C0|Gh∆Br̃h |2

and this inequality contradicts (3.10) if we assume also C0 < c1/9. �
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6. Global minimality

In this last section we prove the existence of a critical radius r1 ≤ r0 such that if r < r1,

the ball centered at the origin with radius r is the unique global minimizer of I among all sets of

prescribed measure. We start with a simple lemma.

Lemma 6.1. Let n ≥ 3. There exists a constant C(n) > 0 such that if E ⊂ Rn is a Borel set with

|E| = |Br| then

(6.1)
R(Br)−R(E)

r2
> C(n)

(
|E∆Br|
rn

)2

.

Proof. Since both quantities in (6.1) are scaling invariant we may assume r = 1. Thus, let E be a

Borel set with |E| = |B| with |E∆B| > 0 and let us decompose it as E = (E ∩B) ∪ (E \B). Let

0 < % < 1 < r such that |B%| = |B \ E|, |Br \B| = |E \B| and set

E∗ := Br1 ∪ (Br2 \B).

Clearly, we have that

|E∆B| = |E∗∆B|, R(E∗) > R(E).

At this point we can easily evaluate the left handside of (6.1)

R(B)−R(E) ≥ R(B)−R(E∗) =
nωn

2
(2− (%2 + r2)).

Since rn = 2− %n, from the inequality above we have

R(B)−R(E) ≥ nωn
2

(2− %2 − (2− %n)
2
n ) := f(%).

The conclusion then follows by observing that

lim
%→1

f(%)

(1− %)2
= c(n) > 0.

�

Before stating the main result of this section, let us define

(6.2) r1 :=

(
K

2ωn

) 1
n

.

Theorem 6.2. Let n ≥ 3. If r < r1, where r1 is defined as in (6.2), the ball centered at the

origin is the only gobal minimizer of I among all sets E ⊂ Rn with prescribed volume |E| = |Br|.
Moreover,

I(E)− I(Br) ≥ c|E∆Br|2,
for some positive constant c depending only on n and r.

Proof. We start by observing that

V (Br)− V (E) =

ˆ
Br

ˆ
Br

1

|x− y|n−2
dxdy −

ˆ
E

ˆ
E

1

|x− y|n−2
dxdy(6.3)

= 2

ˆ
Rn

ˆ
Rn

χBr
(x)(χBr

(y)− χE(y))

|x− y|n−2
dxdy −

ˆ
Rn

ˆ
Rn

(χBr
(y)− χE(y))(χBr

(x)− χE(x))

|x− y|n−2
dxdy.

set for all x ∈ Rn

(6.4) u(x) :=

ˆ
Rn

(χBr
(y)− χE(y))

|x− y|n−2
.

Then

−∆u = cn(χBr
− χE),
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for some constant c(n) > 0. Therefore, integrating by parts,ˆ
Rn

ˆ
Rn

(χBr
(y)− χE(y))(χBr

(x)− χE(x))

|x− y|n−2
dxdy = −

ˆ
Rn

u(y)∆u(y)dy = cn

ˆ
Rn

|Du|2 dx.(6.5)

Combining (6.3), (6.5) and the fact that u is superharmonic in Br, we get

V (Br)− V (E) ≤ 2

ˆ
Br

u(y)dy ≤ 2|Br|u(0) = 2|Br| (R(Br)−R(E))

Thus using the isoperimetric inequality, the above lemma and that r < r1 we can conclude that

I(E)− I(Br) ≥ P (E)− P (Br) + (K − 2|Br|)
(
R(Br)−R(E)

)
≥ c(n, r)(K − 2|Br|)|E∆Br|2.

�

From definitions (2.11) and (6.2) it is clear that both r0 and r1 tend to∞ as K →∞. However

the ratio r0/r1 stays bounded.

Lemma 6.3. Let n ≥ 3. Then

lim sup
K→+∞

r0

r1
≤
( nω2

n

V (B)

) 1
n

.

Proof. Let P2 be defined as in (2.13) and denote by r2 ≥ r0 the unique zero of P2. From the second

equation in (2.8), we have that

P2(r) = a(n)rn−3 − rn +
K(n+ 2)

µ1
,

where, using the first equation in (2.8), an = (n + 1)P (B)/[2(n − 2)V (B)]. Recalling the first

equation in (2.8), (2.12) and the definition (6.2) of r1 we have at once that

K(n+ 2)

µ1
= γnnr

n
1 , where γn =

( nω2
n

V (B)

) 1
n

> 1.

Fix now ε > 0. Then

P2(γn(1 + ε)r1) = γnnr
n
1

(
an(1 + ε)n−3

r3
1

− (1 + ε)n + 1

)
< 0,

provided r1, hence K, is large enough. Therefore we may conclude that for K sufficiently large

r0 ≤ r2 < γn(1 + ε)r1.

Hence, the result follows. �
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