THE SINGULAR SET OF MINIMAL SURFACES NEAR
POLYHEDRAL CONES

MARIA COLOMBO, NICK EDELEN, AND LUCA SPOLAOR

ABSTRACT. We adapt the method of Simon [25] to prove a Cl:®-regularity theorem
for minimal varifolds which resemble a cone C3 over an equiangular geodesic net. For
varifold classes admitting a “no-hole” condition on the singular set, we additionally
establish C1-®-regularity near the cone C% x R™. Combined with work of Allard [3],
Simon [25], Taylor [26], and Naber-Valtorta [20], our result implies a C'*“-structure for
the top three strata of minimizing clusters and size-minimizing currents, and a Lipschitz
structure on the (n — 3)-stratum.
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1. INTRODUCTION

In this paper we are interested in the regularity and fine-scale structure of stationary
integral varifolds (and varifolds with bounded mean curvature) which resemble polyhedral-
type cones. That is, we address the following question:

Question 1.1. Suppose C% C R?** is the cone over an equiangular geodesic net in S***
(each junction meeting precisely three arcs), and M?*™ is a stationary integral varifold
weakly close to C = Cy x R™. Then what can be said about the regular and singular
structure of M?

Understanding the relationship between the local (singular) structure of a minimal
surface M and its tangent cone C has been a central question in geometric analysis, even
when multiplicity is not a factor. There are many profound and optimal results concerning
the dimension of the singular set, in various circumstances (e.g. [3], [6], [12], [13], [21],
[7]), but relatively few works have addressed the structure of M near singularities (except
notably when the singular set has dimension 0, in which case it is often known to be
locally finite |13, §]).

Generally the best results are known when a C has smooth cross-section (and multiplicity-
one), or when M belongs to a class with very rigid tangent cone structure, with topological
obstructions to “perturbing” them away.

For example, when C is smooth, multiplicity-one the picture is largely complete: using
ideas dating back to De Giorgi, Allard [3] and Allard-Almgren [4] proved that if C satisfies
an integrability hypothesis, then M is a locally C't®-perturbation of C; later, in huge
generality, Simon [22] proved that for any such C (not necessarily integrable), then M
is locally a C°s_perturbation; and in Adams-Simon [I] this decay rate was shown to be
sharp.

For 2-dimensional (M, ¢, d)-minimizing sets in R3, Taylor [26] (see also [10], [11]) has
shown the following beautiful structure theorem: M? decomposes into a union of C1
manifolds, meeting along various C%* curves at 120°, which in turn meet at isolated
tetrahedral junctions. (We remark that, though they may coincide in certain minimization
problems, the notions of being (M, £, §)-minimizing and having bounded mean curvature
are essentially independentED Crucial to Taylor’s work is a classification of tangent cones

IFor example, a union of > 2 intersecting lines is stationary but not (M, ¢, §)-minimizing. Conversely,
the 1-d graph of the curve f(z) = |z|®sin(1/|z|) is (M, cr?, 1)-minimizing in B(0) but its mean curvature
does not lie in any L? for p > n = 1. See Section for more background.
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for this class of sets. For certain (M, 0, §)-minimizing sets, our work generalizes Taylor’s
theorem to higher dimensions.

Simon [25] was the first to consider the singular structure for general stationary integral
varifolds, and for varifold classes without such rigid tangent cone structure. He considered
cones of the form C = C§ x R™, where Cy is smooth and integrable, and proved an
“excess decay dichotomy,” which loosely says that either M has a significant gap in the
singular set, or the scale-invariant L*-distance p™"72 [, B, d%, decreases when the radius
is decreased by a fixed factor.

For certain tangent cones which cannot be “perturbed away,” like the union of three
half-planes, and in general for classes of M admitting some kind of “no-hole” condition on
the singular set, Simon’s result implies that sing(M) is locally a C** manifold (see The-
orem . More generally, he used his decay dichotomy to show countable-rectifiability
of the singular set for particular “multiplicity-one” classes, e.g. for mod-2 minimizing flat
chains.

Later, in [23] Simon used the Lojaciewicz inequality to show countable-rectifiability of
each stratumﬂ of M in any “multiplicity-one class” (e.g. codimension-1 mass-minimizing
currents), and almost-everywhere uniqueness of the tangent cones in the singular set. Just
recently Naber-Valtorta [20] proved rectifiability of each stratum for general stationary
integral varifolds, and rectifiability with mass bounds of the singular set for M in any
multiplicity-one class.

We generalize the seminal results of [25] to prove that whenever M admits a certain
“no-holes” property on the singular set, and Cy is integrable, then M as in Question [1.1
must be a Cl%perturbation of C. Integrability loosely means that every infintesimal
motion through polyhedral cones can be generated by a family rotations, see Section [2.3]
Both of these conditions are satisfied in several natural circumstances, and for a wide
class of cones.

Our main Theorem [3.1]is an excess decay dichotomy in the spirit of Simon, and is given
in Section [3| Here we list two consequences, which correspond to two classes of varifold
admitting a no-hole condition.

Theorem 1.2 (e-regularity for polyhedral cones). Let C? C R? C R*** be a polyhedral
cone. There are §(C),u(C) € (0,1) so that if M is an integral varifold with bounded
(generalized) mean curvature Hy and no boundary in By, satisfying

3 .
0ar(0) 2 0c(0),  uu(Br) < 56c(0), / dist(z, C)*dpnr + ||Hurll 5,y < 0%, (1.1)

By
then sptM N Byjp is a CYH-perturbation of C.

We remark that the restriction Cy C R? is due to integrability: Theorem holds for
any integrable polyhedral Cy, but we can only verify integrability for those nets in S?
(indeed, we feel integrability may be generally false in higher codimension)

2There is a subtle difference between the strata of Almgren used in Naber-Valtorta [20], and the strata
used in Simon [23]: Simon defines S™ (M) to be the set of points for which every tangent cone C satisfies
dim(singC) < m, rather than asking for every tangent cone to have < m dimensions of symmetry. In
paticular, the if M? = T is the tetrahedral cone (defined in Section, then 0 lies in the O-stratum for
Naber-Valtorta, but only the 1-stratum for Simon.
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A second class admitting the no-hole condition consists of varifolds with an associated
orientation (i.e. current) structure. These arise naturally as size- and cluster-minimizers,
and we correspondingly have the following interior regularity theorem.

Theorem 1.3 (Regularity of size-/cluster-minimizers). Let M™ be the support of the
integral varifold associated to either a minimizing cluster in U = R™™Y, or a homologically
size-manimizing current in an open set U (e.g. as constructed by Morgan [19]). Then we
can decompose M NU = M,, UM, U M,_o U M,_3 (disjoint union), where:

(1) M, is a locally-finite union of embedded C** n-manifolds;

(2) M, is a locally-finite union of embeded, C** (n — 1)-manifolds, near which M

is locally diffeomorphic to Y x R,

(3) M, is a locally-finite union of embedded, CY* (n — 2)-manifolds, near which M

is locally diffeomorphic to T? x R"~2;

(4) M,,_3 is relatively closed, (n — 3)-rectifiable, with locally-finite H"~3-measure.
Here Y! is the stationary 1-dimensional cone consisting of three rays, and T? is the
stationary 2-dimensional cone over the tetrahedral net in S* (see Section for precise
definitions).

Remark 1.4. In either of the above cases, standard interior estimates and work of [I5],
[16] imply that M, and M, _; are analytic. Contrarily, we suspect C** may be sharp for
M,,_5, as there exist Jacobi fields on T? which near 0 are bounded in C'® but not C*%,

When n = 2 then Theorem [1.3| has been established (for general (M, ¢, d)-minimizing
sets) by Taylor [26]. David [10], [11] has given an entirely different proof of Taylor’s
Theorem, and has proven partial generalizations to higher codimension.

For general n, conclusions, 1), 2) are respectively consequences of Allard’s [3] and
Simon’s work [25]. Conclusion 4) follows from parts 1), 2), 3), and the work of Naber-
Valtorta [20]. White [27] has announced a result analogous to Theorem [1.3|parts 2), 3) for
general (M, €, §)-minimizing sets. We mention that, in light of the essentially independent
natural of general (M, ¢, §)-minimizing sets, and varifolds with bounded mean curvature,
our main Theorem is likewise independent from the result asserted by White.

The very broad strategy of proof is to “linearize” the minimal surface operator over C,
and use good decay properties of solutions to the linearized problem (called Jacobi fields)
to prove decay of the minimal surface. In general the linear problem may not adequately
capture the non-linear problem, and for this reason we must (as in [25]) make two running
assumptions: first, we require the polyhedral cone Cy to be integrable (Definition [2.8]), to
ensure that every 1-homogeneous Jacobi field can be realized “geometrically” through a
family of rotations; second, we require the singular set of M to satisfy a no-holes condition
(Definition [2.4)), which prevents the tangent cone from “gaining” symmetries not seen in
M.

Our proof follows Simon [25], but there several complications when dealing with polyhe-
dral cylindrical cones. Our main contributions are making sense of inhomogeneous blow-
ups on cylindrical cones with singular cross section Cgy, correspondingly defining a good
notion of Jacobi field on polyhedral cones, and extending the various non-concentration
and growth estimates of Simon to the singular setting. We additionally remove the
“multiplicity-one” hypothesis from the excess decay Theorem (in both our result and
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Simon’s), but we caution the reader that the structural results of Simon still require this
hypothesis.

Acknowledgments We are grateful to Guido De Philippis for many interesting dis-
cussions and for introducing us to the problem. We thank Spencer Becker-Kahn, Leon
Simon, and Neshan Wickramasekera for several helpful conversations. We wish to ac-
knowledge the support of Gigliola Staffilani, whose grant allowed M.C. to visit MIT. N.E.
was supported by NSF grant DMS-1606492.

2. NOTATION AND PRELIMINARIES

Let us fix some notation. We work in R"** = R“* x R™ 3 (x,y). We denote by capital
letters X € R"™*. Write r = |z|, and R = | X| = /|z|? + |y|2. We shall always write d(z)
for the Euclidean distance function to a set A. We write B,.(A) = {x : da(z) < r} for the
open r-tubular neighborhood of A. More generally, given a radius function r, : A — R,
we write B, (A) = AUJ,c4 Br, ().

Given a linear subspace V' C R"* we write V! to denote its orthogonal comple-
ment, and 7y for the linear projection operator. Given another linear space W, write
<V,W >2= 3" -e;- f; for the distance between V, W, where {e;};, {f;}; are choices of
orthonormal basis on V', W. The - always denotes Euclidean inner product.

We will be working with n = (£+m)-dimensional integral varifolds in R"+* = R(¢+k)+m
with bounded mean curvature, and the reader should always think of them as having
(almost-)symmetry in the {0} x R™ factor. Any cone C will be a rotation of Cj x R™
where C; is ¢-dimensional, stationary and either smooth or polyhedral (see Definition
23).

Typically M will denote a general integral varifold, and g, will be its mass measure.
Our integral varifolds will always have bounded mean curvature and no boundary in B;.
This means there is a py-a.e. bounded vector field H,;, so that

/ divy (V) = —/ Hy - X VY € CHBy,R™). (2.1)
M M

Here divy(Y') is the tangential divergence, defined at pip-a.e. point by divy (Y) = . €;-
(D,,Y), for any orthonormal basis {e;}; of Tx M. Of course M is stationary if Hy; = 0.
We shall aways write 0y,(X, R) for the Euclidean density ratio in Br(X):

00 (X, R) == r " pupr (Br(X)). (2.2)

When |H)ys| < Ay, and M has no boundary in By, the 6,,(X, R) is almost-monotone in
the sense that

™89, (X, R) is increasing for all X € B; and R < 1 — |X]. (2.3)
In this case the density at X is well-defined

02 (X) = lim 0y, (X, R). (2.4)

r—0
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By the monotonicity (2.3) any integral varifold having bounded mean curvature and
no boundary can be identified with its support plus multiplicity, in the sense that

/ Fdyins = FOH" (2.5)
sptM

for some pj-measurable, integer-valued function #. We shall make this identification. In
particular, we shall use the following shorthand:

[a= [ . ) = dgnte). o) = 001, (2.6)
MnNA A

Here ¢ : R""* — R"** is some C' mapping, and ¢y is the pushforward.

We write regM for the set of points in M for which M locally coincides with a O
graph, and singM = M \ regM.

We may further stratify M using the quantitative strata of Cheeger-Naber [9]. We say
a varifold cone C is m-symmetric if it takes the form ¢(Cy x R™) for some g € SO(n+k).
The m-stratum of M consists of points

S™(M)={X € M : no tangent cone at X is (m + 1)-symmetric}. (2.7)

Fix a metric dy on the space of n-varifolds which induces varifold convegence. We say

M is (m,e)-symmetric in some ball B,(z) if dy(r~'(M — X)_B;,CLB;) < ¢ for some
m-symmetric cone C. The (m, e)-stratum then consists of points

SI'(M) ={X € M: M is not (¢,m + 1)-symmetric in B,(X) for all r < 1}.  (2.8)

We will often use the following local Holder-semi-norm. Suppose C is a cone, and
f:9QCC— C* and (z,y) € CN Byjp. Then we define

_ 1f(Z) = f(W)]
[f]a,C(x’y) _Sup{ |Z—W|O‘
One can easily verify the following compactness: if f; : C; N B; — Cj is a sequence of

functions, and C; — C in C’llo’f, and [fi]a.c, is uniformly bounded on compact subsets,

4, W eQn B|x|/4(.l’,y)} . (29)

then after passing to a subsequence we have f; — f : CN B; — C* in C’loo’g, for any
o < a.

2.1. One-sided excess, holes. We shall prove decay of the following one-sided excess.

Definition 2.1. Let M be an integrable varifold with bounded mean curvature, and C
a stationary integral varifold cone, and § € (0, 1]. Then we define

Es(M,C,X,R) = RH/ dg + 6 ' R||Hpl| Lo (vnBy)- (2.10)

MNBg(X)
Notice E is scale-invariant, in the sense that E5(M,C, X, R) = Es(R™'(M —X), R7'(C —
X),0,1). When § = 1 we may write E instead of Ejs, and when X = 0 we may simply
write Es(M, C, R).

Remark 2.2. The factor of 61 effectively “captures” the region where R||Hp||1o(5y) 18
much smaller than L?-distance. Our ultimate blow-up argument must work in this regime
— it cannot hope to see regions where L2-excess is controlled by mean curvature, since in
this case excess decay is dominated by the scaling of Hy;.
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Definition 2.3. Take a fixed cone C = C§ x R™, and ¢ > 0. We let C.(C) be the
collection of cones

C.(C) ={q(C) : ¢ € SO(n+ k) with |q — Id| < e}. (2.11)

Define N.(C) to be the set of integral n-varifolds M"™ C R""* having bounded mean
curvature and no boundary in By, satisfying

3
0eM, puu(B) < §(90(0), E(M,C,0,1) < &% (2.12)

In general, even an isolated singularity could potentially have a tangent cone with
lots of symmetry. To prove decay of M towards a cone C = C§ x R™ with a spine
of singularities, we must, like in [25], impose a “no-holes” condition on M. In certain
circumstances the no-hole condition can be deduced for topological reasons (note that no
lower density assumptions are made in the class A).

Definition 2.4. Take the cone C" = C§ x R™. We say M" satisfies the §-no-holes
condition in B, w.r.t. C if the following holds: for any y € B™, there is some X € Bs(0,y)

2.2. Polyhedral cones. We are concerned with the following types of cones.

Definition 2.5. A 2-dimensional cone C% C R*"* is polyhedral if:

A) Cy is the cone over some multiplicity-1 geodesic net in S'** having the prop-
erty that every junction has precisely three edges meeting at 120° (nets with this
property are sometimes called equiangular), and

B) the cone Cy has no additional symmetries, i.e. we cannot write Cy = ¢(C{, x R)
for some ¢ € SO(2 + k), and some 1-dimensional cone Cj,.

We shall often say a cone C% x R™ is polyhedral if Cy is polyhedral.

The equiangular geodesic nets in S* are completely classified, and there are 10 of them.
However, by our Definition [2.5| only 8 of these nets give rise to polyhedral cones. For a
comprehenive list see Section Let us remark that, from the work of [2], any integer-
multiplicity geodesic net in S'™* (with finite mass) consists of only finitely many geodesic
arcs.

We bring the readers attention to two important (non-)examples. Define Y! C R? to
be the cone consisting of three rays meeting at 120°:

Y!={(2,0): 2 >0} U{(z,—V3z) : 2 <0} U {(x,V3) : z < O}. (2.13)

The cone Y! x R arises from the geodesic net consisting of three half-great-circles meeting
at 120°. Though of fundamental importance in this paper, cones Y! x R and R? are not
considered polyhedral cones.

Define T? C R3 to be the cone over the tetrahedral net: T2 NS? is the equiangular net
having vertices

(1,0,0), (=1/3,2v/2/3,0), (=1/3,—v2/3,V6/3), (=1/3,—v2/3,-V6/3). (2.14)

The tetrahedral cone T? is the archtype of polyhedral cone, and is the polyhedral cone
of least density in R®. It would be interesting to know whether T? is the least density
polyhedral cone in any codimension.
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Remark 2.6. A very important fact is that if C = CZ x R™ is polyhedral, then away from
the axis {0} x R™ a small neighborhood is (up to rigid motion) either flat R**™ or the
cone Y! x RM™,

The cone Y! x R™ we shall decompose into three half-planes H (1) U H(2) U H(3), and
write (i) for the m-plane containing H (i), n(i) for the outer conormal of 0H (i) C Q(i).

To adequately parameterize polyhedral surfaces and cones we require some further
notation. We call a subset of the form

W ={re? ¢ R?:0 ¢ [6y,0,] and r € [0,00)} C R? (2.15)

a wedge. Given a plane P? = q(R?) C R""* for ¢ € O(n + k), a subset W C P? is wedge
if g1 (W) C R? is a wedge. We shall write intW for the “interior” points

intW = {re” : 6 € (6y,6,) and r € (0,00)}, (2.16)
and OW for the “boundary” points
OW = {re" .0 € {6y,0,} and r € [0,00)}. (2.17)

We shall decompose our polyhedral cone Cy into a union of wedges W (1),...,W(d),
meeting along a collection of lines Ly,...,L(2d/3). Let us write P(i) for the 2-plane
containing W (i), and n(i) for the outer conormal of 0W (i) in P(i). A function v : Cy —
Ci is interpreted as a collection of functions v(i) : W (i) — P(i)*.

When dealing with polyhedral cones, it will be convenient to have a notion of annulus
which is flat near the junctions. Given a wedge W C R? as in (2.15]), define the star-shaped
curve Sy by letting

a5 0 €100— (01 —00)/4,00 + (61 — 60) /4]
r(0) = (9+§> 6 € 61 — (61 — 60) /4,61 + (61 — 65) /4] (2.18)

cos((81—00)/4) else

For all intents and purposes Sy is a circle, but because Sy is linear in a neighborhood
of OW  our lives are simplified when dealing with domains whose boundaries are graphs
over OW. We have

Sw C By \ By (2.19)

Let us correspondingly define the annular domain
Aw (ry,19) = U r Sy (2.20)

r1<r<ra

As before, Ay (r1,79) is essentially just a round annulus, but is slightly adjusted to fit W
better. If W C P? = ¢(R?) is a wedge, then we define Ay := ¢(A,-1y) in the obvious
way. As in (2.19]), we have

(.Br2 \BZT1) NW C Aw<7’1,7”2) C (BQTZ \BTI) Nnw. (221)
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2.3. Compatible Jacobi fields. Let us consider the following model scenario: fix a
polyhedral cone C* = CZ% x R™, and take M to be a l-parameter family of minimal
surfaces, continuous in the varifold distance, satifying My = C. For any 7 > 0 and ¢
sufficiently small (depending on 7), the M; \ B.({0} x R™) are graphical over C by a
function w;, in some suitable sense (see Lemma [4.1)).

We can define the initial velocity v = d,u; as a function v : C — C*. The resulting v
will satisfy Av = 0 on each wedge, and certain compatibility conditions on the junction
lines. This PDE system is a notion of linearization of the mean curvature operator over
C (which itself we do not explicitly define). We call such a v a compatible Jacobi field.

We shall see in Section [7] how general inhomogeneous blow-up sequences give rise to
compatible Jacobi fields.

Definition 2.7. Let C = C2 x R™ be a polyhedral cone. We say v: CN B; — Ctis a
compatible Jacobi field on C N By if it satisfies the following conditions:

A) For each i, v(i) is smooth on (W (i) \ {0}) x R™) N By, and satisfise Av(i) = 0.
B) (“C° compatibility”) For every z € ((OW (i) \ {0}) x R™) N By, there is a vector
V(z) € R?** (independent of i) so that

0(0)(2) = mpe (V(2)). (2.22)
C) (“C' compatibility”) If W (i1), W (iz), W (i3) share a common edge W (i;), then

Z 0,0(i;)(2) =0 Yz € ((0W(iy) \ {0}) x R™) N By. (2.23)

We say a compatible Jacobi field v is linear if there are skew-symmetric matrices A(i) :
R™* — R™* so that v(i) = mp(;). o A(i). Notice we do not require the A(7) to coincide.

As outlined in the Introduction, we wish to use the decay properties of compatible
Jacobi fields to prove excess decay on M. There is a catch however, which is illustrated in
the following example: let M;, C, and v be as in the previous example. Let ¢, = exp(tA) €
SO(n+ k) be a 1-parameter family of rotations generated by the skew-symmetric matrix
A.

Then one can easily verify the initial velocity of the family M; as graphs over ¢, (C) is
now v — g o A, which decays at most linearly, and in particular is insufficient to give
any kind of excess decay. We need to know that, by choosing “good” reference cones in
our blow-up sequence, we can always eliminate first-order growth in the limiting Jacobi
field.

As in [4] and [25], we require an integrability condition on our cross sectional cones Cy,
which for us simply asks that every 1-homogeneous Jacobi field arises from a family of
rotations, like the above example.

Definition 2.8. We say a polyhedral cone Cy*> C R2** is integrable if every linear,
compatible Jacobi field v : Cy — Cy™ takes the form

v="mgL oA, (2.24)

for some skew-symmetric matrix A : R2*% — R2+F,
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Remark 2.9. By Proposition [6.4) any 1-homogeneous compatible Jacobi field on Cy is
linear in the sense that each component v(7) is the restriction of some skew-symmetric
matrix A(7). Integrability in this definition means that all the A()’s match up to generate
a global rotation of C,.

Remark 2.10. The polyhedral cones we are most interested in (those arising from equian-
gular geodesic nets in S?) are integrable in the sense of Definition . We prove this in
Section

We note however that our notion of integrability is stronger than the “usual” definition
(of [4], [25]), which simply requires every l-homogeneous Jacobi field to arise from a
1-parameter family of stationary cones.

Indeed, although any 1-homogeneous compatible Jacobi field on a polyhedral cone is
locally generated by a rotation (Proposition , it seems plausible to us that there may
exist 1-parameter families of connected, equiangular geodesic nets in some S*** which are
not global rotations. Of course disconnected equiangular net are trivially not integrable
by our definition.

We have chosen to write this paper using rotations, but (like in [25]), the methods carry
over directly to the more general notion of integrability. See, for example, Remark [7.7]

Remark 2.11. It is also not clear to us that every linear Jacobi field need arise from a
1-parameter family of nets, being global rotations or otherwise. That is, there may be
non-integrable polyhedral cones even in the more general sense of integrable.

It will be convenient to define a general notion of inhomogeneous blow-up sequence.
The following defines sufficient conditions to inhomogeneously blow-up M; over C; at
scale 3;, so as to obtain a compatible Jacobi field with “good” properties (see Proposition

3.

Definition 2.12. Let ¢;, §; be two sequences of numbers — 0. We say (M;, C;,;, 3;) is
a blow-up sequence w.r.t. C if the following holds:

A) Each M; € N,,(C), and C; € C.,(C);

B) Each M; satisfies the e;-no-holes condition w.r.t C in By;

C) We have limsup; 3; ?E.,(M;, C;,0,1) < oc.

Remark 2.13. This last condition ensures that we can inhomogeneously scale the graph
by size 5; !, and still have uniform C** and L? bounds.

Remark 2.14. In many cases we will simply take C; = C, but allowing for slightly tilted
C,; is what enables us to kill 1-homogeneous terms in the resulting Jacobi field. In general
it may not hold that limsup; 8; '&; < oo.

3. MAIN THEOREMS

Our main decay Theorem is the following. Recall the Definition [2.§8] of integrability.

Theorem 3.1 (Excess decay). Take C = C2 x R™, where C2 C R*** is an integrable
polyhedral cone, and take 0 > 0. There are numbers 6(C,0), c¢(C), v(C,0), u(C) so that
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the following holds: Suppose M?*t™ is an integral varifold, with bounded mean curvature
and no boundary in By, satisfying

DeM, pu(B) < 20c(0), Es(M.C.1) <&, (3.1)
and the 6-no-holes condition in By w.r.t. C. (3.2)

Then we can find a rotation ¢ € SO(n + k) with |q — Id| < yEs;(M, C,1)Y2, so that
Es(M,q(C),0) < cO0*Es(M,C,1). (3.3)

Note that @ and ¢ are independent of 6. In particular, we deduce that for 6(C) suffi-
crently small, we have

B5(M,q(C),6) < S Es(M,C. 1), (3.4)

Remark 3.2. Though we state and prove all our results for bounded mean curvature, they
continue to hold with minor modifications for integral varifolds with mean curvature in
LP, provided p > n.

An important special case of Theorem is when m = 0, where the no-holes condition
becomes simply the requirement that some point of the correct density exists. Note we
do not assume any kind of minimizing quality to M.

Corollary 3.3. Let C?> C R*™* be an integrable polyhedral cone. For example, suppose
C? C R? C R*™*. There are 6(C), u(C) € (0,1) so that if M* € Ns(C) satisfies 0,,(0) >
0c(0), then M N By s is a CY*-perturbation of C.

For certain classes of varifolds we can deduce the no-holes condition whenever M is
sufficiently close to C in excess. One important way the no-holes condition arises is by
imposing a boundary /orientability structure. If 7" is an integral n-current, we can write
its action on n-forms w as

T(W) = / < w,Tr > HTHn, (35)
Mt

where M7p is some n-rectifiable set, 07 is a positive, integer-valued, H"L Mp-integrable
function, and 71 is a ‘H"L Mp-measurable choice of n-orientation.

Definition 3.4. Given an open set U, we say an integral varifold V' has an associated
cycle structure in U if there is a countable collection of integral n-currents 77,75, . . ., each
without boundary in U, so that

pyLU = (6 'Hnl_U Mz ) U (3.6)

i=1
where 0 is some positive, integer-valued, H"|J;>, My,-measurable function.

Varifolds with cycle structure arise naturally when constructing size-minizers, clusters,
and more generally (M, e, d)-minimizers. See the following Section for details. For
codimension-one varifolds having a cycle structure, we can prove the following (again we
note that no minimizing property of M is required).
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Theorem 3.5. There are constants 6(m), u(m) € (0,1) so that the following holds. Let
M?+tm C R3+™ be a varifold with an associated cycle structure in By, and suppose M €
N5(T? x R™). Then M N By is a O perturbation of T x R™.

3.1. Clusters and size-minimizers. The most dramatic application of our regularity
Theorem is seen in (certain classes of) (M, g, d)-minimizing sets, as in this case we have
a very good classification of tangent cones due to Taylor [26]. For cluster minimizers and
size-minimizing currents we can establish C''*-structure of the n, (n — 1), and (n — 2)-
strata, and thereby (using results of Naber-Valtorta [20]) give finite Lipschitz structure
on the (n — 3)-stratum.

We first give some background definitions and theorems. First we define precisely the
notion of (M, ¢, §)-minimizing set, in the sense of Almgren.

Definition 3.6. Let U be an open set, and £(r) = Cr® for some constants C', o« > 0. A
set S is an n-dimensional (M, ¢, 0)-minimizer in U if the following hold:
A) S = (sptH".S)NU;
B) given any ball B,(z) C U with r < §, and any Lipschitz map ¢ : B.(z) — B,(z)
satisfying spt(¢ — Id) C B,.(x) N U, we have

H'(p(S)N B (x)) < (1 +e(r)H"(S N B.(x)). (3.7)

In this paper we shall only deal with (M, e, d)-minimizers having an associated cycle
structure. There are two classes in particular we shall consider.

3.1.1. Size-minimizers. If T is a rectifiable n-current, then in the notation of the
size of T is given by S(T') = H"(My). Given an open set U, we say T is homologically
size-minimizing in U if S(T') < S(T + S) for any rectifiable n-current S supported in U,
with 0S = 0.

Given a size-minimizing current 7" in U, then in U its underlying multiplicity-1 vari-
fold is stationary, and its support (M, 0, c0)-minimizing. Morgan has demonstrated the
following existence Theorem for size-minimizing currents.

Theorem 3.7 ([19]). Let B be an (n — 1)-dimensional compact oriented submanifold of
the unit sphere in R™1. Then there exists a integral n-current T with 0T = B, which is
size-minimizing in R™ \ B.

3.1.2. Clusters. Given a natural number N, an N-cluster £ in R"*! is a partition of R**!
of disjoint sets £(0),E(1),...,E(N) of finite-perimeter, satisfying £(0) = R™\ (£(1)U...U
E(N)). Typically the sets £(1),...,E(N) are understood to be bounded. We define the
volume vector and perimeter scalar as (resp.)

M(E) = ([€)],....[€@)]) €eRY,  P(E) = %ZH”@[E(@')])- (3.8)

Here |E(i)| = L"T1(E(i)) is the (n + 1)-volume, and H"(J[E(4)]) = M(I[E(7)]) is the mass
of the reduced boundary. Of course |£(0)| = oo.

Given a volume vector m € RY, a minimizing cluster for m is an N-cluster which
realizes the infimum

inf{P(€) : £ is an N-cluster in R with M(£) = m}. (3.9)
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In other words, a minimizing cluster is a solution to the isoperimetric problem of N regions
of prescribed volume. Almgren proved the following existence Theorem for minimizing
clusters (see also the modern presentation [1§]).

Theorem 3.8 ([5]). Given any positive volume vector m € RN (so, each my, > 0), then
there is a minimizing N -cluster for m enjoying the following properties:

(1) Each set £(1),...,E(N) is bounded;

(2) The associated set OE(1)U. . .UIE(N) is (M, Kr,d)-minimizing, for some constants
K, ¢;

(3) The associated varifold H™ (OE(1) U ... U OE(N)) has bounded mean curvature,
and no boundary.

Here OE(i) denotes the topological boundary of £(i).

Remark 3.9. Conclusion 3) is not explicitly stated in [5], [I8], but follows directly from
[5, Theorem VI.2.3] or [I8, Theorem IV.1.14]. For the reader’s convenience we include a
proof of part 3) in Section [9

3.1.3. Interior reqularity. We prove the following general interior regularity theorem, from
which Theorem is an immediate consequence.

Theorem 3.10. Let M™ = H"_sptM be a varifold in an open set U C R, Suppose
that, in U: M has an associated cycle structure, no boundary, bounded mean curvature,
and sptM is (M, g, §)-minimizing.

Then in U we have the following structure:

(1) S (M) \ S"Y(M) is a locally-finite union of embedded C** n-manifolds;

(2) ST (M) \ S"3(M) is a locally-finite union of embeded, C** (n — 1)-manifolds,
near which M is locally diffeomorphic to Y x R*~1;

(3) S"2(M)\ S"3(M) is a locally-finite union of embedded, CY* (n — 2)-manifolds,
near which M is locally diffeomorphic to T x R"2;

(4) S"73(M) is relatively closed, (n — 3)-rectifiable, with locally-finite H"~3-measure.

Remark 3.11. Theorem holds for any class of n-dimensional (M, ¢, §)-minimizers in
R"™! whose associated (multiplicity-one) varifolds have bounded mean curvature, and
satisfy a no-holes condition like Proposition We could only verify this condition for
minimizers having a cycle structure, but it seems plausible one could prove this for more
general classes. See Remark [8.4]

An obstacle to extending Theorem to higher codimension R™"* is whether the
tetrahedron T? continues to have the least density of any polyhedral cone in R"**.

3.2. Outline of Proof. The basic idea, which harks back to methods pioneered by De
Giorgi, and implemented first more-or-less in this form by Allard-Almgren [4], is to use
good decay properties of solutions to the linearized minimal surface operator over C (i.e.
Jacobi fields), to prove decay of minimal surfaces close to C: if we write M as a “graph”
over C by a function u, then as u becomes very small it starts to act like a Jacobi field
on C.

We will argue by contradiction. Let us outline the proof. For simplicity assume Hy; = 0.
If, towards a contradiction, the excess decay failed, we would have a sequence of
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numbers ¢; — 0, and minimal surfaces M; € N, (C), each satisfying the e;-no-holes
condition w.r.t. C in By, so that

1
9—71—2/ dz(C) > 5/ ds, =: B2 Vg€ SO(n+k) (3.10)
MnNBy MNB,

For any 7 > 0, and ¢ >> 1, we can write M; N By \ B-({0} x R™) as graph over C by
the function w; (in a suitable sense, see Section , where u; — 0 and

/ g2 < (1+0(1))/ 02, (3.11)
dom(u;)CC MNBy

The rescaled graphs §; 'u; have uniform L? and C* bounds, and we can make sense of
the limit f; Yu; — v as a compatible Jacobi field v : C N By /2 = Ct (see Section , and
recall Definition .

We would then like to make two assertions:

(1) For any ball B,, with p < 1/4, we have strong L? convergence

B;i® dg — |v]?. (3.12)
M;NB, CnB,
(2) For any 6 < 1/4, we have decay
g2 / W] < e(C)o" / v]2. (3.13)
CNBy CQBI/Q

If both these claim were true, then for ¢« >> 1 we could contradict with ¢ = id, and
0(C) sufficiently small.

The first assertion is true but highly non-trivial. The issue is the non-graphicality of M;
near the spine {0} x R™, where (rescaled) L? distance may accumulate in the limit. To
rule this out we prove a non-concentration estimate like in [25] (equation ([3.20)), which
uses very strongly the no-holes condition.

The second assertion is in general false, even for toy examples like when C is a plane.
While it is true that v grows at least 1-homogeneously (loosely a consequence of scaling),
v may have a non-zero 1-homogeneous component, which would preclude an estimate
like . The problem is partly that we may have chosen the wrong cone C (e.g. if
M were smooth, we would want to pick C to be the tangent space at 0; see also the
example of Section , but a deeper issue is that, for general C there may (and do) exist
1-homogeneous Jacobi fields on C that do not arise geometrically as initial velocities.

Here we use the integrability condition on Cy, which allows us to always select “good”
cones ¢;(C), so that if we repeat the above blow-up procedure with ¢;(C) in place of C,
we can kill the 1-homogeneous component of the limiting field (Proposition . We end
up with a decay of the “non-linear component” of v (Theorem .

The “corrected” assertions, which still contradict for ¢« >> 1, are:

(1) If we write vy for the component of v that is L*(C N By)-orthogonal to the linear
fields on C, then there is a sequence of rotations ¢; so that

B2 o 4, c) = s |vg|?, (3.14)
iNBy NBy
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(2) We have the decay

g2 / g2 < ¢(C)" / o2 (3.15)
CNBy CNBy /s

Let us outline the structure of the paper, and provide some insight into each section.

3.2.1. Graphicality. We demonstrate in this section that when M € N_(C), with e(r, 3, C)
sufficiently small, then M N B34 \ B ({0} x R™) decomposes as graphical pieces over C,
with scale-invariant C'%* norm controlled by 3. Most importantly, we show effective
estimates on both the graphical and non-graphical parts.

Precisely, we show in Lemma[4.1] the following kind of decomposition: there are domains
Q(i) C P(i)xR™, each a perturbation of the wedge W (i) x R™, and functions u(z) : Q(i) —
(P(i) x R™)L, so that

d
M(0) := M N Bsu \ | Ju(i)(Q(i)) € B-({0} x R™). (3.16)

i=1

This by itself is a straightforward contradiction argument, using Simon’s and Allard’s
regularity Theorems, and the “irreducibility” of integrable polyhedral cones (see Section

).

The more involved part is establishing effective global estimates, for example

d
/ T2+Z/ 2| Du(i)|? gc(C)/ dZ, (3.17)
M(0) i—1 7 Q) MnNB;

and, if we write f(7) for the functions defining 0€2(i) as graphs over W (i) x R™, then

Z /m( ir o [ & (31)

Estimates , are crucial in controlling density excess by L? excess (Proposi-
tion . Note the RHS is independent of 7: this is because both sides scale the same way,
which allows us to sum up local estimates from Allard’s or Simon’s regularity Theorems.

The strategy to prove these is to start with a non-effective graphical decomposition,
of the form (3.16), and then by a further contradiction argument “push” the region of
graphicality towards the spine until either: we hit the spine (!), or a localized L? excess
passes some threshold. This is the content of Lemma [4.11]

The scheme is similar to [25], but more involved, and we draw the reader’s attention
to two particular differences: first, the singular nature of the cross-section of the cone
requires additional structure and estimates (e.g. ); second, we can remove Simon’s
requirement of M lying in some multiplicity-one class (both in our case and his original
setting when Cy is smooth).

3.2.2. L? estimates. Here we prove key L? estimates on M and the u(i) of decomposition
(3.16)), which guarantee strong L? convergence and decay of the Jacobi field (minus its
linear part). Various intermediate steps are involved, but the crucial estimates at the end
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of the day are the following (Theorem [5.3)): provided M € N_(C) satisfies the 7/10-no-
holes condition w.r.t. Cin By, and (7, C) is small, and « € (0,1), then

B2 |0p(u(i)/R)[? < ¢(C) / &2, (3.19)

MNB;

i=1 /Q(i)ﬂBl/lo\BT({O}XRm)
d

and /M _de + Z/Q u(@) = (3.20)

2—« 242—«
NB1 4 max(r, 7) (1)NBy 74\ B+ (LXR™)) max(r, 7)

i=

gc(c,a)/ dg. (3.21)
MnNB;

where L = U?i/flL(i) are the singular lines of Cy, and & is a piecewise-constant function
which forms a discrete approximate-parameterization of the singular set of M over the
spine {0} x R™.

Estimate says that the blow-up limit field v must grow at least 1-homogeneously
in R, and is a key component in proving super-linear growth of v minus-its-linear-part.
Estimate is a non-concentration estimate for L? excess, and gives a growth bound
on v which is crucial for characterizing 1-homogeneous fields. Notice the RHS of both
equations is independent of 7.

To prove , we follow Simon’s computations, but the singular nature of Cy
adds significant complications. The most delicate estimate controls the density excess of
M by its L3-distance to C (Proposition [5.6|), which requires heavily the no-holes condition
and effective graphical estimates , (3.18). We additionally exploit heavily the 120°
angle condition on the geodesic net, and this highlights a technical difference between our
paper and [25]: we require stationarity of M and C through the singular set, while Simon
only requires stationarity on the regular parts.

3.2.3. Jacobi fields. The aim of this section is to prove an L? decay for Jacobi fields
satisfying certain orthogonality and growth conditions (Theorem . If C had a smooth
cross-section, this would follow easily from the Fourier expansion: the discrete powers of
decay would show that any v growing > 1-homogeneously, must grow at least (1 + ¢)-
homogeneously. In our case, we adapt the ingenious method devised in [25] to handle
cylindrical cones.

The basic idea is the following. On the one hand, we have an upper bound at
any scale p, which says that v grows at least 1-homogeneously. On the other hand, in
Theorem we can characterize 1-homogeneous Jacobi fields satisfying a growth bound
like as linear (or most specifically, as lying in a subspace of the linear fields). By a
simple contradiction argument, this allows us to say that whenever v is L?(B,)-orthogonal
to the linear fields, then v must grow quantitatively more than 1-homogeneously at scale
p. That is,

1
R?>™™0 URQZ—/ vl|?. 3.22
/CﬂBl\Bl/m Or(v/R)] c(C) CmBl| | (3:22)

Chaining (3.19) and (3.22)) with a hole-filling gives the required decay.
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Most of this section is analogous to [25], except care must be taken to ensure the
argument works with compatible Jacobi fields. In particular, we demonstrate in Theorem
a spectral decomposition for the Jacobi operator system on equiangular geodesic nets.

3.2.4. Inhomogeneous blow-ups and conclusion of proof. Here we make sense of inhomo-
geneous blow-up limits 3; Yu; = v, and prove that the resulting v is a compatible Jacobi
field in the sense of Definition 2.7, The C° compatibility condition arises from the sheets
of M meeting along a common single edge, and is essentially a direct consequence of
Simon’s e-regularity for the Y x R™. The C! condition requires the stationarity of both
M and C (through the singular set), and depends strongly on the Remark that away
from {0} x R™, M is locally either R™*2 or Y x R™*1.

We then show in Proposition how integrability allows us to choose new cones ¢;(C)
(for ¢; € SO(n + k)) nearby C in such a way the the limiting v has no linear component
at a given scale. This allows us to prove the required estimates on v to apply the linear
decay Theorem 6.2}

Finally, we can implement the blow-up argument sketched in the initial Proof Outline,
to finish proving decay Theorem [3.1]

3.2.5. Equiangular nets in S?. In this section we establish some background results on nets
in S?2. We reprove for the reader’s convience the general no-holes principle for Y x R™,
and additionally demonstrate a no-holes principle for the tetrahedral cone T x R™, under
natural structure assumptions on M.

We prove integrability (in the sense of Definition for all equiangular nets in S,
which allows us to apply Theorem to any polyhedral cone Cy C R? C R?**, Unfortu-
nately we are unable to give a general abstract proof, but must appeal to the classification
of these nets due to [I7], [I4]. It is possible that in general codimension there exist non-

integrable equiangular nets (see also Remarks [2.9] 2.11]).

4. GRAPHICAL ESTIMATES

In this section, and in fact for the duration of the paper, we take CZ C R*™ to be a
fixed polyhedral cone, composed of wedges {W (i)}L ;. We set C" = CZ x R™. Using the
e-regularity theorems for the plane and Y x R!*™  we prove that any M™ sufficiently near
C must decompose away from the axis as C* graphs with effective estimates (though of
course the estimates degenerate as r — 0). Note that ¢ is independent of 7.

Lemma 4.1 (Effective graphicality over polyhedral cones). For any §,7 > 0, there is an
e(C,B8,7) and ¢(C, 3), a(C) so that the following holds. Take M € N.(C). Then there
is a radius function v, : By N ({0} x R™) — R with r, < 7, so that we can decompose

M Byyi\ By, ({0} x R™) = M(1)U--- U M(d), (4.1)

where for each i there is some domain (i) C P(i) x R™, and C** function u(i) : Q(i) —
(P(i) x R™)L, such that

M(i) = {o +u(i)(z) : z € Q). (4.2)
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Each Q(i) is graphical over W (i) x R™ in the sense that there exist C* functions
(@) : OW (i) x R™ — (OW (i)* N P(i)) x R™, so that

ONi) N Byja \ By, ({0} x R™) C {2’ + f(i)(2") : 2’ € OW (i) x R™}. (4.3)
Moreover the functions u(i), f(i) have the following pointwise estimates

sup r @)+ [Df@)] +r[Df()ac < B, (4.4)
OW (i)N(By 2\ Bry, ({0} xR™))

sup r (i) + | Du(i)| + r*[Du(i)]a.c < B, (4.5)
Q)N (B1 2\ Bry, ({0} xR™))

sup P2 f ()] + D]+ 1D f ()]ac)” < c E(M,C, 1), (4.6)
OW (i)N(By 2\ Bsr,, ({0} xR™))

sup "2 (r (@) 4 | Du(i)] + Ta([Du(i)]a70)2 <cE(M,C,1). (4.7)

Q)N (B1/2\Bsry, ({0} xR™))

and mtegml estimates

Z / RO +
OW (3)xR™)N(By 2\ Bsr, ({0} xR™))

N Z/ 2 < ¢ E(M,C,1). (4.9)

ﬁBloTy {O} XRm)

d

/ 2Dl (4.8)
i=1 Y Q@)NBy 2\ Bsr, ({0} xR™)

4.1. Multiplicity-one convergence. We will be working with a one-sided excess, and
therefore must restrict our admissible class of cones to those for which one-sided closeness
(so, smallness of F) gives regularity. We call these “atomic.” This restriction can be
easily avoided by considering a two-sided excess, similar to that of [28]. However, we shall
see that any integrable polyhedral cone (as per our Definition is atomic, so for our
purposes this is no restriction at all.

Definition 4.2. We say a cone Cj is atomic if it cannot be written as the union (i.e.
varifold sum) of two non-zero stationary cones.

Lemma 4.3. Any polyhedral integrable cone C% C R*™* is atomic. The cone Y' x R is
atomic.

Proof. Suppose on the contrary we can write Cy = Cél) + C(()Q), where each C(()i) is a
non-zero stationary polyhedral cone. The geodesic nets C® N S?>** are disjoint, and so
we can construct a 1-parameter family of polyhedral cones C; obtained by rotating C(()l)
but keeping C[(f) fixed. Therefore C, is non-integrable, since the deformation C; is not a
global rotation. Atomicity of Y x R is obvious. O

The following Lemma is the reason we introduce the notion of atomicity.

Lemma 4.4. Let C = C§ x R™ be a stationary atomic cone, where Cy is either smooth
or polyhedral (in which case { = 2). Let M; be a sequence of integral varifolds, so that
M; € N_,(C) with e; — 0. Then M; — C as varifolds with multiplicity 1.

Proof. After taking a subsequence we have convergence on compact subsets of By to some
stationary M, and by our hypothesis we know M is supported in C. We claim that M
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has constant multiplicity on each subcone of C. If Cy is smooth this is immediate from
the constancy theorem. If Cj is polyhedral, then the constancy theorem implies M has
constant density on each wedge, and by stationarity of the Y junction any three wedges
which meet must have the same multiplicity (compare Lemma . This proves the
claim.

Therefore M is stationary and supported inside C, and since C is atomic we must have
M = pC for some integer p. Since 0 € M we have p > 1. On the other hand, by our
restriction 037(0,1) < 26¢(0), we must have p < 1. This proves the Lemma. O

4.2. e-regularity of Allard and Simon. Let us recall the e-regularity results for the
plane and Y x R™.

Theorem 4.5 (Allard’s e-regularity for the plane [3]). There are e(n, k) and p(n, k) so
that the following holds. Suppose M™ € N.(R™). Then there is a C** function u :  C
R™ — R*, so that

M N Byjs = graphga (u),  [uloin < e(n, k)E(M,R",1)!/2, (4.10)

In [25] Simon proved an e-regularity theorem for cones of the form Y x R™. In his
original paper, Simon worked in a so-called multiplicity-one class of varifolds, but by
using our Lemma in place of his Lemma 2.6 one can remove this hypothesis (see
Appendix . A caveat: our Lemma is mot sufficient to remove the multiplicity-

one class assumption from Simon’s various structure theorems for the singular set.

Theorem 4.6 (Simon’s e-regularity for Y x R™ [25]). There are e(m, k), p(n, k) so that
the following holds. Suppose M*™™ € N.(Y'xR™). Then MNBs4 is C#-close to Y xR™
in the following sense: We can decompose M N Bsyy = M(1) U M(2) U M(3), so that for
each i = 1,2,3 there is a domain Q(i) C Q(i), and a CY* function u(i) : Q(i) — Q(i)*,
so that

M@i) ={z+u(i)(z) ;2 € Q1)}, Q)N Bip C Q). |uli)|crw < c(m, k)E(M, S(('4><1§m, Y2,

Each Qi) is graphical over H (i), in the sense that there are CY* functions

f(@) 1 OH (i) N By — (OH (1)) N Q(1), [ f(i)orw < c(m, k)E(M,Y x R™, 1)1/(247 12)

so that
OQ(i) N By C {'+ f(i)(2") : 2" € OH(i) N Bsja}. (4.13)

Proof (see [25]). Ensuring e(k, m) is sufficiently small, by Lemma we have singM N
33/4 C 83/4031/10({0} X Rm) Write € = E(M,YX]Rm, 1) Now given Z € singMﬂBg/4,
we have

E(M,Y x R™, Z,1/4) < ce’. (4.14)

For topological reasons (see Proposition , (4.14) implies M must satisfy the -no-holes
condition w.r.t. Y x R™ for d(¢) — 0 as € — 0.
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Therefore, by [25] (and our Lemma[10.6) we have for every Z € singM N Bs/4 a rotation
qz € SO(n + k), so that

B < el m) (4.15)
MNB,(Z)

for some fixed p = pu(k,m) € (0,1). In particular, for any other W' € sing(M) N Bs/4, we
have

laz — qw| < c(k,m)e|Z — W, gz — Id| < c(k,m)e, d(Z,{0} x R™) < ¢(k,m)e.
(4.16)

From (4.16]) we deduce that we can parameterize singM N B3/ by a map F': {0} x R™ —
R » {0} having C'* norm bounded by ¢(k, m)e. We define f(i) := mggr(F).

On the other hand, take now an X € reghM N Bs;y N By/10({0} x R™), and set 4p =
d(X,singM) = d(X, Z), where Z € singM. Then up to renumbering we have

P_n_z/ d2Z+qz(Q(1)) < P_n_Q/ d2Z+qz(Y><]Rm) < ce*p. (4.17)
MNB,(X) MnNBay(Z)

Therefore, by Allard we can write M N B,/»(X) as a graph of u over Z + qz(Q(1)) with
estimates

o~ Jul + 1Dl + p[Dul, < (k. m)ep”, (4.18)

Using estimates (4.16]), we can therefore write M N B,)2(X) as a graph over Q(1) with
uniform C%* norm bounded by c(k,m)e. Moreover, if §x € SO(n + k) is the rotation
taking (1) to the tangent space Tx M, then (4.17)) shows that

gz — 4x| < clk,m)e|Z — X|*. (4.19)
Since X is arbitrary, estimates (4.16) and (4.19) show that u extends as a C'* function
up to and including the boundary g (singM). O

Definition 4.7. For ease of notation, we will write the following to indicate M decomposes
as in Theorem (4.6

M N Byy = graphy ypm (u, £,Q), B CQ,  |ulera + |flore < c(k,m)B(M,Y x R™ 1)"/2,
(4.20)

4.3. Graphicality for polyhedra. We first prove a “crude” graphicality for polyhedral
cones, from which we push towards the spine as far as possible.

Lemma 4.8. Given any 5,7 > 0, there is an £1(C,5,7) so that the following holds.
Given M € N, (C), then we can decompose

M O B\ B,({0} x R™) = M(1) U -+~ U M(d), (4.21)

where for each i there is some domain (i) C P(i) x R™, and CY* function u(i) : Q(i) —
(P(i) x R™)*, so that

M(i) = {o +u(i)(z) : z € Q). (4.22)
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Each Qi) is graphical over W (i) x R™ in the sense that there are CY functions f(i) :
OW (i) x R™ — (OW (i)* N P(i)) x R™, so that

00(i) N Byjy \ Bor ({0} x R™) C {2’ + f(i)(a') : ' € OW (i) x R™}. (4.23)
Moreover, we have the pointwise estimates
sup r (i) + | Du(i)] + r*[Du(i)]a.c < B, (4.24)
Q(i)NBy 2\ B2 ({0} xR™)
sup r @]+ D@+ [Df()]ac < B. (4.25)

(OW (i) xR™)N By /5 \Bar ({0} xR™)

Proof. This is essentially a direct Corollary of Lemma and the e-regularity of the
plane and Y-type cones. If the Lemma failed, we would have a counter-example sequence
M;. Passing to a subsequence, we have by Lemma 4.4 multiplicity-1 varifold convergence
M; — C on compact subsets of Bj.

In any ball avoiding the lines 9W (i) x R™ we can eventually write M; as a C'® graph
over C by Allard’s theorem, satisfying the (local, scale-invariant) estimates (4.24)). Simi-
larly, in any ball centered on a line 0W (i) x R™, but disjoint from the axis {0} x R™, we

can eventually decompose M; into graphs over C as in Theorem [4.6, and having estimates
(14.25)). 0J

Definition 4.9. For ease of notation, we write

M N B3/4 \ BT({O} X Rm> = graphc(u, f, Q), Bl/2 \ BQT({O} X Rm) C Q, |U|Cl,a + |f|cl,a < ﬂ
(4.26)

to indicate the decomposition as in Lemma |4.8|

Remark 4.10. One consequence of Lemma [4.8|is that the number and size of wedges for
polyhedral cones is continuous under varifold convergence.

For y € R™, us define the torus

Ulp,y,7) ={(&n) e R®¥*F X R™: (|¢] — p)* + [n —y|* <~p°}, (4.27)
and the “halved-torus”

Us(p,y,7) = Ulp,y,v) N {(&n) - 1€l > p} (4.28)

The following Lemma gives us a criterion to decide how close to the spine we can push
graphicality, and is the key to integral estimates (4.8)). The graphicality assumption in
the half-torus allows us to avoid working in a multiplicity-1 class.

Lemma 4.11. For any 5 > 0 there is an £9(C, 3) so that the following holds. Take
M™ € Nij1o(C). Pick p <1/16, and y € BYj,. Suppose we know

MnN U+<:07 Y, 1/16> - graphC(u7 Qa f)? ‘U’|Cl’a + ‘flCl’a < 1/107 (429>
where graphe(u, 2, f) is a decomposition as in Lemma and

p_n_Q/ dZC + p||HM||L°°(U(p,y,1/4)) < g9. (430)
MnU(p,y,1/4)

Then we have
MnN U(p7y7 1/8) - graphc<u7 Qa f)? ’U‘Cl,a + |f|Cl’0‘ S 5 (431>



22 MARIA COLOMBO, NICK EDELEN, AND LUCA SPOLAOR

Proof. By dilation invariance and monotonicity, we see there is no loss in supposing p =
1/2. Suppose the Lemma is false, and consider a counterexample sequence M;, y;, &; — 0,
which satisfy the hypothesis of the Lemma and M; N U(p,y;,1/8) # 0, but fail (4.31)).
Passing to a subsequence, the y; — y € Byj,, and in U(p,y,1/5) the M;’s converge to
a stationary varifold supported in C. The multiplicity of the limit in each component
of CNU(p,y,1/5) is constant, but by the graphicality assumption we converge with
multiplicity one inside U, (p,y, 1/16).

Therefore the convergence is with multiplicity 1, and by Theorems [4.5] we deduce
that for ¢« >> 1 we satisfy the conclusions of the Lemma. O

Using Lemma [4.11] we can obtain the finer graphical estimates of Lemma [4.1]

Proof of Lemmal[{.1 We can assume 3 < 1/10. Ensure ¢ < min{e;(C, 3,7),e2(C, 8)},
the constants from Lemmas [£.8] .11} Recalling Definition we have the crude decom-
position

M N By, \ B, ({0} x R™) = graphg(u, f, ), B/ \ Bo- ({0} x R™) C Q, u|cra + |flore < 5.
(4.32)

Given y € B3, define
= inf{r" : (4.29) holds for all ' < p < 3/4}. (4.33)
According to this definition, we can extend (i), u(i), and f(i) to obtain the decomposi-

tion of (4.1)), (4.2), (4.3)), with estimates (4.4)), (4.5). Moreoever, by Lemma ry < T
If 7, > 0, then necessarily by Lemma (4.30) must fail at r,, and hence

s | & + T Hagl 1=y 0 (4.34)
MU (ry,y,1/4)

In particular, by monotonicity we have

/ 7 <o(c.) | B+ e(C, By Hl ooy, (4.35)
MﬂBzory (0 y) MﬂU(Ty7y71/4)
Take a Vitali subcover {By,,(0,y;)}; of

{Bior, (0,y) : y € By, and 1, > 0}, (4.36)

and then by construction {Big,,(0,y;)}; covers pr-a.e. Bsjy N Big, ({0} x R™), and the
U(pj,yj» 1/4) C Bay,;(0,y;) are disjoint. Note that, by disjointness, > pj* < c(m). We
deduce that

/ r? < Z / 7 (4.37)
MNB3,4NBior, ({0} xR™) i Y MNBaoy; (0,y;)

J

< Z / Bt S ey (438)
J

MU (pj,y;5,1/4)
< ¢(C, B) / @2 + (C, B)||H |1 (4.30)
MnNB;

We prove the additional pointwise and L? estimates. We claim that
(z,y) & Bar, ({0} x R™) = Byy2 N By, ({0} x R™) = 0. (4.40)
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Otherwise, suppose the latter intersection is non-empty, and contains some (z’,y’). Then
we have

[z|/2 < [2'] < 3|2|/2, and (2',y') € B, ,(0,y") for some y", (4.41)
which implies that
(@, ) = (0,4 < |2l/2 4 ryr < J2'| + 1y < 2ryp, (4.42)

a contradiction. This proves the claim.

Define §(C) by
6 = 1/100 - (smallest geodesic length in Coy N S*™*) < 1/20, (4.43)

so that Biosjz)(2,y) N Biosj|(2',y") = 0 whenever (z,y) and (2,y’) belong to different
triple junctions in C.

Now provided B(m, k,d) is sufficiently small, given any (x,y) = (2’ + u(i)(2',y),y) €
singM \ Bay, ({0} x R™), we can use the above claim and Simon’s regularity at scale
Bigs)e| (7, y) to deduce

sup |2 Du(i)]? + ||| f()* < C/ dg + cla[" || Harl[poo(my) - (4.44)
Bss)z)(%,y) B10s|z| (z:y)NM
< o(C,B)E(M,C,1). (1.45)

Of course, on the LHS we could put any of the C1® estimates for u or f from Theorem
[4.6] normalized to scale like |z|"*2.
Let {(x;,y;)}; be the centers of a Vitali cover of

{Bsjz) (2, y) : (x,y) € singM N Byjs \ Bar, ({0} x R™)}. (4.46)

Then the balls {Bss|s,(5,y;)}; cover (4.46), and have overlap bounded by a universal
constant ¢(n). In particular, since § < 1/10 the number of 56 |z;|-balls meeting M N{|z| =
r} N By is bounded by ¢(C)r—.

We can we can sum up the estimates to obtain

d
Z/ rf@P <ed (/ de + |$j|"+3||HM||L°°(Bl))
i=1 Y (OW (i) xR™)N(B1/2\Bsr, ({0} xR™)) i MNBss|a;(595)

J

(4.47)
2 ' 5dr

<c de+c | r°—||H||L~B) (4.48)
MNB; 0 r

< ¢(C. H)E(M,C, 1), (4.49)

If instead (z,y) € M \ (B2, ({0} x R™) and d((x,y),singM) > 6|z|/5, then we can
apply Allard to deduce

sup  |[" | Du(i)]* < C(Qﬁ)/ g + c(C)x|" || Harll 1 (my).  (4.50)
Bs|z|/10(25y) Bs|e|/s(xy)NM
By taking a Vitali cover of

{B5\$|/10<x7 y) : (x7y) eM \ BQTy<{0} X Rm) and d((l‘, y>781ngM) Z (5|l‘|/5}7 (451>
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we can use both Vitali covers to sum up estimates (4.44) and (4.50]) as before to obtain

Z / r?|Du(i)|?> < ¢(C, B)E(M,C, 1). (4.52)
Bl/2\B5Ty ({0} xR™))

This proves the L? estimates , . The pointwise estimates (4.6]), (4.7) follow
directly from from Simon’s and Allard’s regularity theorems as in (4.44]), (4.50)). O

5. L? ESTIMATES

We demonstrate various decay and growth quantities are controlled at the scale of
excess. We require first a

Definition 5.1. Set r, = 27", where v € {0,1,2,...}. For each v, let us choose and
fix (for the duration of this paper) a covering of R™ by disjoint, half-open cubes {Q,,},,
each having side length r,.

We say f(r,y) : Ry x R™ — R is chunky if f is constant on each annular cylinder

[Tu+1, TV) X Quu-

We introduce this class of functions is because of the following compactness result.

Lemma 5.2. Let {x;} be a sequence of chunky functions with ||k;||e@y < c(U) for all
U cC Ry x R™. Then we can find a chunky function k, admitting the same bounds
6|2y < ¢(U), and a subsequence 7', so that ky — K pointwise, and uniformly on
compact sets.

Proof. Obvious. U

We work towards the following Theorem. As before we fix a polyhedral cone C3 C R*™*,

composed of wedges {W (i)}, and lines {L(i )}Qd/ . We take C = Cy x R™. Recall the
Definition 2.4] of the “no- holes condition.

Theorem 5.3. For any 7 > 0 and a € (0,1), there is an (C,T) so that the following
holds. Let M € N.(C) and decompose

M 1 Bsya \ B-({0} x R™) = graph(u, f, ) (5.1)

as in Definition Lemma .
Then provided 6,;(0) > 0c(0), the following decay/growth estimates hold:

XJ_|2
R*7"|0g R)|* + / P (5
/MmBl R Z/ Q0)NB1/10\Br ({0} xR™) Ortu@)/1) MnBy e T >
< ¢(C,a)E(M,C,1), (5:3)

where X = mn, (X)) is the projection to the normal bundle of M.
Provided M satisfies the T/10-no-holes condition w.r.t. C in B4, then we have decay
along the spine:

/ Z/ u(@) — &
MNB 4 max(r, 7) 2 “ (1)NBy /4\B-(LxR™)) max(r, 7)2 2
< ¢(C,a)E(M,C, 1), (5.5)

(5.4)
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where we write L = U?i/lgL(i) for the lines of Cy, and r : (0,1] x B — R?** x {0} is a
chunky function admitting the bound
sup |k]* < ¢(C,a)E(M,C,1). (5.6)

(0,1]x B™
Let us give a brief

Outline of proof. We will first show that testing the stationarity of M with a radial vector
field proportional to d%,, the following estimate holds

e (C,a)B(M,C,1) + c(C X P
[ <CmBOLO ) +elCa)
NB1

. 5.7
MnNBy 10 Rnt2 ( )

Due to the fact that Og(X = (2/,y)+u(i)(2',y)) is tangent to M, we also have a pointwise
inequality
|Or(u(i)/R)]* < 2| X+ /R (5-8)
on each (i) N By 10.
Next, using a cylindrical vector field of the form ¢?(R)(x,0), and the effective graphical
estimates of Lemma [1.1 we will show that whenever 6,,(0) > 6¢(0), we have

n+2 [ ’
MnBi /10

This estimate controlling density excess by L? excess is very important, and is by far the
most involved. Combining with , gives estimate ((5.2]).

To obtain the estimates ([5.4)), we can apply at each singular point Z satisfying
Or(Z) > 0c(0), which by assumption form 7/10-dense set in a 7-neighborhood of the
spine. Now sum all these estimates up over cubes centered in {0} x R™. U

5.1. Decay estimate. We bound the decay and growth rates in terms of L? distance
and density drop. We first need a helper Lemma, which says we can find a good C*
approximation to the distance function to our polyhedral cone.

Lemma 5.4. We can find a 1-homogeneous function d, which is C* on {CZ > 0}, and
satisfies
1 ~ ~
——dc <d<¢(C)dg, |Dd| <c(C). 5.10
Gl <d<dC)ie. |Dd| < c(C) (5.10)
Proof. We first consider a 1-dimensional stationary cone C} € R'*, so that 9Cy N SF is
a finite collection of points. By smoothing dg, /|x| at the approrpriate cut-locii, we can

easily obtain a ¢ : S¥ — R so that ¢ is C* on {¢ > 0}, and
1de,
— < <2
1% < otala) <

Now we consider the polyhedral cone C3 C R*"*. Recall that by [2], CoNS'** consists of
finitely many geodesic arcs. By applying the previous paragraph to a small neighborhood
of every vertex, we can construct a function ¢ : S'* — R which satisfies:

1 de,
c(C) |z|

de,
x|

and |D¢| < 10. (5.11)

< (z/|z|) < c(C)t‘r, ¢is C'on {¢p > 0}, |Dyp| < ¢(C). (5.12)
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Now set d(x,y) = |z|i(z/|z]). O

Proposition 5.5. For any 7 > 0 and o € (0,1), there is an €(C, ) so that the following
holds. Let M € N.(C), and let us decompose

M N Bsyy \ B-({0} x R™) = U, M (i) = graphg(u, f, ) (5.13)

as in Lemma[f.8 Then we have

2, d /
+ R*™0g(u(i)/R)[? (5.14)
/MmBl Rt ; Q(i)NBy 10\ Br ({0} xR™) R
< c(C |XL‘2 C,a)E(M,C
— C( ,CY) v Rn+2 + C( ,Oé) ( ) ) 1) (515)
NB1/10

Here X+ = nn, (X)) is the projection to the normal boundle of M.

Proof. Let ¢ be a smoothing of the function which is = 1 on [0, 1/20], 0 at 0 and = 0 on
By \ B; /10, and linearly interpolates in between. Consider the vector field

V(X)=C*d/R)?RX, (5.16)

where d as in Lemma .4l
Since (d/R)? is C' and homogeneous degree-0, we have

X -D(d/R)* = 0. (5.17)
We also have |D(d/R)| < ¢(C)/R. We therefore calculate
div(V) > =2¢|VT¢|(d/R)* R+ = 2¢3(d/ R)|V*(d/R)|| (2, y)*| (5.18)
+¢3(d/R)*(n — a) R 2| (z,y)* [ + (*(d/R)* R """a. (5.19)
And so, using , we have for any n
- 2 2 p—nta 2 2 p—nta 2 112 p—n—2+a
m/MC (dc/R)*R™™" S/M’VHHM\JF/MUC (de/R)* R + ¢(n, C)C*|(z,y) "R
(5.20)
+ [ nCdo/RPR ™+ el R MIVICE. (521)
M

Take 1n(C, «) sufficiently small, and use that |[V| < R™"! in a computation similar to

(5.25). We obtain

/ - o | P / (e y) PR 4 o / LR VTR,
MnNB; MnNB, 10 M
(5.22)

for ¢ = ¢(a, C).



THE SINGULAR SET OF MINIMAL SURFACES NEAR POLYHEDRAL CONES 27

We analyze the last term:

/ deR™(C)?|(z, ) P /R < c / dLR5 % + ¢ / A2 Rte
M MnNBs MN(B1/10\B1/20)
(5.23)
< / R 4 ¢100*7" / ds, (5.24)
MnNBg MN(B1\By /20)

where ¢ is an absolute constant. Using the standard layer cake formula, and the mono-
tonicity 0x/(0,7) < ¢(C)r", we have

/ R < / H' (M N Bs N A{r " > t})dt (5.25)
MnNB; 0
< ¢(C) / /(=) gy (5.26)
ja—n
= ¢(a, C)o" (5.27)
—0 asd—0. (5.28)

This proves the first inequality.
We now prove the second. It will suffice to prove the pointwise bound

|Or(u(i)/R)]” < 2| X/ R". (5.29)
Let us write (z,y) € M(i) as (x,y) = (2/,y) + u(i)(2',y), for (2',y) € Qi) N By \

B.({0} x R™). For ease of notation let us drop the ¢ index from now on.
We compute

(@', y) +u(@,y)\ _ (@ y) + (@ y) - Du(a'y) — (2,y)
Or(u(z',y)/R) = O ( 7 = =5 ~ gz (5:30)
and observe that Og((2',y) + w(i)(2',y)) € T(z,) M. Therefore, we deduce
_ 7TN<I,y>M(:E7 y)

T 1 (On(u(' ) ) = === (531)

This is the required expression, but only for the normal component. Since Og(u(x’,y)/R) €
T2 4»)C, and M is C'-close to C, we can show the tangential component is negligable:

Or(u(z',y) /R = |7n, , m (Or(ula’,y) [ R))P + (71, i — 71,0, 0) (Or(ulz’,y) /R))[?
(5.32)
< [Ny m (@, y) P/ R+ c(n, k)| Du(a’, y) POk (u(2', y) /R) | (5.33)

1 /
< |, (2, )P/ R+ 510r(u(z )R, (5.34)

provided e(n, k) is sufficiently small. O
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5.2. Density drop. By far the trickiest and most important estimate is estimating the
density drop in terms of L? distance. We are in effect bounding W12 by L2

Proposition 5.6. There is an €(C) so that the following holds. Let M € N.(C), and
suppose 0p1(0) > 0c(0). Then we have

[XH?
— < c(C)E(M,C,1). (5.35)
MﬂBl/m

Proof. Let ¢ be any smooth function, with ¢’ < 0, ¢ = 1 on [0,1/10], and ¢ = 0 on
[2/10, 00). By the first variation formula, the structure C = Cq x R™, and our assumption
that 65/(0) > 0c(0), we have the following inequalities:

Loy X
00 [ < [ S0 [ PR ol (536)

and

(([ - [omw) < ([ 2o [ 2000n) (537)

+ / 26(8'?)(2.0) P + e(C. ) [ Hollwsy. (5.38)
M

See [25], pages 613-615] for a derivation; relations , require no special structure
on Cy. Note that [25] proves , for stationary surfaces, but the modification for
bounded mean curvature is straightforward — for completeness we provide a brief sketch
in Section [10.2l

The Proposition will now follow by Lemma [5.7, because if we write

F(z,y) = F(R) = ¢(R)|¢'(R)|/R, (5.39)
then on sptF we have that F'is a smooth function of x, y. 0

Lemma 5.7. There is an £(C) so that the following holds. Let M € N.(C), and let
F(x,y) = F(R) be a non-negative C* function supported on R € [1/10,2/10].
Then we have

/ r2F—/ r*F < ¢(C,|F|c1)E(M,C,1). (5.40)
M C
And relatedly, we have

/ [(x,0)** < ¢(C)E(M, C, 1). (5.41)
MnNBy 19

Proof. Let us prove ([5.40). Choosing ¢ sufficiently small, we have that M N Bs/y \
B., ({0} x R™) decomposes as graphs over C as in Lemma [£.1} with r, < 1/100 and
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B < 1/10. So we have

/FT2—/FT2

d
Z/ F((z' +u(i), y)|a" + u(@)]* Ju(i) Z/ F(2,y)|2'?
i=1 Y QU)N(B1/2\Bar, ({0} xR™))

d

+ / |Flgor?. (5.42)
= J M(i)nBior, ({0} xR™)

Since each domain 2(4) is flat, each Jacobian is bounded by

Ju(i) < 14 c|Du(i)|* < c. (5.43)

Further, since u(i)(z',y) € N ,)C, we have

F(2' +u(i),y)|2 +u(@)|?* — F',y)|2'|? (5.44)
< |Fleolul@)? + | Flor (VIZP +Tu@P + 9P = VIEP+TP) W2 (5.45)
< | Fle ui) (5.46)

Using the above calculations, and |u(i)(z’, y)| < |2|/10, we have

d

/ F(z' 4+ u(i),y) |2 + u(@)* Ju(i)
i=1 Q(')ﬁ(Bm\Bzry({0}x]Rm)

< o|F|es Z / P2\ Du(i)? + [u()? + F(a,y). (5.47)
N(B1/2\Bar, ({0} xR™))

Now by construction, if 2 € OW (i), then

n(i)(«) - f(i)(2") = n(@)(2") - (z — o), (5.48)

where z € OM(i). In particular, if W (1), W(2), W(3) all share a common edge, and x
lies in this edge, then

S nli)(@) - (i) (@) = 0. (5.49)

=1

This follows simply because the M (1), M(2), M(3) all share a common edge (and in

particular z in ((5.48)) is independent of i = 1,2, 3), and Z?Zl n(i)(z") = 0.
Let us fix a y, and recall that the annular region Ay (r,, 1/4) satisfies

(Bija\ Bar,) "W C Aw(ry,1/4) C (Bij2 \ B,) AW, (5.50)

Let us write Q,(i) = Q(i) N (R“* x {y}), so that (i) is a 2-dimensional approximate-
wedge.
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By a similar argument as above, if 2’ = s+ f(i)(s) € 0Q,(i) for s € OW (i), then

F(s+tf(i),y)|s +tf(i)|* — F(s,y)s” (5.51)
< |Flor (V@ +PIFOP + 9P = /& + 9P) 8 + [Floo?lf()F (5.52)
< | Flest?| () (5.53)

For this fixed y, recalling that sptF C {R € [1/10,2/10]}, we have

d

> Fe! y)r® -
1 7 Qy(ONAw (5 (ry,1/4)

i=
d

d

F(2,y)r? (5.54)

1 /W(i)ﬂAW(i)(Ty’l/‘l)

=

(f(@)(s) - n(i)(S))/o F(s+tf(i)(s),y)ls + tf(i)(s)]*dtds

(5.55)
d

(J(i)(s) - n(i)(s)) ( / Fs+t£(0), y)ls +tF @) - F(s,y>s2dt) s
(5.56)

i=1 /(9\W(Z)OAWU) ('f‘y,l/4)

d

/ rLF ). (5.57)

Integrating over y (remember both Q(:) and W (i) are flat), and using (5.50)), gives

d

/ F(a',y)r? (5.58)
i=1 Y Q)N(By/2\Bar, ({0} xR™))

<Z/ F(x' y)r +CZ/ r|f(i).
i) xR™)N(B1 2\ Bry, ({0} xR™)) (OW (i) xR™)N(B1/2\Bry ({0} xR™))
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Combining the calculations (5.42)), (5.47), (5.58) with the effective estimates of Lemma
| we have

/ Fr? —/FT (5.59)

< CZ/ u(@)[? + 12| Du(i)? (5.60)

N(By1/2\Bry, ({0} xR™))

+CZ/ rlf @) (5.61)

i—1 Y (OW (i) xR™)N(B1 9\ Br,, ({0} xR™))
" z /

<cE(M,C,1)+c¢

d

Fz,y)pr* =) / F(z',y)r? (5.62)

mBlOMJ {O}XRm) i=1 (W(Z)XRm)ﬂBTy({O}XRm)
d

/ r’ (5.63)
i—1 Y M(i)NBior, ({0} xR™)

<cE(M,C,1). (5.64)
This establishes (5.40)).

We prove (5.41). Take € as before. We make an initial computation. Suppose (z',y) €
Q(i), and (z,y) = (2',y) +u(i)(2',y) € M(i). Write my ;o for the orthogonal projection
onto Nz, M(i), and 7p(;1 for the orthogonal projection to P(i)*. Then we have

[Ty (2, 0)] = |Tarye (2,0) = Ty (2, 0)] + |TpgyL (z — ', 0)] (5.65)
< clz||Du(i) (@, y)| + [u(@) (@', y)I. (5.66)

We deduce that
[ o (5.67)
NB1/10

< / sy (2 + (i), 0) ] Ju(i) + Z/ r?
i Q(i)m(Bl/Q\Bry({O}XRm)) ﬁery ({0} xR™)
(5.68)
< / er®| Du(i))? + clu(i)]* + Z/ r? (5.69)
i JQU)N(B1/2\Bry, ({0} xR™)) i Y M(i)NBior, ({0} xR™)
< ¢cE(M,C,1). (5.70)
This completes the proof Lemma [5.7} O

5.3. Moving the point. We localize the L?-decay estimate to a given singular point,
and demonstrate that the singular set must lie close to {0} x R™ at the scale of the excess.

Proposition 5.8. For any 7 > 0 and o € (0,1), there is an €(C, ) so that the following
holds. Take M € N.(C). Then for any Z = (¢,n) € sing(M) N By 4 with 0y (Z) > 0c(0),
we have

d2
|C‘2+/MOB % <¢(C,a)E(M,C,1), (5.71)
1/4
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and if we write L = U;L(1) for the lines of Cq, then
N L2
/Q(i)mBl/Q\BT(Lme) —|)|?(i)2|7§+2|—a < ¢(C,0)E(M,C,1). (5.72)
Here M (i), (i) is the decomposition as in Lemma[4.§
Proof. We first show the estimate
IC]? < ¢(C)E(M,C,1). (5.73)

Take 5(C,7,3) as in Theorem [4.8] with 7 and 8 < 7/10 to be specified. So in
particular, if we write L = U;L(i) for the union of lines of Cy, then we decompose

M 0 Byjs \ Bior (L X R™) = U; M (i), (5.74)

where each M (i) is a graph of u(i) over W (i), with |u(i)| < f|z|. An important but
obvious consequence of Theorem |4.8|is that |(| < 7.

For simplicity let us take § = 7/10. Since C is flat away from Bjo, (L x R™), and
|¢| < 7, and each M (i) has small C° norm, we have

lde(2,y) — dzic(z,y)| = [mcx (Q)] (5.75)

for any (x,y) € M(i). Here mcr denotes the projection onto Ny, C, where (z,y) =

(@', y) +u(i)(@',y).
Because we assume Cj to have no additional symmetries, using a contradiction argu-
ment, can prove the existence of some Jo(C) > 0 so that, provided ¢ < 0y, we have

/ la*|? > 1000|a|* Va € R*™ x {0}, (5.76)
CNBy /4\Bs, (LxR™)

where at at (2/,y) € C is simply the projection to Ny, C.
Pick p small, but arbitrary. Ensure 7 < 25,(C)p < p/10 and we obtain

1

/ e (OF 2 15 ISk (5.77)
UiM(E)NB,(Z) CNB,/2(Z2)\Bsyp(LxR™)
pn
> — Ik (5.78)
10 JenB, 4\Bs, (Lxrm)
> &(C)I¢p", (5.79)

where g is independent of p. The first inequality follows from the graphical decomposition
(5.74). The second inequality holds since || < 7 < p/10. The third inequality is ([5.76)).
We can apply Propositions [5.5] to the point Z, and the cone C + Z, to deduce

d2
/ X _ZZJr|S+2—a < C/ d%.c + || Hul () < cE(M,C, 1) + c[¢]*.
MnB10(2) MNB;
(5.80)
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Combine the above two relations, to deduce

el < 7 (O (581
Ui M()NB,(Z)
<[ Bt @ (582
MNB,(2) MNB,(2)
< cE(M,C,1) +cp" 7|2 (5.83)

where ¢ depends on (C,«) only (so, is independent of p and 7). Choose p small, and
correspondingly ensure 7 = (3 is sufficiently small, and we obtain the first part of (5.71).
To obtain the second estimate, apply Propositions [5.5] at Z, and then use the first

part of (5.71)):

e
e < cE(M,C,1) + ¢[¢]” < cE(M,C,1). 5.84
Jo i SCEOLCA) AP S cBOLOD. 68

We prove the last estimate (5.72). Take (z,y) = (2/,y) + w(i)(2,y) € M (i) N Bz \
B, (LxR™). From the bounds |f(7)| < §|x| and |u(7)| < §|x|, we know that (2',y) € W (i)
and

u(@)(2, y) — 1o (O, y)| = dzic(@,y). (5.85)
Now use the second part of (5.71)), and the fact that the Jacobian has bound 1/2 <
Ju(i) < 2. 0

5.4. Estimates on the spine. Using the §-no-holes condition we can sum the estimates
along the spine {0} x R™.

Proposition 5.9. Given 7 > 0 and o € (0,1), there is an (C, ) so that the following
holds. Let M € N.(C), and suppose that M satisfies the 7/10-no-holes condition w.r.t.
C in Byy. Take o € (0,1).

Then we have

d¢
——=—— <¢C,a)E(M,C,1), 5.86
and if we write L = U?i/lgL(i) for the lines of Cy, then
d NAT
/ [u(?) *;l_ < ¢(C,a)E(M,C,1). (5.87)
im1 7 Q)NBy 4\ By (LxR™)) max(r, 7) ¢

Here r : (0,1] x B — R*™ x {0} is a chunky function satisfying the bound |k|? <
c(C,a)E(M,C,1).

Proof. Let r,, Q,, be as in Definition 5.1l Whenever r, > 7/2, by the no-holes condition
thereis Z,,, = (G, M) € singMﬂ(ijlO(O) X Qyy) with 0y(Z,,,) > 6c(0). By Proposition
5.8, we we have

i) - ¢ < | i) = G (5:59)
Q(i)ch(n,k)TV (ZVH)\BT(LXRm)

< c(C,a)r"**E(M, C, 1). (5.89)

/Q(i)ﬂ(Bsz(O)XQuu)\Br(LXRm)
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Define x by
KJ(T’, y) = guu for (Ta y) € [Tu—i-l; TV) X Ql/u~ (590)

Then since the number of cubes {Q,,},, intersecting BY" is bounded by c¢(m)r, ™, we have
for any r, > 7/2:

/ uli) - 5 < / -
Q(4)NBy j4N{ry41<r<ry }\Br(LxR™) 1:Qu MBI D CN(BZ*(0)xQu )\ B- (LXR™)

(5.91)

< c(C,a)r*?E(M,C,1). (5.92)

Now given any p > 7, choose v so that r,.1 < p <r,. We have

/ lu(i) — k|? < er2t?e § 2727 ) (M, C, 1) (5.93)
Q(i)ﬁB1/4ﬂ{7Sr<p}\BT(LXRm) =0
< cp*TPUE(M,C,1). (5.94)

Multiply by p~27372% and integrate in p € [7,1/4], to obtain (5.87) with 2« in place of «.
Let us prove (5.86|). Take Q,,, Z,, as before. Then for each v, ;1, we have by the same
reasoning as above

d dz
/ n?a < 2/ Zuu+S+2_a + 2|C|2/ |X _ Zyu|_n+a
MﬂQMV TV MﬂBC(’ﬂ,k)’!‘y (ZHV) |X - ZVI’L| MﬁBc(n,k)'r,, (ZVIA)
(5.95)

< ¢(Cy,)E(M,C,1). (5.96)

In this last inequality we used Proposition centered at Z, and the mass bound

Therefore, given any p, we can choose an appropriate v and sum over p as before to
deduce

/ d% < cp™@E(M,C,1). (5.97)
MﬁB1/4ﬂBP({O}XRm)

Now multiply by p~¢~1*2% and integrate in p € [r,1/4], to obtain (5.86)) with 2a in place

of . O

6. JACOBI FIELDS

The aim of this prove, under suitable assumptions, a superlinear decay on Jacobi fields
whose linear part has been removed. To state this we require some additional notation.

Definition 6.1. Let £ be the subspace of linear compatible fields v : C — C* of the
form

B B ~ As alinear map {0} x R™ — R*** x {0},
L= {U<x’ y) =7 (Ay) +vo(2) and vy : Cy — Cgo™ is linear compatible
(6.1)

We will find these are precisely the 1-homogeneous Jacobi fields arising from our blow-up
procedure.
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Now given an arbitrary compatible Jacobi field v : C — C*, and a scale p > 0, let us
define v, € L to be the element of £ minimizing

min {/ v - 1) among P € ﬁ} , (6.2)
CnB,

v, =V — Y, (6.3)
so that v, is L*(C N B,)-orthogonal to every field in L.

and then define

Our main Theorem of this section is the following.

Theorem 6.2 (Linear decay). Let v : CN By — Ct be a compatible Jacobi field, and
fir 6 € (0,1/4]. Suppose that for every p € [0,1/4], there is a chunky function k, :
(0, p] x By = R*** % {0} so that we have the following two estimates:

A) Non-concentration estimate:

. [0, =,
p2+2 a/ P2+2_2 S 5 ‘/Up’27 (64)
cnB,,, T

with the pointwise bound |k,| < Bp™" meBP 0,25
B) Hardt-Simon growth estimate:
| moe/mE < [ ot (6.5)
CNB, 1

CnB,

Then there are constants cq, 1, depending only on (C, 3, ), so that

0”2/ lug|? < 02(9“/ 1|2 (6.6)
CnNBy CnB1

Since the argument is somewhat involved, we provide a short outline.

Outline of Proof. The biggest hurdle is to show that any 1-homogeneous compatible Ja-
cobi field v satisfying must lie in £. This is proven in Theorem as follows.

First, we decompose v(rf,y) = > ;= vi(r,y), where each v; is the projection of v onto
the i-th eigenfunction of the Jacobi operator on the geodesic net I' = Cy N S'**. Thanks
to the compatibility conditions, this operation is well defined on the net (see Section
and each v; is smooth (Proposition [6.3)).

Next we observe that by 1-homogeneity of v, we can write v;(r,y) = r¢;(y/r) and each
¢; satisfies the equation

> (i + 22D Drgi — Y 27D + (1= Ni)gy = 0. (6.7)
7,k=1 j=1

with \; the eigenvalue associated to ¢;. Moreover ((6.4), becomes

/ / t717 ¢ (tw) Pdwdt < oo when \; # 0,
1 Jgmt

/ / T g (tw) — itw)Pdwdt < 0o when \; = 0.
1 Sm—1
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Now one exploits the fact that in polar coordinates the PDE of ¢ has a divergence
structure, so that we can test it with a logarithmic cut-off function and use the above
inequalities to estimate the RHS to prove in Lemma that:

(1) when \; = 0, then ¢;(z) = a - z for some a € R™ (corresponding to a rotation of
the spine),
(2) when \; = 1, then ¢;(z) = const (corresponding to an action on C that fixes the
spine),
(3) otherwise, ¢;(z) =0 (v cannot act on the spine in any other fashion).
However we cannot do this directly, since a reverse Poincaré inequality might not be true
for ¢;, and indeed, we will need to study the equation for the radial part of each fourier
mode of ¢; separately (see Lemma.

The underlying reason this works is because of the no-holes condition: in assuming
the existence of a singular set (i.e. points of good density) arbitrarily near {0} x R™, we
enforce the infintesimal motion to act on {0} x R™ by rotation.

At this point a simple contradiction argument allows us to prove that whenever v,
(= component of v orthogonal at scale B, to L) satisfies the non-concentration estimate
, then the following quantitative growth estimate holds

1
[ mroseRE= [ BBz e [
CNB,\B, 19 c(C)

CNB,\B,/10 ( )
6.8

This can be combined with the Hardt-Simon inequalty ([6.5) to prove a decay of [ B, R*™0r(v/R)|?,
and hence a decay of p="2 fCﬂBp [v,]? also. O

6.1. Elementary facts. Let us prove some elementary properties of compatible Jacobi
fields. First, we demonstrate smoothness and a priori estimates up to and including the
wedge boundaries.

Lemma 6.3. Suppose v : CN By — C* is CY°, satisfies the C°- and C*-compatibility
conditions of Definition[2.7, and each v(i) is harmonic on intW (i) x R™.

Then v is a compatible Jacobi field in By (so, is smooth up to and including the wedge
boundaries), and for every non-negative integer k and p < 1 we have the pointwise bound

sup (o IDR(0) < ofCopik) [ ol (69
B,N(W (i) xR™) CnB,

Proof. Away from 0W (i) x R™ smoothness follows from harmonicity. Let assume assume
W (1), W(2), W(3) share a common boundary line L. By the C'' compatability condition
we can perform an even extension of v(1) +v(2) 4+ v(3) across L x R™ near z, and deduce
that v(1) + v(2) + v(3) is smooth up to L x R™.

Let P be the plane spanned by the conormals n(1),n(2),n(3), and denote by v(i)? and
v(i)* the orthogonal projections to P, P+ respectively. We can identify P with R2, and
the n(i) with 1,e™/3 ¢4/3 By the C'! compatability condition one can easily verify that

Oniyv(i)” = ae™n(i), (6.10)

for some o € R. In other words, up to a fixed scaling factor, each 9,yv(i)” is a 90°
rotation of n(i).
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We deduce that 0,;yv(i) -n(i) = Ou(jyv(j) -n(j) along L, and so using an even extension
we deduce v(i)" —v(4)T is smooth up to L. Similarly, by the C° compatability condition,
we have that v(i)* = v(j)* along L, and so using an odd extension we deduce v(i)* —v(j)*
is smooth up to L.

Combining the above relations gives that each v(i) extends smoothly to L.

We now prove (6.9). Observe that near L, each v(i) can be written as the sum of
harmonic functions which extend smoothly across L (by either an even or odd reflection).
Therefore, at any point (x,y) € CN B, we can scale up |x| — 1 and use standard interior
estimates to bound

sip JaPEI DR < o(C, 6, k) / o < / of?.
Bs|a| (z,y)N(W (i) xR™) Bag|| (,y)N(W (1) xR™) MnNBy

(6.11)

Here 6 = 6(C, p) is chosen to be
§ = min{1/100 - (smallest geodesic length in Co N S'™*) (1 — p)/2}. (6.12)
The Lemma follows directly. 0

The following Proposition demonstrates that a compatible, 1-homogeneous field on a
polyhedral cone generates a rotation locally. Unfortunately, it’s not always clear if the
local-rotations can patch together for form a global movement of the net. Note this
Proposition concerns the cross-section Cgy, not the full cone C = Cy x R™.

Proposition 6.4. Let v : Cq — Co be a compatible 1-homogeneous Jacobi field. Then v
is linear: there are skew-symmetric matrices A(i) : R™™* — R 5o that v(i) = mp()e o
A(1).

Morover, the A(i) are locally compatible in the following sense: if W (iy), W (iz), W (i3)
share a common boundary line L, then there is a skew-symmetric matriz Ay so that

TpG,)t © A(ij) = mpuyr 0 Ap - for each j =1,2,3. (6.13)

Proof. On each wedge W (i), v(i) is harmonic and 1-homogeneous. Since W (i) is 2-
dimensional, it follows immediately that v(i) is a linear map W (i) — W (i)t. Since the
domain and range of v(i) are orthogonal, we can extend it to a skew-symmetric linear
mapping on R"*¥,

Let us prove local compatibility. Fix a line L = L(1) of Cy, and suppose without loss of
generality that the wedges W (1), W (2),W(3) all meet at L. For each such wedge, write
n(i) for the unit outward conormal of L C W (i), and ¢ for the unit vector defining L.

On each piece W (i), by assumption we can write the field v(7) as

v()(z) = a(i)(x - n(i)) + b(i)(z - £), (6.14)

where a(i),b(i) € P(i)* C R*™. Here - denotes the standard Euclidean inner product.
By the C° compatibility condition, we have that

where b is a fixed vector in L+ C R*.
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From the C' compatability condition, we have 3°°_ a(i) = 0. Therefore, by Lemma
we can choose an anti-symmetric A’ so that A’'(n(i)) = a(i). Define the linear

mapping

Alxy=Az+ (b—AW)(x-0). (6.16)
Then A is anti-symmetric, since 27 Az = 0 for every z, and by construction we have
U(Z) = 7Tp(i)J_ O A O

6.2. Eigenfunctions on a net. We require some additional notation. Write I' = Cy N
S™* to be the corresponding equiangular geodesic net of Cy composed of geodesc segments
UL, £(7). Here each £(i) = W (i) N S'**. We write a function u : I' = Cy™ as a collection
of functions u(i) : £(i) — W (i)*.

Define the norms

ul[2 = / ?, lul? = / l? + W, lull? = / P WP P (6.17)

and let L*(I"), W'(I'), W22(T') be the completion of C*(T", Cy™) with respect to these
norms. By Sobolev embedding, we have W'? ¢ C°(I", Cy*) and W22 c CY(T", Cy™).

We say u € C°(T") is C°-compatible if for every p € 0L(i), there is a vector V independent
of i so that u(i)(p) = my;+ (V). We say u € CY(I) is C'-compatible if:

Onu(iy)(p) + Onuliz)(p) + Opulis)(p) =0 (6.18)

whenever ((i1),{(i2), £(i3) share a common vertex p (n being the outward conormal).
Clearly, a Jacobi field v : Cy — Co* is compatible if and only if each slice v(r =rg) is
compatible on the net rqI'.

We aim to show the following:

Theorem 6.5. There is a sequence 0 = A\ < Ay < ... — 00, and a collection u; €
C>(T, Cyt), so that

ul + \u; =0,  w; is C°- and C'-compatible, (6.19)
and the {u;}; form an orthonormal basis in L*(T).

Remark 6.6. If v : Cy — CyT is a 1-homogeneous compatible Jacobi field, then v(r = 1)
is an eigenfunction of u — —u” with eigenvalue 1.

If Ve R*"" is a fixed vector, then u(i)(z) = my . (V) is an eigenfunction of —u” with
eigenvalue 0. If A : R*™* — R*™* is a fixed linear map, then u(i)(x) = my . (Az) is an
eigenfunction with eigenvalue 1.

Let us define the spaces
H, = {uc W"(T) c C%T',Cy") : u is C%-compatible}, (6.20)
Hy ={uec H NnW**I') c CY(T',Cy") : u is C'-compatible }. (6.21)

By Sobolev embedding and linearity of compatability conditions each H; is a well-defined
closed (Hilbert) subspace of W%%(T"). Our key Lemma is the following.

Lemma 6.7. The mapping Hy — L*(T') sending u — —u” +u has a bounded inverse map
S: L*(T) — Hy, which is self-adjoint as a map L* — L.
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Proof. The bilinear form A : H; x H; — R defined by

Alu, @) = /Fu' P tu-¢ (6.22)

coincides with the inner product on H;. So by the Reisz representation theorem, there is
a bounded solution operator S : L*(T') — H;, which solves

AS(.0)= [ 16 voe (6.23)

We show that S maps into Hs. Let us fix some u = S(f). By standard arguments, and
since I' is 1-dimensional, we can take various ¢ supported in a fixed segment to deduce
u € W22, In particular, u solves

—u"+u=f H' —ae inl. (6.24)

We just need to verify u is C'-compatible.

Fix a vertex p, and WLOG we can assume the segment £(1), £(2), ¢(3) meet at p. Choose
¢ to be supported in a neighborhood of p, then integrate by parts and use
to obtain, for some fixed vector V,

Z $(i)(p) - Ouu(i)(p) = Z Tenyst (V) - Opuli) (p), (6.25)

where in the equality we used the C°-compatibility of ¢. Here we write explicitly n(:) for
the outward conormal of £(i). Since V' and p are arbitrary, by Lemma we deduce
that u is C'-compatible. This proves the claim.

Using that u solves —u” +u = f at H!'-a.e. point, we can test against u and u”, and
use the C°-/C'— compatibility conditions to integrate by parts, to obtain

Il < 2 / ul? +2 / T / P < 10]1112 (6.26)

So S : L? — H, is bounded.

Let us demonstrate self-adjointness. Take v = S(g), and then by Lemma the C°-
and C'-compatability conditions ensure we can integrate by parts without picking up any
boundary terms:

/f-S(g) :/(—u”+u) -v:/u’-v’+u-v:/u-(—v”—l—v) :/S(f)-g. (6.27)
r r r r r
This completes the proof of Lemma [6.7] O

Proof of Theorem[6.5 From Lemma the solution operator S : L*(T') — L*T) is
compact and self-adjoint, and therefore has a countable eigenbasis u; with eigenvalues
i — 0. For each u;, we have u; € Hy, and

wj + (u = Du; =0 (6.28)

weakly in Hi, and strongly in H,. It’s now straightforward to check each u; is smooth,
and non-negativity of the \; follows from integration by parts. OJ
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6.3. 1-homogeneous implies linear. For a polyhedral cone without any spine, we easily
have that any 1-homogeneous Jacobi field is linear in the sense of Definition 2.7, However
this argument fails in the presence of a spine. Following Simon [25], we show that any
compatible Jacobi field on C = Cy x R™ with appropriate decay splits into rotation of
the spine plus some linear component on C.

Theorem 6.8. Letv : CNB; — C* be a 1-homogeneous compatible Jacobi field, satisfying

L2
/ —|Ur2+§—a| < 00, (6.29)
CNB;

for some a € (0,1), and some bounded chunky function r : (0,1] x BJ* — R*** x {0}.
Then there is a linear map A : {0} x R™ — R?>™* x {0}, and a linear compatible Jacobi
field vy : Cy — Cot, so that

o(w, ) = Tor (Ay) + vo(x). (6.30)
In other words, v € L.

Proof. Write I' = Cy N S'™* and let ¥;(f) be the eigenfunction expansion of L*(T") from
Theorem [6.5] with associated eigenvalues \;. Write

vi(r,y) = /Fv(rﬁ,y) ~U,(0)dl,  kKi(r,y) = /FR(T, y)*- - W,(60)db, (6.31)

so that v(rf,y) = >, vi(r,y)V;(0) and k*(rf,y) = >, ki(r, y)¥;(). Notice that, since
() = i) - [ W6, (6:32)
r

we have k; = 0 unless A\; = 0.
Since both v and ¥; are smooth and compatible, and v is harmonic on each wedge, we
can integrate (6.31]) by parts to deduce each v;(r,y) is smooth and solves:

)\
Ov; + — a U+ Ayu; — =0. (6.33)
T’
Let us define ¢; : R™ — R by
¢i(2) = vi(1, 2), (6.34)

so that by 1-homogeneity we have v;(r,y) = r¢;(y/r). By direct calculation, we see that
¢; satisfies the equation

> (G5 +272*)D;Digyi — ZZJDJQS, (1—=X)¢:i = 0. (6.35)

J,k=1 j=1

We aim to show that any ¢; satisfying (6.35) and a decay condition guaranteed by
(6.29), must be either linear or constant, depending on the value of \;. Let us first find
the correct decay condition on each ¢;.
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Using the orthonormality of the ¥;, we can write

’U_“ VihE o3 2
Loy = 0 9) — i, ) Py (6:36)
NB1 1

- Z/ / / i (r, sw) — ky(r, sw)|Pdwdrds  (6.37)
i 03s 0> m—1
1
= Z/ sml/ / tlfa‘vi(tfljs ) — /ﬁ}l( )‘ dwdtds.
i J03s 1/V1-s25t Jsm-1

(6.38)
Therefore, by choosing an appropriate sy € (1/3,1/2), we have
/ / t717Y ¢y (tw) |Pdwdt < 0o when \; # 0, (6.39)
1 Jgm
/ / 2t g (tw) — Ry(tw) P dwdt < oo when \; = 0, (6.40)
1 Jem—r

where #;(tw) := r;(t71, sow) is uniformly bounded.
We can now apply Lemma m (proved just below) to deduce that ¢;(2) = a; - z when
Ai =0, ¢;(2) = b; when \; = 1, and ¢; = 0 otherwise. So we can write

v(rd,y) = Z rdi(y/r)¥;(0) + Z roi(y/r)¥;(0) (6.41)
{i:\i=0} {ih=1}

m

= yw;(0) + rvo(6), (6.42)

Jj=1

where each w;(0) lies in the A = 0 eigenspace of L*(T), and vy(rf) = rve(f) is a 1-
homogeneous compatible Jacobi field on Cy.
By Proposition we know vy is linear. We must show each w;(6) lies in the space

V= {mg,(v) :veR*™ x {0}}. (6.43)

Let P be the L*(T') orthogonal projection to V*+ C L*(T).
Since £+ € V for each (r,y), we have from (6.29) and L?(T')-orthogonality of w;(6), vo(6)
that

1 m 1 m
/ / / oS yhwy(8) — k- (r,y)|2d0dydr > / / / P P(S s (6)) Pdodydr
o Jam . Jr o o JemJr s

(6.44)

is finite, which necessitates that P(} 7" y/w;(#)) = 0 on B* x I'. Hence, every w; € V
as required. O

To prove Lemma [6.10| we shall need the following W12 estimate. We note that ([6.47)
fails for general solutions of (6.35)), so in our analysis of Lemma we must consider
each term of the Fourier expansion separately.
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Lemma 6.9. Suppose v : R, — R satisfies the ODE

L+ +((m = 1) /r =7)7 + (=p/r* + 1 =Ny =0, (6.45)
where m > 1. Then for any 4 < p we have
2p 4p
/ (Y)?dr < c(u, )\)/ 72 [ridr. (6.46)
p p/2

In particular, if m > 2, and ¢ = y(r)p(w) solves (6.35) in R™, where p(w) is an
eigenfunction of —Agm-1 with eigenvalue u, then

2p 4p
/ / |Do(rw) Pdwdr < c(p, )\)/ o(rw)? /ridwdr. (6.47)
p JSm! p/2 JSm1
Proof. The ODE ([6.45]) can be written in the divergence form:
h
0, (DA () + 1o (24 1= Ay () =0 (6.43)

where h(r) = r™= (1 + r2)1=C+m)/2 " Take n(r) a cutoff which is = 0 outside [p/2,4p],
=1 on [p, 2p|, and linearly interpolates in between. If we multiply (6.48) by vn?, then we
obtain

h
Jorindr <5 [ s a4 1 )+ PR (649)

where we used that r=2|u| < |u| on sptn.
Since p > 4, then we have

1
57“71 < h(r)<2r (6.50)
and therefore
2p 4p
o [0kl + e [ e (6.51)
p p/2

which proves the required relation ((6.46)).

Let us now take ¢(rw) = v(r)o(w) solving (6.35), with Agm-1¢ 4+ u¢ = 0. By direct
computation, we see that « solves the ODE (6.45). Therefore, we can use ([6.46]) to
compute that

2p 5 2p 2p
] |D¢|2dwdr=( ¢2dw) [ vupta < [ [ 6o
P S§m—1 §m—1 p P/2 S§m—1
(6.52)
0

Lemma 6.10. Let ¢ : R™ — R is a smooth function satisfying (6.35), and take a fired
A > 0. Assume ¢ satisfies the decay bound

/ Oo/ P g (rw) — k(rw) Pdwdr < 00 if A =0, (6.53)
1 Jsm-t

/OO/ r Y o(rw)|? < oo if A >0, (6.54)
1 Jgm
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where k : R™ — R is some bounded measurable function.
Then:
A) when A =0, then ¢(z) = a- z for some a € R™,
B) when A = 1, then ¢(z) = const,
C) otherwise, ¢(z) = 0.

Proof. Consider the case m > 2, and let us first suppose ¢ takes the special form ¢(rw) =
(7)1 (w), where 1) is an eigenfunction of —Agm-1 with eigenvalue p. Let u = Dy¢ for any
fixed k. Then by direct computation u solves

(6ij + 2'2))D;Dju + 2" Dyu — Au = 0. (6.55)
In polar coordinates ((6.55)) becomes
(1+rH0%u+ ((m —1)/r — (£ — 3)r)0pu + Agm-1u/r* — Au = 0, (6.56)
which can be written in the divergence form
8, (g(r)d,u) + 19322 (Agu/r? — \u) = 0. (6.57)

where g(r) = r™~1(14r2)~("=2)/2 (this should not be surprising, since the original Jacobi
equation is in divergence form).

If we multiply (6.57) by ¢(r)*u, where ¢ € C5°(R,), then we otain

/ N / I 9uPe + g(0) + I ddr < 10 / h / g1 (¢ 2u2dwdr.
0 sm—1 7”2(1 + Tz) " 1 + T2 - 0 sm—1
(6.58)

Here V indicates the covariant derivative on S™!. Since r~2|Vu|? < |Dul? is bounded as
r — 0, we can in fact plug in any ¢ € C§°([0,00)). In particular, let us take ¢ to be the
usual log cutoff

¢(r) = max {2 — 10g<rrll§;{0r’ Ph) : O} , p>4 (6.59)

Since g(r) < 2r on spt(’, we can use Lemma to obtain

P r2|Vul? + \u? ) c ”
r + (0,u)? | dwdr < —/ / r~YDo|*dwdr
[ oo (F s o) Gog P J, Jour™ D7
(6.60)

2p?
< ) / / r=3¢2dwdr.
= (logp)? J,2 Jsm—
(6.61)

If X > 0, then since r—2 < r~17% the integral in is bounded as p — oo. This
shows that u = Dr¢ = 0 for any k, and hence ¢ is constant. Using (6.35]), we see that
the only constant solution when A # 1 is ¢ = 0.

If A =0 then we can instead estimate as

2

2p? 2p
c c c
(6.61) < —/ 7“_1/ Ir ¢ — k|*dwdr + / rdr < , (6.62)
(logp)? J,/2 m-1 (log p)? J,/9 log p
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for some constant ¢ independent of p. Taking p — oo gives that ¢ = a - z + b, but from
(6.35) we see that necessarily b = 0.

Now for a general ¢, we can decompose ¢ = . v (r)¢p;(w) where each v;(r)¢;(w)
extends to a C'*° solution of on R™, and continues to satisfy bounds , (16.54]).
Therefore we can apply the previous logic to each v;¢; to deduce the required result.

Now consider m = 1. This is essentially the same, but easier. We observe that u = ¢’
satisfies the ODE

(14 22" 4 20’ — Mu =0, (6.63)
which can be written in divergence form as
Ag(z
(o) — 22—, (6.64

where g(z) = (1 + 22)1/2,

Multiply (6.64) by u(2)¢?(|z|), where € is the log cutoff (6.59)), and observe that ¢(
solves (6.45) on R\ {0}. Using Lemma[6.9} we obtain as before that

o \u?g 10 c(N)
(W) + 229 4x < [ e < / 2|,
/_p 1+ 22 (log )2 Ji2ielpp?) (log )2 J12ielp/2.202)
(6.65)

2)

and the proof proceeds as in the case m > 2. O

6.4. Linear decay. We first demonstrate the lower bound: if v is orthogonal to linear
fields, then at that scale v must grow quantitatively more than 1-homogeneously.

Lemma 6.11. Suppose v : CN By — C is a smooth compatible Jacobi field, which is
L?(C N By) orthogonal to every element in L, and satisfies the decay estimate

112
Uv—K
/ Ui RPN (6.66)
CﬂB1/4 r CmBl

where £ : (0, 1] x BY* — R*™ x {0} is a chunky function with bound |[* < B [o 5 [v]*.

Then we have
1
81}R22—/ vl 6.67
/cmBl\Bl/m‘ RO 2 S E ) Jons (6:67)

Proof. Suppose, towards a contradiction, the Lemma fails: we have a sequence of smooth,
compatible Jacobi field v; on C N By, and associated chunky functions x;, which both
satisfy the hypothesis of Lemma but each v; admits the bound

/ R*™"|0p(vi/R)|? < 5z’/ Jvi]?, (6.68)
CNB1\By,10 CNB;
Define the rescaled v; := ||Ui||221(CﬂB1)Ui' Then ||0;||z2(cnp, = 1 for all i, and using

Lemma we can pass to a subsequence, and deduce the v; converge smoothly to on
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compact subsets of C N By \ {0} x R™ to some limit . We have strong convergence in

L*(C N Byya), since implies

/ Wl < e(C, )52 V5 > 0, (6.69)
CNBy/4\Bs ({0} xR™)

By compactness of chunky functions, we can assume HU%’”Z?I(CmBl)’fi — & uniformly on
compact subsets of CN By \ {0} x R™.

The resulting ¥ is a compatible Jacobi field, which is L*(C N By)-orthogonal to the
linear fields, and satisfies the bound

o — R
/ G < 00, (670)
CnByyy T

where % : (0,1] x B — R*** x {0} is bounded and chunky.

Moreover, by our hypothesis , v extends to a 1-homogeneous field on C. By Theo-
rem and our bound we deduce v is linear, but this contradicts our orthogonality
assumption unless v = 0.

So ¥; — 0 uniformly on compact subsets of ByNC\{0} x R™. But, by radial integration

and (6.70)), one can show that

1
[ 1o mP > - O + ), (6.71)
CNB1\By /10 c(n)
whenever SUpcnp, ,\Bs({0} x&m) |0;] <e. For i >> 1, this is a contradiction. O

We now prove Theorem

Proof of Theorem[6.9. From Lemma and (6.5)) there is a constant 5y = (B2(C, 3, «)
so that, for every p € [6,1/10],

w2 < B, / R*0p(o/R)2.  (6.72)

CQBP\BP/IO

| moemp <
Cme/lO

CnB,

Therefore by hole-filling we obtain

/ R2fn|aR<U/R)‘2 < 562
CNB,/10

2—n 2
< /cﬁBpR On(v/R)I2 (6.73)

BB2
14862

/ R "(0p(o/R)* < c(7)8" / R "|0n(o/R). (6.74)
CNBy

CNBy 40

Writing v = < 1, we can iterate the above inequality to obtain

where p = —log(y)/log(10) > 0. Using Lemma at scale 6 and ([6.5)) at scale 1/4
completes the proof of Theorem [6.2] O
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7. INHOMGEONEOUS BLOW-UPS

We finish proving the excess decay Theorem We shall demonstrate how blow-up
sequences generate compatible Jacobi fields, and how integrability allows to remove the
linear part of the limiting field at any fixed scale. This allows us to apply the linear decay
of Theorem to prove non-linear excess decay.

As before we continue to work with a fixed C = C% x R™, with Cy* C R*** polyhedral.

7.1. Blowing-up. We need a notion of convergence under varying domains. Consider
the sequence of domains

Qi = {2, 2my1) €EB XR:0< 21 <1+ fi(2)} c R™H, (7.1)

where f; : B — R is C**, and |fi|c1.« — 0.
Suppose we have u; : €; — R, with uniformly bounded |u;|c1.e(,) < A. Define the
functions ¢; : B{* x [0,1] — §; by setting
Gi(2, Timi1) = (2, (1 + fi(2"))Tman). (7.2)

Then ¢; is a diffeomorphism for large 7, and we can consider the functions ; : B*x [0, 1] —
R defined by 1)1 = U; ° gbz
Now by Arzela-Ascoli and convergence of f;, we can find a C** function u : B{*x[0,1] —
R, with |u|cie < A, so that:
;= uin Y (B % [0,1]), and w; — u in CL¥ (B x (0,1)), (7.3)

for any o/ < a.

Let us now take (M;, C;,e;, 5;) a blow-up sequence w.r.t. C = Cy x R™. By Lemma
, there are numbers 7; — 0 so that (for ¢ >> 1) we can decompose

M; N By = graphg, (wi, fi, %), Bijg \ B ({0} x R™) C Q,  |ui|crw + | filorn < 75,
(7.4)

as per Definition [1.9) where the u;, f; satisfy estimates ([4.4)), (£.6), ([£.8), (.9).

Similarly, we can decompose

C; = graphc(@,gi, Ui); 33/4 C U, |¢i|cw + |gi|ClaH <, (7-5)

where we use the fact C; is also conical to extend U;. Here ¢;, g; also satisfy estimates

(). (0. (13). (£9) of Lemma []

Since each C; is also polyhedral, we have that both ¢; and g; are linear functions on the
domains U; in C. In particular, we can extend ¢; to be defined on each plane P(i) x R™
associated to the wedges, and note that we can say (trivially) that

Let us define Q;(5) C P(i) to be the domains where
() = {&' + ou(a’) - 2’ € ()} (7.7)

Since every f;, ¢;,g; — 0 in C’llo’f, each domain €;(j) is converging locally in CH(Bija \
{0} x R™) to W (i) x R™.
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Now consider the rescaled graphs v;(j) : Q(j) — C;* defined by
vi(7)(@) = BT wi(5) (2" + ¢i(2)). (7.8)
From Lemma and the definition of blow-up sequence, the v; satisfy:
d
lim supZ/ lvi|> < 0o, sup 7" P2(r | + | Dvi| + [ Dvilac)® < ¢(C,a).  (7.9)
L= ) Qi9)

Therefore, using ([7.6)), after passing to a subsequence (which we will also denote by i)

we can find a function v : CN Byjy — C*t so that for each j = 1,...,d, we have C'*
convergence v;(j) — v(j) locally in the sense of (7.3)). In particular, we have
v(j) € G (W) \{0}) x R™) 1 Bijo). (7.10)

We can then make the following

Definition 7.1. Let (M;, C;,¢;, 8;) be the subsequence which gives convergence to v as
outlined above. We then say that v is the Jacobi field generated by (M;, C;, €, B;).

We shall demonstrate in the following Proposition that v is a compatible Jacobi field
on C with good estimates.

Proposition 7.2. Let (Mi2+m, Ci, &4, Bi) be a blow-up sequence w.r.t C, generating Jacobi
Jield v : CN By — Ct. Then v is compatible (in the sense of Definition , and
moreover satisfies the following estimates: for every p < 1/4, we have

A) Strong L? convergence:

/ [o]* = lim 52 dé; (7.11)
CnB, ¢ M;NB,
B) Non-concentration:
. v — K, | e
P+ 1/2/ T,lpﬁ < c(C)p 2/ |v]?, (7.12)
CnB,;; T CnB,

where ki, = (0, p]x By — R x{0} is a chunky function satisfying |k,> < ¢(C)p™" fCﬂBp [v]?;
C) Growth estimates:

R* ™ 0r(v/R)|? < ¢(C vl?. 7.13
/C Or(v/R) <>/ o] (7.13)

Remark 7.3. Even though v is smooth, convergence to v may be only O,

Proof. We first show compatibility. Let {e,}>_, be an ON basis for the plane P(j) x R™.
Using the first-variation formula and the definition of ¢;, u;, one obtains directly that

Lo P+ 6G)w) - D) = [ 0D+ 1Dl D+ ),

spt¢

(7.14)
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for any ¢ € C°(((intW (j) x R™) N By 4, R"**). Therefore, using (7.9), and the definition
of v; and blow-up sequence, we get that

n

/ > DDy =0 (7.15)
W(ExR™ 4

for all such (. We deduce that v(j) is harmonic on (intW(j) x R™) N By s.

Write L = U;L(j) for the lines of Cy. Pick any X = (x,y) € (L\{0}) x R™)N By /9. In
view of Remarks[4.10]and [2.6 we can choose a fixed p = p(X, C), a constant ¢ = c¢(m, k, p)
and a sequence of roatations ¢; — g € SO(n + k), so that

(ql(pil(MZ — X)), Y x Rm+1, CcEq, Bl) (716)
is a blow-up sequence w.r.t Y x R™"! generating Jacobi field
0(Y) = p~Hgov)(X + pg ' (Y)). (7.17)

By Lemma v satisfies the required C° and C' compatability conditions in Bj s, and
therefore v satisfies these conditions in B,/;(X). Compatibility of v now follows from
Lemma [6.3]

We now prove properties A), B), C). Fix p < 1/4, and recall v; as the approximating
sequence which converges to v. We first observe that

d
3 / ()P = O(r) + (1 + o(1))5 2, (7.18)
= Ju()nB,\Bs ({0} xR™) MinB\Bs ({0} xR™))

since the Jacobian of u;(2'+¢;(2')) is 14+0(1), and |u;(j)| = dc, away from By, (L xR™).
Therefore, by the C'# convergence of Q;(7) and v;(j) (as per (7.3))) we have

/ [v* = lim B;2 d¢,.- (7.19)
CNB,\B;s({0} xR™) 10 M;NBy\Bs({0}xR™))
On the other hand, by estimates ({5.4)) and ([5.6)) we have for any 6 > 7 and i >> 1:

/ lui ()2 < ¢(C)8?>"Y2E(M;, C,0,1). (7.20)
= Ju()NB5 ({0} xR™)\ By (LxR™)

Write I' = limsup, 8; 2E.,(M;, C;,0,1). Passing to the limit in (7.20]), and then taking
7 — 0, we deduce

/ ]2 < o(C,T)821/2. (7.21)
CNB,NBs({0} xR™)
Similarly, we have by estimate (5.4)) that (for i >> 1)
B2 dg, < c(C,T)5* 12, (7.22)
MiﬂBpﬂB(g({O}XRm)

Since ([7.21]), (7.22)) are valid for any fixed § (provided i sufficiently large), we deduce the
strong L? convergence of A).
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Let us prove B). Fix 7 > 0. We can apply Theorem at scale p to deduce that, for
each i >> 1, we have a chunky functon r,; : (0, p] x Bj" — R** x {0}, with the bound

15,4 < c(C)p™ / @, + ¢(C)pf7Te,, (7.23)
MnNB,

so that

187 wi(7) = B PN
e 1/22/ S < Q) dg, + c(C)ple;.

()NB, 2\ Br (LxR™) MnNB,

(7.24)

By compactness of chunky functions, we can find a subsequence ¢’ and a chunky function
K, so that 3, 'k,; — k, pointwise, and uniformly on B,\ B, (L xR™) (for any fixed 7 > 0).
Using A), we can therefore take the limit in ¢ on each side of ([7.24]), to deduce

— |U — K |2 —n—
pre 1/2/0 r2+2—1p/2 < ¢(C)p™ [vf. (7.25)
NB,/2\Br (LXR™) CnB,

Taking 7 — 0 gives B).
We show C). From ([5.2), we have for any 7 > 0 and i >> 1,

>/ R on(uii) /R < c(Cp ™ [ b+ c(©piie
i Y Q()NB, 10\ Br (LXR™) M

iﬁBp
(7.26)
Therefore, using the C' convergence of v;(j) away from OW (j) x R™, and part A) we have
/ R "onu()/RP <e©p " [P @2
CNB,)3\Br (LXR™) CnB,
Now take 7 — 0 to deduce C). O

We demonstrate that Jacobi fields obtained through inhomogeneous blow-up limits are
compatible.

Lemma 7.4. Suppose (M}, Y x R™ ¢;, B;) is a blow-up sequence w.r.t' Y x R™, gen-
erating Jacobi field v : CN By — (C)*r. Then for every y € B{’}z, there is a wvector

V € R 5o that
v(7)(0,y) = To;- (V) 7=1,2,3, and Z@ v(7)(0,y) = 0. (7.28)

Proof. Fix some y € Bf},, and let V; be the (unique) point in singM; N (R+* x {y})N By.
So, we have

ui(7)(fi(5)(0,9)) = moe - (Va), (7.29)

and from the 120° angle condition we have

Vil < Z i () (f:(5)(0, ). (7.30)
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From the blow-up procedure we have u;(j)(f:(7)(0,y)) — v(j)(0,y), and from ([7.30)
we can pass to a subsequence i’ so that Vi — V. Then we have

v(7)(0,y) = g+ (V). (7.31)

This proves the C°-compatability.

We prove the C' condition. Our proof follows [25], but we additionally exploit the
stationarity of Y xR (as a technical aside, we mention that [25] only requires stationarity
away from the axis, while we stipulate stationary through the axis; for unions of half-
planes this restricts not only the allowable surfaces but also the notion of integrability).
Let ((r,y) be any function with 9,( = 0 near {0} x R™, and spt¢ C By/10(X) for some
X. For ease of notation write E; = E(M;, 'Y x RI*™ 1).

After rotation we can fix one of the H(j) = R, x {0}* x R™. So, coordinates on H(j)
are (z',y',...,y™), and coordinates on H(j)* = R* are (22,...,2'*%). Ensuring i >> 1,
we can assume M; is graphical over H(j) N (Bsja \ Br/2(0H(j)), with graphing function
u;(j). Write

U(j) = H(G) N (By2 \ B-(0H(3)))- (7.32)

Let us drop the ¢ and j indices momentarily. Write h?? for the inverse of hy, = dpq +
D,u - Dyu, and V'h for the determinant of hpe. Then we have

/ Vil e = / VER 9, (C(Va2 T TP w))
u(U) JU _

-~

=:1;

+ [ SV, (T TPg))
p=1

J/

-~

=:1s

L g/
U Va2 + |ul?

< ¢(n, B)(10,¢| + |DyC|)/U!Du|2(1 + |ul[Dul)
< c(n,T,5,C)FE;.

Since the cross terms |h'17P| < ¢|Dul?, we can bound the second term directly as
S 1,1+p uQyp
> VRN ((8,0) — = + (90))
p=1
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The first term we don’t bound quite explicitly. Recalling that |u| < §|z|, we have

i fmaes]-

/\/_h” 0,0) (/22 + [ul]?,y

T
\/m_/U(arC)(xay)
< [ VAR 1) @0 (Ve TaF )

U
_z

/2% F [ul?
< c(n.9)10.¢] [ |Duf? + el )1336) [ Juf
U U(i)
S C(n7/87 7_7 C)EZ

For j =2,...,1+ k, we also have

_|_/U‘((‘)T<)( 2%+ |ul?,y) —(0:0) (7, )

[ vave- | Duj-Dg‘ < [ 10— 1D, DG/ TuP ) (7.33)
w(U) U U
+ [ DWW/ TP ) - D)) (734)

éc(n,ﬁ)(!&(l+\DyC|+\D2C!)/U\Du!2+IU\2 (7.35)
<c(n,B,T,C)E;. (7.36)

Therefore, turning indices back on we have the coordinate-free expression

1+k

[ 0= [ Y0 (737)
ui (7)(U(4)) ui (5)(U(4))

p=1

:—/U()(@C T, y)n —l—ZD u;(7) - DoC + Ri(5), (7.38)

Here ¢ sums over the coordinates on H(j) (so, %, y',...,y™), n(j) is the outwards conor-

mal of 0H(j) C H(j), and

Ri(j) < c(n, B, 7, Q) E;. (7.39)

We can identify any U(j) and U(j’) by a rotation, and thereby view the integrand
(7.37)) as defined on a fixed U(1) = U. Since Zj . n(j) =0, this gives

3

> / v mrrei o} (VC) = /U D Dy(duili)) - DyC + D Rill), (7.40)

j=1

where again ¢ sums over coordinates in H(j).
On the other hand, provided i is sufficiently large we can always ensure 7(() is suffi-
ciently small so that 9, = 0on V' = Bs, ({0} xR™). In particular, we have mgiix (o (D() =
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0 on V. Therefore, we use the L?-estimates of |25, Theorem 3.1] to deduce

/ €; VC‘ S / \WR1+kX{0}(ei) . 7TMT(D<>’ (7.41)
M;nV M;NV
= / |TR1+kx {03 (€3) - (—Tare (DQ))] (7.42)
M;,NV
< [ imus (o (D0) (7.43)
M;NV

1/2
c(n = o2 .
< ¢ ,g)\/E</MNmSptC<M {0} xR >) (7.44)
< ¢(n, )VtE;. (7.45)

Since we can ensure |u;(j)| < S|z < |x|/100 on U(j), what this amounts to is that, for
e, an ON basis of R'* x {0},

1+k

Ri=)» /M div(Cey)e, = /M Trasico(VC) (7.46)
p=1 g i
3
Y[ (V0 + S (7.47)
j=1 Uz(])(U(J))

_ /U > (O D)DK + Rat-S. (7.48)

where |Ry| + |Ra| < ¢(n,()E; and |S| < ¢(n, ) VIE;.
Multiply (7.48) by 5; ', and by hypothesis 3; 'u;(j) — v(j) in C* on U, where v is the
generated Jacobi field. Therefore, we obtain

0= /U > > Du(j)DC + S (7.49)

qg j=1

for all U, and |S| < ¢(n,¢)v/t. Now take t — 0, to deduce

0= [ 33 Dli)Dys (7.50)

q j=1
where we identify all the H(j) = H together via rotation, and ¢ sums over coordinates
(x17 y17 R 7ym)'
Let us write © for the even extension of 2?21 v(j) to Q@ = Q(1) =R x {0}F x R™. The
above condition ([7.50) implies that

/ GAC =0 (7.51)
Q

for every ((r,y) with {(r,y) = ((—7,y), and supported in Bjo(X) for some X. But
(7.51)) trivially holds for ¢ which are odd in r, and therefore ¢ is weakly harmonic. So in
fact © is smooth, and we deduce 0,0 = 0. O
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7.2. Killing the linear part. We demonstrate that when Cjy is integrable (as per Defi-
nition [2.8)), we can adjust the blow-up sequence to obtain a field that has no linear com-
ponent. Recall the notation that if v is a compatible Jacobi field on C, then v, :== v —1,,
where 1, is the L?(C N B,)-projection to L.

Proposition 7.5. Let (M;,C,¢e;, 5;) be a blow-up sequence w.r.t C, generating Jacobi
field v : CN By, — C*. Suppose Cy is integrable, and fir 6 € (0,1/4]. Write T' =
lim sup; B; 2 E.,(M;, C, 1).

Then there is a constant v(0, C,I") so that the following holds: given any p € [6,1/4],
we can find a sequence of rotations q; € SO(n + k), satisfying |¢; — Id| < ~vf;, so that
(M;,q;(C),&; + B, i) is a blow-up sequence w.r.t C, generating the Jacobi field v,. In
particular, we have the estimates:

A) Strong L* convergence:

/ [vp[* = lim 5, / i, cy; (7.52)
CnB, M;NB,
B) Non-concentration:
_ [0, = iyl e
e [ <ot [l (7.53)
CnB,, T CNB,

where iy 2 (0, p] X By — REx {0} is a chunky function satisfying |k ,u|* < ¢(C)p™™ meBp |v,|%;
C) Growth estimates:

R*™0r(v/R)|* < c(C | 7.54
/C/ Or(v/R) <>/ 0, (7.54)

Remark 7.6. Of course Or(¢,/R) =0, so ([7.54]) holds for both v and v,.

Remark 7.7. Due to our particular notion of integrability (by rotations), we can always
assume our initial blow-up sequence has C; = C fixed, and thereby reduce to the hypoth-
esis of Proposition Proposition holds also for general blow-up sequences (and the
“actual” notion of integrability), using the fact that integrability is essentially an open
condition on cones, but we will not need this. See [25] pages 601-602.

Proof. Fix a p € [0,1/4]. Using Proposition part A) we have

p—n—2/ |¢p|2 S 1—\29—71—2’ (755)
CNB,
and therefore, since 1, is linear, we obtain
sup |¢,| < e(C)T207 "2, (7.56)
CNB;

By integrability of Cy, the definition of £, and Theorem [6.8] there is a skew-symmetric
matrix A, : R"™ — R"** 50 that 1, = mcL 0 A,, and |A,| < ¢(C,T,6). We can therefore
find a sequence of rotations ¢; € SO(n + k), with |¢; — Id| < ¢(C,T,0)5;, so that if we
write

%(C) = graphc(qﬁi, Gi, Ui); (757)
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then each ¢;(j) : P(j) x R™ — P(j)* is a linear function satisfying
¢i(7) = Bitbp(3) + 0(5;). (7.58)

Now we have, for ¢ >> 1,

/ dg,(0) S/ d¢; +¢(C,T,0)57, (7.59)
MnB; MnNB;

and since increasing €; does not change the property of being a blow-up sequence, we see
that (M;, ¢;(C),e; + B, B;) is also a blow-up sequence.
We demonstrate that this blows up to v, as required. As in Section m, let us write

M; = graphqi(C)(Um fiQ4),  M; = graphg(u;, f7,QF), (7.60)
and define domains Qi(j ) C W(j) by the condition that
Qi) = {a' + ¢s(2) - 2’ € Q(H)}. (7.61)

Now by elementary geometry we have that for every 2/ € ;(j) N Q*(7), we have
ui(@' + ¢i(2')) = ui (2') — di(x) + O((Jws| + [Duwil)| Dpi|) = ui(2’) — By, + 0(B:). (7.62)

Since both Q;(j) and QZ(j) converge to the wedge W (j) as i — oo, and since 5; lu — v
by assumption, the blow-up of u; as per Section m will yield the field v, = v — 1),,. U

7.3. Non-linear decay: Proof of Theorem Propositions [7.2] and [7.5] allow us to

use the linear decay of Jacobi fields as in Section [6] to prove non-linear decay of M.

Proof of Theorem[3.1 Fix 6 € (0,1/4]. We first take ¢;(C) = ¢(C) and +(C,0) =
7(C,60,T = 1) to be the constants from Proposition [7.5] Now take x(C) = pu(C, 8 =
co, & = 1/2) the constant from Theorem We proceed by contradiction:

Suppose we had a sequence M; € N, (C) satisfying E.,(M;,C,0,1) < £? and the &;/10-
no-holes condition, with ¢; — 0, but admitting for some ¢; — oo the bound

EEZ(MZ,Q(C),070) 2 CZQMESI(MZ,C70, ].) (763)

for every ¢ € SO(n + k) satisfying |¢ — Id| < vE.,(M;, C,0,1)"/2,

Let us set 82 = E.,(M;,C,0,1), and thereby obtain a blow-up sequence (M;, C, &;, ),
generating some Jacobi field v: CN By, — C+. By Proposition and integrability of
Cy, v satisfies the hypotheses of Theorem at scale By o, with 5 = ¢y(C), and a = 1/2.

Therefore we have the decay estimate
8_”_2/ lvg|? < C(C)H“/ |vl/2|2 < c(C)o*, (7.64)
CNBy CNBy /2

and a sequence of ¢; € SO(n+k), with |¢; — Id] < ~8;, so using the strong L?-convergence
of Proposition [7.5] A), we have for i >> 1

E.,(M;, ¢:(C),0,0) =02 / di(c) + ;0| Hag, || () (7.65)

M;NBg

< (29—"—2/ |v9|2> E.,(M;,C,0,1) + &, '0"||Har, ||z, (7.66)
CnNBy

< 4¢(C)¢"E.,(M;, C,0,1). (7.67)
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For large ¢ this is a contradiction. 0

8. EQUIANGULAR NETS IN S?

We demonstrate that certain polyhedral cones are integrable, in the sense of Definition
2.8, First, we demonstrate that Y x R and T (under certain circumstances) admit no
hole conditions.

8.1. No-holes for Y and T. The Y! x R™ cone is very special, in that closeness to
thise cone always guarantees the existence of good density points. No extra assumptions
on the class or structure of the varifold are necessary.

Proposition 8.1. There is an £(m, k,d) so that if M*+™ C RUE+™ Jies in M € N.(Y x
R™), then M satisfies the §-no-holes condition in Byy w.r.t. Y x R™.

Proof. By Lemma [10.4, provided ¢ is sufficiently small M N Bs/y \ Bs({0} x R™) is a
CY“-perturbation of Y x R™. We claim that

singM N (R x {yHN By #0 Vye By, (8.1)

Otherwise, since singM is relatively closed, by Sard’s theorem, we could choose a y*
arbitrarily near y so that M N (R x {y*}) N By would consist of a smooth 1-manifold
having three boundary components, which is impossible.

Therefore, using Almgren’s stratification we have for H™-a.e. y € B?}Q a singular point

X, € singM N (Bs(0)** x {y}) which is m-symmetric. So there is a tangent cone at X,
which is either a multiplicity > 2 plane, or a union of > 3 half-planes, either of which has
density > 0y (0). O

Unfortunately, the tetrahedral cones T? x R™ do not admit so nice a property, without
imposing further restrictions: we can find piecewise-smooth varifolds of bounded mean
curvature which look very close to T at scale By, but which only have singularities of type
Y x R. To rule this out one can enforce a boundary/orientability structure.

Lemma 8.2. Let C = C2 x R™ C R¥*™ where Cy is 2-dimensional, stationary and
singular. If (up to rotation) Cq is not a multiplicity 1 plane or the Y x R, then we have

06(0) > 0(0). (8.2)

Proof. 1t Cy is planar, then it must be with multiplicity > 2 > 61(0). If Cy has 1-degree
of symmetry, then since we are not regular nor are we the Y, then Cy must consist of > 4
half-planes meeting along an edge, which also has multplicity > 2.

Suppose Cj has no symmetries. Consider the geodesic net I' := Cy N 0B; C S?. If any
geodesic has multiplicity > 2, or any junction has > 4 vertices, then 6c(0) > 2 and we
are done. Let us suppose therefore that I' consists only of multiplicity-1 geodesics, which
meet at 120°.

These nets are classified, and listed in the following subsection. One can readily verify
that the net with least length, aside from the circle and Y, is the tetrahedral net. 0

Lemma 8.3. Let M? be a set in R® which coincides with T? in By \ Bs. Suppose H*_M
15 an integral varifold with an associated cycle structure in By. Then there is a point
x € M N By, so that M near x is not a C! perturbation of R* or Y x R.
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FIGURE 1. A surfaces with only Y-type singularities which coincides with
T outside a small ball.

Proof. By assumption M divides the annulus B; \ Bs into four regions A;, Ay, A3, A4. Any
two A;, A; share a boundary wedge W C T.

Suppose, towards a contradiction, that around every point M is locally a C! perturba-
tion of R2 or Y x R. Then M N B; consists of a finite collection of C'! embedded surfaces
M; meeting at 120° along C' embedded curves ~;. Since M coincides with T outside Bs,
we see that up to renumbering the curves 7y, v, start and end at vertices of TN S?, while
curves 7s, V4, - - - must be closed. See figure for an idealized picture.

We can assume 7, starts at the vertex adjoined by regions A;, As, A3, while v, ends
at the vertex adjoined by regions A, As, As. A small tubular neighborhood of v is
diffeomorphic Y x R, and therefore if we push +; away from any bounding surface in the
conormal direction, the resulting curve 4; induces a path connecting A; (i = 1,2,3) to
some A; (j = 1,2,4). After relabeling as necessary, we can thicken 4; to obtain an open
set A, disjoint from M, with A D A3 U Ay.

Since each associated current is codimension 1 and without boundary, we can assume
WLOG that H?_M is associated to a countable union of boundaries 0[U;], where U; are
open sets, and we take the boundaries as 3-currents. From the above we have A C U; or
ANU; =0 for every 7. But now if W is the boundary wedge shared by As, A4, then the
previous sentence implies

And so W cannot be part of M. This is a contradiction. O
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Remark 8.4. If one could show either curve =y, or 75 is unknotted (as in Figure , then
one could construct a Lipschitz deformation of M onto two faces of the solid tetrahedron
(plus one edge). This would prove Lemma [8.3|for general (M, e, §)-sets (at least for  suffi-
ciently small) without any extra orientation or codimension requirements. Unfortunately,
we have very little idea whether Lemma holds in general codimension.

Proposition 8.5. There is an €(m,d) so that the following holds. Let M"=*™ C R3™ pe
an integral varifold with associated cycle structure in By, and suppose M € N_.(T? x R™).
Then M satisfies the 0-no-holes condition in B ;.

Proof. By Lemma M N By \ B5s({0} x R™) is a Ch*-perturbation of T x R™, for
g(m, 0) sufficiently small. So

singM N Bsy C Bs({0} x R™), (8.4)

and there is no loss in assuming M N By \ B5({0} x R™) coincides with T x R™.
We claim that, for every y € B’l%, there is some singular point

X, € singM N (R? x {y}) N By o (8.5)

which is not a (multiplicity-1) Y x R, We prove this by contradiction.

First, observe that by Simon’s regularity Theorem [4.6], the set of singular points which
are not a multiplicity-1 'Y x R*™ is relatively closed in sing M, and hence closed. There-
fore, if the claim failed, it would fail for y in some open set U. Using Allard’s and
Simon’s regularity we obtain that M N (R? x U) consists of embedded, multiplicity-one
C' n-surfaces, meeting at 120° along embedded C' (n — 1)-surfaces.

Therefore by Sard’s theorem, for a.e. y € U, the M N (R x {y}) consists of embedded
C! surfaces meeting at 120° along embedded C* curves, which coincides with T? in an
annulus. However, by slicing we also have that for a.e. y € U, H*LM N (R? x {y}) has an
associated cycle structure in By/4(0,y), contradicting Lemma This proves the claim.

The Proposition is completed by combining and the above claim with Lemma
18.2) 0

8.2. Integrability. We establish integrability of those polyhedral cones which arise from
an equiangular geodesic net in S?. As discussed in Remark , it seems possible to us that
in higher-codimension there exist non-integrable polyhedral cones (for either definition of
integrability). Indeed, even in the codimension-1 case we are unable to give a general
abstract proof, but instead we make use of the classification of equiangular geodesics nets
in S? due to [17], [14] and proceed on a case-by-case basis.

Theorem 8.6. Suppose C? C R?* C R?*** is a polyhedral cone. Then C is integrable in
R2+k - In particular the tetrahedron T? C R*** is integrable.

Proof. Fix a polyhedral cone C? C R?® C R*"™, composed of wedges UL, W (i). Write
[' = C NS for the corresponding equiangular geodesic net, and £(i) = W (i) N S** for
the geodesic segments. After relabeling as necessary we can assume £(1), £(2), £(3) share
a common vertex.

Let v : C — C* be a linear, compatible Jacobi field. We wish to show that v = 7cL 0 A
for some skew-symmetric matrix A : R>** — R***_ From Proposition we know this
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holds locally, in the sense that there is a skew-symmetric Ag, so that
v(i) =mgLo Ay i=1,2,3. (8.6)

Therefore, by considering the field v — w1 0 Ag, we can and shall reduce to the case when
v(l) =v(2) =v(3) =0.

In fact we shall prove that any linear, compatible Jacobi field v satsifying v(1) =
v(2) = v(3) = 0 must be identically zero. It is reasonable to expect this to be true, as
the v(7)s with their compatibility conditions effectively form a system of linear equations,
and one can easily verify that the total number of variables equals the total number of
conditions (equals 2kd). However an abstract counting argument seems insufficient to
establish v = 0, as the linear independence of this system depends strongly on both the
global topology and geometry of the underlying net. Thankfully, the possible nets I" are
very well understood, and we can prove our assertion on a case-by-case basis.

Let us first assume k = 1. For each i, fix a unit speed paramterization of £(i), and write
0(3) for the induced unit tangent vector. We take £(i) A Z to be the choice of unit normal
to W (i) (and hence an orientation on W (i)1), where # is the unit position vector.

Define scalar functions f(7) : £(i) = [0, length(¢(7))] — R by setting

F(0)(6) = v(i)(6) - (0(0) A 2). (8.7)

Then each f(7) completely determines v(i), and takes the form
f(@)(0) = a(i)sin(f) 4+ b(i) cos(F), 6 € £(i) = [0,length(£(7))], (8.8)

for real constants a(i), b(7).
We shall prove that every f(i) must be identically 0. Recall that by hypothesis we have

f)=f2)=r3)=0, (8.9)
while using Lemma [10.1], the C°- and C'-compatibility conditions on v imply that

3

> (i) - £G) fi)(p) =0, and  f'(i2)(p) = [(i2)(p) = f'(is)(p), (8.10)

J=1

whenever ((iy), {(is), £(i3) share a common vertex p. Here n(7) is the outer conormal of
£(i), and f'(i) = 9y, (i) is the derivative in the direction (7).

From the work of [17], [14], and since C C R? cannot have additional symmetries, then
up to rotation I' can be only one of 8 possible nets. We prove integrability case-by-case by
establishing that the corresponding system of f(i)s satisfying , must vanish.
In each case we give a topological diagram indicating numbering, orientation, and length
(a single arrow indicates length 6;, a double arrow indicates 0y, etc.). We will additionally
use the following notation: if p is the vertex joining edges £(1),¢(2),4(3) (e.g.), then we
refer to p by the triple (1,2, 3).

The possible nets (presented in the same order as in [20]), with their corresponding
proofs of integrability, are as follows. Each edge length is given to 3 decimal places.
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F1GURE 2. Regular tetrahedron

(1) Regular tetrahedron, having 6 edges, each of length 6; = 109.471°.
We can apply the C' condition at each end of ¢(4) to obtain f(4)(0) =
f(4)(6,) = 0. We deduce f(4) =0, and by symmetry we have f(i) = 0 for all i.
(2) Regular cube, having 12 edges of length 6; = 70.529°.
Applying the C° and C" conditions (8.10)), and using that all edges have the
same length, gives directly the relations

f(6) =—Acos(0), f(7)= Acos(d), [f(9)=Acos(@), f(10)=—Acos(d), (8.11)
f(5) = —Acos(6), f(4)= Acos(h), (8.12)
where A is the same constant. But then, applying (8.10)) at vertex (4, 10, 12) gives
the relation Acos(f;) = —Acos(6,), which can only hold if A = 0. By symmetry
we deduce that every f(i) = 0.
(3) Prism over regular pentagon, forming 15 edges: “with the pentagonal arcs
having length #; = 41.810° and the other arcs being of length 6, = 105.245°.”

By the same reasoning as in the cube, taking into account the different lengths
01, 05, we have

f(6) = Acos(0), f(5)=—Acos(0), [f(14)= Acos(d), f(11)=—Acos(f), (8.13)

for some constant A. We can therefore apply the C'! condition at each end of £(9),

to see that
f(9) = —Asin(6q) sin(f) — A(cos(61) + 1) cos(h). (8.14)
Apply both conditions at vertex 7,5, 4 to obtain
f(7) = Asin(0) sin(8) — A(cos(0) + smwz)zg’s((zl; ) cos(6). (8.15)
1

These, together with f(6), give three conditions on f(8), and we obtain the relation
A(4sin 0y cos 0y + 2sin 0y cos Oy — sinbhy) = 0. (8.16)
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./\

4/
N
—

F1GURE 3. Regular cube

The term in the brackets is —3.5, to one decimal place. We deduce that A = 0,
and it’s straightforward to verify that f(i) = 0 for every i.

(4) Prism over a regular triangle, forming 9 edges: “the triangular arcs being of
length 109.471° and the other arcs of length 38.942°.”

By same reasoning as the tetrahedron, we can apply the C! condition on each
side of £(7) to see f(7) = 0. Apply both C°- and C'-condition at vertex (2,6,7) to
obtain f(6)(0) = f(6)'(0) = 0, and hence f(6) = 0. Similarly, we have f(8) = 0.
We then deduce directly that f(5) = f(9) = f(4) = 0.

(5) Regular dodecahedron, having 30 edges, each of length 0; = 41.810°.

We have immediately the equations

f(5) =Acos, f(4)=—Acosf, f(10)= Bcosf, f(9)=—Bcosb, (8.17)
f(8) =Gcosh, f(7)=—Gcosb, (8.18)
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FIGURE 4. Prism over regular pentagon

FIGURE 5. Prism over regular triangle
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FiGURE 6. Regular dodecahdron

for some constants A, B, G. By symmetry it will suffice to show that A = B =
G = 0. We obtain, using the above and the compatibility conditions,

f(11) = —Bsin#; sinf — (Bcos bty + A) cos 0, (8.19)
f(17) = Bsin#; sinf + (G + B cos ;) cos 0, (8.20)
f(6) = —Asin#, sinf — (Acosf; + G) cos b, (8.21)
f(13) = —Asinf; sinf + (G + 2A cos by ) cos b, (8.22)
f(12) = Asiné, sinf — (2Acos 0y + B) cos 0, (8.23)
f(24) = Bsin#f;sinf — (2B cos by + G) cos 0, (8.24)
f(19) = —Bsin#; sinf + (A + 2B cos 0) cos 0, (8.25)
f(25) = —(G + 3Acos6,)sin b sin — (G cos by + 3Acos 0 + 3Acos b, + B) cos,

(8.26)
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and
f(21) = (3Asin 6, cos 6, + Bsinf)sinf + (—G — 2B cosf; — 6A cos® 0, — 3A cos 0 + A) cos 0.
(8.27)
And

f(20) = [A(Q cos? 01 + 3 cos )y sinf, — sin ;) + 3B sin 0; cos 0, + G sin 01} sinf  (8.28)

[A(Q cos® 0y + 3 cos? 0 — cosfy + 1) + B(3cos? 0 + 3cos ;) + G cos 91} cos 6.
(8.29)

From 19 and 24, we obtain
f(18) = —(3Bsinf cos ) + Asinf;)sinf — (Acosf + 3B cos* ) + 3B cos ) + G) cos b.

(8.30)
But we have additionally 20, which implies the relation:
2G = A(—9cos’; — 6cosfy + 1) + B(—9cos®f; — 6cosby + 1). (8.31)
We work upwards. We have
f(14) = G'sin by sinf — (2G cos b, + A) cos b, (8.32)
f(16) = —Gsinby sin @ + (B + 2G cos 6 ) cos b, (8.33)
f(15) = (3G cos A, sin 0 + Asinf,)sinf + (3G cos? 0, + 3G cos 0y + Acosb; + B) cosd
(8.34)
And
f(26) = —(3Asin 6, cos b, + Gsinf;)sinf + (2G cos b, + B + 6A cos* ) + 3Acos, — A) cosf
(8.35)

We calculate 27. Using 14, 15, we obtain

f(27) = (3G sin 0; cos O + Asinf)sind + (G — 6G cos® 6 — 3G cos O — 2A cos )y — B) cos 6.
(8.36)

Combining this with 26 gives the relation:
2B = A(—9cos?#; — 6cos; + 1) + G(—9cos®; — 6cos by + 1). (8.37)
Let us proceed to the left. We have

f(22) = —(3G'sin; cos f; + Bsin6,)sinf + (6G cos® §; + 3G cos ) — G + A+ 2B cos b)) cos .
(8.38)

Using 22 and 24 we obtain

f(23) = [G(—9 cos? 0y sin ), — 3 cos B sinf; +sin ;) — Asinf; — 3B sin ) cos 91] sin 6
(8.39)

+ [G(—9 cos® 0 — 3cos? 0, +cosf — 1) — Acosf, — B(3cos? 0 + 3 cos 91)} cos 6.
(8.40)

But now using additionally 18, we obtain the relation

2A = G(—=9cos’; — 6cosf + 1) + B(—9cos®f; — 6cos by + 1). (8.41)
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FI1GURE 7. Two regular quadrilaterals and eight equal pentagons

We thus have the three equations
A=a(B+G), B=a(A+G), G=aA+ B), (8.42)

where a@ = 1.5 (to one decimal place). One easily verifies the only solution to
(8.42) is when A = B = G = 0, and by symmetry we deduce that f(i) = 0 for
every t.

(6) Two regular quadrilaterals and eight equal pentagons, forming 24 edges:
“each quadrilateral surrounded by four pentagons, and each pentagons surrounded
by four pentagons and one quadrilateral, the quadrilateral arcs being of length 6y =
70.529°, the arcs adjacent to no quadrilateral vertex being of length 63 = 52.448°,
and the remaining edges being of length 6; = 21.428°.”

We have directly that

f(4)=—Acosf, f(5)= Acosb, (8.43)
f(6) = —Bcosf, f(7)=Bcosf, f(8)=Bcosf, f(9)=—Bcosb, (8.44)
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for some constants A, B. Using the compatability conditions at various vertices,

we obtain
inf
f(10) = Asinfzsinf + (Acosfs — BZE 0;) cos (8.45)
in 0
f(11) = —Asinf3sinf — (Acosfs + BzE 6;) cos 0 (8.46)
f(12) = Asinf3sinf + (—2A cos O3 + B:E 9;) cos 6 (8.47)
f(13) = —Asinfssin 0 + (2A cos 03 + lez 81) cos 6 (8.48)
1N 3
f(18) = Bsin#;sinf + (—Bcos#; — Bsin b, C?S bs + A) cosf (8.49)
S1n Ug
f(19) = —Bsinfysin 0 + 2B cos 0 cos 0 (8.50)
0
f(17) = Bsin#; sinf — (B cos 0, + Bsin 6, C?S >+ A)cos (8.51)

S1n U3
And we have
f(22) = [-Bsinfy cos 0y — 2B cos O3 sin 4] sin 0 (8.52)

[B — cos 8 sin B, cos O3 — 2 sin 6, cos 05 cos O3 — 2sin 84 cos O3

— BcosO; + A] cos 6.
(8.53)

sin 93

Using 17 and 19, we obtain

f(21) = (2Bsin 6y cos 03 + B cos b sin 03 + Asin f3) sin 6 (8.54)
N [32 sin 0 cos? @5 + cos 6 sin O, + 2sin 61 cos O,

+ B cos #, cos 3 + A cos 93} cos 0

sin 63
(8.55)
But then we can use the C° condition with 22 to get the relation
0 = B[2sin 6, cosf5sin O3 + 2 cos 6y + 2 cos by cos Oy — sin 6 sin 6y (8.56)
0
o8 03 (—2sin® 0, + 2 cos 0 sin ; + 4sin 6, cos 92)] : (8.57)
S1n U3

Notice the terms involving A cancel!l One can readily calculate the term in the
brackets is = 3.3 (to one decimal place), and therefore we must have B = 0. We
deduce

f(6) = f(7) = f(8) = f(9) = f(19) = 0. (8.58)

We now calculate
f(14) = A(—sin 63 cos 0 — 2 cosf3sin ;) sin 6 (8.59)

+ A(sin 6y) ™ [~ cos 0; cos 0, sin 05 — 2sin 0 cos B, cos B3 — cos 0 sin B — 2 cos O cos 6] cos 6.
(8.60)
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And
f(20) = —Asinfssin 6 + 2A cos 03 cos 6. (8.61)

Since B = 0 we see f(20) has precisely the same form as f(13), and so by using
20 and 12 we see that f(16) correspondingly has the same expression as f(14).
Now we can additionally use the C° condition at vertex (14,12,16) to get the

condition
A[—2cos by sinfly — 4sin by cos b3 — 2 cos by cos by sin O3 — 4 sin 6 cos O, (8.62)
+ sin 6 sin By sin O3 — 2 cos 6 sin By cos O3] = 0. (8.63)

The term in the brackets is —3.8 (to one decimal), and we deduce A = 0 also. By
symmetry we deduce f(i) = 0 for all 7.

(7) Four equal quadrilaterals and four equal pentagons, forming 18 edges:
“each quadrilateral surrounded by three pentagons and one quadrilateral, and each
pentagon by three quadrilaterals and two pentagons, and having the arcs held in
common by two quadrilaterals (and the quadrilateral arcs opposite to them) being
of length #3 = 83.802° and the other quadrilateral arcs of length 6y = 58.257° and
all remaining edges of length 6, = 13.559°.”

Let us calculate. We have directly

in6 in6
f(4) = Acosf, f(10)=—Acosf, f(9)= _AZ;Eez cosf, f(8)= A:Eei cosf,

(8.64)

f(7) = Acosf, f(6)=—Acos#, (8.65)

for some constant A. We have
. . ., cosf sin ¢
f(5) = —Asiné; sinf — (Asin 6, ™ 05 = 9;) cos 6 (8.66)
f(14) = —Asinfssin§ + (A cos 3 + A s cos f3) cos 6 (8.67)
S11 U9
in6
f(15) = Asinfssinf — ACOS93+AS¥H % cos6y) cosf 8.68
S
1m U9
And
: : L1
f(16) = A(cos b, sin b3 + sin 6, cos b5 + sin b, C?)S 62810 93)(5111 0+ w cos 6).
sin 0, sin 03
(8.69)
We have
fan=A [cos 0, sin O3 + sin 6, cos 03 + sin 0y C?S 0251 93} sin 6 (8.70)
sin 6
+ A [sin 61 sin 03 — cos 0 cos O3 — cos b1 C.OS 6z 5in Oy (8.71)
sin 6,
1 i 0, sin @
- w)(cos 01 sin 03 + sin 6, cos O3 + sin 6y Sk 2| cos®. (8.72)
sin 03 sin 6,
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FI1GURE 8. Four equal quadrilaterals and four equal pentagons

Now using 4, 5, we obtain

sin 6 . cos 05
+ sin 6,

1) = _As .
f(11) Asin 6 sinf + A<sin03 =y

+ cosfq) cosb.

67

(8.73)
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F1GURE 9. Three regular quadrilaterals and six equal pentagons

But we additionally have a condition with 17, giving us the relation:

in 6, sin 6 in 6, sin 6
A [2sin 6y cos 0y + 2sin 0 cos O, cos 05 + 2s1n ‘1 i + S ,1 Snbs 3sin 04 sin 6 sin 65
sin 03 sin 6,
(8.74)

sin 0, sin 0, cos 63

+ 2 cos 0 sin Oy + 2 cos 01 cos B, sin 05 + 2 cos 6, sin O, cos 93} =0.

(8.75)

sin 03

Therefore we must have A = 0. It follows directly that f(i) = 0.

(8) Three regular quadrilaterals and six equal pentagons, forming 21 edges:
“each quadrilateral surrounded by four pentagons and each pentagon by two
quadrilaterals and three pentagons, with the quadrilateral edge being of length
0y = 70.529°, the pentagonal edge adjacent to just one quadrilateral vertex being
of length 65 = 35.264°, and the remaining three edges of length 6, = 10.529°.”

We have directly that

f(7)=Acosf, f(8)=—Acost, f(9)=—Acosh, f(10)= Acosb (8.76)
f(5) = Bcos#, f(4) = —Bcosb, (8.77)



THE SINGULAR SET OF MINIMAL SURFACES NEAR POLYHEDRAL CONES 69

for some constants A, B. We obtain

f(6) = —Asinfssinf + (—Acosf; + B> 92) cos 6 (8.78)
Sin U3
in 6
f(11) = —Asinf3sinf — (Acosbs + B>t 2 cos b (8.79)
sin 03
0
f(12) = Bsinfysinf — (B sin 922?5 > + Beosty + A) cosf (8.80)
3
f(13) = —Bsinfysin 6 + (B sin Oy &8 b + Bcosfy — A) cos . (8.81)

sin 63
But now we can use the C* condition at vertex 12,19, 13 to get the relation
B [2 cos by sin 05 + sin 65 cos 0] = 0, (8.82)

which necessitates that B = 0.
We proceed by calculating

f(16) = Asinfysin @ — 2A cos 65 cos 0 (8.83)
f(14) = f(18) = —Asin#3sinf + 2A cos O3 cos § (8.84)
f(15) = f(17) = (Acos 0y sin Oy + 2A sin 6 cos 0) sin 6 (8.85)

cos 0 cos @, sin Oy + 2 sin @, cos? Oy + 3 sin O cos O

+A

cos 0. (8.86)

sin 92
But now we can apply the C° condition at vertex 16, 15,17 to get
A [6 cos s sin 03 + 5 sin 6 cos? Oy — sin 91} =0, (8.87)

which implies A = 0. It then follows directly that f(i) = 0 for all 7.

This completes the proof of integrability when k& = 1. Suppose now k£ > 2. We can
handle the projection mrsy (o} © v in precisely the same manner as above. On the other
hand, given any coordinate vector e € {0} x R¥~! let us define

F(@)(8) = e - v()(0), (8.83)
and observe f(i) takes the same form (8.8). By Lemma the compatibility conditions

f(i)(p) = fliz)(p) = f(is)(p), and Z(n(ij‘) (i) f'(i)(p) = 0, (8.89)

whenever ((iy), {(i), £(i3) share a common vertex p. Since f” + f = 0, we see that the
functions f’(i) satisfy conditions , (8.10)), and we can apply the proof above to deduce

every f'(i) = 0. This implies f = 0, and hence 7o} gs-1 © v is zero also. OJ

9. COROLLARIES

Given Theorem and some background results on (M, e, §)-minimizing sets, the
proofs of our Corollaries are essentially standard.
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Proof of Corollary[3.3 The argument is standard, but we include it for completeness.
Take 6;(C) as in Theorem 3.1} and &;(C, 8 = 1/100, 7 = 1/100) as in Lemma [4.1] Ensure
§ <.

If M is such that M € N3(C), and 6,,(0) > 6c(0), then Fj (M,C,1) < %, and M
satisfies the d-no-holes condition in Bs;y w.r.t. C, for all § > 0. We deduce by Theorem
there is a sequence of rotations ¢; so that

Es,(M,q(C),0") < 27'Fs, (M, C, 1). (9.1)

It follows that |¢; — gis1| < ¢(C)27°E(M, C, 1), and in particular there is a rotation ¢
so that

[ e < dCEOLCY) 92)
MNB,

for all p < 1, and for some p = p(C). Ensuring ¢(C)d < &1, we can apply Lemma [1.1] at
any scale B,, with u < « in place of a, to obtain a uniform C*** decomposition of M over
C. That is, in the sense of Definition , we have M N By, = graphg(u, f,2), where u
and f admit the pointwise bounds

rHu(d)] + | Du(i)| + r*[Du(i)] e < c(C)r*E(M, C, 1)1/2 (9.3)
rF@)] +1DfE)] 4 r*[Df(D)]e < o(C)r*E(M, C, 1), (9.4)
O

Proof of Theorem[3.5 The argument is same as the proof given in Section [4] for Theorem
[4.6] except using Proposition [8.5] in place of .1} and Simon’s e-regularity in addition to
Allard’s. 0

To prove Theorems [3.10] and we need a few background results. First, we prove
assertion 3) of Theorem , as promised.

Lemma 9.1. The underlying varifold M™ = H™" (0*E(1) U ... UI*E(N)) associated to a
minimizing N -cluster (where 0* denotes the reduced boundary) has bounded mean curva-
ture, and no boundary. As a corollary, M = H™ (0E(1)U...UE(N)), where O denotes
the topological boundary.

Proof. For convenience write V. = {a € RV¥™ : 3 a, = 0}. From [5, Theorem
VI1.2.3]/[18, Theorem IV.1.14], we have the following: for any N-cluster &, there are
constants 7, ¢, R (depending only on &), and a C' function

U BV R — R (9.5)

with W,_y = Id, which satisfies for any a € Bff“ NnV:

N
spt(Wa — Id) C Bg, |Wa(E(h)) N Br| =|E(h) N Br|+an, |[DVa—Id| <c) |ay|.
h=1
(9.6)

Of course we can also assume By contains all the bounded chambers {€(h)}Y_,.



THE SINGULAR SET OF MINIMAL SURFACES NEAR POLYHEDRAL CONES 71

Now suppose £ is a minimizing N-cluster, take ¥ as above, and consider an arbitrary
O vector field X supported in Br generating flow ¢,. Define the function F' : R x (Bf]V +n
V) — RY by setting

F'"(t,a) = |¢(Wa(E(R)))] = [E(R)]. (9.7)
Choosing coordinates on V' via the map
N
beRY > (=3 bibi,....by) €RYTIOY, (9.8)
i=1
we obtain that
F(0,0) =0, 8, F*|00) =0k Vkh=1,... N. (9.9)

Therefore, by the implicit function theorem we can find a C* curve a : (—¢,¢) — Bflv v,
so that a(0) = 0 and F'(t,a(t)) = 0. In other words, the variation ¢, o W, preserves the
volume vector of £.

If Y is the initial velocity vector field for W), then by we have | DY| < ¢ 2 |aj, (0)].
On the other hand, since D, F(t,a(t)) = 0, we have for each h:

0:/ (X+Y)-u:/ X v+ d)(0). (9.10)
0*E(h) 0*&E(h)

Therefore, since £ is minimizing for volume-vector-preserving deformations,

/deM(X) - —/deM(Y) gc/M|X|. (9.11)

This shows that §M forms a bounded linear operator on L'(jus), which implies M has
no boundary and bounded H),. 0

Next, we give a general “sheeting” theorem for (M, ¢, §)-minimizing varifolds, which
effectively says that this class forms a multiplicity-one class. This is well-known, and
essentially the same as [26, Corollary I1.2].

Lemma 9.2. Let M = H"LsptM; be a sequence of (multiplicity-one) integral varifolds
in U C R without boundary, such that: the M; have uniformly bounded mean curvature
and mass, and each sptM; is (M, e, §)-minimizing in U (for uniform e, §).

If M; — M as varifolds in U, then M = H" sptM, and sptM is (M, e, §)-minimizing
i U. In particular, if C is any tangent cone for M, then C has multiplicity-one and
sptC is (M, 0, 00)-minimizing.

Proof. Since M is integral, at py-a.e. = we have an approximate tangent plane P. Fix
such an z, and suppose towards a contradiction that 6,,(x) = ¢ > 1. By monotonicity,
for sufficiently small » and ¢ >> 1, both B,(x) NsptM and B,.(z) NsptM; lie in an nr-
neighborhood of z+ P. Therefore, if we construct a C* deformation which pushes B, »(z)
into B,/2(x) N (x + P), we save > ¢(n)(q — 1)r™ amount of area in M;. This contradicts
(M, ¢, §)-minimality.

That M is (M, ¢, §)-minimizing follows directly from the facts: a) any piecewise C!
mapping ¢ induces a continuous map ¢; on the space of integral varifolds; and b) any
Lipschitz deformation on M can be well-approximated by piecewise-C* deformations. [
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The last crucial fact we need is Taylor’s classification of 2-dimensional, (M, 0, c0)-
minimizing cones in R®. The classification for 1-d cones is trivial. The following Lemma
is a straightforward consequence of [26], Proposition I1.3].

Lemma 9.3. Let C" be an (M, 0, co)-minimizing cone in R" k. If C = CL x R*™!, then
up to rotation Co =Y. If k=1 and C = C3 x R"2, then (up to rotation) Cy is either
R2,Y xR, or T.

Lemma highlights the importance of the cones Y x R and T: up to factors of R™,
they are the only singular cones arising in the top three strata of (M, e, §)-minimizing
sets. Moreoever, they always occur with multiplicity one. From these facts Theorem
follows in a straightforward way from our decay Theorem and no-holes Proposition

B.Al

Proof of Theorem[3.10/Theorem [1.5 Recall the definitions of k-strata and (k, £)-strata as
given in Section . Let us define Mj, = S*(M) to be the k-th stratum, for k =n—3,...,n.
Conclusions 1), 2), 3) follow immediately from Lemmas [9.2] [9.3] and the e-regularity
Theorems of Allard (Theorem [4.5)), Simon (Theorem [4.6), and Theorem [3.5]

More generally, the aforementioned Lemmas and Theorems show each stratum S™ (M)
(for m =n,n—1,n—2,n— 3) is closed in the following sense: suppose M; is a family of
varifolds satisfying the hypotheses of Theorem [3.10] with uniform bounds on mass, mean
curvature, and uniform e,9§. If M; — M, and x; € S™(M;) converge to x € U, then
x € S™(M).

We claim that, for every compact K C U, there is an € > 0 so that S"3 N K C S73.
This is an easy consequence of the closedness of the strata. Otherwise, if the claim was
false, we would have sequences r; — z € KNS" 3 ¢; — 0, and r; € (0, min{d(z;,0U), 1}),
for which M is (n — 2,¢;)-symmetric in B, (z;). Let M; = r;*(M — ;). Then the M,
have uniformly bounded mass and first-variation in By, each M; is (n — 2, ¢;)-symmetric
in Bl, while 0 € Sn73(MZ>

Passing to a subsequence, we have varifold convergence M; — C, where C is a (n — 2)-
symmetric cone. But by the closedness property, 0 € S"~3(C). This is a contradiction.
Conclusion 4) is now a consequence of Naber-Valtorta [20]. O

10. APPENDIX

10.1. Linear algebra. We require some elementary linear algebra. The following Lemma
relates vectorial and scalar compatability conditions. Notice how the scalar conditions in
different cases are dual to each other.

Lemma 10.1. Let wy,wq, w3 be unit vectors, with wy + we + w3 = 0, and take vectors
V1, Vs, U3 S0 that v; L w; for each i. Write P? for the 2-plane spanning w;.

A) We can write np(v;) = ;e ?w;. Then

p(v;) = Ty~ (u) for some fized u <= Zai =0, (10.1)

and

Zﬂp(’l}i) =0 <<= a1 = a9 = Q3. (102)

)
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B) Suppose wp.(v;) = ayv for some fived v € PL. Then
TpL(v;) = Ty ~t(u) for some fized u <= o = g = ag, (10.3)

and

prl(ui) =0 <— Za = 0. (10.4)

Here < w; >* denotes the orthogonal complement to the line spanned by w;.

Proof. Since part B) is obvious, let us concentrate on part A). For ease of notation we can
swap the role of w; and e™/%w;. Let us identify P with R?, and the w; with 1,e2™/3, e4mi/3,

The “only if” direction of the first statement is obvious. Conversely, given «; with
> oy, define

1 .
u=ow; + —(ag — ag)e”/le. (10.5)

V3

Trivially 7, (u) = a;, and we calculate

1 .
Ty (1) = (W - wy) + %(ag — ag)(ws - (e”/le)) (10.6)
oy 1( ) (10.7)
= 9 (05} B (0] Q3 .
= (9. (108)
By a symmetric calculation we have m,,,(u) = a3 also.
We prove the second assertion of A). We have e - wy = —eg - w3 = \/§/2, and eq - wy =
ey - w3 = —1/2. Therefore,
1
Zaiwi:O — V3/2(ay —a3) =0 and o —5(042—1-043) =0 (10.9)
< a1 = ag = Q3. O

Lemma 10.2. Suppose wq,ws,ws are unit vectors, with w; + ws + w3z = 0. Let vy, vq, V3
be vectors, such that v; L w; for each i.
Then the following are equivalent:
A) V1 + V2 + U3 :0,'
B) There is a skew-symmetric A, which is zero on the orthogonal complement of
span(vy, vg, U3, Wy, We, w3), such that Av; = w;;
C) For any vector u, we have Y ;v; - oy -1 (u) = 0. Here < w; > is the orthogonal
complement to the line spanned by w;.

Proof. We show A) implies B). The converse B) = A) is trivial. If P? is the plane
containing the points 0,w;,ws, then clearly ws must lie in P also. Therefore, after a
suitable rotation, we can identify P? with R?, and the w; with 1,e?™/3 e*™/3 ¢ R2,

Let v] and v;- be the orthogonal projections of v; to P and P+ respectively. Define the
matrix
L

A=Y (w@ A <m + %)) (e, €1), (10.10)

3
(=1
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where e; is the standard basis of R"**. Of course in Euclidean space we can identify

vectors and covectors via the standard inner product. Clearly A;; is skew-symmetric.
By symmetry it will suffice to show Aw; = v;. First, since >, 0! = 0 and v} - w; = 0,

then one can easily check that

ol = ae™w; i=1,2,3, (10.11)

(2

for some fixed @ € R, i.e. each v! is a 90° rotation of aw;. We therefore have
(3/24V3/2)(Aw))T = 0T + (wy - w1)vE + (W - wi)vl — (Vg - wy)wy — (Vg - wi)vs (10.12)

1 ) )
= Uip — 5(2}5 + vg) - a((e”/QwQ) w1 )wg — a((e”/zwg) - Wy )ws

(10.13)
3
= ol + %(WQ — ws) (10.14)
3 3
ol 4 £oaa“f%l (10.15)
2 2
= (3/2+V3/2)T. (10.16)
Similarly, we have
3 1 3
5(1‘1&’1)L = vi + (wp - wi)vy + (w3 wi)vy = vf — 5(”5 +oy) = §U1L- (10.17)
This shows Aw; = v;.
We show A) <= C). With P as above, we trivially have that
Tewst(u) =u Yue Pt (10.18)

Therefore >, v;" = 0 if and only if >, v; - 7,5 (u) = 0 for all u € P
On the other hand, given u € P, and our assumption v; | w;, then we can write

7T<wi>J_(U) = Bieiﬂ—/2wi7 U:L'T - aieiﬂ/2wi7 (1019)

where ; € R satisfy >, 5; = 0, and «; € R. Then, using Lemma [10.1} we have

Z"UZT =0 <<= g =m=a3 (10.20)

Z = ) ;=0 Vg suchthaty B =0 (10.21)

= Zv Tt (U) =0 VYue JZDT. (10.22)

This completes the proof. Z 0

10.2. Two variation inequalities. We sketch the proof of the estimates (5.36) and
(5.37). Both are minor modifications of the derivation given in [25].

Lemma 10.3. Let C = C§ x R™, and take M € N.(C) with 0,;(0) > 0c(0). Let
¢ : R — R be any smooth functzon satisfying ¢’ < 0, ¢ =1 on [0,1/10], and ¢ =0 on
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2/10,00). Then we have

1 XLQ
granor [ s < [ W~ [ P+ CoollHullimmy, (102

and
e( | - [ ¢2<R>) < ( | 2elair— [ 2¢|¢’|r2/R) (10.24)

+ [ 2000107+ lC. o Hullmim (1025)
M

Proof. Write A = ||H||(p,). By the monotonicity formula (see e.g. [24]) we have

1 (0,) — () > | Sl
7 ~ Juns, B2

Vp < 1. (10.26)

By plugging (a C'' approximation to) the vector field (x,y)1 ok into the first variation
(2.1), and using the coarea formula, we obtain
n
—pn(B,) —cA < D, IVIRI? < Dppne(B,). (10.27)
p MnNB,

Therefore, taking ¢ > A small, by the monotonicity formula and our assumption 6,,(0) >
0c(0) we have

1 XJ_ 2
§np”1/ |R”+’2 < Do (B,) — e np"10c(0) + cA (10.28)
MnB,

< Dy(ue(By) — ne(By) + e(C) A+ (1—e™)  (10.29)

Now multiply by ¢?(p) and integrate in p € [0, 1] to obtain (10.23)).
We prove (10.24). Plugging the vector field (z,0)¢?(R) into the first variation, and

rearranging, gives
/ (41 < M {0} x R™ 52)¢? < / 201612/ R + 2(6)?| (2, 0)-2 + ¢(C, §)A.
w2 " (10.30)

On the other hand, using Fubini and integrating by parts in r, gives

0 / ¢* = / / o(V/r2 + [y[2)* er' 1 0c(0)drdy = / —2¢¢'r*/R.  (10.31)
e {oyxrm Jo C
Now subtract ((10.30)) from ((10.31)). O

10.3. Graphicality for C; smooth. We prove the analogue of decomposition Lemma

uwhen C{ is smooth, which allows us in certain circumstances to remove the multiplicity-

one hypothesis of [25]. The proof is essentially the same as for Lemma [4.1] but simpler.
In this section we always assume C" = C§ x R™, for Cy smooth. Recall the torus

Ulp,y,7) ={(&n) e RF" xR™ : (|¢] = p)? + In — y> <07}, (10.32)
and the “halved-torus”

Us(p,y,7) = Ulp,y,v) N {(&n) - 1€l > p} (10.33)
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We first demonstrate global graphical structure, but without good estimates.

Lemma 10.4. For any 5,7 > 0 there is an €1(C, 5,7) so that the following holds. Take
M € N_,(C). Then there is a domain Q C C, and smooth function u : Q@ — C*, so that

M N Bsyy \ B-({0} x R™) = grapho(u), r'u| + [Vu| < B. (10.34)

Proof. This is essentially a direct Corollary of Lemma[4.4] If the Lemma failed, we would
have a counter-example sequence M;. Passing to a subsequence, we have multiplicity-1
convergence M; — C, on compact subsets of B;. Therefore, by Allard convergence is

smooth in By \ ({0} x R™). O

Lemma 10.5. For any 5 > 0 there is an £9(C, 3) so that the following holds. Take
M € Nij1o(C). Take p < 1/2, and n € By},(0), and suppose

MNUg(p,y,1/16) = graphg(v), r u| + |Vu| < 1/10, (10.35)
and
,O_n_2 / d%} + p||HM||Loo(U(p7y71/4)) S £9. (1036)
MnU(p,y,1/4)
Then we have
MNU(p,y,1/8) = graphe(u), r~'u| + [Vu| < 8. (10.37)

Proof. By dilation invariance, we can suppose p = 1/2. Suppose the Lemma is false,
and consider a counterexample sequence M;, y;, €; — 0. Passing to a subsequence, the
Yi =y € Bg;zp and in U(p,y, 1/5) the M;’s converge to some stationary varifold supported
in C. The multiplicity in each disk is constant, but by the graphicality assumption we
converge with multplicity one inside U, (p,y, 1/16).

Therefore the convergence is with multiplicity 1, and therefore by Allard we satisfy the
conclusions of the Lemma when ¢ >> 1. U

Lemma 10.6 (Graphicality for smooth C§ x R™). Given any 5,7 > 0, there is an
e(C,B,7) so that: if M € N.(C), then there are open sets U C M, Q C C, with
U D MN By \ B({0} x R™), and a function u: Q — C*, so that

MNU = graphg(u), 77 |ul +[Vu| < 5, (10.38)

and
/r2\Vu|2 +/ r? < ¢(C,B)E(M,C,1). (10.39)
Q MnNB;,\U

Note that ¢ is independent of 7.

Proof. We can assume 5 < 1/10. Ensure € < ¢1(C, 8, 7) and ¢ < 5(C, 3), the constants

from Lemmas (10.4] So, from Lemma [10.4) M N (B2 \ B-({0} x R™)) = graphg(u)
with u :  C C — C* satisfying estimates ((10.34)).
Given y € B3, define

ry = inf{r’ : (10.35) holds for all ' < p < 3/4}. (10.40)
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By Lemma ry, < 7. Necessarily by Lemma [10.5| (10.36) must fail at p(n), and
therefore

T‘Z+2€2 < / d% + T;L+3||H||Loo(U(p7y71/4)). (10.41)
MU (ry,y,1/4)
In particular, by monotonicity we have

/ 2 < ¢(C, B) / 02+ o(C, B)r | H] 1. (10.42)
MnNBao,.,,)(0,1)

MNU(ry,y,1/4)
Let U be the region
U ={(,y) € M1 Bys: 3] > p(»)}, (10.43)

so that U C By \ B-({0} x R™), and M NU = graph(u).
Take a Vitali subcover { By, (0, ;) }i of { By, (y)}yEBg}4, and then by construction { Bio,, (0, v:) }:
covers fip-a.e. By \ U, and the U(p;, yi, 1/4) C By, (0,y;) are disjoint. We deduce that

2 < / (10.44)
/]\me3/4\[] Z MnB2OpZ Oyz
< Z / e+ cpy ™| H| e sy) (10.45)

MU (piyyi,1/4)

(Cﬂ) (M,C,1). (10.46)

Given (z,y) € Q with d((z,y),0Q) < |x|/2, then there are (2/,y’) € 0Q with |z| < 2|2/|.
We have (2',y') +u(z’,y'") € Biop, (0, y;) for some ¢, and since |u(z’,y")| < |2|/10, we have

|z| < 2]2'| < 20p;. (10.47)

We deduce that U; Bagy, (0,7;) covers ' = {(z,y) € Q: d((z,y),00) < |z|/2}.
Therefore, since |Vu| < 8 we have from (10.45)) that

/ P2|Vul? < o(C, B)E(M, C, 1). (10.48)
If (z,y) € 2\ ', then we can use Allard and smallness of 3 to give bounds

/ 7“2|Vu|2 S C/ |u|2 + C|$|n+3||HM||L°°(B|I|(z,y))~ (1049)
CNB,z)/4(z.y) CNB|g|/2(2,y)

Choose an appropriate Vitali subcover of { Bjy/4(z,y) : (z,y) € Q\Q'}, then the resulting
cover will have overlap bounded by ¢(n), and therefore we have

/ | Vul* < cE(M,C,1). (10.50)
O\

O
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