
ON ANISOTROPIC SOBOLEV SPACES

HOAI-MINH NGUYEN AND MARCO SQUASSINA

Abstract. We investigate two types of characterizations for anisotropic Sobolev and BV spaces.
In particular, we establish anisotropic versions of the Bourgain-Brezis-Mironescu formula, including
the magnetic case both for Sobolev and BV functions.

1. Introduction and results

1.1. Overview. Around 2001, J. Bourgain, H. Brezis and P. Mironescu, investigated (cf. [2, 3, 5])
the asymptotic behaviour of a class on nonlocal functionals on a domain Ω ⊂ RN , including those
related to the norms of the fractional Sobolev spaces W s,p(RN ) as s ↗ 1. In the case Ω = RN ,
their later result can be formulated as follows: if p > 1 and u ∈W 1,p(RN ), then

(1.1) lim
s↗1

(1− s)
∫∫

R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy = Kp,N

∫
RN

|∇u|p dx,

where

(1.2) Kp,N =
1

p

∫
SN−1

|ω · x|pdσ,

being ω ∈ SN−1 any fixed vector. Here and in what follows, for a vector x ∈ RN , |x| denotes its
Euclidean norm.

Given a convex, symmetric subset K ⊂ RN containing the origin, let ‖ · ‖K be the norm in RN
which admits as unit ball the set K, i.e.,

(1.3) ‖x‖K := inf
{
λ > 0 : x/λ ∈ K

}
.

It is rather natural to wonder what happens to formula (1.1) by replacing in the singular kernel
|x−y| with its anisotropic version ‖x−y‖K . In 2014, M. Ludwig [18,19] proved that, for a compactly
supported function u ∈W 1,p(RN ), there holds

(1.4) lim
s↗1

(1− s)
∫∫

R2N

|u(x)− u(y)|p

‖x− y‖N+ps
K

dx dy =

∫
RN

‖∇u‖pZ∗pK dx,

Here ‖ · ‖Z∗pK is the norm associated with the convex set Z∗pK which is the polar Lp moment

body of K (see (1.6) and (1.7)); such quantitities were involved in recent important applications
within convex geometry and probability theory, see e.g. [14,15,17] and the references therein. Thus,
changing the norm in the nonlocal functional produces anisotropic effects in the singular limit. The
norm

v 7→ ‖v‖Z∗pK ,
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can be explicitly written and, in the particular case ‖ · ‖K = | · | (Euclidean case), then K = B1, the
unit ball of RN , and the results are consistent with classical formulas, since ‖ · ‖Z∗pB = p

√
Kp,N | · |.

M. Ludwig’s proof of formula (1.4) relies on a reduction argument involving the one dimensional
version of the Bourgain-Brezis-Mironescu formula in the Euclidean setting jointly with the Blaschke-
Petkantschin geometric integration formula (cf. [27, Theorem 7.2.7]), namely∫

RN

∫
RN

f(x, y)dxdy =

∫
Aff(N,1)

∫
L

∫
L
f |L×L(x, y)|x− y|N−1dH 1(x)dH 1(y)dL,

where H 1 is the one dimensional Hausdorff measure on RN , Aff(N, 1) is the affine Grassmannian
of lines in RN and dL denotes the integration with respect to a Haar measure on Aff(N, 1).

Around 2006, motivated by an estimate for the topological degree raising in the framework
of Ginzburg-Landau equations [6], a new alternative characterization of the Sobolev spaces was
introduced (cf. [4, 20,21]). As a result, for every u ∈W 1,p(RN ) with p > 1, there holds

(1.5) lim
δ→0

∫∫
{|u(y)−u(x)|>δ}

δp

|x− y|N+p
dxdy = Kp,N

∫
RN

|∇u|pdx,

where Kp,N is the constant appearing in (1.2). It is thus natural to wonder if, replacing |x− y| in
the singular kernel with the corresponding anisotropic version ‖x− y‖K , produces in the limit the
same result as in formula (1.4).

The previous two characterizations were also considered for p = 1. BV functions are involved
in this case, see [2, 4, 12, 20]. Other properties related to these characterizations can be found
in [8, 9, 11, 22–24, 26]. Both the characterizations (for the Euclidean norm) were recently extended
to the case of magnetic Sobolev and BV spaces [24, 25, 28]. More general nonlocal functionals have
been investigated in [7–11].

1.2. Anisotropic spaces. In this section, we introduce anisotropic magnetic Sobolev and BV
spaces. For this end, complex numbers and notations are involved. Let p ≥ 1 and consider the
complex space (CN , | · |p) endowed with

|z|p := (|(<z1, . . . ,<zN )|p + |(=z1, . . . ,=zN )|p)1/p ,

where <a and =a denote the real and imaginary parts of a ∈ C. Recall that |x| is the Euclidean
norm of x ∈ RN . Notice that |z|p = |z| for z ∈ RN . Let ‖ · ‖K be the norm as in (1.3). We set

(1.6) ‖v‖Z∗pK :=

(
N + p

p

∫
K
|v · x|ppdx

)1/p

, for v ∈ CN .

The set Z∗pK ⊂ CN which is defined as

(1.7) Z∗pK :=
{
v ∈ CN : ‖v‖Z∗pK ≤ 1

}
is called the (complex) polar Lp-moment body of K. Denote Lp(RN ,C) the Lebesgue space of
functions u : RN → C such that

‖u‖Lp(RN ) :=

(∫
RN

|u|ppdx
)1/p

<∞.

For a locally bounded function A : RN → RN (magnetic potential), set

[u]
W 1,p

A,K(RN )
:=

(∫
RN

‖∇u− iA(x)u‖pZ∗pKdx
)1/p

.
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Let W 1,p
A,K(RN ) be the space of u ∈ Lp(RN ,C) such that [u]

W 1,p
A,K(RN )

<∞ with the norm

‖u‖
W 1,p

A,K(RN )
:=

(
‖u‖p

Lp(RN )
+ [u]p

W 1,p
A,K(RN )

)1/p

.

Denote ‖ · ‖Z∗1K∗ the dual norm of the norm ‖ · ‖Z∗1K on RN , namely for v ∈ RN

‖v‖Z∗1K∗ := sup
{
〈v, w〉RN : w ∈ RN , ‖w‖Z∗1K ≤ 1

}
, with 〈v, w〉RN =

N∑
j=1

vjwj , ∀v, w ∈ RN .

For a complex function u ∈ L1
loc(RN ), as in [25], we define

|Du|A,K := C1,A,K,u + C2,A,K,u,

where

C1,A,K,u := sup

{∫
RN

<udivϕ−A · ϕ=u dx, ϕ ∈ C1
c (RN ,RN ) with ‖ϕ(x)‖Z∗1K∗ ≤ 1 in RN

}
,

C2,A,K,u := sup

{∫
RN

=udivϕ+A · ϕRu dx, ϕ ∈ C1
c (RN ,RN ) with ‖ϕ(x)‖Z∗1K∗ ≤ 1 in RN

}
.

We say that u ∈ BVA,K(RN ) if u ∈ L1(RN ) and |Du|A,K <∞ and in this case we formally set

(1.8) |Du|A,K =

∫
RN

‖∇u− iA(x)u‖Z∗1K dx.

The space BVA,K(RN ) is a Banach space [25] equipped the norm

‖u‖A,K = ‖u‖L1(RN ) + |Du|A,K , u ∈ BVA,K(RN ).

1.3. Main results. The goal of this paper is to extend the two characterizations mentioned above
to anisotropic magnetic Sobolev and BV spaces. Our approach is in the spirit of the works on the
Euclidean spaces. In particular, we make no use of the Blaschke-Petkantschin geometric integration
formula as in the work of M. Ludwig.

Let A : RN → RN be measurable and locally bounded. Set

Ψu(x, y) := ei(x−y)·A(x+y
2 )u(y), x, y ∈ RN .

Motivated by the study of the interaction of particles in the presence of a magnetic field, see
e.g., [1, 16] and references therein, Ichinose [16] considered the non-local functional

Hs
A(RN ) 3 u 7→

∫∫
R2N

|u(x)− ei(x−y)·A(x+y
2 )u(y)|2

|x− y|N+2s
dx dy,

for s ∈ (0, 1), and established that its gradient is the fractional Laplacian associated with the
magnetic field A via a probabilistic argument. As in the spirit of the previous results, the quantity
Ψu has been recently involved in the characterization of magnetic Sobolev and BV functions. In
this paper, we establish the following anisotropic magnetic version of (1.5).

Theorem 1.1. Let p > 1 and let A : RN → RN be Lipschitz. Then, for every u ∈W 1,p
A,K(RN ),

lim
δ↘0

∫
RN

∫
RN

δp

‖x− y‖N+p
K

1{|Ψu(x,y)−Ψu(x,x)|p>δ} dxdy =

∫
RN

‖∇u− iA(x)u‖pZ∗pKdx,
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If p = 1, one can show (see Remark 2.1) that, for u ∈W 1,1
A,K(RN ),

lim
δ↘0

∫
RN

∫
RN

δ

‖x− y‖N+1
K

1{|Ψu(x,y)−Ψu(x,x)|p>δ} dxdy ≥
∫
RN

‖∇u− iA(x)u‖Z∗1Kdx.

Nevertheless, such an inequality does not hold in general for u ∈ BVA(RN ) even in the case where
A ≡ 0 and K is the unit ball (see [11, Pathology 3]). In the case A = 0, one has

lim
δ↘0

∫
RN

∫
RN

δ

‖x− y‖N+1
K

1|u(y)−u(x)|>δ} dxdy ≥ C
∫
RN

‖∇u‖Z∗1Kdx,

for some positive constant 0 < C < KN,1. This inequality is a direct consequence of the correspond-
ing result in the Euclidean setting in [4].

We next discuss the BBM formula for the anisotropic magnetic setting. Let (ρn) be a sequence
of non-negative radial mollifiers such that

(1.9) lim
n→+∞

∫ ∞
δ

ρn(r)rN−1−p dr = 0, for all δ > 0 and

∫ 1

0
ρn(r)rN−1 dr = 1.

Here is the anisotropic magnetic BBM formula.

Theorem 1.2. Let p ≥ 1, let A : RN → RN be Lipschitz, and let {ρn}n∈N be a sequence of

nonnegative radial mollifiers satisfying (1.9). Then, for u ∈W 1,p
A,K(RN ),

lim
n→+∞

∫∫
R2N

|Ψu(x, y)−Ψu(x, x)|p

‖x− y‖pK
ρn(‖x− y‖K) dx dy = p

∫
RN

‖∇u− iA(x)u‖pZ∗pK dx.

Furthermore, if p = 1 and u ∈ BVA,K(RN ) the formula holds with the agreement (1.8).

Remark 1.3. Let (sn) be a positive sequence converging to 0 and set, for n ≥ 1,

ρn(r) =
p(1− sn)

rN+psn−p , r > 0.

Then (ρn) satisfy (1.9). Applying Theorem 1.2, one rediscovers the results of M. Ludwig.

Remark 1.4. Theorems 1.1 and 1.2 provide the full solution of a problem arised by Giuseppe
Mingione on September 21th, 2016, at the end of the seminar “Another triumph for De Giorgi’s
Gamma convergence” by Haim Brezis at the conference “A Mathematical tribute to Ennio De
Giorgi”, held in Pisa from 19th to 23th September 2016.

The above results provide an extension of [2, 4, 12,18–20,24–26,28] to the anisotropic case.

2. Proof of Theorem 1.1

Set, for p ≥ 1,

IKδ (u) :=

∫
RN

∫
RN

δp

‖x− y‖N+p
K

1{|Ψu(x,y)−Ψu(x,x)|p>δ} dx dy, for u ∈ L1
loc(RN ).

It is clear that, for u, v ∈W 1,p
A,K(RN ) and 0 < ε < 1,

(2.1) IKδ (u) ≤ (1− ε)−pIK(1−ε)δ(v) + ε−pIKεδ (u− v).

Applying [24, Theorem 3.1], we have, for p > 1 and u ∈W 1,p
A,K(RN ),

IKδ (u) ≤ CN,p,K
(∫

RN

|∇u− iA(x)u|pp dx+
(
‖∇A‖p

L∞(RN )
+ 1
) ∫

RN

|u|pp dx
)
,
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for some positive constant CN,p,K depending only on N , p, and K. By the density of C1
c (RN ) in

W 1,p
A (RN ), it hence suffices to consider the case u ∈ C1

c (RN ) which will be assumed from later on.
By a change of variables as above, we have∫
RN

∫
RN

δp

‖x− y‖N+p
K

1{|Ψu(x,y)−Ψu(x,x)|p>δ} dx dy

=

∫
RN

∫
SN−1

∫ ∞
0

1

‖σ‖N+p
K h1+p

1{|Ψu(x,x+δhσ)−Ψu(x,x)|p>δ} dh dσ dx.

Using the fact

(2.2) lim
δ→0

|Ψu(x, x+ δhσ)−Ψu(x, x)|p
δ

= |
(
∇u− iA(x)u

)
· σ|ph,

as in the proof of [24, Lemma 3.3], we obtain

(2.3) lim
δ→0

∫
RN

∫
RN

δp

‖x− y‖N+p
K

1{|Ψu(x,y)−Ψu(x,x)|p>δ} =
1

p

∫
RN

∫
SN−1

|(∇u− iA(x)u) · σ|pp
‖σ‖N+p

K

dσ dx.

Since we have

(2.4) (N + p)

∫
K
|v · y|pp dy = (N + p)

∫
SN−1

∫ 1/‖σ‖K

0
|v · σ|pptN−1+p dtdσ =

∫
SN−1

|v · σ|pp
‖σ‖N+p

K

dσ,

the assertion follows.

Remark 2.1. In the case u ∈W 1,1
A (RN ), by Fatou’s lemma, as in (2.3), one has, with p = 1,

lim
δ→0

IKδ (u) ≥
∫
RN

∫
SN−1

∫ ∞
0

{|(∇u(x)−iA(x)u(x))·σ|1h>1}

1

‖σ‖N+p
K h2

dh dσ dx =
1

p

∫
RN

∫
SN−1

|
(
∇u− iA(x)u

)
· σ|1

‖σ‖N+1
K

dσ dx.

This implies

lim
δ↘0

∫
RN

∫
RN

δ

‖x− y‖N+1
K

1{|Ψu(x,y)−Ψu(x,x)|1>δ} dxdy ≥
∫
RN

‖∇u− iA(x)u‖Z∗1Kdx.

3. Proof of Theorem 1.2

3.1. Proof of Theorem 1.2 for p > 1. Using [24, Theorem 2.1] without loss of generality, one
might assume that u ∈ C1

c (RN ). Note that∫∫
R2N

|Ψu(x, y)−Ψu(x, x)|pp
‖x− y‖pK

ρn(‖x− y‖K) dx dy

=

∫
RN

∫
SN−1

∫ ∞
0

|Ψu(x, x+ hσ)−Ψu(x, x)|pp
‖σ‖pKhp

ρn(‖σ‖Kh)hN−1 dh dσ dx.

Using (2.2), one then can check that, for p ≥ 1 and u ∈ C1
c (RN ),

lim
n→+∞

∫∫
{|x−y|≤1}

|Ψu(x, y)−Ψu(x, x)|pp
‖x− y‖pK

ρn(‖x− y‖K) dx dy

=

∫
RN

∫
SN−1

|(∇u− iA(x)u) · σ|pp
‖σ‖pK

dσ dx lim
n→+∞

∫ 1

0
ρn(‖σ‖Kh)hN−1 dh.
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Furthermore, observe that∫∫
{|x−y|>1}

|Ψu(x, y)−Ψu(x, x)|pp
‖x− y‖pK

ρn(‖x− y‖K) dx dy ≤ C‖u‖pLp

∫ ∞
1

hN−1−pρn(‖σ‖Kh) dh.

Therefore, for p ≥ 1 and u ∈ C1
c (RN ), on account of (1.9) we obtain

(3.1)

lim
n→+∞

∫∫
R2N

|Ψu(x, y)−Ψu(x, x)|pp
‖x− y‖pK

ρn(‖x− y‖K) dx dy =

∫
RN

∫
SN−1

|(∇u− iA(x)u) · σ|pp
‖σ‖N+p

K

dσ dx.

The conclusion now follows from (2.4).

3.2. Proof of Theorem 1.2 for p = 1. We first present some preliminary results. The first one
is the following

Lemma 3.1. Let u ∈W 1,1
A,K(RN ). Then

|Du|A,K =

∫
RN

‖∇u− iA(x)u‖Z∗1K dx.

Proof. The proof is quite standard and based on integration by parts after noting that

‖∇u− iA(x)u‖Z∗1K = ‖∇<u−A(x)=u‖Z∗1K + ‖∇=u+A(x)<u‖Z∗1K ,

since A(x) ∈ RN for x ∈ RN . The details are left to the reader. �

Lemma 3.2. Let u ∈ BVA(RN ) and (un) ⊂ BVA(RN ). Assume that

lim
n→+∞

un = u in L1(RN ).

Then

lim inf
n→+∞

|Dun|A,K ≥ |Du|A,K .

Proof. One can check that

lim inf
n→+∞

C1,A,K,un ≥ C1,A,K,u and lim inf
n→+∞

C2,A,K,un ≥ C2,A,K,u.

The conclusion follows. �

For r > 0, let Br denote the ball centered at the origin and of radius r. We have

Lemma 3.3. Let u ∈ BVA(RN ) and let (τm) be a sequence of nonnegative mollifiers with supp τm ⊂
B1/m which is normalized by the condition

∫
RN τm(x) dx = 1. Set um = τm ∗ u. Assume that A is

Lipschitz. Then

lim
m→+∞

|Dum|A,K = |Du|A,K .

Proof. The proof is quite standard, see e.g., [13] and also [25]. Let ϕ ∈ C1
c (RN ) be such that

‖ϕ(x)‖Z∗1K∗ ≤ 1 in RN .

We have

(3.2)

∫
RN

<umdivϕ−A · ϕ=um dx =

∫
RN

<udivϕm −A · ϕm=u dx

+

∫
RN

∫
RN

(
A(x)−A(x− y)

)
· ϕ(x− y)τm(y)u(x) dx dy.
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Since

‖ϕm(x)‖Z∗1K∗ ≤ sup
y
‖ϕ(y)‖Z∗1K∗ ≤ 1,

we have

(3.3)
∣∣∣ ∫

RN

<udivϕm −A · ϕm=u dx
∣∣∣ ≤ C1,A,K,u

Since supp τm ⊂ B1/m, one can check that

(3.4)
∣∣∣ ∫

RN

∫
RN

(
A(x)−A(x− y)

)
· ϕ(x− y)τm(y)u(x) dx dy

∣∣∣ ≤ C‖∇A‖L∞‖u‖L1/m.

A combination of (3.2), (3.3), and (3.4) yields

lim sup
m→+∞

C1,A,K,um ≤ C1,A,K,u.

Similar, we obtain

lim sup
m→+∞

C2,A,K,um ≤ C2,A,K,u

and the conclusion follows from Lemma 3.2. �

We are ready to give

Proof of Theorem 1.2 for p = 1. Let (τm) be a sequence of nonnegative mollifiers with supp τm ⊂
B1/m which is normalized by the condition

∫
RN τm(x) dx = 1. Set um = u ∗ τm. As in the proof

of [24, Lemma 2.4], we have∫∫
R2N

|Ψum(x, y)−Ψum(x, x)|1
‖x− y‖K

ρn(‖x− y‖K) dx dy

≤
∫∫

R2N

|Ψu(x, y)−Ψu(x, x)|1
‖x− y‖K

ρn(‖x− y‖K) dx dy

+ C

∫
RN

∫
RN

∫
RN

|z|τm(z)ρn(‖x− y‖K)u(y) dz dx dy.

We have

lim
m→+∞

lim
n→+∞

∫∫
R2N

|Ψum(x, y)−Ψum(x, x)|1
‖x− y‖K

ρn(‖x− y‖K) dx dy

≥ lim
m→+∞

∫
RN

‖∇um − iA(x)um‖Z∗1K dx
Lemma 3.3

=

∫
RN

‖∇u− iA(x)u‖Z∗1K dx

and, since supp τm ⊂ B1/m,∫
RN

∫
RN

∫
RN

|z|τm(z)ρn(‖x− y‖K)u(y) dz dx dy ≤ C/m.

It follows that

lim inf
n→+∞

∫∫
R2N

|Ψu(x, y)−Ψu(x, x)|1
‖x− y‖K

ρn(‖x− y‖K) dx dy ≥
∫
RN

‖∇u− iA(x)u‖Z∗1K dx.
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We also have, by Fatou’s lemma,

(3.5)

∫∫
R2N

|Ψu(x, y)−Ψu(x, x)|1
‖x− y‖K

ρn(‖x− y‖K) dx dy

≤ lim inf
m→+∞

∫∫
R2N

|Ψum(x, y)−Ψum(x, x)|1
‖x− y‖K

ρn(‖x− y‖K) dx dy.

We next derive an upper bound for the RHS of (3.5). Let v ∈W 1,1
A,K(RN ) ∩ C∞(RN ). We have

(3.6)

∫∫
R2N

|Ψv(x, y)−Ψv(x, x)|1
‖x− y‖K

ρn(‖x− y‖K) dx dy

=

∫
RN

∫
SN−1

∫ ∞
0

|Ψv(x, x+ hσ)−Ψv(x, x)|1
‖hσ‖K

ρn(h‖σ‖K)hN−1 dh dσ dx.

Using the fact

∂Ψv(x, y)

∂y
= ei(x−y)·A(x+y

2 )∇v(y)− i

{
A
(x+ y

2

)
+

1

2
(y − x) · ∇A

(x+ y

2

)}
×

× ei(x−y)·A(x+y
2 )v(y),

and applying the mean value theorem, we obtain∫∫
R2N

|Ψv(x, y)−Ψv(x, x)|1
‖x− y‖K

ρn(‖x− y‖K) dx dy(3.7)

≤
∫
RN

∫
SN−1

∫ 1

0

∫ 1

0
|
(
∇v − iAv

)
· σ|1(x+ thσ)

1

‖σ‖K
hN−1ρn(h‖σ‖K) dt dh dσ dx

+ C

∫
RN

∫
SN−1

∫ 1

0

∫ 1

0
|v(x+ thσ)|‖∇A‖L

∞h

‖σ‖K
hN−1ρn(h‖σ‖K) dt dh dσ dx

+ C

∫
RN

∫
RN

{|x−y|>1}

(
|v(x)|+ |v(y)|

) 1

‖x− y‖K
ρn(‖x− y‖K) dx dy.

One can check that

(3.8)

∫
RN

∫
SN−1

∫ 1

0

∫ 1

0
|
(
∇v − iAv

)
· σ|1

(
x+ thσ

) 1

‖σ‖K
hN−1ρn(h‖σ‖K) dt dh dσ dx

≤
∫
RN

∫
SN−1

|(∇v − iA(x)v) · σ|1
‖σ‖N+1

K

dσ dx

∫ λ

0
hN−1ρn(h) dh,

and

(3.9)

∫
RN

∫
SN−1

∫ 1

0

∫ 1

0
|v(x+ thσ

)
|‖∇A‖L

∞h

‖σ‖K
hN−1ρn(h‖σ‖K) dt dh dσ dx

≤ CK‖∇A‖L∞‖v‖L1

∫ λ

0
hNρn(h) dh,
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where λ = max{‖σ‖K : σ ∈ SN−1}. A combination of (3.6), (3.7), (3.8), and (3.9) yields

(3.10)∫∫
R2N

|Ψv(x, y)−Ψv(x, x)|1
‖x− y‖K

ρn(‖x− y‖K) dx dy ≤
∫ λ

0
hN−1ρn(h) dh

∫
RN

‖∇v − iA(x)v‖Z∗1K dx

+ CK(‖∇A‖L∞ + 1)‖v‖L1

(∫ λ

0
hNρn(h) dh+

∫ ∞
1

hN−2ρn(h) dh
)
.

Using Lemma 3.3, we derive from (3.5) and (3.10) that∫∫
R2N

|Ψu(x, y)−Ψu(x, x)|1
‖x− y‖K

ρn(‖x− y‖K) dx dy

≤
∫ λ

0
hN−1ρn(h)

∫
RN

‖∇u− iA(x)u‖Z∗1K dx

+ CK‖∇A‖L∞‖u‖L1

(∫ λ

0
hNρn(h) dh+

∫ ∞
1

hN−2ρn(h) dh
)
,

which yields, by (1.9),

lim sup
n→+∞

∫∫
R2N

|Ψu(x, y)−Ψu(x, x)|1
‖x− y‖K

ρn(‖x− y‖K) dx dy ≤
∫
RN

‖∇v − iA(x)v‖Z∗1K dx.

The proof is complete. �
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Università Cattolica del Sacro Cuore
Via dei Musei 41, I-25121 Brescia, Italy
E-mail address: marco.squassina@unicatt.it


	1. Introduction and results
	1.1. Overview
	1.2. Anisotropic spaces
	1.3. Main results

	2. Proof of Theorem 1.1
	3. Proof of Theorem 1.2
	3.1. Proof of Theorem 1.2 for p>1
	3.2. Proof of Theorem 1.2 for p=1

	References

