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1 Introduction

The use of asymptotic effective theories for thin structures like strings, rods, beams,
films, membranes, plates and shells is a subject with a very long and rich history.
In the development of these theories, one typically starts with an ansatz about the
deformation: one assumes that the shear strain is constant across the thickness
and that the longitudinal (normal) strain varies linearly across the thickness, or
∂U/∂X3 is independent of X3 where U is the (three-dimensional vector-valued)
displacement and X3 is the coordinate along the thickness direction (see for ex-
ample [1]). In the familiar Euler-Bernoulli beams or Kirchhoff plates one assumes
that the shear is in fact zero, while the more general ansatz stated above is used
for example in the theory of Cosserat membranes. This general ansatz has been
found to be quite reliable, and has recently been justified rigorously in various set-
tings: films made of isotropic materials (classical situation), anisotropic materials,
phase-transforming materials and even in heterogeneous thin films in a suitable
macroscopic sense (see for example [2, 9, 3, 5, 6, 10]). It is natural, then, to wonder
under what the circumstances, if any, this ansatz fails. In this paper we present
an example where this well-regarded wisdom fails due to the presence of a large
number of cracks parallel to the plane of the film.

To be specific, let us consider a film Ωε = ω × (0, ε) of lateral extent ω
(an open subset of R2) and thickness ε. The behavior of this film is obtained by
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minimizing the elastic energy ∫
Ωε

W (X,DU) dX,

over all possible displacements U ∈W1,p(Ωε; R3) satisfying suitable boundary con-
ditions. Here DU denotes the 3×3 matrix of partial derivatives of the displacement
and W is the stored energy density which may depend explicitly on position X in
heterogeneous films. We have used the formulation of finite elasticity, but this is
not essential. We are interested in an asymptotic theory as ε→ 0. It is convenient
to change variables x1 = X1, x2 = X2, x3 = 1

εX3, u(x) = U(X(x)) and rescale the
energy by ε. We then obtain the problem of minimizing∫

Ω

W
(
x1, x2, εx3, D1u,D2u,

1
ε
D3u

)
dx, (1.1)

over all u ∈ W1,p(Ω; R3) satisfying suitable boundary conditions. Above, Ω =
ω × (0, 1) is independent of ε, Diu is the 3−vector of partial derivatives of u with
respect to xi.

Notice that if W satisfies some growth conditions uniformly in x, this energy
would blow up as ε → 0 unless D3u → 0. A slightly refined reasoning reveals
that in the unscaled variables ∂U/∂X3 tends to a function independent of X3 in a
suitable sense. This motivates the classical ansatz that ∂U/∂X3 is independent of
X3. Furthermore, this allows one to minimize out the third direction and as ε→ 0
the functional in (1.1) tends to the two-dimensional functional∫

ω

W̃ (xα, Dαv) dxα.

Above xα = (x1, x2) and v ∈ W1,p(ω; R3). Thus, we obtain the two-dimensional
‘membrane energy’ at order ε. This argument has been rigorously justified and W̃
has been characterized in a variety of settings including finite elasticity, inhomoge-
neous materials, phase transforming materials and films with undulating surfaces
[2, 9, 3, 5, 6, 10].

However, if W were suitably degenerate — i.e., if W did not satisfy a growth
conditions uniformly in x — the classical ansatz could no longer be justified. The
purpose of this paper is to present exactly such an example. Furthermore, since
the ansatz does not hold, the limiting ε−order theory is three-dimensional, not
two-dimensional. In other words, at ε−order we have to minimize a fully three-
dimensional functional ∫

Ω

W̃ (Du) dx,

over u ∈ W1,p(Ω; R3) satisfying suitable boundary conditions, without the con-
straint D3u = 0!
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Figure 1. Thin-¯lm with many small cracks.

through the thickness. In contrast, it is crucially important in this example. Further,
under compressive loads, such a membrane may bulge out in the thickness direction
instead of buckling.

We now give a brief description of our example. Since our goal is to present an
illustrative example, we will not consider general three-dimensional elasticity but
a much simpler situation. First, we will consider only scalar-valued deformations u.
Second, we will consider the domain « to be in two dimensions, so we will study two-
to one-dimensional asymptotics. Finally, we will consider the energy to be W (F ) =
jF j

2. So one can think of this example as conduction in a strip. It will be clear from
the discussion that this example can easily be generalized to the three-dimensional
elasticity setting.

Consider the thin strip of thickness " with cracks of length ª", and spacing "
longitudinally and "® transversely shown in ≠gure 1. Speci≠cally, for some given
® > 0 and 1

2

< ª < 1, consider the strip «" \

~E", where «" = (0; L) £ (0; "), and

~E" = R2

n

[

i;j 2 Z

((("i; "®j) + 1

2

"e
1

+ "K) [ (("i; "®j) + 1

2

"®e
2

+ "K))

with
K = f(t; 0) : 1

2

ª 6 t 6 1

2

ªg;

e
1

= (1; 0) and e
2

= (0; 1). The elastic energy of the strip is

~J"(U) =

Z

«" \ ~E"

µ¯̄
¯̄ @U

@X

¯̄
¯̄
2

+

¯̄
¯̄@U

@Y

¯̄
¯̄
2

¶
dX dY;

where U 2 H1(«" \

~E"; R) is scalar-valued. We are interested in studying the asymp-
totic behaviour of the strip at "-order as " ! 0.

It is convenient to make the following change of variables,

x = X; y =
Y

"
; u(x; y) = U (X(x); Y (y)); J"(u) =

1

"
~J"(U); (1.2)

and work on the ≠xed domain « = (0; L) £ (0; 1). We obtain the problem of mini-
mizing the functional,

J"(u) =

Z

« \ E"

µ¯̄
¯̄@u

@x

¯̄
¯̄
2

+
1

"2

¯̄
¯̄@u

@y

¯̄
¯̄
2

¶
dx dy; (1.3)
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Figure 1: Thin-film with many small cracks

To understand this unusual problem, we change back to the original variables.
At ε−order, we obtain the problem of minimizing∫

Ωε

W̃
( ∂U
∂X1

,
∂U

∂X2
, ε
∂U

∂X3

)
dX,

over all possible displacements U ∈ W1,p(Ωε; R3). Notice that this is a three-
dimensional problem in a thin domain where ∂U/∂X3 appears with coefficient ε.
Therefore, ∂U/∂X3 can be quite large, and in particular we can not conclude that
it is independent of X3.

This may have interesting physical implications as well. In classical mem-
branes since energetics forces ∂U/∂X3 to be independent of X3 away from the
boundaries, it is not very crucial how the boundary conditions are applied at the
edges of the membrane; in particular it is not very crucial how the boundary con-
ditions vary through the thickness. In constrast, it is crucially important in this
example. Further, under compressive loads, such a membrane may bulge out in
the thickness direction instead of buckling.

We now give a brief description of our example. Since our goal is to present an
illustrative example, we will not consider general three dimensional elasticity but
a much simpler situation. First we will consider only scalar-valued deformations
u. Second we will consider the domain Ω to be in two dimensions, so we will study
2D to 1D asymptotics. Finally we will consider the energy to be W (F ) = |F |2. So
one can think of this example as conduction in a strip. It will be clear from the
discussion that this example can easily be generalized to the three dimensional
elasticity setting.

Consider the thin strip of thickness ε with cracks of length ρε, and spacing ε
longitudinally and εγ transversely shown in Figure 1. Specifically, for some given
γ > 0 and 1/2 < ρ < 1, consider the strip Ωε ∩ Ẽε where Ωε = (0, L)× (0, ε), and

Ẽε = R2 \
⋃
i,j∈Z

((
(εi, εγj) +

ε

2
e1 + εK

)
∪
(

(εi, εγj) +
εγ

2
e2 + εK

))
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with
K =

{
(t, 0) : −ρ

2
≤ t ≤ ρ

2

}
,

e1 = (1, 0) and e2 = (0, 1). The elastic energy of the strip is

J̃ε(U) =
∫

Ωε∩Ẽε

(∣∣∣ ∂U
∂X

∣∣∣2 +
∣∣∣∂U
∂Y

∣∣∣2) dX dY

where U ∈ H1(Ωε ∩ Ẽε; R) is scalar-valued. We are interested in studying the
asymptotic behavior of the strip at ε−order as ε→ 0.

It is convenient to make the following change of variables:

x = X, y = Y/ε, u(x, y) = U(X(x), Y (y)), Jε(u) =
1
ε
J̃ε(U) (1.2)

and work on the fixed domain Ω = (0, L) × (0, 1). We obtain, the problem of
minimizing the functional

Jε(u) =
∫

Ω∩Eε

(∣∣∣∂u
∂x

∣∣∣2 +
1
ε2

∣∣∣∂u
∂y

∣∣∣2) dx dy, (1.3)

on H1(Ω ∩ Eε; R) where

Eε = R2 \
⋃
i,j∈Z

((
(εi, εγ−1j) +

ε

2
e1 + εK

)
∪
(

(εi, εγ−1j) +
εγ−1

2
e2 + εK

))
.

We show that the behavior of the functional Jε at ε−order can be described
as follows.

• If γ < 2, then the classical ansatz ∂u/∂y = 0 holds and the asymptotic
behavior is described by the one-dimensional functional

J(u) =
∫ L

0

∣∣∣∂u
∂x

∣∣∣2 dx
where u ∈ H1((0, L); R).

• If γ = 2, then the classical ansatz ∂u/∂y = 0 does not hold and the asymp-
totic behavior is described by the two-dimensional functional

J(u) =
∫

Ω

(∣∣∣∂u
∂x

∣∣∣2 +
1

2ρ− 1

∣∣∣∂u
∂y

∣∣∣2) dx dy
where Ω = (0, L)× (0, 1) and u ∈ H1(Ω; R).

• If γ > 2, then the classical ansatz ∂u/∂y = 0 does not hold and the asymp-
totic behavior is described by the degenerate two-dimensional functional

J(u) =
∫

Ω

(∣∣∣∂u
∂x

∣∣∣2) dx dy
where Ω = (0, L)× (0, 1) and u ∈ H1(Ω; R).
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on H1(« \ E"; R), where

E" = R2

n

[

i;j 2 Z

((("i; "®¡
1j) + 1

2

"e
1

+ "K) [ (("i; "®¡
1j) + 1

2

"®¡
1e

2

+ "K)):

We show that the behaviour of the functional J" at "-order can be described as
follows.

(i) If ® < 2, then the classical ansatz @u=@y = 0 holds and the asymptotic
behaviour is described by the one-dimensional functional,

J (u) =

Z L

0

¯̄
¯̄@u

@x

¯̄
¯̄
2

dx;

where u 2 H1((0; L); R).

(ii) If ® = 2, then the classical ansatz @u=@y = 0 does not hold and the asymptotic
behaviour is described by the two-dimensional functional,

J(u) =

Z

«

µ¯̄
¯̄@u

@x

¯̄
¯̄
2

+
1

2ª 1

¯̄
¯̄@u

@y

¯̄
¯̄
2

¶
dx dy;

where « = (0; L) £ (0; 1) and u 2 H1(«; R).

(ii) If ® > 2, then the classical ansatz @u=@y = 0 does not hold and the asymptotic
behaviour is described by the degenerate two-dimensional functional,

J(u) =

Z

«

µ¯̄
¯̄@u

@x

¯̄
¯̄
2

¶
dx dy;

where « = (0; L) £ (0; 1) and u 2 H1(«; R).

We now describe the heuristic idea behind these results. Note that we may regard
(1.3) as the problem of ≠nding the e¬ective behaviour of a medium made of materials
with moduli 1 and 1="2, and with a periodic microstructure of cracks with period
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Figure 2: The set E

We now describe the heuristic idea behind these results. Note that we may
regard (1.3) as the problem of finding the effective behavior of a medium made of
materials with moduli 1 and 1/ε2, and with a periodic microstructure of cracks
with period ε in the x−direction and εγ−1 in the y−direction. We are interested,
in particular, to know if such a medium can sustain finite gradients of u in the
y−direction with finite energy. We therefore look at an unit cell (of size ε× εγ−1),
and study the energy needed to change u by a quantity εγ−1 across it in the
y−direction. It is convenient then to introduce a further change of variables:

x′ = x/ε, y′ = y/εγ−1, u′(x′, y′) =
1

εγ−1
u(x(x′), y(y′)),

so that the microgeometry of cracks is described by the set

E = R2 \
⋃
i,j∈Z

((
(i, j) +

1
2
e1 +K

)
∪
(

(i, j) +
1
2
e2 +K

))
.

shown in Figure 2. The energy per unit cell becomes∫
(0,1)2∩E

(
(εγ−2)2

∣∣∣∂u′
∂x′

∣∣∣2 +
1
ε2

∣∣∣∂u′
∂y′

∣∣∣2) dx′ dy′.
We are interested in studying fields u′ which take the value −1/2 along the lower
edge of the unit cell away from the crack and value 1/2 along the upper edge away
from the crack.

If γ < 2, then both moduli increase as ε → 0, and it is easy to see that any
field of interest will necessarily have infinite energy in the limit. Thus we conclude
that we can not sustain gradients in the y−direction with finite energy and hence
infer the classical constraint ∂u/∂y = 0 in this case.
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Figure 3. A very useful test ¯eld and the minimizer for f (0; 1).

" in the x-direction and "®¡
1 in the y-direction. We are interested, in particular, to

know if such a medium can sustain ≠nite gradients of u in the y-direction with ≠nite
energy. We therefore look at an unit cell (of size " £ "®¡

1), and study the energy
needed to change u by a quantity "®¡

1 across it in the y-direction. It is convenient
then to introduce a further change of variables,

x0 =
x

"
; y0 =

y

"®¡
1

; u0(x0; y0) =
1

"®¡
1

u(x(x0); y(y0));

so that the microgeometry of cracks is described by the set,

E = R2

n

[

i;j 2 Z

(((i; j) + 1

2

e
1

+ K) [ ((i; j) + 1

2

e
2

+ K));

shown in ≠gure 2. The energy per unit cell becomes

Z

(0;1)

2 \ E

µ
("®¡

2)2

¯̄
¯̄@u0

@x0

¯̄
¯̄
2

+
1

"2

¯̄
¯̄@u0

@y0

¯̄
¯̄
2

¶
dx0 dy0:

We are interested in studying ≠elds u0 which take the value 1

2

along the lower edge
of the unit cell away from the crack and value 1

2

along the upper edge away from the
crack.

If ® < 2, then both moduli increase as " ! 0, and it is easy to see that any ≠eld
of interest will necessarily have in≠nite energy in the limit. Thus we conclude that
we cannot sustain gradients in the y-direction with ≠nite energy and hence infer the
classical constraint @u=@y = 0 in this case.

If ® = 2, then one modulus is ≠nite while the other increases as " ! 0. Thus we
would like to increase u0 in the y0-direction across the unit cell, but while keeping
@u0=@y0 = 0 everywhere. Figure 3 shows a test ≠eld that takes advantage of the cracks
to do so: it is constant at the values marked in the shaded regions and increases
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Figure 3: A very useful test field and the minimizer for f(0, 1).

If γ = 2, then one modulus is finite while the other increases as ε → 0.
Thus we would like to increase u′ in the y′−direction across the unit cell, but
while keeping ∂u′/∂y′ = 0 everywhere. Figure 3 shows a test field that takes
advantages of the cracks to do so: it is constant at the values marked in the shaded
regions and increases linearly along the arrows. Thus, ∂u′/∂y′ = 0 everywhere and
|∂u′/∂x′| = 1/(2ρ − 1) in the strips marked by arrows. The energy per unit cell
is given by 1/(2ρ− 1). We conclude that we can sustain macroscopic gradients in
the y′−direction with finite energy, and this leads to the desired result.

Finally if γ > 2, then one modulus decreases while the other increases as
ε → 0. The test field in Figure 3 takes advantage of the decreasing modulus to
increase u′ across the unit cell in the y′−direction. The energy per unit cell for
this test function goes to zero. Thus, we conclude that this case gives a degenerate
energy in the limit.

We can note further that we require 1/2 < ρ < 1 for the test-field in Figure
3 to be useful. For these values of ρ, 2ρ−1

2 > 0, and the projection of the cracks
on the line y′ = 0 overlap. Therefore we find strips that traverse the unit cell in
the y′−direction and are broken up by cracks at every half-interval as in Figure
3 (the strips marked by arrows). The test field uses these strips to change the
value of u′ while keeping ∂u′/∂y′ = 0 everywhere by using the cracks to sustain
discontinuities in u′. If ρ was outside this range, in particular if 0 < ρ < 1/2, then
we would not have these strips to change the field as desired. Instead we would
have strips which traverse the unit cell in the y′− direction completely unbroken
by any cracks. Then the fact that ∂u′/∂y′ = 0 on these strips would immediately
imply that there can be no macroscopic change in u′ in the y′−direction. Therefore
we conclude that a strip with 0 < ρ < 1/2 would behave like a classical membrane
even if γ ≥ 2.
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The rest of the paper makes rigorous the heuristic argument above for the
critical case γ = 2. We shall use the framework of Γ−convergence, a notion of
convergence for functionals introduced by Di Giorgi [8] (see also for example [4, 7]).
This framework has been used extensively in the last few years to rigorously derive
asymptotic theories for various thin films (see for example [2, 9, 3, 5, 6, 10]). The
primary advantage of this method is that, unlike classical methods, it is not based
on any a priori ansatz; instead, the argument itself suggests the right asymptotic
form. This is a significant advantage for the problem at hand: the displacement u
in this problem is very complicated and it would be very difficult to start with a
reasonable guess.

Γ−convergence is a notion of convergence for functionals. Roughly, we say
that the sequence of functionals Jε(u) Γ−converges to the functional J(u) if
the minimizers of Jε converge to (or are approximated by) the minimizers of J .
Note that the convergence is through the the minimizers, not the functionals di-
rectly. Therefore we can think of the limiting functional J as the ‘effective the-
ory’ whose solution captures the relevant features of those of the ε−theory. Thus
Γ−convergence is a natural framework for obtaining effective asymptotic theories.
It turns out for technical reasons that the above definition is not quite applicable
to every problem, and it is more convenient (and mathematically natural) to define
separately upper and lower Γ−limits, and then say that we have convergence when
these upper and lower limits coincide. One can also think of these upper and lower
limits as bounds, and therefore these are also useful from the point of applications:
one does not have to work with exact solutions to complicated problems, but only
with test functions.

We begin in Section 2 by giving a precise definition of Γ−convergence, and
recalling important results about it and homogenization. Section 3 deals with the
critical case γ = 2, and the result is given in Theorem 3.1. Section 4 gives other
examples.

2 Notation and Preliminaries

In what follows, Mm×n stands for the space of m × n matrices. We use standard
notation for Lebesgue and Sobolev spaces; in particular, we denote H1 = W 1,2.
The scalar product is denoted by 〈·, ·〉, and, for fixed z ∈ Rn, 〈z, x〉 denotes the
linear function given by this product as well. The letter c denotes a strictly positive
constant whose value may vary from line to line and does not depend on the
parameters of the problem.

2.1 Γ-convergence

We recall the definition of De Giorgi’s Γ-convergence in Lp spaces, 1 ≤ p < +∞
(see [8], [7], [4] or [5]). Given a family of functionals Jε : Lp(Ω; Rm) → [0,+∞],
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ε > 0, for u ∈ Lp(Ω; Rm) we define

Γ- lim inf
ε→0+

Jε(u) := inf
{

lim inf
ε→0+

Jε(uε) : uε → u in Lp(Ω; Rm)
}
,

and
Γ- lim sup

ε→0+
Jε(u) := inf

{
lim sup
ε→0+

Jε(uε) : uε → u in Lp(Ω; Rm)
}
.

If these two quantities coincide then their common value is called the Γ-limit of
the sequence (Jε) at u, and is denoted by Γ- limε→0+ Jε(u). We recall that the
Γ-upper and lower limits defined above are Lp-lower semicontinuous functions.

The importance of Γ-convergence in the calculus of variations lies in the
following theorem about the convergence of minima, together with the stability
properties of Γ-convergence by continuous perturbations. Its applications to thin
films theory is described for example in [9].

Theorem 2.1 Let J = Γ-limε→0 Jε, and suppose that there exists a family (uε)
of Jε which lies in a compact subset of Lp(Ω; Rm) such that Jε(uε) = inf Jε + o(1)
as ε→ 0. Then the limit functional admits a minimum and

lim
ε→0

inf Jε = min J.

Moreover, if (εj) is a family of positive numbers converging to 0 such that (uεj
)

converges to u in Lp(Ω; Rm) then u is a minimizer of J .

2.2 Homogenization

The following theorem can be found in [5] Theorem 14.8 and Example 14.11.

Theorem 2.2 Let E be a 1-periodic set containing a unbounded connected compo-
nent, let W : Mm×n → [0,+∞) be a convex function satisfying a growth condition
of the form

c(−1 + |F |p) ≤W (F ) ≤ C(1 + |F |p).

If Ω is a bounded open set of Rn and we set for all ε > 0

Jε(u) =


∫

Ω∩εE
W (Du(x)) dx if u ∈W1,p(Ω ∩ εE; Rm)

+∞ otherwise in Lp(Ω; Rm),
(2.1)

then we have

Γ- lim
ε→0

Jε(u) =


∫

Ω

W#(Du(x)) dx if u ∈W1,p(Ω; Rm)

+∞ otherwise in Lp(Ω; Rm),
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where W# : Mm×n → [0,+∞) is a convex function satisfying the homogenization
formula

W#(F ) = inf
{∫

(0,1)n∩E
W (F +Du(x)) dx : u ∈W1,p

# ((0, 1)n ∩ E; Rm)
}

(2.2)

for all F ∈ Mm×n, where W1,p
# ((0, 1)n ∩ E; Rm) is the set of 1-periodic functions

belonging to W1,p
loc(Rn ∩ E; Rm).

3 The example

We limit our analysis to the critical case γ = 2. Recall the strip Ωε ∩ Ẽε and the
energy J̃ε(U) described earlier. After the change of variable (1.2) we obtain,

Jε(u) =
∫

Ω∩εE

(∣∣∣∂u
∂x

∣∣∣2 +
1
ε2

∣∣∣∂u
∂y

∣∣∣2) dx dy,
on H1(Ω ∩ εE; R) where

E = R2 \
⋃
i∈Z2

((
i+

1
2
e1 +K

)
∪
(
i+

1
2
e2 +K

))

as before and shown in Figure 2. We extend Jε(u) to L2(Ω; R) by setting Jε = +∞
on L2(Ω; R) \H1(Ω ∩ εE; R). We will prove the following result.

Theorem 3.1 The functionals Jε defined above Γ-converges with respect to the
L2(Ω)-convergence to the functional J defined on L2(Ω; R) by

J(u) =


∫

Ω

(∣∣∣∂u
∂x

∣∣∣2 +
1

2ρ− 1

∣∣∣∂u
∂y

∣∣∣2) dx dy if u ∈ H1(Ω; R)

+∞ otherwise.

3.1 Lower bound

Proposition 3.2 Let z ∈ R2 and let

f(z) = min
{∫

(0,1)2∩E

∣∣∣∂u
∂x

∣∣∣2 dx dy : u ∈ A(z),
∂u

∂y
= 0 a.e.

}
. (3.1)

where
A(z) = {u : u− 〈z, (x, y)〉 ∈ H1

#((0, 1)2 ∩ E; R)}.

Then we have
f(z) = z2

1 +
1

2ρ− 1
z2

2 .
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Proof. Clearly f is a quadratic form, and by the symmetry of E we easily infer
that f(z1, z2) = αz2

1 + βz2
2 .

To compute α = f(1, 0) we remark that for all u ∈ A(z) we have∫
(0,1)2∩E

∣∣∣∂u
∂x

∣∣∣2 dx dy ≥ ∫ 1

0

∣∣∣∫ 1

0

∂u

∂x
dx
∣∣∣2 dy = 1,

so that f(1, 0) ≥ 1. Since this value is achieved trivially on u(x, y) = x we obtain
α = 1.

As for β = f(0, 1), note that f(0, 1) = minX J , where

J (u) =
∫

(−1/2,1,2)2∩E

∣∣∣∂u
∂x

∣∣∣2 dx dy,
and

X =
{
u : u(x, y)− y ∈ H1

#((−1/2, 1/2)2 ∩ E; R),

u(±1/2,−1/2) = −1/2, u(±1/2, 1/2) = 1/2,
∂u

∂y
= 0 a.e.

}
.

As J is lower semicontinuous and coercive on X there exists a minimum point u,
which is unique up to constants since J is strictly convex in ∂u

∂x . However, from
the energy it is clear that if u(x, y) is a minimizer, then u(−x, y) and −u(x, y) are
also minimizers. Therefore we conclude that the unique minimizer satisfies

u(x, y) = u(−x, y) = −u(x,−y).

From these conditions, the periodicity assumption on u, and the condition ∂u
∂y = 0

we deduce that

u(x, y) = 0 if (x, y) ∈
(
−1− ρ

2
,

1− ρ
2

)
×
(
−1

2
,

1
2

)
,

u(x, y) = −1
2

if (x, y) ∈
((
−1

2
,−ρ

2

)
∪
(ρ

2
,

1
2

))
×
(
−1

2
, 0
)
,

and
u(x, y) =

1
2

if (x, y) ∈
((
−1

2
,−ρ

2

)
∪
(ρ

2
,

1
2

))
×
(

0,
1
2

)
as shown in Figure 3. As u minimizes J it must be affine in the remaining regions,
and by the boundary values therein we obtain that

∂u

∂x
= ± 1

2ρ− 1
,

and
f(0, 1) =

1
2ρ− 1

,

which gives β.

10



Proposition 3.3 For all u ∈ L2(Ω; R) we have Γ-lim infε→0 Jε(u) ≥ J(u).

Proof. Let λ > 0 be fixed. For ε ≤ λ we have

Jε(u) ≥ Jλε (u),

where

Jλε (u) =


∫

Ω∩εE

(∣∣∣∂u
∂x

∣∣∣2 +
1
λ2

∣∣∣∂u
∂y

∣∣∣2) dx dy if u ∈ H1(Ω ∩ εE; R)

+∞ otherwise in L2(Ω; R).

Hence,
Γ- lim inf

ε→0
Jε(u) ≥ Γ- lim

ε→0
Jλε (u).

However, by Theorem 2.2 we have

Γ- lim
ε→0

Jλε (u) = Jλ#(u),

where

Jλ#(u) =


∫

Ω

fλ(Du) dx dy if u ∈ H1(Ω; R)

+∞ otherwise in L2(Ω; R),

and fλ : R2 → [0,+∞) is the convex function satisfying the homogenization
formula

fλ(z) = inf
{∫

(0,1)2∩E

(∣∣∣∂u
∂x

∣∣∣2 +
1
λ2

∣∣∣∂u
∂y

∣∣∣2) dx dy : u ∈ A(z)
}

(3.2)

where A is defined below (3.1) for all z ∈ R2. Thus,

Γ- lim inf
ε→0

Jε(u) ≥ sup
λ
Jλ#(u). (3.3)

Let z ∈ R2 with u ∈ A(z). By the Monotone Convergence Theorem we have

sup
λ

∫
(0,1)2∩E

(∣∣∣∂u
∂x

∣∣∣2 +
1
λ2

∣∣∣∂u
∂y

∣∣∣2) dx dy =
∫

(0,1)2∩E

∣∣∣∂u
∂x

∣∣∣2 dx dy
if ∂u
∂y = 0, and +∞ otherwise. It follows that

sup
λ
fλ(z) = sup

λ
inf

u∈A(z)

∫
(0,1)2∩E

(∣∣∣∂u
∂x

∣∣∣2 +
1
λ2

∣∣∣∂u
∂y

∣∣∣2) dx dy
≤ inf

u∈A(z)
sup
λ

∫
(0,1)2∩E

(∣∣∣∂u
∂x

∣∣∣2 +
1
λ2

∣∣∣∂u
∂y

∣∣∣2) dx dy
≤ inf

u∈A(z), ∂u
∂y =0

sup
λ

∫
(0,1)2∩E

(∣∣∣∂u
∂x

∣∣∣2 +
1
λ2

∣∣∣∂u
∂y

∣∣∣2) dx dy
= inf

u∈A(z), ∂u
∂y =0

∫
(0,1)2∩E

∣∣∣∂u
∂x

∣∣∣2 dx dy
= f(z).

11
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ll 2   -1
2

r

Figure 4. The test-¯eld t for ≠ = f¶ (0; 1).

However, for any u 2 A(z),

Z

(0;1)

2 \ E

µ¯̄
¯̄@u

@x

¯̄
¯̄
2

+
1

¶2

¯̄
¯̄@u

@y

¯̄
¯̄
2

¶
dx dy >

Z

(0;1)

2 \ E

¯̄
¯̄@u

@x

¯̄
¯̄
2

dx dy;

from which it follows that f¶(z) > f(z). Thus,

sup
¶

f¶(z) = f(z):

Therefore, according to the monotone convergence theorem, we have

sup
¶

Z

«

f¶(Du) dx dy =

Z

«

f(Du) dx dy

for any u 2 H1(«; R). Thus, recalling the de≠nitions of J¶
#

and J , the formula for f

in (3.1) and the inequality (3.3), we obtain

¡ - lim inf
" !

0

J"(u) > sup
¶

J¶
#

(u) = J(u)

as desired. ¥

We give an alternate proof which uses an estimate for f¶ instead of f .

Alternate proof of proposition 3.3. Recall f¶ de≠ned in (3.2). Clearly, f¶ is a
quadratic form, and by the symmetry of E we easily infer that f¶(z

1

; z
2

) = ¬z2

1

+≠z2

2

.
It is easily veri≠ed using Jensen’s inequality that ¬ = f¶(1; 0) = 1. We obtain a
lower bound for ≠ = f¶(0; 1) using a dual variational formulation. Recall that for
any W : R2

! R, we de≠ne the Fenchel transform as

W ¤(t) = sup
f 2 R2

fht; fi W (f)g:

Proc. R. Soc. Lond. A (2002)

Figure 4: The test-field t for β = fλ(0, 1).

However, for any u ∈ A(z),∫
(0,1)2∩E

(∣∣∣∂u
∂x

∣∣∣2 +
1
λ2

∣∣∣∂u
∂y

∣∣∣2) dx dy ≥ ∫
(0,1)2∩E

∣∣∣∂u
∂x

∣∣∣2 dx dy,
from which it follows that fλ(z) ≥ f(z). Thus,

sup
λ
fλ(z) = f(z).

Therefore according to the Monotone Convergence Theorem, we have

sup
λ

∫
Ω

fλ(Du) dx dy =
∫

Ω

f(Du) dx dy

for any u ∈ H1(Ω; R). Thus, recalling the definitions of Jλ# and J , the formula for
f in (3.1) and the inequality (3.3), we obtain

Γ- lim inf
ε→0

Jε(u) ≥ sup
λ
Jλ#(u) = J(u)

as desired.

We give an alternate proof which uses an estimate for fλ instead of f .
Alternate Proof of Proposition 3.3 Recall fλ defined in (3.2). Clearly fλ

is a quadratic form, and by the symmetry of E we easily infer that fλ(z1, z2) =
αz2

1 + βz2
2 . It is easily verified using Jensen’s inequality that α = fλ(1, 0) = 1. We

12



obtain a lower bound for β = fλ(0, 1) using a dual variational formulation. Recall
that for any W : R2 → R, we define the Fenchel transform as

W ∗(t) = sup
f∈R2
{〈t, f〉 −W (f)}.

It follows that for any f ∈ R2, W (f) ≥ supt∈R2{〈t, f〉−W ∗(t)}, and consequently
for any z ∈ R2

inf
u∈A(z)

∫
(0,1)2∩E

W (Du) dx dy ≥ sup
t∈B

∫
(0,1)2∩E

(
〈z, t〉 −W ∗(t)

)
dx dy

where

B =
{
t ∈ L2((0, 1)2; R2) :

∫
(0,1)2∩E

〈∇φ, t〉 dx dy = 0 ∀ φ ∈ H1
#((0, 1)2 ∩ E; R2)

}
is the space of all divergence-free 1-periodic L2 functions with zero normal compo-
nents on ∂E. Note that the last condition is meaningful since normal components
of the trace are well-defined for divergence-free L2 functions. Applying this in-
equality to the fλ, we conclude that

fλ(z) ≥ sup
t∈B

∫
(0,1)n∩E

(
〈z, t〉 − 1

4
(t21 + λ2t22)

)
dx dy

where the second term in the integrand is the Fenchel transform of the integrand
in the definition of fλ.

We construct a test function shown in Figure 4, first on (0, 1/2)2,

t =



1
λ(2ρ− 1)

(0, 1)
{

1−ρ
2 − λ < x1 <

1−ρ
2 − 2λx2

}
1

λ(2ρ− 1)
(0, 1)

{
ρ
2 + λ(1− 2x2) < x1 <

ρ
2 + λ

}
2

2ρ− 1
(1, 0)

{
1−ρ

2 − 2λx2 < x1 <
ρ
2 + λ(1− 2x2)

}
0 otherwise

,

then extend it to (0, 1)2 using

t1(x1, x2) = −t1(x1, 1− x2) = −t1(1− x1, x2),
t2(x1, x2) = t2(x1, 1− x2) = t2(1− x1, x2),

and finally periodically to R2. It is easily verified that t ∈ B. Using this test
function, we conclude,

fλ(0, 1) ≥ 4λ
2

(
1

λ(2ρ−1) −
λ2

4

(
1

λ(2ρ−1)

)2)
+ 4
(

2ρ−1+2λ
4

)(
− 1

4

(
2

2ρ−1

)2)
≥ 1

2ρ−1 − λ
(

5
2

1
(2ρ−1)2

)
.
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Figure 5. The piecewise a±ne test-¯eld v takes the values A1 , A2 , B1 , B2

at the corners while @v=@x takes the values indicated.

(b) Upper bound

In order to estimate the upper bound we have to construct suitable test functions.
Let A

1

, A
2

, B
1

, B
2

2 R. We de≠ne the function v = vA2;B2

A1;B1
in H1(( 1

2

; 1

2

)2

n E) as
that satisfying (see ≠gure 5):

v( 1

2

; 1

2

) = A
1

; v( 1

2

; 1

2

) = B
1

; v( 1

2

; 1

2

) = A
2

; v( 1

2

; 1

2

) = B
2

; (3.4)

@v

@y
= 0 a.e. on ( 1

2

; 1

2

)2; (3.5)

@v

@x
=

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

B
1

A
1

on ( 1

2

; 1

2

ª) £ ( 1

2

; 0);

a
1

on ( 1

2

ª; 1

2

(ª 1)) £ ( 1

2

; 0);

b
1

on ( 1

2

(1 ª); 1

2

ª) £ ( 1

2

; 0);

B
1

A
1

on ( 1

2

ª; 1

2

) £ ( 1

2

; 0);
1

2

((B
2

A
2

) + (B
1

A
1

)) on ( 1

2

(1 ª); 1

2

(1 ª)) £ ( 1

2

; 1

2

);

B
2

A
2

on ( 1

2

; 1

2

ª) £ (0; 1

2

);

a
2

on ( 1

2

ª; 1

2

(ª 1)) £ (0; 1

2

);

b
2

on ( 1

2

(1 ª); 1

2

ª) £ (0; 1

2

);

B
2

A
2

on ( 1

2

ª; 1

2

) £ (0; 1

2

);

(3.6)

where

a
1

= 1

2

((B
2

A
2

) + (B
1

A
1

)) +
1

2ª 1
( 1

2

(1 ª)(B
2

B
1

) + 1

2

(1 + ª)(A
2

A
1

));

b
1

= 1

2

((B
2

A
2

) + (B
1

A
1

))
1

2ª 1
( 1

2

(1 + ª)(B
2

B
1

) + 1

2

(1 ª)(A
2

A
1

));
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Figure 5: The piecewise affine test-field v takes the values A1, A2, B1, B2 at the
corners while ∂v/∂x takes the values indicated in the different region.

Thus, for any u ∈ H1(Ω; R), we conclude that

Jλ#(u) =
∫

Ω

fλ(Du) dx dy ≥
∫

Ω

{∣∣∣∂u
∂x

∣∣∣2 +
( 1

2ρ− 1
− 5λ

2
1

(2ρ− 1)2

)∣∣∣∂u
∂y

∣∣∣2} dx dy.
It follows again from the Monotone Convergence Theorem that

Γ- lim inf
ε→0

Jε(u) ≥ Γ- lim
ε→0

Jλε (u) = sup
λ
Jλ#(u) = J(u).

3.2 Upper bound

In order to estimate the upper bound we have to construct suitable test functions.
Let A1, A2, B1, B2 ∈ R. We define the function v = vA2,B2

A1,B1
in H1((−1/2, 1/2)2 \E)

as that satisfying (see Figure 5):

v
(
−1

2
,−1

2

)
= A1, v

(1
2
,−1

2

)
= B1, v

(
−1

2
,

1
2

)
= A2, v

(1
2
,

1
2

)
= B2, (3.4)

∂v

∂y
= 0 a.e. on

(
−1

2
,

1
2

)2

(3.5)
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∂v

∂x
=



B1 −A1 on
(
− 1

2 ,−
ρ
2

)
×
(
− 1

2 , 0
)

,

a1 on
(
−ρ2 ,

ρ−1
2

)
×
(
− 1

2 , 0
)

,

b1 on
(

1−ρ
2 , ρ2

)
×
(
− 1

2 , 0
)

,

B1 −A1 on
(
ρ
2 ,

1
2

)
×
(
− 1

2 , 0
)

,

1
2 ((B2 −A2) + (B1 −A1)) on

(
− 1−ρ

2 , 1−ρ
2

)
×
(
− 1

2 ,
1
2

)
B2 −A2 on

(
− 1

2 ,−
ρ
2

)
×
(

0, 1
2

)
,

a2 on
(
−ρ2 ,

ρ−1
2

)
×
(

0, 1
2

)
,

b2 on
(

1−ρ
2 , ρ2

)
×
(

0, 1
2

)
,

B2 −A2 on
(
ρ
2 ,

1
2

)
×
(

0, 1
2

)
,

(3.6)

where

a1 = 1
2 ((B2 −A2) + (B1 −A1)) + 1

2ρ−1

(
1−ρ

2 (B2 −B1) + 1+ρ
2 (A2 −A1)

)
b1 = 1

2 ((B2 −A2) + (B1 −A1))− 1
2ρ−1

(
1+ρ

2 (B2 −B1) + 1−ρ
2 (A2 −A1)

)
a2 = 1

2 ((B2 −A2) + (B1 −A1))− 1
2ρ−1

(
1−ρ

2 (B2 −B1) + 1+ρ
2 (A2 −A1)

)
b2 = 1

2 ((B2 −A2) + (B1 −A1)) + 1
2ρ−1

(
1+ρ

2 (B2 −B1) + 1−ρ
2 (A2 −A1)

)
Proposition 3.4 The function v defined in (3.4–3.6) satisfies:

(a) the traces of v on ∂(−1/2, 1/2)2 are:

v(−1/2, y) = A1, v(1/2, y) = B1 if y ∈ (−1/2, 0),

v(−1/2, y) = A2, v(1/2, y) = B2 if y ∈ (0, 1/2),

v(x,−1/2) = A1 + (B1 −A1)x if
ρ

2
< |x| < 1

2
,

v(x, 1/2) = A2 + (B2 −A2)x if
ρ

2
< |x| < 1

2
,

(b) we have
∂v

∂y
= 0 a.e., and∫

(−1/2,1/2)2∩E

∣∣∣∂v
∂x

∣∣∣2 dx dy =
( (B2 −A2) + (B1 −A1)

2

)2

+
1

2ρ− 1

( (B2 −B1) + (A2 −A1)
2

)2

+C(ρ)
(

(B2 −A2)− (B1 −A1)
)2

,
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where C(ρ) is a constant depending only on ρ.

Proof. The proposition can be easily checked by direct computation with

C(ρ) =
(−ρ2 + 3ρ− 1

4(2ρ− 1)

)
in (b).

Proposition 3.5 Let u ∈ C2(Ω). Then there exist functions uε ∈ H1(Ω ∩ εE)
such that limε→0+ Jε(uε) ≤ J(u).

Proof. We still denote by u a fixed extension of u in C2(R2).
With fixed ε > 0, for all i ∈ Z2 let

A1(i) = u(ε(i+ (−1/2,−1/2))), B1(i) = u(ε(i+ (1/2,−1/2))),

A2(i) = u(ε(i+ (−1/2, 1/2))), B2(i) = u(ε(i+ (1/2, 1/2))),

and let vi = v be defined as in (3.4–3.6) with A1 = A1(i), B1 = B1(i), A2 = A2(i),
B2 = B2(i). We define uε piecewise by setting

uε(x) = vi

(x− i
ε

)
for x ∈ ε

(
i+
(
−1

2
,

1
2

)2)
.

By Proposition 3.4(a) the function uε thus defined belongs to H1
loc(R2 \ εE) since

the trace values of uε on the common boundaries of neighboring squares coincide.
Moreover, if we set

Iε = {i ∈ Z2 : Ω ∩ ε(i+ (−1/2, 1/2)2) 6= ∅},

by Proposition 3.4(b) we have

Jε(uε) ≤
∑
i∈Iε

ε2

(( (u(ε(i+ (1/2, 1/2)))− u(ε(i+ (−1/2, 1/2))))
2ε

+
(u(ε(i+ (1/2,−1/2)))− u(ε(i+ (−1/2,−1/2))))

2ε

)2

+
1

2ρ− 1

( (u(ε(i+ (1/2, 1/2)))− u(ε(i+ (1/2,−1/2))))
2ε

+
(u(ε(i+ (−1/2, 1/2)))− u(ε(i+ (−1/2,−1/2))))

2ε

)2

+C(ρ)
( (u(ε(i+ (1/2, 1/2)))− u(ε(i+ (−1/2, 1/2))))

ε

− (u(ε(i+ (1/2,−1/2)))− u(ε(i+ (−1/2,−1/2))))
ε

)2
)

≤
∑
i∈Iε

ε2
(∣∣∣∂u
∂x

(εi)
∣∣∣2 +

1
2ρ− 1

∣∣∣∂u
∂y

(εi)
∣∣∣2 + cε2

)
,
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where we have used the Mean Value Theorem and the fact that u ∈ C2(Ω) to get∣∣∣u(ε(i+ (1/2,±1/2)))− u(ε(i+ (−1/2,±1/2)))
ε

∣∣∣2 ≤ ∣∣∣∂u
∂x

(εi)
∣∣∣2 + cε2,

∣∣∣u(ε(i+ (±1/2, 1/2)))− u(ε(i+ (±1/2,−1/2)))
ε

∣∣∣2 ≤ ∣∣∣∂u
∂y

(εi)
∣∣∣2 + cε2,

and ∣∣∣ (u(ε(i+ (1/2, 1/2)))− u(ε(i+ (−1/2, 1/2))))
ε

− (u(ε(i+ (1/2,−1/2)))− u(ε(i+ (−1/2,−1/2))))
ε

∣∣∣2 ≤ cε2.

Using the fact that u ∈ C2(Ω) again, we obtain∑
i∈Iε

ε2
(∣∣∣∂u
∂x

(εi)
∣∣∣2 +

1
2ρ− 1

∣∣∣∂u
∂y

(εi)
∣∣∣2) ≤ ∫

Ω

(∣∣∣∂u
∂x

∣∣∣2 +
1

2ρ− 1

∣∣∣∂u
∂y

∣∣∣2) dx dy + cε2,

and the proposition follows taking the limit as ε→ 0+.

The following proposition concludes the proof of Theorem 3.1.

Proposition 3.6 We have Γ-lim supε→0+ Jε(u) ≤ J(u) for all u ∈ L2(Ω; R).

Proof. Let J ′′(u) = Γ-lim supε→0+ Jε(u). With fixed u choose uj ∈ C2(Ω) such
that uj → u in H1(Ω; R), and limj J(uj) = J(u). Proposition 3.5 shows that
J ′′(uj) ≤ J(uj) for all j. Hence, by the lower semicontinuity of J ′′ we have

J ′′(u) ≤ lim inf
j

J ′′(uj) ≤ lim inf
j

J(uj) = J(u),

as required.

4 Other geometries

The procedure outlined above can be repeated for other geometries of crack arrays.
We include two remarks on arrays obtained by a slight variation of the example
described above. We again confine the analysis to the critical case γ = 2.

Remark 4.1 If the set E is defined as in Section 3, but with 0 ≤ ρ ≤ 1/2 then
the result of Theorem 3.1 is clearly not valid. The Γ-limit is then given by the
expression

J(u) =


∫

Ω

∣∣∣∂u
∂x

∣∣∣2 dx dy if u ∈ H1(Ω) and
∂u

∂y
= 0 a.e.

+∞ otherwise,
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Figure 6. An array of asymmetric cracks.

4. Other geometries

The procedure outlined above can be repeated for other geometries of crack arrays.
We include two remarks on arrays obtained by a slight variation of the example
described above. We again con≠ne the analysis to the critical case ® = 2.

Remark 4.1. If the set E is de≠ned as in x 3, but with 0 6 ª 6 1

2

then the result
of theorem 3.1 is clearly not valid. The ¡ -limit is then given by the expression,

J (u) =

8
><

>:

Z

«

¯̄
¯̄@u

@x

¯̄
¯̄
2

dx dy if u 2 H1(«) and
@u

@y
= 0 a.e.;

+1 otherwise;

i.e. the e¬ect of the cracks is not felt: the limit is one dimensional and its form does
not depend on ª. The upper bound is trivial, while the lower bound is obtained by
comparison with the functionals with ª > 1

2

considered before.

Remark 4.2. Asymmetric arrays of cracks may give rise to anisotropic limit
energies. For example, we can consider a periodic array of cracks with an inclination
of ¬ with respect to the x-axis as shown in ≠gure 6.

Namely, let 1

4

º < ¬ < 1

4

, 1

2

< ª < 1,

K = ftª(1; tan ¬) : 1

2

6 t 6 1

2

g;

and de≠ne
E = R2

n

[

i2 Z2

((i + 1

2

e
1

+ K) [ (i + 1

2

e
2

+ K)):

Note that E coincides with that de≠ned in x 3 if ¬ = 0.
Let J" be de≠ned as in x 3 with E as above. Then, following the reasoning of the

proof of theorem 3.1 it can be easily proved that the ¡ -limit of the functionals J" as
" ! 0 is given by

J(u) =

8
<

:

Z

«

f(Du) dx dy if u 2 H1(«);

+1 otherwise;

where f(z) is given by the minimum problem (3.1) in proposition 3.2.
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Figure 6: An array of asymmetric cracks

i.e. the effect of the cracks is not felt: the limit is 1-dimensional and its form does
not depend on ρ. The upper bound is trivial, while the lower bound is obtained
by comparison with the functionals with ρ > 1/2 considered before.

Remark 4.2 Asymmetric arrays of cracks may give rise to anisotropic limit en-
ergies. For example, we can consider a periodic array of cracks with an inclination
of an angle α with respect to the x-axis.

Namely, let −π4 < α < π
4 , 1

2 < ρ < 1,

K =
{
tρ(1, tanα) : −1

2
≤ t ≤ 1

2

}
,

and define

E = R2 \
⋃
i∈Z2

((
i+

1
2
e1 +K

)
∪
(
i+

1
2
e2 +K

))
.

Note that E coincides with that defined in Section 3 if α = 0.
Let Jε be defined as in Section 3 with E as above. Then, following the rea-

soning of the proof of Theorem 3.1 it can be easily proved that the Γ-limit of the
functionals Jε as ε→ 0 is given by

J(u) =


∫

Ω

f(Du) dx dy if u ∈ H1(Ω)

+∞ otherwise,

where f(z) is given by the minimum problem (3.1) in Proposition 3.2.
To compute f note that the Euler-Lagrange equations for the problems defin-

ing each f(z) are linear. Hence, it suffices to deal with the case z = (1, 0) and
z = (0, 1). In the first case, a minimizer is again u1(x, y) = x, while a minimizer

18
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Figure 7. The minimizer for f (0; 1).

To compute f note that the Euler{Lagrange equations for the problems de≠ning
each f(z) are linear. Hence, it su¯ces to deal with the case z = (1; 0) and z = (0; 1).
In the ≠rst case, a minimizer is again u

1

(x; y) = x, while a minimizer u
2

giving f(0; 1)
is obtained repeating the reasoning of the proof of proposition 3.2, and is described
in ≠gure 7.

Finally, we easily compute

f(z) =

Z

(

¡
1=2;1=2)

2

¯̄
¯̄z

1

@u
1

@x
+ z

2

@u
2

@x

¯̄
¯̄
2

dx dy = z2

1

+
1

2ª 1
z2

2

+ 2z
1

z
2

tan ¬;

recovering the result of theorem 3.1 when ¬ = 0.
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Figure 7: The minimizer for f(0, 1)

u2 giving f(0, 1) is obtained repeating the reasoning of the proof of Proposition
3.2, and is described in Figure 7.

Finally, we easily compute

f(z) =
∫

(−1/2,1/2)2

∣∣∣z1
∂u1

∂x
+ z2

∂u2

∂x

∣∣∣2 dx dy = z2
1 +

1
2ρ− 1

z2
2 + 2z1z2 tanα ,

recovering the result of Theorem 3.1 when α = 0.
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