ILL-POSEDNESS OF LERAY SOLUTIONS FOR THE IPODISSIPATIVE
NAVIER-STOKES EQUATIONS

MARIA COLOMBO, CAMILLO DE LELLIS, AND LUIGI DE ROSA

ABSTRACT. We prove the ill-posedness of Leray solutions to the Cauchy problem for the
ipodissipative Navier—Stokes equations, when the dissipative term is a fractional Laplacian
(—A)® with exponent o < é The proof follows the “convex integration methods” introduced

by the second author and Laszl6 Székelyhidi Jr. for the incomprresible Euler equations. The

methods yield indeed some conclusions even for exponents in the range [%, %[

1. INTRODUCTION

In this paper we consider the ipodissipative Navier—-Stokes equations on a periodic 3-
dimensional torus, namely the system

O +div(v®@v)+ Vp+ (=A)* =0
in T3 x [0, 1] (1)
dive =0

where « €]0, 1] and —(—A)“ is the fractional Laplacian operator, which in Fourier series has
the symbol —|k|?“:

—(—A)f(@) == S kPR Vf e D/(T9).
kez3
As for the classical Navier—Stokes equations, the celebrated method of Leray can be applied
to the Cauchy problem for system (1) in order to produce solutions which satisfy a suitable
energy inequality. More precisely we have the following theorem.

Theorem 1.1. For any vy € L*(T3) with divug = 0 and every a €]0,1[ there is a weak
solution u € L>®(RT, L?(T3)) N L2 (R, HY(T?)) of (1) such that v(-,0) = vy and

t
1 ]v|2(x,t)dx—|—// |(—A)“/2v|2(x,s)dxdsgl/ wol2(x)de VE>0. (2
2 Jrs o Jr3 2 Jrs

For the reader’s convenience we will include a proof of Theorem 1.1 in the appendix. As
usual, the term weak solution of (1) with initial data vy is used for any solenoidal vector field
v such that

/00/ (0 — (—A)Y)p-v+ Dy :v®v|(x,s)drds = —/ vo(x) - p(z,0) dx
0 T3

T3
for every smooth test vector field ¢ € C°(T? x R, R?) with divy = 0. Note that p can be
recovered uniquely (as a distribution) if we impose that [ p(x,¢)dx =0 .
It is not difficult to show that any weak solution of (1) in L (R*, L?(T?))NL?(R*, H*(T3))
can be redefined on a set of measure zero so that the map R* 3 ¢~ v(-,t) € L?(T3) is weakly
continuous. The spatial L? norm of the solution is thus well defined for every time t: (2)

must be interpreted in a pointwise-in-time sense using the corresponding well defined trace
1
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v(-,t). As it is the case in Leray’s construction for the “classical” Navier—Stokes equations,
the solution produced by the proof of Theorem 1.1 can be shown to satisfy an additional form
of the energy estimate, namely:

1 t 1
o5 ‘Uyz(‘%t) d$+/ / |<_A)a/2v|2(3777') dedr < — "U|2(:L’73) dz
2 Jr3 s JT3 2 Jrs

for a.e. s and Vt > s. (3)

From now on, solutions of the Cauchy problem v(-,0) = vg of (1) defined on T3 x R* and
satisfying (2) and (3) will be called Leray solutions.

In this note we show that the “convex integration” methods introduced in [10] can be used
to disprove the uniqueness of Leray’s solutions if the exponent « is sufficiently small.

Theorem 1.2. Let a < % Then there are initial data vg € L*(T3) with divvg = 0 for which
there exist infinitely many Leray solutions v of (1) with v(-,0) = vy.

Indeed, the solutions v constructed in our proof are somewhat stronger in a sufficiently
small interval containing the origin. More precisely we prove the following

Theorem 1.3. Let a < % Then there are initial data v € L*(T3) with divvg = 0 such that

(a) vo belongs to some Hélder space CP(T?) for a < B < ;

(b) there is a positive time T and infinitely many solutions v € CP(T? x [0,T)) of (1)
with v(-,0) = vg;

(c) such solutions satisfy the energy inequality (3) for all times 0 < s <t <T.

Each solution in Theorem 1.3 can be prolonged past the time 7" using Theorem 1.1 (note
that (1) is invariant under time-shifts and so Theorem 1.1 is valid with any initial time T
substituting 0): Theorem 1.2 is thus an obvious corollary. Moreover, the solutions constructed
in our proof can be arranged so to violate the energy equality, namely the inequality in (3)
can be shown to be strict for some times (see Remark 1).

The main point of the proof of Theorem 1.3 is that the methods introduced in [10] for
the incompressible Euler equations and developed further in the literature (especially in the
context of Onsager’s conjecture, see [11, 13, 2, 1, 3, 15, 9, 14, 4]) can be adapated to produce
infinitely many local solutions satisfying (a), (b) and (c). More specifically, our proof is a
simple modification of the one in [2]. As we will see, the type of iteration used in [2] works
indeed when the exponent « is smaller than %, in particular they yield infinitely many weak
solutions even in the range o € [%, %[ In the latter case, however, we are not able to show
that such solutions satisfy the corresponding energy inequalities: therefore they are not Leray
solutions.

In the forthcoming paper [12] the second author will extend the validity of Theorem 1.3 to
the range of Holder exponents 0, 1[, combining the ideas of this paper with those of [4] (the
latter reference builds on the new techniques introduced in [9, 14], which led Isett in [14] to
finally prove the Onsager’s conjecture). However, since the arguments in [12] will be much
longer and more complicated, we hope that the current note will help the interested readers
in understanding the simple mechanisms behind the Theorems 1.2 and 1.3, once the convex
integration methods are taken for granted.

The key starting observation that the addition of a (sufficiently weak) ipodissipative term
does not obtstruct the convex integration methods (introduced for the Euler equations) is
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indeed due to Buckmaster, Shkoller and Vicol in [5], although in a different context. The
main difficulties here are:

e to ensure that the energy condition of Leray’s weak solutions can be fullfilled;
e to ensure that one can impose the same initial data to infinitely many solutions.

The first point requires a careful estimate of the Holder norm of the solutions. The second
point has been addressed in wide generality in the papers [8] and [9] for the Euler equations.
Here we solve the issue with a very simple trick, avoiding pages of lengthy arguments.

In the remarkable works [16, 17] the authors have conjectured (and given strong evidence)
that even Leray solutions of the classical Navier—Stokes equations (namely with o = 1) are not
unique. However, the mechanism suggested in [17] is entirely different from the one exploited
here.

2. LOCAL ILL-POSEDNESS

In this section we outline the main argument leading to Theorem 1.3. In fact we will show
a somewhat more general result, where the exponent « is taking values in the range |0, %[
More precisely we will show that

Theorem 2.1. Assume e : [0,1] — R is a positive smooth function with 3 < e(t) < 1 and
e > 0 a positive number. For any « €]0, %[ there is a solution (v,p) € C°(T3 x [0,1]; R? x R)
of (1) such that
e(t) = lv|*(x,t) dz vt € [0,1] (4)
T3
and
(i) v e C%_E, pE Ci=% if a < i,
.. 1-2a_, 2122 o0 .. q 1
(i) ve 322" andpe C52a" 7 if ; <a < 5.
A crucial point is that the argument producing the pair (v,p) of Theorem 2.1 gives two
additional pieces of information, summarized in the following Proposition.

Proposition 2.2. Assume & is a family of smooth functions on [0, 1] with the property that

(i) 3 <e(t) <1 for every t and every e € &;

(ii) e(0) is the same for every e € &;

(iii) €'(0) is the same for every e € &;

(iv) supeee |leflcr = E1 < oo;

(V) supcg lleflcz = B2 < oo.
Then for each e € & it is possible to produce a corresponding pair (ve,pe) for which the
following holds.

(a) (ve,pe) solves (1);
(b) each v, satisfies

e(t) = /11‘3 |ve|? (2, t) dx vt € [0, 1] (5)

(c) fa<a+e< % and € is suitably small (depending only upon o), then we have the
explicit estimate

2a+4e
|Vel|cate < Cla,€) max{E%a+257E2 3 } : (©)
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(d) The initial data ve(-,0) is the same for every e € &.
Proposition 2.2 easily implies Theorem 1.3.

Proof of Theorem 1.3. We fix a < L and choose a + ¢ €]a, [ so that (6) holds. Elementary
arguments produce for every K > 1 an infinite set &x of smooth functions e : [0, 1] — R with
the following properties:
(i) 3 <e(t) <1V
(i) flellor < 2K +2:
(iii) ( ) =1and ¢'(0) = —2K;
(iv) '(t) < —2K + 2Vt e [0,4K]
v) |lellc2 < CK?, where C is a geometric constant independent of K;
(vi) for any pair of distinct elements of &k there is a sequence of times converging to 0
where they take different values.

We can now use Proposition 2.2 and for each energy profile e € & we get a corresponding pair
(v, p) of solutions of (1) with (4). We claim that these solutions satisfy the energy inequality

/|v| xtd:v+//| )20 (x, 1) dedr < = /|v (z,8)dx VOSSSTS&,
(7)
provided ¢ is chosen first sufficiently small and K is then chosen large enough (depending on
the two fixed exponents « and a + ). Recall that by Proposition 2.2 all such solutions have
the same initial data v(-,0) = vg. Moreover, by (vi) they are all distinct on [0, ;7.
In order to show (7), observe that by (iv) and (4) we just need to show that

(=A)Pv(z,7)de < K —1 V€0, %] (8)
3
On the other hand by Corollary C.2 we have
|(=2)"0 (2, 7) da < Cla,e)[[v]|Zase -
By (i) we can use the estimate (6) and combine it with (ii) and (v) above to conclude
(=)o (2, ) dz < C(a, €) max {K20‘+25, KL?GE} .
3
We next fix € so small that v := max{2«a + 2¢, W} < 1. Hence, we conclude

/ [(=A)0) (2, 7) dz < C(a) K
Since « is fixed, choosing K large enough we clearly achieve (8). ([l

Remark 1. Clearly, for K large enough we can impose the inequality
[(—A) P2 (z,7)de <K —2 Y7 €0, 1]
3

in place of (8), thus showing that the inequality in (7) can be made strict.

It is worth to note that some conclusion can also be drawn in the range « € [%, %[ More
precisely, the argument given above can be easily modified to prove the following

Corollary 2.3. Let a € [}, %[, Then there are initial data voy € C(T?) with divvg = 0 for

which there exist infinitely many weak solution v € L>([0, 0o, L?(T?)) of (1) with v(-,0) = vy.
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3. MAIN ITERATION SCHEME

The proof of Theorem 1.3 is achieved through an iteration scheme. At each step ¢ € N we

o

construct a triple (vg, pg, Ry) solving the Fractional Navier-Stokes-Reynolds system :

Ayvg + div (v @ vy) + Vpg + (—A)%, = div R,
(9)

diveg =0.

The 3 x 3 symmetric traceless tensor }qu is related to the so-called Reynolds stress, a quantity
which arises naturally when considering highly oscillatory solutions of the Euler equations.
The scheme will be set up so that }qu converges uniformly to 0, whereas the pair (vg,py)
converges uniformly to the pair (v, p) of Theorem 1.3.
The size of the perturbation
Wq = Vg — Vg—1

will be measured by two parameters: (5;/ ® is the amplitude and Aq the frequency. More
precisely, denoting the (spatial) Holder norms by || - ||x ,

lwqllo < Mog*, (10)
[wqllr < M‘S;/Q)‘qv (11)
and similarly,
IPg = Pg—1ll0 < M25q= (12)
IPg = Pg—1ll1 < M25q)‘qv (13)
where M is a constant depending only on the function e = e(t) (cf. Section 4.5), more

specifically only upon max e and min e, which by our assumptions are anyway under control.
Thus in the rest of the note M will be treated as a fixed geometric constant.
In constructing the iteration, the new perturbation w, will be chosen so as to balance the

previous Reynolds error ]o%q,l in the sense that (cf. equation (9)) we have ||wg ® wqllo ~
|Rg—1llo- To make this possible, we then claim inductively the estimates

1Rqllo < 70q41, (14)
||RqH1 < M5q+1>‘qa (15)
|01 Rg 4+ vg - VR0 < 5q+15;/2/\q? (16)

where 7 will be a small constant depending indeed only upon maxe and mine (cf. again
Section 4.5). Thus, similarly to M, n can be treated as a fixed absolute constant.
Along the iteration we will have

S,=a"and AN, €NN [ad’qﬂ, 2aqu+1] , (17)
where the constants b and ¢ are fixed and satisfy b > 1 and ¢ > %, whereas a will be chosen
(depending on b, ¢, @ and e) much larger than 1. On the one hand (10), (12) and (14) will
imply the convergence of the sequence v, to a continuous weak solution of (9). On the other
hand the precise dependence of A\, on ¢, will determine the critical Holder regularity. Finally,
the equation (4) will be ensured by

()= 8y1) = [ luaf(at)da| < Jopiae(t), (18)
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3.1. The starting triple. In this section we specify the starting triple (vg, po, ]550).

Lemma 3.1. Fix M and n positive constants and let « 6]0,%[. If a,b and c satisfy the
following conditions

)
¢>2.b> 1,a D2 > Cylleflor and oV > Cpllel| e (19)

(where Cy is a suitable geometric constant, depending only upon M and n), then there is a
triple (vo, po, Ro) satisfying (9), (14), (15), (16) and

HUOHO <M, (20)
, cb—1/2 "

lvoll1 < min {CO max {al—%, abllel| o, ||e||(c2§71)b71 } , Mo, )\0} , (21)
Ipollo < M?, (22)
Ipoll1 < M260A - (23)

For a € [%, 1] there is a starting triple satisfying all the above estimates with
ol < M6y Ao (24)
in place of (21), provided ¢ > max{%, %}, b > 1 and a is chosen large enough depending

only upon ||e||cz, o, b and ¢

Proof. In the rest of the proof we will use the notation Cy for constants which are independent
of any parameter and the notation C' for constants which depend on «, b and ¢. We only check
the case a < %, since indeed the other case is much simpler.

Observe that §; = =% < 1. We define py = 0,

1 - _
UO(:’E? t) = (2 )3/2 (€(t)(1 - 51))1/2((:05 AZL’3, sin )‘x3a 0)
T
and éo = é(),l + éog, where
) 1 - ,d U 0 0 sin )\3_103
Ro1(z,t) = W)\ E(e(t)(l —41)) 0 0 — cos A3
& sin Arg — cos Axs 0
) 1 < o U 0 0 sin )\a_vg
Roo(z,t) = @ )3/2)\ (e(t)(1—6y)) 0 0 —cos \z3
& sin Az — cos Axsg 0

and ) is an integer whose choice will be specified later.

Note that (22) and (23) are trivial, whereas (9) can be easily checked. We now come to
the other estimates.

Proof of (14). We require separately ||Ro1llo < 201 and |Rozllo < 201. These two
estimates are certainly satisfied provided

A > Collellerdr” (25)

1
A>Cody T (26)
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Proof of (15). We require separately ||Ro 1|1 < 25120 and | Rozl1 < 251 X0. These are
certainly satisfied if

d1A0 = Colle|cn (27)

5120 > CoA*. (28)

o

Proof of (16). Observe that (vg - V)R = 0. Thus it suffices to require the two estimates

815]0%0 1o < l6161/ *Xo and 875]320 ollg < léldl/ *Xo. These are certainly achieved if we impose
) 2 0 ) 2 0

A2 Colellca (3186 20) ™ (29)
1
A= Co (Ileller (9105*20) ) (30)
Conclusion. (20) is obvious since |lvgllop < 1 and M > 1. The inequality (21) will be split
into two conditions. One is
X< 60N, (31)

whereas the other one is

B cb—1/2
X < Cpmax {al—bz%abnencl, lef| &5 } . (32)

The conditions (25), (29) and (30) determine the choice of A, which we fix to be just the
maximum of all the right hand sides of the respective conditions. In fact, given the definition
of §;’s and A;’s, we just have

_ 1
X\ = Cj max {al—bm,abueycl, HeHé_lza af((cfl)bfl/Z)/(leQ), \6HC2¢1(01)6+1/2} '

We next need to check that, given the inequalities required on a, the conditions (27), (28),
(31) and (32) are satisfied. First of all, notice that (27) is satisfied because it is equivalent to
a“™ > Colefcr

which is satisfied by (19). The latter inequality shows easily that

1
lleller > [lel| 2 a~((e-Db=1/2/(1-20)

so that we can simplify the definition of A to

A= Comax {a%, a’|lefjcr, el a1/} (33)
Next, we check that (28) holds, which amount to check separately that
ale Vb > (755 (34)
a8 > a2 e (35)
aleb > g2alc=Dbray g2 (36)

Now, the first inequality is obvious because

3 2o
—-1)>-= > .
(e=1)>3 1-27 1-2a

({1}
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The second inequality is equivalent to

120 > o]
which is implied by |le]|c1 < a¢~D? (to pass from one to the other we again use (c—1) > 29,
The third inequality is implied by
a(c—l)(1+2a)b—cx > HSH%‘% 7
which is indeed guaranteed by (19), because (¢ — 1)(1 + 2a)b/20c — 3 > (2¢ — 1)b — 1.
We next check (31). The latter is equivalent to
at=? > Coaﬁ (37)
a2 > Coal|le]|cn (38)
acb71/2 > C«Oaf(cfl)bJrl/zHeHC2 ) (39)
The first one is trivially implied by a < % and ¢ > g The second is equivalent to ale~Db—3 >
Colle|lc1, which is indeed in (19). The last one is equivalent to
a(2c71)b71 > C0H€HC2 '
Inserting the latter inequality into (33) we achieve (32), which completes the proof. O

3.2. The main iteration and the proof of Theorem 2.1. Given the triple (Uo,po,éo)
provided by Lemma 3.1 we will construct inductively new triples (vq,pq, Ry), assuming the
estimates (10)-(16). Such iterative scheme will then lead to the following Proposition.

Proposition 3.2. There are positive constants M > 1, n > 0 and Cy such that the following
holds.

o Assume a < % and a,b and c satisfy

5 1
e> 50> 1 and oz max{an(s.0) Colellen Collel 5 | (10)
where ag depends only upon b and c. Then there is a sequence (vq,pq,}?q) starting
with the (vo, po, Ro) of Lemma 3.1, solving (1) and satisfying the estimates (10)-(16),
where §q and Ny are as in (17).
o If a € [%, %[ then the same as above holds if ¢ > max{%, 2(31__22%)}, b>1anda is

chosen large enough depending only upon ||€||cz, a, b and c.

In addition we claim the estimates
10:(vg — vg-1)llo < C8;°Ag  and  [|9e(pg — pg—1)llo < CgAg. (41)

Theorem 2.1 is a very easy consequence of the above Proposition and we give the argument
immediately. Proposition 2.2 is somewhat more involved, since in fact it needs the details of
the arguments of Proposition 3.2. For this reason we give the corresponding argument only
at the very end of the paper

o

Proof of Theorem 2.1. Let (vgq, pq, Rq) be a sequence as in Proposition 3.2. It follows then
easily that {(vg, py)} converge uniformly to a pair of continuous functions (v, p) such that (4)
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holds. We introduce the notation || - ||os for H6lder norms in space and time. From (10)-(13),
(41) and interpolation we conclude

logss = valloo < MO,y < Ca =112 (42)
1Pg+1 = pyllo2s < M 5q+1)‘2+1 < Ot b (43)

Thus, for every ¥ < %C, Vg converges in C¥ and Dg in C?. Now if a < , by Proposition 3. 2
we can choose any constants c>3 2 and b > 1, so we have convergence in C19 for every ¥ < 5.
Otherwise, if i < a < 5 we can choose any ¢ > 2(1722‘1) and b > 1, getting convergence for

any 9 < é:%g 0

The rest of the paper is devoted to prove the Proposition 3.2 and hence Proposition 2.2.
The concluding arguments will be given in the final section.

4. THE MAIN ITERATION

In this section we specify the inductive procedure which builds (vq+1,pq+1,]§q+1) from

(vg, Pg> éq). Many steps follow literally the same construction in [2] and we repeat them for
the reader’s convenience.

Note that the choice of the sequences {d4}qen and {Ag}qen specified in Proposition 3.2
implies that, for a > ag(b, ¢), we have:

S <200, 1Y 87N <2520, 25 <Z5/2<2 (44)
J<q J<q
Our inductive hypothesis together with Lemma 3.1 imply then the followmg set of estimates:

lollo <2M,  [luglh < 2M8*A,, (45)
1Rgllo < ngr1, (1Rl < Mgiihg, (46)
Ipallo <202, lpgllt < 20282, (47)
and
[ (Or + g - V)équ < M5q+15;/2)\q . (48)

4.1. v441 — vy as a sum of modulated Beltrami flows. We next recall the following two
important facts, whose proof can be found in [10, 2].

Proposition 4.1 (Beltrami flows). Let A > 1 and let A, € R3 be such that
Ak k=0, |Ag| = ==, A_p = A
for k € 73 with |k| = X\. Furthermore, let

By :Ak+z‘|Z| x Ay, € C*.
For any choice of ap, € C with ai = a_y, the vector field
= Z ayBre™* (49)
|k|=A
1s real-valued, divergence-free and satisfies
W?

div(W @ W) = Vi
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Furthermore

WoW):=4 WeoWdt=— a2<d k)
(WeWw) - ®@ W d¢ kZIkI |k|®|k‘ (51)

Lemma 4.2 (Geometric Lemma). For every N € N we can choose ro > 0 and A > 1 with
the following property. There exist pairwise disjoint subsets

Ajc{keZ: k=X je{l,...,N}
and smooth positive functions
VW) e C® (B, (1d))  je{l,...,N}keA;

such that
(a) k€ Aj implies —k € Aj and ’Yl(g 7 _ ,Y(le,
(b) for each R € By,(1d) we have the identity

1 ) k k
R=- (R Id — — VR € B,,(Id) . 52
kGAJ‘
The new velocity vy41 will be defined as a sum
Vg+1 = Vg + Wo + We,

where w, is the principal perturbation and w,. is a corrector. The “principal part” of the
perturbation w will be a sum of modulated Beltrami flows

wo(tax) = Z ak(tvx)¢k(t7m)BkeiAq+1k.x7

[k[=Xo

where Bje?a+1¥7 is g single Beltrami mode at frequency Ag+1, with phase shift ¢r, = ¢(t, )
(i.e. |¢| = 1) and amplitude ay = ai(t, z). In the following subsections we will define aj and

P

4.2. Space regularization of v and R. We fix a symmetric non-negative convolution kernel
(NS C’OO(R3) and a small parameter £ (whose choice will be specified later). Define v, := vg*1),
and Re = R * 1Py, where the convolution is in the x variable only. Standard estimates on
regularlzamons by convolution lead to the following;:

lvg — vello < CoM 6,274t (53)

IR — Rllo < CoM 8y41 g0 (54)
(where Cj is a geometric constant) and, for any N > 1,

vell v < CM 52007, (55)

IRellv < CM Sqpi gl ™Y, (56)

where C' is a constant which depends only upon N.
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4.3. Time discretization and transport for the Reynolds stress. Next, we fix a smooth
cut-off function y € C°((—2,3)) such that

474
d o= =1,
IEZ

and a large parameter u € N\ {0}, whose choice will be specified later.
For any [ € [0, | we define

— # -1 _ _ 2 -1
o= 32n)3 (e(lu ) (1 — 0g42) /11‘3 [vg|“(z, Ly )dx) .
Note that (18) implies
1 _ 1 _
3(%)36’([# (30441 = 0gi2) < pr < 3(2m)? e(ln™ ) (30q+1 — Fgt2)-

Recalling that b and ¢ are fixed, the condition a > ay(b,c) implies that we might assume
dgt2 < %5(14’-1. Thus we obtain

(;‘1%1 < Cj(mine)dgs1 < pr < Co(max e)dgs1 < 2C08q41, (57)
0

where Cj is (again) an absolute constant.
Finally, define R,; to be the unique solution to the transport equation

Qt—éé,l + v - Vof%e,l =0 (58)
Ré,l(l'v ﬁ) = R€($7 ﬁ) .
and set
Rg,l(.%', t) = plId — Rg,l(:t, t). (59)

4.4. The maps vg41,w,w, and w.. We next consider v, as a 2mw-periodic function on R3 x
[0,1] and, for every I € [0, u], we let ®; : R? x [0,1] — R? be the solution of

0P +vp- VO, =0
(60)
Oy(z,lp~t) = 2.

Observe that ®;(-,t) is the inverse of the flow of the periodic vector-field vy, starting at time
t = lu~! as the identity. Thus, if y € (27Z)3, then ®)(z,t) — ®)(z + y,t) € (27Z)>: ®(-,t)
can hence be thought as a diffeomorphism of T3 onto itself and, for every k € Z3, the map
T3 x [0,1] 5 (z,t) — ePa+1k 2@ g well-defined.

We next apply Lemma 4.2 with N = 2, denoting by A® and A° the corresponding families
of frequencies in Z?, and set A := A° + A°. For each k € A and each | € ZN|0, u] we then set

alt) = x(u(t = ). (61)
CLkl({L',t) = \/ﬁ’yk (REJ’E;LW) s (62)

w7, ) = agy(x, t) Bre otk @), (63)
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The “principal part” of the perturbation w consists of the map

wo(z,t) := Y xiwuz,t)+ D xi®)wp(z,t). (64)

l odd,keA° | even,ke A€

From now on, in order to make our notation simpler, we agree that the pairs of indices
(k,1) € A x [0,p] which enter in our summations satisfy always the following condition:
k € A° when [ is even and k € A° when [ is odd.

It will be useful to introduce the “phase”

¢kl(xat> _ ei)\q+1k.[¢)l(:c7t)—x}, (65)
with which we obviously have
¢kl . ei)\q+1/€~$ — ei)\q+1/€~q>l.
Since Ry; and ®; are defined as solutions of the transport equations (58) and (60), we have
(O +v-V)aw =0  and (8 + v - V)eParth i@t — ¢ (66)

hence also
(875 + vy - V)wkl =0. (67)

The corrector w, is then defined in such a way that w := w, + w, is divergence free:

. kxB -
We 1= Z X curl (zaklgﬁkl k) girarika
kl

Ag+1 |[?
' kX By ;
_ ZXZ( " Vay — aw(D®, — Id)k) x B K pidg ket (68)
— "\ i1 ||
Remark 2. To see that w = w, + w. is divergence-free, just note that, since k- By, = 0, we
have k x (k x By) = —|k|?>By and hence w can be written as
1 kX By ;
w = > xicurl (mkl b o - ’fezmlk-x) ‘ (69)
a1 57 ||

For future reference it is useful to introduce the notation

k‘XBk

1

Ly == ap B + ( Vag — akl(D(I)l — Id)k:) X 5 (70)
Agt1 ||
so that the perturbation w can be written as

kl

Moreover, we will frequently deal with the transport derivative with respect to the regularized
flow vy of various expressions, and will henceforth use the notation

Dy :=0;+wvp- V. (72)
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4.5. Determination of the constants n and M. In order to determine 7, first of all recall
from Lemma 4.2 that the functions ay; are well-defined provided

— = Id’ <7 )
Pl

where g is the constant of Lemma 4.2. Recalling the definition of Ry; we easily deduce
from the maximum principle for transport equations (cf. (153) in Proposition D.1) that
| Reallo < ||R]lo. Hence, from (14) and (57) we obtain

R _ _
’“—Id‘ <C—— <20y,
2 mine
for some geometric constant C' and thus we will require that
— TO
20n < —.
=7

The constant M in turn is determined by comparing the estimate (10) for ¢ + 1 with the
definition of the principal perturbation w, in (64). Indeed, using (61)-(64) and (57) we have

wollo < C|A|(max 6)61/2 < 2C~'|A|61/2 for some geometric constant C'. We therefore set

q+1 q+1
M = 4C|A],
so that
lwolly < 07 - (73)

4.6. The operator R and the Reynolds stress. Following [10], we introduce the following
useful operator to “invert” the divergence and define the new Reynolds stress R,y1.

Definition 4.3. Let v be a smooth vector field. We then define Rv to be the matriz-valued
periodic function

Rv:= 1+ (DPu+ (DPu)") + 2 (Du+ (Du)") — S (divu)ld,

where u € C*(T3,R3) is the solution of

Au—v—][ v in T3
TS

with fT3 u =0 and P is the Leray projection onto divergence-free fields with zero average.
The key point is the following lemma: for its elementary proof we refer the reader to [10].

Lemma 4.4 (R = div™!). For any v € C®(T%,R3) we have

(a) Ru(x) is a symmetric trace-free matriz for each x € T3;

(b) divRv = v — fr3 0.

We next set
Ry1 =R+ R'+ R*+ R*+ R+ R° + RS,
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where
R® = R (0w + vy - Vw + w - V) (74)
R' = Rdiv (wo @wo— > X7 Res — ‘w§|21d> (75)
l

76
7
78
79

R2:wo®wc+wc®wo+wc®wc_|wc|2+2wld
R = w® (v = vg) + (v — v) @ w — Ay
R'=R,— Ry

(

(

(

R° = "x{(Re— Ryy) (
l

)
)
)
)

RS = R((—A)aw). (80)

Observe that }O{q_i'_l is indeed a traceless symmetric tensor. The corresponding form of the
new pressure will then be
2
w 1 2 2
port = 20— L~ 20 — 2oy ). (1)
Recalling (59) we see that >, x7tr Ry, is a function of time only. Since also >, x7 =1, it
is then straightforward to check that

div Rq-&-l = Vg1 — (=A) g1 =
= yw + div (v, © W+ W @ vy + w ® w) + div Ry — Vp, — (—A)%,
= Oyw + div (v @ W + W @ vy +w @ w) 4 Opvg + div (v ® vy)
= Ogvg41 + div (Vg1 ® Vg41) -
The following lemma will play a key role.

Lemma 4.5. The following identity holds:

wo ®wo = Y Xi Rey + > XIXU Wkl @ Wiy - (82)
. (), (7 17 ek

Proof. Recall that the pairs (k,1), (k',1") are chosen so that k # —k’ if [ is even and I’ is
odd. Moreover x;xy = 0 if [ and I’ are distinct and have the same parity. Hence the claim
follows immediately from our choice of aj; in (62) and Proposition 4.1 and Lemma 4.2 (cf.
[10, Proposition 6.1(ii)]). O

4.7. Conditions on the parameters - hierarchy of length-scales. In the next couple
of sections we will need to estimate various expressions involving v, and w. To simplify the
formulas that we arrive at, we will from now on assume the following conditions on g, Ag4+1 > 1
and ¢ < 1:

1/2

P W 54\ 1 _ 18
<1, A <Ax? and — <-4 83
52 10 gy — 7 A1 — p (83)

q+1
where 3 is a small positive exponent which will be specified only in the final section.
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These conditions imply the following orderings of length scales, which will be used to
simplify the estimates in Section 5:
<

1

1
1
5qf1)‘q+1 a

1 1 1

< .
B (5;/ Ay Ag+1 Ag

(84)

5. ESTIMATES ON THE PERTURBATION

The following lemmas are taken directly from [2], see Lemmas 3.1 and 3.2 therein. A
simple inspection of the proof given there show the dependence of the constants claimed
below, which differ slightly from [2] where the same constants are depending upon the energy
profile e. Indeed, a simple inspection of the proofs in [2] shows easily that, because of the
time discretization introduced in Section 4.3 the constants do not depend on the derivatives
of e, but only on min e and maxe: here we can forget about such dependence because of the
assumption % <e<I1.

Lemma 5.1. Assume (83) holds. Fort in the range |ut — 1| < 1 we have

[D®]ly < C, (85)
67\
|D®; —1d[[, < C qﬂ 1, (86)
52\
| D\ < C’W, N>1. (87)

where the constants in (85) and (86) are absolute constants, whereas C in (87) depends only
upon N. Moreover,

1
laally + 11 Zully < C82 (88)
lawlly < €87 ALY, N>1 (89)
|Lially < O8N, N>1 (90)
N
5;/2/\11 5;/2>‘q)‘q+1
[nill y < CAqHW +C I
N(1-8

<ol N >1, (91)

where again the constants in (88) and (89) are absolute and the ones in the other two estimates
depend only upon N.
Consequently, for any N >0

1/2 5;/2)\(1

lwelly < €851 =200 0, (92)
M 1 1 —
lwolly < G051 2041 + O8N, (93)
1
lwolly < O35 A% N >2 (94)

where the constants C's depend only on N.
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Lemma 5.2. Recall that Dy = 0y + vy - V. Under the assumptions of Lemma 5.1 we have

| Dyvel|l v < CoALTY, (95)
DiLylly < €572 622,07V 96
g+1%q 4
D2Lyllny < C82 6, 067N 97
t q+1%q
Dywel|y < 82,8 2A N, 08
N q+1% MaNg+1
| Dewo ||y < C(S;flﬂ)‘é\g-l ) (99)
where the constants depend only upon N.
6. ESTIMATES ON THE ENERGY
Lemma 6.1 (Estimate on the energy). For any ¢ > 0 we have
/ Sq1164° A
(01 = 6y42) = [ TugnaPan| < 110 4 001t 2o
T3 H
51/215;/2)\ )\2a+56a+£
poPe 20y N (100)
q

where C' is an absolute constant.
The proof of Lemma 6.1 is similar to the one of the analogous Lemma 4.1 in [2]. However
we include the proof for the reader’s convenience because:

e the additional dissipative term alters the argument at a certain point;
e we need the specific dependence of the estimates upon the energy profile e, which in
[2] is not taken into account.

Proof. Define

Using Lemma 4.5 we then have
[wol> = " xtr Rey + > XXV Wi * W1
l (L), (K7 7)o !
= (2m) e+ > XiXk Q1 Ot G gy € R (101)
(kvl)»(k,7l,)7k7é7k,

Observe that € is a function of ¢ only and that, since (k + k') # 0 in the sum above, we can
apply Proposition G.1(i) with m = 1. From Lemma 5.1 we then deduce

541104 81\
/ wo? da — e(t)| < =% 24 oZatla (102)
T3 H Ag+1

Next we recall (69), integrate by parts and use (88) and (91) to reach
5.2 64
T3

103
- (103)
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Note also that by (92) we have

01104 Aq

/ |we|? + |wew,| dz < C
T3 H

Summarizing, so far we have achieved

‘/ [vg1/? d:v—< / |vq|2dx>

(104) 5.2 647 12
< / |wol? da — &(t )’ IPORCER SN PSR R L M
T3 Ag+1 K

(103) 5.2 64
/ |w|* dx — e )‘ 4ottt
Ag+1

1 1
(122) Céqfléqh)\q n C5q+15;/2)‘q ‘

q+1

Next, recall that

=302m)* ) xim
!
= (1 = dg12) ZX[G ZXl/ |og(, ™) dac.
on the support of x; and since Y, x? = 1, we have
l
- e ()
. K
Moreover, using the Navier Stokes-Reynolds equation, we can compute
) t
/ (’Uq(m )1 = |vg (. 1u™)] ) dx:/ / Orlvg|*
T3 L 3
/ / div (vg (Jvg]* + 2pg) —1—2/ / Vg - dlvR —2/ [(—A)2 )2
T3 L /T3
:—2/ qu —2/ / [(=A) 30,2
1
m

Since |t — ﬁ| <p !

< [le'llop "

Thus, for |t — ﬁ’ < 1! we conclude
S 51/2)\ )\2a+25a+a
|vg (2, )]? — ‘vq(gzc,l,u_l)‘2 dz| < 2419 +C-2 .
T K 12
Using again ) X12 = 1, we then conclude
’ 5 (51/2>\ )\20¢+55a+5
() (1~ Gy12) (e(t) + [ \vq<x,t>|2dx) <lello | pdenidih | o
T3 H

17

(104)

(105)

(106)
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The desired conclusion (100) follows from (105) and (106), indeed by triangular inequality

6@ﬂ1—%HW—AJ%HP¢KSfﬁﬂl—%w)—(dﬂ+A;WA%ﬂﬁm>‘

/ 54104\
+ ’/ |Uq+1’2 dr — <é(t) _|_/ ‘Uq’2 dx)‘ < He HO +C q+19q “\q
T3 T3 H K

1 1
028Ny A2ategacte

7. ESTIMATES ON THE REYNOLDS STRESS

In this section we bound the new Reynolds Stress }OEQH. The bounds for the tensors
RV, ... R are essentially the same as in [2], with the only exception that we have kept track
of the dependence of the constants appearing in the estimates.

Recalling the definition R® = R((—A)%w) of the dissipative part of the error we can easly
guess why we have the restriction a € (0,1/2) with the following heuristic argument. The
oscillations of the map w ~ 5;f1 are driven by the parameter A;11. The two operators R and

(—A)* are differentials operators of order —1 and 2« respectively, so the heuristic gives us
RS ~ 6;421)\2?& !, so that if o < 1/2 we can make R® ~ §,,2, which is the condition required
for our inductive scheme.

Proposition 7.1. For any choice of small positive numbers € and B, there is a constant C
(depending only upon the latter parameters) such that, if pu, Agy1 and £ satisfy the conditions
(83), then we have

S 8.7 600

1 1 1 +1
R%lg + ——||R%|y + =||D;R°||p < -1 4 4 107
IR AqHH I+ 21D VST (107)
1 8,102 NE
IR lh + = DiRY||p < 121 “a%akL (108)
e %
1 8,162\
\meu—me+jWﬁ%éC£%%i, (109)
1
1B lo + y— umm+;wmﬁm<0@ﬁW%z (110)
4 4 1 4 5Q+1 5;/2 /\q
IR o+ —— Ry + L DR o < €222 4 o5 e, (111)
Ag+1 1 I
1 8,162\
IR Il + = | DR |jg < C-HEL 20 (112)
1% 1%
/2 \2a+te
1
HR%+A RS DR < ¢ (113)



ILL-POSEDNESS FOR IPODISSIPATIVE NAVIER-STOKES 19

Thus
0 1 o 1 o
[ Rg+1llo + )\7“||Rq+1||1 + ;HDthHHo <
q
114)
52 Sai10dP AN 5.2 5o\ 5.2 \2ote (
<C ( ;j_lf + 2 qﬂ AT WA e+ 0 q“uq“ :
q+1 g+1H
and, moreover,
10:Rys1 + vgi1 - VRgy1llo <
XTI WY *ab WO\ 572 5.\ 52 \20te
1 +1 q+19%q Ag\g+1 1 +1Y%9"q +17q+1
< qufl/\q-ﬂ ( ;\1175 - L : +5qf15;/2)‘q€+ ;I\lfsﬂg +C-— - (115)
q+1 q+1

As in the previous sections, all the constants C appearing in the estimates are absolute con-
stants.

Proof. The arguments for the estimates (107). (108), (109), (110), (111) and (112) are the
same as those of [2] for the same estimates claimed in Proposition 5.1 therein. We therefore
give the proof only for the remaining ones.

Estimates on RS. Since (—A)% and the operator R commute, the idea is to obtain an
estimate for both ||Rw||o and ||Rw||; and then interpolate

I(=A)*Ruwllo < C[Rw]za+e < Cf|Rwllg™** =" [Rwl[***. (116)

Remember that
w= Z XlLqusklei)\q+1k-x — Z Bklei)\q+1k-x.
k,l k,l
First of all observe that

[Buly < O8N + 6,2 a00 ) < oo ANEP), (117)

thus from Proposition G.1 we get, choosing N such that N3 > 1

1 1 1
[Rwllo < C<>\1_5”Bkl”0 + F[Bk:l]N + /\N[Bkl]N+e>

q+1 q+1 q+1

5.2
< O< T 5T 61/21A€_N5_55> <N W9

Al;i q+17g+1 q+17q+1
q
Analogously we get
1
[Rwlly < 05/ (119)
Combining (118) and (119), by interpolation we get
|(=2) Rullo < Co /5 N7+, (120)
Similarly, with analogous estimates on |[Rw||2 and again by interpolation we easily conclude
1
I(=A)*Ruwly < €87, 027° (121)

Estimates on D;R°. Since (—A)® and D; = d; + vy - V do not commute, we have

Dy(—A)*Rw = (—~A)*D;Rw — [(—=A)*, Dy|Ruw. (122)
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For the first term (—A)*D;Rw we proceed, as usually, by estimate D;R in C° and in C!
and using interpolation. First we compute

Dyw =Y (OixiLii + xaDiLyt)pre 157 = " Byeratihe,
K Kl

‘We have that

/ 1 1 1
1Biallo < pll Liallo + 1DeLiallo < C(nd,y + 6,/¢1072Aq) < CudJEy. (123)
and similarly, VN > 1
/ 12 \N(1—
|Blly < Cus/2ag ™. (124)

Using the usual commutator structures we have

DiRw =) [vr, R] (DBkzei’\‘?’*lk'w) + iAg41[ve - k, R] (Bklei)‘qﬂk'z) n R(Bl::lei)\ﬁlkm)'
kl
By Proposition G.1 and choosing N sufficiently large we have

HR(B;ZGD‘WA/?-I) < O<||Ble0 + HBleN + ”BleN-l-E) < CM51/2 )\—1
0

l—e — q+ q+1>
)\ )\N 1> )\N
and moreover from PropOSi( ion G2

(125)

q+1 q+1 q+1

[ve, R] (DBklqu“k'x> H < CX 3D Brallolvella
0

_ 1 _
+ C)\Z+J1V<HBkz||N+eHWH1+s + HBle1+aHWHN+e> < Cuiﬁl/\qil- (126)

It is not difficult to see that the same estimate holds also for the last term, i.e.

a+

iXgr1[ve -k, R (Bkzemq“k'x)

< Cus i} (127)
0

indeed we do not have any derivatives on By, but we have an extra factor A\;yi. Thanks to
(125), (126) and (127) we conclude

IDRuwllo < Cpdi/ AL (128)
and, analogously,
IDRw|)i < Cus)f?,. (129)
Thus from (128), (129) and by interpolation we conclude
« 1 ate—
I(=A)° DyRuwlly < CpoF A2 (130)

It remains to estimate [(—A)%, Dy]Rw. Notice that in this commutator we have the obvious
cancellation of the time derivative term, so

I[(=A)% Di]Ruwlly = [[(=A)*(ve - V)Rw — vg - V(=A)*Ru||
< Oll(ve - V)Rwllg 2= [(vg - V)Rw]{*T 4 [Jugllo][(=A)* R
< C|l(ve - VYRuw|[§7207 (v - VR34 + Mo, 25, (131)
but since
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1
I(we - VYRwllo < [loello|Ruwll < €% X1,

and

1 1 c 1 e
[(ve - V)Rl < ot Rawlly + [Ruwlls < C8/2 A8,/ N0 + C/2NGET < 02060,

we have that

(0% 1 (0% i)
I[(=2)%, DRwlly < €8,/ 221 (132)

Putting together (130) and (132), since p < Aj41, we finally conclude
1 «
1D RSlg < €6,/ N297°.

1 1
g+l T B

Now (113) follows since, again, by our choice of the parameter,

Remark 3. In estimating [(—A)®, DiRw we did not exploit its commutator nature since an
improvement of the coarse estimate above would not lead to a better result (in fact the term
)\(2104+653z+5

m in the energy estimate obstructs the usefulness of any better bound on R®).

Conclusion. (114) is an obvious consequence of the estimates for the terms R°, R', ... RS.

To achieve (115), observe that
10 Rq 11 + vg11 - VRgpallo < 1 DeRallo + (lvg41 — vello + [[wllo) [ Bgall1 -
On the other hand, by (53) and (83), |lvg+1 — vello < C&;/QAqK < 5;&1. Moreover, by (73),

(92) and (84) [|w|| < ||wollo + [Jwello < C(S;fl. Thus, by (114) we conclude

10: g1 + vg11 - VRgiallo < C (M + 5;/j1)\q+1>

1 1 1 1 a
5qf1” 5q+15q/2)‘q>‘2+1 52 512 g 5qfl‘5q)‘q C5q/+21/\§ﬁs
)\1—5 + + q+1%q q + )\1—8 Y] +
q+1 H qJ,»]_/'l’
Since by (84) p1 < 6,/51A¢11, (115) follows easily. O

8. PROOFS OF PROPOSITION 3.2 AND OF PROPOSITION 2.2

8.1. Choice of the parameters p and /. In order to proceed, recall that the sequences
{04}qen and {Ag}4en are chosen to satisfy

_ +1 +1
dg =a bq, a® < Ag < 2a°"

for some given constants ¢ > max(%, %) and b > 1 and for a > 1. Note that this has the
consequence that if a is chosen sufficiently large (depending only on b > 1) then

2
g1 < 0q and Ay < AT (133)

1/a\1 2 \1/5
52N/ < 8/ g1

q+17%q+1>

We start by specifying the parameters y = ug and ¢ = £,: we determine them optimizing
the right hand side of (114). More precisely, we set

= 86NN

q+1%q ¢ “‘q+1 (134)
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so that the first two expressions in (114) are equal, and then, having determined pu, set

ool c1/gy —1/4y —3/4
0= 0, 0 AAT N (135)
so that the third and fourth expressions in (114) are equal (up to a factor A7 ;). In turn,

these choices lead to

T2 y2a+e
o 1 o 3 —1 3 -3 1 1
[ Rgs1llo + EHRq+1||1 < OSSNSO 6NN c%
3/4 12 y2a+te
_ 5\ 52
— C52ﬁ15;/4)\;/2>\2+i/2 14 ( 1;12 ?/3 L0 q-&-lluq-l-l
5q+1)‘q+1
(133) B 5./ \2ote
< OIS ¢ C% . (136)
Observe also that by (115), we have
° © 1 3 1 1/21)\204?1[»8
[0 Rg+1 + vg+1 - VRgtalo < C5qf1)\q+1 (5(1615;/4)\;/2)\;1/2 + ﬁf) : (137)

Let us check that the conditions (83) are satisfied for some § > 0 (remember that § should
be independent of ¢). To this end we calculate

5 1
5;/2)\q£ _ ( 531/2>‘Z/5 > /4 5;/2)\(1 _ ( 5(1/2)\(1 ) /2

1 1 3 1
5qf1 5q{i1>‘q{&5-1 a 5qfl)‘Q+1
1 1/a 1/2
1 _ ( 511421)“1 ) H _ ( 5;/2)‘61 )
1 ) 1 - 1 '
g1 5q/2/\q+1 5qf1)‘q+1 6qf1)‘Q+1
" . b—1
Hence the conditions (83) follow from (133) choosing 8 = 5.
8.2. Proof of Proposition 3.2. Recall that ¢ > max{3, 25’1122%)} and b > 1. We also keep

the small positive parameter € > 0 whose choice will be specified later. The proposition is
proved inductively. The initial triple is defined to be the triple (vg, po, Rp) derived in Lemma
3.1 (observe that, since (¢ — 1)b — 3 > 1, (40) is stronger than (19)). Given now (vg, pg, Ry)

satisfying the estimates (10)-(16), we claim that the triple (vg41,Pg+1,Rq+1) constructed
above satisfies again all the corresponding estimates.

Estimates on }quﬂ. Note first of all that, using the form of the estimates in (114) and
(115), the estimates (15) and (16) follow from (14). On the other hand, in light of (136), (14)

follows from the recursion relations

063/4 51/4>\111/2)\2jri/2 < g(Sq+2,

q+17¢q
51/2 N\2o+e
CCIHT‘I“ < g(gqﬁ'

Using our choice of 6, and A\, from Proposition 3.2, we see that the first inequality is equivalent

to

C < a%bq(1+3b—20b+(20—4—4ac)b2)

9



ILL-POSEDNESS FOR IPODISSIPATIVE NAVIER-STOKES 23

which, since b > 1, is satisfied for all ¢ > 1 for a sufficiently large fixed constant a > 1,
provided

(14 3b—2cb+ (2c — 4 — 4ec)b?) > 0.
Factorizing, we obtain the inequality (b— 1)((2c —4)b— 1) — 4ecb? > 0. It is then easy to see
that for any b > 1 and ¢ > 5/2 there exists € > 0 so that this inequality is satisfied. In this
way we can choose € > 0 (and [ above) depending solely on b and c¢. Regarding the second
recursion relation, it is equivalent to

b9 (—b2+31b—(2a+e—1)cb?—L+1ch
C < 10— (2ate—3)c 426)’

Thus, evaluating the exponent in b = 1, we have that the last inequality holds (choosing b
sufficiently near 1) for every ¢ > #a-s-a (note that 1—2104 = < 23(13(20;—2)) for every a < 1/2 and
e sufficiently small). We can then pick a > 1 sufficiently large so that, by (136) and (137),
the inequalities (14), (15) and (16) hold for R,41. Note that in all these requirements, the

energy profile e is not playing any role.

Estimates on vy — vg. By (73), Lemma 5.1 and (83) we conclude, for a sufficiently large,
1 M _
v = vl < ool + el < 8% (5 + 3571 ) (138)
1 M _
o = vl < ool + el < 85000 (5 + 403 ) - (139)

Since Ag+1 > A > a® >1and M > 2, we conclude (10) and (11).

5,206° g _ 67

Estimate on the energy. Recall Lemma 6.1 and observe that, by (83), ‘”;qzl 1< quf
So the right hand side of (100) is smaller than

H€/H0 8/a Ajax1jpr—1/a 53-}—5)\2«1—&-5

=R O8NP+ C

[ [

The term 052616;/4)\;/2)\;/12 is the same (up to a factor A ) of the first term in the estimate
for .éq+1 Thus, the argument used above also gives Cd;ﬁléé/ 4)\;/ 2)\;312 < 5%26(75) . Moreover

it turns out that, for b sufficiently near 1

gate )\20¢+5 5
fon q < q+2 e(t)
7 16
for any ¢ > 2:%(;3(;;?6)) > 25’11220;). Regarding the last term @ we have to require that (using

the definition of u)

e AT eSStV Y Wt e NP

q+1"q q q+17g+2 = HG/HO' (140)

The last inequality surely holds if we take the constant a sufficiently large, more precisely
a>Cléllo (141)
is certainly sufficient.

Estimates on pgy1 — pg. From the definition of py41 in (81) we deduce

1
1Pg-+1 = pallo < 5 ([lwollo + lwello)? + Cllvgll1|lwllo
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As already argued in the estimate for (10), ||w,| + [Jw.| < M(S;/Q. Moreover C/l||vg|]1||w|lo <

CM 5;6152/ 2)\q€, which is smaller than the right hand side of (114). Having already argued

that such quantity is smaller than 70442 we can obviously bound C?||vg||1||w]|o with MTZ(SQH.
This shows (12). Moreover, differentiating (81) we achieve the bound

1
g1 = Pallt < (lwolls + llwell)([lwollo + lwello) + €8, 18 A Aq 116

and arguing as above we conclude (13).
Estimates (41). Here we can use the obvious identity 0;wy = Dywg—(vq)¢- Vw, together with

Lemmas 5.1 and 5.2 to obtain ||0ivg+1 — Opvgllo < C’(S;/jl)\qﬂ Then, using (44), we conclude

19¢vgllo < C8Y°Aq.
To handle O;pg+1 — O¢py observe first that, by our construction,
10:(pg+1 = Pg)llo < (lwello + [lwollo) ([[Oswello + [|9wollo)
+ 2[|wllolGrvgllo + £llvgll1 | Orwlfo -

As above, we can derive the estimates ||0yw,||o + ||Orwe|o < Cé;{ilAq_A,_l from Lemmas 5.1 and
5.2. Hence
104 (pasr = po)llo < Odadgin + COLL G g + COL N/ M (142)

Since ¢ < >\q_1 and 5;/ 2)\q < 5;f1Aq+1, the desired inequality follows. This concludes the proof.

8.3. Proof of Proposition 2.2. First, we set up the same iteration as above and for each
energy profile we create a corresponding sequence (ve,q, Pe.q, ]O%w) so that (veq, De,q) converges
uniformly to (ve,pe). However, we choose the d, and A, “universally” for all energy profiles
e € &: it suffices to notice that we just need to replace the |le]|c1 and |le||c2 in (40) with Ey

and FEs. In particular, we fix the same b and c for every e € & and we choose a as

1

a = max {ao(b, C), C()El, CoEQ(QC_I)b_l } (143)

We then choose the starting triple (Ve,0, Pe.0, Io%eyo) as in the proof of Lemma 3.1 but where we
define the parameter A as

A= Cy max{aﬁ,Elab,Ega_(c_l)b+1/2} (144)

rather than by (33). In particular this means that, since e(0) and €’(0) are independent of
e € &, the velocity veo and the Reynolds stress 132670 have the same initial value v (-,0)
and }?670(-,0) for every e € &. Following then the inductive construction of the triple
(ve,q,peyq,}?e’q), it is straightforward to conclude that each v g41(-,0) and ée7q+1(‘70) de-
pend only upon the vg.(-,0), }?q,e(-, 0) and e(0), hence concluding that such values are also
independent of the chosen e € &. Passing to the limit such information we conclude that
ve(+,0) is independent of e € &, namely each v, takes the same initial data.

Coming to (6), assume a < % and first of all observe that we can use the same argument
as in the proof of Theorem 2.1 to conclude that ||[v — vg||ga+e < Cp provided e is sufficiently
small. Moreover, the argument of Lemma 3.1 gives the corresponding estimate

. cb—1/2
lvo]|cr < max {al—Za,abEl, By }
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We can thus estimate

]| cat+e < Co + |Jvollgat+e < Co + Collvol|$Te
b cb—1/2 a+te
< Cy <max {am’abEl’Eézc_l)b_l })

where Cj is a geometric constant. Now, observe first that
cb—1/2 2
S — % — s
(2c—1)b—-1 3

asb—1and c — % Thus choosing ¢ — % and b — 1 suitably small we can achieve

(ate)b 4ol 20+de
lv]|cate < Copmax < a 1-2a 7a(oc bpe B, s ‘

Note next that

. a+te a
lim =
e—=01 — 2« 1 -2«
whereas
(a+¢e)b o
(c—1)b—1/2
ase —0,c— % and b — 1. Moreover 2a > =%, because a < %
Similarly,
(a+e)b o 200 + 4e
— < .
(1 —-20)((2¢—=1)b—1) 3(1-2a) — 3

Thus we conclude
9 2a+4e
|v||cate < Comax < a® > E} E, ? ,

provided €, ¢ — % and b — 1 are sufficiently small. Inserting now the choice of a in this last

inequality (and again choosing the parameters b — 1,¢ — % and ¢ appropriately small) we
conclude

a+2e 20t4e
[v|lcate < C(aye) max{Efa”f,E2 5 EYE, 3 }

2a+4e
< C(o,¢) ma:x;{E%O‘H&,E2 3 } .
This shows (6) and completes the proof.

APPENDIX A. PROOF OF THEOREM 1.1

We first consider the operator Px : L(T?) — L?(T3) which truncates the Fourier series of
each function f € L?(T3):

Pi(f)(x)= Y fue™”
|k|<K

and we extend it to vector functions by applying it to each component. Observe that the
operator commutes with the derivatives.
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We then consider the regularized Cauchy problem:
Ow + divPg(w @ w) + Vg + (—A)*w =0

divw =0 (145)

w(-,0) = Pg(vo) .

The latter reduces to a system of ordinary differential equations for the Fourier coefficients

of the solution
w = Z by (1) e
|k|<K
ensuring local well-posedness. On the other hand, if we scalar multiply the first equation by
w and use Plancherel’s theorem, we easily see that

L e tyde=—2 [ |(—A)Pwl(a, ) de,
dt TS ’]I‘S

proving therefore that any solution stays bounded in L? in its interval [0, T of existence.
This, by a standard continuation argument, proves that the system of ODEs for wy(t) has
a global solution on R™, namely that (145) is globally solvable. We let wy be such solution
and observe therefore that

t
1/ \lez(x,t)dt—i—// \(—A)a/QwK\(x,s)dxds:l/ 1P (v0) (2)| da
2 Jr3 o Jrs 2 J3

<2 [ o) de.

2 T3
Let K € N: the sequence {wg }ken is thus bounded in L?(T? x [0, T7]) for every T and we can
extract a subsequence, not relabeled, so that wx — v in L?(T? x [0,T]). With a standard
diagonal argument we can then assume that such convergence takes place on every T3 x [0, T].
We now wish to show that in fact the sequence converges locally strongly, which would show

that v is a Leray solution.

Since we have a uniform estimate for wy in L?(R*, H*(T3)) and H%(T?) embeds compactly
in L?(T3), the proof follows a classical Aubin-Lions type argument. First of all, by Sobolev
embeddings, |wk||p2m+ o3y < C for some B > 2. Hence, by interpolation with the

L (R, L?) bound, we have also lwil| L (13 x[0,00)) < C for some exponent 7 > 2
Let us fix T' > 0 and define

Ak,g = lwx — w23 x[0,17) -

Let € > 0 be given. We want to show that 3N € N sucht that Ax ; < ¢ for every K,J > N.
Fix a standard mollifier ¢ in the variable z and observe that

lwie (-, 8) — wi * @s(-, t)|| 22 < CO%Jwi (- )| e -
So, for § sufficiently small, we have that
€
||wK*g05—wK||L2(K)<§ VK eN.

Next, observe that
IPx(wrg @ wi)|[fe < C
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and, using the equation
—AqK = divdiv (PK(U)K ® wK))
for the corresponding pressure qx and Calderon—Zygmund estimates,
lgx g2 < C.
Thus, mollifying the equation for wyx we find

3
Owi * p5 = — Zfi,K * Oz, Ps — WK * (—A)awv

i=1
where the functions f; x enjoy a uniform L"” bound. Using the estimate ||¢ * @5 |lwt.oe 3y <
C ()|l /2 for each time slice, we easily conclude a bound of the form

T
/ |Bkwic * ps(, D)2 dt < C(5),
0

where C(0) is a constant depending upon § but independent of K.

So we can regard [0,7] 5 t — wr *ps(+,t) as a sequence of equicontinuous and equibounded
curves taking values in W1°(T3). Let Bg be a (closed) ball of W1°°(T3) so that the images
of wg * s are all contained inside it. If we endow Bp with the || - ||oc norm, then we have a
compact metric space X. Hence we can regard [0,7] 3 t — wg *@s(-, t) as an equicontinuous
and equibounded sequence in the compact metric space X. By the Ascoli-Arzela theorem
the sequence is then precompact. Since the limit is unique (namely v * ¢5), we can conclude
that the sequence wg * s converges uniformly on T3 x [0, T7.

Thus there exists N large enough such that

9
lwi * o5 — w. * sl p2crsxgo,my) < gfor all K, J > N.
Therefore, for J, K > N we have
lwie —wsllLeersxqo,m) < lwx — wi *@sll 2 xjor)) + Wk * o5 — wr * sl L2 (13 x]0,1))

+ [lwy —wy * sl L2rax 7)) <€-

This completes the proof of the strong convergence of wx and hence the proof of Theorem
1.1.

APPENDIX B. HOLDER SPACES

In the following m = 0,1,2,..., a € (0,1), and S is a multi-index. We introduce the
usual (spatial) Holder norms as follows. First of all, the supremum norm is denoted by
[ fllo := suppsjo,17 [ f|- We define the Holder seminorms as

[flm = max ID°]llo,

1B
DPf(x,t) — DPf(y,t
msa = mas sup 210 = D S(0.1)
|Bl=m T#y,t |:U - y|

)

where D? are space derivatives only. The Holder norms are then given by

£l = D _If1;

=0

[fllmta = 1fllm + [flmta-
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Moreover, we will write [f(t)]o and || f(t)|lo when the time ¢ is fixed and the norms are
computed for the restriction of f to the ¢-time slice.
Recall the following elementary inequalities:

[f]s < C(e" [ +°II fllo) (146)
forr>s>0,e >0, and

[falr < C([f1:llgllo + [1£1lolg]r) (147)

11
for any 1 > r > 0. From (146) with € = ||f||§[f]» © we obtain the standard interpolation
inequalities

1—5 8

[fls <Clifllo "If1F- (148)

Next we collect two classical estimates on the Hoélder norms of compositions. These are
also standard, for instance in applications of the Nash-Moser iteration technique.

Proposition B.1. Let ¥ : Q@ — R and u : R® — Q be two smooth functions, with Q C RN,
Then, for every m € N\ {0} there is a constant C' (depending only on m, N, n) such that

(@ o ul,,, < C((Wh[ulm + | DYl [ullg™ [uln) (149)
(Vo ul, < C([¥hifum + [[D¥|m-1[ull") . (150)
APPENDIX C. ESTIMATES ON THE FRACTIONAL LAPLACIAN

For a proof of the following theorem we refer to [18, Theorem 1.4]

1
Theorem C.1. (Interaction with Holder spaces) Let 0 < a < 3 If f € C%2Fe . for some
e >0 such that 0 < 2a+¢e < 1, then (—A)*f is a continous function and

[(=2)*Fllo < C(e)[f]2a+te-

Corollary C.2. Let a €]0,1[, € > 0 be such that 0 < a+¢ < 1, and let f : T3 — R3 as
before. There exist a constant C' = C(g) > 0 such that

[(=A)2f2(2)de < C[f1Z,.  Vfe€C(T%). (151)
T3

APPENDIX D. ESTIMATES FOR TRANSPORT EQUATIONS

In this section we recall some well known results regarding smooth solutions of the transport
equation:
8tf +v- vf =9,
{ fleo = fo, (152)
where v = v(t, x) is a given smooth vector field. We denote the advective derivative 9, +v -V
by D;. We will consider solutions on the entire space R? and treat solutions on the torus
simply as periodic solution in R3.

Proposition D.1. Assume t > tg. Any solution f of (152) satisfies

1£@)llo < Ilfollo + / lg(7)o dr, (153)
FO < [folet)lh 4 / e g (7)), dr (154)
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and, more generally, for any N > 2 there exists a constant C' = Cy so that

[f®)ln < ([fO]N + C(t - to)[U]N[fo]l)eC(t—to)[U]1+

N / LClt=m)ol: <[g(7)]N 4Ot - T)[v]N[g(T)h) dr. (155)

to

Define ®(t,-) to be the inverse of the flur X of v starting at time to as the identity (i.e.
%X =v(X,t) and X (z,t9) = x). Under the same assumptions as above:

1D (#) —1d] < el — 1, (156)
[@(8)]n < C(t — to)[v]yeCE YN > 2, (157)

The proof can be found in [2].

APPENDIX E. CONSTANTIN-E-TITI COMMUTATOR ESTIMATE

We recall here the quadratic commutator estimate from [6] (cf. also with [7, Lemma 1]):

Proposition E.1. Let f,g € C(T? x T) and 1 be the mollifier of Section 4.2. For any
r > 0 we have the estimate

|7 vagxve) = (Fg) x| < cIfIullglh,

where the constant C' depends only on r.

APPENDIX F. SCHAUDER ESTIMATES

We recall the following consequences of the classical Schauder estimates (cf. [10, Proposition
5.1]).

Proposition F.1. For any a € (0,1) and any m € N there exists a constant C (o, m) with
the following properties. If ¢,1 : T3 — R are the unique solutions of

Ap=f Ay =divF
fo=0 fu=0
then
[9llmt2+a < C(m, )| fllma  and  [[¢Y|lmi14a < C(m, )| Flma - (158)
Moreover we have the estimates
[Rv[lmt1+a < C(m, @) |[v|lm+a (159)
[R(div A)[[m+a < C(m, )| Allm+a (160)

APPENDIX G. STATIONARY PHASE AND COMMUTATOR LEMMAS

Finally, we will need the following stationary phase lemma (for a proof see [10]) and a
useful commutator estimate (for a proof see [2]).
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Proposition G.1. (i) Let k € Z3\ {0} and A\ > 1 be fived. For any a € C°°(T3) and m € N
< dm (161)

we have
izk-x
d
/11‘3 a(z)e x 3

(ii) Let k € Z3 \ {0} be fized. For a smooth vector field a € C®(T%R3) let F(x) =

a(z)e? . Then we have

C C C
IR(E)la < y3=zllallo + =g lalm + o lalmta, (162)

/\m—a
where C = C(a, m).

Proposition G.2. Let k € Z3\ {0} be fived. For any smooth vector field a € C(T3;R3)
and any smooth function b, if we set F(z) := a(x)e™**  we then have

116, RIF) o < A*[lallobll + CA"™ (fallm—1+allbl1+a + lallallbllm+a) (163)
where C = C(a, m).
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