ANALYSIS OF A DYNAMIC PEELING TEST
WITH SPEED-DEPENDENT TOUGHNESS

GIULIANO LAZZARONI AND LORENZO NARDINI

Abstract. We analyse a one-dimensional model of dynamic debonding for a thin film, where
the local toughness of the glue between the film and the substrate also depends on the debonding
speed. The wave equation on the debonded region is strongly coupled with Griffith’s criterion
for the evolution of the debonding front. We provide an existence and uniqueness result and
find explicitly the solution in some concrete examples. We study the limit of solutions as inertia
tends to zero, observing phases of unstable propagation, as well as time discontinuities, even
though the toughness diverges at a limiting debonding speed.

Keywords: Dynamic debonding; Wave equation in time-dependent domains; Quasistatic limit; Griffith’s
criterion; Dynamic fracture; Thin films.

2010 MSC: 35L05, 35Q74, 35R35, 74H20, 35B40, 74K35.

Introduction

In models of crack propagation in load-bearing structures, mathematical analysis is central in
showing well-posedness and approximation properties. Under the assumption that inertial effects
are negligible, quasistatic evolution was extensively studied, see e.g. [12, 9, 2, 11, 8, 11, 6], proving
existence of solutions in agreement with the theory of rate-independent processes [26]. Fewer
results were given in dynamic models, which are more intricate due to internal oscillations of the
material: in the sharp crack case [28, 4, 8, 5], one needs to prescribe a priori the crack path, as
well as in delamination models [29, 31, 30]. Other results deal with phase-field approximations,
see e.g. [18].

In the present paper we study a model of dynamic debonding, which can be regarded as a
simplified model of fracture as already observed in [13, Section 7.4]. More precisely, we consider a
thin film peeled from a rigid substrate where it is initially glued. Assuming that the process only
depends on one space variable and using a linearisation, we reduce to a PDE system consisting
of:

• the wave equation, satisfied in a time-dependent interval parametrising the debonded
 part of the film;
• a first-order flow rule, namely Griffith’s criterion, dictating the evolution of the debond-
 ing front.

The latter law is a threshold condition stating that the domain of the wave equation is non-
decreasing and may only grow if there is an equality between the dynamic energy release rate
and the local toughness of the glue. The strong coupling of the momentum equation with a
propagation criterion is typical of dynamic fracture; the peeling model analysed here is one of
the few cases where a complete mathematical solution can be found.

Previous studies of such one-dimensional problem concerned the analysis of particular cases
[10, 20], existence and uniqueness of solutions [7], and their quasistatic limit [19]. All of these pa-
ers assume that the local toughness only depends on the position in the reference configuration,
the most general case being a piecewise Lipschitz function with a finite number of discontinu-
ities (modelling composites). In the present paper we extend such results to a toughness also
depending on the debonding speed, i.e., on the time derivative of the position of the debonding
front.

In fracture models, toughness is insensitive to crack speed only for low speeds, while it in-
creases with the crack speed: this is due to inertial effects [25, Section 5.1.5]. In metals, the local
toughness features a sharp upturn at a limiting crack speed [23]. (Indeed, the crack speed is less
than the speed of sound in the elastic domain.) Notice that our results are compatible with as-
suming that the toughness blows up as the crack speed approaches the speed of sound. Thus we
give a theoretical validation of the aforementioned mechanical models, by means of an existence
and uniqueness theorem and of some examples where solutions are explicitly computed.

On the other hand, the toughness/speed relation may not be monotonic: this occurs e.g. in
polymers (PMMA, epoxy, rubber) and in peeling of polymeric adhesives [32]. Moreover, the
presence of regions where toughness decreases is observed in rate-dependent solids also when
inertia is negligible [17]. We are able to treat non-monotonic dependence of toughness with
respect to speed, provided its slope is bounded from below; this is compatible with experimental
laws. Oscillations in the toughness/speed curve are responsible of phenomena of arrest/fast
propagation and rule out steady growth. To account for this, one may include a dependence
on crack acceleration [24, 32, 14] which is not considered in our model and may be a further
development.

We refer to Section 1 for the statement of the problem and of our assumptions. It is possible
to see that Griffith’s criterion can be decoupled from the wave equation [7]; hence, the equality
between the dynamic energy release rate and the local toughness
\[\kappa \]
 reduces to an ordinary
differential equation for the debonding front \(\ell(t) \), of the form
\[\dot{\ell}(t) = F(t, \ell(t), \kappa(\ell(t), \dot{\ell}(t))) \],
cf. (1.11). Solving this ordinary differential equation is the first difficulty of the present paper;
in fact, it is not expressed in normal form, since the local toughness may explicitly depend on
the debonding speed \(\dot{\ell} \). In Section 2 we prove that \(\mu \mapsto F(t, \ell, \kappa(\ell, \mu)) \) is invertible for fixed
\(t, \ell \); in this step we use the assumption that the toughness/speed curve has slope bounded from
below (Lemma 2.1). We then need some careful estimates on the inverse of \(F \), based on the
assumption that the toughness has a Lipschitz dependence on \(\ell \) (Lemma 2.2). They finally allow
us to find a unique evolution \(t \mapsto \ell(t) \) satisfying Griffith’s criterion, by applying classical results
on ordinary differential equations (Theorem 2.3).

Once the existence and uniqueness result is established, in Section 3 we study the quasistatic
limit of debonding evolutions, i.e., the limit of the system for small loading speed. Up to a time
rescaling, this is equivalent to assume that inertia tends to zero and the speed of sound tends to
infinity (“vanishing inertia” limit). Therefore, one may expect that dynamic solutions converge
to a rate-independent evolution, as in damage models [31, 21]. However, such a convergence may
fail even for potential-type equations in finite dimension [27]. In fact, some counterexamples
[20, 19] show that in general the limit of dynamic debonding evolutions for slow loading does
not satisfy Griffith’s criterion in its quasistatic version, when the local toughness is independent
of the debonding speed.

In this paper, we first consider a local toughness given by
\[\kappa(\ell, \dot{\ell}) = \tilde{\kappa} + \gamma \dot{\ell}, \]
for \(\tilde{\kappa}, \gamma \) positive constants. In this case, Griffith’s propagation condition has the same form of the
corresponding equation in inertia-free fracture models with a viscous regularisation [16, 22]. In
the dynamic case, one may ask if the extra term \(\gamma \dot{\ell} \) favours convergence of the flow rule for slow
loading. We show that the answer is negative. Indeed, starting from certain initial conditions far from equilibrium, the dynamic solutions present alternation of phases of arrest and propagation; in the limit, they converge to a slow unstable transition that can be determined analytically and does not fulfil any notion of rate-independent evolution (see Example 1). The same phenomenon occurs if the toughness satisfies the physical assumption that
\[\kappa(\ell, \mu) \to +\infty, \quad \text{as } \mu \to c, \]
where \(c \) is the speed of sound.

The latter assumption penalises high debonding speed in dynamic evolutions. One may ask if it also prevents brutal propagations, i.e., time discontinuities, in the quasistatic limit. Once again, the answer is negative: this is shown in Example 2, for a local toughness with a discontinuous dependence on the position. We observe that a sudden decrease in toughness produces fast propagations, where the debonding speed is way smaller, but of the same order, than the speed of sound. As a consequence, the quasistatic limit features a jump of the debonding front in time.

Our results show that a dependence of the local toughness upon the debonding speed may be included in dynamic debonding models, under weak assumptions. However, it provides no regularising effects on the quasistatic limit. Understanding conditions that guarantee rate-independence for vanishing inertia will be matter of further investigation.

1. Dynamic peeling

We now describe the peeling model under consideration. The reference configuration of the film is the horizontal half plane \(\{ (x, y, z) : x \geq 0, \ z = 0 \} \), which coincides with the substrate where the film is initially attached. The deformed configuration is given by \((x, y) \mapsto (x + h(t, x), y, u(t, x)) \), where \(h, u \) are two functions; i.e., the displacement is \((h(t, x), 0, u(t, x)) \). The second component is fixed, thus the parametrisation reduces to one space dimension. See Figure 1.

![Figure 1](image)

Figure 1. The deformation of the debonded film is represented by its section, the curve \(x \mapsto (x + h(t, x), u(t, x)) \). The vector applied to the point \(x_0 \) in figure is the displacement \((h(t, x_0), u(t, x_0)) \).

We assume that the film is perfectly flexible and inextensible. The bonded part of the film is the half line \(\{ (x, y, z) : x \geq \ell(t), \ z = 0 \} \), where \(\ell(t) \) is a non-decreasing function representing the debonding front, with \(\ell_0 := \ell(0) > 0 \); i.e., \(h(t, x) = u(t, x) = 0 \) for \(x \geq \ell(t) \). At the endpoint \(x = 0 \) there is a time-dependent boundary condition on the vertical displacement \(u(t, 0) = w(t) \); the tension is fixed in such a way that the speed of sound in the debonded part of the film is constant (normalised to one).

By linear approximation and inextensibility, the horizontal displacement \(h \) is known through the vertical part \(u \):
\[h(t, x) = \frac{1}{2} \int_x^{+\infty} u_x(t, \xi)^2 \, d\xi. \]
In its turn, u solves the problem

$$u_{tt}(t, x) - u_{xx}(t, x) = 0, \quad t > 0, \ 0 < x < \ell(t),$$ \hspace{1cm} (1.1a)

$$u(t, 0) = w(t), \quad t > 0,$$ \hspace{1cm} (1.1b)

$$u(t, \ell(t)) = 0, \quad t > 0,$$ \hspace{1cm} (1.1c)

with initial conditions

$$u(0, x) = u_0(x), \quad 0 < x < \ell_0,$$ \hspace{1cm} (1.1d)

$$u_t(0, x) = u_1(x), \quad 0 < x < \ell_0.$$ \hspace{1cm} (1.1e)

Here we require that

$$u_0 \in C^{0,1}([0, \ell_0]), \quad u_1 \in L^\infty(0, \ell_0), \quad \text{and} \quad w \in \tilde{C}^{0,1}(0, \infty),$$ \hspace{1cm} (1.2a)

where

$$\tilde{C}^{0,1}(0, \infty) := \{ f \in C^0([0, \infty)) : f \in C^{0,1}([0, T]) \text{ for every } T > 0 \}.$$

We assume the following compatibility conditions:

$$u_0(0) = w(0) \quad \text{and} \quad u_0(\ell_0) = 0.$$ \hspace{1cm} (1.2b)

1.1. The wave equation. In order to make precise the notion of solution of problem (1.1), we assume for the moment that the evolution of the debonding front is prescribed. Fix $\ell: [0, \infty) \to [\ell_0, \infty)$ Lipschitz and such that

$$0 \leq \ell(t) < 1, \quad \text{for a.e. } t > 0,$$ \hspace{1cm} (1.3a)

$$\ell(0) = \ell_0.$$ \hspace{1cm} (1.3b)

Moreover, we set

$$\Omega := \{(t, x) \in (0, \infty) \times (0, \infty) : 0 < x < \ell(t)\},$$

and, given any $T > 0$,

$$\Omega_T := \Omega \cap \{t < T\}.$$

Let

$$\tilde{H}^1(\Omega) := \{ u \in H^1_{loc}(\Omega) : u \in H^1(\Omega_T), \text{ for every } T > 0 \},$$

$$\tilde{C}^{0,1}(\Omega) := \{ u \in C^0(\Omega) : u \in C^{0,1}(\Omega_T) \text{ for every } T > 0 \}.$$

Definition 1.1. We say that $u \in \tilde{H}^1(\Omega)$ (resp. $u \in H^1(\Omega_T)$) is a solution to (1.1) if $u_{tt} - u_{xx} = 0$ holds in the sense of distributions in Ω (resp. in Ω_T), the boundary conditions (1.1b) & (1.1c) are intended in the sense of traces and the initial conditions (1.1d) & (1.1e) are also satisfied in the sense of traces of $L^2(0, \ell_0)$ and $H^{-1}(0, \ell_0)$, respectively.

To give precise meaning to condition (1.1e) we notice that $u_x \in L^2(0, T; L^2(0, \ell_0))$, thus $u_{tt} = u_{xxx} \in L^2(0, T; H^{-1}(0, \ell_0))$, therefore $u_t \in H^1(0, T; H^{-1}(0, \ell_0)) \subset C^0([0, T]; H^{-1}(0, \ell_0))$. The following result was proved in [7 Section 1].

Proposition 1.2. Assume (1.2) and (1.3). Then, there exists a unique solution $u \in \tilde{H}^1(\Omega)$ to problem (1.1), according to Definition 1.1. Moreover, $u \in \tilde{C}^{0,1}(\Omega)$ and is expressed through the formula

$$u(t, x) = w(t+x) - f(t+x) + f(t-x),$$

where $f \in \tilde{C}^{0,1}(-\ell_0, \infty)$ is determined by

$$w(t + \ell(t)) - f(t + \ell(t)) + f(t - \ell(t)) = 0, \quad \text{for every } t > 0,$$ \hspace{1cm} (1.4)
and
\[f(s) = w(s) - \frac{1}{2}u_0(s) - \frac{1}{2} \int_0^s u_1(x) \, dx - w(0) + \frac{1}{2}u_0(0), \quad \text{for every } s \in [0, \ell_0], \] (1.5a)
\[f(s) = \frac{1}{2}u_0(-s) - \frac{1}{2} \int_0^{-s} u_1(x) \, dx - \frac{1}{2}u_0(0), \quad \text{for every } s \in (-\ell_0, 0]. \] (1.5b)

1.2. Griffith’s criterion. We now introduce the flow rule to determine the evolution of the debonding front \(t \mapsto \ell(t) \) when it is unknown. We start from the internal energy
\[\mathcal{E}(t; \ell, w) = \frac{1}{2} \int_0^{\ell(t)} u_x(t, x)^2 \, dx + \frac{1}{2} \int_0^{\ell(t)} u_t(t, x)^2 \, dx, \]
(1.6)
which is well defined for every \(\ell \) and \(w \) thanks to Proposition \[1.2\]. In terms of the function of one variable \(f \), by (1.6) one obtains
\[\mathcal{E}(t; \ell, w) = \int_{t-\ell(t)}^t \dot{f}(s)^2 \, ds + \int_t^{t+\ell(t)} [\dot{w}(s) - \dot{f}(s)]^2 \, ds. \]
(1.7)
This is to be compared with the energy dissipated in debonding in the time interval \((0, t)\), given by
\[\int_0^t \kappa(\ell(s), \dot{\ell}(s)) \, ds, \]
where \(\kappa \) is the local toughness of the glue between the film and the substrate.

We assume that \(\kappa(x, \mu) \) is a measurable function of the position \(x \) in the reference configuration and of the debonding speed \(\mu \),
\[\kappa: [0, +\infty) \times [0, 1) \to [c_1, +\infty), \]
(1.8a)
where \(c_1 > 0 \). For every \(\mu \in [0, 1) \), we require that \(\kappa(\cdot, \mu) \) is piecewise Lipschitz with a finite number of discontinuities at points \(\ell_1 < \cdots < \ell_N \), that it has finite left- and right-sided limits at \(\ell_1, \ldots, \ell_N \), and that it satisfies
\[|\kappa(x_1, \mu) - \kappa(x_2, \mu)| \leq L|x_1 - x_2| + \kappa(x_1, \mu) + \kappa(x_2, \mu) \quad \text{for } x_1, x_2 \in (\ell_j, \ell_{j+1}), \ j \geq 0. \]
(1.8b)
Moreover, for every \(x \geq \ell_0 \) and \(\mu_1, \mu_2 \in [0, 1) \) we assume
\[\frac{\kappa(x, \mu_2) - \kappa(x, \mu_1)}{\mu_2 - \mu_1} > -c_3 \left(\frac{\sqrt{\kappa(x, \mu_2)} + \sqrt{\kappa(x, \mu_1)}}{2} \right)^2, \]
(1.8c)
where \(c_3 < 2 \). Notice that this condition is automatically fulfilled when \(\kappa \) is non-decreasing with respect to \(\mu \); in general, it requires a bound from below on its slope. It will be used in Lemma \[2.1\].

Next, one defines the dynamic energy release rate \(G_{\ell(t)}(t) \) as the opposite of a (sort of) partial derivative of \(\mathcal{E} \) with respect to \(\ell \). Given \(\ell \) as in (1.3) and \(\alpha \in (0, 1) \), we consider extensions \(\lambda \in C^{0,1}([0, +\infty)) \) such that \(\lambda(t) = \ell(t) \) for every \(0 \leq t \leq t_0 \), \(\dot{\lambda} < 1 \) for a.e. \(t > 0 \), and
\[\frac{1}{h} \int_{t_0}^{t_0+h} |\dot{\lambda}(t) - \alpha| \, dt \to 0, \quad \text{as } h \to 0^+. \]
We freeze the external loading at time \(t_0 \) by setting
\[z(t) = \begin{cases} w(t), & t \leq t_0, \\ w(t_0), & t > t_0. \end{cases} \]
The dynamic energy release rate $G_\alpha(t_0)$ at time t_0 corresponding to a debonding speed $0 < \alpha < 1$ is

$$G_\alpha(t_0) := \lim_{t \to t_0^+} \frac{\mathcal{E}(t_0; \lambda, z) - \mathcal{E}(t; \lambda, z)}{(t - t_0)\alpha}.$$

The existence of such limit is proved in [7, Section 2]. Moreover, by (1.17) we obtain the following formula:

$$G_\alpha(t) = \frac{2}{1 + \alpha} \frac{1 - \alpha}{1 + \alpha} (t - \ell(t))^2. \quad (1.9)$$

In particular, G_α depends on λ only through α. For $\alpha = 0$, we set

$$G_0(t) := 2\dot{\ell}(t) - (t - \ell(t))^2.$$

The dynamic energy release rate is compared with the energy dissipated in an infinitesimal propagation of the debonding, that is the local toughness (1.8a). Griffith’s criterion reads as follows:

$$\begin{cases}
\dot{\ell}(t) \geq 0, \\
G_{\ell(t)}(t) \leq \kappa(\ell(t), \dot{\ell}(t)), \\
\left[G_{\ell(t)}(t) - \kappa(\ell(t), \dot{\ell}(t)) \right] \dot{\ell}(t) = 0.
\end{cases} \quad (1.10)$$

Notice that the third equation says that the product of two nonnegative quantities is zero; thus, the process is activated ($\dot{\ell} \neq 0$) only when the energy release rate is critical (equal to the toughness). Using (1.9), this flow rule is rephrased in terms of a Cauchy problem for the evolution of the debonding front $t \mapsto \ell(t)$. We obtain indeed the following formulation, equivalent to (1.10):

$$\begin{cases}
\dot{\ell}(t) = \frac{2\dot{\ell}(t) - (t - \ell(t))^2}{2\dot{\ell}(t) + \kappa(\ell(t), \dot{\ell}(t))} \vee 0, \quad \text{for a.e. } t > 0, \\
\ell(0) = \ell_0.
\end{cases} \quad (1.11)$$

Our aim is then to solve the coupled problem (1.1) & (1.11), where we use the notion of solution given in Definition 1.1.

2. Existence and uniqueness

Since the local toughness depends also on $\dot{\ell}(t)$, our main difficulty is that the ordinary differential equation in (1.11) is not expressed in normal form. To overcome this difficulty, we introduce the variable $z(t) := t - \ell(t)$ and we consider the function

$$\Phi: [0, +\infty) \times [-\ell_0, \ell_0] \times [0, +\infty) \to \mathbb{R}$$

defined (for every t, μ and a.e. z) by

$$\Phi(t, z, \mu) := \begin{cases}
\mu - \frac{2\dot{\ell}(z)^2 - \kappa(t - z, \mu)}{2\dot{\ell}(z)^2 + \kappa(t - z, \mu)}, & \text{if } 2\dot{\ell}(z)^2 \geq \kappa(t - z, \mu), \\
\mu, & \text{if } 2\dot{\ell}(z)^2 < \kappa(t - z, \mu).
\end{cases} \quad (2.1)$$

Our strategy is then to prove that $\mu \mapsto \Phi(t, z, \mu)$ is invertible for fixed t, z. This will ensure that the Cauchy problem can be recast in normal form.

Following [2], we notice that in the triangle $\{(t, x) : x \in [0, \ell_0], \ |t| \leq \ell_0 - x\}$ the solution u of the wave equation (1.1) is independent of ℓ. Therefore, starting from (1.2), by Proposition 1.2 we obtain the one-dimensional function f in the interval $[-\ell_0, \ell_0]$. We then want to solve (1.11) as long as $z(t) = t - \ell(t) \in [-\ell_0, \ell_0]$, knowing that $f \in C^0([-\ell_0, \ell_0])$.

Lemma 2.1. Let κ be as in \([1.8]\), $f \in C^{0,1}([-\ell_0,\ell_0])$, and Φ as in \([2.1]\). Then,
$$
\frac{\Phi(t, z, \mu_2) - \Phi(t, z, \mu_1)}{\mu_2 - \mu_1} > 1 - \frac{c_3}{2},
$$
for every $t > 0$, a.e. $z > -\ell_0$, and every $0 < \mu_1 \leq \mu_2$, where c_3 is given in \([1.8c]\).

Proof. Let $t > 0$ and $z > -\ell_0$. We first observe that if $\Phi(t, z, \mu) = \mu$ as in the second line of \([2.1]\), then the thesis trivially holds. Next we prove it when Φ is given by the first line. This leads to the conclusion, since Φ is the minimum of two functions whose difference quotients are controlled from below.

We can conclude by showing that Φ is increasing also when it is equal to $\mu - \frac{2f(z)^2 - \kappa(t-z,\mu)}{2f(z)^2 + \kappa(t-z,\mu)}$.

Let $0 < \mu_1 \leq \mu_2$ and assume that $\Phi(t, z, \mu_i) = \mu_i - \frac{2f(z)^2 - \kappa(t-z,\mu_i)}{2f(z)^2 + \kappa(t-z,\mu_i)}$ for $i = 1, 2$. Then,
$$
\frac{\Phi(t, z, \mu_2) - \Phi(t, z, \mu_1)}{\mu_2 - \mu_1} = 1 - \frac{1}{\mu_2 - \mu_1} \frac{2f(z)^2 - \kappa(t-z,\mu_2)}{2f(z)^2 + \kappa(t-z,\mu_2)} + \frac{1}{\mu_2 - \mu_1} \frac{2f(z)^2 - \kappa(t-z,\mu_1)}{2f(z)^2 + \kappa(t-z,\mu_1)}
$$
$$
= 1 + \frac{4f(z)^2 \kappa(t-z,\mu_2) - \kappa(t-z,\mu_1)}{(2f(z)^2 + \kappa(t-z,\mu_1))(2f(z)^2 + \kappa(t-z,\mu_2))(\mu_2 - \mu_1)}
$$
$$
> 1 - \frac{c_3}{2} \frac{2f(z)^2 (\sqrt{\kappa(t-z,\mu_1)} + \sqrt{\kappa(t-z,\mu_2)})^2}{(2f(z)^2 + \kappa(t-z,\mu_1))(2f(z)^2 + \kappa(t-z,\mu_2)).}
$$
\hspace{1cm} (2.2)

This holds for every $t > 0$ and a.e. $z > -\ell_0$. Notice that in the last line we used \([1.8c]\). Moreover, it is easy to see that
$$
\frac{\alpha}{(\alpha + \kappa(t-z,\mu_1))(\alpha + \kappa(t-z,\mu_2))} \leq \frac{1}{(\sqrt{\kappa(t-z,\mu_1)} + \sqrt{\kappa(t-z,\mu_2)})^2}
$$
for every $\alpha \geq 0$. Therefore, we can continue (2.2) and deduce that
$$
\frac{\Phi(t, z, \mu_2) - \Phi(t, z, \mu_1)}{\mu_2 - \mu_1} > 1 - \frac{c_3}{2},
$$
where $c_3 < 2$ as stated in \([1.8c]\). \hfill \Box

By Lemma 2.1, the function $\mu \mapsto \Phi(t, z, \mu)$, that maps $[0, +\infty)$ into itself, is globally invertible for every $t \geq 0$ and a.e. $z \in [-\ell_0, \ell_0]$. Let then $\Psi: [0, +\infty) \times [-\ell_0, \ell_0] \times [0, +\infty) \to [0, +\infty)$ be the function such that, given $\sigma \in [0, +\infty)$,
$$
\Phi(t, z, \Psi(t, z, \sigma)) = \sigma \quad \text{and} \quad \Psi(t, z, \Phi(t, z, \mu)) = \mu,
$$
for every $t \geq 0$ and a.e. $z \in [-\ell_0, \ell_0]$. We can thus rephrase problem \([1.11]\) as
$$
\begin{cases}
\ell(t) = \Psi(t, t-\ell, 0), & \text{for a.e. } t > 0, \\
\ell(0) = \ell_0,
\end{cases}
$$
now expressed in normal form. Following \([7]\) Theorem 3.5], it is convenient to use the equivalent form
$$
\begin{cases}
1 - \dot{z}(t) = \Psi(t, z, 0), & \text{for a.e. } t > 0, \\
z(0) = -\ell_0.
\end{cases}
$$
\hspace{1cm} (2.3)

We now prove that $t \mapsto \Psi(t, z, 0)$ is Lipschitz for fixed z.

Lemma 2.2. Consider Φ and Ψ as above. Let κ be as in \([1.8]\). Then, there exists $C > 0$ such that
$$
|\Psi(t_2, z, \sigma) - \Psi(t_1, z, \sigma)| \leq C|t_2 - t_1|,
$$
for every \(t_1, t_2 > 0 \) and a.e. \(z > -\ell_0 \) such that \(t_1, t_2 \in (\ell_j + z, \ell_{j+1} + z) \) for some \(j \geq 0 \), and for every \(\sigma > 0 \).

Proof. We start from showing that \(\Phi \) is Lipschitz in \(t \). Let \(t_1, t_2 > 0 \), \(z \in [-\ell_0, \ell_0] \), and \(\mu > 0 \) as in the statement, such that \(\Phi(t_1, z, \mu) \) and \(\Phi(t_2, z, \mu) \) are defined. Then, we consider \(x_1, x_2 > \ell_0 \) such that \(x_i = t_i - z \) for \(i = 1, 2 \). We have

\[
\Phi(t_1, z, \mu) - \Phi(t_2, z, \mu) = \frac{2\dot{f}(z)^2 - \kappa(x_1, \mu)}{2f(z)^2 + \kappa(x_1, \mu)} - \frac{2\dot{f}(z)^2 - \kappa(x_2, \mu)}{2f(z)^2 + \kappa(x_2, \mu)}
\]

\[
= \frac{2\dot{f}(z)^2 - \kappa(x_1, \mu)}{2f(z)^2 + \kappa(x_1, \mu)} - \frac{2\dot{f}(z)^2 - \kappa(x_2, \mu)}{2f(z)^2 + \kappa(x_2, \mu)} + \frac{2\dot{f}(z)^2 - \kappa(x_2, \mu)}{2f(z)^2 + \kappa(x_1, \mu)}
\]

\[
\leq \frac{2\dot{f}(z)^2 - \kappa(x_2, \mu)}{2f(z)^2 + \kappa(x_1, \mu)} (2\dot{f}(z)^2 + \kappa(x_1, \mu))(2\dot{f}(z)^2 + \kappa(x_2, \mu))
\]

This implies that, by (1.8b),

\[
|\Phi(t_1, z, \mu) - \Phi(t_2, z, \mu)|
\]

\[
\leq 4L|x_1 - x_2|\dot{f}(z)^2 \frac{\kappa(x_1, \mu) + \kappa(x_2, \mu)}{(2f(z)^2 + \kappa(x_1, \mu))(2\dot{f}(z)^2 + \kappa(x_2, \mu))}
\]

\[
\leq 4L|x_1 - x_2| = 4L|t_1 - t_2|,
\]

(2.4)

where in the last line we used the fact that

\[
(\kappa(x_1, \mu) + \kappa(x_2, \mu))\dot{f}(z)^2 \leq (2\dot{f}(z)^2 + \kappa(x_1, \mu))(2\dot{f}(z)^2 + \kappa(x_2, \mu)).
\]

We now notice that, for every \(\sigma_1, \sigma_2 > 0 \), we have

\[
1 = \frac{\Phi(t, z, \Psi(t, z, \sigma_2)) - \Phi(t, z, \psi(t, z, \sigma_1))}{\sigma_2 - \sigma_1}
\]

\[
= \frac{\Phi(t, z, \Psi(t, z, \sigma_2)) - \Phi(t, z, \psi(t, z, \sigma_1))}{\Phi(t, z, \psi(t, z, \sigma_1)) - \Phi(t, z, \sigma_1)} \frac{\Psi(t, z, \sigma_2) - \Psi(t, z, \sigma_1)}{\sigma_2 - \sigma_1}.
\]

Therefore, by Lemma 2.1,

\[
\frac{|\Psi(t, z, \sigma_2) - \Psi(t, z, \sigma_1)|}{\sigma_2 - \sigma_1} \leq \frac{1}{1 - \frac{c_2}{2}}.
\]

(2.5)

Moreover, for every \(\mu > 0 \), we have

\[
0 = \frac{\Psi(t_2, z, \Phi(t_2, z, \mu)) - \Phi(t_1, z, \Phi(t_1, z, \mu))}{t_2 - t_1}
\]

\[
= \frac{\Psi(t_2, z, \Phi(t_2, z, \mu)) - \Psi(t_1, z, \Phi(t_1, z, \mu))}{t_2 - t_1} + \frac{\Psi(t_1, z, \Phi(t_1, z, \mu)) - \Phi(t_1, z, \mu)}{t_2 - t_1} \Phi(t_2, z, \mu) - \Phi(t_1, z, \mu)
\]

Finally, for every \(\sigma > 0 \) there exists \(\mu > 0 \) such that \(\sigma = \Phi(t_2, z, \mu) \) (by invertibility of \(\mu \mapsto \Phi(t_2, z, \mu) \)) and, by (2.4) and (2.5),

\[
|\Psi(t_2, z, \sigma) - \Psi(t_1, z, \sigma)| \leq \frac{4L}{1 - \frac{c_2}{2}}|t_2 - t_1|.
\]

This concludes the proof.

\(\square\)
The following result shows existence and uniqueness of a pair \((u, \ell)\) solving the coupled problem \((1.1)\) & \((1.11)\). This generalises \cite{[7]} Theorem 3.5] to the case of a speed-dependent toughness.

Theorem 2.3. Assume \((1.8)\) and \((1.2)\). Then, there exists a unique pair \((u, \ell) \in \tilde{H}^1(\Omega) \times \tilde{C}^{0,1}(0, +\infty)\) solving \((1.1) \oplus (1.11)\). Moreover, \(u \in \tilde{C}^{0,1}(\Omega)\) and for every \(T > 0\) there exists \(L_T < 1\) such that \(\ell \leq L_T\).

Proof. We first consider the case where \(\kappa\) is continuous. We have to construct a function \(f\) satisfying \((1.4)\) and a function \(\ell\) satisfying \((1.11)\). By \((1.5)\) we are provided \(f\) in the interval \([-\ell_0, \ell_0]\) and we know that \(f\) is Lipschitz. Next we solve the Cauchy problem \((2.3)\) as long as \(t - \ell(t) \in [-\ell_0, \ell_0]\). We see that \(\Psi\) is measurable in \(z\), since

\[
\{z > -\ell_0 : \Psi(t, z, \sigma) < \mu\} = \{\sigma > 0 : \sigma < \Phi(t, z, \mu)\}, \quad \text{for every } t, \mu > 0,
\]

where \(\Phi\) is in its turn measurable since \(\dot{f} \in L^\infty(-\ell_0, \ell_0)\) and \(\kappa > c_1\) is piecewise Lipschitz. Moreover, by Lemma 2.2 \(t \mapsto \Psi(t, z, 0)\) is locally Lipschitz for a.e. \(z \in (-\ell_0, \ell_0)\). We now notice that there exists \(0 < c < 1\) such that

\[
\Psi(t, z, 0) \in [0, 1 - c].
\]

Indeed, starting from \(\Phi(t, z, \Psi(t, z, 0)) = 0\), we find that

\[
\Psi(t, z, 0) = \frac{2\dot{f}(z)^2 - \kappa(t - z, \Psi(t, z, 0))}{2\dot{f}(z)^2 + \kappa(t - z, \Psi(t, z, 0))} \vee 0.
\]

Therefore, every solution to \((2.3)\) must satisfy \(\dot{z}(t) > 0\) for a.e. \(t > 0\) and it is thus invertible. The function \(z \mapsto t(z)\) solves the problem

\[
\begin{cases}
\dot{t}(z) = \frac{1}{1 - \Psi(t, z, 0)}, & \text{for a.e. } z > -\ell_0, \\
t(-\ell_0) = 0.
\end{cases}
\]

(2.6)

We observe that \(0 \leq \dot{t}(z) \leq \frac{1}{z}, \, \Psi(t, z, 0)\) is Lipschitz in \(t\) uniformly in \(z\), and it is measurable in \(z\); then we can apply classical results on ordinary differential equations (see, e.g., \cite{15} Theorem 5.3]) to get a unique solution \(z \mapsto t(z)\) to \((2.6)\). Next, \(z\) is found by inverting the function \(t(z)\) and finally \(\ell(t) = t - z(t)\) is the unique solution to \((1.11)\) up to time \(t(\ell_0)\), satisfying \(\ell \leq L_T\). Next we employ \((1.4)\) to extend \(f\) to \((\ell_0, t(\ell_0) + \ell(t(\ell_0)))\), so the ordinary differential equation can be solved in this interval, hence \(\ell\) and \(f\) are further extended. Iterating this argument we extend the solution \(\ell\) to \([0, +\infty)\).

In the case that \(\kappa\) has a finite number of discontinuities \(\ell_1, \ldots, \ell_N\), we may apply the previous argument to solve \((2.6)\) as long as \(z(t) - z < \ell_1\). If there is \(z_1\) such that \(t(z_1) = \ell_1 + z_1\), we extend the solution for \(z \geq z_1\) by solving the Cauchy problem with initial datum \(t(z_1) = \ell_1 + z_1\) as long as \(t(z) - z < \ell_2\), recalling the monotonicity of \(z \mapsto t(z) - z\). Iterating this argument allows us to conclude. \(\Box\)

3. Quasistatic limit

Following \cite{19} we now study the limit behaviour of the system when the external loading \(w\) is quasistatic, namely when we replace \(w(t)\) with \(w(\varepsilon t)\) and \(\varepsilon > 0\) is a small parameter, so that the speed of the vertical displacement is very slow.

We call \((u_\varepsilon(t, x), \ell_\varepsilon(t))\) the solutions of the coupled problem with this new external loading, whose existence and uniqueness have been proved above. The reparametrised functions
(u^\varepsilon(t,x), \ell^\varepsilon(t)) := (u^\varepsilon(t,x), \ell^\varepsilon(t)) \text{ solve} \begin{align*}
\varepsilon^2 u^\varepsilon_{tt}(t,x) - u^\varepsilon_{xx}(t,x) &= 0, \quad t > 0, \ 0 < x < \ell^\varepsilon(t), \quad \text{(3.1a)} \\
u^\varepsilon(t,0) &= w^\varepsilon(t), \quad t > 0, \quad \text{(3.1b)} \\
u^\varepsilon(t,\ell^\varepsilon(t)) &= 0, \quad t > 0 \quad \text{(3.1c)} \\
u^\varepsilon(0,x) &= u_0^\varepsilon(x), \quad 0 < x < \ell_0, \quad \text{(3.1d)} \\
u^\varepsilon_1(0,x) &= u_1^\varepsilon(x), \quad 0 < x < \ell_0. \quad \text{(3.1e)}
\end{align*}

Notice that the speed of sound is now \(\frac{1}{\varepsilon}\) and that the data may depend on \(\varepsilon\). We require that
\[\begin{align*}
w^\varepsilon &\in \tilde{C}^{0,1}(0, +\infty), \quad u_0^\varepsilon \in C^{0,1}([0, \ell_0]), \quad u_1^\varepsilon \in L^\infty(0, \ell_0), \quad \text{(3.2a)}
\end{align*}\]
and impose the compatibility conditions
\[\begin{align*}
u_0^\varepsilon(0) &= w^\varepsilon(0), \quad \nu_0^\varepsilon(\ell_0) = 0. \quad \text{(3.2b)}
\end{align*}\]
We also assume that
\[\begin{align*}
w^\varepsilon &\rightharpoonup w \text{ weakly* in } W^{1,\infty}(0, T), \quad \text{(3.3a)} \\
u_0^\varepsilon &\text{ is bounded in } W^{1,\infty}(0, \ell_0), \quad \text{(3.3b)} \\
\varepsilon u_1^\varepsilon &\text{ is bounded in } L^\infty(0, \ell_0), \quad \text{(3.3c)}
\end{align*}\]
As in the previous section, one then introduces the internal energy
\[\mathcal{E}^\varepsilon(t; \ell^\varepsilon, w^\varepsilon) = \frac{1}{2} \int_0^{\ell^\varepsilon(t)} u_1^\varepsilon(t,x)^2 \, dx + \frac{1}{2} \int_0^{\ell^\varepsilon(t)} u_2^\varepsilon(t,x)^2 \, dt \]
\[= \frac{1}{\varepsilon} \int_t^{t+\varepsilon \ell^\varepsilon(t)} [\varepsilon w^\varepsilon(s) - \dot{f}^\varepsilon(s)]^2 \, ds + \frac{1}{\varepsilon} \int_{t-\varepsilon \ell^\varepsilon(t)}^{t} f^\varepsilon(s)^2 \, ds,
\]
where \(f^\varepsilon\) is related to \(w^\varepsilon\) as in Proposition [1.2]. We will use the following generalisation of [1.5]:
\[\begin{align*}
f^\varepsilon(s) &= \varepsilon w^\varepsilon(s) - \frac{\varepsilon}{2} u_0^\varepsilon(x) - \frac{\varepsilon^2}{2} \int_0^s u_1^\varepsilon(x) \, dx - \varepsilon w^\varepsilon(0) + \frac{\varepsilon}{2} u_0^\varepsilon(0), \text{ for every } s \in [0, \varepsilon \ell_0], \quad \text{(3.4a)}
\end{align*}\]
\[\begin{align*}
f^\varepsilon(s) &= \frac{\varepsilon}{2} u_0^\varepsilon(-s) - \frac{\varepsilon^2}{2} \int_0^s u_1^\varepsilon(x) \, dx - \frac{\varepsilon}{2} u_0^\varepsilon(0), \text{ for every } s \in (-\varepsilon \ell_0, 0]. \quad \text{(3.4b)}
\end{align*}\]
The dynamic energy release rate is defined as in the previous section and the following formula holds, cf. [1.9]:
\[\begin{align*}
G^\varepsilon_{\ell^\varepsilon(t)}(t) = 2 \frac{1 - \varepsilon \dot{\ell}^\varepsilon(t)}{1 + \varepsilon \dot{\ell}^\varepsilon(t)} f^\varepsilon(t + \varepsilon \dot{\ell}^\varepsilon(t))^2.
\end{align*}\]
We now notice that the reparametrisation used to obtain [3.1] also affects the local toughness. Indeed, we have
\[\kappa(\ell^\varepsilon(t), \dot{\ell}^\varepsilon(t)) = \kappa(\ell^\varepsilon(t), \varepsilon \dot{\ell}^\varepsilon(t)), \quad \text{(3.5a)}\]
so that Griffith’s criterion now reads as follows:
\[\begin{align*}
\dot{\ell}^\varepsilon(t) &\geq 0, \quad \text{(3.5a)} \\
G^\varepsilon_{\ell^\varepsilon(t)}(t) &\leq \kappa(\ell^\varepsilon(t), \varepsilon \dot{\ell}^\varepsilon(t)), \quad \text{(3.5b)} \\
\left[G^\varepsilon_{\ell^\varepsilon(t)}(t) - \kappa(\ell^\varepsilon(t), \varepsilon \dot{\ell}^\varepsilon(t)) \right] \dot{\ell}^\varepsilon(t) &= 0. \quad \text{(3.5c)}
\end{align*}\]
As above we employ its equivalent form

\[
\begin{cases}
\dot{\ell}^\varepsilon(t) = \frac{1}{2} \dot{\varepsilon}(t - \varepsilon(t))^2 - \kappa(\ell^\varepsilon(t), \varepsilon(t)) \leq 0, \quad \text{for a.e. } t > 0, \\
\dot{\varepsilon}(0) = \ell_0.
\end{cases}
\] (3.6)

In the quasistatic model, we consider the potential energy

\[E_{qs}(t; \ell, w) := \min \left\{ \frac{1}{2} \int_0^\lambda(t) \dot{v}(x)^2 \, dx : v \in H^1(0, L), \ v(0) = w(t), \ v(\lambda(t)) = 0 \right\}, \]

where \(\dot{v} \) denotes the derivative of \(v \) with respect to \(x \). The quasistatic energy release rate is

\[G_{qs}(t) := -\partial_\ell E_{qs}(t; \ell, w). \]

The following result was proved in [19, Proposition 2.3, Theorem 2.5, Theorem 2.11] assuming that the toughness only depends on the position in the reference configuration. The extension to the case of speed-dependent toughness requires only minor modifications in the proof. In Remark 3.2 we highlight the only step where the toughness plays a role.

Theorem 3.1. Let \(T > 0 \). Assume that the toughness \(\kappa \) satisfies (1.8) and is upper semicontinuous. Assume that the initial data satisfy (3.2) and (3.3). Let \((u^\varepsilon, \ell^\varepsilon) \) be the solution to the coupled problem (3.1) \& (3.6). Then, there exists \(L > 0 \) with \(\ell^\varepsilon(T) \leq L \), a non-decreasing evolution \(\ell : [0, T] \to [0, L] \), and a sequence \(\varepsilon_k \) such that

\[\ell^\varepsilon(t) \to \ell(t) \]

for every \(t \in [0, T] \). Moreover,

\[u^\varepsilon \rightharpoonup u \text{ weakly in } L^2(0, T; H^1(0, L)), \]

where

\[u(t, x) = \begin{cases} -\frac{w(t)}{\ell^\varepsilon(t)} x + w(t), & \text{for a.e. } (t, x) : x < \ell(t), \\
0, & \text{for a.e. } (t, x) : x \geq \ell(t). \end{cases} \]

Finally,

\[G_{qs}(t) \leq \kappa(\ell(t), 0) \]

and the quasistatic energy release rate is given by

\[G_{qs}(t) = \frac{w(t)^2}{2\dot{\ell}(t)^2}. \] (3.7)

Remark 3.2. We highlight that in the quasistatic limit the toughness appearing in Griffith’s criterion is evaluated at debonding speed zero, i.e., it corresponds to the so-called steady state toughness \(\kappa(\ell, 0) \). Indeed, following the proof of [19, Theorem 2.11] we see that

\[\int_a^b \sqrt{G_{qs}(t)} \, dt \leq \limsup_k \int_a^b \sqrt{G_{qs}^\varepsilon(t)} \, dt \leq \limsup_k \int_a^b \sqrt{\kappa(\ell^\varepsilon_k(t), \varepsilon_k \dot{\ell}^\varepsilon_k(t))} \, dt. \]

for every interval \((a, b) \subset [0, T]\), where the second inequality follows by (3.5b). By the Fatou lemma and the upper semicontinuity of \(\kappa \), we find

\[\limsup_k \int_a^b \sqrt{\kappa(\ell^\varepsilon_k(t), \varepsilon_k \dot{\ell}^\varepsilon_k(t))} \, dt \leq \int_a^b \limsup_k \sqrt{\kappa(\ell^\varepsilon_k(t), \varepsilon_k \dot{\ell}^\varepsilon_k(t))} \, dt \leq \int_a^b \sqrt{\kappa(\ell(t), 0)} \, dt, \]

which yields (3.7)

In this work we observe a particular behaviour of the quasistatic limit by providing two examples. The first example shows that (3.5c) does not pass to the limit as \(\varepsilon \to 0 \), i.e.,

\[[G_{qs}(t) - \kappa(\ell(t), 0)] \dot{\lambda}(t) = 0 \] (3.8)
does not hold in general. The second example shows that brutal propagation is possible in the quasistatic limit even if the dynamic toughness penalises high-speed debonding.

We will employ the bounce formula \([1, 2]\) in the following form:

\[
\dot{f}^\varepsilon(s) = \varepsilon w^\varepsilon(s) + f^\varepsilon(\omega_\varepsilon(s)),
\]

where

\[
\omega_\varepsilon := \varphi_\varepsilon \circ \psi_\varepsilon^{-1}, \quad \varphi_\varepsilon(s) := s - \varepsilon \ell^\varepsilon(s), \quad \psi_\varepsilon(s) := s + \varepsilon \ell^\varepsilon(s).
\]

Notice that the choice \[\varepsilon \ell^\varepsilon(0) = 0, \quad 1 + c_3 \varepsilon \ell^\varepsilon(1) = 0, \quad \varepsilon \leq 0, \quad \varepsilon \leq -1\]

will henceforth refer to \((3.5c)\).

3.1. Example 1: the activation condition fails. We now show that the presence of a regularising term in Griffith’s criterion, given by an explicit dependence of the local toughness upon the debonding speed, is not in general sufficient to guarantee the convergence of \((3.5c)\).

We consider here a local toughness given by

\[
\kappa(\ell^\varepsilon(t), \varepsilon \dot{\ell}^\varepsilon(t)) := \frac{1}{2} + c_3 \varepsilon \dot{\ell}^\varepsilon(t),
\]

with \(c_3 > 0\). Griffith’s activation condition reads as

\[
\left[G_{\ell^\varepsilon(t)}(t) - \frac{1}{2} - c_3 \varepsilon \dot{\ell}^\varepsilon(t) \right] \dot{\ell}^\varepsilon(t) = 0,
\]

which has the same form of the corresponding equation in inertia-free fracture models with a viscous regularisation \([18, 22]\).

Notice that the choice \(\kappa = \tilde{\kappa} := \frac{1}{2}\) was precisely the one employed in \([19, \text{Section 3}]\) and we will henceforth refer to \((v^\varepsilon, \lambda^\varepsilon)\) as the dynamic solutions analysed in that paper and to \((v, \lambda)\) as their limit as \(\varepsilon \to 0\).

Using \((3.11)\), we write \((3.6)\) in normal form, obtaining

\[
\begin{align*}
\dot{\ell}(t) &= \frac{1}{\varepsilon} \frac{4f^\varepsilon(t-\varepsilon \dot{\ell}^\varepsilon(t))^2 - 1}{2f^\varepsilon(t-\varepsilon \dot{\ell}^\varepsilon(t))^2 + \frac{1}{2} + c_3 + \sqrt{(2f^\varepsilon(t-\varepsilon \dot{\ell}^\varepsilon(t))^2 + \frac{1}{2} - c_3)^2 + 16c_3^3 f^\varepsilon(t-\varepsilon \dot{\ell}^\varepsilon(t))^2}} \vee 0, \quad \text{for a.e. } t > 0, \\
\ell(0) &= \ell_0.
\end{align*}
\]

We set \(\ell_0 := 2\), \(w^\varepsilon(t) := t\), \(u_1^\varepsilon := 1\), and

\[
u_0^\varepsilon(x) := \begin{cases}
(2\varepsilon \left[\frac{1}{8} \right] - \sqrt{1 + \varepsilon^2})x + 2(\sqrt{1 + \varepsilon^2} - \varepsilon \left[\frac{1}{2} \right]), & 0 \leq x \leq 1, \\
-\sqrt{1 + \varepsilon^2}x + 2\sqrt{1 + \varepsilon^2}, & 1 \leq x \leq 2.
\end{cases}
\]

The very same data were chosen in \([19, \text{Section 3}]\). This choice of \(u_0^\varepsilon\) gives rise to two different alternating behaviours in the propagation of the debonding front, since the derivative of \(f^\varepsilon\) takes two values, cf. \([14]\):

\[
\dot{f}^\varepsilon(t) = \begin{cases}
\dot{f}_1^\varepsilon := \varepsilon + \sqrt{1 + \varepsilon^2}, & -2\varepsilon \leq t \leq -\varepsilon, \\
\dot{f}_2^\varepsilon := \varepsilon + \sqrt{1 + \varepsilon^2} - \varepsilon \left[\frac{1}{2} \right], & -\varepsilon \leq t \leq \varepsilon, \\
\dot{f}_3^\varepsilon := \dot{f}_1^\varepsilon, & \varepsilon \leq t \leq 2\varepsilon.
\end{cases}
\]

For every \(i \geq 1\) we call \(\ell_i^\varepsilon\) the solution of \((3.12)\) when \(\dot{f}^\varepsilon(t-\varepsilon \dot{\ell}^\varepsilon(t)) = \dot{f}_i^\varepsilon\).
Figure 2. The evolution of ℓ^ε in Example 1 is represented by a zig-zag with alternation between phases of propagation of the debonding front and stop phases.

We notice that, by plugging \dot{f}^ε in (3.12), we have $\dot{\ell}^\varepsilon_2 = 0$. As a consequence of (1.4), it results that f^ε and $\dot{\ell}^\varepsilon$ are piecewise constant in $[0, +\infty)$; we denote by f^ε_i, $\dot{\ell}^\varepsilon_i$ their values, indexed increasingly with respect to time, see Figure 2. The rule for the update of f^ε_i reads

$$f^\varepsilon_{i+3} = f^\varepsilon_i + \frac{1 - \varepsilon f^\varepsilon_i}{1 + \varepsilon f^\varepsilon_i},$$

for $i \geq 1$.

Hence, $f^\varepsilon_2 = f^\varepsilon_2 + \varepsilon$. By direct computation it is possible to prove that $\dot{\ell}^\varepsilon_3 = 0$ and that for every $0 \leq i < \lceil \frac{1}{\varepsilon} \rceil =: n^\varepsilon$ we have $f^\varepsilon_{3i+2} = f^\varepsilon_2 + i \varepsilon$ and $\dot{\ell}^\varepsilon_{3i+2} = 0$. Thus, the indices $3i + 2$ correspond to stop phases with no propagation of the debonding front until a certain threshold is reached.

In contrast, we have propagation phases for the indices $3i + 1$ and $3i + 3$. Indeed, starting from (3.12), we deduce that

$$\frac{1}{\varepsilon} \frac{2f^{\varepsilon}(t - \varepsilon \ell^\varepsilon(t))^2 - \tilde{\kappa}}{2f^{\varepsilon}(t - \varepsilon \ell^\varepsilon(t))^2 + \tilde{\kappa} + 2\sqrt{c_3}f^{\varepsilon}(t - \varepsilon \ell^\varepsilon(t))} \leq \dot{\ell}^\varepsilon(t) \leq \frac{1}{\varepsilon} \frac{2f^{\varepsilon}(t - \varepsilon \ell^\varepsilon(t))^2 - \tilde{\kappa}}{2f^{\varepsilon}(t - \varepsilon \ell^\varepsilon(t))^2 + \tilde{\kappa}}. \tag{3.13}$$

In the previous chain of inequalities, the first is obtained from (3.12) by using the fact that $\sqrt{a^2 + b^2} \leq a + b$ for $a, b \geq 0$; the second is obtained by ignoring the term $16c_3 f^{\varepsilon}(t - \varepsilon \ell^\varepsilon(t))^2$ in the denominator of (3.12). Therefore, from the first inequality of (3.13) we obtain

$$\dot{\ell}^\varepsilon_3(t) = \dot{\ell}^\varepsilon_1(t) \geq \frac{1}{\varepsilon} \frac{2(f^{\varepsilon}_1)^2 - \tilde{\kappa}}{2(f^{\varepsilon}_1)^2 + \tilde{\kappa} + 2\sqrt{c_3}f^{\varepsilon}_1} = \frac{\varepsilon + \sqrt{1 + \varepsilon^2}}{\varepsilon^2 + \varepsilon \sqrt{1 + \varepsilon^2} + 1 + \sqrt{c_3}(\varepsilon + \sqrt{1 + \varepsilon^2})} \geq \frac{1}{2 + \sqrt{c_3}},$$

where the last inequality holds for ε sufficiently small. On the other hand, the second inequality of (3.13) implies that the debonding speed is controlled by the corresponding to constant
toughness $\tilde{\kappa}$:

$$\dot{\epsilon}^\varepsilon(t) \leq \dot{\lambda}^\varepsilon(t), \quad \text{for a.e. } t > 0.$$

Since the function $x \mapsto \frac{1 - \varepsilon x}{1 + \varepsilon x}$ is non-increasing, then

$$f^\varepsilon_6 = f^\varepsilon_4 = \varepsilon + \frac{1 - \varepsilon f^\varepsilon_3}{1 + \varepsilon f^\varepsilon_3} f^\varepsilon_2 \geq \varepsilon + \frac{1 - \varepsilon \dot{\lambda}^\varepsilon_3}{1 + \varepsilon \dot{\lambda}^\varepsilon_3} f^\varepsilon_1 = f^\varepsilon_1,$$

where the last equality follows from the explicit expression of the debonding speed for toughness $\tilde{\kappa}$ in the first iteration, $\dot{\lambda}^\varepsilon_1 = 1 / \sqrt{1 + \varepsilon^2}$, obtained by plugging $\kappa = \tilde{\kappa}$ into (3.6). We iterate this argument and obtain for every $i \geq 1$

$$f^\varepsilon_{3i+3} = f^\varepsilon_{3i+1} = \varepsilon + \frac{1 - \varepsilon f^\varepsilon_{3i-2}}{1 + \varepsilon f^\varepsilon_{3i-2}} f^\varepsilon_{3i-2} \geq \varepsilon + \frac{1 - \varepsilon \dot{\lambda}^\varepsilon_{3i-2}}{1 + \varepsilon \dot{\lambda}^\varepsilon_{3i-2}} f^\varepsilon_1 = f^\varepsilon_1. \quad (3.14)$$

Moreover, by (3.13) we recall that $\dot{\epsilon}^\varepsilon(t) \geq \frac{1}{\varepsilon} H(f^\varepsilon(t - \varepsilon \ell^\varepsilon(t))))$, where $H(x) := \frac{2x^2 - \tilde{\kappa}}{2x^2 + \tilde{\kappa} + 2\sqrt{c_3}x}$. We have

$$H'(x) = \frac{4c_3 x^2 + 4x + \sqrt{c_3}}{\varepsilon (2x^2 + \frac{1}{2} + 2\sqrt{c_3}x)^2} \geq 0, \quad \text{for } x \geq 0.$$

(Recall that $\tilde{\kappa} = \frac{1}{2}$ and notice that the second order polynomial at its numerator has negative roots.) Therefore, by (3.14), we get

$$\dot{\epsilon}^\varepsilon_{3i+3} = \dot{\epsilon}^\varepsilon_{3i+1} \geq H(f^\varepsilon_{3i+1}) \geq H(f^\varepsilon_1) \geq \frac{1}{2 + \sqrt{c_3}} =: \nu,$$

for ε small enough.

Summarising, in the first $3n^\varepsilon$ iterations we observe the alternation of two phases:

- stop phases, where the debonding speed is zero,
- propagation phases, where the debonding speed is uniformly bounded from below.

So far, we have not insisted on detailing the time intervals where $\dot{\epsilon}^\varepsilon$ is zero or positive. Let us just notice that the length of those intervals is determined by the rule for the update of f^ε, see also (3.9). By (3.10), we obtain that in the iterative scheme outlined above the length of the time intervals is dilated by a factor $\frac{1 + \varepsilon f^\varepsilon_1}{1 - \varepsilon f^\varepsilon_1}$, see Figure 3. This shows that the intervals where $\dot{\epsilon}^\varepsilon = 0$ have all the same length $2\varepsilon = \varepsilon \ell_0$. In contrast, the length of the intervals where $\dot{\epsilon}^\varepsilon \neq 0$ is increasing, since at the i-th iteration those intervals are dilated by a factor $\frac{1 + \varepsilon f^\varepsilon_{3i+1}}{1 - \varepsilon f^\varepsilon_{3i+1}} = \frac{1 + \varepsilon f^\varepsilon_{3i+3}}{1 - \varepsilon f^\varepsilon_{3i+3}} \geq \frac{1 + \varepsilon \nu}{1 - \varepsilon \nu}$.

Following a similar iterative scheme, we now construct a fictitious zig-zag evolution $\gamma^\varepsilon(t)$ such that $\gamma^\varepsilon(0) = \ell_0 = 2$ and $\gamma^\varepsilon \in \{0, \nu\}$. More precisely, imitating the construction of $\dot{\epsilon}^\varepsilon$, we set

$$\gamma^\varepsilon(t) = \begin{cases}
\nu, & \text{if } t - \gamma^\varepsilon(t) \in (-2\varepsilon, -\varepsilon), \\
0, & \text{if } t - \gamma^\varepsilon(t) \in (-\varepsilon, \varepsilon), \\
\nu, & \text{if } t - \gamma^\varepsilon(t) \in (\varepsilon, 2\varepsilon).
\end{cases}$$

This defines γ^ε in $[0, s^\varepsilon_1]$, where s^ε_1 denotes the time such that $s^\varepsilon_1 - \gamma^\varepsilon(s^\varepsilon_1) = 2\varepsilon$. It turns out that $s^\varepsilon_1 = 2\varepsilon(2 - \varepsilon \nu)/(1 - \varepsilon \nu)$, see Figure 3. Next we repeat this pattern with the following rule: at each iteration the intervals where $\dot{\epsilon}^\varepsilon = 0$ maintain the same length 2ε; the two intervals where $\dot{\epsilon}^\varepsilon \neq 0$ are dilated by the fixed factor $\frac{1 + \varepsilon \nu}{1 - \varepsilon \nu}$. By construction we obtain

$$\gamma^\varepsilon(t) \leq \ell^\varepsilon(t) \leq \lambda^\varepsilon(t), \quad (3.15)$$

where the latter inequality follows by (3.13). More precisely, let us denote by s^ε_1 the extremum of the interval where γ^ε is defined after the $(i-1)$-th iteration, obtained replicating s^ε_1. For every
Figure 3. Evolution of γ^ε and ℓ^ε in Example 1. The points $i = 1, 2, 3$ in figure represent the points $(s^\varepsilon_i, \gamma^\varepsilon(s^\varepsilon_i))$ in the construction of γ^ε.

$i = 1, \ldots, n^\varepsilon$,

$$s^\varepsilon_i = 2\varepsilon i + \frac{2\varepsilon}{1 - \varepsilon \nu} \sum_{j=0}^{i-1} d^\varepsilon_j = 2\varepsilon i + \frac{2\varepsilon}{1 - \varepsilon \nu} \frac{1 - d^\varepsilon_i}{1 - d^\varepsilon}, \quad (3.16)$$

where

$$d^\varepsilon := \frac{1 + \varepsilon \nu}{1 - \varepsilon \nu}.$$

The first summand in (3.16) corresponds to the total length of all intervals where $\dot{\gamma}^\varepsilon = 0$ up to s^ε_i, while the second accounts for the intervals where $\dot{\gamma}^\varepsilon = \nu$. The position of the debonding front at time s^ε_i is

$$\gamma^\varepsilon(s^\varepsilon_i) = 2 + \frac{2\varepsilon \nu}{1 - \varepsilon \nu} \frac{1 - d^\varepsilon_i}{1 - d^\varepsilon}.$$

We consider the map $i \mapsto x = \gamma^\varepsilon(s^\varepsilon_i)$ for $i = 1, \ldots, n^\varepsilon$ and its inverse

$$i^\varepsilon(x) = \left\lfloor \frac{\log(x - 1)}{\log d^\varepsilon} \right\rfloor.$$

In order to understand the limit behaviour of ℓ^ε, we study the limit of γ^ε. (Notice that their pointwise limits are both uniform limits.) A straightforward computation shows that

$$\varepsilon i^\varepsilon(x) \xrightarrow{\varepsilon \to 0} \frac{1}{2\nu} \log(x - 1) = \frac{2 + \sqrt{3}}{2} \log(x - 1).$$

Moreover,

$$d^\varepsilon_i(x) \xrightarrow{\varepsilon \to 0} x - 1.$$
We now let $\varepsilon \to 0$ in the expression for $s^\varepsilon_i(x)$ and find the expression for the inverse $t \mapsto \gamma(t)$:

$$
\gamma^{-1}(x) = \lim_{\varepsilon \to 0} s^\varepsilon_i(x) = (2 + \sqrt{c^3}) \left[\log(x - 1) + x - 2 \right].
$$

(3.17)

Notice also that

$$
\lambda^{-1}(x) \leq \ell^{-1}(x) \leq \gamma^{-1}(x), \quad \text{for } x \leq 1 + e^{2\nu}.
$$

(3.18)

Finally, passing to the limit in (3.15), we obtain

$$
\lambda^{-1}(x) = \frac{1}{2 + \sqrt{c^3}} \gamma^{-1}(x).
$$

(3.19)

This shows that $t \mapsto \ell(t)$ cannot satisfy Griffith’s quasistatic criterion. Indeed, by (3.13), (3.17), and (3.19), the debonding speed is uniformly bounded by one, so ℓ has no jumps. Moreover, since a Griffith evolution must satisfy (3.8), we would have

$$
\frac{\ell^2}{2\ell(t)^2} = \kappa(\ell, 0) = \frac{1}{2}, \quad \text{if } \dot{\ell} > 0,
$$

whence $\ell(t) = t$. This is incompatible with (3.18) and therefore the limit evolution $t \mapsto \ell$ does not satisfy Griffith’s activation condition (3.8).

Notice also that the same behaviour may be observed even with a toughness such that

$$
\lim_{\mu \to 1^-} \kappa(x, \mu) = +\infty, \quad \text{for every } x.
$$

(3.20)

Indeed, in the previous example $\dot{\ell}$ is uniformly bounded by one, thus $\mu = \varepsilon \dot{\ell} \leq \varepsilon$. If we consider a toughness satisfying (3.20) and such that it coincides with (3.11) for $\mu = \varepsilon \dot{\ell} \leq c < 1$, we obtain the same counterexample.

3.2. Example 2: brutal propagation.

When the local toughness κ satisfies (3.20), high-speed propagations are penalised at the dynamic level (for $\varepsilon > 0$). Therefore, one may ask if such a property prevents brutal propagations, i.e., time discontinuities, in the quasistatic limit as $\varepsilon \to 0$. We now prove that the answer is negative, more precisely we show a case where (3.20) holds and the limit evolution jumps in time.

Let us consider a local toughness of the form

$$
\kappa(x, \mu) := \tilde{\kappa}(x) \frac{1 + \mu}{1 - \mu},
$$

(3.21)

where $\tilde{\kappa}$ is independent of μ. This example is reported in [13, Section 7.4]. Here we assume that

$$
\tilde{\kappa}(x) := \begin{cases}
\frac{1}{2}, & \text{if } 0 \leq x \leq \bar{x}, \\
\frac{1}{8}, & \text{if } x > \bar{x},
\end{cases}
$$

where $\bar{x} > \ell_0 := 2$. Notice that $\tilde{\kappa}$ is non-increasing and takes only two values, modelling a composite material. The role of toughness discontinuities was analysed in some examples in [10, 20], in the case where the toughness depends only on the position x; in the quasistatic limit, those examples display brutal propagation as soon as the debonding front meets the toughness discontinuity. We show that this behaviour is not ruled out by (3.20).

For $0 < \varepsilon \ll 1$ we take affine initial data:

$$
u_0^\varepsilon(x) := -(\varepsilon + 1)x + 2(\varepsilon + 1), \quad \nu_1^\varepsilon(x) := 1.
$$

We set
\[w^\varepsilon(t) := t + 2(\varepsilon + 1). \]

By (3.4) we find that
\[\dot{f}^\varepsilon(t) = \dot{f}^\varepsilon_1 := \varepsilon + \frac{1}{2} \quad \text{for a.e. } t \in (-2\varepsilon, 2\varepsilon). \]

We can then solve (3.6) as long as \(t - \varepsilon \dot{f}^\varepsilon(t) \in (-2\varepsilon, 2\varepsilon) \): it turns out that \(\dot{f}^\varepsilon(t) = \dot{f}^\varepsilon_1 \), where \(\dot{f}^\varepsilon_1 \) is independent of time and satisfies, by (3.21),
\[\dot{f}^\varepsilon_1 = \frac{2(\dot{f}^\varepsilon_1)^2 - \frac{1}{2} 1 + \varepsilon \dot{f}^\varepsilon_1}{2(\dot{f}^\varepsilon_1)^2 + \frac{1}{2} 1 - \varepsilon \dot{f}^\varepsilon_1} \cap 0. \]

We set
\[\dot{\ell}^\varepsilon_1 = \frac{1}{\varepsilon} \frac{2(\dot{f}^\varepsilon_1)^2 - \frac{1}{2} 1 + \varepsilon \dot{f}^\varepsilon_1}{2(\dot{f}^\varepsilon_1)^2 + \frac{1}{2} 1 - \varepsilon \dot{f}^\varepsilon_1} \quad \text{for a.e. } t \in (-2\varepsilon, 2\varepsilon). \]

We may iterate this argument up to the time \(\bar{\ell}^\varepsilon \) for a.e. \(t \in (0, s^\varepsilon_1) \), where \(s^\varepsilon_1 \) is defined by \(\varphi(\varepsilon,s^\varepsilon_1) = s^\varepsilon_1 - \ell^\varepsilon(s^\varepsilon_1) = 2\varepsilon =: t^\varepsilon_1 \). We extend \(f^\varepsilon \) using (3.9): for a.e. \(t \in (t^\varepsilon_1, t^\varepsilon_2) \), where \(t^\varepsilon_2 = \omega^{-1}(t^\varepsilon_1) = \varphi^{-1}(\varphi^{-1}(t^\varepsilon_1)) \), we have
\[\dot{f}^\varepsilon(t) = \dot{f}^\varepsilon_2 := \varepsilon + \frac{1 - \varepsilon \dot{f}^\varepsilon_1}{1 + \varepsilon \dot{f}^\varepsilon_1} \dot{f}^\varepsilon_1 = \varepsilon + \frac{1 - \frac{2\dot{f}^\varepsilon_1 - 1}{2\dot{f}^\varepsilon_1 + 1}}{1 + \frac{2\dot{f}^\varepsilon_1 - 1}{2\dot{f}^\varepsilon_1 + 1}} \dot{f}^\varepsilon_1 = \varepsilon + \frac{1}{2} = \dot{f}^\varepsilon_1. \]

Again, one solves (3.6) to find \(\dot{\ell}^\varepsilon \) in \((s^\varepsilon_1, s^\varepsilon_2) \), where \(\varphi(\varepsilon,s^\varepsilon_2) = t^\varepsilon_2 \). We obtain
\[\dot{\ell}^\varepsilon(t) = \dot{\ell}^\varepsilon_2 := \frac{1}{\varepsilon} \frac{2 \dot{f}^\varepsilon_2 - 1}{2 \dot{f}^\varepsilon_2 + 1} = \frac{1}{\varepsilon + 1} = \dot{\ell}^\varepsilon_1. \]

We may iterate this argument up to the time \(\dot{\ell}^\varepsilon \) such that \(\dot{\ell}^\varepsilon(\dot{\ell}^\varepsilon) = \bar{x} \). Thus we find \(\dot{f}^\varepsilon(t) = \dot{f}^\varepsilon_1 \) for \(t \in (-2\varepsilon, \dot{\ell}^\varepsilon + \varepsilon \bar{x}) \) and \(\dot{\ell}^\varepsilon(t) = \dot{\ell}^\varepsilon_1 \) for \(t \in (0, \dot{\ell}^\varepsilon) \).

When the evolution of the debonding front reaches the toughness discontinuity \(\bar{x} \), we observe an abrupt change. According to (3.21), the equation for \(\dot{\ell}^\varepsilon \) is now
\[\dot{\ell}^\varepsilon(t) = \frac{1}{\varepsilon} \frac{2(\dot{f}^\varepsilon(t))^2 - \frac{1}{2} 1 + \varepsilon \dot{f}^\varepsilon(t)}{2(\dot{f}^\varepsilon(t))^2 + \frac{1}{2} 1 - \varepsilon \dot{f}^\varepsilon(t)} \quad \text{for } t - \varepsilon \dot{\ell}^\varepsilon(t) \in (\dot{\ell}^\varepsilon, \dot{\ell}^\varepsilon + \varepsilon \bar{x}). \]

As before, in that interval \(\dot{\ell}^\varepsilon \) is a constant found by solving the second order polynomial equation in \(\dot{\ell}^\varepsilon \). It turns out that
\[\dot{\ell}^\varepsilon = \frac{1}{\varepsilon + 1} \frac{4 \dot{f}^\varepsilon_2 - 1}{4 \dot{f}^\varepsilon_2 + 1} = \frac{1}{\varepsilon + 1} \frac{4 \varepsilon + 1}{4 \varepsilon + 3}. \]

Since \(\dot{\ell}^\varepsilon \sim \frac{1}{\varepsilon^2} \) as \(\varepsilon \to 0 \), such fast propagation in the evolution of the debonding front \(t \to \dot{\ell}^\varepsilon(t) \) converges to a jump of finite size in the limit evolution. This proves that (3.20) does not prevent brutal propagation in the quasistatic limit.
It is remarkable that the effective toughness during the fast propagation is given by

\[
\kappa(\ell^*(t), \varepsilon^*(t)) = \frac{1}{8} \left(1 + \frac{1}{2} \varepsilon^*(t) \right) \sim \frac{1}{8} \left(1 + \frac{1}{3} \right) = \frac{1}{4},
\]

while in the previous phase it is

\[
\kappa(\ell^*(t), \varepsilon^*(t)) = \frac{1}{2} \left(1 + \varepsilon^*(t) \right) \sim \frac{1}{2}.
\]

This shows that the brutal propagation is due to a decrease of the effective toughness from \(\frac{1}{2}\) to \(\frac{1}{4}\). On the other hand, the limit value of the toughness is greater than the value predicted by Griffith’s quasistatic criterion, i.e., the steady state toughness \(\kappa(\ell, 0) = \frac{1}{8}\).

Acknowledgements. The authors thank Gianni Dal Maso for several interesting discussions. They received funding from ERC through the Advanced Grant 290888 and from INdAM-GNAMPA. When this research was initiated, GL was affiliated to SISSA; his work is now granted by the FWF through project P 27052.

References

(Giuliano Lazzaroni) Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
E-mail address: giuliano.lazzaroni@univie.ac.at

(Lorenzo Nardini) SISSA, via Bonomea 265, 34136 Trieste, Italy
E-mail address: lnardini@sissa.it