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Abstract. In this paper we obtain a very general Gauss-Green formula for weakly
differentiable functions and sets of finite perimeter. This result is obtained by revisiting
the Anzellotti’s pairing theory and by characterizing the measure pairing (A, Du) when
A is a bounded divergence measure vector field and u is a bounded function of bounded
variation.

1. Introduction

In the pioneering paper [6], Anzellotti established a pairing theory between weakly
differentiable vector fields and BV functions. Among other applications that will be
mentioned below, this theory can be used to extend the validity of the Gauss–Green
formula to such vector fields and to non smooth domains.

As a means of comparison, there are mainly two kinds of generalizations of the Gauss–
Green formula. On one hand, one may consider weakly differentiable vector fields but
fairly regular (e.g. Lipschitz) domains, see e.g. [10]. On the other hand, starting from the
fundamental results of De Giorgi and Federer (see e.g. [3, Theorem 3.36]), many other
generalizations mainly concern regular vector fields but only weakly regular domains (i.e.,
sets of finite perimeter), see e.g. [11, 14–16,28].

In this paper we will prove a Gauss–Green formula valid for weakly differentiable vec-
tor fields and weakly regular domains. This unifying result is obtained by revisiting the
Anzellotti’s pairing theory in the general case of divergence measure vector fields and BV
functions. The core of the work is the characterization of the normal traces of these vector
fields and the analysis of the singular part of the pairing measure. This will allow us to
establish some nice formulas (coarea, chain rule, Leibnitz rule) for the pairing and, even-
tually, to prove our general Gauss–Green formula. We mention that, with our approach,
no approximation step with smooth fields or smooth subdomains, in the spirit of [7] and
[11], is needed. On top of that, our feeling is that the approximation with smooth fields
may not work in our framework (see the discussion before Proposition 4.15).

Let us describe in more details the functional setting of the problem. Let DM∞ denote
the class of bounded divergence measure vector fields A : RN → RN , i.e. the vector fields
with the properties A ∈ L∞ and divA is a finite Radon measure. If A ∈ DM∞ and u
is a function of bounded variation with precise representative u∗, then the distribution
(A, Du), defined by

(1) 〈(A, Du) , ϕ〉 := −
∫
RN

u∗ϕddivA−
∫
RN

uA · ∇ϕdx, ϕ ∈ C∞c (RN )
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is a Radon measure in RN , absolutely continuous with respect to |Du|. This fact has been
proved by Anzellotti in [6] for several combinations of A and u (for instance divA ∈ L1 or u
a BV continuous function), excluding the general case of A ∈ DM∞ and u ∈ BV . Indeed,
at that time, it was not clear how the discontinuities of u interact with the discontinuities of
the vector field A. The pairing (1) has been defined in the general setting by Chen–Frid in
the celebrated paper [11], where the authors also characterized the absolutely continuous
part of the measure (A, Du) as A · ∇u. Nevertheless, they have not characterized the
singular part of the measure, and, as far as we know, this problem has remained unsolved,
at least in this general setting.

On the other hand, the pairing in its full generality has been revealed a fundamental
tool in several contexts. We cite, for example, [11–15,17,30] for applications in the theory
of hyperbolic systems of conservation and balance laws, and [1] for the case of vector fields
induced by functions of bounded deformation, with the aim of extending the Ambrosio–
DiPerna–Lions theory of the transport equations (see also [2]).

The divergence measure vector fields play a crucial role also in the theory of capillarity
and in the study of the Prescribed Mean Curvature problem (see e.g. [28] and the references
therein), and in the context of continuum mechanics (see e.g. [22, 33,34]).

Another field of application is related to the Dirichlet problem for equations involving
the 1–Laplacian operator (see [4,10,25,26,32]). The interest in this setting comes out from
an optimal design problem, in the theory of torsion and from the level set formulation of the

Inverse Mean Curvature Flow. To deal with the 1–Laplacian ∆1u := div
(
Du
|Du|

)
, the main

difficulty is to define the quotient Du
|Du| , being Du a Radon measure. This difficulty has

been overcome in [4,5] through the Anzellotti’s theory of pairings. Namely, the role of this
quotient is played by a vector field A ∈ DM∞ such that ‖A‖∞ ≤ 1 and (A, Du) = |Du|.

Finally, in some lower semicontinuity problems for integral functionals defined in Sobolev
spaces and in BV , the vector fields with measure–derivative occurred as natural depen-
dence of the integrand with respect to the spatial variable (see [8, 19,21]).

Let us now describe in more details the results proved in this paper.
Our first aim is to characterize the measure (A, Du) in the general case A ∈ DM∞ and

u ∈ BV . As we have already recalled above, the absolutely continuous part of (A, Du)
has been characterized in [11] as A · ∇u, hence only the jump and the Cantor parts have
to be studied.

The analysis of the jump part of the pairing requires, in particular, a detailed study of
the normal traces of uA on a countably HN−1-rectifiable set Σ. Following the arguments
in [1], in Proposition 3.1 below we will prove that, if A ∈ DM∞ and u ∈ BV ∩ L∞, then
uA ∈ DM∞ and the normal traces of uA on Σ are given by

Tr±(uA,Σ) = u±Tr±(A,Σ), HN−1 − a.e. in Σ.

This allows us to give a precise description of the jump part (A, Du)j of the measure
(A, Du) in terms of the trace of u and the normal trace of A.

Under the additional assumption |Dcu|(SA) = 0, where Dcu is the Cantor part of Du
and SA is the approximate discontinuity set of A, we are able to give a representation
formula for the Cantor part (A, Du)c of the pairing measure. In Remark 3.4 we will
discuss some cases of interest where this condition is satisfied.

In conclusion, in Section 3 we will prove that the measure (A, Du) admits the following
decomposition:

(i) absolutely continuous part: (A, Du)a = A · ∇uLN ;
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(ii) jump part: (A, Du)j =
Tr+(A, Ju) + Tr−(A, Ju)

2
(u+ − u−)HN−1 Ju;

(iii) Cantor part: if |Dcu|(SA) = 0, then (A, Du)c = Ã ·Dcu.

In Section 4, by using the above decomposition, we will be able to describe the Radon–
Nikodým derivative of the measure (A, Du) with respect to |Du|. As a consequence, we
will prove the coarea formula, the chain rule for the pairing (A, Dh(u)), and the Leibniz
formula for (A, D(uv)) and (vA, Du).

Finally, in Section 5, exploiting the formulas proved in Section 4, we will prove our
generalized Gauss-Green formula: if A ∈ DM∞, u ∈ BV ∩L∞, and E ⊂ RN is a bounded
set with finite perimeter, then∫

E1

u∗ d divA +

∫
E1

(A, Du) = −
∫
∂∗E

u+ Tr+(A, ∂∗E) dHN−1 ,(2) ∫
E1∪∂∗E

u∗ d divA +

∫
E1∪∂∗E

(A, Du) = −
∫
∂∗E

u− Tr−(A, ∂∗E) dHN−1 ,(3)

where E1 is the measure theoretic interior of E, ∂∗E is the reduced boundary of E and
∂∗E is oriented with respect to the interior unit normal vector.

As we have already underlined in this introduction, a number of Gauss–Green formulas
that can be found in the literature are a particular case of (2) and (3).

For example, the case u ≡ 1 has been considered in the classical De Giorgi–Federer
formula with A a regular vector field (see e.g. [3, Theorem 3.36]), by Vol’pert [35, 36] for
A ∈ BV (Ω,RN ) and finally by Chen–Torres–Ziemer [15] in the general case A ∈ DM∞.

The case of a non-constant u has been considered by Anzellotti [7] if divA ∈ L1, by
Comi–Payne [16] if u is a locally Lipschitz function, and by Leonardi–Saracco if A ∈
DM∞ ∩ C0 (with some additional conditions on E).

2. Preliminaries

In the following Ω will always denote a nonempty open subset of RN .
Let u ∈ L1

loc(Ω). We say that u has an approximate limit at x0 ∈ Ω if exists z ∈ R such
that

(4) lim
r→0+

1

LN (Br(x0))

∫
Br(x0)

|u(x)− z| dx = 0.

The set Su ⊂ Ω of points where this property does not hold is called the approximate
discontinuity set of u. For every x0 ∈ Ω \ Su the number z, uniquely determined by (4),
is called the approximate limit of u at x0 and denoted by ũ(x0).

We say that x0 ∈ Ω is an approximate jump point of u if there exist a, b ∈ R and a unit
vector ν ∈ Rn such that a 6= b and

(5)

lim
r→0+

1

LN (B+
r (x0))

∫
B+
r (x0)

|u(y)− a| dy = 0,

lim
r→0+

1

LN (B−r (x0))

∫
B−r (x0)

|u(y)− b| dy = 0,

where B±r (x0) := {y ∈ Br(x0) : ±(y − x0) · ν > 0}. The triplet (a, b, ν), uniquely
determined by (5) up to a permutation of (a, b) and a change of sign of ν, is denoted by
(u+(x0), u−(x0), νu(x0)). The set of approximate jump points of u will be denoted by Ju.

The notions of approximate discontinuity set, approximate limit and approximate jump
point can be obviously extended to the vectorial case (see [3, §3.6]).
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In the following we shall always extend the functions u± to Ω \ (Su \ Ju) by setting

u± ≡ ũ in Ω \ Su.

In some occasions it will be useful to choose the orientation of ν in such a way that
u− < u+ in Ju. These particular choices of u− and u+ will be called the approximate
lower limit and the approximate upper limit of u respectively.

Here and in the following we will denote by ρ ∈ C∞c (RN ) a symmetric convolution
kernel with support in the unit ball, and by ρε(x) := ε−Nρ(x/ε).

In the sequel we will use often the following result.

Proposition 2.1. Let u ∈ L1
loc(Ω) and define

uε (x) = ρε ∗ u(x) :=

∫
Ω
ρε (x− y) u (y) dy.

(i) If x0 ∈ Ω \ Su, then uε(x0)→ ũ(x0) as ε→ 0+.
(ii) If u is differentiable at x0 ∈ RN , then ∇uε (x0)→ ∇u (x0) as ε→ 0+.

2.1. Functions of bounded variation and sets of finite perimeter. We say that
u ∈ L1(Ω) is a function of bounded variation in Ω if the distributional derivative Du of u
is a finite Radon measure in Ω. The vector space of all functions of bounded variation in
Ω will be denoted by BV (Ω). Moreover, we will denote by BVloc(Ω) the set of functions
u ∈ L1

loc(Ω) that belongs to BV (A) for every open set A b Ω (i.e., the closure A of A is a
compact subset of Ω).

If u ∈ BV (Ω), then Du can be decomposed as the sum of the absolutely continuous
and the singular part with respect to the Lebesgue measure, i.e.

Du = Dau+Dsu, Dau = ∇uLN ,

where ∇u is the approximate gradient of u, defined LN -a.e. in Ω. On the other hand, the
singular part Dsu can be further decomposed as the sum of its Cantor and jump part, i.e.

Dsu = Dcu+Dju, Dcu := Dsu (Ω \ Su), Dju := Dsu Ju,

where the symbol µ B denotes the restriction of the measure µ to the set B. We will
denote by Ddu := Dau+Dcu the diffuse part of the measure Du.

In the following, we will denote by θu : Ω → SN−1 the Radon–Nikodým derivative of
Du with respect to |Du|, i.e. the unique function θu ∈ L1(Ω, |Du|)N such that the polar
decomposition Du = θu |Du| holds. Since all parts of the derivative of u are mutually
singular, we have

Dau = θu |Dau|, Dju = θu |Dju|, Dcu = θu |Dcu|

as well. In particular θu(x) = ∇u(x)/|∇u(x)| for LN -a.e. x ∈ Ω such that ∇u(x) 6= 0 and
θu(x) = sign(u+(x)− u−(x)) νu(x) for HN−1-a.e. x ∈ Ju.

Let E be an LN -measurable subset of RN . For every open set Ω ⊂ RN the perimeter
P (E,Ω) is defined by

P (E,Ω) := sup

{∫
E

divϕdx : ϕ ∈ C1
c (Ω,RN ), ‖ϕ‖∞ ≤ 1

}
.

We say that E is of finite perimeter in Ω if P (E,Ω) < +∞.
Denoting by χE the characteristic function of E, if E is a set of finite perimeter in Ω,

then DχE is a finite Radon measure in Ω and P (E,Ω) = |DχE |(Ω).
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If Ω ⊂ RN is the largest open set such that E is locally of finite perimeter in Ω, we call
reduced boundary ∂∗E of E the set of all points x ∈ Ω in the support of |DχE | such that
the limit

ν̃E(x) := lim
ρ→0+

DχE(Bρ(x))

|DχE |(Bρ(x))

exists in RN and satisfies |ν̃E(x)| = 1. The function ν̃ : ∂∗E → SN−1 is called the measure
theoretic unit interior normal to E.

A fundamental result of De Giorgi (see [3, Theorem 3.59]) states that ∂∗E is countably
(N − 1)-rectifiable and |DχE | = HN−1 ∂∗E.

Let E be an LN -measurable subset of RN . For every t ∈ [0, 1] we denote by Et the set

Et :=

{
x ∈ RN : lim

ρ→0+

LN (E ∩Bρ(x))

LN (Bρ(x))
= t

}
of all points where E has density t. The sets E0, E1, ∂eE := RN \ (E0 ∪ E1) are called
respectively the measure theoretic exterior, the measure theoretic interior and the essential
boundary of E. If E has finite perimeter in Ω, Federer’s structure theorem states that
∂∗E ∩ Ω ⊂ E1/2 ⊂ ∂eE and HN−1(Ω \ (E0 ∪ ∂eE ∪ E1)) = 0 (see [3, Theorem 3.61]).

2.2. Capacity. Given an open set A ⊂ RN , the 1-capacity of A is defined by setting

C1(A) := inf

{∫
RN
|Dϕ| dx : ϕ ∈W 1,1(RN ), ϕ ≥ 1 LN−a.e. on A

}
.

Then, the 1-capacity of an arbitrary set B ⊂ RN is given by

C1(B) := inf{C1(A) : A ⊇ B, A open} .

It is well known that capacities and Hausdorff measure are closely related. In particular,
we have that for every Borel set B ⊂ RN

C1(B) = 0 ⇐⇒ HN−1(B) = 0 .

Definition 2.2. Let B ⊂ RN be a Borel set with C1(B) < +∞. Given ε > 0, we
call capacitary ε-quasi-potential (or simply capacitary quasi-potential) of B a function
ϕε ∈W 1,1(RN ), such that 0 ≤ ϕ̃ε ≤ 1 HN−1-a.e. in RN , ϕ̃ε = 1 HN−1-a.e. in B and∫

RN
|Dϕε| dx ≤ C1(B) + ε .

We recall that a function u : RN → R is said C1-quasi continuous if for every ε > 0
there exists an open set A, with C1(A) < ε, such that the restriction u Ac is continuous
on Ac; C1-quasi lower semicontinuous and C1-quasi upper semicontinuous functions are
defined similarly.

It is well known that if u is a W 1,1-function, then its precise representative ũ is C1-
quasi continuous (see [23, Sections 9 and 10]). Moreover, to every BV -function u, it is
possible to associate a C1-quasi lower semicontinuous and a C1-quasi upper semicontinuous
representative, as stated by the following theorem (see [9], Theorem 2.5).

Theorem 2.3. For every function u ∈ BV (Ω), the approximate upper limit u+ and
the approximate lower limit u− are C1-quasi upper semicontinuous and C1-quasi lower
semicontinuous, respectively.
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In particular, if B is a Borel subset of RN with finite perimeter, then χ−B is C1-quasi

lower semicontinuous and χ+
B is C1-quasi upper semicontinuous.

We recall the following lemma which is an approximation result due to Dal Maso (see
[18], Lemma 1.5 and §6).

Lemma 2.4. Let u : RN → [0,+∞) be a C1-quasi lower semicontinuous function. Then
there exists an increasing sequence of nonnegative functions {uh} ⊆ W 1,1(RN ) such that,
for every h ∈ N, uh is approximately continuous HN−1-almost everywhere in RN and
ũh(x)→ u(x), when h→ +∞, for HN−1-almost every x ∈ RN .

2.3. Divergence–measure fields. We will denote by DM∞(Ω) the space of all vec-
tor fields A ∈ L∞(Ω,RN ) whose divergence in the sense of distribution is a bounded
Radon measure in Ω. Similarly, DM∞loc(Ω) will denote the space of all vector fields
A ∈ L∞loc(Ω,RN ) whose divergence in the sense of distribution is a Radon measure in

Ω. We set DM∞ = DM∞(RN ).
We recall that, if A ∈ DM∞loc(Ω), then | divA| � HN−1 (see [11, Proposition 3.1]). As

a consequence, the set

ΘA :=

{
x ∈ Ω : lim sup

r→0+

| divA|(Br(x))

rN−1
> 0

}
,

is a Borel set, σ-finite with respect to HN−1, and the measure divA can be decomposed
as

divA = divaA + divcA + divj A,

where divaA is absolutely continuous with respect to LN , divcA(B) = 0 for every set B
with HN−1(B) < +∞, and

divj A = f HN−1 ΘA

for some Borel function f (see [2, Proposition 2.5]).

2.4. Normal traces. The traces of the normal component of the vector field A ∈ DM∞loc(Ω)
can be defined as distributions Tr±(A,Σ) on every countably HN−1–rectifiable set Σ ⊂ Ω
in the sense of Anzellotti (see [1, 6, 11]).

More precisely, let us briefly recall the construction given in [1] (see Propositions 3.2,
3.4 and Remark 3.3). First of all, given a domain Ω′ b Ω of class C1, we define the trace
of the normal component of A on ∂Ω′ as a distribution as follows:

(6)
〈
Tr(A, ∂Ω′) , ϕ

〉
:=

∫
Ω′

A · ∇ϕdx+

∫
Ω′
ϕddivA, ∀ϕ ∈ C∞c (Ω).

It turns out that this distribution is induced by an L∞ function on ∂Ω′, still denoted by
Tr(A, ∂Ω′), and

‖Tr(A, ∂Ω′)‖L∞(∂Ω′) ≤ ‖A‖L∞(Ω′).

Since Σ is countably HN−1–rectifiable, we can find countably many oriented C1 hyper-
surfaces Σi, with classical normal νΣi , and pairwise disjoint Borel sets Ni ⊆ Σi such that
HN−1(Σ \

⋃
iNi) = 0.

Moreover, it is not restrictive to assume that, for every i, there exist two open bounded
sets Ωi,Ω

′
i with C1 boundary and exterior normal vectors νΩi and νΩ′i

respectively, such

that Ni ⊆ ∂Ωi ∩ ∂Ω′i and

νΣi(x) = νΩi(x) = −νΩ′i
(x) ∀x ∈ Ni.

At this point we choose, on Σ, the orientation given by νΣ(x) := νΣi(x) HN−1-a.e. on Ni.
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Using the localization property proved in [1, Proposition 3.2], we can define the normal
traces of A on Σ by

Tr−(A,Σ) := Tr(A, ∂Ωi), Tr+(A,Σ) := −Tr(A, ∂Ω′i), HN−1 − a.e. on Ni.

These two normal traces belong to L∞(Σ,HN−1 Σ) (see [1, Proposition 3.2]) and

(7) divA Σ =
[
Tr+(A,Σ)− Tr−(A,Σ)

]
HN−1 Σ .

2.5. Anzellotti’s pairing. As in Anzellotti [6] (see also [11]), for every A ∈ DM∞loc(Ω)
and u ∈ BVloc(Ω) ∩ L∞loc(Ω) we define the linear functional (A, Du) : C∞0 (Ω)→ R by

(8) 〈(A, Du) , ϕ〉 := −
∫

Ω
u∗ϕddivA−

∫
Ω
uA · ∇ϕdx.

The distribution (A, Du) is a Radon measure in Ω, absolutely continuous with respect to
|Du| (see [6, Theorem 1.5] and [11, Theorem 3.2]), hence the equation

(9) div(uA) = u∗ divA + (A, Du)

holds in the sense of measures in Ω (We remark that, in [11], the measure (A, Du) is
denoted by A ·Du.) Furthermore, Chen and Frid in [11] proved that the absolutely con-
tinuous part of this measure with respect to the Lebesgue measure is given by (A, Du)a =
A · ∇uLN .

3. Characterization of the Anzellotti’s pairing

Proposition 3.1. Let A ∈ DM∞loc(Ω), u ∈ BVloc(Ω) ∩ L∞loc(Ω) and let Σ ⊂ Ω be a

countably HN−1–rectifiable set, oriented as in Section 2.4. Then uA ∈ DM∞loc(Ω) and the
normal traces of uA on Σ are given by

(10) Tr±(uA,Σ) =

{
u±Tr±(A,Σ), HN−1 − a.e. in Ju ∩ Σ,

ũ Tr±(A,Σ), HN−1 − a.e. in Σ \ Ju.

Proof. The fact that uA ∈ DM∞loc(Ω) has been proved in [11, Theorem 3.1].
We will use the same notations of Section 2.4. It is not restrictive to assume that Ju is

oriented with νΣ on Ju ∩ Σ.
Let us prove (10) for Tr−. Let x ∈ Σ satisfy:

(a) x ∈ (Ω \ Su) ∪ Ju, x ∈ Ni for some i, the set Ni has density 1 at x, and x is a
Lebesgue point of Tr−(A,Σ) with respect to HN−1 ∂Ωi;

(b) | divA| Ωi(Bε(x)) = o(εN−1) as ε→ 0;
(c) | div(uA)| Ωi(Bε(x)) = o(εN−1).

We remark that HN−1-a.e. x ∈ Σ satisfies these conditions. In particular, (a) is satisfied
because HN−1((Ω \ Su) ∪ Ju) = 0, whereas (b) and (c) follow from [3, Theorem 2.56 and
(2.41)].

In order to simplify the notation, in the following we set u−(x) := ũ(x) if x ∈ Ω \ Su.
Let us choose a function ϕ ∈ C∞c (RN ), with support contained in B1(0), such that

0 ≤ ϕ ≤ 1. For every ε > 0 let ϕε(y) := ϕ
(y−x

ε

)
.



8 G. CRASTA AND V. DE CICCO

By the very definition of normal trace, the following equality holds for every ε > 0 small
enough:

1

εN−1

∫
∂Ωi

[Tr(uA, ∂Ωi)− u−(x) Tr(A, ∂Ωi)]ϕε(y) dHN−1(y)

=
1

εN−1

∫
Ωi

∇ϕε(y) · [u(y)A(y)− u−(x)A(y)] dy

+
1

εN−1

∫
Ωi

ϕε(y) d[div(uA)− u−(x) divA](y) .

(11)

Using the change of variable z = (y − x)/ε, as ε → 0 the left hand side of this equality
converges to

[Tr−(uA,Σ)(x)− u−(x) Tr−(A,Σ)]

∫
Πx

ϕ(z) dHN−1(z) ,

where Πx is the tangent plane to Σi at x. Clearly ϕ can be chosen in such a way that∫
Πx
ϕdHN−1 > 0.

In order to prove (10) for Tr− it is then enough to show that the two integrals I1(ε)
and I2(ε) at the right hand side of (11) converge to 0 as ε→ 0.

With the change of variables z = (y−x)/ε and by the very definition of v we have that

I1(ε) =

∫
Ωεi

[u(x+ εz)− u−(x)]∇ϕ(z) ·A(x+ εz) dz,

where

Ωε
i :=

Ωi − x
ε

.

As ε → 0, these sets locally converge to the half space Px := {z ∈ RN : 〈z , ν(x)〉 < 0},
hence

lim
ε→0

∫
Ωεi∩B1

|u(x+ εz)− u−(x)| dz = lim
ε→0

∫
Px∩B1

|u(x+ εz)− u−(x)| dz = 0

(see [3, Remark 3.85]) so that

|I1(ε)| ≤ ‖A‖L∞(Bε(x)) ‖∇ϕ‖∞
∫

Ωεi∩B1

|u(x+ εz)− u−(x)| dz → 0.

From (b) we have that

lim
ε→0

1

εN−1

∣∣∣∣∫
Ωi

ϕε(y)u−(x) ddivA(y)

∣∣∣∣ ≤ lim sup
ε→0

|u−(x)| | divA|(Bε(x))

εN−1
= 0.

In a similar way, using (c), we get

lim
ε→0

1

εN−1

∣∣∣∣∫
Ωi

ϕε d div(uA)

∣∣∣∣ = 0,

so that I2(ε) vanishes as ε→ 0.
The proof of (12) for Tr+ is entirely similar. �

The following result has been proved in [24, Lemma 2.5].
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Corollary 3.2. Let A ∈ DM∞loc(Ω) and u ∈ BVloc(Ω) ∩ L∞loc(Ω). Then uA ∈ DM∞loc(Ω)
and the normal traces of uA on Ju are given by

(12) Tr±(uA, Ju) = u±Tr±(A, Ju), HN−1 − a.e. in Ju.

In particular

(13) div(uA) Ju =
[
u+ Tr+(A, Ju)− u−Tr−(A, Ju)

]
HN−1 Ju.

Theorem 3.3. Let A ∈ DM∞loc(Ω) and u ∈ BVloc(Ω)∩L∞loc(Ω). Then the measure (A, Du)
admits the following decomposition:

(i) absolutely continuous part: (A, Du)a = A · ∇uLN ;

(ii) jump part: (A, Du)j =
Tr+(A, Ju) + Tr−(A, Ju)

2
(u+ − u−)HN−1 Ju;

(iii) diffuse part: if, in addition,

(14) |Dcu|(SA) = 0,

where SA is the approximate discontinuity set of A, then (A, Du)d = Ã ·Ddu.

Remark 3.4. Since LN (SA) = 0, assumption (14) is equivalent to |Ddu|(SA) = 0. In
particular, it is satisfied, for example, if SA is σ–finite with respect to HN−1 (see [3,
Proposition 3.92(c)]). This is always the case if A ∈ BVloc(Ω,RN ) ∩ L∞loc(Ω,RN ) and,
notably, if N = 1. Another relevant situation for which (14) holds happens when Dcu = 0,
i.e. if u is a special function of bounded variation, e.g. if u is the characteristic function of
a set of finite perimeter.

Remark 3.5 (BV vector fields). If A ∈ BVloc(Ω,RN ) ∩ L∞loc(Ω,RN ), then clearly A ∈
DM∞loc(Ω) and

Tr±(A, Ju) = A±Ju · νu , HN−1-a.e. in Ju,

where A±Ju are the traces of A on Ju (see [3, Theorem 3.77]). Hence, the jump part of
(A, Du) can be written as

(A, Du)j =
A+ + A−

2
·Dju.

Proof. Let uε := ρε ∗ u. It has been proved in [11, Theorem 3.2] that

〈(A, Du) , ϕ〉 = lim
ε→0
〈(A, Duε) , ϕ〉 = lim

ε→0

∫
Ω
ϕA · ∇uε dx, ∀ϕ ∈ C∞0 (Ω)

and that (i) holds. We remark that, if K b U ⊂ U b Ω with U open, then

|(A, Du)|(K) ≤ ‖A‖L∞(U) |Du|(U),

hence, in particular

|(A, Du)|(E) ≤ ‖A‖L∞(U) |Du|(E) for every Borel set E ⊂ U.

It remains to prove (ii) and (iii). In order to simplify the notation, let us denote
µ := (A, Du).
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Proof of (ii). Since (A, Du)� |Du|, it is clear that (A, Du)j is supported in Ju. From
(9) and (13) we have that

(A, Du)j = (A, Du) Ju = div(uA) Ju − u∗ divA Ju

=
[
u+ Tr+(A, Ju)− u−Tr−(A, Ju)

]
HN−1 Ju

− u+ + u−

2

[
Tr+(A, Ju)− Tr−(A, Ju)

]
HN−1 Ju

=
Tr+(A, Ju) + Tr−(A, Ju)

2
(u+ − u−)HN−1 Ju,

and the proof is complete.

Proof of (iii). Let us consider the polar decomposition Du = θu |Du| of Du. By

assumption (14), the approximate limit Ã of A exists |Ddu|-a.e. in Ω. Hence, the equality
in (iii) is equivalent to

dµ

d|Ddu|
(x) =

dµd

d|Ddu|
(x) = Ã(x) · θu(x) for |Ddu|-a.e. x ∈ Ω.

Let us choose x ∈ Ω such that

(a) x belongs to the support of Ddu, that is |Ddu|(Br(x)) > 0 for every r > 0;

(b) there exists the limit lim
r→0

µd(Br(x))

|Ddu|(Br(x))
;

(c) lim
r→0

|Dju|(Br(x))

|Du|(Br(x))
= 0;

(d) lim
r→0

1

|Ddu|(Br(x))

∫
Br(x)

∣∣∣A(y) · θu(y)− Ã(x) · θu(x)
∣∣∣ d|Ddu|(y) = 0.

We remark that these conditions are satisfied for |Ddu|-a.e. x ∈ Ω.
Let r > 0 be such that

(15) |Dju| (∂Br(x)) = 0.

Observe that ∇uε = ρε ∗ Du = ρε ∗ Ddu + ρε ∗ Dju. Hence for every φ ∈ C0(RN ) with
support in Br(x) it holds∣∣∣∣∣ 1

|Ddu|(Br(x))

∫
Br(x)

φ(y)A(y) · ρε ∗Du(y) dy

− 1

|Ddu|(Br(x))

∫
Br(x)

φ(y)Ã(x) · θu(x) d|Ddu|(y)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

|Ddu|(Br(x))

∫
Br(x)

φ(y)A(y) · ρε ∗Ddu(y) dy

− 1

|Ddu|(Br(x))

∫
Br(x)

φ(y)Ã(x) · θu(x) d|Ddu|(y)

∣∣∣∣∣
+

1

|Ddu|(Br(x))
‖φ‖∞‖A‖L∞(Br(x))

∫
Br(x)

ρε ∗ |Dju| dy,

(16)

where in the last inequality we use that
∣∣ρε ∗Dju

∣∣ ≤ ρε ∗ |Dju|.
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We note that by (15)

lim
ε→0

∫
Br(x)

ρε ∗ |Dju| dy = |Dju|(Br(x)).

Hence by taking the limit as ε→ 0 in (16) we obtain∣∣∣∣∣ 1

|Ddu|(Br(x))

∫
Br(x)

φ(y) dµ(y)

− 1

|Ddu|(Br(x))

∫
Br(x)

φ(y)Ã(x) · θu(x) d|Ddu|(y)

∣∣∣∣∣
≤ 1

|Ddu|(Br(x))

∫
Br(x)

φ(y)
∣∣∣A(y) · θu(y)− Ã(x) · θu(x) d|Ddu|(y)

∣∣∣
+

1

|Ddu|(Br(x))
‖φ‖∞‖A‖L∞(Br(x)) |Dju|(Br(x)).

When φ(y)→ 1 in Br(x), with 0 ≤ φ ≤ 1, we get∣∣∣∣ µ(Br(x))

|Ddu|(Br(x))
− Ã(x) · θu(x)

∣∣∣∣
≤ 1

|Ddu|(Br(x))

∫
Br(x)

∣∣∣A(y) · θu(y)− Ã(x) · θu(x)
∣∣∣ d|Ddu|(y)

+
1

|Ddu|(Br(x))
‖A‖L∞(Br(x))|Dju|(Br(x)).

The conclusion is achieved now by taking r → 0 and by using (c) and (d). �

Example 3.6. Let A : R2 → R2 be the vector field defined by A(x1, x2) = (1, 0) if x1 > 0,
A(x1, x2) = (−1, 0) if x1 < 0. Clearly A ∈ DM∞ and divA = 2H1 S, where S :=
{0} × R.

Let E := (0, 1) × (0, 1) and let u := χE ∈ BV (R2). Let us choose on Ju = ∂E the
orientation given by the interior unit normal ν to E, so that u+ = 1 and u− = 0 on ∂E.

Let us compute the normal traces α± := Tr±(A, Ju) of A on Ju, using the construction
described in Section 2.4. Let ∂E = Ju = S1 ∪ S2 ∪ S3 ∪ S4, where

S1 = {0} × [0, 1], S2 = [0, 1]× {1}, S3 = {1} × [0, 1], S4 = [0, 1]× {0}.
Let us start with the computation of the normal traces on S1. We can construct two

open domains Ω and Ω′ of class C1, such that Ω ⊂ {x1 < 0}, Ω′ ⊂ {x1 > 0}, and
S1 ⊂ ∂Ω ∩ ∂Ω′. Indeed, with this choice we have

ν = νΩ = (1, 0) = −νΩ′ on S1.

(Recall that νΩ is by definition the outward normal vector to Ω.) We thus have

α− := Tr(A, ∂Ω) = −1, α+ := −Tr(A, ∂Ω′) = 1, on S1.

With similar constructions we get α± = −1 on S3 and α± = 0 on S2 ∪ S4, so that

α∗ :=
α+ + α−

2
=

{
−1, on S3,

0, on S1 ∪ S2 ∪ S4.

We can now check the validity of the relation

div(uA) = u∗ divA + (A, Du),
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where (A, Du) = (u+ − u−)α∗H1 Ju (in this case the measure (A, Du) does not have a
diffuse part). Indeed, we have

div(uA) = H1 S1 −H1 S3, u∗ divA = H1 S1, (u+ − u−)α∗H1 Ju = −H1 S3.

By the way, observe that uA = uC, where C is the constant vector field C ≡ (1, 0) on R2.
In this case the normal traces γ± of C on Ju are γ± = 1 on S1, γ± = −1 on S3, γ± = 0
on S2 ∪ S4, hence

u∗ divC = 0, (u+ − u−) γ∗H1 Ju = H1 S1 −H1 S3 .

4. Some formulas

Since the measure (A, Du) is absolutely continuous with respect to |Du|, then

(17) (A, Du) = θ(A, Du, x) |Du|,

where θ(A, Du, ·) denotes the Radon–Nikodým derivative of (A, Du) with respect to |Du|.
Let Du = θu|Du| be the polar decomposition of Du. From Theorem 3.3, if |Dcu|(SA) =

0 it holds

(18) θ(A, Du, x) =

{〈
Ã(x) , θu(x)

〉
, for |Ddu|-a.e. x ∈ Ω,

α∗(x) sign(u+(x)− u−(x)), for HN−1-a.e. x ∈ Ju,

where α∗ := [Tr+(A, Ju) + Tr−(A, Ju)]/2.

Remark 4.1. If divA ∈ L1(Ω) and u ∈ BV (Ω) ∩ L∞(Ω), then Tr+(A, Ju) = Tr−(A, Ju)
HN−1-a.e. in Ju. Moreover Anzellotti has proved in [7, Theorem 3.6] that

θ(A, Du, x) = qA(x, θu(x)) for |Du|-a.e. x ∈ Ω,

where, for every ζ ∈ SN−1,

qA(x, ζ) := lim
ρ↓0

lim
r↓0

1

LN (Cr,ρ(x, ζ))

∫
Cr,ρ(x,ζ)

A(y) · ζ dy

with

Cr,ρ(x, ζ) :=
{
y ∈ RN : |(y − x) · ζ| < r, |(y − x)− [(y − x) · ζ]ζ| < ρ

}
(the existence of the limit in the definition of qA(x, θu(x)) for |Du|-a.e. x ∈ Ω is part of
the statement). By using (18) in this framework, we can conclude that if divA ∈ L1(Ω)
and |Dcu|(SA) = 0, then we have〈

Ã(x) , θu(x)
〉

= qA(x, θu(x)) for |Ddu|-a.e. x ∈ Ω.

Finally, we remark that, when A is a W 1,1(Ω;RN ) vector field, then divA ∈ L1(Ω) and
|Dcu|(SA) = 0.

Theorem 4.2 (Coarea formula). Let A ∈ DM∞loc(Ω), let u ∈ BVloc(Ω) and assume that
u∗ ∈ L1

loc(RN , divA). Then

(19) 〈(A, Du) , ϕ〉 =

∫
R

〈
(A, Dχ{u>t}) , ϕ

〉
dt, ∀ϕ ∈ Cc(Ω)

and, for any Borel set B ⊂ Ω,

(20) (A, Du)(B) =

∫
R

(A, Dχ{u>t})(B) dt.
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Furthermore, for L1-a.e. t ∈ R,

(21) θ(A, Du, x) = θ(A, Dχ{u>t}, x) for |Dχ{u>t}|-a.e. x ∈ Ω.

Remark 4.3. Formulas (19) and (20) have been proved by Anzellotti (see [6, Proposi-
tion 2.7]) for u ∈ BV (Ω) and A ∈ L∞(Ω,RN ) with divA ∈ LN (Ω). Moreover they have
been proved in [27, Propositions 2.4 and 2.5] when Dju = 0.

Proof. Let us first consider the case u ∈ L∞(Ω). By possibly replacing u with u+ ‖u‖∞,
it is not restrictive to assume that u ≥ 0

Let us fix a test function ϕ ∈ C∞c (Ω). From the definition (8) of pairing, we have that∫
R

〈
(A, Dχ{u>t}) , ϕ

〉
dt = −

∫ +∞

0

(∫
Ω
χ∗{u>t}ϕddivA

)
dt

−
∫ +∞

0

(∫
Ω
χ{u>t}A · ∇ϕdx

)
dt =: −I1 − I2.

(22)

The integral I2 can be immediately computed as

(23) I2 =

∫
Ω
uA · ∇ϕdx.

The first integral I1 requires more care. From [19, Lemma 2.2] we have that, for L1-a.e.
t ∈ R, there exists a Borel set Nt ⊂ Ω, with HN−1(Nt) = 0, such that

∀x ∈ Ω \Nt : χ∗{u>t}(x) =


1, if u−(x) > t,

0, if u+(x) < t,

1/2, if u−(x) ≤ t ≤ u+(x) .

Since | divA| � HN−1, we deduce that, for L1-a.e. t ∈ R,

(24) χ∗{u>t}(x) =
χ{u−>t}(x) + χ{u+>t}(x)

2
, for | divA|-a.e. x ∈ Ω.

From (24), we can rewrite I1 in the following way:

I1 =

∫ +∞

0

∫
Ω

(
χ{u−>t} + χ{u+>t}

2
ϕddivA

)
dt

=

∫
Ω

u− + u+

2
ϕddivA =

∫
Ω
u∗ ϕddivA .

(25)

Hence, from (22), (23), (25) and the definition (8) of (A, Du), we conclude that (19)
holds for every test function ϕ ∈ C∞c (Ω). On the other hand, since both sides in (19) are
measures in Ω, they coincide not only as distributions, but also as measures. Hence (19)
and (20) follow.

Since, for L1-a.e. t ∈ R, it holds

dDu

d|Du|
=

dDχ{u>t}

d|Dχ{u>t}|
|Dχ{u>t}|-a.e. in Ω,

we conclude that (21) follows.
Finally, the general case u∗ ∈ L1

loc(RN , divA) follows using the previous step on the
truncated functions uk := Tk(u), where, given k > 0, Tk is defined by

(26) Tk(s) := max{min{s, k},−k} , s ∈ R.
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Since Tk is a Lipschitz continuous function, we get that

uk ∈ BVloc(Ω) ∩ L∞(Ω), u±k = Tk(u
±), |Duk| ≤ |Du| in the sense of measures.

Then |u±k | ≤ |u
±| and |u∗k| ≤ |u∗|, which implies that u∗k ∈ L1

loc(Ω,divA). �

Remark 4.4 (Representation of θ(A, Du, x)). Let A ∈ DM∞loc(Ω) and let u ∈ BVloc(Ω) ∩
L∞loc(Ω). If E b Ω is a set of finite perimeter, then |DχE | = HN−1 ∂∗E hence, by
Theorem 3.3, we have that

(A, DχE) =
Tr+(A, ∂∗E) + Tr−(A, ∂∗E)

2
|DχE |,

that is

θ(A, DχE , x) =
Tr+(A, ∂∗E) + Tr−(A, ∂∗E)

2
for HN−1-a.e. x ∈ ∂∗E.

Since, for L1-a.e. t ∈ R, the set Eu,t := {u > t} is of finite perimeter, then from (21) we
deduce that, for these values of t,

θ(A, Du, x) =
Tr+(A, ∂∗Eu,t) + Tr−(A, ∂∗Eu,t)

2
for HN−1-a.e. x ∈ ∂∗Eu,t.

Proposition 4.5 (Chain Rule). Let A ∈ DM∞loc(Ω) and let u ∈ BVloc(Ω) ∩ L∞loc(Ω). Let
h : R→ R be a locally Lipschitz function. Then the following properties hold:

(i) (A, Dh(u))a = h′(ũ)A · ∇uLN and, if |Dcu|(SA) = 0, then (A, Dh(u))d =
h′(ũ) (A, Du)d;

(ii) (A, Dh(u))j =
h(u+)− h(u−)

u+ − u−
(A, Du)j ;

(iii) if h is non-decreasing, then

(27) θ(A, Dh(u), x) = θ(A, Du, x), for |Dh(u)|-a.e. x ∈ Ω.

Remark 4.6. Formula (27) has been proved by Anzellotti (see [6, Proposition 2.8]) for
h ∈ C1, u ∈ BV (Ω) and A ∈ L∞(Ω,RN ) with divA ∈ LN (Ω). Moreover it has been
proved in [27, Proposition 2.7] when Dju = 0.

Remark 4.7. The same characterization of (A, Dh(u)) holds true if h : I → R is a locally
Lipschitz function in a interval I, provided that u(Ω) ⊂ I and h ◦ u ∈ BVloc(Ω).

Proof. From the Chain Rule Formula (see [3, Theorem 3.99]), we have that

Ddh(u) = h′(ũ)Ddu, Djh(u) = (h(u+)− h(u−)) νHN−1 Ju.

On the other hand, (h(u))± = h(u±), hence (i) and (ii) follow from Theorem 3.3.
The proof of (iii) can be done as in [27, Proposition 2.7]. �

Aim of the next results is the characterization of the pairing (vA, Du). We first present
a preliminary result in the case u = v in Lemma 4.8. The general case will follow in
Proposition 4.9. The same results, under the assumption Dju = Djv = 0, have been
proved in [29, Proposition 2.3].

Lemma 4.8. Let A ∈ DM∞loc(Ω) and u ∈ BVloc(Ω) ∩ L∞loc(Ω). Then

(28) (uA, Du) = u∗(A, Du) +
(u+ − u−)2

4
divA Ju,
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that is

(uA, Du)d = u∗(A, Du)d,(29)

(uA, Du)j =
α+u+ + α−u−

2
(u+ − u−)HN−1 Ju,(30)

where α± := Tr±(A, Ju). In particular, if Dju = 0 then (uA, Du) = u∗(A, Du).

Proof. Since the statement is local in nature, it is not restrictive to assume that u ∈ L∞(Ω).
Let us first assume that u > 0. Since D(u2) = 2u∗Du, from Proposition 4.5(iii) we have

that

θ(A, D(u2), x) = θ(A, Du, x) for |Du|-a.e. x ∈ Ω,

hence

(A, D(u2)) = θ(A, D(u2), x)|D(u2)| = θ(A, Du, x)2u∗|Du| = 2u∗(A, Du).

Starting from the relation

div(u2A) = (u2)∗ divA + (A, D(u2)) = (u2)∗ divA + 2u∗(A, Du)

we get

2u∗(A, Du) = div(u2A)− (u2)∗ divA = u∗ div(uA) + (uA, Du)− (u2)∗ divA

= [(u∗)2 − (u2)∗] divA + u∗(A, Du) + (uA, Du),

that is

(uA, Du) = u∗(A, Du)− [(u∗)2 − (u2)∗] divA.

Hence (28) follows after observing that (u∗)2 − (u2)∗ = 0 in Ω \ Su and (u∗)2 − (u2)∗ =
−(u+ − u−)2/4 on Ju. The relations (29) and (30) now follow from Theorem 3.3(ii).

The general case of u ∈ L∞(Ω) can be obtained from the previous case, considering the
function v := u + c, which is positive if c > ‖u‖∞. Namely, (28) easily follows observing
that

(vA, Dv) = (uA, Du) + c(A, Du), v∗ = u∗ + c, Jv = Ju, v+ − v+ = u+ − u−. �

Proposition 4.9. Let A ∈ DM∞loc(Ω) and u, v ∈ BVloc(Ω) ∩ L∞loc(Ω). Then

(31) (vA, Du) = v∗(A, Du) +
(u+ − u−)(v+ − v−)

4
divA (Ju ∩ Jv),

that is

(vA, Du)d = v∗(A, Du)d,(32)

(vA, Du)j =
α+v+ + α−v−

2
(u+ − u−)HN−1 Ju,(33)

where α± := Tr±(A, Ju).

Proof. From Lemma 4.8 we have that

((u+ v)A, D(u+ v)) = (u+ v)∗(A, D(u+ v))

+
(u+ + v+ − u− − v−)2

4
divA (Ju ∪ Jv).

(34)
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Let us compute the two sides of this equality. We have that

LHS = (uA, Du) + (vA, Dv) + (vA, Du) + (uA, Dv)

= u∗(A, Du) +
(u+ − u−)2

4
divA Ju + v∗(A, Dv) +

(v+ − v−)2

4
divA Jv

+ (vA, Du) + (uA, Dv)

On the other hand, the right–hand side of (34) is computed as

RHS = u∗(A, Du) + u∗(A, Dv) + v∗(A, Du) + v∗(A, Dv)

+
(u+ − u−)2

4
divA Ju +

(v+ − v−)2

4
divA Jv

+
(u+ − u−)(v+ − v−)

2
divA (Ju ∩ Jv).

Hence, after some simplifications (34) gives

(vA, Du) + (uA, Dv) = u∗(A, Dv) + v∗(A, Du)

+
(u+ − u−)(v+ − v−)

2
divA (Ju ∩ Jv).

(35)

Since

div(uvA) = u∗ div(vA) + (vA, Du), div(uvA) = v∗ div(uA) + (uA, Dv),

it holds

(36) (vA, Du)− (uA, Dv) = v∗(A, Du)− u∗(A, Dv).

Summing together (35) and (36) we get (31). The relations (32) and (33) now follow from
Theorem 3.3(ii). �

Remark 4.10. Observe that, in general,

(vA, Du) 6= v∗(A, Du),

because the jump part of the two measures can differ on points of Ju ∩ Jv (see also the
case of u = v = χE in [16, Remark 3.4]).

Proposition 4.11 (Leibniz rule). Let A ∈ DM∞loc(Ω) and u, v ∈ BVloc(Ω) ∩ L∞loc(Ω).
Then

(37) (A, D(uv)) = v∗(A, Du) + u∗(A, Dv).

More precisely, the measure (A, D(uv)) admits the following decomposition:

(i) absolutely continuous part: (A, D(uv))a = A · ∇(uv)LN , with ∇(uv) = u∇v +
v∇u;

(ii) jump part:

(A, D(uv))j =
α+ + α−

2
(u+v+ − u−v−)HN−1 (Ju ∪ Jv).

where α± := Tr±(A, Ju ∪ Jv);
(iii) diffuse part: if, in addition, |Dc(uv)|(SA) = 0, then (A, D(uv))d = Ã · Dd(uv),

with Dd(uv) = ũDdv + ṽDdu.
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Proof. We have that

(A, D(uv)) = div(uvA)− (uv)∗ divA =
1

2
div(uvA) +

1

2
div(uvA)− (uv)∗ divA

=
1

2
[u∗ div(vA) + (vA, Du)] +

1

2
[v∗ div(uA) + (uA, Dv)]− (uv)∗ divA

=
1

2
u∗ [div(vA)− v∗ divA] +

1

2
v∗ [div(uA)− u∗ divA]

+
1

2
(vA, Du) +

1

2
(uA, Dv) + [u∗v∗ − (uv)∗] divA

=
1

2
u∗(A, Dv) +

1

2
v∗(A, Du) +

1

2
(vA, Du) +

1

2
(uA, Dv)

+ [u∗v∗ − (uv)∗] divA .

A direct computation shows that

u∗v∗ − (uv)∗ = −(u+ − u−)(v+ − v−)

4
HN−1-a.e. in Ju ∪ Jv,

whereas u∗v∗ − (uv)∗ = 0 in Ω \ (Su ∪ Sv).
Hence, using (31) on (uA, Dv) and (vA, Du), we finally get (37). �

Using the results proved so far, Theorem 3.3 can be slightly extended to the case of
unbounded BV functions as follows.

Theorem 4.12. Let A ∈ DM∞loc(Ω), u ∈ BVloc(Ω) and assume that u∗ ∈ L1
loc(Ω,divA).

Then the pairing (A, Du), defined as a distribution by (8), is a Radon measure in Ω and
admits the decomposition given in Theorem 3.3.

Proof. The fact that (A, Du) is a Radon measure in Ω, with |(A, Du)| � |Du|, has been
proved in [20, Corollary 2.3].

Properties (i), (ii) and (iii) in Theorem 3.3 will follow with a truncation argument
similar to that used in the proof of Proposition 2.7 in [6].

More precisely, let us define the truncated functions uk := Tk(u) where Tk is defined in
(26).

Since |u∗k| ≤ |u∗|, by the Dominated Convergence Theorem we can pass to the limit in
the relation

〈(A, Duk) , ϕ〉 = −
∫

Ω
u∗kϕddivA−

∫
Ω
ukA · ∇ϕdx

obtaining that
〈(A, Duk) , ϕ〉 → 〈(A, Du) , ϕ〉 ∀ϕ ∈ C∞c (Ω).

Since |Dcuk| ≤ |Dcu|, from Theorem 3.3 it holds

(A, Duk)
d = Ã ·Dduk, if |Dcu|(SA) = 0,(38)

(A, Duk)
j = Tr∗(A, Juk)(u+

k − u
−
k )HN−1 Juk = Tr∗(A, Ju)(u+

k − u
−
k )HN−1 Ju.(39)

From the Chain Rule Formula (see [3, Example 3.100]) we have that

Dduk {|ũ| < k} = Ddu {|ũ| < k}.
Since, for every x ∈ Ω \ Su there exists k > 0 such that x ∈ {|ũ| < k}, from (38) we
conclude that (i) and (ii) in Theorem 3.3 hold.

Concerning the jump part, observe that if x ∈ Ju and k > max{|u+(x)|, |u−(x)|}, then
x ∈ Juk and u±k (x) = Tk(u

±(x)) = u±(x). Hence from (39) we can conclude that also
property (iii) in Theorem 3.3 holds. �
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Remark 4.13. We extract the following fact from the proof of Theorem 4.12. Let A ∈
DM∞loc(Ω), u ∈ BVloc(Ω) ∩ L1

loc(Ω,divA), and let uk := Tk(u) be the truncated functions
of u, where Tk is defined in (26). If we define

Ωk := {x ∈ Ju : |u±(x)| < k} ∪ {x ∈ Ω \ Su : |ũ(x)| < k},

then it holds

(A, Duk) Ωk = (A, Du) Ωk ∀k > 0.

Remark 4.14. Let A ∈ DM∞loc(Ω) and u ∈ BVloc(Ω). Then u∗ ∈ L1
loc(Ω,divA) if at least

one of the following conditions holds:

(a) u ∈ L∞loc;
(b) divA ≥ 0 or divA ≤ 0.

The first case is trivial. For case (b) the proof follows from [31, Remark 8.3].

We conclude this section with an approximation result in the spirit of [11, Theorem 1.2].
This kind of approximation has been used for example in [6] and [11] as an essential tool in
order to pass from smooth vector fields to less regular fields. Unfortunately, in our general
setting, properties (iv) and (v) below can be proved only under the additional assumption
|Dcu|(SA| = 0, so we cannot use this approximation to obtain the Gauss–Green formula
in Section 5. Nevertheless, we think that Proposition 4.17 may be useful in order to get
semicontinuity results for functionals depending linearly in ∇u.

Proposition 4.15 (Approximation by C∞ functions). Let A ∈ DM∞(Ω). Then there
exists a sequence (Ak)k in C∞(Ω,RN ) ∩ L∞(Ω,RN ) satisfying the following properties.

(i) Ak → A in L1(Ω,RN ) and
∫

Ω | divAk| dx→ |divA|(Ω).

(ii) divAk
∗
⇀ divA in the weak∗ sense of measures in Ω.

(iii) For every countably HN−1-rectifiable set Σ ⊂ Ω it holds〈
Tr±(Ak,Σ) , ϕ

〉
→ 〈Tr∗(A,Σ) , ϕ〉 ∀ϕ ∈ Cc(Ω),

where Tr∗(A,Σ) := [Tr+(A,Σ) + Tr−(A,Σ)]/2.

If, in addition, u ∈ BVloc(Ω) ∩ L∞loc(Ω) and |Dcu|(SA) = 0, then

(iv) (Ak, Du)
∗
⇀ (A, Du) locally in the weak∗ sense of measures in Ω;

(v) θ(Ak, Du, x)→ θ(A, Du, x) for |Du|-a.e. x ∈ Ω.

Remark 4.16. It is not difficult to show that a similar approximation result holds also for
A ∈ DM∞loc(Ω) with a sequence (Ak) in C∞(Ω,RN ).

Proof. (i) This part is proved in [11, Theorem 1.2]. We just recall, for later use, that for
every k the vector field Ak is of the form

(40) Ak =

∞∑
i=1

ρεi ∗ (Aϕi),

where (ϕi) is a partition of unity subordinate to a locally finite covering of Ω depending
on k and, for every i, εi ∈ (0, 1/k) is chosen in such a way that

(41)

∫
Ω
|ρεi ∗ (A · ∇ϕi)−A · ∇ϕi| dx ≤

1

k 2i

(see [11], formula (1.8)).
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(ii) From (i) we have that∫
Ω
Ak · ∇ϕdx→

∫
Ω
A · ∇ϕdx ∀ϕ ∈ C1

c (Ω),

hence (ii) follows from supk
∫

Ω | divAk| dx < +∞ and the density of C0
c (Ω) in C1

c (Ω) in
the norm of L∞(Ω).

(iii) Before proving (iii), we need to prove the following claim: if E b Ω is a set of finite
perimeter, then

(42) lim
k→+∞

∫
Ω
χE ϕ divAk dx =

∫
Ω
χ∗E ϕddivA, ∀ϕ ∈ C∞c (Ω).

Namely, from the definition (40) of Ak and the identity
∑

i∇ϕi = 0 we have that

divAk =
∑
i

ρεi ∗ (ϕi divA) +
∑
i

[ρεi ∗ (A · ∇ϕi)−A · ∇ϕi] .

From (41) we have that∣∣∣∣∣∑
i

∫
Ω
χEϕ [ρεi ∗ (A · ∇ϕi)−A · ∇ϕi] dx

∣∣∣∣∣ < 1

k
‖ϕ‖∞ ,

hence, to prove (42), it is enough to show that

(43) lim
k→+∞

∑
i

∫
Ω
χEϕρεi ∗ (ϕi divA) =

∫
Ω
χ∗E ϕddivA.

On the other hand,∑
i

∫
Ω
χEϕρεi ∗ (ϕi divA) =

∑
i

∫
Ω
ρεi ∗ (χEϕ)ϕi ddivA ,

hence (43) follows observing that, HN−1–a.e. in Ω,

χ∗Eϕ−
∑
i

ϕiρεi ∗ (χEϕ) =
∑
i

ϕi [χ∗Eϕ− ρεi ∗ (χEϕ)]→ 0.

Let us now prove (iii). Let Ω′ b Ω be a set of class C1. By the definition (6), by (i),
(ii) and (42), for every ϕ ∈ C∞c (Ω) we have that〈

Tr(Ak, ∂Ω′) , ϕ
〉

=

∫
Ω′

Ak · ∇ϕdx+

∫
Ω′
ϕ divAk dx

=

∫
Ω
χΩ′Ak · ∇ϕdx+

∫
Ω
χΩ′ ϕ divAk dx

→
∫

Ω
χΩ′A · ∇ϕdx+

∫
Ω
χ∗Ω′ ϕddivA

=

∫
Ω′

A · ∇ϕdx+

∫
Ω′
ϕddivA +

1

2

∫
∂Ω′

ϕddivA.

Hence, using the notations of Section 2.4, by (7) on the set Ni ⊂ ∂Ωi ∩ ∂Ω′i it holds

Tr−(Ak,Σ) = Tr(Ak, ∂Ωi)→ Tr−(A,Σ) +
1

2

[
Tr+(A,Σ)− Tr−(A,Σ)

]
= Tr∗(A,Σ),

where the convergence is in the weak∗ sense of L∞. A similar computation holds for
Tr+(Ak,Σ).
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(iv) From the very definition (40) of Ak, we have that

(44) Ak(x)→ Ã(x) for HN−1-a.e. x ∈ Ω.

From Theorem 3.3, (44) and (iii) we have that

Ak(x) ·Ddu→ Ã(x) ·Ddu, |Ddu|-a.e. in Ω,

Tr(Ak, Ju)(u+ − u−)→ Tr∗(A, Ju)(u+ − u−), HN−1-a.e. in Ju,

hence
(Ak, Du)d → (A, Du)d, (Ak, Du)j → (A, Du)j .

(v) Using the definition (17) of θ, we have that, for every ϕ ∈ Cc(Ω),∫
Ω
θ(Ak, Du, x)ϕ(x) d|Du| = 〈(Ak, Du) , ϕ〉

→ 〈(A, Du) , ϕ〉 =

∫
Ω
θ(A, Du, x)ϕ(x) d|Du|,

hence (v) follows. �

Proposition 4.17. Let (Ak) be a sequence in DM∞(Ω) such that Ak → A ∈ DM∞(Ω)
in L1

loc(Ω;RN ) and the sequence µk := divAk locally weakly∗ converges to µ := divA. Let
u ∈ BV (Ω) ∩ L∞(Ω) be compactly supported in Ω. Then the following hold:

(a) If the measures µh are positive and u ≥ 0, then∫
Ω
u− dµ ≤ lim inf

h→∞

∫
Ω
u− dµh,(45) ∫

Ω
u+ dµ ≥ lim sup

h→∞

∫
Ω
u+ dµh,(46)

where u− (resp. u+) is the approximate lower (resp. upper) limit of u.

(b) Assume that |µh|
∗
⇀ |µ| locally weakly∗. If |µ|(Ju) = 0, then

(47)

∫
Ω
u∗ dµ = lim

h→+∞

∫
Ω
u∗ dµh,

∫
Ω
u± dµ = lim

h→+∞

∫
Ω
u± dµh.

Proof. (a) Let us first consider the case u ∈ W 1,1(Ω) ∩ L∞(Ω). Since u has compact
support in Ω, it follows that

(48)

∫
Ω
ũ dµ = −

∫
Ω
∇u ·A dx = lim

k→∞
−
∫

Ω
∇u ·Ak dx = lim

k→∞

∫
Ω
ũ dµk.

Let us now consider the general case u ∈ BV (Ω). From Theorem 2.3, the approximate
upper limit u+ and the approximate lower limit u− are C1-quasi upper semicontinuous and
C1-quasi lower semicontinuous, respectively. In order to prove (45), we remark that by
Lemma 2.4 there exists an increasing sequence of nonnegative functions (uh) ⊆ W 1,1(Ω)
such that, for every h ∈ N, uh is approximately continuous HN−1-almost everywhere in Ω
and ũh(x)→ u−(x), when h→ +∞, for HN−1-almost every x ∈ Ω.

Therefore for HN−1-almost every x ∈ Ω

u−(x) = sup
h∈N

ũh(x)

and for every φ ∈ C0
c (Ω), with 0 ≤ φ ≤ 1, we have∫

Ω
φu− dµ = sup

h∈N

∫
Ω
φũh dµ.
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Moreover, since u ∈ L∞(Ω), we can assume that, for every h ∈ N, uh ∈ L∞(Ω), then
φuh ∈W 1,1(Ω) ∩ L∞(Ω), with compact support, and µ(Sφuh) = 0. Hence, by (48),∫

Ω
φ ũh dµ = lim

k→∞

∫
Ω
φ ũh dµk ≤ lim inf

k→∞

∫
Ω
φu− dµk.

The conclusion follows taking the supremum among all the functions φ ∈ C0
c (Ω), with

0 ≤ φ ≤ 1, and among the h ∈ N.
The proof of (46) is similar, since by Lemma 2.4 there exists a decreasing sequence of

nonnegative functions (vh) ⊆ W 1,1(Ω) such that, for every h ∈ N, vh is approximately
continuous HN−1-almost everywhere in Ω and ṽh(x)→ u+(x), when h→ +∞, for HN−1-
almost every x ∈ Ω. Therefore for HN−1-almost every x ∈ Ω

u+(x) = inf
h∈N

ṽh(x)

and we have ∫
Ω
u+ dµ = inf

h∈N

∫
Ω
ṽh dµ.

Moreover, since u ∈ L∞(Ω), we have that vh ∈ L∞(Ω) for any h sufficiently large, and since
the support of u is compact and u ∈ L∞(Ω) there exists a relatively compact neighborhood
U of the support of u which contains the support of vh for any h sufficiently large. Therefore
vh ∈W 1,1(Ω)∩L∞(Ω) and it has compact support for h sufficiently large, and µ(Svh) = 0.
Hence we get ∫

Ω
ṽh dµ = lim

k→∞

∫
Ω
ṽh dµk ≥ lim sup

k→∞

∫
Ω
v+ dµk.

The conclusion follows taking the infimum among the h ∈ N.
(b) In order to prove (47) firstly we assume that µk ≥ 0. We observe that ṽh − ũh → 0

HN−1-a.e. on Ω \ Su and, since µ(Su) = 0,

lim
h→+∞

∫
Ω

(ṽh − ũh) dµ = 0.

We have ∫
Ω
ũh dµ = lim

k→∞

∫
Ω
ũh dµk ≤ lim inf

k→∞

∫
Ω
u− dµk ≤ lim sup

k→∞

∫
Ω
u+ dµk

≤ lim
k→∞

∫
Ω
ṽh dµk =

∫
Ω
ṽh dµ.

By taking h→ +∞, we obtain that∫
Ω
u− dµ = lim

k→∞

∫
Ω
u− dµk = lim

k→∞

∫
Ω
u+ dµk =

∫
Ω
u+ dµ.

By the definition of u∗ we get

lim
k→∞

∫
Ω
u− dµk = lim

k→∞

∫
Ω
u+ dµk = lim

k→∞

∫
Ω
u∗ dµk.

The general case can we obtained by writing the measure µ as the difference between its
positive and its negative part. This concludes the proof. �

Remark 4.18. We would like to underline two consequences of Proposition 4.17.
(a) By (47), for every u ∈ BVloc(Ω) ∩ L∞loc(Ω), if |divA|(Ju) = 0, then

〈(Ak, Du) , φ〉 → 〈(A, Du) , φ〉 ∀φ ∈ C0
c (Ω) .
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(b) If −divAk ≥ 0, then

−
∫

Ω
u− divA ≤ lim inf

k→∞

(
−
∫

Ω
u− divAk

)
.

5. The Gauss–Green formula

In this section we will prove a generalized Gauss–Green formula for vector fields A ∈
DM∞loc(RN ) on a set E ⊂ RN of finite perimeter.

Using the conventions of Section 2.4, we will assume that the generalized normal vector
on ∂∗E coincidesHN−1-a.e. on ∂∗E with the measure–theoretic interior unit normal vector
ν̃E to E. Hence, if α± := Tr±(A, ∂∗E) are the normal traces of A on ∂∗E according to our
definition in Section 2.4, then, using the notation of [16], α+ ≡ (Ai · ν̃E) and α− ≡ (Ae · ν̃E)
correspond respectively to the interior and the exterior normal traces on ∂∗E.

Since |DχE | = HN−1 ∂∗E, from Proposition 4.9 we deduce that α+ and α− are re-
spectively the Radon–Nikodým derivatives with respect to |DχE | of the measures

σi := 2 (χEA, DχE), σe := 2 (χRN\EA, DχE),

that are both absolutely continuous with respect to |DχE |, hence

σi = α+HN−1 ∂∗E, σe = α−HN−1 ∂∗E

(see also [16, Theorem 3.2]).
For example, if E is an open bounded set of class C1 and A is a piecewise continuous

vector field that can be extended continuously by vector fields Ai and Ae in E and RN \E
respectively, then

α+ = −Tr(A, ∂E) = −Ai · νE = Ai · ν̃E , α− = Ae · ν̃E .

If u ∈ BVloc(RN ), in the following formulas we will understand

u±(x) := ũ(x) ∀x ∈ RN \ Su.

Theorem 5.1. Let A ∈ DM∞loc(RN ), u ∈ BVloc(RN ) and assume that u∗ ∈ L1
loc(RN , divA).

Let E ⊂ RN be a bounded set with finite perimeter. Then the following Gauss–Green for-
mulas hold: ∫

E1

u∗ ddivA +

∫
E1

(A, Du) = −
∫
∂∗E

α+u+ dHN−1 ,(49) ∫
E1∪∂∗E

u∗ ddivA +

∫
E1∪∂∗E

(A, Du) = −
∫
∂∗E

α−u− dHN−1 ,(50)

where E1 is the measure theoretic interior of E and α± := Tr±(A, ∂∗E) are the normal
traces of A when ∂∗E is oriented with respect to the interior unit normal vector.

Remark 5.2. This result extends Theorem 5.3 of [15] where u = φ ∈ C∞c (see also [16,
Theorem 4.1] where u = φ ∈ Liploc). Leonardi and Saracco (see Theorem 2.2 in [28])
established a similar formula by considering the collection X(Ω) of vector fields A ∈
L∞(Ω;RN ) ∩ C0(Ω;RN ) such that divA ∈ L∞(Ω) and by assuming that the set E with
finite perimeter satisfies an additional weak regularity condition.

Proof. Since E is bounded, without loss of generality we can assume that A ∈ DM∞(RN )
and u ∈ BV (RN ). We divide the proof in two steps.
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Step 1. Firstly, we consider the case u ∈ L∞(RN ). Since E is a bounded set with
finite perimeter, we have that χE ∈ BV (RN ) and the reduced boundary ∂∗E is a HN−1-
rectifiable set. Moreover, the vector field χEuA is compactly supported, so that

div(χEuA)(RN ) = 0

(see [16, Lemma 3.1]). Hence by choosing in (9) χE instead of u and uA instead of A, we
get

(51)

∫
RN

χ∗E ddiv(uA) = −(uA, DχE)(RN ).

We recall that

χ∗E = χE1 +
1

2
χ∂∗E ,

and, by Proposition 3.1 and the definition of normal traces it holds

div(uA) ∂∗E = (u+α+ − u−α−)HN−1 ∂∗E .

Hence

(52)

∫
RN

χ∗E ddiv(uA) =

∫
E1

ddiv(uA) +
1

2

∫
∂∗E

[u+α+ − u−α−] dHN−1 .

On the other hand DχE = ν̃EHN−1 ∂∗E so that, by Proposition 4.9,

(uA, DχE) = (uα)∗HN−1 ∂∗E,

that in turn gives

(53) (uA, DχE)(RN ) =

∫
∂∗E

1

2
[u+α+ + u−α−] dHN−1 .

Finally, substituting (52) and (53) in (51) and simplifying, we obtain (49).
On the other hand,∫

E1∪∂∗E
d div(uA) =

∫
E1

ddiv(uA) +

∫
∂∗E

[u+α+ − u−α−] dHN−1

=−
∫
∂∗E

u+α+ dHN−1 +

∫
∂∗E

[u+α+ − u−α−] dHN−1 ,

hence (50) follows. This concludes the proof of Step 1.

Step 2. Let us consider now u ∈ BV (RN ) such that u∗ ∈ L1
loc(RN ,divA). As in the

proof of Theorem 4.12, let uk := Tk(u) be the truncated functions of u, where Tk is the
truncation operator defined in (26).

By Step 1, since Tk(u) ∈ L∞(RN ) we obtain

(54)

∫
E1

Tk(u)∗ d divA +

∫
E1

(A, DTk(u)) = −
∫
∂∗E

α+Tk(u
+) dHN−1 ,

for every k > 0. We have that

Tk(u)∗ =
Tk(u)+ + Tk(u)−

2
=
Tk(u

+) + Tk(u
−)

2
→ u+ + u−

2
= u∗, HN−1-a.e.,

hence Tk(u)∗(x)→ u∗(x) for |divA|-a.e. x ∈ RN . Since |Tk(u)∗| ≤ |u∗| ∈ L1
loc(RN ,divA),

from the Dominated Convergence Theorem we have that

(55) lim
k→+∞

∫
E1

Tk(u)∗ ddivA =

∫
E1

u∗ ddivA.
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With a similar argument we also get that

(56) lim
k→+∞

∫
∂∗E

α+Tk(u)+ dHN−1 =

∫
∂∗E

α+u+ dHN−1.

On the other hand, by the definition (9) of pairing, for every ϕ ∈ C∞c (RN it holds

〈(A, DTk(u)), ϕ〉 = −
∫
RN

Tk(u)∗ϕddivA−
∫
RN

Tk(u)A · ∇ϕdx .

We can use the Dominated Convergence Theorem in both integrals at the right–hand side
(for the first one we can reason as in (55)), obtaining

(57) lim
k→∞

∫
E1

(A, DTk(u)) =

∫
E1

(A, Du) .

Finally, from (54), (55), (56) and (57) we get (49). Formula (50) can be obtained in a
similar way. �
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