ANZELLOTTTI’S PAIRING THEORY
AND THE GAUSS-GREEN THEOREM

GRAZIANO CRASTA AND VIRGINIA DE CICCO

ABSTRACT. In this paper we obtain a very general Gauss-Green formula for weakly
differentiable functions and sets of finite perimeter. This result is obtained by revisiting
the Anzellotti’s pairing theory and by characterizing the measure pairing (A, Du) when
A is a bounded divergence measure vector field and u is a bounded function of bounded
variation.

1. INTRODUCTION

In the pioneering paper [6], Anzellotti established a pairing theory between weakly
differentiable vector fields and BV functions. Among other applications that will be
mentioned below, this theory can be used to extend the validity of the Gauss—-Green
formula to such vector fields and to non smooth domains.

As a means of comparison, there are mainly two kinds of generalizations of the Gauss—
Green formula. On one hand, one may consider weakly differentiable vector fields but
fairly regular (e.g. Lipschitz) domains, see e.g. [10]. On the other hand, starting from the
fundamental results of De Giorgi and Federer (see e.g. [3, Theorem 3.36]), many other
generalizations mainly concern regular vector fields but only weakly regular domains (i.e.,
sets of finite perimeter), see e.g. [11,14-16,28].

In this paper we will prove a Gauss—Green formula valid for weakly differentiable vec-
tor fields and weakly regular domains. This unifying result is obtained by revisiting the
Anzellotti’s pairing theory in the general case of divergence measure vector fields and BV
functions. The core of the work is the characterization of the normal traces of these vector
fields and the analysis of the singular part of the pairing measure. This will allow us to
establish some nice formulas (coarea, chain rule, Leibnitz rule) for the pairing and, even-
tually, to prove our general Gauss—Green formula. We mention that, with our approach,
no approximation step with smooth fields or smooth subdomains, in the spirit of [7] and
[11], is needed. On top of that, our feeling is that the approximation with smooth fields
may not work in our framework (see the discussion before Proposition 4.15).

Let us describe in more details the functional setting of the problem. Let DM denote
the class of bounded divergence measure vector fields A: RY — R i.e. the vector fields
with the properties A € L™ and div A is a finite Radon measure. If A € DM and u
is a function of bounded variation with precise representative u*, then the distribution
(A, Du), defined by

(1) ((A, Du), ) ::—/ uwrpddivA— uA-Veodz, @ € CZ(RY)
RN RN
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is a Radon measure in RY, absolutely continuous with respect to | Du|. This fact has been
proved by Anzellotti in [6] for several combinations of A and u (for instance div A € L oru
a BV continuous function), excluding the general case of A € DM and u € BV. Indeed,
at that time, it was not clear how the discontinuities of u interact with the discontinuities of
the vector field A. The pairing (1) has been defined in the general setting by Chen—Frid in
the celebrated paper [11], where the authors also characterized the absolutely continuous
part of the measure (A, Du) as A - Vu. Nevertheless, they have not characterized the
singular part of the measure, and, as far as we know, this problem has remained unsolved,
at least in this general setting.

On the other hand, the pairing in its full generality has been revealed a fundamental
tool in several contexts. We cite, for example, [11-15,17,30] for applications in the theory
of hyperbolic systems of conservation and balance laws, and [1] for the case of vector fields
induced by functions of bounded deformation, with the aim of extending the Ambrosio—
DiPerna—Lions theory of the transport equations (see also [2]).

The divergence measure vector fields play a crucial role also in the theory of capillarity
and in the study of the Prescribed Mean Curvature problem (see e.g. [28] and the references
therein), and in the context of continuum mechanics (see e.g. [22,33,34]).

Another field of application is related to the Dirichlet problem for equations involving
the 1-Laplacian operator (see [4,10,25,26,32]). The interest in this setting comes out from
an optimal design problem, in the theory of torsion and from the level set formulation of the

Inverse Mean Curvature Flow. To deal with the 1-Laplacian Aju := div (lg—zo, the main

Du
Du|?
been overcome in [4,5] through the An;ellotti’s theory of pairings. Namely, the role of this
quotient is played by a vector field A € DM such that ||A|loc < 1 and (A, Du) = |Du.

Finally, in some lower semicontinuity problems for integral functionals defined in Sobolev
spaces and in BV, the vector fields with measure—derivative occurred as natural depen-
dence of the integrand with respect to the spatial variable (see [8,19,21]).

difficulty is to define the quotient being Du a Radon measure. This difficulty has

Let us now describe in more details the results proved in this paper.

Our first aim is to characterize the measure (A, Du) in the general case A € DM and
u € BV. As we have already recalled above, the absolutely continuous part of (A, Du)
has been characterized in [11] as A - Vu, hence only the jump and the Cantor parts have
to be studied.

The analysis of the jump part of the pairing requires, in particular, a detailed study of
the normal traces of uA on a countably H™!-rectifiable set 3. Following the arguments
in [1], in Proposition 3.1 below we will prove that, if A € DM and u € BV N L, then
uA € DM and the normal traces of uA on ¥ are given by

Trt(wA, Y) = vt TrE(A,%), HY ! —ae inX.

This allows us to give a precise description of the jump part (A, Du)’ of the measure
(A, Du) in terms of the trace of u and the normal trace of A.

Under the additional assumption |D°u|(S4) = 0, where Du is the Cantor part of Du
and S4 is the approximate discontinuity set of A, we are able to give a representation
formula for the Cantor part (A, Du)® of the pairing measure. In Remark 3.4 we will
discuss some cases of interest where this condition is satisfied.

In conclusion, in Section 3 we will prove that the measure (A, Du) admits the following
decomposition:

(i) absolutely continuous part: (A, Du)® = A - Vu LV;
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. Tt (A, J Tr~ (A, J
(ii) jump part: (A, Du)? = (4, u);— r (4, ) (ut —u ) HV LTy
(ili) Cantor part: if |[Du|(S4) = 0, then (A, Du)¢ = A - D¢u.
In Section 4, by using the above decomposition, we will be able to describe the Radon—
Nikodym derivative of the measure (A, Du) with respect to |Du|. As a consequence, we

will prove the coarea formula, the chain rule for the pairing (A, Dh(u)), and the Leibniz
formula for (A, D(uv)) and (vA, Du).

Finally, in Section 5, exploiting the formulas proved in Section 4, we will prove our
generalized Gauss-Green formula: if A € DM, u € BVNL*®, and E C RY is a bounded
set with finite perimeter, then

(2) / u* ddiv A + / (A, Du) = — / ut TrH(A,0°E) dHN L,
E? E? O*E

(3) / u* ddiv A+ / (A, Du) = — / u” Tr (A, 0*E) dHN 1,
ElUS*E Eluo*E o*E

where E! is the measure theoretic interior of E, 0*FE is the reduced boundary of E and
O*F is oriented with respect to the interior unit normal vector.

As we have already underlined in this introduction, a number of Gauss—Green formulas
that can be found in the literature are a particular case of (2) and (3).

For example, the case u = 1 has been considered in the classical De Giorgi—Federer
formula with A a regular vector field (see e.g. [3, Theorem 3.36]), by Vol'pert [35,36] for
A € BV(Q,RY) and finally by Chen-Torres-Ziemer [15] in the general case A € DM,

The case of a non-constant u has been considered by Anzellotti [7] if div A € L!, by
Comi—Payne [16] if u is a locally Lipschitz function, and by Leonardi-Saracco if A €
DM> N C° (with some additional conditions on E).

2. PRELIMINARIES

In the following © will always denote a nonempty open subset of RY.
Let u € L{ (€2). We say that u has an approximate limit at o € € if exists z € R such
that
1

(4) Tl_i}r& N (B (z0) /BT(wo) lu(x) — z| de = 0.

The set S, C Q of points where this property does not hold is called the approximate
discontinuity set of u. For every xg € Q\ S, the number z, uniquely determined by (4),
is called the approximate limit of u at xy and denoted by w(x).

We say that x¢ € 2 is an approximate jump point of u if there exist a,b € R and a unit
vector v € R™ such that a # b and

1
lim ————— —aldy =0
o0k LN (B () /B;r(xo) [uly) - aldy =0,
) 1

lim _/ u(y) — bl dy =0,
r—0+ LN (By (x0)) By (z0) [u() |

where Bf(xg) := {y € B.(z0) : +(y — x0) - v > 0}. The triplet (a,b,v), uniquely
determined by (5) up to a permutation of (a,b) and a change of sign of v, is denoted by
(u™(x0),u" (z0), vu(x0)). The set of approximate jump points of u will be denoted by J,.

The notions of approximate discontinuity set, approximate limit and approximate jump
point can be obviously extended to the vectorial case (see [3, §3.6]).
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In the following we shall always extend the functions u* to Q\ (S, \ Ju) by setting
uF =uUin Q\ S,

In some occasions it will be useful to choose the orientation of v in such a way that
u~ < uT in J,. These particular choices of ©~ and u™ will be called the approximate
lower limit and the approximate upper limit of u respectively.

Here and in the following we will denote by p € C°(RY) a symmetric convolution
kernel with support in the unit ball, and by pe(x) := e N p(x/e).

In the sequel we will use often the following result.

Proposition 2.1. Let u € L} (Q) and define

@) = pex @)= [ pe(o =) ulo) do

(i) If zo € Q\ Sy, then us(zo) — u(zo) ase — 0T,
(ii) If u is differentiable at xo € RY, then Vue (z0) — Vu (20) as € — 07,

2.1. Functions of bounded variation and sets of finite perimeter. We say that
u € L1() is a function of bounded variation in € if the distributional derivative Du of u
is a finite Radon measure in 2. The vector space of all functions of bounded variation in
Q will be denoted by BV (2). Moreover, we will denote by BVj,.(€2) the set of functions
u € Li _(Q) that belongs to BV (A) for every open set A € (2 (i.e., the closure A of A is a
compact subset of ).

If w € BV(2), then Du can be decomposed as the sum of the absolutely continuous

and the singular part with respect to the Lebesgue measure, i.e.
Du = D% + D?u, D% = Vu LV,

where Vu is the approximate gradient of u, defined £V-a.e. in €. On the other hand, the
singular part D®u can be further decomposed as the sum of its Cantor and jump part, i.e.

D%u = D+ D’u, D :=Dul(Q\S,), D’u:=DulJ,

where the symbol pL B denotes the restriction of the measure p to the set B. We will
denote by D% := D% + D°u the diffuse part of the measure Du.

In the following, we will denote by 6,: @ — S™V~! the Radon Nikodym derivative of
Du with respect to |Dul, i.e. the unique function 6, € L'(€, |Du|)"V such that the polar
decomposition Du = 6, |Du| holds. Since all parts of the derivative of u are mutually
singular, we have

D% = 0, |D|, D'u=0,|D’u|, D = 8,|D |
as well. In particular 0, (z) = Vu(z)/|Vu(z)| for LN-a.e. z € Q such that Vu(z) # 0 and
0, () = sign(ut(z) — u™(z)) vy (x) for HV tae. x € J,.

Let E be an £N-measurable subset of RYV. For every open set  C RY the perimeter
P(E, ) is defined by

P(E,Q) := sup{/ divedr: ¢ e CHORY), |l¢lle < 1}.
E

We say that E is of finite perimeter in Q if P(E, Q) < +oc.
Denoting by xg the characteristic function of E, if F is a set of finite perimeter in €,
then Dxpg is a finite Radon measure in 2 and P(E, Q) = |Dxg|(Q).
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If Q c RY is the largest open set such that E is locally of finite perimeter in €, we call
reduced boundary 0*E of E the set of all points = € § in the support of | Dxg| such that
the limit

~ Dxg(B
vp(z):= lim Dxe(Bp())
p—0t | Dxel(By())

exists in RY and satisfies |7g(z)| = 1. The function v: 9*E — SN~ is called the measure
theoretic unit interior normal to E.

A fundamental result of De Giorgi (see [3, Theorem 3.59]) states that 0*E is countably
(N — 1)-rectifiable and |Dxg| = HN 1L O*E.

Let E be an £V-measurable subset of RYV. For every ¢ € [0, 1] we denote by E* the set

o foewy. e EENBE)
B foews i Srp =)

of all points where E has density ¢. The sets £V, E', 9°E := RV \ (E° U E') are called
respectively the measure theoretic exterior, the measure theoretic interior and the essential
boundary of E. If E has finite perimeter in €2, Federer’s structure theorem states that
*ENQC EY?2C 0°F and HN-1(Q\ (ECUI°E U EY)) = 0 (see [3, Theorem 3.61]).

2.2. Capacity. Given an open set A C RV, the 1-capacity of A is defined by setting
Ci(A) = inf{/ |Do|dz : ¢ € WHYRY), »>1 LN-ae. on A} .
RN

Then, the 1-capacity of an arbitrary set B C RY is given by
C1(B) :=inf{Cy1(A) : AD B, A open}.

It is well known that capacities and Hausdorff measure are closely related. In particular,
we have that for every Borel set B ¢ RN

Ci(B)=0 <=  HYYB)=0.

Definition 2.2. Let B ¢ RY be a Borel set with C1(B) < +oo. Given € > 0, we
call capacitary e-quasi-potential (or simply capacitary quasi-potential) of B a function
0. € WHHRN), such that 0 < . <1 HN"lae. mRY, . =1 HN"'-a.e. in B and

/N \De.|da < C1(B) +¢.
R

We recall that a function u: RV — R is said Cj-quasi continuous if for every ¢ > 0
there exists an open set A, with C1(A) < ¢, such that the restriction ul_ A is continuous
on A¢ Ci-quasi lower semicontinuous and Ci-quasi upper semicontinuous functions are
defined similarly.

It is well known that if w is a Wh!-function, then its precise representative u is Ci-
quasi continuous (see [23, Sections 9 and 10]). Moreover, to every BV-function u, it is
possible to associate a C7-quasi lower semicontinuous and a Cq-quasi upper semicontinuous
representative, as stated by the following theorem (see [9], Theorem 2.5).

Theorem 2.3. For every function uw € BV(Q), the approximate upper limit u™ and
the approximate lower limit u~ are Ci-quasi upper semicontinuous and Ct-quasi lower
semicontinuous, respectively.
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In particular, if B is a Borel subset of RV with finite perimeter, then Xp is Ci-quasi
lower semicontinuous and XE is C1-quasi upper semicontinuous.

We recall the following lemma which is an approximation result due to Dal Maso (see
[18], Lemma 1.5 and §6).

Lemma 2.4. Let u: RN — [0,+00) be a Ci-quasi lower semicontinuous function. Then
there exists an increasing sequence of nonnegative functions {up} € WHH(RYN) such that,
for every h € N, uy, is approzimately continuous HYN -almost everywhere in RN and
up(x) — u(z), when h — +oo, for HN"1-almost every x € RV,

2.3. Divergence—measure fields. We will denote by DM*°(Q2) the space of all vec-
tor fields A € L*°(Q,RY) whose divergence in the sense of distribution is a bounded
Radon measure in €. Similarly, DMpS (2) will denote the space of all vector fields
A € L%C(Q,RN ) whose divergence in the sense of distribution is a Radon measure in
Q. We set DM = DM (RV).

We recall that, if A € DM (), then |div A| < HV~! (see [11, Proposition 3.1]). As
a consequence, the set

Op = {Q:GQ: limsupw > 0},
r—0-+ r

is a Borel set, o-finite with respect to HV 1, and the measure div A can be decomposed
as
div A = div® A + div® A + div’ A,
where div® A is absolutely continuous with respect to £V, div® A(B) = 0 for every set B
with HV~1(B) < +o0, and
divi A= fHN1LO,
for some Borel function f (see [2, Proposition 2.5]).

2.4. Normal traces. The traces of the normal component of the vector field A € DM7S.(£2)
can be defined as distributions Tr* (A, X) on every countably %"~ ! rectifiable set ¥ C Q
in the sense of Anzellotti (see [1,6,11]).

More precisely, let us briefly recall the construction given in [1] (see Propositions 3.2,
3.4 and Remark 3.3). First of all, given a domain €' € Q of class C*, we define the trace
of the normal component of A on 9 as a distribution as follows:

(6) (Tr(A,09), ¢) = /Q/A-dex—i-/gltpddivA, Vo € C°(Q).

It turns out that this distribution is induced by an L*° function on 0V, still denoted by
Tr(A, 09'), and
| Tr(A, )| Loo a0y < Al ooy

Since ¥ is countably HN~1-rectifiable, we can find countably many oriented C'* hyper-
surfaces ¥;, with classical normal vy, and pairwise disjoint Borel sets IN; C ¥; such that
HYI(S\ U Ny) = 0.

Moreover, it is not restrictive to assume that, for every 4, there exist two open bounded
sets €, Q! with C! boundary and exterior normal vectors v, and Vo respectively, such
that N; C 0€; N 9Q, and

v, (2) = vo,(z) = —vg(x)  Voe N

At this point we choose, on X, the orientation given by vs(z) := vs, (x) H¥ "L-a.e. on N;.
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Using the localization property proved in [1, Proposition 3.2], we can define the normal
traces of A on ¥ by

Tr (A, %) :=Tr(A,0Q), TrH(A,X%):=-Tr(A4,00), HY ' —ae on N
These two normal traces belong to L> (X, HN =1L ¥) (see [1, Proposition 3.2]) and

(7) divALY = [Tr7(A,%) - Tr (A, %)] HV'LE.

2.5. Anzellotti’s pairing. As in Anzellotti [6] (see also [11]), for every A € DM; ()
and u € BVjo(2) N LYY () we define the linear functional (A, Du): C§°(2) — R by

loc

(8) (A, Du), ¢) = /

u*goddivA—/uA-Vgod:L’.
Q Q

The distribution (A, Du) is a Radon measure in 2, absolutely continuous with respect to
|Du| (see [6, Theorem 1.5] and [11, Theorem 3.2]), hence the equation

(9) div(uA) = u*div A + (A, Du)

holds in the sense of measures in 2 (We remark that, in [11], the measure (A, Du) is
denoted by A - Du.) Furthermore, Chen and Frid in [11] proved that the absolutely con-
tinuous part of this measure with respect to the Lebesgue measure is given by (A, Du)® =
A-VuLlhN,

3. CHARACTERIZATION OF THE ANZELLOTTI’S PAIRING

Proposition 3.1. Let A € DM (Q), u € BVioe(2) N LZ.(2) and let ¥ C Q be a
countably HN ' -rectifiable set, oriented as in Section 2.4. Then uA € DM.(Q) and the
normal traces of uA on X are given by

iT:i:AZ N-1 _ e i ; >
(10) TtwA,n) =" i( %), MY —ac in 1,0,
uTr=(AX), H —a.e. in X\ Jy.

Proof. The fact that uA € DM;S. () has been proved in [11, Theorem 3.1].
We will use the same notations of Section 2.4. It is not restrictive to assume that J,, is
oriented with vx, on J, N X.

Let us prove (10) for Tr™. Let x € X satisfy:

(a) z € (2\ Su) U Jy, z € N; for some i, the set N; has density 1 at x, and z is a
Lebesgue point of Tr™ (A, ¥) with respect to HN 1L 9€Y;

(b) |div A|LQ;(B:(z)) = o(eN"1) as e = 0;

(c) |div(uA)|LQ;(B:(z)) = o(eV71).

We remark that HV~!-a.e. 2 € X satisfies these conditions. In particular, (a) is satisfied
because HN~1((Q\ S,) U J,) = 0, whereas (b) and (c) follow from [3, Theorem 2.56 and
(2.41)].
In order to simplify the notation, in the following we set v~ (x) := u(z) if x € Q\ S,.
Let us choose a function ¢ € C®(RY), with support contained in B;(0), such that
0 < ¢ < 1. For every € > 0 let p-(y) := ¢ (=5).
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By the very definition of normal trace, the following equality holds for every € > 0 small
enough:

EN1/ [Tr(uA, 0;) — u™(z) Tr(A, 0%)] - (y) dHY ~1(y)
() T eN- 1/ Veoe(y) - [u(y)Aly) —u (z)A(y)] dy

+€N_1 /Q (y) dldiv(uA) — u™(z) div A](y)

Using the change of variable z = (y — ) /e, as € — 0 the left hand side of this equality
converges to

[T (0A, B)(e) ~w (@) T (AD)] [ o) an™ ().

where 11, is the tangent plane to ¥; at . Clearly ¢ can be chosen in such a way that
In, @dHN"1 > 0.

In order to prove (10) for Tr™ it is then enough to show that the two integrals I;(e)
and I5(e) at the right hand side of (11) converge to 0 as ¢ — 0.

With the change of variables z = (y — z) /e and by the very definition of v we have that

I(e) = / ol +e2) — w @] Ve(2) - Al +2)

where

As £ — 0, these sets locally converge to the half space P, := {z € RV : (2, v(z)) < 0},
hence

lim |u(z +ez) —u (x)|dz = lim lu(z +ez) —u (x)|dz=0
e—0 QENBy =0 P:NB;

(see [3, Remark 3.85]) so that

[11(e)] < [[AllLee(B.(a HVSOHoo/ u(z 4 e2) —u” (2)[dz = 0.
QfﬂBl

From (b) we have that

i 1
11m
e—0 EN 1

/Q‘ @=(y) U(x)ddivA(y)’ < limsup|u(x)\|C“‘“3|V(_ff€($)) —0.

e—0

In a similar way, using (c), we get

lim
e—0 EN 1

/ goaddiv(uA)’ =0,
Q;

so that I2(e) vanishes as ¢ — 0.
The proof of (12) for Tr™ is entirely similar. O

The following result has been proved in [24, Lemma 2.5].
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Corollary 3.2. Let A € DMS.(Q) and u € BVipe(Q) N LS. (Q). Then uA € DM ()

and the normal traces of uA on J, are given by e

(12) Tr(uA, J,) = v TrE (A, J,), HNTL —ae. in Jy.

In particular

(13) div(uA)L J, = [ut TrT (A, J,) — v Tr™ (A, J,)] HY 'L Ju.

Theorem 3.3. Let A € DM () and u € BVioe()NL{E,
admits the following decomposition:
(i) absolutely continuous part (A,Du)* = A-VuLll;

(A7 u) —; Tr <A7 Ju) (u+ o U/_)HN_II_Ju;

(). Then the measure (A, Du)

(ii) jump part: (A, Du)! =
(iii) diffuse part: if, in addition,

(14) | Dul(Sa) =0,
where Sa is the approzimate discontinuity set of A, then (A, Du)? = A . Dy,

Remark 3.4. Since LN (S4) = 0, assumption (14) is equivalent to |D%|(Sa) = 0. In
particular, it is satisfied, for example, if S4 is o-finite with respect to HV~1 (see [3,
Proposition 3.92(c)]). This is always the case if A € BVjo(,RY) N L (Q,RY) and,

loc

notably, if N = 1. Another relevant situation for which (14) holds happens when D = 0,
i.e. if u is a special function of bounded variation, e.g. if u is the characteristic function of
a set of finite perimeter.

Remark 3.5 (BV vector fields). If A € BVioo(,RY) N L (Q,RY), then clearly A €
DMIOC( )and

Tt (A, J,) = Ai Uy HVLae. in J,,

where A:J]Eu are the traces of A on J, (see [3, Theorem 3.77]). Hence, the jump part of
(A, Du) can be written as

AT+ A .
(A, Du) = % - D7u.

Proof. Let ue := p * u. It has been proved in [11, Theorem 3.2] that

((A,Du), ¢) =lim ((A, Du:), ¢) =lim [ ¢ A-Vu.dz, Vo € C5°(Q)

e—0 e—0 Jq
and that (i) holds. We remark that, if K € U C U € Q with U open, then
(A, DW)|(K) < | All g0y | Dul(U),
hence, in particular
(A, Du)|(E) < [| Al @y [Dul(E) for every Borel set E C U.

It remains to prove (ii) and (iii). In order to simplify the notation, let us denote
= (A, Du).
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Proof of (ii). Since (A, Du) < |Dul, it is clear that (A, Du)’ is supported in J,. From
(9) and (13) we have that
(A, Du)! = (A, Du)LJ, = div(uA)L J, — u* div AL J,
= [ut TrT (A, J,) —u” Tr (A, J,) | HY L,
— ““2”‘_ [Trt (A, J,) — Tr (A, J,) | HY L,
TrH (A, J,) + Tr~ (A, J,)

= 5 (U+ —U_)HN_II—JUJ

and the proof is complete.

Proof of (iii). Let us consider the polar decomposition Du = 6, |Du| of Du. By

assumption (14), the approximate limit A of A exists | D4ul-a.e. in Q. Hence, the equality
in (iii) is equivalent to

dp o dpt o o a
D] (z) = D] () = A(x) - 0,(x) for |D%l-a.e. z € €.

Let us choose z € Q such that

(a) x belongs to the support of D%, that is |D%|(B,(z)) > 0 for every r > 0;

d
B,
(b) there egists the limit }1_1)% létll(t|(3(f()$)));
| D u|(Br(x))

(©) limg DulB) o

d) lim "
( ) r—0 ’DdU’(Br(x)) By ()

We remark that these conditions are satisfied for |D%l-a.e. x € Q.
Let 7 > 0 be such that

(15) |Du| (9B, (z)) = 0.

A(y) - 0u(y) — A(z) - 0u(2)| d|D%](y) = 0.

Observe that Vu. = p. * Du = p. * D% + p. * D/u. Hence for every ¢ € Co(RY) with
support in B, (x) it holds

1
‘\Ddul(Br(w)) /Br(x) ¢(y)A(y) - pe * Du(y) dy

I Ae) 00 el
DRIBE) o, (WA ) D

—1 - pe * D%y
< ‘IDdu!(Br(:r)) /Br(z) d(y)A(y) - pe * Du(y) dy

I Ae) 00 el
DRIy, WA -0uz) D)

1 |
+ e ol s [ pex Dl dy,
\DdUI(Br(:C))H locll Al (5, =) Boz) D7l

where in the last inequality we use that | pe ¥ DI u’ < pe * |DIul.
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We note that by (15)

lim pe * |DIu| dy = | DIu|(B,(x)).

e—0 By (z)
Hence by taking the limit as ¢ — 0 in (16) we obtain

1
D%](B, (2) /Brm Ay) duy)

S Ae) - 0u(0) dl D
DRIBE) o, (OAE) ) dID )

1 . — A x) - e du
< BB .y 2O AW 0u0) = A u2) D%l

1
+—
| Déul(B(x))
When ¢(y) — 1 in B,(z), with 0 < ¢ < 1, we get

19l ool All L (5, (2 | D7 ul (Br ().

)
@) Ao
Bty A 60

A(y) - 0uly) — A(z) - 0u(z)| d|D%|(y)

= [D%](B,(x)) /Brm

1
Sa g AL B @) | D ul (B (2)).
[ D%ul(B(a))
The conclusion is achieved now by taking » — 0 and by using (c) and (d). O
Ezample 3.6. Let A: R? — R? be the vector field defined by A(x1,79) = (1,0) if 21 > 0,
A(z1,72) = (=1,0) if 21 < 0. Clearly A € DM and divA = 2H'L S, where S :

_l’_

{0} x R.
Let E := (0,1) x (0,1) and let u := yg € BV(R?). Let us choose on J, = F the
orientation given by the interior unit normal vto E, sothat u™ =1 and u~ =0 on JF.
Let us compute the normal traces o® := Tr* (A, J,) of A on J,, using the construction

described in Section 2.4. Let OF = J,, = 5’1 U .Sy U S3 U Sy, where
S = {0} X [07 1]7 So = [0? 1] X {1}a S3 = {1} X [07 1]7 Sy = [07 1} X {0}

Let us start with the computation of the normal traces on S;. We can construct two
open domains Q and Q' of class C!, such that Q C {z; < 0}, @' C {z; > 0}, and
S1 C 90N 0. Indeed, with this choice we have

v=vg=(1,0)=—vy on Sj.
(Recall that vq is by definition the outward normal vector to §2.) We thus have
a =Tr(A,00)=—-1, o' :=-Tr(A,00)=1, on Si.
With similar constructions we get a* = —1on S5 and a* =0 on Sy U Sy, so that
o at +a” _ {—1, on Ss,
2 0, on S1 U Sy U S;y.
We can now check the validity of the relation
div(uA) = u* div A + (A, Du),
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where (A, Du) = (u™ — u™)a* H'L J, (in this case the measure (A, Du) does not have a
diffuse part). Indeed, we have
div(uA) = H'LS; —H'L S, w*divA=HLS), (u"—u)a*H'LJ, =—-H'LSs.

By the way, observe that uA = uC, where C is the constant vector field C = (1,0) on R2.
In this case the normal traces = of C on J, are v =1 on S;, v = —1 on S3, v+ =0
on So U Sy, hence

wdivC =0, (um—u )y HILJ, =HLS —HILS;.

4. SOME FORMULAS
Since the measure (A, Du) is absolutely continuous with respect to |Dul, then
(17) (A, Du) = 0(A, Du,x) |Dul,

where §(A, Du, -) denotes the Radon-Nikodym derivative of (A, Du) with respect to |Dul.
Let Du = 0,|Du| be the polar decomposition of Du. From Theorem 3.3, if | Du|(S4) =
0 it holds

<:4(x), 9u($)> , for |D4ul-a.e. z € Q,
a*(z)sign(ut(z) —u(x)), for HN lae. x € J,,
where o := [Tr" (A, J,) + Tr~ (A4, J,)]/2.

Remark 4.1. If div A € LY(Q) and u € BV (2) N L>(Q), then Tr* (A, J,) = Tr™ (A, J,)
HN~1a.e. in J,. Moreover Anzellotti has proved in [7, Theorem 3.6] that

(A, Du,x) = ga(x,0,(x)) for |Dul-a.e. z € Q,

where, for every ¢ € SN,

(18) 0(A, Du,x) = {

1
qa(x,C ::limlim/ A(y) - Cdy
(¢) pl0 110 LN(C; (2, ) Je, p,0) (@)
with
Crp(z,Q)={y eRY : |(y —2)- (| <7, [(y — ) — [(y — ) - {J¢| < p}

(the existence of the limit in the definition of ga(z,8,(x)) for |Dul-a.e. x € Q is part of
the statement). By using (18) in this framework, we can conclude that if div A € L'(Q)
and |D|(Sa) = 0, then we have

<21(x), Gu(az)> = ga(z,0u(z))  for |Dul-ae. z € Q.

Finally, we remark that, when A is a W11 (Q;RY) vector field, then div A € L'(2) and
|Du|(S4) = 0.

Theorem 4.2 (Coarea formula). Let A € DM (), let u € BVioo(2) and assume that
u* € LL (RN, div A). Then

(19) (4.0 )= [

A <(A, Dx{y=1y) s s0> dt, Vo€ C()

and, for any Borel set B C €2,

(20) (A.Du)(B) = [ (A, D) (B) .
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Furthermore, for L'-a.e. t € R,
(21) 0(A, Du, ) = 6(A, DXy, @) for [Dxgyspyl-a-e. © € €.

Remark 4.3. Formulas (19) and (20) have been proved by Anzellotti (see [6, Proposi-
tion 2.7]) for u € BV(Q) and A € L*°(Q,RY) with divA e LY (€). Moreover they have
been proved in [27, Propositions 2.4 and 2.5] when D’u = 0.

Proof. Let us first consider the case u € L*°(Q2). By possibly replacing v with u + ||u|s,
it is not restrictive to assume that © > 0
Let us fix a test function ¢ € C°(Q2). From the definition (8) of pairing, we have that

+oo
400
- /0 (/Q X{u>t}A . Vngl‘) dt =: —11 — I.

The integral I can be immediately computed as

(23) IQ:/uA-Vgpdx.
Q

(22)

The first integral I; requires more care. From [19, Lemma 2.2] we have that, for £!-a.e.
t € R, there exists a Borel set N; C Q, with HV~1(NN;) = 0, such that

1, if u=(z) > t,
Vo e Q\ N : Xfusty (@) =40,  ifut(z) <t
172, ifu (z) <t <ut(z).

Since | div A| < HV~1, we deduce that, for L!-a.e. t € R,

u— + u .
(24) qu>t} (x) = X >t}(x> 5 XMut>t) (z) , for | div Al-a.e. x € Q.

From (24), we can rewrite 7 in the following way:

+oo _ +
I :/ / (X{“ >t ; Xut >t} <pddivA> dt
0 Q

S
—/WgoddivA—/u*<pddivA.
o 2 0

Hence, from (22), (23), (25) and the definition (8) of (A, Du), we conclude that (19)
holds for every test function ¢ € C2°(2). On the other hand, since both sides in (19) are
measures in €2, they coincide not only as distributions, but also as measures. Hence (19)
and (20) follow.

Since, for £L'-a.e. t € R, it holds

dDu B dDX{u>t}
dDu] = A,y

(25)

‘DX{u>t} ‘—a.e. in Q,

we conclude that (21) follows.
Finally, the general case u* € L%OC(RN ,div A) follows using the previous step on the
truncated functions uy := Ty (u), where, given k > 0, T}, is defined by

(26) Ty (s) := max{min{s, k}, —k}, s eR.
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Since T}, is a Lipschitz continuous function, we get that

up € BVioc(Q2) N L(Q), uki = Tp(u), |Dug| <|Du| in the sense of measures.
Then \uf\ < [u*| and |u}| < |u*|, which implies that u} € Li (9,div A). O
Remark 4.4 (Representation of §(A, Du,z)). Let A € DM (2) and let u € BVjo(2) N
LX(Q). If E € Qis a set of finite perimeter, then |Dyg| = HY~'LO*FE hence, by

loc

Theorem 3.3, we have that

Tr™(A,0°E) + Tr~ (A, 0°E)
2

(A,DxEg) = |DxE|,

that is
Tr™(A,0*E) + Tr (A, 0*E)
2

Since, for Ll-a.e. t € R, the set E,; := {u > t} is of finite perimeter, then from (21) we
deduce that, for these values of ¢,

Trt(A,0*Eyy) + Tr~ (A, 0% Eyy)

2
Proposition 4.5 (Chain Rule). Let A € DM;S.(Q) and let u € BVipe(Q) N LS

loc

h:R — R be a locally Lipschitz function. Then the following properties hold:
(i) (A, Dh(u))® = h'(@) A - Vu LN and, if |Du|(Sa) = 0, then (A, Dh(u))¢ =
W' (a) (A, Du)?;
. h(ut) — h(u~
() (4, Dh(u)y? = M) 0)
(iii) if h is non-decreasing, then

(27) 0(A,Dh(u),z) = 6(A, Du, x), for |Dh(u)|-a.e. x € Q.

for HN"ae. z € O*E.

0(A,Dxp,x) =

0(A, Du,x) =

for HN ae. z € 0" Ey 4.

(Q). Let

(A, Du)’;

Remark 4.6. Formula (27) has been proved by Anzellotti (see [6, Proposition 2.8]) for
hecCl ue BV(Q)and A € LOO(Q,RN) with div A € LY(Q). Moreover it has been
proved in [27, Proposition 2.7] when D7u = 0.

Remark 4.7. The same characterization of (A, Dh(u)) holds true if h: I — R is a locally
Lipschitz function in a interval I, provided that u(Q2) C I and h o u € BVjyc(£2).

Proof. From the Chain Rule Formula (see [3, Theorem 3.99]), we have that
Dh(u) = '@ D%,  D'h(u) = (h(ut) — h(u") v HN L J,.
On the other hand, (h(u))* = h(u*), hence (i) and (ii) follow from Theorem 3.3.
The proof of (iii) can be done as in [27, Proposition 2.7]. O

Aim of the next results is the characterization of the pairing (vA, Du). We first present
a preliminary result in the case u = v in Lemma 4.8. The general case will follow in
Proposition 4.9. The same results, under the assumption D/u = D/v = 0, have been
proved in [29, Proposition 2.3].

Lemma 4.8. Let A € DM () and u € BVipe(2) N L2.(2). Then

(ut —u~

)2
1 div AL J,,

(28) (uA, Du) = u* (A, Du) +



GAUSS-GREEN THEOREM 15

that is
(29) (uA, Du)? = u*(A, Du)?,
, +4t -y
(30) (WA, Duyf = ST )y wN g,

2
where o := Trt(A, J,). In particular, if DIu = 0 then (uA, Du) = u*(A, Du).
Proof. Since the statement is local in nature, it is not restrictive to assume that u € L>(Q).

Let us first assume that v > 0. Since D(u?) = 2u*Du, from Proposition 4.5(iii) we have
that

0(A, D(u?),z) = 6(A, Du, z) for |Dul-a.e. z € Q,
hence
(A,D(u?)) = (A, D(u?),z)|D(u?)| = §(A, Du, z)2u*|Du| = 2u*(A, Du).
Starting from the relation
div(u?A) = (u?)*div A + (A, D(u?)) = (u?)* div A 4 2u*(A, Du)
we get
2u*(A, Du) = div(u?A) — (u?)* div A = v* div(uA) + (uvA, Du) — (u®)* div A
= [(u*)? — (u?)*]div A + u*(A, Du) + (uA, Du),
that is
(wA, Du) = u*(A, Du) — [(u*)? — (u?)*] div A.

Hence (28) follows after observing that (u*)? — (u?)* = 0 in Q\ S, and (u*)? — (u?)* =
—(ut —u7)%/4 on J,. The relations (29) and (30) now follow from Theorem 3.3(ii).

The general case of u € L®(£2) can be obtained from the previous case, considering the
function v := u + ¢, which is positive if ¢ > ||ul|o. Namely, (28) easily follows observing
that

(vA, Dv) = (uA, Du) +c¢(A,Du), v*=u*+c, Jy=J,, vi—vi=ut —u. O
Proposition 4.9. Let A € DMS.(Q) and u,v € BVioo(2) N LS. (). Then

loc
(u —u)(v* =

(31) (vA, Du) = v*(A, Du) + y ") div AL (0,
that is
(32) (vA, Du)? = v*(A, Du)?,
A ot 4 o=
(33) (WA, Du)i = 2OV by N g

2

where o == Tr*(A, J,,).

Proof. From Lemma 4.8 we have that
(u+v)A,D(u+v)) = (u+v)"(A,D(u+v))

(34) (ut +ovt —u™ —v~

2
+ y  div AL(L, U ).




16 G. CRASTA AND V. DE CICCO

Let us compute the two sides of this equality. We have that
LHS = (uA, Du) + (vA, Dv) + (vA, Du) + (uA, Dv)

=u"(A, Du) + fdlvAl_Ju +v*(A, Dv) +

+ (vA, Du) + (uA, Dv)

)2
(1’41’) div AL J,
On the other hand, the right-hand side of (34) is computed as

RHS = u*(A, Du) + u* (A, Dv) +v*(A, Du) + v*(A, Dv)

+ )2 +_ )2
+(u4u)divAl_Ju+(v4®)divAl_Jv
+ oy (ot — o
Gl )2(” ) div AL(Jy O ).

Hence, after some simplifications (34) gives
(vA, Du) + (uA, Dv) = u*(A, Dv) + v*(A, Du)

(35) Gl )(”+ ) div AL(Ju 01 0,).

Since
div(uvA) = v* div(vA) + (vA, Du), div(uwwA) = v* div(uA) + (uA, Dv),
it holds

(36) (vA, Du) — (uA, Dv) = v*(A, Du) — u* (A, Dv).
Summing together (35) and (36) we get (31). The relations (32) and (33) now follow from
Theorem 3.3(ii). O

Remark 4.10. Observe that, in general,
(vA, Du) # v*(A, Du),

because the jump part of the two measures can differ on points of J, N J, (see also the
case of u = v = xg in [16, Remark 3.4]).

Proposition 4.11 (Leibniz rule). Let A € DM, () and u,v € BVioc(Q2) N LY. ().
Then

(37) (A, D(uwv)) = v*(A, Du) + u* (A, Dv).

More precisely, the measure (A, D(uv)) admits the following decomposition:
(i) absolutely continuous part: (A, D(uv))® = A - V(uwv) LY, with V(uv) = uVov +

vVu;
(ii) jump part:
+ —

o —;—a (qu
where o == Tr*(A, J, U J,); _

(iil) diffuse part: if, in addition, |D¢(uv)|(Sa) = 0, then (A, D(uv))? = A - DY (uv),
with D4 (uv) = uD% + vD%.

(A, D(uv))! = v —uT v )Y HN L (T, U ).



GAUSS-GREEN THEOREM 17

Proof. We have that

1 1
(A, D(uw)) = div(uvA) — (uv)*div A = 5 div(uvA) + 5 div(uvA) — (wv)* div A
1 1
=3 [u*div(vA) + (vA, Du)] + 5 [v* div(uA) + (uA, Dv)] — (uv)* div A
= %u* [div(vA) —v* div A] + %v* [div(uA) — u* div A]
+ % (vA, Du) + % (uA, Dv) + [u*v* — (uv)*]div A
= %u*(A, Dv) + %v*(A, Du) + % (vA, Du) + % (uA, Dv)
+ [u*v* — (uv)*]div A .
A direct computation shows that

+ _u Vot — o
(u u) v7) HN"Lae. in Jy U Jy,

u vt — (w)* = —

4
whereas u*v* — (uwv)* =0in Q\ (S, U Sy).
Hence, using (31) on (uA, Dv) and (vA, Du), we finally get (37). d

Using the results proved so far, Theorem 3.3 can be slightly extended to the case of
unbounded BV functions as follows.

Theorem 4.12. Let A € DM (Q), u € BVoc() and assume that u* € Li (€, div A).

Then the pairing (A, Du), defined as a distribution by (8), is a Radon measure in Q and
admits the decomposition given in Theorem 3.5.

Proof. The fact that (A, Du) is a Radon measure in €2, with |(A, Du)| < |Dul, has been
proved in [20, Corollary 2.3].

Properties (i), (ii) and (iii) in Theorem 3.3 will follow with a truncation argument
similar to that used in the proof of Proposition 2.7 in [6].

More precisely, let us define the truncated functions uy := T (u) where T}, is defined in
(26).

Since |uf| < |u*|, by the Dominated Convergence Theorem we can pass to the limit in
the relation

((A, Duy), @) = —/ uppddiv A — / urA - Vodz
Q Q
obtaining that
((A,Dug), ©) = ((A, Du), ) Vo€ CZ(Q).

Since |Dug| < |D¢u|, from Theorem 3.3 it holds
(38) (A, Dup)? = A D%y, if |Du|(S4) =0,
(39) (A, Dug)’ = Tr* (A, Jy, ) (uy —up YHN T Ty, = Tr* (A, Jo) (u)) — up YHY 1L .

From the Chain Rule Formula (see [3, Example 3.100]) we have that

D%y L{[a| < k} = Dl {]a] < k}.

Since, for every z € Q\ S, there exists k > 0 such that z € {|Ju] < k}, from (38) we
conclude that (i) and (ii) in Theorem 3.3 hold.

Concerning the jump part, observe that if € J,, and k > max{|u™ ()|, |u™(z)|}, then
x € Jy, and ufgt(ac) = T (u*(z)) = u*(z). Hence from (39) we can conclude that also
property (iii) in Theorem 3.3 holds. O
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Remark 4.13. We extract the following fact from the proof of Theorem 4.12. Let A €
DME.(2), u € BVioc(Q) N LL (Q,div A), and let uy := Tk (u) be the truncated functions
of u, where T}, is defined in (26). If we define

W={red,: [ut(@)] <k}u{zeQ\S,: |uz) <k},

then it holds
(A, Dup)LQy = (A, Du) L Qy Vk > 0.
Remark 4.14. Let A € DM;2 () and u € BVjoe(2). Then u* € L] _(Q,div A) if at least
one of the following conditions holds:
(a) u e L3S

loc?

(b) divA >0 or divA <0.
The first case is trivial. For case (b) the proof follows from [31, Remark 8.3].

We conclude this section with an approximation result in the spirit of [11, Theorem 1.2].
This kind of approximation has been used for example in [6] and [11] as an essential tool in
order to pass from smooth vector fields to less regular fields. Unfortunately, in our general
setting, properties (iv) and (v) below can be proved only under the additional assumption
|Du|(Sa| = 0, so we cannot use this approximation to obtain the Gauss—Green formula
in Section 5. Nevertheless, we think that Proposition 4.17 may be useful in order to get
semicontinuity results for functionals depending linearly in Vu.

Proposition 4.15 (Approximation by C*° functions). Let A € DM™>(Q). Then there
exists a sequence (Ap)y in C°(Q,RY) N L>®(Q,RN) satisfying the following properties.
(i) Ay = A in LY(Q,RY) and [, |div Ay|dz — |div A[().
(i) div Ay = div A in the weak* sense of measures in Q.
(iii) For every countably H™~'-rectifiable set ¥ C ) it holds

<ﬁi(Aka Z) ) ()0> - <T‘r*(A7 E) ) 90> VSO € CC(Q)a
where Tr*(A,Y) := [TrT (A, ) + Tr (A, X)]/2.
If, in addition, v € BViec(2) N LiS.(2) and |[Du|(Sa) = 0, then

(iv) (Ag, Du) = (A, Du) locally in the weak* sense of measures in €;
(v) 6(Ag, Du,z) = 0(A, Du,x) for |Dul-a.e. x € .

Remark 4.16. It is not difficult to show that a similar approximation result holds also for
A € DMZ.(Q) with a sequence (Ay) in C(Q,RY).

Proof. (i) This part is proved in [11, Theorem 1.2]. We just recall, for later use, that for
every k the vector field Ay is of the form

(40) Ay = Z pe; * (Api),

where (p;) is a partition of unity subordinate to a locally finite covering of Q depending
on k and, for every i, &; € (0,1/k) is chosen in such a way that

(41) 1o x4 Vi)~ A9 do <

(see [11], formula (1.8)).

k2
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(ii) From (i) we have that
/ Ay -Vodr — / A-Vodr VypeCHR),
Q Q

hence (ii) follows from supy, [, |div Ag|dz < +o0o and the density of C2(Q2) in C}(Q) in
the norm of L>®(Q).

(iii) Before proving (iii), we need to prove the following claim: if E € € is a set of finite
perimeter, then

(42) lim xE ¢ div A dr = / Xpeddiv A, Vo € C°(9).
k—+oco J Q

Namely, from the definition (40) of Ay and the identity ), Vy; = 0 we have that
div A, = Zpgi x (pidiv A) + Z [pe; * (A - Vi) —A- V.

From (41) we have that

1
5 [ e lo (4 T) = AT da| < el
hence, to prove (42), it is enough to show that
(43) kgrfoo; /Q XEP pe; * (pidiv A) = /Q X pddiv A.

On the other hand,

Z/QXESDpsi*(@idiVA):Z/Qpa*(XECP)‘PiddiVAa

hence (43) follows observing that, H¥~1-a.e. in Q,

Xio = D> @ipe; * (xuP) = Y @i [Xistp — pe, * (xpp)) = 0.
7 7

Let us now prove (iii). Let Q' € Q be a set of class C'. By the definition (6), by (i),
(ii) and (42), for every ¢ € C°(€2) we have that

<Tr(Ak’aQ/)> 90>: o Ak-Vgodx—i-/ngodivAkd:L‘
Z/XQ'Ak-chd:c+/xgxgodivAkdx
Q Q
—>/XQ/A-Vgodx+/X§,g0ddivA
Q Q

1
= A-V(pda:—i-/ <pddivA+/ pddiv A.
Q/ Ql 2 8Ql

Hence, using the notations of Section 2.4, by (7) on the set N; C 9€; N 9€2; it holds
1
Tr~ (Ay, X)) = Tr(Ag, 00;) — Tr~ (A, %) + 5 [Tr(A, %) - Tr (A,X)] = Tr*(A, %),

where the convergence is in the weak® sense of L. A similar computation holds for
T1"+ (Ak, E) .
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(iv) From the very definition (40) of Ay, we have that

(44) Ay(z) — A(z) for HN "lae. x € Q.
From Theorem 3.3, (44) and (iii) we have that
Ay(z) - D% — A(z) - D%, |D%ul-a.e. in Q,

Tr(Ag, Ju)(um —u~) = Tr* (A, J,) (ut —u™), HNLae. in J,,

hence ‘ .
(Ag, Du)’ = (A, Du)?’, (Ay, Du)! — (A, Du)’ .
(v) Using the definition (17) of 6, we have that, for every ¢ € C.(Q),

/Q 0(Ay, Du, z)¢(z) d|Du| = ((Ay, Du), @)

(4. Dw). ¢ = [ 0(A Du.)e(w) d|Dul,
Q
hence (v) follows. O

Proposition 4.17. Let (Ay) be a sequence in DM (Q) such that Ay, — A € DM™>(Q)
n Llloc(Q; RN) and the sequence py, := div Ay locally weakly* converges to = div A. Let
u € BV(Q) N L>®(Q) be compactly supported in Q. Then the following hold:

(a) If the measures pup, are positive and u > 0, then

(45) / u dp < lim inf/ u” dup,
Q h—oo  Jo

(46) / u™ dp > lim sup/ um duy,
Q h—oco JQ

where u~ (resp. u™ ) is the approximate lower (resp. upper) limit of u.
(b) Assume that || = |p| locally weakly*. If |p|(J,) = 0, then

(47) / u*dp = lim u® dup, / uFdp= lim uF duy,.

Q h—+oo Jo Q h—+oco J
Proof. (a) Let us first consider the case v € WH1(Q) N L>(Q). Since u has compact
support in €2, it follows that

(48) /ﬁdu:—/Vu-Adx: lim — [ Vu-Apde = lim [ udyg.
QO Q k—o0 Q k—oo J

Let us now consider the general case u € BV (). From Theorem 2.3, the approximate
upper limit «™ and the approximate lower limit ™~ are Cj-quasi upper semicontinuous and
Ci-quasi lower semicontinuous, respectively. In order to prove (45), we remark that by
Lemma 2.4 there exists an increasing sequence of nonnegative functions (u;) C WhH1(Q)
such that, for every h € N, uy, is approximately continuous %~ ~!-almost everywhere in
and @y, (x) — u~(x), when h — +o0, for HV~L-almost every = € .

Therefore for HV~!-almost every x € Q

u (z) = supin(a)
heN

and for every ¢ € C%(Q2), with 0 < ¢ < 1, we have

/ ou” du = sup/ ouy, du.
Q heN JQ
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Moreover, since u € L*(Q2), we can assume that, for every h € N, up € L*>®(Q), then
pup € WHLH(Q) N L(Q), with compact support, and (Sgy, ) = 0. Hence, by (48),

/qﬁﬁhd,u: lim /qﬁﬂhd,ukgliminf/d)uduk.
Q k—oo Jq k—oo  Jq

The conclusion follows taking the supremum among all the functions ¢ € C9(€), with
0 < ¢ <1, and among the h € N.

The proof of (46) is similar, since by Lemma 2.4 there exists a decreasing sequence of
nonnegative functions (v,) € WH(Q) such that, for every h € N, v, is approximately
continuous H" ~!-almost everywhere in  and vy, (x) — u*(x), when h — +o0, for HV~1-
almost every x € . Therefore for H¥ ~'-almost every z € Q
+

u”(z) = inf vp(2)

Tdu = inf | vy, du.
IR

Moreover, since u € L>(2), we have that v, € L>(2) for any h sufficiently large, and since
the support of u is compact and u € L*°(2) there exists a relatively compact neighborhood
U of the support of u which contains the support of vy, for any h sufficiently large. Therefore
vp, € WHHQ)NL®(Q) and it has compact support for h sufficiently large, and (S, ) = 0.

Hence we get
/5;1 dp = lim /T)h dug > limsup/ vt dpy,.
Q k—oo Jo k—oo JO

The conclusion follows taking the infimum among the h € N.
(b) In order to prove (47) firstly we assume that p, > 0. We observe that vy, — u, — 0
HN"La.e. on Q\ S, and, since u(S,) =0,

and we have

li Up, — up) dp = 0.
RN AT L]

We have
/ up dp = hm / up, dpg, < hmlnf/ u dug < limsup/ ut dpy,
Q Q

k—o0
< lim 5hduk:/5hdu.
k—oo (¢} QO

By taking h — 400, we obtain that

/u dp = lim u~ dur = lim /zﬁ d,uk—/qudu.
Q k—oo Jo k—oo J Q

By the definition of u* we get

lim [ w du = lim / wtdu, = lim / u® dug,.
k—oo Jo k—oo Jo k—oco JO
The general case can we obtained by writing the measure p as the difference between its

positive and its negative part. This concludes the proof. O

Remark 4.18. We would like to underline two consequences of Proposition 4.17.
(a) By (47), for every u € BVioc(2) N L2, (), if | div A|(J,) = 0, then

loc

((Ag,Du), ¢) = ((A,Du), ¢) Vo€ CHQ).
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(b) If —div Ay > 0, then

—/ u~ div A < liminf <—/ u- divAk) .
Q k—o0 Q

5. THE GAUSS—GREEN FORMULA

In this section we will prove a generalized Gauss—Green formula for vector fields A €
DML (RY) on a set E C RY of finite perimeter.

Using the conventions of Section 2.4, we will assume that the generalized normal vector
on 0*E coincides HV1-a.e. on 9* E with the measure-theoretic interior unit normal vector
Up to E. Hence, if o := Tr* (A, 9*E) are the normal traces of A on 0* E according to our
definition in Section 2.4, then, using the notation of [16], a™ = (A;-Vg) and o~ = (A -VE)
correspond respectively to the interior and the exterior normal traces on 0*F.

Since |Dxg| = HN-1L_9*E, from Proposition 4.9 we deduce that ot and o~ are re-

spectively the Radon-Nikodym derivatives with respect to |Dxg| of the measures
o; =2 (xpA,DxEg), oc =2 (xgm\gA, DXE),
that are both absolutely continuous with respect to | Dy g|, hence
o =atHNILO'E, oo =a HNTILO*E

(see also [16, Theorem 3.2]).

For example, if F is an open bounded set of class C! and A is a piecewise continuous
vector field that can be extended continuously by vector fields A; and A, in E and RV\ E
respectively, then

at = -Tr(A,0FE) = —A; -vg = A; - U, o = A, -Ug.
If u € BWyo(RY), in the following formulas we will understand
ut(z) = u(x) vz € RV \ S,.
Theorem 5.1. Let A € DM (RY), u € BWoo(RY) and assume that u* € L (RY div A).

loc loc

Let E C RN be a bounded set with finite perimeter. Then the following Gauss—Green for-
mulas hold:

(49) / u* ddiv A +/ (A, Du) = —/ afut dHNL,
E? E? O*E

(50) / u* ddiv A + / (A, Du) = — / a"u” dHN Y,
ElUo*E ElUo*E O*E

where B is the measure theoretic interior of E and o := Tr=(A,0*E) are the normal
traces of A when O*E is oriented with respect to the interior unit normal vector.

Remark 5.2. This result extends Theorem 5.3 of [15] where u = ¢ € C2° (see also [16,
Theorem 4.1] where v = ¢ € Lipy,.). Leonardi and Saracco (see Theorem 2.2 in [28])
established a similar formula by considering the collection X (Q2) of vector fields A €
L®(Q;RY) N CO(Q; RY) such that div A € L>®(2) and by assuming that the set £ with
finite perimeter satisfies an additional weak regularity condition.

Proof. Since E is bounded, without loss of generality we can assume that A € DM>(RY)
and v € BV(RY™). We divide the proof in two steps.
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Step 1. Firstly, we consider the case u € L>®(RN ). Since E is a bounded set with

finite perimeter, we have that yz € BV(R") and the reduced boundary 0*F is a H"N~1-

rectifiable set. Moreover, the vector field xguA is compactly supported, so that
div(xpuA)(RY) =0

(see [16, Lemma 3.1]). Hence by choosing in (9) xg instead of v and uA instead of A, we
get

(51) /RN Xpddiv(uA) = —(uA, DXE)(RN).

We recall that )
XE = Xgt + SRCAE
and, by Proposition 3.1 and the definition of normal traces it holds
div(uA)LO*E = (uTat —u o YHVNILOE.

Hence
1
(52) / Xg ddiv(uA) = / ddiv(uA) + / uta® —u"a ] dHN L.
RN El 2 O E

On the other hand Dyg = vg HN 'L 0*E so that, by Proposition 4.9,
(uA, Dxg) = (ua)*HN 1L O*E,
that in turn gives
1
(53) (wA, Dxg)(RY) = / 5[u"’oﬂ' +u a ] dHNL.
o*E
Finally, substituting (52) and (53) in (51) and simplifying, we obtain (49).
On the other hand,

/ ddiv(uA) :/ ddiv(uA) +/ wtat —u a7 dHN !
ElUo*E E? oO*E

= —/ utat dHN ! +/ [uta™ —u"a™] dHN !
o*E O*E
hence (50) follows. This concludes the proof of Step 1.

Step 2. Let us consider now u € BV (RY) such that u* € LL (RV,divA). As in the
proof of Theorem 4.12, let uy := T (u) be the truncated functions of u, where T} is the
truncation operator defined in (26).

By Step 1, since T (u) € L¥(RY) we obtain

(54) / Ti(uw)* ddiv A +/ (A, DTy (u)) = —/ ot Ty (u®) a1t
El El O*E
for every k > 0. We have that

Tp(u)* + Ty(w)~  Ti(ut) + Ti(u~ T tu”
_ i (u) JQF o (w) _ i (u ); k(u )_>u ;Lu = u¥, HV Lae.,

hence Ty (u)*(x) — u*(z) for | div Al-a.e. z € RY. Since [Ty (u)*| < |u*| € LL (RN, div A),
from the Dominated Convergence Theorem we have that

T (u)*

(55) lim Ti(u)*ddivA = u* ddiv A.
k—+oco Jp1 Bl
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With a similar argument we also get that
(56) lim Ty (u) T dHN ! = / atut dHN L
k—+oco Jox g o*E
On the other hand, by the definition (9) of pairing, for every ¢ € C2°(R¥ it holds

(A, DTy(u)), @) = _/]RN Ti(u)*oddiv A — o Ti(u)A - Vpdr.

We can use the Dominated Convergence Theorem in both integrals at the right—hand side
(for the first one we can reason as in (55)), obtaining

(57) lim (A, DTy (u)) :/ (A, Du).
k—oo Jp1 E1
Finally, from (54), (55), (56) and (57) we get (49). Formula (50) can be obtained in a
similar way. O
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