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Abstract. We consider a class of nonlocal generalized perimeters which in-

cludes fractional perimeters and Riesz type potentials. We prove a general

isoperimetric inequality for such functionals, and we discuss some applications.
In particular we prove existence of an isoperimetric profile, under suitable as-

sumptions on the interaction kernel.

1. Introduction. In this paper we consider a family of geometric functionals,
which in particular contains the fractional isotropic and anisotropic perimeter. More
precisely, we define the following energy defined on measurable subsets E ⊂ RN :

PerK(E) :=

∫
E

∫
RN\E

K(x−y)dxdy =
1

2

∫
RN

∫
RN

|χE(x)−χE(y)|K(x−y)dxdy (1)

where the kernel K : RN → [0,+∞) satisfies the following assumptions:

K(x) = K(−x) (2)

min(|x|, 1)K(x) ∈ L1(RN ). (3)

The functional (1) measures the interaction between points in E and in RN \E,
weighted by the kernel K.

Note that it is not restrictive to assume (2) since PerK(E) = PerK̃(E) for every

E, where K̃(x) := (K(x) + K(−x))/2. Notice also that, if K ∈ L1(RN ), then for
every E with |E| <∞, we have

PerK(E) = |E|‖K‖L1(RN ) −
∫
E

∫
E

K(x− y)dxdy. (4)
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2 A. CESARONI, M. NOVAGA

In the first part of the paper we deal with isoperimetric inequalities for such
functionals. The main result is the following (see Corollary 3.4): if K(x) ≥ µχBr (x)
for some constants µ > 0 and r > 0, then for all measurable sets E there holds

PerK(E) ≥ min(g(|E|), g(|RN \ E|)),
where g(m) := PerK?(Bm), with K? the symmetric decreasing rearrangment of K,
and Bm the ball with volume m centered at 0. We discuss some property of the
function g and we provide a Poincaré type inequality (see Proposition 4.1).

We recall that, in the case of fractional perimeters, sharp quantitative isoperi-
metric inequality, uniform with respect to the fractional exponent bounded away
from 0, have been obtained in [9] (see also [11] for an anisotropic version), whereas
Poincaré type inequalities have been discussed in [13].

An interesting related question is understanding which conditions on K imply
the compact embedding of the functions with bounded energy JK into Lp spaces,
for some p ≥ 1.

In the second part of the paper, we consider the isoperimetric problem

min
E: |E|=m

PerK(E), (5)

for a fixed volume m > 0.
In the case of the fractional perimeter, the existence of isoperimetric sets solving

(5) has been studied in [2, 9] (see also [4] where a bulk term is added to the energy),
where it is shown that balls are the unique minimizers of the fractional perimeter
among sets with the same volume. In the general case, the same result holds if
the kernel K is a radially symmetric decreasing function, as a straightforward con-
sequence of the Riesz rearrangement inequality [14]. So, we focus on the case in
which K is not radially symmetric and decreasing. We provide an existence result
of minimizers of the relaxed problem associated to (5) under the additional assump-
tion that K ∈ L1(RN ) (see Theorem 5.6). The proof is based on a concentration
compactness type argument. Finally, we show that if K has maximum at the origin
(in an appropriate sense, see condition (38)), then every minimizer of the relaxed
problem is actually the characteristic function of a compact set (see Theorem 5.7).

We are left with the open problem of extending the existence result to more
general interaction kernels satisfying only (3).

Another interesting problem is to consider kernels which are just Radon measures
on RN . In this case we don’t expect in general compactness of minimizers.

Notation. We denote by Bm(x) the ball centered at x with volume m, that is, the

ball with radius r = m
1
N ω
− 1

N

N , and by Bm for the ball centered at 0 with volume
m. We also denote by B(x, r) the ball of center x and radius r.

For every measurable set E ⊆ RN , χE denotes the characteristic function of E,
that is the function which is 1 on E and 0 outside.

We recall that given a set E with |E| < ∞, its symmetric rearrangement E? is
the ball B|E| that is the ball centered at 0 with volume |E|. Moreover the symmetric
decreasing rearrangement of a nonnegative measurable function h with level sets of
finite measure is defined as

h?(x) =

∫ +∞

0

χ{h>t}?(x)dt.

Note that if h is radially symmetric and decreasing, then h = h?. Moreover, h ∈
Lp(Rn) if and only if h? ∈ Lp(Rn) with ‖h‖Lp(Rn) = ‖h?‖Lp(Rn), for all p ≥ 1.
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2. Generalized fractional perimeters. In this section we discuss some proper-
ties of the K perimeters.

Remark 2.1. Condition (3) implies that if E is a set with |E| <∞ andHN−1(∂E) <
∞, then PerK(E) <∞ (see [7, Remark 1.4]). Indeed

PerK(E) =

∫
E

∫
RN\E

K(x− y)dxdy

=

∫
RN

|(E + x) ∩ (RN \ E)|K(x)dx ≤ C
∫
RN

(|x| ∧ 1)K(x)dx

where C is a constant which depends on E.

Proposition 2.2. The following properties hold:

1. PerK(E) = PerK(RN \ E) and

PerK(E ∩ F ) + PerK(E ∪ F ) ≤ PerK(E) + PerK(F ). (6)

2. E → PerK(E) is lower semicontinuous with respect to the L1
loc-convergence.

Proof. We start by proving 1. The first equality is a direct consequence of the
definition of PerK . In order to prove (6), we observe that∫

E∪F

∫
RN\(E∪F )

=

∫
E

∫
RN\E

+

∫
F

∫
RN\F

−
∫
E∩F

∫
RN\(E∪F )

−
∫
E

∫
F\(E∩F )

−
∫
F

∫
E\(E∩F )

.

and∫
E∩F

∫
RN\(E∩F )

=

∫
E∩F

∫
RN\(E∪F )

+

∫
E∩F

∫
E\(F∩E)

+

∫
E∩F

∫
F\(F∩E)

.

Therefore

PerK(E ∩ F ) + PerK(E ∪ F ) = PerK(E) + PerK(F )

− 2

∫
E\(E∩F )

∫
F\(E∩F )

K(x− y)dxdy,

which gives (6).
The proof of 2. is a consequence of Fatou lemma, observing that PerK(E) =∫

RN

∫
RN |χE(x)− χE(y)|K(x− y)dxdy.

2.1. Examples. A first class of examples is given by the kernels K(x) which sat-
isfies

λ
1

|x|N+s
≤ K(x) ≤ Λ

1

|x|N+s
,

for some s ∈ (0, 1) and 0 < λ ≤ Λ. This class includes the fractional perimeters,
and its inhomogeneous and anisotropic versions.

The fractional perimeter, which has been introduced in [13] and further developed
in [2], is defined as

Ps(E) :=

∫
E

∫
RN\E

1

|x− y|N+s
dx dy, (7)
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for s ∈ (0, 1). It is also possible to substitute the kernel 1
|x−y|N+s with more general

heterogeneous, isotropic kernels of the type

K(x) =
a(x)

|x|N+s

where a : RN → (0,+∞) is a measurable function such that 0 < λ ≤ a(x) ≤ Λ. The
anisoptropic fractional perimeters have been defined in [11] as follows: let B ⊆ RN

be a convex set which is symmetric with respect to the origin and let | · |B the norm
in RN with unitary ball B, then we define

Ps,B(E) :=

∫
E

∫
RN\E

1

|x− y|N+s
B

dx dy. (8)

Another class of examples, relevant for this paper, is given by the kernels K(x) ∈
L1(RN ), for which the representation formula (4) holds.

2.2. Coarea formula. We introduce the following functional on functions u ∈
L1
loc(RN ):

JK(u) =
1

2

∫
RN

∫
RN

|u(x)− u(y)|K(x− y)dxdy. (9)

Note that JK(χE) = PerK(E) for all measurable E ⊂ RN .
We provide a coarea formula, linking the functional PerK to JK .

Proposition 2.3 (Coarea formula). The following formula holds

JK(u) =

∫ +∞

−∞
PerK({u > s})ds. (10)

Proof. First of all we observe that, for every measurable function u,

|u(x)− u(y)| =
∫ +∞

−∞
|χ{u>s}(x)− χ{u>s}(y)|ds.

Moreover for every s ∈ R

|χ{u>s}(x)− χ{u>s}(y)| = χ{u>s}(x)χRN\{u>s}(y) + χ{u>s}(y)χRN\{u>s}(x).

Therefore we get, recalling (2), and using Tonelli theorem,

2JK(u) =

∫
RN

∫
RN

|u(x)− u(y)|K(x− y)dxdy

= 2

∫
RN

∫
RN

∫ +∞

−∞
χ{u>s}(x)χRN\{u>s}(y)K(x− y)dsdxdy

= 2

∫ +∞

−∞

∫
{u>s}

∫
RN\{u>s}

K(x− y)dxdyds

= 2

∫ +∞

−∞
PerK({u > s})ds.
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3. Isoperimetric inequality. In this section we prove an isoperimetric inequality
for generalized nonlocal perimeters.

Proposition 3.1. For every measurable set E ⊆ RN such that |E| < ∞, there
holds

PerK(E) ≥ PerK∗(B|E|),

where K∗ is the symmetric decreasing rearrangement of K.
In particular, if K is radially symmetric and decreasing, then

PerK(E) ≥ PerK(B|E|).

Moreover, equality holds if and only if E is a translated of B|E|.

Proof. First of all we consider the case in which K ∈ L1(RN ). Note that (χE)? =
χB|E| . By Riesz rearrangement inequality [14], we get that∫

E

∫
E

K(x− y)dxdy =

∫
RN

χE(x)(χE ∗K)(x)dx

≤
∫
RN

χB|E|(x)(χB|E| ∗K
?)(x)dx =

∫
B|E|

∫
B|E|

K?(x− y).

So, recalling (4) we get the conclusion.
Finally, if K = K?, we have that equality in the Riesz rearrangement inequality

holds if and only if χE is equal, up to translation, to its symmetric-decreasing
rearrangement, therefore if and only if E is equal, up to translation, to B|E|.

Now if K 6∈ L1(RN ), we define Kε(x) = K(x) ∧ 1
ε . Then Kε ∈ L1(RN ) and Kε

converges to K monotonically increasing. Note that

K?
ε (x) =

∫ 1
ε

0

χ{K>t}?(x)dt.

So as ε → 0, also K?
ε → K? monotonically increasing. Therefore by the monotone

convergence theorem if E is a measurable set we get that

lim
ε→0

PerKε(E) = PerK(E) lim
ε→0

PerK?
ε
(E) = PerK?(E).

By the previous argument we get PerKε(E) ≥ PerK?
ε
(B|E|). So, we conclude

sending ε→ 0.

For every m ≥ 0, we define

g(m) := PerK?(Bm)

where we recall that Bm is the ball centered at 0 with volume m. We also set
g(+∞) = +∞.

We provide some estimates on the function g.

Lemma 3.2.

1. If K 6∈ L1(RN ), then

lim
m→0+

g(m)

m
= +∞. (11)

2. If K ∈ L1(RN ), then

g(m) ≤ ‖K‖L1m, lim
m→0+

g(m)

m
= ‖K‖L1 . (12)
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Proof. For x ∈ RN and m > 0 we define

K?
m(x) =

1

m

∫
Bm(x)

K?(y)dy.

We have ∫
RN

K?
m(x)dx =

1

m

∫
RN

∫
Bm

K?(x+ y)dydx

=
1

m

∫
Bm

∫
RN

K?(x)dxdy =

∫
RN

K?(x)dx.

In particular K? ∈ L1(RN ) if and only if K?
m ∈ L1(RN ) and ‖K?‖L1 = ‖K?

m‖L1 .
We recall that ‖K?‖L1 = ‖K‖L1 .

We then compute

PerK?(Bm) =

∫
Bm

∫
RN\Bm

K?(x− y)dxdy = m

∫
RN\Bm

K?
m(x)dx,

which gives (11) and (12), sending m→ 0.

Proposition 3.3. Assume that the kernel K satisfies the following condition:

there exist µ, r > 0 such that K(x) ≥ µ for all x ∈ B(0, r). (13)

Let E be a measurable set such that PerK(E) <∞, then |E| <∞ or |RN \E| <∞.

Proof. Let {Qi}i∈N be a partition of RN made of cubes of sidelength r/
√
n, where

r is as in (13). Note that for all x, y ∈ Qi we have K(x− y) ≥ µ.
Assume by contradiction that |E| = |RN \ E| = ∞. Then three possible cases

may verify: either there exists δ > 0 such that lim supi |E ∩ Qi| ≤ (1 − δ)|Qi| or
lim supi |Qi \ E| ≤ (1 − δ)|Qi| or there exist two subsequences Qin , Qjn such that
limn |Qin ∩ E| = limn |Qjn \ E| = |Qi|.

Case 1: assume there exists δ > 0 such that lim supi |E ∩ Qi| ≤ (1 − δ)|Qi|. So
there exists i0 > 0 such that for all i ≥ i0, |Qi \ E| ≥ δ/2|Qi|. Then we get

PerK(E) ≥
∑
i

∫
Qi∩E

∫
Qi\E

K(x−y)dxdy ≥ µ
∑
i≥i0

|Qi∩E||Qi\E| ≥ µ
δ

2

∑
i≥i0

|E∩Qi|.

This implies, recalling that PerK(E) < ∞, that
∑

i |E ∩ Qi| < ∞, which is in
contradiction with |E| =∞.

Case 2: assume there exists δ > 0 such that lim supi |E∩Qi| ≤ (1−δ)|Qi|. Then
the argument is the same as in Case 1, substituting E with RN \ E.

Case 3: assume that here exist two subsequences Qin , Qjn such that limn |Qin ∩
E| = limn |Qjn \ E| = |Qi|. Therefore for δ > 0 there exists i0 such that for all
jn, in ≥ i0, we get |Qin ∩ E|, |Qjn \ E| > (1 − δ)|Qi|. By continuity we get that
there exists a subsequence Q̄i such that |Q̄i ∩ E|, |Q̄i \ E| ≥ δ|Q̄i|, So,

PerK(E) ≥
∑
i

∫
Q̄i∩E

∫
Q̄i\E

K(x− y)dxdy

≥ µ
∑
i

|Q̄i ∩ E||Q̄i \ E| ≥ µδ2
∑
i

|Q̄i|2 =∞

giving a contradiction to PerK(E) <∞.

As a consequence, neither of the three cases can arise, which implies that either
|E| or |RN \ E| are finite.
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From Propositions 3.1 and 3.3 we immediately get the following result:

Corollary 3.4. Assume that K satisfies condition (13). Then, for all measurable
sets E there holds

PerK(E) ≥ min(g(|E|), g(|RN \ E|)).

4. Poincaré inequality.

Proposition 4.1. Assume that the kernel K satisfies (13) and that there exist
k ≥ 1 and a constant C depending on k, N such that

g(m) ≥ mk

C
∀m > 0. (14)

Then, for all u ∈ L1
loc with JK(u) <∞, there holds

‖u−m(u)‖Lk(RN ) ≤ CJK(u), (15)

where
m(u) = inf{s | |{u(x) > s}| <∞} ∈ R. (16)

Moreover if u ∈ L1(RN ), then m(u) = 0.

Proof. The argument is similar to the one in [1, Theorem 3.47]. First of all we
observe that, since JK(u) < ∞, by the coarea formula (10) the set S of s ∈ R
such that PerK({x |u(x) > s}) <∞ is dense in R. So by Proposition 3.3 for every
s ∈ S, either |{u(x) > s}| < ∞ or |{u(x) ≤ s}| < ∞. Note that if s > m(u), then
there exists t ∈ (m(u), s) such that |{u(x) > t}| < ∞ and then |{u(x) > s}| < ∞.
Analogously, if s < m(u), then |{u(x) ≤ t}| < ∞. Moreover m(u) ∈ R. Indeed,
if by contradiction this were not true, and e.g. m(u) = −∞ (the other case being
similar), we would get that |{u(x) > t}| <∞ for every t ∈ R. By the coarea formula∫ −n

−n−1

PerK({u(x) > t})dt ≤ 1

2
JK(u) ∀n ∈ N,

so there exist r > 0 and tn ∈ [−n− 1,−n] such that PerK({u(x) > tn} ≤ r. By the
isoperimetric inequality |{u(x) > tn}| ≤ (Cr)k, but this is contradiction with the
fact that {u(x) > tn} → RN as n→ +∞.

Finally, if u ∈ L1(RN ), m(u) = 0. Indeed, by Chebychev inequality for every
s > 0, we have that

|{x |u(x) ≤ −s}|+ |{x |u(x) > s}| ≤ |{x ||u(x)| ≥ s}| ≤ 1

s

∫
RN

|u|dx < +∞.

We denote by u+ = max(u −m(u), 0) the positive part of u −m(u). Then, by
definition of m(u), we get that |{x |u+(x) > s}| <∞ for all s > 0.

After a change of variable, we get∫
RN

(u+)kdx =

∫ +∞

0

|{x |u+(x) > t
1
k }|dt

= k

∫ +∞

0

|{x |u+(x) > s}|sk−1ds. (17)

In [1, Lemma 3.48]) it is shown that, if f : (0,+∞) → [0,+∞) is decreasing and
k ≥ 1, then

k

∫ T

0

f(s)sk−1ds ≤

(∫ T

0

f(s)
1
k ds

)k

∀T > 0.
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So, we apply this inequality to f(s) = |{x |u+(x) > s}|. This gives, by recalling the
definition of m(u) and using isoperimetric inequality (14),

k

∫ +∞

0

|{x |u+(x) > s}|sk−1ds ≤
(∫ +∞

0

|{x |u+(x) > s}| 1k ds
)k

≤
(
C

∫ +∞

0

JK({x |u(x) > s})ds
)k

. (18)

Therefore, putting together (17) and (18) and recalling the coarea formula (10), we
get (∫

RN

(u+)kdx

) 1
k

≤ CJK(u).

Repeating the same argument for the negative part of u−m(u), i.e. u− = −min(u−
m(u), 0), we conclude. Indeed, again by definition of m(u), we get that for all s > 0,
|{x |u−(x) > s}| <∞.

Remark 4.2. If u ∈ L1(RN ) assumption (13) is not needed, indeed for all s ∈ R
with s 6= 0 either |{u(x) > s}| < ∞ or |{u(x) ≤ s}| < +∞, so that it is not
necessary to use Proposition 3.3.

5. Existence of an isoperimetric profile. In this section we show the existence
of an isoperimetric profile, that is, a solution to Problem (5), under suitable as-
sumptions on the kernel K. First of all we will assume throughout this section that
K 6≡ 0 and

K ∈ L1(RN ). (19)

We observe that, if K = K?, then by Proposition 3.1 we know that the ball of
volume m is the unique minimizer of (5), up to translations.

In order to get existence of minimizers, we first consider a relaxed version of
the perimeter functional, obtained by extending it to general densities functions.
More precisely, we define the new energy as follows: given f : RN → [0, 1], with
f ∈ L1(RN ), we let

PK(f) :=

∫
RN

∫
RN

f(x)[1− f(y)]K(x− y)dxdy. (20)

Note that PK(χE) = PerK(E) and the constraint 0 ≤ f ≤ 1 is inherited by the
original problem, naturally arising from the relaxation procedure.

Note that the previous energy can be written as

PK(f) = ‖f‖L1‖K‖L1 −
∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy. (21)

The relaxed version of the isoperimetric problem (5) can be restated as follows.
Given m ≥ 0, we consider

inf
f∈Am

PK(f), (22)

where the set of admissible functions is defined as

Am =

{
f ∈ L1(RN , [0, 1]),

∫
RN

f(x)dx = m

}
.

Notice also that

lim inf
n

PerK(En) = PK(f)
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where the liminf is taken over all sequences En with |En| = m, such that χEn

∗
⇀ f

weakly∗ in L∞.
Due to (21), the minimization problem (22) is equivalent to the maximization

problem

sup
f∈Am

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy. (23)

We now show monotonicity and subadditivity of the energy in (23) with respect
to m.

Lemma 5.1.

i) If m1 > m2 > 0 then

sup
f∈Am1

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy ≥ sup
f∈Am2

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy.

ii) If
∑l

i=1mi = m then

l∑
i=1

sup
fi∈Ami

∫
RN

∫
RN

fi(x)fi(y)K(x− y)dxdy ≤ sup
f∈Am

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy.

Moreover, if the equality holds in the above inequality and if the supremum in
(23) is attained for all volumes mi’s, then mi = 0 for all i’s except one.

Proof. i) Let f ∈ Am2
and let ε > 0. Let E ⊆ RN such that f(x) < 1− ε in E and

|E| = (m1 −m2)/ε. We define

f̃(x) := f(x) + εχE(x) x ∈ RN .

We have f̃ ∈ Am1
. Moreover, since K ≥ 0,∫

RN

∫
RN

f̃(x)f̃(y)K(x− y)dxdy =

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy

+ 4ε

∫
RN

∫
E

f(x)K(x− y)dxdy + ε2

∫
E

∫
E

K(x− y)dxdy

≥
∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy.

ii) We consider the case l = 2, as the case l > 2 can be treated analogously. Let
fi ∈ Ami

, and let ε > 0 and R > 0 such that
∫
RN\B(0,R)

fi(x)dx ≤ ε for i = 1, 2.

Note that∣∣∣∣∣
∫
RN

∫
RN

fi(x)fi(y)K(x− y)dxdy −
∫
B(0,R)

∫
B(0,R)

fi(x)fi(y)K(x− y)dxdy

∣∣∣∣∣ ≤ 2 ε ‖K‖L1 .

We fix xR ∈ RN such that (f1(x)χB(0,R)(x))(f2(x−xR)χB(xR,R)) = 0 for a.e. x,
and we let

f(x) := f1(x)χB(0,R)(x) + f2(x− xR)χB(xR,R).
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Then, f ∈ Am′ for some m′ ∈ [m− 2ε,m]. Hence, by item i), we get

sup
g∈Am

∫
RN

∫
RN

g(x)g(y)K(x− y)dxdy ≥ sup
g∈Am′

∫
RN

∫
RN

g(x)g(y)K(x− y)dxdy

≥
∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy =

2∑
i=1

∫
B(0,R)

∫
B(0,R)

fi(x)fi(y)K(x− y)dxdy

+

∫
B(0,R)

∫
B(0,R)

f1(x)f2(y)K(x− y + xR)dxdy

≥
2∑

i=1

∫
RN

∫
RN

fi(x)fi(y)K(x− y)dxdy − 4 ε ‖K‖L1 , (24)

from which we conclude by the arbitrariness of ε.
Note that, since K 6≡ 0, we can always choose xR such that∫

B(0,R)

∫
B(0,R)

f1(x)f2(y)K(x− y + xR)dxdy > 0

so that the last inequality in (24) is in fact a strict inequality.

5.1. The potential function. Given a function f ∈ Am, we can define the po-
tential of f as

V (x) :=

∫
RN

f(y)K(x− y)dy. (25)

In the following we give some properties of the potential V .

Proposition 5.2.

i) V ∈ C(RN )∩L1(RN )∩L∞(RN ), with 0 ≤ V ≤ ‖K‖L1 and ‖V ‖L1 = m‖K‖L1 .
ii) lim|x|→+∞ V (x) = 0.

iii) There exists x ∈ RN , density point of f , such that f(x) < 1 and V (x) > 0.

Proof. i) By definition V ∈ L1 ∩L∞, with 0 ≤ V ≤ ‖K‖L1 and ‖V ‖L1 = m‖K‖L1 .
Observe that since f ∈ L1 and K ∈ L1,

lim
h→0

∫
RN

|f(y − x− h)− f(y − x)|K(y)dy = 0 for every x.

This implies that V is continuous.
ii) Let ε > 0 and let Aε := {f > ε}. We have

V (x) =

∫
RN

K(y)f(x− y)dy ≤ ε‖K‖L1 +

∫
x−Aε

K(y)dy. (26)

For R > 0 we have∫
x−Aε

K(y)dy =

∫
x−(Aε∩B(0,R))

K(y)dy +

∫
x−(Aε\B(0,R))

K(y)dy. (27)

Since K ∈ L1(RN ) and limR→∞ |Aε \B(0, R)| = 0, for R sufficiently large we have∫
x−(Aε\B(0,R))

K(y)dy ≤ ε‖K‖L1 ,
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which gives, recalling (27),∫
x−Aε

K(y)dy ≤
∫
x−(Aε∩B(0,R))

K(y)dy + ε‖K‖L1 (28)

≤
∫
|y|≥|x|−R

K(y)dy + ε‖K‖L1 ≤ 2 ε ‖K‖L1 ,

for x large enough (depending on R). The thesis now follows from (26), (28) and
the arbitrariness of ε.
iii) Since K 6≡ 0, there exist δ > 0 and a bounded set A with |A| = k > 0 such

that 0 6∈ A and K(z) ≥ δ for a.e. z ∈ A. Let x0 ∈ RN be a Lebesgue point of f
such that f(x0) > 0. Let y0 ∈ A be a point of density 1 in A, such that x0 + y0 is
a density point of f and we compute

V (x0 + y0) ≥
∫
A

f(x0 + y0 − z)K(z)dz ≥ δ
∫
A

f(x0 + y0 − z)dz > 0.

If f(x0 + y0) < 1, we are done, c ≥ V (x0 + y0) > 0. If, on the other hand,
f(x0 + y0) = 1 for all points y0 which are points of density 1 of A and density
points for f(x0 + ·), then we consider y1 ∈ A be a point of density 1 in A, such that
x0 + y0 + y1 is a density point of f and we compute

V (x0 + y0 + y1) ≥
∫
A

f(x0 + y0 + y1 − z)K(z)dz ≥ δ
∫
A

f(x0 + y0 + y1 − z)dz > 0.

Repeating this argument, we construct a sequence yn ∈ A of points of density 1 such
that x0 +y0 + · · ·+yn is a density point of f , and such that V (x0 +y0 + · · ·+yn) > 0.
Note that for some n ≥ 0, we get that f(x0 + y0 + · · ·+ yn) < 1. If it were not the
case, we would get

m =

∫
RN

f(x)dx ≥
∑
n

∫
x0+nA

f(x)dx =
∑
n

|A| = +∞

which is impossible.

5.2. First and second variation. We now compute the first and second variation
of the energy in (22).

Lemma 5.3. Let f ∈ Am be a minimizer of (22). Let S := {x |f(x) = 1} and
N := {x |f(x) = 0}.

i) For every ψ, φ ∈ L1(RN , [0, 1]) with
∫
RN φ(x)dx =

∫
RN ψ(x)dx, and such that

ψ ≡ 0 a.e. in S and φ ≡ 0 a.e. in N , the following holds∫
RN

(ψ(x)− φ(x))V (x)dx ≤ 0. (29)

ii) There exists a constant c > 0 such that
V (x) ≡ c for every x ∈ RN \ (N ∪ S)

V (x) ≥ c for every x ∈ S
V (x) ≤ c for every x ∈ N.

(30)

Proof. i) We argue as in [6, Lemma 1.2]. First observe that for every λ,
∫
RN f +

λ(ψ − φ)dx =
∫
RN fdx = m. Moreover, for all λ ∈ [0, 1] and a.e. x ∈ S ∪N , we get

that f(x) + λ(ψ(x) − φ(x)) ∈ [0, 1]. We consider two sequences ψε → ψ, φε → φ
in L1 such that

∫
RN ψεdx =

∫
RN φεdx =

∫
RN φdx and such that ψε(x) ≡ 0 on the

set {x|f(x) > 1 − ε} and φε ≡ 0 on the set {x |f(x) ≤ ε}. So, choosing λ > 0
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sufficiently small (depending on ε) we can show that f + λ(ψε − φε) ∈ Am. By
minimality of f we get

1

λ
(PK(f + λ(ψε − φε))− PK(f)) ≥ 0.

So, sending λ→ 0 and recalling that K is symmetric (2), we get∫
RN

(ψε(x)− φε(x))(1− 2f(y))K(x− y)dx ≥ 0.

So, sending ε→ 0 and recalling that
∫
RN (φ(x)− ψ(x))dx = 0, we conclude

0 ≤
∫
RN

(ψ(x)− φ(x))(1− 2f(y))K(x− y)dx

= ‖K‖L1

∫
RN

(ψ(x)− φ(x))dx− 2

∫
RN

(ψ(x)− φ(x))V (x)dx

= −2

∫
RN

(ψ(x)− φ(x))V (x)dx.

ii) Choosing ψ, φ in (29) such that ψ = 0 = φ on S ∪ N , we can exchange the
role of ψ and φ, and obtain that in RN \ (N ∪ S), V has to be constant. So, there
exists c > 0 (by Proposition 5.2 iii)) such that V (x) ≡ c in RN \ (N ∪ S).

Choosing φ in (29) such that φ = 0 a.e. in S ∪ N , we get, since
∫
RN (ψ(x) −

φ(x))dx = 0,
∫
RN\(N∪S)

(ψ(x)− φ(x))dx = −
∫
S
ψ(x)dx. We compute

0 ≥
∫
S

(ψ(x)−φ(x))V (x)dx+

∫
N

(ψ(x)−φ(x))V (x)dx+c

∫
RN\(S∪N)

(ψ(x)−φ(x))dx

=

∫
N

ψ(x)V (x)dx+ c

∫
RN\(S∪N)

(ψ(x)− φ(x))dx =

∫
N

ψ(x)(V (x)− c)dx

for all ψ ∈ L1(RN , [0, 1]) such that ψ = 0 a.e. in S and
∫
RN (ψ(x) − φ(x))dx = 0.

This implies that V ≤ c in N . With an analogous argument, exchanging the role
of ψ and φ, we get V (x) ≥ c in S.

As immediate consequence of the first variation (30) and of the properties of the
potential V we obtain that every minimizer of (22) has compact support.

Proposition 5.4. Every minimizer f ∈ Am of (22) has compact support.

Proof. By Proposition 5.2 lim|x|→+∞ V (x) = 0. Hence we can find R > 0 such that
0 ≤ V (x) < c for |x| > R, where c > 0 is the constant appearing in (30). By (30)
this implies immediately that the support of f is contained in BR(0).

We now consider the second variation of the functional.

Lemma 5.5. Let f ∈ Am be a minimizer of (22) and let S, N be as in Lemma
5.3. Then, for every ξ ∈ L1(RN , [−1, 1]) with

∫
RN ξ(x)dx = 0, and such that ξ ≡ 0

a.e. in N ∪ S, it holds ∫
RN

∫
RN

ξ(x)ξ(y)K(x− y)dxdy ≤ 0. (31)
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Proof. We argue as in [6, Lemma 1.5]. Reasoning as in the proof of Lemma 5.3, item
i), we can assume that there exists a sequence ξε → ξ in L1 such that

∫
RN ξε(x)dx =

0 and ξε ≡ 0 a.e. in {x | f(x) ≤ ε or f(x) ≥ 1 − ε}. So for λ sufficiently small
f + λξε ∈ Am and by minimality we get

0 ≤ PK(f + λξε)− PK(f)

= λ

∫
RN\(N∪S)

(‖K‖L1 − 2V (x))ξε(x)dx− λ2

∫
RN

∫
RN

ξε(x)ξε(y)K(x− y)dxdy.

Recalling (30) and the fact that
∫
RN ξε(x)dx = 0, we conclude the desired inequality

by letting ε→ 0.

5.3. Existence of minimizers.

Theorem 5.6. For every m > 0 there exists at least one f ∈ Am which solves the
minimization problem (22).

Proof. The proof is similar to that in [6, Theorem 1.9] (see also [4]), and is based
on a concentration compactness argument.

Let fn ∈ Am be a minimizing sequence, and recall that the energy can be written
as

PK(fn) = m‖K‖L1 −
∫
RN

∫
RN

fn(x)fn(y)K(x− y)dxdy.

We consider a partition of RN in disjoint cubes: letQ = [0, 1]n and letQz := z+Q
for z ∈ ZN . We fix ε > 0 small and divide the cubes in two subsets:

Iε,n := {z ∈ ZN |
∫
Qz

fn(x)dx =: mn,z ≤ ε}, Aε,n := ∪z∈Iε,nQz

and

Jε,n := {z ∈ ZN |
∫
Qz

fn(x)dx = mn,z > ε}, Eε,n := ∪z∈Jε,n
Qz.

For z ∈ Iε,n and w ∈ ZN , recalling Riesz rearrangement inequality, we have∫
Qz

∫
Qw

fn(x)fn(y)K(x− y)dxdy ≤
∫
Bmn,w

∫
Bmn,z

K?(x− y)dxdy

=

∫
Bmn,w

∫
Bmn,z (x)

K?(y)dydx ≤ mn,w

∫
Bmn,z

K?(y)dy ≤ mn,w

∫
Bε

K?(y)dy,

(32)

where the last inequality follows from the fact that z ∈ Iε,n, and the previous
inequality from the fact that K? is symmetrically decreasing.

For R > 0, we compute∫
Aε,n

∫
RN

fn(x)fn(y)K(x− y)dxdy

=
∑

w∈ZN ,z∈Iε,n,|z−w|>R

∫
Qz

∫
Qw

fn(x)fn(y)K(x− y)dxdy

+
∑

w∈ZN ,z∈Iε,n,|z−w|≤R

∫
Qz

∫
Qw

fn(x)fn(y)K(x− y)dxdy.
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By (32) the second addendum can be bounded as follows

∑
w∈ZN ,z∈Iε,n,|z−w|≤R

∫
Qz

∫
Qw

fn(x)fn(y)K(x− y)dxdy

≤
∑

w∈ZN

mn,w(2R)N
∫
Bε

K?(y)dy ≤ m(2R)N
∫
Bε

K?(y)dy.

On the other hand the first addendum can be bounded as∑
w∈ZN ,z∈Iε,n,|z−w|>R

∫
Qz

∫
Qw

fn(x)fn(y)K(x− y)dxdy

≤
∑

z∈Iε,n

mz,n

∫
|y|>R−

√
N

K(y)dy ≤ m
∫
|y|>R−

√
N

K(y)dy.

Collecting the two estimates, we get∫
Aε,n

∫
RN

fn(x)fn(y)K(x−y)dxdy ≤ m(2R)N
∫
Bε

K?(y)dy+m

∫
|y|>R−

√
N

K(y)dy.

(33)
Since K ∈ L1, hence also K? ∈ L1, we can choose R = R(ε) in such a way that

lim
ε→0

R(ε) = +∞ and lim
ε→0

R(ε)N
∫
Bε

K?(y)dy = 0.

With this choice of R, from (33) we get∫
Aε,n

∫
RN

fn(x)fn(y)K(x− y)dxdy ≤ r(ε) (34)

where r(ε)→ 0 as ε→ 0, uniformly in n. As a consequence, we obtain

PK(fn) ≥ m‖K‖L1 −
∫
Eε,n

∫
Eε,n

fn(x)fn(y)K(x, y)dxdy − 2r(ε). (35)

Observe that, due to the fact that
∫
RN f(x)dx = m, we have #Jε,n ≤ m/ε.

Given wi, wj ∈ Jε,n, up to subsequence we get that |wi − wj | → ci,j ∈ N ∪ {+∞}
as n→ +∞. We consider the following sets, for l = 1, . . . ,Hε, with Hε ≤ m

ε

Ql
ε,n =

⋃
wi∈Jε,n, cil<+∞

Qwi . (36)

Note that by construction dist(Ql
ε,n,Qk

ε,n)→ +∞ if k 6= l as n→ +∞. Moreover,
always by construction, we get that

diam(Ql
ε,n) ≤

∑
i∈{1,...Hε},cil<∞

(2cil + 2
√
N) ≤Mε,

where Mε does not depend on n.
Let f l,εn := fnχQl

ε,n
and let xl,n such that f l,εn (xl,n) > 0. Up to subsequences we

can assume that f l,εn (·+xn,l)
∗
⇀ f l,ε weakly∗ in L∞, as n→ +∞. Observe that the

support of f l,εn (· + xn,l) is contained in B(0,Mε) for every n. Moreover, since the
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functional PK is continuous with respect to the tight convergence (see for instance
[6]), we get that

lim
n

∫
RN

∫
RN

f l,εn (x+ xn,l)f
l,ε
n (y + xn,l)K(x− y)dxdy

=

∫
RN

∫
RN

f l,ε(x)f l,ε(y)K(x− y)dxdy.

Therefore

inf
Am

PK = lim
n
PK(fn) ≥ m‖K‖L1−lim

n

∫
Eε,n

∫
Eε,n

fn(x)fn(y)K(x−y)dxdy−2r(ε)

= m‖K‖L1 −
Hε∑
l=1

lim
n

∫
RN

∫
RN

f l,εn (x+ xn,l)f
l,ε
n (y + xn,l)K(x− y)dxdy − 2r(ε)

= m‖K‖L1 −
Hε∑
l=1

∫
RN

∫
RN

f l,ε(x)f l,ε(y)K(x− y)dxdy − 2r(ε). (37)

We pass to a subsequence εk → 0 such that εk is decreasing. So Hεk → H ∈
(0,+∞]. Moreover, we can relabel the sequence in such a way that f l,εkn and then
also their limit f l,εk are monotone in εk. By monotone convergence f l,εk → f l

strongly in L1. Moreover if ml =
∫
RN f

l(x)dx, then
∑H

l=1ml = m̃ ≤ m. Again by

continuity of the functional with respect to the L1-convergence, from (37) and from
Lemma 5.1 we get that

sup
f∈Am

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy

= lim
n

∫
RN

∫
RN

fn(x)fn(y)K(x− y)dxdy) ≤
H∑
l=1

∫
RN

∫
RN

f l(x)f l(y)K(x− y)dxdy

≤
H∑
l=1

sup
Aml

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy ≤ sup
Am̃

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy

≤ sup
Am

∫
RN

∫
RN

f(x)f(y)K(x− y)dxdy.

Therefore the previous are all equalities, and f l is a minimizer of PK in Aml
for

all l’s. In particular, recalling again Lemma 5.1, we get that H = 1, and f1 is a
minimizer of PK in Am.

We finally show that, under a further condition on K, the isoperimetric problem
(5) admits a solution.

Theorem 5.7. Assume that for a.e. x ∈ RN there exists εx > 0 such that for all
ε < εx ∫

B(0,2ε)

|B(0, ε) ∩B(z, ε)|(K(z)−K(x+ z))dz > 0. (38)

Then, for every m > 0 there exists a compact set E ⊆ RN such that |E| = m and
E solves the isoperimetric problem (5).

Proof. By Theorem 5.6 there exists at least one f ∈ Am which solves the mini-
mization problem (22). Moreover the support of f is compact due to Proposition
5.4.
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Assume by contradiction that f is not a characteristic function. Then there exist
x̄ 6= ȳ Lebesgue points of f such that 0 < f(x̄), f(ȳ) < 1. Let ε < 1

2 |x̄ − ȳ| and
define the function ξ(x) := χB(x̄,ε) − χB(ȳ,ε). Therefore, by the second variation

formula (31), for every ε < 1
2 |x̄− ȳ| we get

0 ≥
∫
RN

∫
RN

ξ(y)ξ(x)K(x− y)dxdy

= 2

∫
B(0,ε)

∫
B(0,ε)

(K(x− y)−K(x̄− ȳ − (x− y))dxdy

= 2

∫
B(0,2ε)

|B(0, ε) ∩B(z, ε)|(K(z)−K(x̄− ȳ + z))dz,

which contradicts (38), and concludes the proof.

Remark 5.8. A sufficient condition for (38) to hold is that

lim inf
z→0

(K(z)−K(z + x)) > 0 for a.e. x ∈ RN . (39)

In particular this condition is always verified if K is positive definite, that is,{∫
RN

∫
RN φ(x)φ(y)K(x− y)dxdy ≥ 0 ∀φ ∈ L1(RN )∫

RN

∫
RN φ(x)φ(y)K(x− y)dxdy = 0 iff φ ≡ 0.
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