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Abstract

We consider shape optimization problems with internal inclusion constraints, of the
form

min
{
J(Ω) : D ⊂ Ω ⊂ Rd, |Ω| = m

}
,

where the set D is fixed, possibly unbounded, and J depends on Ω via the spectrum
of the Dirichlet Laplacian. We analyze the existence of a solution and its qualitative
properties, and rise some open questions.
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1 Introduction

A shape optimization problem is a minimization problem of the form

min
{
J(Ω) : Ω ∈ A

}
(1.1)

where J is a suitable cost functional, possibly depending on the spectrum of an elliptic
operator on Ω (in this case we speak of spectral optimization problems), and A is a class of
admissible domains. A wide literature on the subject is available, dealing with existence,
regularity, necessary conditions of optimality, relaxation, explicit solutions and numerical
computations of the optimal shapes. We quote for instance the books [7, 17, 18], where the
reader may find a complete list of references on the field.

The simplest situation for the existence of a solution of problem (1.1) occurs when the
class of admissible domains A satisfies an external inclusion constraint, i.e. consists on
quasi-open sets which are supposed a priori contained in a given bounded open set D of the
Euclidean space Rd,

A = {Ω : Ω ⊂ D, Ω quasi-open}.

In this case a general existence result, due to Buttazzo and Dal Maso (see [11]), states
that problem (1.1), with the additional constraint |Ω| ≤ m on the Lebesgue measure of the
competing domains, admits a solution provided the cost functional J satisfies some mild
conditions:

(i) J is lower semicontinuous for the γ-convergence, suitably defined;

(ii) J is monotone decreasing for the set inclusion.

Some interesting cases fall into the framework above, as for instance the ones below.
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Spectral optimization. For every admissible domain Ω consider the Dirichlet Laplacian
−∆ which, under mild conditions on Ω, admits a compact resolvent and so a discrete
spectrum λ(Ω). The cost is in this case of the form

J(Ω) = Φ
(
λ(Ω)

)
for a suitable function Φ. For instance, taking Φ(λ) = λk we may consider the optimization
problem for the k-th eigenvalue of −∆:

min
{
λk(Ω) : Ω ∈ A

}
.

Integral functionals. Given a right-hand side f we consider the PDE

−∆u = f in Ω, u ∈ H1
0 (Ω)

which provides, for every admissible domain Ω, a unique solution uΩ that we assume ex-
tended by zero outside of Ω. The cost is in this case of the form

J(Ω) =

∫
Rd
j
(
x, uΩ(x)

)
dx

where j is a given integrand.

When the surrounding box D is unbounded the existence result above is no longer true,
as some simple examples show. In the case D = Rd a quite different approach to the proof
of the existence of optimal domains has been considered by Bucur in [5], using a refined
argument related to the Lions concentration-compactness principle (see [20]).

In this paper we consider problem (1.1) where the admissible class A is defined through
an internal constraint:

A =
{

Ω : D ⊂ Ω ⊂ Rd, Ω quasi-open, |Ω| ≤ m
}

(1.2)

where D is a fixed quasi-open set of finite measure, possibly unbounded.
In spite of its simplicity, even for cost functionals like J(Ω) = λ1(Ω), the existence proof

is rather involved, and several interesting questions arise. For this functional, together with
the existence of a solution, we prove some global properties for the optimal set: it has to lie
in finite distance to D (in particular the optimal set is bounded, provided D is bounded),
it has finite perimeter outside D, it is an open set as soon as its measure is strictly greater
than the measure of the (quasi-connected) D. Local regularity properties, outside D are
not discussed here, being similar to the bounding box situation, and we refer the reader for
instance to [4]. We discuss as well the existence question for J(Ω) = λk(Ω), and refer the
reader to [6] for the analysis of these functionals in the absence of any inclusion constraint
in Rd.

2 Notations and preliminaries

We introduce here the main tools we use in the following; further details can be found for
instance in [7, 9].

In the sequel, we will work in the Euclidean space Rd with d ≥ 2. Given a subset
E ⊂ Rd we define the capacity of E by

cap(E) = inf
{
‖u‖2H1 : u ∈ UE

}
,
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where UE is the set of all functions u of the Sobolev space H1(Rd) such that u ≥ 1 almost
everywhere in a neighborhood of E. If a property P (x) holds for all x ∈ E except for the
elements of a set Z ⊂ E with cap(Z) = 0, we say that P (x) holds quasi-everywhere (shortly
q.e.) on E, whereas the expression almost everywhere (shortly a.e.) refers, as usual, to the
Lebesgue measure, that we often denote by | · |.

A subset Ω of Rd is said to be quasi-open if for every ε > 0 there exists an open subset
Ωε of Rd, with Ω ⊂ Ωε, such that cap(Ωε \ Ω) < ε. Similarly, a function f : Rd → R is
said to be quasi-continuous (resp. quasi-lower semicontinuous) if there exists a decreasing
sequence of open sets (ωn)n>0 such that limn→∞ capωn = 0 and the restriction fn of f to
the set ωcn is continuous (resp. lower semicontinuous). It is well known (see for instance
[21]) that every function u ∈ H1(Rd) has a quasi-continuous representative ũ, which is
uniquely defined up to a set of capacity zero, and given by

ũ(x) = lim
ε→0

1

|Bε(x)|

∫
Bε(x)

u(y) dy ,

where Bε(x) denotes the ball of radius ε centered at x. We often identify the function u
with its quasi-continuous representative ũ; in this way, we have that quasi-open sets can be
characterized as the sets of strict positivity of functions in H1(Rd) and that the capacity
can be equivalently defined by

cap(E) = min
{
‖u‖2H1 : u ∈ H1(Rd), u ≥ 1 q.e. on E

}
.

For every quasi-open set Ω ⊂ Rd we denote by H1
0 (Ω) the space of all functions u ∈

H1(Rd) such that u = 0 q.e. on Rd \ Ω, with the Hilbert space structure inherited from
H1(Rd),

〈u, v〉H1
0 (Ω) = 〈u, v〉H1(Rd).

The usual properties of Sobolev functions on open sets extend to quasi-open sets.
Let Ω be a quasi-open set of finite measure. By RΩ we denote the resolvent operator of

the Laplace equation with Dirichlet boundary condition,

RΩ : L2(Rd)→ L2(Rd),

where RΩ(f) is the weak solution of the equation{
−∆u = f ∈ L2(Rd),
u ∈ H1

0 (Ω).

We denote by M0 the set of capacitary measures on Rd, that is the set of all Borel
measures, possibly taking the value +∞, vanishing on all sets of zero capacity. Observe
that for each Borel set S the measure

∞S(B) =

{
0 if cap(B ∩ S) = 0

+∞ otherwise

is a capacitary measure.
For each capacitary measure µ, we define the linear vector space

H1(Rd) ∩ L2(Rd, µ) =
{
u ∈ H1(Rd) :

∫
Rd
|u|2 dµ <∞

}
.
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Taking µ =∞S with S = Ωc gives H1(Rd)∩L2(Rd, µ) = H1
0 (Ω). In [10] it was shown that

the above space, endowed with the scalar product

〈u, v〉 =

∫
Rd
∇u∇v dx+

∫
Rd
uv dx+

∫
Rd
uv dµ,

is a Hilbert space. Moreover, the space H1(Rd) ∩ L2(Rd, µ) is separable when seen as a
subset of the separable metric space H1(Rd). If {un}n≥0 ⊂ H1(Rd) ∩ L2(Rd, µ) is a dense
countable subset, then we define the regular set of the capacitary measure µ ∈M0 as

Ωµ =
⋃
n≥0

{un 6= 0}.

If the set Ωµ has finite Lebesgue measure, then

‖u‖2 =

∫
Rd
|∇u|2 dx+

∫
Rd
|u|2 dµ,

is an equivalent norm on H1(Rd) ∩ L2(Rd, µ). We define the resolvent Rµ as the map

Rµ : L2(Rd)→ L2(Rd),

which associates to each function f ∈ L2(Rd) the solution u of the relaxed problem formally
written as

−∆u+ µu = f, u ∈ H1(Rd) ∩ L2(Rd, µ),

which has to be rigorously defined in the weak form
∫
Rd
∇u∇ϕdx+

∫
Rd
uϕdµ =

∫
Ω
fϕ dx ∀ϕ ∈ H1(Rd) ∩ L2(Rd, µ),

u ∈ H1(Rd) ∩ L2(Rd, µ).

If µ is a capacitary measure with regular set of finite Lebesgue measure, then the
constant function 1 is in the dual space of H1(Rd)∩L2(Rd, µ), so we can define wµ := Rµ(1)
and we have Ωµ = {wµ > 0} up to zero capacity sets.

We consider the following relation of equivalence on M0:

µ1 ∼ µ2 ⇐⇒ µ1(Ω) = µ2(Ω), ∀Ω quasi-open,

and we can make the quotient set M0/ ∼ a metric space (we still denote this quotient by
M0 and call its elements capacitary measures), by introducing the convergence below.

Definition 2.1. To each bounded open set Ω and each capacitary measure µ we associate
the functional

Fµ(u,Ω) =

∫
Rd
|∇u|2 dx+

∫
Rd
u2 dµ+ χH1

0 (Ω)(u),

defined on the metric space L2(Rd), where

χH1
0 (Ω)(u) =

{
0 if u ∈ H1

0 (Ω),

+∞ otherwise.

We say that a sequence (µn)n≥0 ⊂M0 γloc-converges (locally γ-converges) to µ ∈M0 and
we write

µn
γloc→ µ,

if for each bounded open set Ω ⊂ Rd,

Fµn(·,Ω)
Γ→ Fµ(·,Ω),

where the above expression denotes the usual Γ convergence of functionals on the metric
space L2(Rd), that is
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(i) for every u ∈ L2(Rd) and every sequence (un)n≥0 ⊂ L2(Rd) converging to u in the
norm of L2(Rd) we have

Fµ(u,Ω) ≤ lim inf
n→∞

Fµn(un,Ω),

(ii) for every u ∈ L2(Rd) there exists a sequence (un)n≥0 ⊂ L2(Rd) converging to u in the
norm of L2(Rd) such that

Fµ(u,Ω) = lim
n→∞

Fµn(un,Ω).

Remark 2.2. In [3, Definition 2.7] the γloc-convergence introduced above was called γ-
convergence (see also [13]). Here, we chose to denote by γ-convergence a stronger conver-
gence, as follows.

Definition 2.3. Let (µn)n≥0 and µ be capacitary measures such that their regular sets
have uniformly bounded Lebesgue measures. We say that µn γ-converges to µ, if (wµn)n≥0

converges in L2(Rd) to wµ.

Remark 2.4. With the definition above, we have the equivalence

µn
γ−→ µ ⇐⇒ Rµn

L(L2(Rd))−→ Rµ.

Indeed, for the ”⇒” implication, we refer to [5, Proposition 3.3]. For the converse implica-
tion, the proof is immediate. On the one hand, we have

Rµn(1Ωµn )−Rµ(1Ωµn )→ 0 in L2(Rd),

and on the other hand

Rµn(1Ωµ)−Rµ(1Ωµ)→ 0 in L2(Rd).

Making the difference we get that

‖Rµn(1Ωµn )−Rµn(1Ωµ) +Rµ(1Ωµ)−Rµ(1Ωµn )‖L2(Rd) → 0

and using the maximum principle we conclude with

‖Rµn(1)−Rµ(1)‖L2(Rd) → 0.

Remark 2.5. In the case µ =∞Ac with A quasi-open, we have

FA(u,Ω) = F∞Ac
(u,Ω) =

∫
Rd
|∇u|2 dx+ χH1

0 (Ω∩A)(u).

The following compactness theorem was proved in [13].

Theorem 2.6. For every sequence (µn)n≥0 ⊂ M0 there exists a subsequence (µnk)k≥0

which γloc-converges to a measure µ of the class M0.

In [5] it was shown that if a sequence of quasi-open sets (Ωn)n≥0 of uniformly bounded
measure γloc-converges to a capacitary measure µ, then the sequence of functionals FΩn =
F∞Ωcn

Γ-converges in L2(Rd) to the functional Fµ, where

FΩn(u) =

∫
Rd
|∇u|2 dx+ χH1

0 (Ωn)(u),

Fµ(u) =

∫
Rd
|∇u|2 dx+

∫
Rd
u2 dµ.

Furthermore, in the same work, Theorem 5.4 states the following.
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Theorem 2.7. If (Ωn)n≥0 is a sequence of quasi-open sets of uniformly bounded measure
which γloc-converges to a capacitary measure µ and is such that the sequence of solutions
(wΩn)n≥0 converges in L2(Rd) to some function w, then {w > 0} is the regular set of µ and
w = wµ.

Remark 2.8. The result above is actually valid (with practically the same proof) for se-
quences of measures whose regular sets have uniformly bounded Lebesgue measure. From
this observation and the fact that the γloc-convergence is metrizable (see [13], Proposition
4.9) with metric dγloc , we obtain that for each t > 0 the space

Mt
0 = {µ ∈M0 : |Ωµ| ≤ t},

where Ωµ denotes the regular set of µ, is a complete metric space when endowed with the
metric

d(µ1, µ2) = dγloc(µ1, µ2) + ‖wµ1 − wµ2‖L2(Rd).

Moreover, suppose that (µn)n≥0 is a sequence such that (wµn)n≥0 converges in L2(Rd).
Then each subsequence of (µn)n≥0 has a convergent subsequence in the metric d and the
limit is uniquely determined by the limit w = L2-limn→∞wµn . Since we are in a metric
space, we have that (µn)n≥0 converges to some capacitary measure µ ∈ Mt

0 in the metric
d. Then, the space Mt

0 endowed with the metric dγ , where

dγ(µ1, µ2) = ‖wµ1 − wµ2‖L2(Rd),

is a complete metric space.

Lemma 2.9. Consider a sequence (Ωn)n≥0 of quasi-open sets of uniformly bounded measure
such that Ωn γ-converges to the capacitary measure µ with regular set Ωµ. Then, for every
k ≥ 1

λk(Ωµ) ≤ λk(µ) = lim
n→∞

λk(Ωn).

Proof. By Remark 2.4, RΩn → Rµ in the operator norm of L(L2(Rd)), and so we have

λk(Ωn)→ λk(µ).

The inequality
λk(Ωµ) ≤ λk(µ),

now follows as a consequence of the inequality of the measures ∞Ωcµ(B) ≤ µ(B), for each
quasi-open set B, in the min-max definition of the eigenvalues.

3 Existence of an optimal set

For A defined in (1.2), we study the existence of a solution for the problem

min{λk(Ω) : Ω ∈ A}. (3.1)

We notice that if a solution Ω of problem (3.1) exists, then necessarily the measure of Ω
is precisely equal to m. Indeed, assume by contradiction that Ω is an optimal set with
measure strictly less than m. There exists an open set U with measure still less than m
which contains Ω, so it is an optimal set too. Since U is open, we can add small balls on
each connected component, so that the global measure still remains less than m, but the
k-th eigenvalue strictly diminishes, which contradicts the optimality of Ω.

The fundamental tool, allowing to understand the behaviour of a minimizing sequence in
Rd, is the following concentration-compactness result (see [5, Theorem 2.2]) for the resolvent
operators.
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Theorem 3.1. Let (Ωn)n≥0 be a sequence of quasi-open sets of uniformly bounded measure.
Then, there exists a subsequence, still denoted by (Ωn)n≥0, such that one of the following
situations occurs.

(i) Compactness. There exists a sequence of vectors (yn)n≥0 ⊂ Rd and a capacitary
measure µ, such that yn + Ωn γ-converges to the measure µ, and so Ryn+Ωn converges
in the uniform operator topology of L2(Rd) to Rµ.

(ii) Dichotomy. There exists a sequence of subsets Ω̃n ⊆ Ωn, such that:

• ‖RΩn −RΩ̃n
‖L(L2(Rd),L2(Rd)) → 0;

• Ω̃n is a union of two disjoint quasi-open sets Ω̃n = Ω+
n ∪ Ω−n ;

• d(Ω+
n ,Ω

−
n )→∞;

• lim infn→∞ |Ω±n | > 0.

Remark 3.2. Assume that D is a non-empty quasi-open set and (Ωn)n≥1 is a sequence of
quasi-open sets such that D ⊂ Ωn, |Ωn| ≤ m. Then, if the compactness situation holds in
Theorem 3.1, then one can take yn = 0, i.e. no translation is necessary.

Suppose first that yn is divergent and notice that the solution wD+yn is just wD trans-
lated to the left by yn. By the maximum principle, we have that wΩn+yn ≥ wD+yn and
so ∫

wD+ynwΩn+yn dx ≥
∫
w2
D dx > 0.

Since yn → ∞, we have that wD+yn ⇀ 0 weakly in L2. By the strong convergence of
wΩn+yn we have ∫

wD+ynwΩn+yn dx→ 0,

which is a contradiction and so we have that yn is bounded.
Choose a convergent subsequence ynk → y and set w = L2-limτ→∞wΩnk+ynk

. We have

‖wΩnk
− w(· − y)‖L2(Rd) ≤ ‖wΩnk

− w(· − ynk)‖L2(Rd) + ‖w(· − ynk)− w(· − y)‖L2(Rd)

≤ ‖wΩnk+ynk
− w‖L2(Rd) + ‖w(· − ynk)− w(· − y)‖L2(Rd),

and both last terms converge to zero as k → ∞. By extracting another subsequence we
obtain a subsequence converging in L2(Rd) to the function w(· − y) and γloc-converging to
a capacitary measure µ. By [5, Theorem 5.4], we obtain w = wµ.

Theorem 3.3. Let D be a quasi-open set of finite measure. Then, the problem

min{λ1(Ω) : Ω quasi-open, D ⊂ Ω, |Ω| ≤ m} (3.2)

has at least one solution.

Proof. We consider a minimizing sequence (Ωn)n≥1 with the property that lim infn→∞ |Ωn|
is minimal. Clearly, this value can not be equal to zero. According to Theorem 3.1 and
Remark 3.2, if we are in the compactness situation, for a subsequence (still denoted with
the same indices) there exists a measure µ such that Ωn γ-converges to µ and RΩn converges
to Rµ in the uniform operator topology of L2(Rd). As a consequence, by Lemma 2.9 we
get that the regular set Ωµ of µ is a solution.

If we are in the dichotomy situation, we get a contradiction. On the one hand since Ω+
n

and Ω−n are at positive distance, we may assume that λ1(Ω+
n ∪ Ω−n ) = λ1(Ω+

n ). Then, the
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sequence Ω+
n ∪D is also minimizing since |λ1(Ω+

n )− λ1(Ωn)| → 0 (see [5, Proposition 3.7]),
but either

lim inf
n→∞

|Ω+
n ∪D| < lim inf

n→∞
|Ωn|

or |Ω−n \ D| → 0. The first assertion is in contradiction with our assumption on the
choice of a least measure minimizing sequence. The second assertion is also impossible,
since it implies that d(Ω+

n , {0}) → +∞, otherwise the measure of D would be infinite.
Consequently, since the measure of D is finite, we get that |Ω+

n ∩D| → 0 and consider the
ball B of measure equal to lim sup |Ω+

n |. Therefore, B∪D is a solution for every position of
the ball B. In particular, this leads to a contradiction if the ball intersects, but not cover,
a quasi-connected component of D.

Remark 3.4. Let us notice that from every minimizing sequence we can extract a γ-
convergent subsequence. The basic observation is that any minimizing sequence for which
lim infn→∞ |Ωn| is minimal leads to an optimal set, which necessarily has the measure equal
to m. Since the measure is lower semicontinuous for the γ-convergence, this means that
any minimizing sequence should satisfy limn→∞ |Ωn| = m excluding the dichotomy in the
proof above.

In the sequel we show a result which gives a rather explicit behavior of a minimizing
sequence for the problem

min
{
λk(Ω) : Ω quasi-open, D ⊂ Ω, |Ω| ≤ m

}
. (3.3)

For every m > 0 we introduce the value

λ∗k(m) = inf
{
λk(Ω) : Ω quasi-open, |Ω| ≤ m

}
.

Following [6], there exists a bounded quasi-open set Ω, with measure equal to m such that
λk(Ω) = λ∗k(m).

Theorem 3.5. For k ∈ N, k ≥ 2, let

αk = inf{λk(Ω) : Ω quasi-open, D ⊂ Ω, |Ω| ≤ m}.

One of the following assertions holds:

(i) problem (3.3) has a solution;

(ii) there exists l ∈ {1, . . . , k − 1} and an admissible quasi-open set Ω such that αk =
λk−l(Ω) = λ∗l (m− |Ω|);

(iii) there exists l ∈ {1, . . . , k − 1} such that αk = λ∗l (m− |Ω|) > λk−l(D).

Proof. Let us consider a minimizing sequence (Ωn)n≥1 with the property that lim infn→∞ |Ωn|
is minimal. If compactness occurs in Theorem 3.1, then the existence of a solution follows
as in Theorem 3.3.

If dichotomy occurs, as in Theorem 3.3 we may assume that

|Ω+
n | → α+, |Ω−n | → α−, |Ω+

n ∩D| → 0.

Then, up to a subsequence there exists l ∈ {1, . . . , k−1} such that one of the two possibilities
below holds:

(A) |λk(Ωn)− λk−l(Ω−n )| → 0 and λl(Ω
+
n ) ≤ λk−l(Ω−n ) ≤ λl+1(Ω+

n );
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(B) |λk(Ωn)− λl(Ω+
n )| → 0 and λk−l(Ω

−
n ) ≤ λl(Ω+

n ) ≤ λk−l+1(Ω−n ).

We may take the maximal l with such a property. We use now an induction argument as
follows. For k = 1 as proved in Theorem 3.3, dichotomy does not occur, so the compactness
gives (i). Assume that for 1, . . . , k−1 Theorem 3.5 is true. We prove it for k. If compactness
occurs, then (i) holds. If dichotomy occurs and we are in situation (A) we get that (Ω−n ∪D)n
is minimizing for the k − l eigenvalue with the inclusion constraint and the corresponding
measure m−α+ ≥ lim inf |Ω−n ∪D|. Since l is maximal with this property, for the sequence
(Ω−n ∪D)n dichotomy cannot occur again, so finally (ii) holds.

If (B) occurs, then |Ω−n \D| → 0 and we are in situation (iii).

Remark 3.6. Theorem 3.5 gives a complete description on the behaviour of a minimizing
sequence for λk, k ≥ 2. Assertion i) implies the existence of a solution. As well, if D has
some suitable geometric properties, both alternatives (ii) and (iii) lead to the existence of
a solution. Typically, if for every R > 0, there exists x ∈ Rd such that BR(x) ∩ D = ∅,
then existence of a solution occurs. The main ingredients for obtaining such a result are
the existence of a minimizer for the k-th eigenvalue in absence of any inclusion constraint
(see [6]) and the boundedness result obtained in Proposition 4.7 of the next section and in
[6]. We do not know whether existence holds without this assumption on D, but we were
not able to find a counterexample (see the last section).

4 Qualitative properties of the optimal sets

A natural question that arises in the shape optimization problems with constraints like
(3.2) is to understand the influence of the inclusion domain D on the optimal sets: does
boundedness and/or convexity of D imply the same properties on the optimal set? As
we shall see, the answer is positive for the boundedness constraint, but negative for the
convexity constraint.

4.1 Regularity of the optimal set

In this section we deal with the penalized version of problem (3.2)

min
{
λ1(Ω) + Λ|Ω| : Ω ⊂ Rd, Ω quasi-open, D ⊂ Ω

}
, (4.1)

for some Λ > 0. For the local equivalence of the two problems we refer the reader to [4].
As well, we refer the reader to [4] for a complete analysis of a similar problem, in which the
internal constraint D ⊂ Ω is replaced by an external constraint Ω ⊂ D, with a bounded
open set D.

In this section we will analyze the internal constrain problem, and prove that the optimal
set of (4.1) is open even if D is only quasi-open, provided that D is quasi-connected and
the optimal set has a measure strictly greater than |D|. For simplicity, we say that D
is quasi-connected if for every couple of non-empty quasi-open sets A1 and A2 having
intersection of positive capacity with D and such that D ⊂ A1∪A2, we get cap(A1∩A2) >
0. The quasi-connectedness has a topological counterpart. Indeed, a quasi-open, quasi-
connected set A has a fine interior (which differs from A by a set of zero capacity) which is
finely connected (the fine topology being the coarsest topology making all superharmonic
functions continuous). A nonnegative superharmonic function in H1

0 (A) with A finely
connected, is either equal to 0 or is strictly positive (see [8, 15, 19]).

In the following, without loss of generality we assume that Λ = 1.

Remark 4.1. The existence of a solution to (4.1) follows by the same argument we used in
the proof of Theorem 3.3 and so we omit the proof.
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Let D be a quasi-open, quasi-connected set of finite measure. Let Ω be a solution of
problem (4.1), let λ := λ1(Ω), and let u := uΩ be the first normalized eigenfunction:{

−∆u = λu,

u ∈ H1
0 (Ω), ‖u‖L2 = 1.

As D is quasi-connected, if Ω is optimal, then u is a solution of the optimization problem

min
{∫ |∇v|2 dx∫

v2 dx
+ |{v > 0}| : v ∈ H1(Rd), D ⊂ {v > 0}

}
. (4.2)

The following Lemma is similar to [1, Lemma 3.2] and [4, Lemma 3.1].

Lemma 4.2. Let u be a solution of the problem (4.2). Then there is a constant C depending
only on the dimension d such that for each r > 0, the following implication holds:

Cr ≤ 1

|∂Br|

∫
∂Br

u dHd−1 =⇒ Br ⊂ {u > 0}. (4.3)

The next proposition follows the approach first introduced in [1]; nevertheless, we give
the proof below to stress the fact that the quasi-open internal constraint does not change
the argument too much.

Proposition 4.3. Let D be a quasi-open, quasi-connected set of finite measure. Every
solution Ω of problem (4.1) is an open set up to a set of capacity 0.

Proof. Let u be a solution of (4.2). We prove that if u(x) > 0, then u is positive in a small
ball centered at x. Without loss of generality, we can suppose that x = 0 and that 0 is a
regular point in the sense that

u(0) = lim
r→0

1

|Br(0)|

∫
Br(0)

u(y)dy.

Denote by ϕr the solution of {
−∆ϕr = 1,

ϕr ∈ H1
0 (Br),

(4.4)

where Br denotes the ball centered in 0 of radius r. An explicit computation gives

ϕr(y) =
r2 − |y|2

2d
.

Since 0 ≤ ∆u+ λu in the distributional sense on Rd, we have

∆(u− ‖u‖∞λϕr) ≥ −λu+ λ‖u‖∞ ≥ 0

on each ball Br, so the function u − ‖u‖∞λϕr is subharmonic on Br. By the Poisson’s
formula, we have

u(0)− ‖u‖∞λϕr(0) ≤ C(d)
1

|∂Br|

∫
∂Br

u(y) dHd−1(y),

u(0)− ‖u‖∞λC1r
2 ≤ C(d)

1

|∂Br|

∫
∂Br

u(y) dHd−1(y).

10



Suppose that u(0) > 0. Then, choosing r small enough, we have

u(0) ≤ 2C(d)

|∂Br|

∫
∂Br

u(y) dHd−1(y).

Now choose C as in Lemma 4.2 and r such that 2rCC(d) ≤ u(0). Then

Cr ≤ 1

|∂Br|

∫
∂Br

u(y) dHd−1(y),

and so u > 0 on Br.

Remark 4.4. Alternatively, one can formulate the proposition above, requiring that the
inclusion D ⊂ Ω holds quasi-everywhere, and in this case the optimal sets {u > 0} in (4.2)
are open.

Remark 4.5. If D is a quasi-open set such that there does not exist an open set containing
D and having the same Lebesgue measure, then the Proposition above asserts that the
measure of any optimal set is strictly greater than the measure of D.

In general, this is not the case ifD is an open set. Indeed, following a simple computation
one can consider D to be a ball B and take a constant Λ large enough, so that the optimal
set is B itself. More generally, if the partial metric derivative of the first eigenvalue on D
is finite, i.e.

λ′1(D) := lim sup
|D̃\D|→0, D̃⊃D

λ1(D)− λ1(D̃)

|D̃ \D|
< +∞,

then for every Λ > λ′1(D) there exists Λ′ > Λ such that the optimal solution of (4.1) with
Λ′ is D. Indeed, by contradiction for every Λ > λ′1(D) there exists ε > 0 such that for every
Ω ⊃ D such that |Ω| ≤ |D|+ ε we have

λ1(D) + Λ|D| ≤ λ1(Ω) + Λ|Ω|.

Then, replacing Λ with Λ′ > Λ such that Λ′ ≥ λ1(D)
ε , we get that D is a global minimizer.

4.2 Bounded constraint implies bounded minimizers

We give the following technical result for which we refer to [1, Lemma 3.4] and to [4, Lemma
3.1].

Lemma 4.6. For every solution u of the optimization problem (4.2), there exists a constant
C0 and r0 such that for each x ∈ Rd such that d(x,D) > r0 and for each r < r0 the following
implication holds: (

1

|∂Br(x)|

∫
∂Br

u dHd−1 ≤ C0r

)
⇒
(
u = 0 on B r

2

)
. (4.5)

The constants C0 and r0 above depend only on the dimension d of the space and on λ1(D)
respectively.

Proposition 4.7. Suppose that D is a quasi-open set of finite measure and Ω is an optimal
set for (4.1). Then there exists L > 0 such that for every open set U containing D we have
Ω ⊂ U +BL(0). In particular if D is bounded, then Ω is bounded.

11



Proof. It is enough to consider only the case of a quasi-connected set D and to work with
(4.2).

Assume by contradiction that such L does not exist. Then, there is a sequence (xn)n≥1 ⊂
Ω such that d(xn, U) → +∞ and |xn − xm| ≥ 2r0, when n 6= m. Since Ω = {u > 0}, we
have u(xn) > 0,∀n ≥ 1 and so, by Lemma 4.6, there are constants C0 > 0 and 0 < r0 such
that for each r < r0, we have the bound

‖u‖L∞(Br(xn)) ≥ C0r.

For each n ≥ 1, consider yn ∈ Br(xn) such that

u(yn) ≥ 1

2
C0r.

Consider the function ϕr(· − yn), as defined in (4.4). Then u− λ‖u‖∞ϕr(· − yn) is subhar-
monic, since

∆(u− λ‖u‖∞ϕr(· − yn)) ≥ −λu+ λ‖u‖∞ ≥ 0.

So, we have the inequalities∫
Br(yn)

(
u(x)− λ‖u‖∞ϕr(x− yn)

)
dx ≥ |Br|

(
u(yn)− λ‖u‖∞ϕr(x− yn)

)
≥ |Br|

(C0

2
r − λ‖u‖∞r2ϕ1(0)

)
;∫

Br(yn)
u(x) dx ≥ r2+dλ‖u‖∞‖ϕ‖L1 + |Br|

(C0

2
r − λ‖u‖∞r2ϕ1(0)

)
.

Choose now 0 < r < r0 small enough such that C0
2 r − λ‖u‖∞r

2ϕ1(0) > 0. Then there is a
constant c > 0, such that for all n ≥ 1∫

Br(yn)
u(x) dx ≥ c.

The fact that the balls Br(yn) are all disjoint contradicts the integrability of u.

Remark 4.8. The constant c, depends on C0, r0 and |D|. In fact, the proof of the proposition
above gives an estimate on the number of admissible points xn. Therefore the value of L,
can be estimated more explicitly. Since Ω is open and connected, the value of L depends
only on λ1(D), |D| and the dimension d of the space.

4.3 Convex constraint does not imply convex optimal set

In this section we will prove that the solution Ω of the optimization problem (3.2) might not
be convex even if the constraint D is convex. Consider the sequence of constraints (Dn)n≥1,
where Dn = (− 1

n ,
1
n) × (−1, 1) and consider the sequence of bounded open sets (Ωn)n≥1

such that for each n big enough, Ωn is a solution of the shape optimization problem:

min
{
λ1(Ω) : Dn ⊂ Ω, Ω quasi-open, |Ω| = m

}
. (4.6)

Proposition 4.9. For every m < 4/π, there is N > 0 such that Ωn is not convex for all
n ≥ N .

Proof. We begin with some observations on the optimal sets.

1. By a Steiner simmetrization argument, all the sets Ωn are Steiner symmetric with
respect to the axes x and y (in consequence, they are also star shaped sets).
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2. For n large enough, we consider the set Ω′n = Dn ∪B∗(m− 4
n), where for any a > 0,

B∗(a) denotes the ball centered in 0 of measure a. By the optimality of Ωn, we have

λ1(Ωn) ≤ λ1(Ω′n) ≤ λ1(B∗(m− 4

n
)).

By Theorem 3.1, there is a γ-converging subsequence still denoted by (Ωn)n≥1. Let Ω be
the γ-limit of this subsequence. Then

• λ1(Ω) ≤ lim inf
n→∞

λ1(Ωn) ≤ lim inf
n→∞

λ1(B∗(m− 4

n
)) = λ1(B∗(m));

• |Ω| ≤ lim inf
n→∞

|Ωn| = m.

Using the fact that the ball is the unique minimizer of λ1 under a measure constraint, we
obtain Ω = B∗(m). Consider a ball B′ of center (0,

√
m
π − ε) and radius ε and a ball B′′ of

center (0,−
√

m
π + ε) and radius ε. Then

Ωn ∩B′
γ−−−→

n→∞
Ω ∩B′ = B′, Ωn ∩B′′

γ−−−→
n→∞

Ω ∩B′′ = B′′.

Then there is some n large enough such that both sets B′∩Ωn and B′′∩Ωn are non-empty,
and Ωn cannot be convex. In fact, if by contradiction Ωn was convex, then we should have
that the rombus R with vertices (−1, 0), (0, (0,−

√
m
π + ε), (1, 0), (0,

√
m
π − ε)) is contained

in Ωn. But

|R| = 2(

√
m

π
− ε) > m

for ε small enough and m ≤ 4/π, and this is a contradiction.

4.4 Lack of monotonicity

We show here that in problem (3.2) the optimal solutions are not monotone with respect
to m, i.e. m1 < m2 does not imply in general that Ω1 ⊂ Ω2 where Ωi is optimal with
the constraint mi. Similarly, in the penalized problem (4.1), the same lack of monotonicty
occurs with respect to Λ, i.e. Λ1 < Λ2 does not imply in general that Ω1 ⊃ Ω2 where Ωi is
optimal with the penalization Λi. Here we consider only the case of penalization, since the
first one follows as a consequence, taking m1 = |Ω2| and m2 = |Ω1|.

Let us consider in R2 the internal constraint D of the form D = B1/2(0) ∪ Rε,η where

Rε,η is the rectangle (η, 0) + (− ε
2 ,

ε
2)× (− 1

2ε ,
1
2ε). The parameters ε, η will be fixed later.

Note that π
4 = |B1/2(0)| < |Rε,η| = 1 and that λ1(B1/2(0)) < λ1(Rε,η) for ε small

enough. As well, we notice that the distance between B1/2(0) and Rε,η tends to +∞ as
η → +∞. Following Remark 4.8 for every Λ and ε > 0, there exists η large enough such
that every solution Ω of (4.1) satisfies one of the following two possibilities:

(A) Ω = B ∪Rε,η, where B is a ball containing B1/2(0) and disjoint from Rε,η;

(B) Ω = B1/2(0) ∪ A, where A is a connected open set containing Rε,η and disjoint from
B1/2(0).

Lemma 4.10. Let Λ > 0 be fixed, let Ωε be a solution of the problem

min
{
λ1(Ω) + Λ|Ω| : Ω ⊃ Rε,0

}
,

and let B be a ball solving

min
{
λ1(Ω) + Λ|Ω| : Ω ⊂ R2

}
.
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Then we have
λ1(B) = lim

ε→0
λ1(Ωε), |B|+ 1 = lim

ε→0
|Ωε|.

Proof. By Steiner symmetrization along both axes, the sets Ωε are Steiner symmetric, and
so star shaped. Therefore the sets Ωε fulfill a uniform exterior segment condition which,
together with the compactness Theorem 2.6, is enough (see [7, Chapter 4]) to give that Ωε

γloc converges to some open set Ω.
We first notice that

λ1(Ωε) + Λ|Ωε| ≤ λ1(B1(0)) + Λ|B1(0)|+ Λ := c, (4.7)

which gives that both measure of Ωε and λ1(Ωε) are uniformly bounded. Because of that
and of the Steiner symmetrization above, all Ωε are contained in the set

{(x, y) : |xy| ≤ c}. (4.8)

From the properties of the γloc-convergence, for every ball BR(0) we have that

|Ω ∩BR(0)| ≤ lim inf
ε→0

|Ωε ∩BR(0)|.

Since
lim inf
ε→0

|Ωε ∩BR(0)| ≤ lim inf
ε→0

|Ωε| − 1

we get
|Ω|+ 1 ≤ lim inf

ε→0
|Ωε|. (4.9)

We prove now that
λ1(Ω) ≤ lim inf

ε→0
λ1(Ωε). (4.10)

Let uε be the first normalized eigenfunction on Ωε. By the concentration compactness
principle, we may have: compactness, vanishing or dichotomy. The vanishing is ruled
out by the fact that in this case we would have λ1(Ωε) → +∞, which contradicts (4.7).
The dichotomy is ruled out too, by the following argument. Let uiε, i = 1, 2 be the two
sequences provided by the dichotomy. From the concentration compactness principle, at
least one sequence of quasi-open sets {uiε > 0} has a distance from the origin going to +∞.
In the same time λ1({uiε > 0}) are equibounded. This is in contradiction with the inclusion
(4.8). Therefore the compactness occurs, i.e. uε(· + yε) converges strongly in L2(R2) to
some function u ∈ H1

0 (Ω). Again, by Steiner symmetrization the vectors yε can be taken
equal to 0. Consequently (4.10) is achieved.

Taking test domains of the form B ∪Rε,0 with B ∩Rε,0 = ∅ we have that

λ1(B) + Λ|B|+ Λ ≥ λ1(Ωε) + Λ|Ωε|

and passing to the limit

λ1(B) + Λ|B|+ Λ ≥ λ1(Ω) + Λ|Ω|+ Λ.

Using the optimality of the ball B we get Ω = B and inequalities (4.9)-(4.10) become
equalities.

Let us fix Λ2 such that a global solution of

min
{
λ1(Ω) + Λ2|Ω| : Ω ⊂ R2

}
14



is the ball B1(0). Then for ε small enough given by Lemma 4.10 and for η large enough
given by Remark 4.8 the solution of (4.1) with Λ2 is

Ω2
ε = B1(0) ∪Rε,η.

Indeed, from Lemma 4.10, for ε small enough we have

λ1(Ωε) + Λ2|Ωε|+ Λ2|B1/2(0)| > λ1(B1(0)) + Λ2|B1(0)|+ Λ2|Rε,η|,

so situation (A) occurs.
For the ε fixed above, take Λ1 small enough such that a ball B′ containing Rε,0 is a

global minimizer for
min

{
λ1(Ω) + Λ1|Ω| : Ω ⊂ R2

}
.

Then we are in situation (B) since |B1/2(0)| < |Rε,0|. This concludes our argument since
no monotonicity may occur.

4.5 The optimal set has finite perimeter

Proposition 4.11. Assume that D is open and connected in (4.1). Then the perimeter in
Rd \D of an optimal set Ω is finite.

Proof. Let u be a normalized eigenfunction associated to an optimal set Ω. Since D is
connected we have Ω = {u > 0}. Consider the set Ωε = D ∪ {u > ε}. By the optimality of
Ω we have, using the fact that for ε small |{u ≤ ε}| ≤ |{u > ε}|,

λ1(Ω) + |Ω| ≤ λ1(Ωε) + |Ωε| ≤
∫
|∇(u− ε)+|2 dx∫
|(u− ε)+|2 dx

+ |Ωε|

≤

∫
{u>ε} |∇u|

2 dx∫
{u>ε}(u

2 − 2εu+ ε2) dx
+ |Ωε| ≤

∫
{u>ε} |∇u|

2 dx

1− 2ε
∫
{u>ε} u(x) dx

+ |Ωε|

≤
∫
{u>ε}

|∇u|2 dx+
( 1

1− 2ε
∫
u(x) dx

− 1
)
λ1(Ωε) + |Ωε|

≤
∫
{u>ε}

|∇u|2 dx+ 2ε

∫
u(x) dx

1

1− 2ε
∫
u(x) dx

λ1(Ω) + |Ωε|.

(4.11)

Then we have a constant C depending on u such that for ε small enough we have the
inequalities

εC ≥
∫
{0<u≤ε}

|∇u|2 dx+ |Ω \ Ωε|

≥
∫
{0<u≤ε}\D

|∇u|2 dx+ |Ω \ Ωε|

≥
∫
{0<u≤ε}\D

|∇u|2 dx+ |{0 < u ≤ ε} \D|

≥ 1

|{0 < u ≤ ε} \D|

(∫
{0<u≤ε}\D

|∇u| dx
)2

+ |{0 < u ≤ ε} \D|.

(4.12)
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Thus, there exists a constant C independent on ε such that∫
{0<u≤ε}\D

|∇u(x)| dx ≤ Cε. (4.13)

By the co-area formula

1

ε

∫ ε

0
P
(
{u > t};Rd \D

)
dt ≤ C, (4.14)

for each ε > 0 small enough. Then, there is a sequence (εn)n≥1 converging to 0 such that

P
(
{u > εn};Rd \D

)
≤ C.

Passing to the limit we have

P
(
{u > 0};Rd \D

)
≤ C.

Remark 4.12. The regularity of the free parts of the boundary is the same as in [4, Theorem
1.2], being independent on the fact that the inclusion constraint is internal or external.

5 Open problems and complements

We give a list of some open problems that arose during the work on this article. We denote
by Ω(D,m) a quasi-open set of Lebesgue measure m, which solves the shape optimization
problem (3.2).

1. Is there some ε > 0, such that for every 0 < m < ε, the set Ω(D, |D|+m) is unique?
Note that this is certainly not true when m is large, since for a bounded D any ball
of measure m and containing D is a solution.

2. If m′ > m, is there an optimal set Ω(D,m′) containing the optimal set Ω(D,m)?
Note that the symmetric statement (if m′ < m, then for each optimal set Ω(D,m),
there is an optimal set Ω(D,m′) ⊂ Ω(D,m)) is false. Indeed, take for instance D the
unit square in R2 centered in 0 and m′ = π

2 < m. Then Ω(D,m′) is the ball centered
at 0 with radius 1√

2
and Ω(D,m) is any ball of radius

√
m
π . Clearly, there are balls

Ω(D,m) which do not contain Ω(D,m′).

3. Let D be an open convex set such that for every m ≥ |D| there exists a convex
solution to the shape optimization problem (3.2). Is it true that then D is a ball?

4. A interesting problem, similar to (3.2), is given by the minimization of the energy
integral functional

E(Ω) =

∫
−wΩ(x)dx.

We can repeat in this case all the arguments above, obtaining similar existence, bound-
edness and regularity results. In particular, working with the energy functional sim-
plifies the analysis of Proposition 4.3, obtaining that optimal sets are open, even
without the quasi-connectedness assumption on D.

5. Is it true that for every quasi-open set D with finite measure, problem (3.3) has a
solution?
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