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Abstract

We study the Wasserstein distance between two measures µ, ν which are mutually
singular. In particular, we are interested in minimization problems of the form

W (µ,A) = inf
{
W (µ, ν) : ν ∈ A

}
where µ is a given probability and A is contained in the class µ⊥ of probabilities that
are singular with respect to µ. Several cases for A are considered; in particular, when
A consists of L1 densities bounded by a constant, the optimal solution is given by
the characteristic function of a domain. Some regularity properties of these optimal
domains are also studied. Some numerical simulations are included, as well as the
double minimization problem

min
{
P (B) + kW (A,B) : |A ∩B| = 0, |A| = |B| = 1

}
,

where k > 0 is a fixed constant, P (A) is the perimeter of A, and both sets A,B may
vary.
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1 Introduction

In this paper, we consider, for a given probability measure µ on Rd, the optimization
problem

W (µ,A) = inf
{
W (µ, ν) : ν ∈ A

}
, (1.1)

whereW denotes the p-Wasserstein distance (p ≥ 1 is fixed) andA is a class of probabilities
that are singular with respect to µ. For all the background about mass transportation
and Wasserstein distances, we refer to the books [14] and [11].

Problems of this kind arise in some models of bilayer membranes, for which we refer
for instance to [9] and references therein. Here we consider only the mathematical issues,
that appear to be very rich.

When A coincides with the class µ⊥ of all the probabilities that are singular with
respect to µ, the optimization problem (1.1) becomes trivial, in the sense thatW (µ,A) = 0,
as shown in Proposition 3.1. The same happens when A = µ⊥ ∩L1 and µ is singular with
respect to the Lebesgue measure Ld (see Proposition 3.2).

On the contrary, when µ has a nonzero absolutely continuous part with respect to Ld
and A = µ⊥ ∩ L1, the optimization problem (1.1) has a nontrivial generalized solution
ν providing a nonzero minimal value W (µ,A) (see Proposition 3.6). If µ ∈ L1 (or in
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slightly more general cases, see Remark 3.7) this probability ν can be expressed through
the distance function d(x) of x to the boundary ∂S(µ) of a concentration set S(µ) of µ:

ν =
(
x− d(x)∇d(x)

)#
µ

being # the push-forward operator. In some more regular cases S(µ) reduces to sptµ and
some explicit examples are provided in Example 3.8 and Example 3.9.

The most interesting situation occurs when in the optimization problem (1.1) we im-
pose an upper bound on the competing probabilities ν; more precisely, we take A = Aφ,
where

Aφ =
{
ρ ∈ Pc ∩ L1 : ρ ⊥ µ, ρ ≤ φ

}
,

being φ a fixed nonnegative integrable function, with
∫
φdx > 1. In this case the minimum

value W (µ,Aφ) is reached by a characteristic function; more precisely, in Theorem 3.10
we show that

W (µ,Aφ) = W (µ, φ1A)

for a suitable set A. Under additional assumptions on µ, we show in Theorem 3.13 that
this set A has a finite perimeter.

This allows us to consider in Section 4 the joint minimization problem with a perimeter
penalization

min
{
P (B) + kW (A,B) : |A ∩B| = 0, |A| = |B| = 1

}
,

where k > 0 is a fixed parameter and both A and B may vary. Here we denoted shortly by
W (A,B) the Wasserstein distance between the characteristic functions 1A, 1B. We show
in Theorem 4.1 that an optimal solution A∗, B∗ exists and prove some regularity results,
namely that A∗ has finite perimeter and that B∗ is a quasi-minimizer of the perimeter.

Finally, in Section 5 we present some numerical simulations in the case p = 2.

2 Notation and preliminaries

In the following, our ambient space is Rd; we denote by Pc the class of all probabilities
on Rd with compact support. Analogously, we denote by Lp the space of p-integrable
functions on Rd and, for a given nonnegative φ ∈ Lp, by Lpφ the class of nonnegative

functions u ∈ Lp with u ≤ φ. We recall the following definitions for measures on Rd.

• µ is said concentrated on a Borel set A if

µ(E) = µ(E ∩A) for every Borel set E

or equivalently
µ(E \A) = 0 for every Borel set E.

• µ is absolutely continuous with respect to ν if

µ(E) = 0 whenever ν(E) = 0.

In this case, we use the notation µ� ν. By the Radon-Nikodym derivation theorem,
when µ � ν there exists a unique (up to ν a.e.) nonnegative function h ∈ L1

ν such
that

µ(E) =

∫
E
h dν for every Borel set E.
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In this case, we use the notation µ = hν. The function h above can be obtained (ν
a.e.) as

h(x) = lim
r→0

µ
(
Br(x)

)
ν
(
Br(x)

)
where Br(x) is the ball of radius r centered at x.

• µ and ν are mutually singular if there exists a Borel set A such that µ is concentrated
on A and ν is concentrated on Rd \A, that is

µ(E \A) = ν(E ∩A) = 0 for every Borel set E.

In this case we use the notation µ ⊥ ν. For a fixed µ ∈ Pc we denote by µ⊥ the class

µ⊥ =
{
ν ∈ Pc : ν ⊥ µ

}
.

• The Lebesgue decomposition of µ with respect to ν is the unique way of writing
µ = µ1 + µ2 with µ1 � ν and µ2 ⊥ ν. The measures µ1 and µ2 are called the
absolutely continuous part and the singular part of µ with respect to ν. When the
measure ν is fixed in the context, we write µ = µa +µs and, by the Radon-Nikodym
derivation theorem we then have

µ = hν + µs with h ∈ L1
ν and µs ⊥ µ.

Often, when no ambiguity is possible, we simply write h instead of hν identifying an
absolutely continuous measure (with respect to ν) with its L1

ν density.

For a fixed p ≥ 1 and µ, ν ∈ Pc we denote by W (µ, ν) the Wasserstein distance

W (µ, ν) =

(
min

{∫
Rd×Rd

|x− y|p dγ : γ ∈ Π(µ, ν)
})1/p

,

where Π(µ, ν) is the class of probabilities γ on Rd×Rd having µ and ν as marginals, that
is

π#1 γ = µ and π#2 γ = ν,

being # the push-forward operation defined, for a map f : X → Y between two measurable
spaces, as

(f#µ)(E) = µ
(
f−1(E)

)
for all measurable E in Y .

In the sequel, we denote by Ld the Lebesgue measure on Rd and by δx the Dirac
measure at the point x.

3 Some optimization problems

In this section, we fix a probability µ ∈ Pc and we consider the Wasserstein distance (p ≥ 1
is fixed) from µ to some subclasses A ⊂ µ⊥. In other words, we consider the optimization
problem

W (µ,A) = inf
{
W (µ, ν) : ν ∈ A

}
.

The first case we consider is A = µ⊥.

Proposition 3.1. For every µ ∈ Pc we have W (µ, µ⊥) = 0.
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Proof. Let µs be the singular part of µ with respect to the Lebesgue measure Ld; the
measure µs is concentrated on a set N which is negligible with respect to Ld. Then we
can find a sequence (xn) in Rd \N which is dense in Rd, and a sequence (µn) in Pc of the
form

µn =
∑
k∈N

an,kδxk

such that µn → µ in the weak* convergence. By the choice of the sequence (xn) the mea-
sures µn are singular with respect to µ and, since µn → µ weakly*, we have W (µ, µn)→ 0,
as required.

In the next step, we consider the class

A = µ⊥ ∩ L1 =
{
ν ∈ Pc : ν ⊥ µ, ν � Ld

}
.

Proposition 3.2. For every µ ⊥ Ld we have W (µ, µ⊥ ∩ L1) = 0.

Proof. Let N be a negligible set with respect to Ld where µ is concentrated. We can find
a sequence (xn) in Rd \N dense in Rd and a sequence (µn) in Pc of the form

µn =
∑
k∈N

an,kδxk

such that µn → µ in the weak* convergence. Since L1 is weakly* dense in Pc we can find
L1 functions ρn with compact support such that W (µn, ρn) ≤ 1/n. Since µ ⊥ Ld we have
that ρn ∈ µ⊥ ∩ L1 and so

W (µ, µ⊥ ∩ L1) ≤ lim
n
W (µ, ρn) ≤ lim

n
W (µ, µn) +W (µn, ρn) = 0

as required.

The situation becomes more interesting when µ is not singular with respect to Ld.

Proposition 3.3. Let µ ∈ Pc and assume there exists δ > 0 such that the set {µa ≥ δ}
contains an open set. Then W (µ, µ⊥ ∩ L1) > 0.

Proof. Assume by contradiction that there exists a sequence (ρn) in µ⊥ ∩L1 with ρn → µ
in the weak* convergence. Then we have∫

ρnµ
a dx = 0 for every n ∈ N.

Let A be an open set contained in {µa ≥ δ}; then∫
A
ρn dx ≤

1

δ

∫
{µa≥δ}

ρnµ
a dx ≤ 1

δ

∫
ρnµ

a dx = 0 for every n ∈ N.

Since A is open we have

µ(A) ≤ lim inf
n

∫
A
ρn dx = 0,

which is impossible, since µa ≥ δ on A.

Corollary 3.4. If µ ∈ Pc is such that µa is (or coincides a.e. with) a lower semicontinuous
function and µa 6= 0, then W (µ, µ⊥ ∩ L1) > 0.
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Example 3.5. The regularity assumption of Proposition 3.3 cannot be removed. Take
indeed in dimension one an open dense set A in (−1, 1) with unit measure and take
µ = 1Ac . Since A is dense, by finite sums of Dirac masses at points of A, we can weakly*
approximate every measure supported in [−1, 1]; hence approximating a Dirac mass by a
smooth function we can construct a sequence ρn of smooth functions, compactly supported
in A, that converge to µ in the weak* convergence of measures. We have then

µa 6= 0 and

∫
ρn dµ = 0 ∀n ∈ N.

In the next proposition, we characterize the quantity W (µ, µ⊥ ∩L1) (which is positive
under the assumption of Proposition 3.3).

Proposition 3.6. Let µ ∈ Pc. Then there exists ν ∈ Pc such that

W (µ, µ⊥ ∩ L1) = W (µ, ν). (3.1)

The measure ν is concentrated on ∂S, where S is a concentration set for µ. Moreover, if
µ ∈ L1 we have that ν is unique and given by

ν =
(
x− d(x)∇d(x)

)#
µ (3.2)

where d(x) denotes the distance of the point x to ∂S.

Proof. Let ρn ∈ µ⊥ ∩ L1 be such that

W (µ, µ⊥ ∩ L1) = lim
n
W (µ, ρn). (3.3)

Then, up to a subsequence, we may assume that ρn → ν weakly*, for a suitable ν ∈ Pc.
Hence

lim
n
W (µ, ρn) = W (µ, ν).

In order to see that ν is concentrated on ∂S, where S is a concentration set for µ, notice
that, heuristically, to achieve the minimal Wasserstein distance, every point on S has to
be transported out of the S in the shortest way. Hence ν has to be concentrated on ∂S. To
prove this fact in a precise way, since ρn ⊥ µ there is a set Rn such that ρn is concentrated
on Rn and µ is concentrated on Rcn. If we take S = ∩nRcn we have

ν(intS) ≤ lim inf
n

∫
intS

ρn dx ≤ lim inf
n

∫
Rcn

ρn dx = 0,

which proves that ν is concentrated on (intS)c. We show now that ν is concentrated on
the compact set S. Otherwise, we could find a compact K set disjoint from S such that
ν(K) > 0, since both K and S are compact there is an open neighbourhood U of K whose
closure is still disjoint from K. Hence there is open set U with compact closure such that
dist(U, S) = 4δ > 0 and ν(U) > 0. Since U is open, taking a subsequence if necessary, we
can also assume that for some α > 0, we have ρn(U) ≥ α for every n. We are going to
show that this implies the existence of a sequence ρ̂n ∈ µ⊥ ∩L1 and of a positive constant
C > 0 such that for every n

W (µ, ρ̂n) ≤W (µ, ρn)− C , (3.4)

which contradicts (3.3). We first choose an almost optimal map Tn such that T#
n ρn = µ

and ∫
|Tn(y)− y|p dρn(y) ≤W p(µ, ρn) + 2−n.
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For y ∈ U , let Fn(y) be a point on the segment [y, Tn(y)] lying at distance 2δ from S
(measurable selection arguments imply that this map can be chosen measurable). By
construction, for ρn a.e. y ∈ U we then have that

|Tn(y)− y| ≥ |Tn(y)− Fn(y)|+ 2δ. (3.5)

Let then η be a smooth compactly supported probability density having its support in the
unit ball Bδ of radius δ and centered at the origin and define the plan γ̂n by∫
Rd×Rd

ϕ(x, y) dγ̂n(x, y) :=

∫
Uc
ϕ(Tn(y), y) dρn(y)+

∫
U×Rd

ϕ(Tn(y), Fn(y)−z) dρn(y) dη(z)

for every ϕ ∈ C(Rd × Rd). Obviously the first marginal of γ̂n is µ and we denote by ρ̂n
its second marginal, i.e. ρ̂n is the sum of the restriction of ρn to U c and the convolution
of η with the image of ρn restricted to U by Fn, it is therefore in L1. Also ρ̂n ∈ µ⊥

since Fn(y) − z remains at distance δ from S for ρn-a.e. y ∈ U and every z in Bδ. Since
γ̂n ∈ Π(µ, ρ̂n), we have

W p(µ, ρ̂n) ≤
∫
Uc
|y − Tn(y)|p dρn(y) +

∫
U

(
|Fn(y)− Tn(y)|+ δ

)p
dρn(y).

On the other hand, recalling (3.5)

W p(µ, ρn) + 2−n ≥
∫
Uc
|y − Tn(y)|p dρn(y) +

∫
U

(
|Fn(y)− Tn(y)|+ 2δ)p dρn(y)

which, together with ρn(U) ≥ α > 0, proves (3.4).
Assume now that µ ∈ L1, so that we may take S as the set of points x such that

lim
r→0

µ(Br(x))

|Br(x)|
> 0.

Then the optimal transport map is given by

T (x) = x− d(x)∇d(x) (3.6)

where d(x) denotes the distance of the point x to ∂S, and so the measure ν is given by
(3.2). The uniqueness of ν follows from the fact that µ ∈ L1 and that ∇d(x) is well defined
for a.e. point x ∈ S.

Remark 3.7. When µ has a singular part with respect to Ld formula (3.2) still provides
a measure ν which verifies (3.1). In this case, writing µ = µa + µs it is easy to see that
ν = µ on Rd \ S(µa) where S(µa) denotes a concentration set for µa, hence in this region
the Wasserstein cost vanishes. On the other hand, if µs does not vanish on S(µa), it is
transported on ∂S(µa) by the transport map in (3.6); the only case to be made precise is
when on

(
S(µs)

)
∩
(
S(µa)

)
the function d is not differentiable, and so ∇d is not defined.

In this case, these singular points x have more than one projection on ∂S(µa), and every
choice of T (x) as one of these projections (or also as a transport plan, sending x in any
subset of its projections) gives a measure ν verifying (3.1).

Example 3.8. Let µ = 1Q be the characteristic function of a rectangle Q with sides a and
b, with a ≤ b; we assume for simplicity that the center of the rectangle is at the origin,
that is Q = [−b/2, b/2] × [−a/2, a/2]. Using Proposition 3.6 we obtain that the measure
ν in (3.1) is concentrated on the boundary of Q and its boundary density ρ is given by:

ρ =

{
a/2− |y| on the vertical sides

(b/2− |x|) ∧ a/2 on the horizontal sides.

In Figure 1, we represent the boundary density on ∂Q as a boundary thickness.
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Figure 1: The optimal boundary density (dashed line) on a rectangle.

Example 3.9. Let µ = 1B+ the characteristic function of the half circle B+ of radius 1;
we assume for simplicity that the center is at the origin, that is B+ =

{
x2 + y2 ≤ 1, y ≥

0
}

. Using Proposition 3.6 we obtain that the measure ν in (3.1) is concentrated on the
boundary of B+ and the optimal transport map is

T (x, y) =


(x, 0) if 2y < 1− x2

(x, y)√
x2 + y2

if 2y > 1− x2.

The boundary density ρ can be then obtained by elementary calculations as

ρ =

(1− x2)/2 on the bottom diameter, − 1 ≤ x ≤ 1
1

2

(
1− 1

(1 + sin θ)2

)
on the upper boundary, 0 ≤ θ ≤ π.

In Figure 2, we represent the boundary density on ∂B+ as a boundary thickness.

-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

Figure 2: The optimal boundary density (dashed line) on a half circle.

7



We consider now, as a class A ⊂ µ⊥ the class

Aφ = µ⊥ ∩ L1
φ =

{
ρ ∈ Pc ∩ L1 : ρ ⊥ µ, ρ ≤ φ

}
,

where φ is a given nonnegative integrable function with
∫
φdx > 1.

Theorem 3.10. For every µ ∈ Pc there exists a set A with µ(A) = 0 and such that

W (µ,Aφ) = W (µ, φ1A).

Proof. We have

W (µ,Aφ) = inf
{
W (µ, θφ) : 0 ≤ θ ≤ 1,

∫
θφ dx = 1,

∫
θφµa dx = 0

}
. (3.7)

Moreover, since µ is compactly supported, we may reduce ourselves to consider in (3.7)
only functions θ supported in a ball BR with R large enough. Then, by the weak* L∞

compactness of bounded L∞ classes, in (3.7) the infimum is actually a minimum; we denote
by θ a minimizer. We can assume that φ > 0 since on the set where φ vanishes one may
take θ = 0 and there is nothing to prove. We want to show that the set {0 < θ(x) < 1}
is Lebesgue negligible. There are at most countably many connected components of the
support of θφ which are of positive Lebesgue measure; we denote them by An and we are
left to show that for each n, and each δ ∈ (0, 1), the set Eδ ∩ An with Eδ = {δ ≤ θ(x) ≤
1 − δ} is Lebesgue negligible. Assume by contradiction that it has a positive measure.
Then, for every h ∈ L∞ such that

h = 0 outside Eδ ∩An,
∫
hφ dx = 0, (3.8)

for ε small enough θ + εh is admissible for the above minimization problem. Using the
dual Kantorovich formulation and denoting by uε a Kantorovich potential between µ and
νε := (θ + εh)φ, we have ∫

φhuε dx ≤W (µ, θφ)−W (µ, νε) ≤ 0.

Being Kantorovich potentials uniformly continuous, it may be assumed that, up to extrac-
tion of some subsequence, uε converges to some Kantorovich potential u for W (µ, θφ). A
priori any such cluster point may depend on h, but it is also known (see for instance [11])
that Kantorovich potentials 1 are defined uniquely up to an additive constant on each An.
In other words, u does not depend on h up to possibly an additive constant, but with (3.8)
we have

∫
φhu dx ≤ 0, hence by changing h into −h we in fact have

∫
φhu dx = 0. Since

h is arbitrary we deduce that u coincides a.e. with a constant on Eδ ∩ An and we then
also have ∇u = 0 a.e. on Eδ ∩An. Therefore the optimal transport T from θφ to µ is the
identity map on Eδ ∩An and this implies that µ ≥ δφ1Eδ∩An which clearly contradicts the
fact that

∫
θφµa dx = 0.

Remark 3.11. It is well-known (see [11]) that when µ ∈ L1∩Pc and p > 1, ν 7→W p(µ, ν) is
strictly convex (note that the value of an optimal transport is always convex with respect
to the marginals), in this case the optimal θ in (3.7) is unique and then so is the set A.

1For a differentiable transport cost, this is well-known but for the distance case one has to use the fact
that in addition the measures µ and θφ are orthogonal, hence if γ is an optimal plan it gives no mass to
the diagonal which is the set where the cost is not differentiable.
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In general, we should not expect that the set A of Theorem 3.10 has a finite perimeter,
as the example below shows.

Example 3.12. Take φ = 1, µ =
∑

n∈N cnδxn where xn is the center of a ball of radius

rn = (cn/ωd)
1/d (being ωd the Lebesgue measure of the unit ball in Rd). We may choose the

balls B(xn, rn) all disjoint, so that the set A of Theorem 3.10 coincides with ∪n∈NB(xn, rn).
We then have

P (A) = dω
1/d
d

∑
n∈N

c(d−1)/dn .

To have Ld(A) = 1 and P (A) = +∞ it is now enough to choose cn such that∑
n∈N

cn = 1,
∑
n∈N

c(d−1)/dn = +∞.

A possible array of the balls B(xn, rn) is shown in Figure 3.

Figure 3: An optimal domain A without finite perimeter.

By a suitable approximation of Dirac masses by smooth functions, we may construct
a counterexample similar to Example 3.12, of a µ ∈ L∞ for which the set A of Theorem
3.10 does not have a finite perimeter. Therefore, some extra assumptions on µ are needed
in order to have P (A) < +∞.

Theorem 3.13. Let p = 2 and φ = 1; let µ ∈ Pc∩BV be such that the set Sµ = {µ(x) > 0}
has a finite perimeter. Then the set A of Theorem 3.10 has a finite perimeter. More
precisely, we have

P (A) ≤
∫
|∇µ|+ 2P (Sµ).

Proof. It is enough to apply Theorem 1.2 of [6] with Ω = Rd, g = µ and f = 1{µ=0}.

Remark 3.14. Both Theorem 1.2 in [6] and Theorem 3.13 are stated in the case p = 2.
Similar results hold also in the case p ≥ 1, as it was communicated to us by S. Di Marino
[7].

4 Perimeter penalization

In this section, we consider the minimum problem

(P) min
{
P (B) + kW (B,A) : |A ∩B| = 0, |A| = |B| = 1

}
, (4.1)
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where k > 0 is a fixed constant and P (B) denotes the perimeter of the set B. Note that
the minimization above if performed with respect to both sets A,B. We also consider, for
a fixed bounded Lipschitz domain D of Rd with |D| > 1, the problem

(PD) min
{
P (B) + kW (B,A) : B ⊂ D, |A ∩B| = 0, |A| = |B| = 1

}
. (4.2)

In both problems (P) and (PD), we have slightly abused notations, denoting W (B,A) the
Wasserstein distance between the uniform measures on B and A respectively.

Theorem 4.1. For every bounded domain D of Rd and for every k > 0 the minimization
problem (4.2) admits a solution.

Proof. Let (Bn, An) be a minimizing sequence for the minimization problem (4.2). Since
P (Bn) are bounded and Bn ⊂ D, possibly passing to subsequences we may assume that
Bn → B∗ strongly in L1. Analogously, since 1An are bounded by 1 and compactly sup-
ported, we may assume that 1An ⇀ θ̄ weakly* in L∞ for a suitable θ̄ with 0 ≤ θ̄ ≤ 1. We
have ∫

B∗
θ̄ dx = lim

n

∫
Bn

1An dx = 0.

By Theorem 3.10, the minimization problem

min
{
W (B∗, θ) :

∫
θ = 1, 0 ≤ θ ≤ 1,

∫
B∗
θ = 0

}
admits a solution which is the characteristic function of a set A∗. By the minimality of
A∗ we have

W (B∗, A∗) ≤W (B∗, θ̄) = lim
n
W (Bn, An)

and, by the lower semicontinuity of the perimeter with respect to the strong L1-convergence,
we deduce that

P (B∗) + kW (B∗, A∗) ≤ lim inf
n

(
P (Bn) + kW (Bn, An)

)
,

which concludes the proof

In the two-dimensional case, d = 2, we can take D = R2 in Theorem 4.1.

Theorem 4.2. In the case d = 2 for every k > 0 the minimization problem (4.1) admits
a solution.

Proof. We can repeat the proof of Theorem 4.1 as soon as we can show that for a suitable
minimizing sequence (Bn, An) the sets Bn remain uniformly bounded. Let then (Bn, An)
be a minimizing sequence for problem (4.1), let Bn,k be the connected components of Bn
and let An,k be the part of An that is transported on Bn,k. Then we have

P (Bn) =
∑
k

P (Bn,k)

W p(Bn, An) =
∑
k

W p(Bn,k, An,k) ≥
∑
k

W p(Bn,k, Ān,k)
(4.3)

where Ān,k denotes a solution of the minimum problem

min
{
W (Bn,k, A) : |A| = |Bn,k|, |A ∩Bn,k| = 0

}
.
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We can now construct a new minimizing sequence (B̃n, Ãn) by translating the sets Bn,k
and Ān,k in such a way that B̃n,k is contained in a square of side P (Bn,k) and Ãn,k in a
concentric square of side 2P (Bn,k). Arranging these squares in an array we obtain that

diam(B̃n) ≤
∑
k

4 diam(Bn,k) ≤
∑
k

2P (Bn,k) = 2P (Bn)

which shows that the sets B̃n are uniformly bounded. The fact that (B̃n, Ãn) is still a
minimizing sequence for problem (4.1) follows from the fact that

P (B̃n) = P (Bn)

W p(Bn, An) ≥
∑
k

W p(Bn,k, Ān,k) =
∑
k

W p(B̃n,k, Ãn,k) = W p(B̃n, Ãn)

that are consequences of (4.3).

Remark 4.3. Even if we expect that a result similar to the one in Theorem 4.2 holds for
every dimension, the proof we provided uses the fact that for a connected set its diameter
is bounded by its perimeter, which only holds in dimension two. It would be interesting
to find an alternative proof of Theorem 4.2 valid for every dimension d.

Example 4.4. In the one-dimensional case d = 1, if W is the p-Wasserstein distance (p ≥ 1),
an easy calculation gives that, taking B as the union of n disjoint equal intervals (of length
1/n each) and A which surrounds them symmetrically,

P (B) + kW (B,A) = 2n+
k

2n
.

Then the optimal solution (B∗, A∗) of problem (4.1) is obtained by taking B∗ given by

1 interval if 0 ≤ k ≤ 8

2 intervals if 8 ≤ k ≤ 24

. . .

n intervals if 4(n− 1)n ≤ k ≤ 4n(n+ 1).

We now address the regularity of optimal B’s. Indeed, let D be a bounded domain,
p ≥ 1, k > 0, α > 0 and consider the (slightly more general) shape optimization problem

inf
B⊂D, |B|=1

P (B) + Fα(B) (4.4)

where
F (B) := inf

A⊂D, |A∩B|=0, |A|=1
W p
p (1A, 1B).

If B solves (4.4) it satisfies

P (B) ≤ P (B′) + k(Fα(B′)− Fα(B)) ≤ P (B′) + C(F (B′)− F (B)) (4.5)

for every B′ ⊂ D with |B′| = 1 (where we have used the fact that F (B′) is bounded and
bounded away from 0). We now have

Lemma 4.5. There is a constant M such that for any B and B′, subsets of D with same
unit measure,

F (B′)− F (B) ≤M |B∆B′|.
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Proof. Write B′ = (B \ B−) ∪ B+ with |B− \ B| = 0, |B+ ∩ B| = 0, σ = |B−| = |B+|,
|B∆B′| = 2σ. Let A such that A ⊂ D, |A ∩ B| = 0, |A| = 1. Set A− := B+ ∩ A and
choose A+ ⊂ B− of same measure (less than σ) as A− and then set A′ := (A \A−) ∪A+.
By construction, we have A′ ⊂ D, |A′ ∩ B′| = 0, |A′| = 1. It follows from Lemma 6.2
in [1] that for any γ ∈ Π(1A, 1B) there exists a γ′ ∈ Π(1A′ , 1B′) such that W1(γ, γ

′) ≤
W1(1A, 1A′) +W1(1B, 1B′) ≤ Cσ, and then since (x, y) 7→ |x− y|p is Lipschitz on D ×D,
we also have

F (B′) ≤
∫
A′×B′

|x− y|p dγ′(x, y) ≤
∫
A×B

|x− y|p dγ(x, y) +Mσ

minimizing the right-hand side in A and γ ∈ Π(1A, 1B) gives the desired result.

Thanks to (4.5), Lemma 4.5 and the theory of quasi-minimizers of the perimeter (see
the seminal work of Tamanini [12] and Xia [13] for the case of a volume constraint as in
the present context), we have:

Theorem 4.6. If B solves (4.4), its reduced boundary ∂∗B is a C1,1/2 hypersurface and
the Hausdorff dimension of (∂B \ ∂∗B) ∩D is at most d− 8.

5 Numerical simulations

In this section, we give some numerical simulations of problem (3.7) where p = 2,

θ = argmin
{
W (µ, θ) : 0 ≤ θ ≤ φ,

∫
θ dx = 1,

∫
θµa dx = 0

}
.

Theorem 3.10 and Remark 3.11 say that there exists a unique minimizer and θ is the
characteristic function of a domain multiplied by φ. This problem can be rewritten as

γ = argmin

{∫∫
|x− y|2 dγ(x, y) +G1(γ) +G2(γ) +G3(γ)

}
, (5.1)

where, θ = π#1 γ and

G1(γ) = χ{π#
1 γ=µ}

:=

{
0 if π#1 γ = µ

+∞ otherwise
, G2(γ) = χ{π#

2 γ≤φ}
, G3(γ) = χ{π#

2 γ⊥µ}
.

In the discrete setting, µ and θ are replaced by

µ =
N∑
i=1

µiδxi , θ =
N∑
j=1

θiδxj ,

where {xi}Ni=1 is a discretization of D, a compact subset of R2 such that sptµ, spt θ ⊂ D.
Then problem (5.1) becomes

γ = argminγ∈RN×N


N∑

i,j=1

ci,jγi,j +G1(γ) +G2(γ) +G3(γ)

 ,

where ci,j = |xi − xj |2 and the marginal maps are defined by

(π#1 γ)i =
N∑
j=1

γi,j , (π#2 γ)j =
N∑
i=1

γi,j .

12



This problem can be easily solved using the well-known entropic regularization method,
[3, 8, 2]. It consists in regularizing W2 by the entropy of the transport plan. Given a
regularization parameter ε > 0, we solve

min
γ∈RN×N+


N∑

i,j=1

ci,jγi,j + ε
N∑

i,j=1

γi,j
(

ln(γi,j)− 1
)

+G1(γ) +G2(γ) +G3(γ)

 ,

or,

min
γ∈RN×N+

{
KL(γ|ηε) +

1

ε

(
G1(γ) +G2(γ) +G3(γ)

)}
, (5.2)

where (ηε)i,j = e−ci,j/ε and KL is the Kullback-Leibler divergence

KL(γ|η) :=
N∑

i,j=1

γi,j

(
ln

(
γi,j
ηi,j

)
− 1

)
.

Solving problem (5.2) is equivalent to solve the proximal problem

proxKLG (ηε) = argminγ∈RN×N+

{
KL(γ|ηε) +G(γ)

}
,

where G := G1 + G2 + G3. This problem can be solved using the proximal splitting
algorithm introduced by Peyré in the setting of entropic regularization of Wasserstein
gradient flows, [10]. This scheme was extended in [5] to unbalanced transport problem
and used in [4] to compute Cournot-Nash equilibria. It is well known that the solution
of (5.2) is of the form γi,j = ai(ηε)i,jbj , where a, b ∈ RN and ηε ∈ RN×N . The splitting
proximal algorithm corresponds to alternate proximal problems with Gl, l ∈ {1, 2, 3},
instead of solving directly (5.2). In our special case, we initialize the algorithm by

a0i = c0j = d0j = 1 and b0j = c0jd
0
j for all i, j ∈ {1, . . . , N},

and γ0i,j = a0i (ηε)i,jb
0
j , then iteratively, for k ≥ 1,

aki =
proxKLG1

(
(
∑N

j=1(ηε)i,jb
k−1
j )i

)
i∑N

j=1(ηε)i,jb
k−1
j

,

ckj =
proxKLG2

(
(
∑N

i=1 a
k
i (ηε)i,jd

k−1
j )j

)
j∑N

i=1 a
k
i (ηε)i,jd

k−1
j

,

dkj =
proxKLG3

(
(
∑N

i=1 a
k
i (ηε)i,jc

k
j )j
)
j∑N

i=1 a
k
i (ηε)i,jc

k
j

.

Then bkj = ckjd
k
j and γki,j = aki (ηε)i,jb

k
j . We refer to [10, 5] for the convergence of this

algorithm to a solution of (5.2). The advantage of this method is that computing proxKLGl
can be done easily. Indeed, for all θ ∈ RN ,

proxKLG1
(θ)i = µi ,

proxKLG2
(θ)j = min(φ, θj) ,

proxKLG3
(θ)j = θj1{µj=0} .

We now present some numerical results obtained using this algorithm. In the sequel,
all computations are done with Matlab, using N = 500 × 500 in the discretization of
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D = [−4, 4]2, except for the triangle in Figure 5 where D = [−2, 2]2. In Figures 4 and 5,

we represent the regularized solution of problem (3.7), θε = π#2 γ
k, with k large enough

and ε = 0.01. In Figure 4, µ is the white rectangle or the white half circle, φ = 1, and
we remark that θε is the characteristic function of the black set, as expected. In Figure 5,
the initial densities are given by the characteristic functions of a triangle or a non-convex
Pacman shape or a disconnected domain given by the union of rectangles and ellipses. The
first column represents the regularized solution of problem (3.7) with φ = 1 and in the
second column, φ(x, y) = (x+1)2 +1. We remark that the solution θε, with initial density
the characteristic function of a non-convex Pacman shape, fills the hole in µ, when φ = 1,
but not entirely in the case φ(x, y) = (x+ 1)2 + 1 ≥ 1. In both cases, the support of the
solution is not connected. As expected, in the second column, the regularized solutions of
problem (3.7), are given by φ multiplied by the characteristic function of a set.

Figure 4: The optimal density for a rectangle and for a half circle.

-
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Sciences Mathématiques de Paris. The three authors are grateful to S. Di Marino for
fruitful discussions and for sharing [7].

References

[1] J.-B. Baillon, G. Carlier: From discrete to continuous Wardrop equilibria. Net-
works and Hetereogeneous Media, 7 (2) (2012), 219–241.

[2] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, G. Peyré: Iterative
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