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1. Introduction

LetΩ ⊆ RN be an open, bounded set with Lipschitz boundary. Given p ∈ [1,+∞[, an equivalent
norm on the Sobolev space W 1,p(Ω) is given by

‖∇u‖Lp(Ω;RN ) + ‖u‖Lp(∂Ω).

As a consequence, there exists a maximal constant Cp(Ω) > 0 such that

(1.1) Cp(Ω)‖u‖Lp(Ω) ≤ ‖∇u‖Lp(Ω;RN ) + ‖u‖Lp(∂Ω)

for every u ∈W 1,p(Ω). Inequality (1.1) can be seen as a Poincaré inequality with trace term.
The main result of the paper states that balls are the sets which minimize the constant in (1.1)

among domains with a given volume.

Theorem 1.1 (The main result). Let p ∈ [1,+∞[. Then for every open, bounded set with
Lipschitz boundary Ω ⊆ RN we have

Cp(B) ≤ Cp(Ω),

where B ⊆ RN is a ball such that |B| = |Ω|. Moreover equality holds if and only if Ω is a ball.
1
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Essentially the whole paper is concerned with the range 1 < p < +∞. The case p = 1 is well
known in the literature since C1(Ω) is precisely the Cheeger constant of the set Ω. In this case,
the proof of Theorem 1.1 comes by symmetrization. We shall comment this issue in last section
of the paper, Remark 5.1. For p > 1, no symmetrization argument is known to work.

In order to describe our approach, let us comment the particular case p = 2. Moreover, we
concentrate on a variant of (1.1) given by

C̃2(Ω)‖u‖2L2(Ω) ≤ ‖∇u‖
2
L2(Ω;RN ) + ‖u‖2L2(∂Ω)

for every u ∈W 1,2(Ω). We get easily that the maximal constant is given by

C̃2(Ω) = min
u∈W 1,2(Ω),u 6=0

∫
Ω
|∇u|2 dx+

∫
∂Ω

u2 dHN−1∫
Ω
u2 dx

,

so that C̃2(Ω) coincides with the first eigenvalue of the Robin-Laplace operator on Ω with constant
β = 1: more precisely we deduce that

C̃2(Ω) = λR1,1(Ω),

where for β > 0 the quantity λR1,β(Ω) is characterized by the existence of a nontrivial function

u ∈W 1,2(Ω) such that 
−∆u = λR1,1(Ω)u in Ω
∂u
∂ν + βu = 0 on ∂Ω

u ≥ 0 in Ω,

where ν denotes the outer normal to the boundary. The Robin conditions

∂u

∂ν
+ βu = 0 on ∂Ω

are associated to the presence of the boundary term in the Rayleigh quotient: they are somehow
intermediate between the Neumann conditions (β = 0) and the Dirichlet conditions (obtained
formally for β →∞).

The optimality of the ball for the constant C̃2 is a consequence of the Faber-Krahn inequality
for the Robin-Laplacian, i.e.,

(1.2) λR1,β(B) ≤ λR1,β(Ω),

where B is a ball such that |B| = |Ω| (the equality holds only if Ω is itself a ball). This inequality
has been proved by Bossel [2] (for two dimensional simply connected smooth domains) and
Daners [13] (in the N -dimensional setting, under Lipschitz regularity for the boundary). Their
proof, by a dearrangement procedure, involves a direct comparison between Ω and B based not on
the Rayleigh quotient representation for λR1,β(Ω), but on a different one which involves a different
quantity, named the H-functional.

Coming back to the kind of inequality we are interested in, if we consider

C2(Ω)‖u‖L2(Ω) ≤ ‖∇u‖L2(Ω;RN ) + ‖u‖L2(∂Ω),

we see that the new constant C2(Ω) is given now by

(1.3) C2(Ω) = min
u∈W 1,2(Ω),u6=0

‖∇u‖L2(Ω;RN ) + ‖u‖L2(∂Ω)

‖u‖L2(Ω)
.

Even in this case we have a connection with the Robin-Laplacian: if the minimum in (1.3) is
attained on a nonconstant function u ∈ W 1,2(Ω), which we may assume to be nonnegative, then
by exploiting its optimality we deduce that u is the first eigenfunction for the Robin-Laplacian
with constant

βu :=
‖∇u‖L2(Ω;RN )

‖u‖L2(∂Ω)
,

and moreover

C2(Ω) =
‖u‖L2(Ω)

‖∇u‖L2(Ω;RN )

λR1,βu
(Ω).
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This representation shows that the link with the Robin-Laplacian is too weak to infer the optimality
of the ball in Theorem 1.1 from the Faber-Krahn inequality (1.2). Moreover, the approach by
Bossel and Daners cannot be applied to the characteristic value (1.3), since the Rayleigh quotient
involved is now nonlinear (sums of norms are involved), and no analogue of the H-functional is
known in this situation.

In order to prove Theorem 1.1 in the case p > 1, we follow the strategy proposed in [5] and [6]
to deal with the Faber-Krahn inequality for the Robin-Laplacian, and based on the analysis of free
discontinuity functionals. More precisely, for p ∈]1,+∞[, we concentrate on the free discontinuity
functional

F (u) :=

(∫
RN |∇u|p dx

)1/p
+
(∫

Ju
[(u+)p + (u−)p] dHN−1

)1/p

(∫
RN up dx

)1/p
defined on the set of functions

SBV
1
p (RN ) := {u ∈ Lp(RN ) : up ∈ SBV (RN ), u ≥ 0}.

Here SBV denotes the space of special functions of bounded variation (see [1] and Subsection 2.2).
The basic remark, which leads to the study of the functional F , and which was the motivation

for [5] and [6], is that if u ≥ 0 is an optimal function for (1.3), then its extension to zero outside
Ω is such that

u1Ω ∈ SBV
1
p (RN )

with

Cp(Ω) = F (u1Ω).

This observation, leads to the following natural inequality. Given some constant m > 0,

inf{Cp(Ω) : Ω open, bounded, Lipschitz, |Ω| = m}

≥ inf{F (u) : u ∈ SBV
1
p (RN ), |{u > 0}| = m}.

Now, if we prove that the infimum in the right hand side is attained by a function u which is
the extension by 0 of a minimizer for (1.3) on a ball (of volume m), then we achieve the proof of

Theorem 1.1 and, even more, we provide a Poincaré inequality in SBV
1
p (RN ), with an optimal

constant. Following the strategy of [6], the proof of Theorem 1.1 is thus obtained by showing that
minimizers of F , under a volume constraint for the support, are functions supported on balls.

Our analysis, shaped after [6], can be summarized as follows.

(a) We focus on the problem

inf{F (u) : u ∈ SBV
1
p (RN ), |{u > 0}| = m},

and prove existence of a solution. A regularity argument of topological type à la De
Giorgi, Carriero and Leaci (see Subsection 4.2) shows that every minimizer u of F
(under a volume constraint) is such that

HN−1(Ju) < +∞, HN−1(Ju \ Ju) = 0,

and the associated support is given by an open connected set Ω with

∂Ω = Ju.

In particular the boundary of Ω is an hypersurface in the weak sense of geometric measure
theory, and Ω turns out to have finite perimeter (see Subsection 2.2).

(b) By means of a reflection technique (Proposition 4.10), it is shown that F admits minimizers
of the form

ψ1Ω ,

where Ω is symmetric around the origin and ψ :]0,+∞[→ R is smooth, radial symmetric,
positive and bounded from above and below on Ω. This yields that

HN−1(∂Ω \ ∂∗Ω) = 0,
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where ∂∗Ω is the reduced boundary of Ω (see Subsection 2.2), and

F (ψ1Ω) =

(∫
Ω
|ψ′(|x|)|p dx

)1/p
+
(∫
∂∗Ω

ψp(|x|) dx
)1/p(∫

Ω
ψp(|x|) dx

)1/p .

We obtain thus a candidate optimal shape, on which the functional F gains a geometrical
flavor, with ψ (and its gradient) acting as volume and surface densities on Ω and its
boundary.

(c) It is shown (Proposition 4.13) that the radial symmetry of ψ entails that also Ω has a
circular symmetry, being either a ball or an annulus. A direct comparison shows that the
annulus is not optimal, which yields that minimizers are supported on balls.

Along with the new form of the Poincaré inequality we deal with, the main technical novelties
of the present paper concerning the previous analysis are the following.

(1) The circular symmetry of the optimal domain Ω in point (c) is obtained by making use of
the spherical cap symmetrization technique, taking advantage of the radial symmetry of ψ
and of the geometric flavor of the problem mentioned in point (b). This approach yields
a simplified proof of the optimality of the ball also for the semilinear variants of the first
eigenvalue of the Robin-Laplacian studied in [6]: in the present context, it proves to be
an efficient tool to cope with the nonlinear structure of F , involving sums of norms.

(2) The structure of F and the presence of a general exponent p entail some technical diffi-
culties, especially when dealing with the regularity analysis of point (a) (see in particular
Theorem 4.5 and Theorem 4.7 where technical manipulations are needed to get rid of the
norms).

The uniqueness issue is settled in Theorem 4.14, by exploiting some equality cases in a chain
of inequalities which are at the core of the reflection argument mentioned in point (b).

We conclude this introduction by remarking that Sobolev inequalities with trace terms (raised at
a suitable exponent) have been treated in [17] using mass transportation techniques, and showing
a suitable optimality for the ball. As an extension, a Poincaré type inequality has been derived
in [16], involving L1 norms for the functions and its trace, and Lp norm for the gradient, again
proving an optimality property for the ball. It is worth also to notice the result of [3], where it is
proved that the ball may not be optimal, at least for some choices of norms.

The paper is organized as follows. In Section 2 we introduce the notation and recall some basic
properties of functions of bounded variation and sets of finite perimeter employed in the subse-

quent analysis. In Section 3 we define the functional space SBV
1
p (RN ), recalling the associated

compactness and lower semicontinuity properties. Section 4 is devoted to the analysis of the free
discontinuity functional F and of its minimizers, along the lines described above in points (a), (b)
and (c). Finally the proof of Theorem 1.1 is carried out in Section 5.

2. Notation and preliminaries

Throughout the paper, Br(x) will denote the open ball of center x ∈ RN and radius r > 0.
We say that A ⊂⊂ B if Ā is compact and contained in B. If E ⊂ RN , we will denote its volume
by |E|, its complement by Ec, and 1E will stand for its characteristic function, i.e., 1E(x) = 1
if x ∈ E and 1E(x) = 0 if x 6∈ E. We set ωN := |B1(0)|. Moreover HN−1 will stand for the
(N − 1)-dimensional Hausdorff measure, which coincides with the usual area measure on regular
hypersurfaces.

For A ⊆ RN open set and p ≥ 1, Lp(A) will denote the usual Lebesgue space of p-summable
functions, while W 1,p(A) will denote the Sobolev space of functions in Lp(A) whose gradient in
the sense of distributions is p-summable. Moreover ‖u‖∞ will stand for the sup-norm of u, while
supp(u) will denote the set {u 6= 0}, well defined up to sets of negligible Lebesgue measure.

2.1. A numerical inequality. The following inequality will be fundamental for our analysis.
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Lemma 2.1. Let p ∈]1,+∞[. Then for every a1, a2, b1, b2 ≥ 0 and c1, c2 > 0 we have

(2.1)
(a1 + a2)1/p + (b1 + b2)1/p

(c1 + c2)1/p
≥ min

{
a

1/p
1 + b

1/p
1

c
1/p
1

,
a

1/p
2 + b

1/p
2

c
1/p
2

}
.

Moreover, if equality holds, then

(a1 + a2)1/p + (b1 + b2)1/p

(c1 + c2)1/p
=
a

1/p
1 + b

1/p
1

c
1/p
1

=
a

1/p
2 + b

1/p
2

c
1/p
2

.

Proof. By contradiction, let us assume that

(a1 + a2)1/p + (b1 + b2)1/p

(c1 + c2)1/p
< min

{
a

1/p
1 + b

1/p
1

c
1/p
1

,
a

1/p
2 + b

1/p
2

c
1/p
2

}
.

In particular we get

(a1 + a2)1/p + (b1 + b2)1/p

(c1 + c2)1/p
<
a

1/p
1 + b

1/p
1

c
1/p
1

,

which gives

(2.2) c1

(
(a1 + a2)1/p + (b1 + b2)1/p

)p
< (c1 + c2)

(
a

1/p
1 + b

1/p
1

)p
.

Similarly we get

(2.3) c2

(
(a1 + a2)1/p + (b1 + b2)1/p

)p
< (c1 + c2)

(
a

1/p
2 + b

1/p
2

)p
.

Summing (2.2) and (2.3) we get(
(a1 + a2)1/p + (b1 + b2)1/p

)p
<
(
a

1/p
1 + b

1/p
1

)p
+
(
a

1/p
2 + b

1/p
2

)p
.

Choosing

ai := Api , bi := Bpi , i = 1, 2,

we get

(2.4) (Ap1 +Ap2)1/p + (Bp1 +Bp2)1/p < ((A1 +B1)
p

+ (A2 +B2)
p
)
1/p

,

which is against the triangle inequality of the p-norm on R2.
Let us assume now that

(a1 + a2)1/p + (b1 + b2)1/p

(c1 + c2)1/p
= min

{
a

1/p
1 + b

1/p
1

c
1/p
1

,
a

1/p
2 + b

1/p
2

c
1/p
2

}
.

Then we necessarily have

min

{
a

1/p
1 + b

1/p
1

c
1/p
1

,
a

1/p
2 + b

1/p
2

c
1/p
2

}
=
a

1/p
1 + b

1/p
1

c
1/p
1

=
a

1/p
2 + b

1/p
2

c
1/p
2

,

because otherwise one of the relations (2.2) and (2.3) would become an equality, the other remain-
ing a strict inequality, which yields again to (2.4), a contradiction. The proof is thus concluded. �

2.2. Functions of bounded variation and sets of finite perimeter. Let Ω ⊆ RN be an open
set. We say that u ∈ BV (Ω) if u ∈ L1(Ω) and its derivative in the sense of distributions is a finite
Radon measure on Ω, i.e., Du ∈ Mb(Ω;RN ). BV (Ω) is called the space of functions of bounded
variation on Ω. BV (Ω) is a Banach space under the norm ‖u‖BV (Ω) := ‖u‖L1(Ω)+‖Du‖Mb(Ω;RN ).
We refer the reader to [1] for an exhaustive treatment of the space BV .

Concerning the fine properties, a function u ∈ BV (Ω) (or better every representative of u)
is a.e. approximately differentiable on Ω (see [1, Definition 3.70]), with approximate gradient
∇u ∈ L1(Ω;RN ). Moreover, the jump set Ju is aHN−1-countably rectifiable set, i.e., Ju ⊆ ∪i∈NMi
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up to a HN−1-negligible set, with Mi a C1-hypersurface in RN . The measure Du admits the
following representation for every Borel set B ⊆ Ω:

Du(B) =

∫
B

∇u dx+

∫
Ju∩B

(u+ − u−)νu dHN−1 +Dcu(B),

where νu(x) is the normal to Ju at x, and Dcu is singular with respect to the Lebesgue measure
and concentrated outside Ju. Dcu is usually referred to as the Cantor part of Du. u± are the
upper and lower approximate limits of u at x. The normal νu coincides HN−1-a.e. on Ju with
the normal to the hypersurfaces Mi. The direction of νu(x) is chosen in such a way that u±(x)
is the approximate limit of u at x on the sets {y ∈ RN : νu(x) · (y − x) ≷ 0}. Moreover, u±

coincide HN−1-almost everywhere on Ju with the traces γ±(u) of u on Ju which are defined by
the following Lebesgue-type limit quotient relation

lim
r→0

1

rN

∫
B±r (x)

|u(x)− γ±(u)(x)| dx = 0

where B±r (x) := {y ∈ Br(x) : νu(x) · (y − x) ≷ 0} (see [1, Remark 3.79]).
The space of special functions of bounded variation on Ω is defined as

SBV (Ω) := {u ∈ BV (Ω) : Dcu = 0}.
Such a space proved to be very useful in the study of free discontinuity problems arising in different
contexts, like for example image segmentation or fracture mechanics.

Given E ⊆ RN measurable, we say that E has finite perimeter if

Per(E;RN ) := sup

{∫
E

div(ϕ) dx : ϕ ∈ C∞c (RN ;RN ), ‖ϕ‖∞ ≤ 1

}
< +∞.

If |E| < +∞, then E has finite perimeter if and only if 1E ∈ BV (RN ). It turns out that

D1E = νEHN−1b∂∗E, Per(E;RN ) = HN−1(∂∗E),

where ∂∗E is called the reduced boundary of E, and νE is the associated inner approximate normal
(see [1, Section 3.5]). We have that ∂∗E is HN−1-countably rectifiable and it is contained in the
topological boundary ∂E. Moreover, the points in ∂∗E have density 1/2 with respect to E, with

HN−1(∂eE \ ∂∗E) = 0,

where ∂eE (the essential boundary) is the set of points whose density with respect to E is neither
zero nor one.

2.3. Almost quasi-minimizer of the Mumford-Shah functional. In Section 4, we will use
the notion of almost quasi minimality for SBV functions with respect to Mumford-Shah type
functionals.

Definition 2.2 (Almost quasi-mimimality). Let Ω ⊆ RN be open and 1 < p < +∞. We say
that u ∈ SBV (Ω) is an almost quasi-minimizer for the Mumford-Shah functional with exponent
p if there exist r0, c1, c2, c3 > 0 such that for every r < r0, x0 ∈ Ω and v ∈ SBVloc(Ω) with
{v 6= u} ⊂ B̄r(x0) ⊂⊂ Ω we have∫

Br(x0)

|∇u|p dx+ c1HN−1(Ju ∩ B̄r(x0)) ≤
∫
Br(x0)

|∇v|p dx+ c2HN−1(Jv ∩ B̄r(x0)) + c3r
N .

The previous notion is a variant of the minimality property employed by De Giorgi, Carriero
and Leaci [14] to study regularity properties of minimizers of the Mumford-Shah functional, the
main difference lying in the fact that different constants appear in front of the surface terms.

The analysis of [14] can be extended to cover also this (slightly) more general setting (see [20]),
yielding the following result for which we refer to [7, Theorem 2.3].

Theorem 2.3. Let Ω ⊆ RN be open and let u ∈ SBVloc(Ω) satisfy the minimality property of
Definition 2.2. Then the jump set of u is essentially closed in Ω, i.e.,

HN−1
(
(Ju \ Ju) ∩Ω

)
= 0.
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2.4. Symmetrization techniques. In Section 4.3 we will employ some basic properties of the
radial symmetric decreasing rearrangement for functions and of the spherical cap symmetrization
of sets. We recall here their definitions and the basic properties we will employ: we refer the
reader to e.g. [21] and [8, Section 9.2] for further details.

(a) Radial symmetric decreasing rearrangement of a function. Let Ω ⊆ RN be an open set
and let u be a measurable nonnegative function defined on Ω. If B is a ball centered at
the origin with |B| = |Ω|, we define the radial symmetric decreasing rearrangement of u
as the radial function u∗ defined on B such that for every c > 0

|{u ≥ c}| = |{u∗ ≥ c}|.
It turns out that ∫

B

(u∗)p dx =

∫
Ω

up dx

for every p ∈ [1,+∞[. Moreover, if in addition u ∈W 1,p
0 (Ω), then u∗ ∈W 1,p

0 (Ω) with

(2.5)

∫
B

|∇u∗|p dx ≤
∫
Ω

|∇u|p dx.

(b) Spherical cap symmetrization of a set. Let E ⊆ RN be a measurable set. For every sphere
Br(0), let Cr be the spherical cap centered at (0, 0, . . . , r) such that

HN−1(Cr) = HN−1(E ∩ ∂Br(0)).

The spherical cap symmetrization of E is given by Ẽ ⊆ RN such that ∂Br(0) ∩ Ẽ = Cr
for every r > 0. It turns out that (see e.g. [8, Section 9.2], [18, Remark 4] or [19, Section

6]) if E has finite perimeter, also Ẽ is of finite perimeter, and for every radial positive
measurable function g(r)

(2.6)

∫
∂∗Ẽ

g(r) dHN−1 ≤
∫
∂∗E

g(r) dHN−1.

The previous inequality states that any perimeter with radial density decreases by spherical
cap symmetrization: this property is reminiscent of the more usual one regarding the
Schwartz symmetrization across an hyperplane.

Remark 2.4. Following [21, Lemma 1], if u is a Lipschitz continuous function on Ω open and
bounded, it turns out that u∗ is also Lipschitz continuous on B. Moreover, the inequality (2.5),
based on the use of the coarea formula and of the isoperimetric inequality, still holds true provided
that for almost every c > 0

HN−1({u = c} ∩Ω) ≥ HN−1({u∗ = c}),
i.e., an isoperimetric control is available for the inner boundaries of upper levels. We will use this
property in the final step of the proof of Proposition 4.13 for a smooth function defined on an
annulus.

3. The space SBV
1
p (RN )

In this section we introduce a suitable space of functions of bounded variation type which will
be fundamental for our analysis.

Given p ∈]1,+∞[ we set

SBV
1
p (RN ) := {u ∈ Lp(RN ) : up ∈ SBV (RN ) , u ≥ 0}.

In the case p = 2, the space has been introduced in [5] to study the Faber-Krahn inequality for the
first eigenvalue of the Robin-Laplacian, and it has used in [6] to address some related semilinear
variants including the case of the torsional rigidity.

In the following lemma we detail some basic properties of elements in SBV
1
p (RN ): the proof

follows closely [5, Lemma 1] and will not be given.

Lemma 3.1. Let u ∈ SBV
1
p (RN ). Then the following items hold true.
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(a) u is a.e. approximately differentiable (see [1, Definition 3.70]) with approximate gradient
∇u such that

∇(up) = pup−1∇u a.e. in RN .

(b) The jump set Ju is HN−1-countably rectifiable and a normal νu can be chosen in such a
way that the jump part of the derivative is given by

Dj(up) = [(u+)p − (u−)p] νuHN−1 Ju.

(c) For every ε > 0 and Ω ⊂ RN open and bounded we have (u− ε)+ ∈ SBV (Ω).

The following compactness and lower semicontinuity properties are a straightforward variant of
[5, Theorem 2].

Theorem 3.2. Let (un)n∈N be a sequence in SBV
1
p (RN ) and let C > 0 be such that for every

n ∈ N ∫
RN

|∇un|p dx+

∫
Jun

[(u+
n )p + (u−n )p] dHN−1 +

∫
RN

upn dx ≤ C.

Then there exist u ∈ SBV
1
p (RN ) and a subsequence (unk

)k∈N such that the following items hold
true.

(a) Compactness: unk
→ u strongly in Lploc(RN ).

(b) Lower semicontinuity: for every open set A ⊆ RN we have∫
A

|∇u|p dx ≤ lim inf
k→∞

∫
A

|∇unk
|p dx,

and ∫
Ju∩A

[(u+)p + (u−)p] dHN−1 ≤ lim inf
k→∞

∫
Junk

∩A
[(u+

nk
)p + (u−nk

)p] dHN−1.

In the subsequent sections, we will make use of the following inequality.

Proposition 3.3. Given m > 0, there exists λp(m) > 0 such that for every u ∈ SBV
1
p (RN ) with

|supp(u)| ≤ m ∫
RN

|∇u|p dx+

∫
Ju

[(u+)p + (u−)p] dHN−1 ≥ λp(m)

∫
RN

up dx.

Moreover, for m ≤ 1 we have

(3.1) λp(m) ≥ 1

m1/N
λp(1).

Proof. Let us set

λp(m) := inf
u∈SBV

1
p (RN ),u 6=0

|supp(u)|≤m

∫
RN |∇u|p dx+

∫
Ju

[(u+)p + (u−)p] dHN−1∫
RN up dx

,

and let us check that λp(m) > 0.

By contradiction assume that there exists un ∈ SBV
1
p (RN ), un 6= 0, with |supp(un)| ≤ m,

(3.2)

∫
RN

upndx = 1,

and such that ∫
RN

|∇un|p dx+

∫
Jun

[(u+
n )p + (u−n )p] dHN−1 → 0.
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By assumption we have that upn ∈ SBV (RN ): by employing the embeddingBV (RN ) ↪→ L
N

N−1 (RN ),
Hölder’s and Young’s inequalities, for every ε > 0 we can find cε > 0 such that

CN

(∫
RN

u
pN

N−1
n dx

)N−1
N

≤ |Dupn|(RN ) ≤
∫
RN

pup−1
n |∇un| dx+

∫
Jun

[(u+
n )p + (u−n )p] dHN−1

≤ p
(∫

RN

upn dx

) p−1
p
(∫

RN

|∇un|p dx
) 1

p

+

∫
Jun

[(u+
n )p + (u−n )p] dHN−1

≤
{
ε

∫
RN

upn dx+ cε

∫
RN

|∇un|p dx
}

+

∫
Jun

[(u+
n )p + (u−n )p] dHN−1

≤ ε
(∫

RN

u
pN

N−1
n

)N−1
N

|supp (un)| 1
N + cε

∫
RN

|∇un|p dx+

∫
Jun

[(u+
n )p + (u−n )p] dHN−1.

Letting ε be sufficiently small we can absorb the first integral of the right-hand side in the left-hand
side to get for some Cε > 0(∫

RN

u
pN

N−1
n dx

)N−1
N

≤ Cε
(∫

RN

|∇un|p dx+

∫
Jun

[(u+
n )p + (u−n )p] dHN−1

)
→ 0.

But then ∫
RN

upn dx ≤
(∫

RN

u
pN

N−1
n dx

)N−1
N

|supp(un)| 1
N → 0

which is against (3.2). We conclude thus that λp(m) > 0.

Let us prove inequality (3.1). Let u ∈ SBV
1
p (RN ) with |supp(u)| ≤ m. Setting

v(x) := u(tx)

we obtain that |supp(v)| = |supp(u)|/tN . If we choose t := m1/N , v is an admissible function to
compute λp(1) so that

λp(1) ≤
tp
∫
RN |∇u|pdx+ t

∫
Ju

[(u+)p + (u−)p]dHN−1∫
RN updx

.

If m ≤ 1 we get

λp(1) ≤ m1/N

∫
RN |∇u|pdx+

∫
Ju

[(u+)p + (u−)p]dHN−1∫
RN updx

,

so that inequality (3.1) easily follows. �

Remark 3.4. It turns out that λp(m) is equal to the first eigenvalue of the p-Laplace operator
under Robin boundary conditions with constant β = 1 on a ball B with |B| = m. For details, we
refer the reader to Remark 5.2 at the end of the paper.

We conclude the section recalling the following result (see [7, Theorem 3.5 and Remark 3.7]),
which is crucial for our analysis, which will be used in the proof of Theorem 4.5.

Proposition 3.5. Given u ∈ SBV
1
p (RN ), assume that there exist ε0, c1, c2 > 0 such that for a.e.

0 < δ < ε < ε0 we have∫
{u≤ε}

|∇u|p dx+ c1δ
pHN−1(∂∗{δ < u < ε} ∩ Ju) ≤ c2εpHN−1(∂∗{u > ε} \ Ju).

Then there exists α > 0 such that

u ≥ α a.e. on supp(u).
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4. The free discontinuity problem

Given p ∈]1,+∞[ and m > 0, we concentrate in this section on the free discontinuity problem

(4.1) min
u∈SBV

1
p (RN ),u 6=0

|supp(u)|≤m

F (u)

where SBV
1
p (RN ) is the space introduced in Section 3, while F is the free discontinuity functional

F (u) :=
‖∇u‖p + Es(u)1/p

‖u‖p
with

Es(u) :=

∫
Ju

[(u+)p + (u−)p] dHN−1.

Existence of minimizers can be proved by performing a concentration compactness alternative
as in [5, Theorem 4].

Theorem 4.1 (Existence of minimizers). The minimum problem (4.1) admits a solution.

Proof. It is sufficient to adapt the proof of [5, Theorem 4] using the compactness and lower
semicontinuity properties given in Theorem 3.2 and employing the numerical inequality of Lemma
2.1 (to exclude the dichotomy case). �

Remark 4.2. Notice that if u is a minimizer of problem (4.1), then |supp(u)| = m. This is a
consequence of the following simple rescaling property: for every t ≥ 1

min
v∈SBV

1
p (RN ),v 6=0

|supp(v)|≤tm

F (v) ≤ t−
1

Np min
u∈SBV

1
p (RN ),u 6=0

|supp(u)|≤m

F (u).

4.1. First properties of minimizers. This subsection is devoted to the proof of some pivotal
properties of minimizers. In particular we are interested in bounds from above and below (on the
support).

Let us start with the bound from above.

Theorem 4.3 (L∞-bound). Let u be a minimizer of (4.1). Then u ∈ L∞(RN ).

Proof. It is not restrictive to assume

‖u‖Lp(RN ) = 1.

Let us assume by contradiction that u /∈ L∞(RN ). We divide the proof in several steps.

Step 1. Assume that ∇u 6= 0 and Ju 6= ∅. By exploiting the Euler-Lagrange equation satisfied

by u, for every ϕ ∈ SBV
1
p (RN ) such that Jϕ ⊆ Ju we have

(4.2)

∫
RN |∇u|p−2∇u∇ϕdx(∫

RN |∇u|p dx
)1− 1

p

+

∫
Ju

[(u+)p−1γ1(ϕ) + (u−)p−1γ2(ϕ)] dHN−1(∫
Ju

[(u+)p + (u−)p] dHN−1
)1− 1

p

= F (u)

∫
RN

up−1ϕdx,

where γ1(ϕ) and γ2(ϕ) are the traces of ϕ on the rectifiable set Ju oriented by the normal νu.
By multiplying equation (4.2) with(∫

RN

|∇u|p dx
)1− 1

p

+

(∫
Ju

[(u+)p + (u−)p] dHN−1

)1− 1
p

,

we obtain the inequality

(4.3)

∫
RN

|∇u|p−2∇u∇ϕdx+

∫
Ju

[(u+)p−1γ1(ϕ)+(u−)p−1γ2(ϕ)] dHN−1 ≤ 2F (u)p
∫
RN

up−1ϕdx.
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Notice that inequality (4.3) still holds true if either Ju = ∅, ∇u 6= 0 or Ju 6= ∅, ∇u ≡ 0, in the last
case requiring that also ∇ϕ ≡ 0.

Step 2. Let us consider for every M > 0 the function uM = (u−M)+ ∈ SBV
1
p (RN ). Recalling

that

∇uM = ∇u1{u≥M} and JuM
⊆ Ju,

uM turns out to be an admissible test function for inequality (4.3), so that we infer

(4.4)

∫
RN

|∇uM |p dx+

∫
Ju

[(u+)p−1u+
M + (u−)p−1u−M ] dHN−1 ≤ 2F (u)p

∫
RN

up−1uM dx.

Notice that ∫
Ju

[(u+)p−1u+
M + (u−)p−1u−M ] dHN−1 ≥

∫
JuM

[(u+
M )p + (u−M )p]dHN−1

and ∫
RN

up−1uM dx =

∫
RN∩{u≥M}

(uM +M)p−1uM dx ≤ C1

∫
RN

(upM +Mp−1uM ) dx

for some constant C1 > 0. From (4.4) we conclude

(4.5)

∫
RN

|∇uM |p dx+

∫
JuM

[(u+
M )p + (u−M )p]dHN−1 ≤ C2

∫
RN

(upM +Mp−1uM )dx

for some C2 > 0.

Step 3. Let

α(M) := |{u ≥M}|.
Since we are assuming u 6∈ L∞(RN ), we have

∀M > 0 : α(M) > 0 and lim
M→+∞

α(M) = 0.

In view of Proposition 3.3, inequality (4.5) entails

λp(α(M))

∫
RN

upM dx ≤ C2

∫
RN

(
upM +Mp−1uM

)
dx.

By (3.1), for M sufficiently large we infer

(4.6)
1

α(M)
1
N

∫
RN

upM dx ≤ C3

∫
RN

Mp−1uM dx

for some C3 > 0.
By Holder inequality and (4.6) we deduce∫

RN

uM dx ≤
(∫

RN

upM dx

) 1
p

α(M)
p−1
p ≤

(
C3M

p−1α(M)
1
N

∫
RN

uM dx

) 1
p

α(M)
p−1
p

so that

(4.7)

∫
RN

uM dx ≤ C4Mα(M)1+ 1
N(p−1) .

for some C4 > 0.
Setting now

g(M) =

∫
RN

uMdx,

and recalling that g′(M) = −α(M), we can rewrite inequality (4.7) as

g(M) ≤ C4M(−g′(M))1+ 1
N(p−1) .

It follows that there exists M0 > 0 such that for a.e. M ≥M0

1

Mγ
≤ −C5

g′(M)

g(M)γ
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with γ < 1 and C5 > 0. Integrating between M0 and M we get

g(M)1−γ − g(M0)1−γ ≤ − 1

C5

(
M1−γ −M1−γ

0

)
.

Being g(M)1−γ > 0, the above inequality entails in particular

−g(M0)1−γ ≤ − 1

C5

(
M1−γ −M1−γ

0

)
,

which yields a contradiction letting M → +∞.
We thus conclude that u ∈ L∞(RN ), and the proof is concluded. �

Let us now come to the bound from below on the support of minimizers. We need the following
perturbation lemma.

Lemma 4.4. Let u be a minimizer of problem (4.1). Then the following items hold true.

(a) There exist ε > 0 and k̃ > 0 such that for every v ∈ SBV
1
p (RN ) with

(4.8) |supp(u)| < |supp(v)| < |supp(u)|+ ε,

then

(4.9) F (u) + k̃|supp(u)| ≤ F (v) + k̃|supp(v)|.

(b) There exist ε > 0 and k̂ > 0 such that for every v ∈ SBV
1
p (RN ) with

(4.10) |supp(u)| − ε < |supp(v)| < |supp(u)|,
then

(4.11) F (u) + k̂|supp(u)| ≤ F (v) + k̂|supp(v)|.

Proof. The proof is very similar to that of [6, Lemma 6.12].

Let us start with point (a). By contradiction, let us assume that for every ε > 0 and k̃ > 0

there exists v ∈ SBV
1
p (RN ) satisfying (4.8) but for which (4.9) is violated. Let us consider εn → 0

and k̃n → +∞ and let us denote by vn the associate function such that

|supp(u)| < |supp(vn)| < |supp(u)|+ εn,

and

(4.12) F (u) + k̃n|supp(u)| > F (vn) + k̃n|supp(vn)|.
Let us set

tn :=

(
|supp(vn)|
|supp(u)|

) 1
N

.

Then tn > 1 and tn → 1. If we set
wn(x) := vn(tnx)

we obtain

|supp(wn)| = |supp(vn)|
tNn

= |supp(u)|,

which implies (being wn admissible for problem (4.1))

(4.13) F (u) ≤ F (wn) =
tn‖∇vn‖p + t

1/p
n Es(vn)1/p

‖vn‖p
≤ tnF (vn).

Since |supp(vn)| = tNn |supp(u)|, by using (4.12) and (4.13), we get

F (u) + k̃n|supp(u)| > F (vn) + k̃n|supp(vn)| ≥ t−1
n F (u) + k̃nt

N
n |supp(u)|,

so that

k̃n ≤
1− t−1

n

tNn − 1

F (u)

|supp(u)|
.

But the right hand side is bounded as n→ +∞, against k̃n → +∞. The proof of point (a) is thus
concluded.
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Let us pass to point (b). We proceed again by contradiction by considering εn → 0, k̂n → 0

and the associated vn ∈ SBV
1
p (RN ) satisfying (4.10) but violating (4.11). Reasoning as above we

get

F (u) ≤ t1/pn F (vn)

for tn ↗ 1, so that

(4.14) k̂n ≥
t
−1/p
n − 1

1− tNn
F (u)

|supp(u)|
,

against k̂n → 0. Point (b) thus follows, and the proof is now complete. �

We are now in a position to prove the following bound from below which is essential for our
analysis.

Theorem 4.5 (Bound from below). Let u be a minimizer for (4.1). Then there exists α > 0
such that

u ≥ α a.e. on supp(u).

Proof. We can assume ‖u‖Lp(RN ) = 1. Moreover, thanks to Proposition 4.3, we have u ∈ L∞(RN ).
Assume by contradiction that for every ε small enough

(4.15) |{u < ε}| > 0.

Notice that for a.e. ε > 0 we have

u1{u≥ε} ∈ SBV
1
p (RN ).

In view of Lemma 4.4, there exists k̂ > 0 such that comparing u and u1{u≥ε} (with ε small enough)
we get

(4.16) ‖∇u‖p + Es(u)
1
p + k̂|{u < ε}| ≤

‖∇u1{u≥ε}‖p + Es(u1{u≥ε})
1
p

‖u1{u≥ε}‖p
.

Moreover we may write

1

‖u1{u≥ε}‖p
=

(
1∫

{u≥ε} u
p dx

) 1
p

=

(
1

1−
∫
{u<ε} u

p dx

) 1
p

< 1 + Cεp|{u < ε}|

for some C > 0. As a consequence, for ε small enough inequality (4.16) entails

(4.17) ‖∇u‖p + Es(u)
1
p ≤ ‖∇u1{u≥ε}‖p + Es(u1{u≥ε})

1
p .

Assume that ∇u 6= 0. Recalling that for every a > b > 0

(4.18)
1

p
a

1
p−1(a− b) ≤ a1/p − b1/p ≤ 1

p
b

1
p−1(a− b),

we get

‖∇u‖p − ‖∇u1{u≥ε}‖p ≥

∫
RN |∇u|p dx−

∫
{u≥ε} |∇u|

p dx

p‖∇u‖p−1
p

=

∫
{u<ε} |∇u|

p dx

p‖∇u‖p−1
p

,

so that from (4.17) we deduce∫
{u<ε} |∇u|

p dx

p‖∇u‖p−1
p

+ Es(u)
1
p ≤ Es(u1{u≥ε})

1
p .

Notice that in particular Es(u1{u≥ε}) ≥ Es(u), so that using again (4.18) we obtain∫
{u<ε} |∇u|

p dx

‖∇u‖p−1
p

≤
Es(u1{u≥ε})− Es(u)

Es(u)
p−1
p

.

By setting

βu :=
‖∇u‖p−1

p

Es(u)
p−1
p
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we obtain, writing explicitly Es(u) and Es(u1{u≥ε}),

(4.19)

∫
{u<ε}

|∇u|p dx+ βu

∫
Ju

[(u+)p + (u−)p] dHN−1

≤ βu
∫
Ju∩{u−<ε≤u+}

(u+)p dHN−1 + βu

∫
Ju∩{ε≤u−<u+}

[(u+)p + (u−)p] dHN−1

+ βuε
pHN−1(∂∗{u > ε} \ Ju),

which yields∫
{u<ε}

|∇u|p dx+ βu

∫
Ju∩{u−<u+≤ε}

[(u−)p + (u+)p] dHN−1 ≤ βuεpHN−1(∂∗{u > ε} \ Ju).

We deduce in particular that for a.e. 0 < δ < ε

(4.20)

∫
{u≤ε}

|∇u|p dx+ βuδ
pHN−1(∂∗{δ < u < ε} ∩ Ju) ≤ βuεpHN−1(∂∗{u > ε} \ Ju).

From Proposition 3.5 we obtain that (4.15) cannot hold.
In the case ∇u ≡ 0, inequality (4.20) still holds provided that we choose βu := 1: again we

reach a contradiction, so that the proof is concluded. �

Remark 4.6. The bound from below can be established also by adapting the arguments proposed
in [9, Theorem 3.2], where a free discontinuity approach similar to the present one has been
proposed to deal with free boundary problems arising in thermal insulation.

4.2. Regularity properties of the minimizers. In this subsection we show that a minimizer of
problem (4.1) satisfies a local minimality property for a Mumford-Shah functional with exponent
p: this yields some regularity properties for the jump set and consequently for the support.

Theorem 4.7 (Essential closedness of the jump set). Let u be a minimizer of problem (4.1).
Then u ∈ SBV (RN ) ∩ L∞(RN ), HN−1(Ju) < +∞ and Ju is essentially closed, i.e.,

HN−1(Ju \ Ju) = 0.

Proof. By Proposition 4.3 we know that u ∈ L∞(RN ), while Theorem 4.5 entails

(4.21) u ≥ α > 0 a.e. on supp(u).

Since up ∈ SBV (RN ), the chain rule in BV (see [1, Theorem 3.96] entails u ∈ SBV (RN ). Finally
we have

αpHN−1(Ju) ≤
∫
Ju

[(u+)p + (u−)p) dHN−1 < +∞,

so that HN−1(Ju) < +∞. Notice moreover that HN−1(Ju) > 0 (since otherwise u ∈ W 1,1(RN )
and (4.21) cannot hold).

In order to conclude the proof, we need to show that Ju is essentially closed. We will show
that u is an almost quasi-minimizer of the Mumford-Shah functional with exponent p according
to Definition 2.2, and then we conclude using Theorem 2.3. We divide the proof in two steps.

Step 1. Given r0 > 0, let us consider v ∈ SBVloc(RN ) such that {v 6= u} ⊂ B̄r(x0), where r < r0.
Let us assume that

(4.22)

∫
Br(x0)

|∇v|p dx+ 2||u||p∞HN−1(Jv ∩ B̄r(x0)) ≤
∫
Br(x0)

|∇u|p dx+HN−1(Ju ∩ B̄r(x0)),

and let us set

ṽ := min{|v|, ||u||∞}.
Since

|supp(ṽ)| ≤ |supp(u)|+ ωNr
N ,
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either by the minimality of u or by the perturbed minimality given by Lemma 4.4, we deduce that
if r0 is small enough, there exists k > 0 such that

(4.23)
‖∇u‖p + Es(u)

1
p

‖u‖p
≤ ‖∇ṽ‖p + Es(ṽ)

1
p

‖ṽ‖p
+ kωNr

N .

In view of (4.22) and the definition of ṽ we have

(4.24) ‖∇ṽ‖p + Es(ṽ)
1
p ≤ C1,

where C1 depends only on u.
Assuming as usual ‖u‖p = 1, and since∣∣∣∣∣

∫
Br(x0)

(|ṽ|p − |u|p) dx

∣∣∣∣∣ ≤ 2‖u‖p∞ωNrN ,

up to reducing r0 we have

1

‖ṽ‖p
=

1(
1 +

∫
Br(x0)

(|ṽ|p − |u|p) dx
) 1

p

< 1 +
4‖u‖p∞ωNrN

p
.

Then, from (4.23), we infer

(4.25) ‖∇u‖p + Es(u)
1
p ≤ ‖∇ṽ‖p + Es(ṽ)

1
p + C2r

N ,

where C2 depends only on u.
We claim that there exist k1, k2, k3 > 0 depending only on u such that

(4.26)

∫
Br(x0)

|∇u|pdx+ k1

∫
Ju∩Br(x0)

[(u+)p + (u−)p] dHN−1

≤
∫
Br(x0)

|∇ṽ|pdx+ k2

∫
Jv∩Br(x0)

[(ṽ+)p + (ṽ−)p] dHN−1 + k3r
N .

Thanks to (4.21) and in view of the very definition of ṽ we obtain

(4.27)

∫
Br(x0)

|∇u|pdx+ k1α
pHN−1(Ju ∩Br(x0))

≤
∫
Br(x0)

|∇v|pdx+ 2k2‖u‖p∞HN−1(Jv ∩Br(x0)) + k3r
N .

Up to reducing the constant k1 and increasing the constants k2, k3 (if necessary), we see that
inequality (4.27) still holds even if v does not satisfy assumption (4.22). We conclude that u is an
almost quasi-minimizer of the Mumford-Shah functional with exponent p according to Definition
2.2. In view of Theorem 2.3, the essential closedness of Ju follows.

Step 2. In order to conclude the proof, we need to show that claim (4.26) holds true. Up to
reducing r0, we can assume that for every x0 ∈ RN∫

Ju∩Bc
r0

(x0)

[(u+)p + (u−)p] dHN−1 ≥ 1

2
Es(u) > 0,∫

Bc
r0

(x0)

|∇u|pdx ≥ 1

2

∫
RN

|∇u|pdx.
(4.28)

Assume ∇u 6= 0. We may write

‖∇u‖p − ‖∇ṽ‖p = c1(u, ṽ)

[∫
RN

|∇u|pdx−
∫
RN

|∇ṽ|pdx
]

= c1(u, ṽ)

[∫
Br(x0)

|∇u|pdx−
∫
Br(x0)

|∇ṽ|pdx

]
,

(4.29)
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where for a suitable 0 < θ1 < 1

c1(u, ṽ) :=
1

p

(
θ1

∫
RN

|∇u|pdx+ (1− θ1)

∫
RN

|∇ṽ|pdx
) 1−p

p

.

Analogously

(4.30) Es(ṽ)
1
p − Es(u)

1
p = c2(u, ṽ) (Es(ṽ)− Es(u)) ,

with

c2(u, ṽ) :=
1

p
(θ2Es(u) + (1− θ2)Es(ṽ))

1−p
p

and 0 < θ2 < 1.
Substituting (4.29) and (4.30) into (4.25) we get

(4.31)

∫
Br(x0)

|∇u|pdx+
c2(u, ṽ)

c1(u, ṽ)
Es(u) ≤

∫
Br(x0)

|∇ṽ|pdx+
c2(u, ṽ)

c1(u, ṽ)
Es(ṽ) +

crN

c1(u, ṽ)
.

In view of (4.28), (4.22) and (4.24), and recalling the very definition of ṽ, we may write

ϑ1

∫
RN

|∇u|p dx+ (1− ϑ1)

∫
RN

|∇ṽ|p dx ≥
∫
Bc

r(x0)

|∇u|p dx ≥ 1

2

∫
RN

|∇u|p dx > 0

and

ϑ1

∫
RN

|∇u|p dx+ (1− ϑ1)

∫
RN

|∇ṽ|p dx ≤ ϑ1

∫
RN

|∇u|p dx+ (1− ϑ1)

∫
RN

|∇v|p dx

=

∫
RN

|∇u|p dx+

∫
Br(x0)

|∇v|p dx ≤ C3,

where C3 depends only on u.
Similarly we have

θ2Es(u)+(1−θ2)Es(ṽ) ≥
∫
Ju∩Bc

r(x0)

[(u+)p+(u−)p] dHN−1 ≥ 1

2

∫
Ju

[(u+)p+(u−)p] dHN−1 > 0,

and

θ2Es(u) + (1− θ2)Es(ṽ) ≤
∫
Ju

[(u+)p + (u−)p] dHN−1 +

∫
Jṽ∩Br(x0)

[(ṽ+)p + (ṽ−)p] dHN−1

≤ 2‖u‖p∞(HN−1(Ju) +HN−1(Jv ∩Br(x0))) ≤ C4,

where C4 depends only on u.
Combining the previous inequalities, we conclude that

k1 ≤
c2(u, ṽ)

c1(u, ṽ)
≤ k2 and

c

c1(u, ṽ)
≤ k3

for suitable constants ki depending only on u, so that inequality (4.31) entails claim (4.26).
Assume now ∇u ≡ 0. Coming back to (4.25), we can raise the inequality to the power p getting

for some constants k̂1, k̂2 depending only on p

Es(u) ≤ k̂1

∫
Br(x0)

|∇ṽ|p dx+ k̂1Es(ṽ) + k̂2r
Np,

from which we deduce again claim (4.26) (up to reducing r0 if necessary). �

We are now in a position to draw the main regularity properties we need for minimizers of our
free discontinuity problem.

Theorem 4.8 (Regularity properties of minimizers). Let u be a minimizer of problem (4.1).
The following items hold true.

(a) u ∈ SBV (RN ) ∩ L∞(RN ) with HN−1(Ju) < +∞ and

HN−1(Ju \ Ju) = 0.
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(b) The support of u is an open and connected set Ω such that

∂Ω = Ju.

In particular Ω has finite perimeter in RN .
(c) The restriction of u to Ω is an element of W 1,p(Ω) such that, either it is constant or

(4.32) −∆pu = λup−1 in Ω,

for a suitable λ > 0. In particular u ∈ C1,γ(Ω) for some 0 < γ < 1, and there exists α > 0
such that

(4.33) u ≥ α on Ω.

Proof. Point (a) follows by Theorem 4.7. Let us come to point (b).
Notice that u ∈ W 1,p(RN \ Ju). Assume ∇u 6= 0. By exploiting the Euler-Lagrange equation

for the functional F on RN \ Ju, we get for every ϕ ∈ C∞c (RN \ Ju)∫
RN\Ju

|∇u|p−2∇u · ∇ϕdx = λ

∫
RN\Ju

up−1ϕdx,

where

λ :=
‖∇u‖p−1

p F (u)

‖u‖p−1
p

.

By regularity (see e.g. [15]) we infer

u ∈ C1,γ(RN \ Ju)

for some 0 < γ < 1.
Let us decompose the open set RN \ Ju into its connected components, and select those on

which u is not identically zero. If we denote by Ω their union, it turns out ∂Ω = Ju so that

HN−1(∂Ω) = HN−1(Ju) = HN−1(Ju) < +∞.

In particular Ω has finite perimeter and equation (4.32) holds true. Moreover, in view of the
regularity of u and of the bound from below given by Theorem 4.5, we get easily that Ω is the
support of u, and that (4.33) is satisfied (indeed Ω cannot contain strictly the support of u,
otherwise the function should approach continuously zero).

Let us show that Ω is connected. By contradiction, let us assume that

Ω = Ω1 ∪Ω2

with Ω1, Ω2 open sets such that Ω1 6= ∅, Ω2 6= ∅ and Ω1 ∩ Ω2 = ∅. Note that Ωi has finite
perimeter for i = 1, 2 since ∂Ωi ⊆ ∂Ω. Let us set

ui := u1Ωi
i = 1, 2.

Since u ∈ L∞(RN ), by [1, Theorem 3.84] we get ui ∈ SBV (RN ) with

Dui = DubΩ(1)
i − u∂∗Ωi

νΩi
HN−1b∂∗Ωi,

where Ω
(1)
i denotes the point of density 1 of Ωi, νΩi stands for the exterior normal to Ωi, while

u∂∗Ωi
denotes the trace on ∂∗Ωi of u coming from Ωi. Notice that supp(ui) = Ωi. Moreover by

construction the following additivity relation concerning the surface energy holds true:

(4.34)

∫
Ju

[(u+)p + (u−)p] dHN−1 =

∫
Ju1

[(u+
1 )p + (u−1 )p] dHN−1 +

∫
Ju2

[(u+
2 )p + (u−2 )p] dHN−1.
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By employing the numerical inequality of Lemma 2.1, we may assume(∫
RN |∇u|p dx

)1/p
+
(∫

Ju
[(u+)p + (u−)p] dHN−1

)1/p

(∫
RN up dx

) 1
p

=

(∫
RN |∇u1|p dx+

∫
RN |∇u2|p dx

)1/p
+
(∫

Ju1
[(u+

1 )p + (u−1 )p] dHN−1 +
∫
Ju2

[(u+
2 )p + (u−2 )p] dHN−1

)1/p

(∫
RN u

p
1 dx+

∫
RN u

p
2 dx

) 1
p

≥

(∫
RN |∇u1|p dx

)1/p
+
(∫

Ju1
[(u+

1 )p + (u−1 )p] dHN−1
)1/p

(∫
RN u

p
1 dx

) 1
p

,

so that u1 is a minimizer of the free discontinuity problem (4.1) with |supp(u1)| < |supp(u)|. This
is in contradiction with Remark 4.2.

If ∇u ≡ 0, we can follow the previous arguments and conclude that u is constant on Ω, so that
the proof is concluded. �

Remark 4.9. The proof of the connectedness of Ω depends heavily on the additivity relation
(4.34): the proof for p = 2, carried out in detail in [6, Theorem 6.15], extends readily to this case.

4.3. Minimizers are supported on balls. In this subsection we want to show that minimizers
of (4.1) are supported on balls, and more precisely that they are of the form

ψ1B ,

where B is a ball of volume m, and ψ is a radial function with respect to the center of B.
Let us start with the following result.

Proposition 4.10. Let v be a minimizer of problem (4.1). We can associate to v, by means of
successive reflections across N orthogonal hyperplanes, a new minimizer u such that the following
items hold true.

(a) Properties of the support. The support Ω of u is open, connected, and such that

(4.35) HN−1(∂Ω \ ∂∗Ω) = 0.

Up to a translation, we may assume that Ω is symmetric with respect to the origin.

(b) Radiality of the function. There exists a function ψ : I →]0,+∞[ of class C1, where
I = [0,+∞[ or I =]0,+∞[, such that either ψ is constant or

(4.36) −
(
rN−1|ψ′|p−2ψ′

)′
= λ|ψ|p−2ψrN−1,

and, up to a translation, for every x ∈ Ω

(4.37) u(x) = ψ(|x|).

Here λ > 0 is the constant appearing in equation (4.32) satisfied by v on its support.

(c) We have

(4.38) F (u) =

(∫
Ω
|ψ′(|x|)|p dx

)1/p
+
(∫
∂∗Ω

ψp(|x|) dx
)1/p(∫

Ω
ψp(|x|) dx

)1/p .

Proof. We divide the proof in several steps.

Step 1: existence of a symmetric minimizer. Let us consider an hyperplane π1 parallel to
x1 = 0 which splits the support of v in two parts of equal measure, and let us set

v1 := v1π+
1

and v2 := v1π−1
,

where π±1 are the two half spaces determined by π1.
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Note that the term ∫
Jv∩π1

[(v+)p + (v−)p] dHN−1

which (eventually) appears in the surface part of the free discontinuity functional F can be rein-
terpreted as ∫

Jv∩π1

[γ(v1)p + γ(v2)p] dHN−1,

where γ(v1), γ(v2) are the traces of v1 and v2 on π1.
By using the numerical inequality of Lemma 2.1 we may assume

F (v) ≥

(∫
π+

1
|∇v|2 dx

)1/p

+
(∫

Jv∩π+
1

[(v+)p + (v−)p] dHN−1 +
∫
Jv∩π1

γ(v1)p dHN−1
) 1

p

(∫
π+

1
vp dx

)1/p
,

so that by reflecting v1 across π1 we obtain a new minimizer of problem (4.1) symmetric with
respect to π1, still denoted v1.

We operate in the same way on v1 by employing an hyperplane π2 parallel to x2 = 0, and
obtaining a new minimizer v2 symmetric with respect to both π1 and π2. Proceeding in this by
considering hyperplanes parallel to xi = 0 for i = 3, . . . , N , we end up with a minimizer vN =: u
which turns out to be symmetric with respect to N orthogonal hyperplanes, whose intersection
we may take as the new origin of RN .

Step 2: radiality of the minimizer. Let Ω ⊆ RN open and connected be the support of u
according to Theorem 4.8: we have that u is C1,γ on Ω for some γ > 0. If x ∈ Ω, and π is a
hyperplane through x and the origin, we can reflect again u across π obtaining a new minimizer
û: indeed the arguments of Step 1 can be applied since by the symmetry properties of u, the
hyperplane π splits Ω in two parts of equal measure. If Ω̂ is the associated support, we have that
x ∈ Ω̂, and by the symmetry and the regularity of û we conclude that

Dνu(x) = 0,

where ν is orthogonal to π. This means that u is locally radial.
Assume that u is not constant on Ω, and let x0 ∈ Ω with r0 := |x0|. Let ψ : I → R be the

solution of

−
(
|ψ′|p−2ψ′rN−1

)′
= λ|ψ|p−2ψrN−1

with

ψ(r0) = u(x0) and ψ′(r0) = ∂ru(x0),

where λ is the constant appearing in the equation (4.32) satisfied by the nonconstant function u
on Ω. In view of [22, Section 3], there exists a unique solution for this problem, for which either
I = [0,+∞[ or I =]0,+∞[. Clearly

u(x) = ψ(|x|)
locally near x0: but since Ω is connected, the equality extends to the entire Ω. Point (b) is thus
proved.

Step 3: conclusion. In order to complete the proof of point (a), we need to show that (4.35)
holds true. Let x ∈ ∂Ω be a point of density zero or one for Ω: since the function ψ is of class
C1, we deduce that x 6∈ Ju. Since ∂Ω = Ju (thanks to Theorem 4.8), we deduce (recall that ∂eΩ
is the essential boundary of Ω, see Subsection 2.2)

∂Ω \ ∂∗Ω ⊆
(
Ju \ Ju

)
∪ (∂eΩ \ ∂∗Ω),

so that

HN−1(∂Ω \ ∂∗Ω) ≤ HN−1
(
Ju \ Ju

)
+HN−1(∂eΩ \ ∂∗Ω) = 0.

Point (a) is thus completely proved. Finally, point (c) is an immediate consequence of the fact
that u = ψ1Ω , ∂Ω = Ju and HN−1(∂Ω \ ∂∗Ω) = 0, so that the proof is concluded. �
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Remark 4.11. The previous proof shows that every minimizer v of problem (4.1) generates new
minimizers v1, v2, . . . , vN := u, such that vi+1 is obtained from vi through a reflection across the
hyperplane xi = k which splits the support of vi in two parts with the same volume: since the
inequalities of type (2.1) on which the argument is based are indeed equalities, both vi1{xi<k} and
vi1{xi>k} generate an admissible vi+1.

Remark 4.12. The proof of Proposition 4.10 shows that given any minimizer v of (4.1) and any
hyperplane π which splits the associated support in two parts with the same volume, both the
restrictions v1π± generate by reflection across π a new minimizer of the functional.

We now show that the support of the symmetric minimizer constructed in Proposition 4.10 is
indeed a ball.

Proposition 4.13. Let u be the minimizer of (4.1) given by Proposition 4.10. Then the associated
support Ω is a ball.

Proof. If u = ψ1Ω with ψ constant, then by (4.38) we deduce

F (u) =
HN−1(∂∗Ω)1/p

|Ω|1/p
.

If B is a ball such that |B| = |Ω|, by considering the admissible function 1B we obtain

HN−1(∂∗Ω)1/p

|Ω|1/p
= F (u) ≤ F (1B) =

HN−1(∂B)1/p

|B|1/p
,

which yields, in view of the isoperimetric property of the ball, that Ω coincides up to negligible
sets with a ball.

Assume that ψ is not constant on Ω. We divide the proof in several steps.

Step 1. Let Ω̃ be the spherical cap symmetrization of Ω (see Subsection 2.4 for the definition):
such a set is open and with finite perimeter. By passing to polar coordinates, and using the fact
that HN−1(Ω̃ ∩ ∂Br(0)) = HN−1(Ω ∩ ∂Br(0)), we deduce that∫

Ω̃

|ψ′(|x|)|p dx =

∫
Ω

|ψ′(|x|)|p dx and

∫
Ω̃

ψp(|x|) dx =

∫
Ω

ψp(|x|) dx.

Thanks to inequality (2.6) on perimeters with radial densities applied to g = ψp, we get in view
of (4.38)

(4.39)

(∫
Ω̃
|ψ′(|x|)|p dx

)1/p
+
(∫
∂∗Ω̃

ψp(|x|) dx
)1/p(∫

Ω̃
ψp(|x|) dx

)1/p
≤
(∫
Ω
|ψ′(|x|)|p dx

)1/p
+
(∫
∂∗Ω

ψp(|x|) dx
)1/p(∫

Ω
ψp(|x|) dx

)1/p = F (u).

Notice that ψ ∈W 1,p(Ω̃) ∩ L∞(Ω̃) with (recall (4.33) and (4.37))

ψ ≥ α > 0 on Ω̃,

for some α > 0. Thanks to [1, Theorem 3.84] we get that the function ψ1Ω̃ belongs to SBV (RN )∩
L∞(RN ) and in particular it is thus an element of SBV 1/p(RN ). Since

F (ψ1Ω̃) =

(∫
Ω̃
|ψ′(|x|)|p dx

)1/p
+
(∫
∂∗Ω̃

ψp(|x|) dx
)1/p(∫

Ω̃
ψp(|x|) dx

)1/p ,

we deduce from (4.39) that also ψ1Ω̃ is a minimizer of (4.1). In particular Ω̃ (which is the
associated support) is also connected.
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Step 2. We claim that Ω̃ has a spherical symmetry, that is, Ω̃ is either a ball or an annulus. In
order to see this, in view of the structure of Ω̃ (which was constructed through a spherical cap
symmetrization), it suffices to check that

|Ω̃ ∩ {xN > 0}| = |Ω̃ ∩ {xN < 0}|.
Indeed, if this holds true, we get that for a.e. r > 0 either ∂Br(0) ⊆ Ω̃ or ∂Br(0) ∩ Ω̃ = ∅. In

view of its connectedness, we deduce then that Ω̃ is either a ball or an annulus.
Assume by contradiction that

|Ω̃ ∩ {xN > 0}| > |Ω̃ ∩ {xN < 0}|.
Then we can find an hyperplane xN = k with k > 0 which splits Ω̃ in two parts with the same
volume. According to Remark 4.12, one of the two parts generates by reflection a new minimizer

ψ̂1Ω̂ for the free discontinuity problem (4.1). By construction, the support Ω̂ is already symmetric
with respect to the coordinate hyperplanes xi = 0 for i = 1, . . . , N − 1. If we apply Proposition

4.10 to ψ̂1Ω̂ , we deduce that ψ̂ is radial with respect to the point (0, 0, . . . , 0, k). But this is

impossible, since ψ̂ coincides with a reflection of ψ which is radial about the origin and it is not
constant thanks to equation (4.32).

Step 3. We claim that Ω̃ is a ball. In order to see this, we need to exclude that

Ω̃ = Ar1,r2 := {x ∈ RN : r1 < |x| < r2}.
Assume by contradiction that u = ψ1Ar1,r2

is a minimizer for problem (4.1). Then, by exploiting
the associated Euler-Lagrange equation, it turns out that ψ satisfies on ∂Ar1,r2 the boundary
conditions of Robin type

−|ψ′|p−2(r1)ψ′(r1) + βψp−1(r1) = 0 and |ψ′|p−2(r2)ψ′(r2) + βψp−1(r2) = 0

for a suitable constant β > 0. This entails that

ψ′(r1) > 0 and ψ′(r2) < 0.

Since from the differential equation (4.36) we get that

r 7→ rN−1|ψ′(r)|p−2ψ′(r)

is decreasing on [r1, r2], we deduce that there exists r3 ∈]r1, r2[ such that

ψ is increasing on [r1, r3] and decreasing on [r3, r2].

Two situations may happen, leading both to a contradiction.

(a) Assume
ψ(r1) ≤ ψ(r2).

Let r4 ∈]r1, r3[ be such that ψ(r4) = ψ(r2). Let us consider the radial symmetric decreas-
ing rearrangement ψ∗ of ψ restricted to Ar4,r2 supported on the ball Br̄(0) (see Subsection
2.4 for the definition), and let us extend it with the value ψ(r2) on the larger ball Br̂(0),
where

|Br̄(0)| = |Ar4,r2 | and |Br̂(0)| = |Ar1,r2 |.
Let us denote this function with ϕ. We have∫

Br̂(0)

|∇ϕ|p dx ≤
∫
Ar1,r2

|∇ψ|p dx,
∫
Br̂(0)

ϕp dx >

∫
Ar1,r2

ψp dx,

and ∫
∂Br̂(0)

ϕp dHN−1 <

∫
∂Ar1,r2

ψp dHN−1.

The inequality on the gradient comes from the general properties of the radial symmetric
decreasing rearrangement, together with the fact that ϕ is constant on Br̂(0)\Br̄(0). The
second inequality comes instead from the equality∫

Br̄(0)

ϕp dx =

∫
Ar4,r2

|ψ|p dx
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together with the fact that ψ ≤ ψ(r2) on [r1, r4]. Finally the inequality for the surface
integral is a consequence of the fact that∫
∂Ar1,r2

ψp dHN−1 >

∫
∂Br2

(0)

ψp dHN−1 > ψp(r2)HN−1(∂Br̂(0)) =

∫
∂Br̂(0)

ϕp dHN−1.

We conclude that

F (ψ1Ar1,r2
) =

(∫
Ar1,r2

|∇ψ|p dx
)1/p

+
(∫

∂Ar1,r2
ψp dHN−1

)1/p

(∫
Ar1,r2

ψp dx
)1/p

>

(∫
Br̂(0)

|∇ϕ|p dx
)1/p

+
(∫

∂Br̂(0)
ϕp dHN−1

)1/p

(∫
Br̂(0)

ϕp dx
)1/p

= F (ϕ1Br̂(0)),

so that ψ1Ar1,r2
is not a minimizer for problem (4.1).

(b) Let us assume that
ψ(r1) > ψ(r2).

In this case we proceed directly with a radial symmetric decreasing rearrangement of
ψ1Ar1,r2

. We obtain a new function ψ∗ supported on a ball Br(0) with |Br(0)| = |Ar1,r2 |.
In view of the regularity of ψ on Ar1,r2 , by Remark 2.4 we get that ψ∗ is Lipschitz
continuous on Br(0). Moreover, the geometry of ψ entails that for every a > ψ(r2)

HN−1({ψ = a} ∩Ar1,r2) > HN−1({ψ∗ = a})
(notice that {ψ > a} is an annulus and {ψ∗ > a} is a ball with equal volume, whose radius
is therefore strictly less than the external radius of the former). Again by Remark 2.4, we
deduce ∫

Br(0)

|∇ψ∗|p dx ≤
∫
Ar1,r2

|∇ψ|p dx.

Finally, since∫
Br(0)

(ψ∗)p dx =

∫
Ar1,r2

ψp dx and

∫
∂Br(0)

(ψ∗)p dHN−1 <

∫
∂Ar1,r2

ψp dHN−1,

we obtain as above
F (ψ1Ar1,r2

) > F (ψ∗1Br (0)),

so that ψ1Ar1,r2
is not a minimizer for problem (4.1).

�

We conclude the section with the following uniqueness result.

Theorem 4.14. Any minimizer of problem (4.1) is of the form

ψ1B

where B is a ball of volume m, and ψ ∈W 1,p(B) is radial with respect to the center of B.

Proof. Let v be a minimizer of problem (4.1) with associated support Ω. Let us apply Proposition
4.10 and Remark 4.11 to this minimizer, generating the family of minimizers

v1, v2, . . . , vN

with associated supports Ω1, . . . , ΩN .
By Proposition 4.13, we know that vN is supported on a ball B, and radially symmetric with

respect to the center inside. We may assume that B is centered at the origin. The function vN
has been obtained from vN−1 by means of a reflection across the hyperplane xN = 0 which splits
ΩN−1 in two parts Ω±N−1 of the same volume. Moreover we know that both the restrictions of

vN−1 to Ω±N−1 generate an admissible vN . We thus conclude that ΩN−1 = B, and the associated
function which is radial.
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In turn vN−1 is obtained from vN−2 by means of a reflection across the hyperplane xN−1 = 0
which splits ΩN−2 in two parts Ω±N−2 of the same volume. Again, both the restrictions of vN−2

to Ω±N−2 generate an admissible vN−1. Recalling that ΩN−2 is connected and symmetric with
respect to the hyperplanes

x1 = 0, x2 = 0, . . . xN−2 = 0,

we conclude for example that

Ω+
N−2 = B ∩ {xN−1 < 0} and Ω−N−2 = B̃ ∩ {xN−1 > 0},

where B̃ is a ball of volume m with center on the line x1 = x2 = · · · = xN−1 = 0. But in the
procedure of Proposition 4.10 we could exchange the role of the coordinates xN−1 and xN . If we
symmetrize firstly with respect to a hyperplane parallel to xN = 0, we should get a minimizer
supported on a ball, and this is possible only if B = B̃. We conclude that ΩN−2 = B with
associated function which is radial. Proceeding in this way, we come back to Ω which is itself
equal to B with associated function which is radial. The proof is thus concluded.

�

5. Proof of the main result

We are now in a position to prove our main theorem. We consider the case 1 < p < +∞ which
relies on the free discontinuity analysis of Section 4. The case p = 1 is discussed separately and
will be dealt directly through rearrangements of BV functions.

The case p > 1. Let Ω ⊆ RN be open, bounded and with a Lipschitz boundary. Let u ∈W 1,p(Ω)
on which the Poincaré constant in (1.1) is attained, that is

Cp(Ω) =
‖∇u‖Lp(Ω;RN ) + ‖u‖Lp(∂Ω)

‖u‖Lp(Ω)
.

It is not restrictive to assume that u ≥ 0 on Ω. Notice that thanks to [1, Theorem 3.84]

up1Ω ∈ SBV (RN ).

We deduce v := u1Ω ∈ SBV
1
p (RN ). Notice that

‖∇v‖p = ‖∇u‖Lp(Ω;RN ) and ‖v‖p = ‖u‖Lp(Ω).

Moreover we have Jv ⊆ ∂Ω with∫
Jv

[(v+)p + (v−)p] dHN−1 =

∫
Jv

up dHN−1 =

∫
∂Ω

up dx

since u = 0 on ∂Ω \ Jv. We conclude that

F (v) =
‖∇u‖Lp(Ω;RN ) + ‖u‖Lp(∂Ω)

‖u‖Lp(Ω)
= Cp(Ω).

Thanks to Theorem 4.14, we have that minimizers of the free discontinuity problem (4.1) for
m = |Ω| are of the form

ψ1B ,

where B is a ball of volume m, and ψ ∈W 1,p(B) is radial with respect to its center. In particular
we get

(5.1) Cp(Ω) = F (v) ≥ F (ψ1B) =
‖∇ψ‖Lp(B;RN ) + ‖ψ‖Lp(∂B)

‖v‖Lp(B)
≥ Cp(B),

which shows the optimality of the ball for the constant in inequality (1.1).
Let us come to the uniqueness issue. If Cp(Ω) = Cp(B), then inequalities in (5.1) become

equalities, which yields that v = u1Ω is a minimizer for the free discontinuity problem (4.1). By
Theorem 4.14, we get that Ω is a ball, and the proof is concluded.
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The case p = 1. In this case, the Poincaré inequality is related to the Cheeger constant. We
give below a direct proof working with rearrangements in BV , but one can also use an equivalent
definition for the Cheeger constant and rely on classical symmetrization of sets (see the remark
below).

Let Ω ⊆ RN be open, bounded and with a Lipschitz boundary. Notice that by using a standard
approximation argument, the inequality

C1(Ω)‖u‖L1(Ω) ≤ ‖∇u‖L1(Ω;RN ) + ‖u‖L1(∂Ω), u ∈W 1,1(Ω),

can be rewritten

(5.2) C1(Ω)‖u‖L1(Ω) ≤ |Du|(RN ), u ∈ BV (RN ), supp(u) ⊆ Ω.
Equality is attained on a nonnegative function ũ 6= 0. If we pass to its radial symmetric decreasing
rearrangement ũ∗ supported on a ball B̃ centered at the origin with |B̃| = |supp(ũ)| (see Subsection
2.4), as a consequence of the coarea formula together with the isoperimetric inequality we get (see
e.g. [11, Theorem 1.3])

|Dũ∗|(RN ) ≤ |Dũ|(RN ),

so that

C1(Ω) =
|Dū|(RN )

‖ū‖L1(Ω)
≥ |Dū

∗|(RN )

‖ū∗‖L1(B̃)

≥ C1(B̃).

If B is a ball with |B| = |Ω|, we get (monotonicity of C1 under dilations)

(5.3) C1(Ω) ≥ C1(B̃) ≥ C1(B),

i.e., the ball is an optimal domain.
If C1(Ω) = C1(B), then equality holds in (5.3), so that we infer in particular

|Dũ∗|(RN ) = |Dũ|(RN ) and |supp(ũ)| = |B̃| = |Ω|.
By [11, Theorem 1.5], we deduce that u agrees a.e. with a function whose level sets are open balls.
This entails that the support of ũ is a ball contained in Ω with volume equal to |Ω|, i.e., Ω is itself
a ball. The proof is now concluded.

Remark 5.1 (Relationship between C1(Ω) and the Cheeger constant). Using the co-area
formula and Cavalieri’s principle (see for instance [10]), the following equality occurs

C1(Ω) = min

{
Per(E;RN )

|E|
: E measurable, E ⊂ Ω

}
.

In other words, C1(Ω) is precisley the Cheeger constant of the set Ω. Above, Per(E;RN ) is the
perimeter of the set E in the sense of geometric measure theory (see Subsection 2.2).

Then, inequality C1(Ω) ≥ C1(B) comes directly by symmetrization and the isoperimetric in-
equality. If C1(Ω) = C1(B), then there exists a Cheeger set E in Ω which is a ball of the size of
B. Since |Ω| = |B|, we get Ω = B.

Remark 5.2 (Faber-Krahn inequality for the Robin p-Laplacian). Let us consider for
every 1 < p < +∞ and β > 0 the Poincaré inequality with trace term

∀u ∈W 1,p(Ω) : C̃p(Ω, β)

∫
Ω

|u|p dx ≤
∫
Ω

|∇u|p dx+ β

∫
∂Ω

|u|p dHN−1.

We see that

C̃p(Ω, β) = min
u∈W 1,p(Ω),u6=0

∫
Ω
|∇u|p dx+ β

∫
∂Ω
|u|p dHN−1∫

Ω
|u|p dx

,

so that C̃p(Ω, β) is the first eigenvalue of the p-Laplace operator on Ω with Robin boundary
condition.

The analysis of the previous section can be easily adapted to deal with the free discontinuity
functional

F̃ (u) :=

∫
RN |∇u|p dx+ β

∫
Ju

[(u+)p + (u−)p] dHN−1∫
RN up dx

,
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showing that
C̃p(B, β) ≤ C̃p(Ω, β), |B| = |Ω|,

with equality if and only if Ω is a ball. This provides thus an alternative proof of the Faber-Krahn
inequality for the Robin-p-Laplace operator established in [12] (see also [4]).
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