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Abstract

We consider the relaxed area functional for vector valued maps and its exact value
on the triple junction function u : B1(O) → R2, a specific function which represents the
first example of map whose graph area shows nonlocal effects. This is a map taking only
three different values α, β, γ ∈ R2 in three equal circular sectors of the unit radius ball
B1(O). We prove a conjecture due to G. Bellettini and M. Paolini asserting that the
recovery sequence provided in [5] (and the corresponding upper bound for the relaxed
area functional of the map u) is optimal. At the same time, we show by means of a
counterexample that such construction is not optimal if we consider different domains
than B1(O), which still contain the same discontinuity set of u in B1(O). Such domains
are obtained from B1(O) erasing part of interior of the sectors where u is constant.
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1 Introduction

The analysis of polyconvex energies arises in many branches of calculus of variations, and
more specifically in problems coming from the mechanics of solids, like elasticity theory [2].
Particular attention has been given to energies with linear growth, and special issues concern
the property of lower-semicontinuity on the class of admissible states (see [1] and references
therein). A fundamental example of polyconvex function with linear growth is the area
functional, the functional which measure the area of the graph of a given map. This is
the simplest example of polyconvex energy related to a variable of a (physics, mechanics)
system, and already shows many particular features and issues which are surprising and row
against intuition.

The area functional is introduced as follows. Let Ω ⊂ Rn be an open set. The graph
of a smooth function v : Ω→ RN is defined as the subset Gv of Ω× RN given by

Gv := {(x, y) ∈ Ω× RN : y = v(x)}. (1.1)



The graph Gv is a surface of dimension n embedded in Rn+N , and then its area can be
computed, namely its n-dimensional Hausdorff measure. Considering the embedding Φ :
x 7→ (x, v(x)), easy computation brings to the formula that, in the specific case N = 1 is
given by

A(v) :=

∫
Ω

(1 + |∇v|2)
1
2 dx, (1.2)

whereas, if, for example, n = N = 2, reads as

A(v) :=

∫
Ω

(
1 + | ∂v1

∂x1
|2 + | ∂v1

∂x2
|2 + | ∂v2

∂x1
|2 + | ∂v2

∂x2
|2 + |J(v)|2

) 1
2 dx. (1.3)

Here J(v) stands for the Jacobian determinant of v, i.e.,

J(v) :=
∂v1

∂x1

∂v2

∂x2
− ∂v2

∂x1

∂v1

∂x2
. (1.4)

It is easy to realize that such definition can be extended to all maps v ∈W 1,min{n,N}(Ω;RN ).
More in general, one can try to define the area of the graph of still less regular maps,
proceeding by approximating them by regular functions (for the theory of polyconvexity
in W 1,p see [16]). To this respect, one is led to define the area functional for any map
v ∈ L1(Ω;RN ), given by

A(v) := inf{lim inf
n→+∞

A(vn)}, (1.5)

where the infimum is computed on all sequences of functions vn ∈ C1(Ω;RN ) such that vn →
v in L1(Ω;RN ). However, in general, it is not true that the relaxed functional (1.5) coincides
with the original area functional (1.3) inW 1,1(Ω;RN ), which is not lower-semicontinuous (see
[1]). Moreover, it might happen that the value of the lower semicontinuous envelope A(v) be
not finite for some function v ∈ L1(Ω;RN )\W 1,min{n,N}(Ω;RN ). Therefore the first natural
question arising from definition (1.5) is to determine the exact domain D(A) ⊂ L1(Ω;RN )
of the functional A. A second natural question is, of course, to determine the exact value
of it, namely a general formula like (1.2) or (1.3). This very challenging problem has been
completely solved in codimension 1, that is in the case the target space is R (N = 1) (see [8]).
In this case, the lower semicontinuous envelope of the area functional A : C1(Ω;R) → R is
the functional

A(v) =

{∫
Ω

√
1 + |∇v|2dx+ |Dsv|(Ω) if v ∈ BV (Ω),

+∞ otherwise,
(1.6)

where ∇v represents the absolutely continuous (with respect to the Lebesgue measure Ln)
part of the gradient Dv of v, and Dsv its singular part. In other words, the area functional
has as natural domain BV (Ω) the space of functions of bounded variations where it assumes
the general integral form (1.6). In particular, thanks to the good properties of the integral
form, it turns out that the area functional is subadditive if seen as function on sets. More
precisely, let us consider on any open set U ⊂ Ω the area functional restricted to U , defined
as

A(v;U) :=

∫
U

(1 + |∇v|2)
1
2 dx. (1.7)

Then, for fixed v ∈ BV (Ω), we can look at A(v; ·) as a function on Borel sets. As a
consequence of the expression (1.6) it turns out that A(v; ·) is subadditive, namely

A(v;U1 ∪ U2) ≤ A(v;U1) +A(v;U2) for all U1, U2 ⊂ Ω. (1.8)

In higher dimension N ≥ 2 all these good properties fail. First, it is only possible to prove
that

A(v;U) ≥
∫
U

√
1 + |∇v|2dx+ |Dsv|(U), (1.9)
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and the inequality is strict in some cases. Furthermore an explicit example in [1] (which
consider a slight modification of an example in [2]) shows that the subadditivity property
does not hold true in general. In this example, first suggested by De Giorgi in [9], it is
exhibited a simple function u : Ω ⊂ R2 → R2, called triple junction function. The function
u takes only three values α, β, and γ, which are the vertices of an equilateral triangle of
side

√
3 centered at the origin O of R2. The plane R2 is divided in three sectors DA, DB ,

and DC , which have as boundaries three halflines with endpoint O and forming three equal
angles of 2π/3. The function u then is defined by setting

u = α on DA, u = β on DB , u = γ on DC , (1.10)

thus showing three jumps on the halflines meeting in the triple junction O. In [1] it is proved
that for the function u : R2 → {α, β, γ} the following happens:

(a) Let R > 0 be fixed and let BR(O) be the ball centered in O and with radius R. In
any open subdomain U ⊂ BR(O) such that O /∈ U the relaxed area functional A(u;U)
takes the form (1.9), and therefore its value is

A(u;U) = L2(U) + |Dsu|(U).

Specifically, if ρ ∈ (0, R) and U = BR(O) \Bρ(O), then

A(u;U) = π(R2 − ρ2) + 3
√

3(R− ρ).

(b) The following two inequalities are provided

A(u;BR(O)) ≤ L2(BR(O)) + 4
√

3R, (1.11)

A(u;BR(O)) > L2(BR(O)) + 3
√

3R. (1.12)

(c) If s > R > ρ > 0, then

A(u;BR(O)) > A(u;Bρ(O)) +A(u;Bs(O) \Bρ/2(O)). (1.13)

The estimate (1.11), proved in [1], is not optimal. In [5] this bound has been improved.
In order to give the precise value of the upper bound found in [5] we need some prelim-
inary. Let us define the rectangle R := (0, R) × (−

√
3/2,
√

3/2). Consider the function
ϕ : (−

√
3/2,
√

3/2)→ R+ defined as

ϕ(−
√

3

2
) = ϕ(

√
3

2
) = 0, ϕ(0) =

1

2
, ϕ is affine on (−

√
3

2
, 0) and (0,

√
3

2
). (1.14)

We will deal with the following minimal problem: we want to minimize the area of the graph
of continuous functions v : R → R belonging to the family

A1
ϕ(R) := {v ∈W 1,1(R) : v = 0 on (0, R)× {−

√
3/2,
√

3/2}, v(0, ·) = ϕ(·)}. (1.15)

If v is a minimizer for this minimum problem, the correspondent value of the area of the
graph is denoted by mR, namely

mR := A(v;R) = inf{A(v;R) : v ∈ A1
ϕ(R)}. (1.16)

Hence, in [5], the following inequality has been proved

A(u;BR(O)) ≤ L2(BR(O)) + 3mR. (1.17)

Furthermore Bellettini and Paolini [5] conjectured that such value is optimal, that is, for
any sequence of maps vk ∈ C1(BR(O);R2) such that vk → u strongly in L1(BR(O);R2) it
holds

lim inf
k→∞

A(vk;BR(O)) ≥ L2(BR(O)) + 3mR. (1.18)
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In the present paper we propose a proof of this conjecture. Actually, without lose of gener-
ality, we work in the specific case R = 1 and denote m1 = m. Therefore we prove

A(u;B1(O)) = π + 3m. (1.19)

In order to show this result, we have to introduce some preliminary on currents and the
concept of Cartesian maps. We thus exploit some well-known cornerstone Theorems of
calculus with Cartesian currents, as their properties of closure and compactness. Then, the
proof of (1.19) is articulated in three sections. In the first one, Section 3, we introduce
the problem in the domain Ω = B1(O), and start by taking a sequence vk ∈ C1(Ω;R2)
approaching u, supposing it is optimal, namely

A(vk; Ω)→ A(u; Ω).

Then we divide the domain in more sectors in order to detect the different behavior of the
approaching sequence {vk}. In particular we consider one small triangular sector containing
the junction point O, and three other main sectors each containing one of the lines forming
the jump set of u. We first look at the graphs of vk in these sectors, treating them as
integral currents in Ω × R2. Choosing suitable maps from R4 to R3, and considering the
push forward by them, we then reduce to consider integral currents in R3, which have the
advantage of being currents of codimension 1. This procedure of dimension reduction leads
to four integral currents Ŝ1, Ŝ2, Ŝ3, and T , which satisfy the following key inequality1

|Ŝ1|+ |Ŝ2|+ |Ŝ3|+ |T |+ L2(Ω) ≤ A(u; Ω). (1.20)

The currents Ŝ1, Ŝ2, Ŝ3, and T show the following properties: they are supported in the
prism P := [0, 1) × T , where T is the closed triangle in R2 with vertices α, β, and γ, T is

supported in {0}×T , the sum Ŝ1 + Ŝ2 + Ŝ3 +T is a closed current in (−∞, 1)×R2, and each

Ŝi shows a specific boundary ∂Ŝi which, up to an error (see formula below), is supported
on the edges of the prism: more specifically, there are integral 1-currents NA, NB , and NC ,
such that,

∂Ŝ1 = −NA +NB − (Id× α)][[0, 1]] + (Id× γ)][[0, 1]] + V1,

with (Id × α)][[0, 1]] representing the graph of the constant map f = α on the segment

(0, 1), and V1 being a current supported on {0} × T . Similar formulas hold for Ŝ2 and Ŝ3

(see Section 3 for details).
Afterward we are ready to state our main result, Theorem 3.7. This asserts that

|Ŝ1|+ |Ŝ2|+ |Ŝ3|+ |T | ≥ 3m, (1.21)

which, together with (1.20), will provide the lower bound

A(u; Ω) ≥ L2(Ω) + 3m.

Combining this with the upper bound proved in [5], namely (1.17), we finally conclude
(1.19).

Let us spend some words on the optimal construction obtained in [5]. For the

recovery sequence therein the limit currents Ŝ1, Ŝ2, Ŝ3 will coincide with the minimal
surfaces providing the solution of problem (1.16). In particular the current V1 (and similarly
V2 and V3) turns out to be the graph of ϕ appearing in (1.14). Moreover in this case the
current T turn out to be null, as for the currents NA, NB , and NC , which do not appear
for the optimal recovery sequence. In some sense, the presence of T and NA, NB , NC , do
not provide better estimates for the area functional, and at optimality, they must vanish.

1To be precise, we prove this inequality with L2(Ω) replaced by L2(Ω) − ε, where ε > 0 is a small
parameter depending on the geometric construction; the inequality in (1.20) follows from the fact that we
can render ε as small as we want optimizing the geometry of the construction, see Section 3 and Theorem
3.7.
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Figure 1: On the left it is represented the domain B1(O) and the sectors DA, DB , and
DC where the function u takes the values α, β, and γ respectively. The three segments
meeting at O are the jump sets of u. The picture on the right represents the thin domain
Ub, obtained from B1(O) by cutting part of the interior of the sectors where u is constant;
the jump set is still drawn in black, together with three small segments connecting O to ∂Ub
which represent the set where the vertical currents Gvk concentrate.

In order to prove Theorem 3.7 we need to get rid of the currents NA, NB , and NC ,
appearing in the boundaries of Ŝi. To this aim, we introduce a Steiner type symmetrization
technique in Section 4. This is the heaviest part of the paper, and the more technical. The
main idea relies into construct three symmetrization operators SA, SB , SC , each symmetriz-
ing the currents Ŝi and T with respect to one of the heights of the triangle T , and with
the property of decreasing the masses of Ŝi, T , and of their boundaries (see Lemma 4.23).
Then, applying repeatedly these operators, we are able to reduce to integral currents S1,
S2, S3, and T which still satisfy (1.20), but have now well-properties at the boundaries; in
particular the new currents NA, NB , and NC , are null. This brings us to Section 5, where
we finally prove Theorem 3.7. First we list some key features of the brand new currents S1,
S2, S3, and T (see properties (i) and (ii) at the beginning of Section 5). Observing that such
properties are closed in the class of integral currents, we reduce our argument to a problem
of minimal surfaces. This problem consists of minimizing the mass |S1|+ |S2|+ |S3|+ |T |
among the class of integral currents satisfying properties (i) and (ii), which in particular
contain a fixed boundary condition for such currents (see problem (5.12)). Some additional
Lemmas bring us to deduce that the minimizers of this variational problem consists of three
currents Si (the currents T turns out to be zero) which can be identified with three Cartesian
currents on the rectangle R1 = (0, 1)× (−

√
3/2,
√

3/2). The boundaries of these Cartesian
currents are shown to satisfy the same Dirichlet boundary datum as in (1.15). From this it
easily turns out that the minimal mass of each Si must be m, and (1.21) is achieved.

At this last step it is evident how we use the good feature of the class of Cartesian
currents in codimension 1. In fact we strongly exploit the fact that every Cartesian currents
is approximable by graphs of smooth functions, which is a property that is true only if the
target space of these functions is R (i.e., one dimensional). We stress that at this point the
dimension reduction exploited in Section 3 becomes crucial.

In the following Section 6 we face the problem of studying the optimality of the
bound in (1.17) for different domains Ω still containing the triple junction. First let us
emphasize that part of the conjecture in [5] also asserts that the same bound holds in the
case that the lines meeting in O, boundaries of the regions DA, DB , and DC , form angle not
necessary equal to 2π/3. We do not treat this case directly, but a sharp inspection of the
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proof we provide should show that it can be adapted to such a case, encouraging us to assert
that also for this more general geometry the conjecture is true (however we do not detail
this argument here and then are not in position to state a general result). On the one hand,
as a consequence of the lack of subadditivity, it is not possible to express the area functional
with an integral formula like (1.9). The example of the triple junction function and the
corresponding features described in (a) above shows that it is evident that the nonlocal
behavior of A(u; ·) strongly depends on the presence of the junction point. In absence of it
the additivity comes back. Furthermore, the recovery sequence {vk} ∈ C1(Ω;R2) provided
in [5] such that

L2(BR(O)) + 3mR = lim inf
k→∞

A(vk;BR(O)),

shows the following feature: if we look at the graphs of vk as integral currents in BR(O)×R2,
they concentrate in the singular set Ju × R2, Ju being the union of the three radii with
endpoint the triple junction O (i.e. the jump set of u). In other words, if Gvk ∈ D2(BR(O)×
R2) denotes the current carried by the graph of vk, then

Gvk ⇀ S,

with S a Cartesian current which writes as S = Gu + V , where V ∈ D2(BR(O) × R2)
represents the vertical part originated by the concentration of Gvk , and supported on the set
Ju×R2. This phenomenon might lead to the following issue: if, let us say, u ∈ SBV (Ω;R2)
and Ju represents the jump set of u, and if vk are C1(Ω;R2) functions providing

A(u;U) = lim inf
k→∞

A(vk;U), (1.22)

then is it true that the graphs Gvk tends to a Cartesian current S = Gu + V where the
vertical part V is concentrated to the set Ju × R2? If this question had a positive answer,
we would be led to conjecture that A(u; ·) writes as

A(u;U) = |Gu|+Anl(u+, u−; Ju), (1.23)

where Anl is a nonlocal term whose value depends only on the jump set Ju and on the traces
of u on it, namely u+ and u−. To my opinion this reasoning is misleading and the answer
to the previous demand is, in general, negative. To justify this assertion, we provide an
example in which the domain Ub of the triple junction function u is a subdomain of B1(O)
obtained by biting part of the area where u is constant (namely the inner part of the sectors
DA, DB , and DC). This domain still contain the whole jump set Ju of u in B1(O), and in
particular the junction point O, since it contains a neighborhood of it (see Figure 1, on the
right). Contrarily to what one might aspect, the area functional computed on this domain
is less then L2(Ub) + 3m, i.e.

A(u;Ub) < L2(Ub) + 3m. (1.24)

This example prove the following assertions:

� The recovery sequence provided in [5] is not optimal for the domain Ub, even if it
contains the same discontinuity set of u in B1(O).

� A formula as (1.23) is false. Indeed, in the case Ω = B1(O) it turns out from (1.19)
that Anl(u+, u−; Ju) = 3m. However inequality (1.24) gives rise to a different value of
Anl(u+, u−; Ju), even if Ju and the traces u± does not change.

We do not conjecture that the sequence vk of approximate functions we construct in Section
6 and such that

lim inf
k→∞

A(vk;Ub) < L2(Ub) + 3m

are optimal. At the same time, we believe that for this specific domain the graphs Gvk of
an optimal sequence concentrate outside the set Ju × R2. At least, in the specific example
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of Section 6, this graphs converge to a Cartesian current Gu + V where the vertical part V
is supported on a set K × R2, where K contains, besides of Ju, three additional segments
connecting O to the boundary of Ub, lying on the bisectors of the halflines forming the triple
junction (see Figure 1 on the right, where the set K is emphasized). Similar examples of
this behavior have been provided in [7, Section 7], where the authors study the relaxed area
functional in the presence of a function u with a prescribed discontinuity on a curve. Our
construction of the approximating sequence vk is similar to the one used in [7], where the
jump set of u is somehow prolonged on a path reaching the boundary. In our case, this path
is not fixed, but depends on k and at the limit as k →∞ becomes exactly the union of the
three lines in 1 connecting O to the boundary. What is crucial here is that on this set we
do not have uniform convergence of vk to u.

Let us conclude this discussion emphasizing that the highly bad behavior of the
area functional becomes evident in the presence of junction points as for the map u. It is
possible that, when the jump set consists of a simple curve non self-intersecting, a formula as
(1.23) holds true. There are important contributions in this direction in the very interesting
papers [6, 7], where the authors study exactly this kind of singularities. More specifically
they prove a formula like (1.23) (with inequality ≤ replacing the equality =) that in some
cases can be shown to be optimal (that is equality holds). The nonlocal term Anl(u+, u−; Ju)
is related to a problem of minimal surfaces (see Theorem 1.1 in [6]).

Under the light of these last observations we realize that the problem of a full
understanding of the relaxation of the area functional, and, more in general, of polyconvex
energies in codimension greater than 1, is still a challenging issue we are far from.

2 Preliminaries

k-forms. Let α be a multi-index, i.e., an ordered (increasing) subset of {1, 2, . . . , n}. We
denote by |α| the cardinality (or length) of α, and we denote by α the complementary set
of α, i.e., the multi-index given by the ordered set {1, 2, . . . , n} \ α.

For all integers n > 0 and k ≥ 0 with k ≤ n, we denote by ΛkRn the space of
k-vectors and by ΛkRn the space of k-covectors. Let Ω ⊂ Rn be an open set. The symbol
Dk(Ω) stands for the topological vector space of smooth and compactly supported k-forms
(that is the topological vector space of compactly supported and smooth maps on Ω with
values in ΛkRn). Any k-form ω ∈ Dk(Ω) can be written as sums of elementary forms,
namely

ω =
∑
|α|=k

ϕαdx
α,

where ϕα is a smooth compactly supported real function, and dxα is the simple covector
defined as dxα = dxα1 ∧ · · · ∧ dxαk .

Assume U ⊂ Rn and V ⊂ RN be open sets and F : U → V be a smooth map; then,
for any ω ∈ Dk(V ) is defined a form F ]ω ∈ Dk(U) called pull-back of ω by F ; if ω = ϕαdy

α,
|α| = k, then

F ]ω = (ϕα ◦ F )dFα, (2.1)

with
dFα = dFα1 ∧ dFα2 ∧ · · · ∧ dFαk ,

where

dFαi :=
∑
k

∂Fαi
∂xk

dxk.

For a N × n matrix A with real entries and for multi-indices α and β with |α| = |β| = k ≤
min{n,N}, Mβ

α (A) denotes the determinant of the submatrix of A obtained by erasing the
i-th columns and the j-th rows, for all i ∈ α and j ∈ β. We denote by M(A) the n-vector
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in ΛnRn+N given by

M(A) :=

n∑
k=0

∑
|α|=|β|=k

σ(α, α)Mβ
α (A)eα ∧ εβ ,

where {ei}i≤n is the canonical basis of Rn, {εi}i≤N the canonical basis of RN , and σ(α, α)
is the sign of the permutation (α, α) (see [11, pag. 230]). Accordingly, we set

|M(A)| := (1 +

min{n,N}∑
k=1

∑
|α|=|β|=k

|Mβ
α (A)|2)1/2.

Generalities on currents. The dual space of Dk(Ω), denoted by Dk(Ω), is the space
of k-currents on Ω. We define a weak convergence in Dk(Ω) setting Tj ⇀ T as currents if
for all ω ∈ Dk(Ω) we have Tj(ω) → T (ω). For all currents T ∈ Dk(Ω) the mass of T in
U ⊂ Ω is the number |T |U ∈ [0,+∞] defined by

|T |U := sup
ω∈Dk(U), |ω|≤1

T (ω).

The boundary ∂T ∈ Dk−1(Rn) of a current T ∈ Dk(Rn) is defined as

∂T (ω) = T (dω) ∀Ω ∈ Dk−1(Rn). (2.2)

A current T is said closed if it has null boundary, namely if ∂T = 0 as current.
Given an oriented surface S of dimension k ≤ n embedded in Rn, this defines a

current in Dk(Rn), obtained as integration of k-forms over it (the “volume form” is given
by the orienting k-vector). We will often identify surfaces with currents and use the same
notation for both. Given a k-rectifiable set K (a countable union of subsets of Lipschitz
surfaces) and a summable real function θ on it (with respect to the k-dimensional Hausdorff
measure) we can define a current K integrating k-forms over K as follows

K(ω) :=

∫
K

〈ω(x), τθ(x)〉dHk(x), (2.3)

where 〈·, ·〉 is the duality product between covectors and vectors. Here τ : S → Λk(Rn) and
θ : S → R are such that τ(x) ∈ TxS is a simple unit k-vector for Hk-a.e. x ∈ S and θ is
a Hk-integrable function. The current K, denoted by K = {K, τ, θ} is said rectifiable. If K
has rectifiable boundary and θ is an integer-valued function, then K is said rectifiable with
integer multiplicity (or simply integer multiplicity current, i.m.c.). An integral current is an
integer multiplicity current with finite mass and finite boundary mass. We use the notation

N(T ) := |T |+ |∂T |.

An integral current T ∈ Dk(Rn) is said indecomposable if there exists no integral current
R such that R 6= 0 6= T −R and

N(T ) = N(R) +N(T −R).

The very specific case in which the integer mutiplicity current K ∈ Dn(Rn) is of the form
K = {K, τ, θ} with θ = 1 and τ = e1 ∧ · · · ∧ en, then K turns out to be the standard
integration over the set K and is denoted by

K = [K].

Moreover if K is a set of finite perimeter then the current [K] is integral.
The following theorem provides the decomposition of every integral current and the

structure of integer multiplicity indecomposable 1-currents (see [10, Section 4.2.25]).
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Theorem 2.1. For every integral current T there exists a sequence of indecomposable in-
tegral currents Ti such that

T =
∑
i

Ti and N(T ) =
∑
i

N(Ti).

Suppose T is an indecomposable integer multiplicity 1-current on Rn. Then there exists a
Lipschitz function : R→ Rn with Lip(f) ≤ 1 such that

f (0, |T |) is injective and T = f][(0, |T |)].

Moreover ∂T = 0 if and only if f(0) = f(|T |).

Assume U ⊂ Rn and V ⊂ RN be open sets and F : U → V be a smooth map. The
push-forward of a current T ∈ Dk(U) by F is defined as

F]T (ω) := T (ζF ]ω) for ω ∈ Dk(V ),

where F ]ω is the standard pull-back of ω and ζ is any C∞ function that is equal to 1 on
sptT ∩ sptF ]ω. It turns out that F]T ∈ Dk(V ) does not depend on ζ and satisfies

∂F]T = F]∂T . (2.4)

We will also employ the following crucial fact, which actually is valid for every
dimension but, in our setting, will be used only in codimension 1.

Theorem 2.2. Let n ≥ 1 be an integer. Let T ∈ Dn−1(Rn) be an integral current such that
∂T = 0. Then there exists an integral current S ∈ Dn(Rn) such that ∂S = T .

This is a standard result; in particular the current S can be the so-called cone over
T , see [14, Section 7.4.4]. Besides, S can be given by the isoperimetric inequality Theorem,
see [14, Theorem 7.9.1].

Cartesian currents and graphs. Let Ω ⊂ Rn be an open set, and let u : Ω→ RN be
a smooth map. The graph of u is the set

Gu := {(x, y) ∈ Ω× RN : y = u(x)}.

This is the support of the current Gu ∈ Dn(Ω× RN ) given by

Gu := (Id× u)][Ω]. (2.5)

This turns out to be an integer multiplicity current whose mass is obtained as the result of

|Gu|Ω×RN =

∫
Ω

|M(Du)|dx. (2.6)

Notice that this is exactly the area of the graph of u. In the specific case n = N = 2
this formula reads as (1.3), namely A(u; Ω) = |Gu|Ω×R2 . In order that Gu be an integer
multiplicity current much less regularity of u is needed. Indeed it suffices that u is approxi-
mately differentiable a.e. in Ω and that all the minors Mα

β (Du) (for all |α| = |β| = k, for all

k ≤ min{n,N}) belong to L1(Ω). We denote the class of functions u ∈ L1(Ω;RN ) satisfying
these conditions by A1(Ω;RN ), namely

A1(Ω;RN ) := {u ∈ L1(Ω;RN ) : u is appr. diff. a.e. in Ω,

and Mα
β (Du) ∈ L1(Ω) ∀ |α| = |β| = k, k ≤ min{n,N}}

The class of Cartesian maps is Cart(Ω;RN ) defined as

Cart(Ω;RN ) := {u ∈ A1(Ω;RN ) : |Gu| < +∞, ∂Gu = 0 in Ω× RN}. (2.7)
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Let T be an i.m.c. in Dn(Ω × RN ). For all multi-indices α and β with |α| + |β| = n we
define

T αβ(ω) := T (ωαβdx
α ∧ dyβ),

the αβ-component of T . The T 00 component can be identified with a Radon measure on
Ω. If the component T 00 is a Radon measure with bounded variation it is well defined the
norm

‖T ‖1 := sup{T (ϕ(x, y)|y|dy) : ϕ ∈ C0
c (Ω× RN ), |ϕ| ≤ 1}.

We define the class of graphs as

graph(Ω× RN ) := {T ∈ Dn(Ω× RN ) s.t. T is an i.m.c. with M(T ) <∞,

‖T ‖1 <∞,M(∂T ) <∞, T 00 ≥ 0, π]T = [Ω]}, (2.8)

where π : Ω × RN → Ω is the standard projection into the Ω. A proper subclass of the
graphs is the class of Cartesian currents defined as follows:

cart(Ω× RN ) := {T ∈ Dn(Ω× RN ) s.t. T is an i.m.c. with M(T ) <∞,

‖T ‖1 <∞, ∂T (Ω× RN ) = 0, T 00 ≥ 0, π]T = [Ω]}. (2.9)

By the structure theorem for Cartesian currents (see [11, Section 4.2.3]) we can always
decompose a Cartesian current T as a graph plus a vertical part, namely

T = Gu + S, (2.10)

where S is concentrated on a set Ω0 × RN , Ln(Ω0) = 0, and satisfies

S(ωαβdx
α ∧ dyβ) = 0 if α 6= 0.

In codimension 1 every Cartesian current can be approximated by graphs of Cartesian maps:
if T ∈ cart(Ω×R) then there exists a sequence of smooth functions uk such that Guk ⇀ T .
Moreover if T = Gu+S then uk → u in L1(Ω). This is a consequence of the approximability
of BV-functions with real values (see [11, Section 4.2.4]).

Slicing. We will need some elementary application of the technique of slicing. Very
often in the following of the paper this technique can be reduced to a generalized version of
Fubini integration Theorem. For this reason we do not go into details and we refer to [14]
(see also [10] and [11]) for a complete discussion.

Let S be an integral current in Dk(R3), k ≥ 1 and let x be one of the three coordinate
in R3. We denote by 〈S, t〉 the slice of S on the plane {x = t}. This is an integral current of
dimension k − 1 with some important features related to S. In particular (see [14, Lemma
7.6.3]), if S is supported on a rectifiable set (denoted by S), then 〈S, t〉 is supported on
S ∩ {x = t}, and it holds ∫ ∞

−∞
|〈S, t〉|dt ≤ |S|. (2.11)

Moreover it holds true, for H1-a.e. t ∈ R,

∂〈S, t〉 = −〈∂S, t〉. (2.12)

2.1 Technical preliminaries

Lemma 2.3. Let D ⊂ R2 be a bounded open set and vk ∈ C1(D;R2) be such that vk → v ≡ c,
a constant, in L1(D;R2). Assume that

‖Dvk‖L1 + ‖J(vk)‖L1 < C < +∞ for all k. (2.13)
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Then, up to a subsequence, Gvk ⇀ Gv + S as currents, where S is the vertical part, and

|Gv + S| = |Gv|+ |S| = L2(D) + |S|. (2.14)

Moreover for all ε > 0 sufficiently small there exists an open set Aε ⊂ D with |Aε| ≤ ε such
that, for a not relabeled subsequence,

Gvk (Aε × R2) ⇀ Gv (Aε × R2) + S. (2.15a)

Let us write Gvk (D × R2) = Zkε + Z̃kε where, for any ω = ωαβdx
α ∧ dyβ ∈ D2(D × R2),

Zkε (ωαβdx
α ∧ dyβ) =

∫
Aε∩D

ωαβ(x, vk(x)))Mα
β (Dvk)(x)dx,

Z̃kε (ωαβdx
α ∧ dyβ) =

∫
Acε∩D

ωαβ(x, vk(x))Mα
β (Dvk)(x)dx,

and define Π̂ : D × R2 → R3 the map Π̂ : (x1, x2, y1, y2) 7→ (
√
x2

1 + x2
2, y1, y2). Then

Π̂]Z̃
k
ε ⇀ 0. (2.15b)

Proof. By the theory of Cartesian currents we know that the weak limit of the currents Gvk
is of the form Gv D+ + S where D+ is a Borel subset of D such that |D \ D+| = 0 (see
Theorem 2 in [11, Section 4.2.3]). Expression (2.14) follows from the fact that Gv and S are
singular with respect to each other, and furthermore |Gv| = L2(D), being v ≡ c a constant.

Let us fix ε > 0. By (2.13) and the biting Lemma [4] there exists a (not relabeled)
subsequence and a Borel set Aε ⊂ D with |Aε| ≤ ε such that Dvk and J(vk) are equi-
uniformly integrable in L1(D \Aε;R2), and thus there exist the limits

Dvk ⇀ G weakly in L1(D \Aε;R2×2),

J(vk) ⇀ d weakly in L1(D \Aε).

From Theorem 5 in [11, Section 4.2.3] (see formula (17) for d and (18) for G with |β| = 2)
we find out that G = 0 and d = 0, namely

Dvk ⇀ 0 weakly in L1(D \Aε;R2×2),

J(vk) ⇀ 0 weakly in L1(D \Aε). (2.16)

Fix now any function ϕ ∈ C∞c (D × R2), setting ωij = ϕdxi ∧ dyj , we infer

Gvk (Aε × R2)(ωij) =

∫
Aε

ϕ(x, vk(x))Di(vk)j(x)dx (2.17)

=

∫
D

ϕ(x, vk(x))Di(vk)j(x)dx−
∫
D\Aε

ϕ(x, vk(x))Di(vk)j(x)dx, (2.18)

tends to

Gv(ωij) + S(ωij)−
∫
D\Aε

ϕ(x, v(x))Divj(x)dx = Gv(ωij) (Aε × R2) + S(ωij).

To let the last term pass to the limit we have here used [11, Proposition 1, Section 1.2.4,
pag. 54]. Arguing similarly for a form ω = ωij = ϕdxi ∧ dxj and for ω = ϕdyi ∧ dyj , thanks
to the convergence of the Jacobian, we conclude (2.15a).

To prove (2.15b) we check that Π̂]Z̃
k
ε (ω) → 0 for all ω ∈ D2(R3). It suffices to

consider the three cases ω = ϕdρ ∧ dyi, i = 1, 2 and ω = ϕdy1 ∧ dy2. Take ω = ϕdρ ∧ dyi,
i = 1, 2,

Π̂]ω = ϕ ◦ Π̂(x)(
x1

|x|
dx1 ∧ dyi +

x2

|x|
dx2 ∧ dyi),
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so that, thanks to (2.16),

Π̂]Gvk ((D \Aε)× R2)(ω) =
∑
j=1,2

∫
D\Aε

ϕ ◦ Π̂(x)
xj
|x|

∂(vk)i
∂xj

dx→ 0.

If we choose ω = ϕdy1 ∧ dy2 we have

Π̂]ω = ϕ ◦ Π̂(x)dy1 ∧ dy2,

and hence, from (2.16),

Π̂]Gvk ((D \Aε)× R2)(ω) =

∫
D\Aε

ϕ ◦ Π̂(x)J(vk)dx→ 0.

so that (2.15b) follows.

Let T be the triangle in R2 with vertices α, β, and γ. Let πT : R2 → T be the
orthogonal projection onto the convex set T .

Lemma 2.4. Let v ∈ C1(Ω;R2). Then A(πT ◦ v) ≤ A(v).

Proof. We observe first that the map πT ◦ v is Lipschitz, that is of class W 1,∞(Ω;R2), and
its Jacobian determinant satisfies, almost everywhere on Ω,

J(πT ◦ v) = J(πT )(v)J(v) ≤ J(v), (2.19)

the inequality following from the fact that J(πT ) is 1 on T and null elsewhere. Moreover
since πT is a contraction, it holds

|∂(πT ◦ v)1

∂x1
|2 + |∂(πT ◦ v)1

∂x2
|2 + |∂(πT ◦ v)2

∂x1
|2 + |∂(πT ◦ v)2

∂x2
|2

= |∂(πT ◦ v)

∂x1
|2 + |∂(πT ◦ v)

∂x2
|2 ≤ | ∂v

∂x1
|2 + | ∂v

∂x2
|2

= | ∂v1

∂x1
|2 + | ∂v1

∂x2
|2 + | ∂v2

∂x1
|2 + | ∂v2

∂x2
|2. (2.20)

Putting together (2.19) and (2.20) we conclude.

Here we state a result which relies on standard techniques in the theory of minimal
surfaces:

Lemma 2.5. Let ϕ : (−
√

3/2,
√

3/2) → R+ be the piecewise affine function defined in
(1.14). Let lj be an increasing sequence of positive numbers such that

lj ↗ l > 0 as j →∞, (2.21)

and let Rj be the rectangle (0, lj) × (−
√

3/2,
√

3/2). Let mj be the area of the minimal
surface satisfying problem (1.16) in Rj, namely mj = mlj . Then

mj → ml as j →∞. (2.22)

Proof. On one hand it holds mj ≤ ml for all j. Indeed, let uj be the minimizer of the
minimum problem (1.16), i.e.

A(uj ;Rj) =

∫ √3/2

−
√

3/2

∫ lj

0

√
1 + |∇uj |2dx1dx2 = mj , (2.23)

and let u be the minimizer of the same problem in the domain Rl := (0, l)× (−
√

3/2,
√

3/2).
We easily see that u (0, lj) × (−

√
3/2,
√

3/2) is an immediate competitor for the problem
(1.16) in Rj , and therefore

mj ≤ A(uj ;Rj) ≤ A(u;Rj) ≤ A(u;Rl) = ml. (2.24)
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We therefore deduce limmj ≤ ml. Let us prove the opposite inequality. For fixed j we
define the function ũj on the domain Rl = (0, l)× (−

√
3/2,
√

3/2) as

ũj(x1, x2) =

{
uj(x1 − (l − lj), x2) if x1 ∈ ((l − lj), l)
ϕ(x2) otherwise.

(2.25)

It is then checked that ũj is an admissible competitor for the problem (1.16) in Rl, and
moreover

A(ũj ;Rl) = mj + 2(l − lj). (2.26)

In conclusion we have found

mj + 2(l − lj) = A(ũj ;Rl) ≤ ml, (2.27)

and the thesis follows.

We will consider a suitable sequence {vk} ∈ C1(Ω;R2) approaching the triple junc-
tion function u and such that

lim
k→∞

A(vk; Ω) = A(u; Ω). (2.28)

Notice that if we focus our attention to sequences of Lipschitz functions, the value of the
area functional does not change thanks to the approximability of functions of class C1(Ω;R2)
(see step 1 of the proof in [5, Section 2]).

3 The problem in Ω = B1(O)

We study the problem of the area functional in the domain Ω = B1(O), the ball centered
at the origin and with radius R = 1. In the sequel we will denote by u : Ω → {α, β, γ}
the triple junction function defined in the introduction. Let {vk} be a sequence of functions
in C1(Ω;R2) with vk → u in L1(Ω;R2) such that (2.28) holds true for Ω = B1(O). In
particular we can assume that vk converge to u pointwise a.e. in Ω. Thanks to Lemma 2.4,
up to replacing vk by πT ◦ vk, it is not restrictive to assume that vk takes values in T for all
k ∈ N. With this assumption we cannot ensure that vk is of class C1 everywhere, but we
can still suppose that it is of class C1 in the set v−1

k (T̊ ), where T̊ = T \ ∂T is the interior of
T . We will prove that

lim
k→∞

A(vk,Ω) ≥ L2(Ω) + 3m = π + 3m, (3.1)

with m = m1 being the value introduced in (1.16).

Geometric setting. Let us denote by Ji, i = 1, 2, 3, the segments of length 1 which
are the jump sets of the function u; specifically J1 is the interface between the sets {u = α}
and {u = γ}, J2 is the interface between {u = β} and {u = α}, and J3 is the interface
between {u = γ} and {u = β}.

We will now select three sequences of real numbers θj ∈ (−π/6, π/6), ρj ∈ (0, 1),
and δj ∈ (0, 1) with θj → 0, ρj → 0, and δj → 0. We first set (identifying R2 with C)

Bj := ρje
θji, Aj := e

2πi
3 Bj , Cj := e

4πi
3 Bj .

The points Bj , Aj , and Cj are the vertices of equilateral triangles with edge
√

3ρj centered
at the origin. The numbers θj and ρj > 0 are then chosen in such a way that the sequence
{vk} converges to u at the points Bj , Aj , and Cj , for all fixed j = 1, 2, . . . . Notice that
such a choice is possible since vk converges to u a.e. in Ω. Moreover thanks to the specific
choice of θj , it is easy to see that vk(Bj)→ u(Bj) = β, vk(Aj)→ u(Aj) = α, and vk(Cj)→
u(Cj) = γ, for all j = 1, 2, . . . .
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Figure 2: The domain B1(O) is decomposed in many sectors where we treat the graphs of
vn in different way.

Let lj1 and rj1 be two parallel halflines starting from the points Aj and Cj respectively,
perpendicular to the edge AjCj , and contained in the halfplane {x < 0} (see figure 2).

Similarly construct the halflines lj2 := e
2π
3 ilj1, rj2 := e

2π
3 irj1, lj3 := e

2π
3 ilj2, and rj3 := e

2π
3 irj2.

Up to choosing θj small enough, we can assume that these halflines form a neighborhood of
the three segments Ji, i = 1, 2, 3.

The halflines lj1 and rj1 meet ∂B1−δj (O) at, say, P (lj1) and P (rj1). Similarly are

defined the points P (lji ) and P (rji ) for i = 2, 3. Consider the rectangle R1
j of vertices P (lj1),

P (rj1), Cj , and Aj , let R2
j := e

2π
3 iR1

j and R3
j := e

2π
3 iR2

j . Let lj be the lentgh of the segment

AjP (lj1). The region enclosed between the lines lj1, rj2, and the circle ∂Blj (Aj) (consider
the sector not containing O) is denoted by DA

j . The arc obtained as intersection of the

boundary of DA
j and ∂Blj (Aj) is denoted by cAj . It is here remarkable that if the number ρj

is small enough with respect to δj , then it is easily seen that the sector DA
j is well contained

in Ω = B1(O) (actually it suffices ρj ≤ 2δj). Similarly DB
j , cBj are obtained by rotating DA

j

and cAj around O clockwise of an angle of 2π/3. If the angle is 4π/3 we get DC
j and cCj

respectively. We define the set

Lj := ∪3
i=1∂R

i
j ∪ cAj ∪ cBj ∪ cCj .

We will now suitably choose the sequence of real numbers δj > 0. Let us first make
some elementary deductions from (2.28). We observe that there exists a constant C > 0
such that ∑

i,h

∫
Ω

|∂(vk)i
∂xh

|dx+

∫
Ω

|J(vk)|dx ≤ C ∀k ∈ N. (3.2)

In particular, by Fubini Theorem, it is not restrictive to assume (up to choosing suitably
the numbers θj , ρj , and δj) that for all j = 1, 2, . . . , there is a constant C(j) > 0 such that

14



it holds

lim inf
k→∞

(∑
i,h

∫
Lj

|∂(vk)i
∂xh

|dH1 +

∫
Lj

|J(vk)|dH1
)
≤ C(j) ∀j ∈ N. (3.3)

This is a consequence of the Fatou Lemma. Moreover we can also assume that the functions
vk pointwise converge to u H1-a.e. on Lj . Notice that in general the constant C(j) depends
on j.

Summarizing, we choose θj , ρj , and δj in such a way that:

(H1) The functions vk converge to u at the points Bj , Aj , and Cj , and at the points P (lji ),

P (rji ) for i = 1, 2, 3 and for all fixed j = 1, 2, . . . .

(H2) The functions vk pointwise converge to u H1-a.e. on Lj , for all fixed j = 1, 2, . . . .

(H3) The functions vk admit a subsequence (depending on j) of uniform (with respect to
k) bounded variation on Lj functions, (as a consequence of (3.3)) for all j = 1, 2, . . . .

The set Lj consists of 3 arcs and 12 segments, six of the latters are the long sides
of the rectangles Rij whose length is lj , the other six are the short sides of these rectangles

with length
√

3ρj . Denoting by {Lhj }15
h=1 these arcs and segments we parametrize each of

them by a homomorphism φhj : [0, 1]→ Lhj . Notice that

lj ↗ 1, ρj ↘ 0, δj ↘ 0. (3.4)

We now fix the index j ∈ N. We will pass to the limit as j →∞ only in the end of
the proof of our main result (3.1) (see Theorem 3.7 below).

Exploiting hypotheses (H1)-(H3) it is not hard to see that we can extract a (non-
relabeled) subsequence of {vk} such that

(H4) the functions vk ◦ φhk converge in L1([0, 1];R2), pointwise a.e. on (0, 1), and pointwise
at the points {0, 1}, for all h = 1, . . . , 15, and converge weakly star in BV ([0, 1];R2).

From hypothesis (H4) it follows that the image currents (vk◦φhk)][[0, 1]] admit limits
in the weak topology [14] in the class of integral 1-currents (and will be identified with curves
in R2 with specific endpoints). These will be crucial in the following discussion. Notice that
with this notation, and still denoting by lj1 the segment between Aj and P (lj1) for instance,

the current (vk)][l
j
1] coincides with (vk ◦ φhk)][[0, 1]], for some h ∈ {1, . . . , 15}.

Remark 3.1. The construction of the sets Lj depends on the parameters in (3.4). In what
follows we will keep j fixed, and many objects we are going to define will depend on j. We
will get rid of such dependence only at the end of this section, in the proof of Theorem 3.7
below.

The current S1
k originated from R1

j . Let us now focus on the rectangle R1
j and let

(x1, x2) be a system of Cartesian coordinates such that R1
j = (a, b) × (−

√
3ρj/2,

√
3ρj/2).

We can assume x1 represents the distance between the point (x1, x2) and the segment AjCj .

In such a case we have a = 0 and b = lj , with lj being the length of the part of lj1 inside
the ball B1−δj (O), hence R1

j = (0, lj) × (−
√

3ρj/2,
√

3ρj/2). We define, following the idea

in [6]2, the map Φk : R1
j → R3 given by

Φk(x1, x2) :=
(
x1, vk(x1, x2)

)
. (3.5)

2This function, using the terminology introduced in [6,7], is a semicartesian parametrization, whose role
of dimension reduction will be crucial in the following discussion.
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The image of Φk is a surface in R3 which is identified with an integral current S1
k ∈ D2(R3).

Thus

S1
k := (Φk)][R

1
j ]. (3.6)

In a similar way we construct the maps Φk : Rij → R3 and the associated image currents

Sik, for i = 2, 3. Let us introduce the projection Π : R4 → R3 given by

Π(x1, x2, y1, y2) = (x1, y1, y2). (3.7)

If we denote by Ψk : R2 → R2×R2 the function Ψk := Id×vk : (x1, x2) 7→ (x1, x2, vk(x1, x2))
we can write

Φk = Π ◦Ψk. (3.8)

The current S1
k ∈ D2(R3) satisfies

S1
k = Π](Ψk)][R

1
j ] = Π](Gvk (R1

j × R2)). (3.9)

Now, if T ∈ D2(R4), for any 2-form ω ∈ D2(R3) the push-forward of T by Π is defined as

Π]T (ω) = T (Π]ω),

Π]ω being the pull-back of ω by Π. It is easily seen that Π]ω is ω itself (can be identified
with it). As a consequence we see that Π] : D2(R4) → D2(R3) does not increase the mass,
namely

|S1
k| ≤ |Gvk |R1

j×R2 . (3.10)

By definition, the currents Sik have boundaries ∂Sik = (Φk)][∂R
i
j], i = 1, 2, 3. Thanks to

(H3) and the fact that Π] does not increase the mass, it is easily checked that the masses of
these boundaries are uniformly bounded with respect to k. Let us consider again the case
i = 1 (we will argue similarly for i = 2, 3); the boundary can be split in four parts, each
corresponding to one edge of R1

j . Remembering that R1
j = (0, lj)× (−

√
3ρj/2,

√
3ρj/2), set

T 1
k = (Φk)][(0, lj)× {

√
3ρj/2}], (3.11a)

T
1

k = (Φk)][(0, lj)× {−
√

3ρj/2}], (3.11b)

V 1
k = (Φk)][{0} × (−

√
3ρj/2,

√
3ρj/2)], (3.11c)

V
1

k = (Φk)][{lj} × (−
√

3ρj/2,
√

3ρj/2)], (3.11d)

(see Figure 3). We have

∂S1
k = T 1

k − T
1

k + V 1
k − V

1

k. (3.12)

We then use the compactness Theorem for integral currents (see [14]), and letting
k →∞ we find an integral current S1 ∈ D2(R3) such that, up to a not relabeled subsequence,

S1
k ⇀ S1,

(we remark that S1 depends on j; not to overburden notation we drop the label j here). By
lower semicontinuity and (3.10), we get

|S1| ≤ lim inf
k→∞

|Gvk |R1
j×R2 . (3.13)

The current SAk on the sector DA
j . On the sector DA

j we consider polar coordinates

(ρ, θ) centered at Aj . Consider the map Π̃ : DA
j × R2 → [0, lj ]× R2 given by

Π̃(ρ, θ, y1, y2) = (ρ, y1, y2).
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Figure 3: The rectangle R1
j is depicted with the standard orientation. The push forward of

the integration on the edges by Φk gives rise to the currents denoted in the figure.

Let T be an integral current in D2(DA
j ×R2), and consider the push-forward by Π̃, namely

Π̃]T . Writing Π̃ in euclidean coordinates it is an easy check that the map Π̃ is a contraction

and that Π̃] does not increase the mass of T .
In the spirit of what we have made on the set R1

j let us now consider the following

map Φ̃k : DA
j → R3,

Φ̃k : (ρ, θ) 7→ (ρ, vk(ρ, θ)). (3.14)

By definition, it is checked that

(Φ̃k)][D
A
j ] = Π̃]Gvk (DA

j × R2).

We thus define

SAk := (Φ̃k)][D
A
j ]. (3.15)

Let SA be a weak limit for (a not-relabeled subsequence of) {SAk }, namely

Π̃]Gvk (DA
j × R2) = SAk ⇀ SA. (3.16)

We emphasize the dependence of SA on j. Fix ε > 0 and let Aε be as in Lemma 2.3 with
D = DA

j , so |Aε| ≤ ε. We now split the current Gvk (DA
j × R2) = Zkε + Z̃kε where

Zkε (ωαβdx
α ∧ dyβ) =

∫
Aε∩DAj

ωαβ(x, vk(x))Mα
β (Dvk)(x)dx, (3.17)

Z̃kε (ωαβdx
α ∧ dyβ) =

∫
Acε∩DAj

ωαβ(x, vk(x))Mα
β (Dvk)(x)dx, (3.18)

for all ω ∈ D2(DA
j × R2). By Lemma 2.3 we know that

Π̃]Z̃
k
ε ⇀ 0, (3.19)

so that

Π̃]Z
k
ε = Π̃]Gvk (DA

j × R2)− Π̃]Z̃
k
ε = SAk − Π̃]Z̃

k
ε ⇀ SA. (3.20)
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By lowersemicontinuity we infer

|SA| ≤ lim inf
k→∞

|Π̃]Gvk |(DAj ∩Aε)×R ≤ lim inf
k→∞

|Gvk |(DAj ∩Aε)×R2

= lim inf
k→∞

(
|Gvk |DAj ×R2 − |Gvk |(DAj ∩Acε)×R2

)
≤ lim inf

k→∞
|Gvk |DAj ×R2 − lim sup

k→∞
|Gvk |(DAj ∩Acε)×R2

= lim inf
k→∞

|Gvk |DAj ×R2 − lim sup
k→∞

|Gvk |(DAj \Aε)×R2

≤ lim inf
k→∞

|Gvk |DAj ×R2 − |DA
j |+ ε. (3.21)

The last inequality is due to the fact that |Gvk |(DAj \Aε)×R2 ≥ |DA
j \Aε| ≥ |DA

j | − ε. Thus by

arbitrariness of ε > 0 we conclude

|SA|+ |DA
j | ≤ lim inf

k→∞
|Gvk |DAj ×R2 . (3.22)

Let us now restrict our attention to the boundary of SAk = (Φk)][D
A
j ] in R3. For

any fixed k, the current
(Φ̃k)][l

j
1]

coincides with the current T 1
k defined in (3.11a). As a consequence, if we set

Ŝ1
k := S1

k + SAk , (3.23)

we infer that the boundary of Ŝ1
k coincides with the current

∂Ŝ1
k = T

2

k + V 1
k − T

1

k − V
1

k − CAk , (3.24)

where V 1
k , T

1

k, and V
1

k are defined in (3.11), and CAk and T
2

k are the currents

CAk := (Φ̃k)][c
A
j ] T

2

k := (Φ̃k)][r
j
2]. (3.25)

A similar construction as above can be done for the sectors DB
k and DC

k . Thus we
are led to define

Ŝ2
k := S2

k + (Φ̃k)][D
B
j ] = S2

k + SBk ,

Ŝ3
k := S3

k + (Φ̃k)][D
C
j ] = S3

k + SCk , (3.26)

whose boundaries are, respectively,

∂Ŝ2
k = (Φ̃k)][r

j
3] + V 2

k − T
2

k − V
2

k − CBk ,

∂Ŝ3
k = (Φ̃k)][r

j
1] + V 3

k − T
3

k − V
3

k − CCk . (3.27)

Since by mere observations we have T
3

k = (Φ̃k)][r
j
3], and T

1

k = (Φ̃k)][r
j
1] (compare (3.11)),

we conclude

∂(Ŝ1
k + Ŝ2

k + Ŝ3
k) =

3∑
i=1

(V ik − V
i

k)− CAk − CBk − CCk .

We now aim to pass to the limit as k → ∞. Considering the limit of the terms
in (3.24), as a consequence of hypothesis (H4), we can find five Lipschitz curves (ϕ1)j ,
(h = 1, . . . , 5) defined on the interval I := [0, 1] such that the push-forward of the integrations

on I by (ϕ1)h, are the limit currents of T
2

k, V 1
k , T

1

k, V
1

k, and CAk . In particular (renaming
such curves) we have ϕA : I → R3 and ϕC : I → R3 such that

T
2

k ⇀ (ϕA)][I],

T
1

k ⇀ −(ϕC)][I]. (3.28)
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Figure 4: The area obtained by the union of R1
j and DA

j is depicted and painted in yellow,

with the standard orientation of its boundary. The push forward of the integration on R1
j

by Φk and on DA
j by Φ̃k has as sum the current Ŝ1

j , whose boundary is the images by such
maps of the edges of the area, as showed in the figure (see (3.24)). The two integrations over

the traced segment P (lj1)Aj cancel out, since the orientation of this segment has opposite
sign when seen as part of the boundary of R1

j and DA
j .

Thanks to the fact that the maps vk are converging pointwise on rj2 and rj1 to α and
γ (respectively)3, we again infer from the theory of Cartesian currents that the currents
(ϕA)][I] and (ϕC)][I] are the graphs over the interval [0, 1] of the constants α and γ,
respectively, (possibly) plus an additional vertical part.

As for the case i = 1, we have that all currents on the right hand side of (3.27)
admit limits as k →∞. Indeed we see that there exists a Lipschitz curve ϕB : I → R3 such
that

(Φ̃k)][r
j
3] ⇀ (ϕB)][I]. (3.29)

Let us first state:

Proposition 3.2. There exist three Lipschitz curves ϕA : I → R3, ϕB : I → R3, and
ϕC : I → R3 such that (3.28) and (3.29) hold true and for a.e. s ∈ [0, 1] we have

ϕA(I) ∩ ({s} × R2) = {(s, α)}, (3.30)

ϕB(I) ∩ ({s} × R2) = {(s, β)}, (3.31)

ϕC(I) ∩ ({s} × R2) = {(s, γ)}. (3.32)

Proof. The current T
2

k = (Φ̃k)][r
j
2] ∈ D1([0, lj ] × R2) is exactly the graph on [0, lj ] of

((vk)1, (vk)2). Moreover such functions restricted on [0, lj ] have equi-uniformly bounded
variations, and are continuous, so that, in particular, their graphs are Cartesian currents on
[0, lj ]×R2. Up to re-parametrize this functions on [0, lj ] we can apply the structure Theorem
for Cartesian Currents (see [11, Section 4.2.3]) which asserts that the limit graph has the
form (Id× u)][[0, lj ]] +NA, with u the limit of vk in L1([0, lj ];R2), and NA a vertical part

3More precisely, referring to hypothesis (H4), such convergence takes place a.e. on the interval [0, 1].
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which is supported on a singular set S × R2. Namely, we have,

(Id× vk)][[0, lj ]] ⇀ (Id× α)][[0, lj ]] +NA, (3.33)

where we have denoted the constant map equal to α by the symbol α itself. Therefore there
is a subset I+ of full measure in [0, lj ] such that NA is concentrated in ([0, 1] \ I+) × R =
S×R2, and on the complement I+×R the limit current is the integration over the segment
[0, lj ] × α ⊂ R3. The fact that the limit current can be parametrized by only one path

ϕA = ((ϕA)1, (ϕA)2) is a consequence of the fact that for all k the current T
2

k is the image
of the integration over rj2 by uniformly bounded BV functions4. The thesis then follows for
ϕA, and a similar argument applies for ϕB and ϕC .

Regarding the convergence of the other terms in (3.24) and (3.27) we have proved
the following:

Proposition 3.3. There exist integral currents Ŝ1, Ŝ2, Ŝ3 ∈ D2([0, lj ] × R2), V1,V2,V3 ∈
D1({0} × R2), and V1

,V2
,V3

, CA, CB , CC ∈ D1({lj} × R2), such that5

Ŝik ⇀ −Ŝi, i = 1, 2, 3, (3.34)

V ik ⇀ −Vi, i = 1, 2, 3, (3.35)

V
i

k ⇀ V
i
, i = 1, 2, 3, (3.36)

CAk ⇀ CA, CBk ⇀ CB , CCk ⇀ CC , (3.37)

and

∂Ŝ1 = −(ϕA)][I] + V1 + (ϕC)][I] + V1
+ CA, (3.38)

∂Ŝ2 = −(ϕB)][I] + V2 + (ϕA)][I] + V2
+ CB , (3.39)

∂Ŝ3 = −(ϕC)][I] + V3 + (ϕB)][I] + V3
+ CC . (3.40)

Actually, we can say more about the currents ϕA, ϕB , and ϕC . From the proof of
Proposition 3.2 we have found that there is a vertical current NA (see (3.33)) such that

(ϕA)][I] = (Id× α)][[0, lj ]] +NA, (3.41a)

and similarly we will have

(ϕB)][I] = (Id× β)][[0, lj ]] +NB , (3.41b)

(ϕC)][I] = (Id× γ)][[0, lj ]] +NC . (3.41c)

The currents NA, NB , NC will be concentrated on a set S × R2, with S = {si}i∈N ⊂ [0, lj ]
at most countable. Indeed, using the decomposition theorem for 1-currents (Theorem 2.1)
we conclude that NA can be decomposed as a countable sum of closed loops αi : [0, tAi ] →
{si} × R2 such that αi(0) = αi(t

A
i ) = (si, α). In particular the cardinality of such possible

set {si} is at most countable. This is summarized in the following:

Proposition 3.4. There is a countable set S = {si}i∈N ⊂ [0, lj ] and a family of closed
curves αi : [0, tAi ]→ {si} × T , βi : [0, tBi ]→ {si} × T , γi : [0, tCi ]→ {si} × T (we recall that
T is the closed triangle with vertices α, β, and γ) such that for all i ∈ N

αi(0) = αi(t
A
i ) = (si, α), (3.42)

βi(0) = βi(t
B
i ) = (si, β), (3.43)

γi(0) = γi(t
C
i ) = (si, γ), (3.44)

4Equivalently, this is a consequence of the fact that the currents T
2
k can be parametrized by uniformly

bounded BV maps defined on the same interval [0, 1] (see hypothesis (H4)). We will later see that the set
S is at most countable. This will follow from the fact that NA is a vertical 1-current with no boundary, see
Proposition 3.4.

5The choice of the sign in front of Ŝi and Vi is just a definition which will turn out to be helpful in order
to simplify some notation in the next Section.
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and

(ϕA)][I] = (Id× α)][[0, tj ]] +
∑
i

(αi)][[0, t
A
i ]], (3.45)

(ϕB)][I] = (Id× β)][[0, tj ]] +
∑
i

(βi)][[0, t
B
i ]], (3.46)

(ϕC)][I] = (Id× γ)][[0, tj ]] +
∑
i

(γi)][[0, t
C
i ]]. (3.47)

We remark that the sum of the lengths of the curves αi, βi, and γi, is finite, and
therefore up to reparametrization we can choose tAi , tBi , tBi with finite sum.

Finally, from (3.23), by (3.13) and (3.22), we infer

|Ŝ1|+ |DA
j | ≤ |S1|+ |SA|+ |DA

j | ≤ lim inf
k→∞

|Gvk |R1
j×R2 + lim inf

k→∞
|Gvk |DAj ×R2 , (3.48)

and similarly

|Ŝ2|+ |DB
j | ≤ lim inf

k→∞
|Gvk |R2

k×R2 + lim inf
k→∞

|Gvk |DBk ×R2 , (3.49)

|Ŝ3|+ |DC
j | ≤ lim inf

k→∞
|Gvk |R3

k×R2 + lim inf
k→∞

|Gvk |DCk ×R2 . (3.50)

Triangle current. Consider the triangle Tj with vertices Aj , Bj , and Cj , and let [Tj]
be the current given by integration on Tj . Let J : R2 → R3 be given by

J(y1, y2) = (0, y1, y2).

The map Jk := J ◦ vk : Tj → R3, induces the current (Jk)][Tj] ∈ D2({0} ×R2) whose total
mass is easily seen to be smaller than that of Gvk in Tj × R2. Indeed, the map J is a natural
immersion and preserves the mass, whereas the mass of (vk)][Tj] is given by∫

Tj

|J(vk)(x)|dx < A(vk, Tk) = |Gvk |Tj×R2 . (3.51)

Notice here that the inequality is strict since we are integrating only the Jacobian of v. As
for the boundary of (Jk)][Tj], this is given by the sum of the push-forward by Jk of the
integration over the edges of Tj , i.e.,

(Jk)][AjCj] + (Jk)][CjBj] + (Jk)][BjAj].

Going back to the definition of Φk and of V 1
k (see (3.8) and (3.11c)), it is observed that

Jk AjCj ≡ Φk, and similarly for the other indices. In particular we have

∂(Jk)][Tj] = −V 1
k − V 2

k − V 3
k . (3.52)

Since by hypothesis (H3) the mass of this current is uniformly bounded with respect to k,
we infer the existence of an integral current T ∈ D2({0} × R2) such that

−(Jk)][Tj] ⇀ T , (3.53)

and thus

|T | ≤ lim inf
k→∞

|(Jk)][Tj]| ≤ lim inf
k→∞

|Gvk |Tj×R2 , (3.54)

by (3.51). Let us finally study the boundary of T . From (3.53) we infer −∂(Jk)][Tj] ⇀ ∂T
and by (3.52), we find that

V ik ⇀ −Vi for i = 1, 2, 3, (3.55)

∂T = −V1 − V2 − V3, (3.56)

where Vi, i = 1, 2, 3,, are given in Proposition 3.3. By construction and again hypothesis
(H4) there exist three Lipschitz paths ψi : [0, 1]→ R2, i = 1, 2, 3, with

Vi = (ψi)][[0, 1]], (3.57)

ψ1(0) = α, ψ1(1) = γ = ψ3(0), ψ3(1) = β = ψ2(0), ψ2(1) = α. (3.58)
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Figure 5: This is the prism P = (0, lj)× T . On the bottom face {0} × T the three currents
Vi, i = 1, 2, 3, can be seen in blue. The area enclosed by them is the support of the current
T .

Remark 3.5. Notice again the choice of signs in front of T and Vi; this convention is
convenient to simplify notation in the next section. Notice also that with this convention
the currents V1, V2, V3 can be written as integration over paths connecting α to γ, β to α,
and γ to β, respectively.

Total current. Consider now the currents Ŝik for i = 1, 2, 3 and (Jk)][Tj]. With
(3.24) and (3.52) at disposal, we readly infer that the current

Uk := −Ŝ1
k − Ŝ2

k − Ŝ3
k − (Jk)][Tj], (3.59)

has boundary

∂Uk = V
1

k + CAk + V
2

k + CBk + V
3

k + CCk . (3.60)

Moreover, since the maps vk take values in the triangle T , by definition of Ŝik and (Jk)][Tj]

we find out that each current Ŝik and (Jk)][Tj] have support in closure of the prism P :=
[0, lj)× T , namely

P := [0, lj ]× T. (3.61)

Moreover, by (3.60), ∂Uk is supported in {lj} × T , or, in other words, the currents Uk are
closed as currents in D2((−∞, lj)× R2).

Passing to the limit in k →∞ and appealing to Propositions 3.2 and 3.3:

Proposition 3.6. The current U ∈ D2(R3) given by

U = Ŝ1 + Ŝ2 + Ŝ3 + T ,

has boundary

∂U = V1
+ CA + V2

+ CB + V3
+ CC .

Moreover U is supported in P and ∂U is supported in {lj} × T . In particular U is a closed
current in D2((−∞, lj)× R2).

Key inequality. We can write

A(vk,Ω) = |Gvk |Ω×R2 =|Gvk |DAj ×R2 + |Gvk |DBj ×R2 + |Gvk |DCj ×R2

+

3∑
i=1

|Gvk |Rij×R2 + |Gvk |Tj×R2 + |Gvk |Ej×R2 ,

22



where Ej := B1(O) \ (∪3
i=1R

i
j ∪ Tj ∪ DA

j ∪ DB
j ∪ DC

j ), so that, passing to the liminf and
taking into account (3.48)-(3.50) and (3.54), we conclude

A(u,Ω) ≥ |Ŝ1|+ |Ŝ2|+ |Ŝ3|+ |T |+ |DA
j |+ |DB

j |+ |DC
j |+ |Tj |

= |Ŝ1|+ |Ŝ2|+ |Ŝ3|+ |T |+ π − |Ej |. (3.62)

We now state our main result:

Theorem 3.7. We have

|Ŝ1|+ |Ŝ2|+ |Ŝ3|+ |T | ≥ 3mlj . (3.63)

From this result we can easily address inequality (3.1). Indeed using (3.4) we infer
Ej → 0 as j →∞. Inequality (3.1) is then achived from (3.62) if we show that mlj → m1 =
m. But this is the content of Lemma 2.5.

4 A symmetrization technique

In this section we construct three symmetrization operators for currents, denoted by SA,
SB , and SC . These are substantially based on a Steiner-type symmetrization technique, and
their role is crucial in order to prove Theorem 3.7. Indeed these operators satisfy the feature
of non-increasing the total mass of their arguments (see Lemma 4.23). Hence, after suitably

applying SA, SB , and SC to the currents Ŝ1, Ŝ2, Ŝ3, and T , we will obtain the currents S
1
,

S
2
, S

3
, and T which will satisfy

|S1|+ |S2|+ |S3|+ |T | ≤ |Ŝ1|+ |Ŝ2|+ |Ŝ3|+ |T |. (4.1)

On the other hand, the symmetrization operators have the advantage of decreasing the mass
of the currents NA, NB , and NC in (3.41) (Lemma 4.23). In particular, after a suitable
combination of applications of SA, SB , and SC , they vanish. We then arrive to the currents

S
1
, S

2
, S

3
, and T whose corresponding NA, NB , and NC , are null, and this will be a key

ingredient in order to prove that

3mlj ≤ |S
1|+ |S2|+ |S3|+ |T |, (4.2)

(this last inequality will be addressed in Section 5). The last two inequalities together prove
Theorem 3.7.

In order to introduce the symmetrization operators we first start by setting some
notation. Let us denote by hA, hB , and hC the heights of the triangle T passing through A =
α, B = β, and C = γ respectively. We will denote the lines (axes) obtained prolonging them

by ĥA, ĥB , and ĥC , respectively. We will now construct an operator SB which symmetrizes

the currents S
1
, S

2
, S

3
, and T with respect to the axis ĥB (and similarly there will be

operators relative to C and A).
Suppose for simplicity that the coordinates of α ∈ R2 and γ ∈ R2 have the same

ordinate (i.e. we choose a coordinate system in R2 such that α2 = γ2). Moreover the
coordinates of R3 are denoted by (x, y1, y2). Let PB be the foot of the height hB , namely

the intersection between ĥB and the segment AC. Let l−B be the halfline starting from

PB and obtained by prolonging the height hB below the segment AC. Let l+B = ĥB \ l−B .
Let R1 := [(0, lj) × (α1, γ1) × {α2}] be the current of integration over the rectangle in R3

with vertices (0, α), (0, γ), (lj , γ), (lj , α). Consider the current B1 ∈ D3(R3) obtained as
integration over the set

B1 := R1 × l−B , (4.3)
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Figure 6: The triangle T with the notation introduced in Section 4.

Figure 7: In this picture is depicted in yellow the surface Ŝ1. The curve in blue is instead
V1, whereas the region contained between V1 and the segment with vertices (0, α1, α2)
and (0, γ1, γ2) is W1. The rectangle with vertices (0, α1, α2), (0, γ1, γ2), (lj , γ1, γ2), and
(lj , α1, α2) is R1, while the parallelepiped (with infinite height) below it is B1. There are
labeled the two faces of it, H and Lγ . The face opposite to H is H, and the one opposite
to Lγ is Lα. For simplicity we have depicted the simpler case in which the currents Y C and
Y A are null (as a consequence NA and NB are null).

24



i.e. B1 := [B1]. It is seen that

∂B1 = Lα − Lγ −H +H +R1, (4.4)

where

Lα = [(0, lj)× {α1} × (−∞, α2)],

Lγ = [(0, lj)× {γ1} × (−∞, α2)],

H = [{0} × (γ1, α1)× (−∞, α2)],

H = [{lj} × (γ1, α1)× (−∞, α2)]. (4.5)

Moreover (see (3.11c) and (3.35)), V1 +[{0}×(γ1, α1)×{α2}] is a closed current in D1({0}×
R2) (by convention V1 has the orientation in such a way it connects α to γ), so that there
is a current W1 ∈ D2({0} × R2) with

∂W1 = −V1 − [{0} × (γ1, α1)× {α2}].

By Proposition 3.3 and Proposition 3.4 the boundary of the current Ŝ1 is

∂Ŝ1 =− (Id× α)][[0, lj ]]−
∑
i

(αi)][[0, t
A
i ]] + V1

+ (Id× γ)][[0, lj ]] +
∑
i

(γi)][[0, t
C
i ]] + V1

+ CA, (4.6)

Since (see (3.25) and (3.37)) V1
+ CA is supported on {lj} × R2 we have

∂Ŝ1 ((−∞, lj)× R2) =− (Id× α)][[0, lj ]]−
∑
i

(αi)][[0, t
A
i ]] + V1

+ (Id× γ)][[0, lj ]] +
∑
i

(γi)][[0, t
C
i ]]. (4.7)

Recall that the arcs αi have image in {si} × T , and are closed. We infer the existence (see
Theorem 2.2) of integral currents Y Ai ∈ D2({si} × T ) such that

∂Y Ai = (αi)][[0, t
A
i ]], i ∈ N.

There exist sets with finite perimeter (Ai)
+
h and (Ai)

−
h in {si} × R2 such that

Y Ai =
∑
h

[(Ai)
+
h ]−

∑
h

[(Ai)
−
h ]. (4.8)

Assume also that this decomposition is made of undecomposable components, as in Theorem
2.1. Accordingly, we set

(Y Ai )+ :=
∑
h

[(Ai)
+
h ], (Y Ai )− =

∑
h

[(Ai)
−
h ]. (4.9)

Similarly

Y Bi = (Y Bi )+ − (Y Bi )− =
∑
h

[(Bi)
+
h ]−

∑
h

[(Bi)
−
h ], (4.10)

Y Ci = (Y Ci )+ − (Y Ci )− =
∑
h

[(Ci)
+
h ]−

∑
h

[(Ci)
−
h ]. (4.11)

Notice that since these components are undecomposable we have, essentially, (Ai)
+
h ∩(Ai)

−
k =

∅ for all h, k, and similarly for B and C (by essentially we mean that the intersection has
null H2-measure). Denote

Y A :=
∑
i

Y Ai , Y B :=
∑
i

Y Bi , Y C :=
∑
i

Y Ci .
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We define G1 ∈ D2((−∞, lj)× R2) as

G1 := Ŝ1 + Y A − Y C + Lα − Lγ +W1 −H. (4.12)

By (4.5) and (4.7) we observe that G1 is closed (notice that in the last formula we
consider G1 as a current in (−∞, lj)×R2 instead of R3, so that we do not need to add H to
make it boundaryless.). Then there exists an integral current G1 ∈ D3((−∞, lj)× R2) with
∂G1 = G1 (see, again, Theorem 2.2). The current G1 turns out to be a sort of “subgraph” of

the surface Ŝ1 (see figure 7). The idea now is to symmetrize G1. To this aim we symmetrize
G1 by Steiner symmetrization and we will define the symmetrized of G1 as the boundary of
the obtained set. More precisely, let us explain this procedure in details. From Theorem 2.1
there are measurable sets with locally finite perimeter U1

h ⊂ (−∞, lj)× R2 such that

G1 =
∑
h

θh[U
1
h], θh ∈ {−1, 1}, (4.13)

and for every bounded open set A ⊂ (−∞, lj)× R2 it holds

|G1|A =
∑
h

|∂U1
h |A.

Up to translating the sets U1
i in the y1 direction ((x, y1, y2) 7→ (x, y1 + t, y2)) we can assume

they are all mutually disjoint and with multiplicity +1 or −1 . Then it is well defined the set
SB(U1) obtained by Steiner symmetrization of the set U1 := ∪hU1

h with respect to the plane
containing [0, lj ]×hB (see [15, Section 14.1] for the definition of Steiner symmetrization and
its properties). The new set SB(U1) defines a current

ŜB(G1) := [SB(U1)], (4.14)

whose boundary satisfies

|∂ŜB(G1)|A ≤
∑
j

|∂U1
j |A = |G1|A, (4.15)

for every bounded open set A ⊂ (−∞, lj)×R2 (see [15, Section 14.1]). It is important here
to observe that it might happen that the set SB(U1) is not contained in the solid

Q := B1 ∪ P ,

(where B1 is defined in (4.3) and with P being the prism P = [0, lj) × T ), as it is for the
original current G1. This is due to the fact that before symmetrizing it, the current G1 might
have high multiplicity in Q, while the symmetrization enforces it to have multiplicity 1. In
the case SB(U1) exceeds Q we need to restrict it to Q, and hence we set

SB(G1) := [SB(U1) ∩Q].

It is easy to see that, since Q is a convex set, inequality (4.15) still holds true, namely

|∂SB(G1)|A ≤ |G1|A, (4.16)

for every bounded open set A ⊂ (−∞, lj)× R2.

Definition 4.1. The symmetrization with respect to the hB axis of G1 is

SB(G1) := ∂SB(G1). (4.17)

Remark 4.2. Let us emphasize that the symmetrization of the current G1, obtained as
integration over the symmetrized set SB(U1) is well defined and does not depend on the
specific decomposition in (4.13). Indeed it is not difficult to see that SB(U1) can be obtained
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also without the decomposition theorem for currents, in the following way. Consider the
plane R × ĥB , containing the height hB and the edge [0, lj ] × {β} of the prism P . Let
(s, t) be two orthogonal coordinates on this plane, and let rs,t be the line passing through

the point (s, t) and orthogonal to R× ĥB . By slicing it is possible to consider the 1-current
〈G1, (s, t)〉, which represents the restriction of G1 to the line rs,t. This is uniquely determined
for a.e. (s, t) ∈ R2. Hence we can consider the mass ms,t := |〈G1, (s, t)〉| and define the set

SB(U1) symmetric with respect to R × ĥB in such a way that, if rs,t is endowed with a

coordinate x such that x = 0 at rs,t ∩ (R× ĥB), then

SB(U1) ∩ rs,t := (−ms,t

2
,
ms,t

2
).

Remark 4.3. Let us also observe that the presence of the current B1 in the definition of
G1 (see (4.3) and (4.4)) is not crucial but it is convenient for exposition. Nevertheless the
symmetrization of G1 is trivial below the plane containing R1, since it transforms B1 into
itself. The fact that the symmetrization of G1 might have support exceeding the solid Q can
only take place in the upper halfspace R2 × l+B .

In order to define the symmetrization of the current Ŝ1 (introduced in Definition
4.13 below), we first need to symmetrize the currents Y A and Y C (whose symmetrizations
are given in Definitions 4.7 and 4.10). To this aim, let us analyze what happens to the
vertical parts of the current G1 after the symmetrization. We consider two cases.

Case si > 0. Let si ∈ (0, lj) be as in Proposition 3.4, and consider the corresponding
decomposition in (4.8). The currents Y Ai and Y Ci satisfy

∂Y Ai =
∑
h

[∂A+
h ]−

∑
h

[∂A−h ], ∂Y Ci =
∑
h

[∂C+
h ]−

∑
h

[∂C−h ]. (4.18)

Let Ŝ1 si = Ŝ1 ({si} × R2) be the part of the current Ŝ1 with support in the plane

{si} × R2. Notice that G1 ({si} × R2) := Y Ai − Y Ci + Ŝ1 si; this is the part of G1 in
{si} × R2. More precisely, if, as in (4.13), G1 =

∑
h θh[U

1
h], then

G1 ({si} × R2) :=
∑
h

σhθh[∂U
1
h ∩ ({si} × R2)], (4.19)

where ∂U1
h is the reduced boundary of U1

h and σh is 1 or −1 according to whether ∂U1
h has

external normal vector equal to (1, 0, 0) or (−1, 0, 0), respectively (the orientation of ∂U1
h is

given by the volume form inherited by its normal unit vector). Let I+ and I− be the sets
of indices for which σh = ±1 respectively. Equivalently (4.19) writes as

G1 ({si} × R2) :=
∑
h∈I+

θh[∂U
1
h ∩ ({si} × R2)]−

∑
h∈I−

θh[∂U
1
h ∩ ({si} × R2)]. (4.20)

Accordingly set

G1 ({si} × R2)
±

:=
∑
h∈I±

θh[∂U
1
h ∩ ({si} × R2)], (4.21)

so that
G1 ({si} × R2) = G1 ({si} × R2)

+ −G1 ({si} × R2)
−
.

Now we want to study the boundary of the current SB(G1) which is concentrated on the plane
{si}×R2, i.e. the restriction of SB(G1) to such plane. Let (U̇1

h)i := (U1
h \∂U1

h)∩({si}×R2).

Definition 4.4. Let Ê0
i be the Steiner symmetrization with respect to ĥB of the set ∪h(U̇1

h)i
(seen as a subset of {si} × R2). Let Ê+

i be the Steiner symmetrization of the set

(∪h(U̇1
h)i)

⋃
(∪h∈I+(∂U1

h) ∩ ({si} × R2)),
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(again considered union of disjoint sets, up to translation) and let Ê−i be the Steiner sym-
metrization of the set

(∪h(U̇1
h)i)

⋃
(∪h∈I−(∂U1

h) ∩ ({si} × R2)).

Again it might happen that Ê0
i , Ê+

i , Ê−i intersect R3 \Q, so that we set

E0
i := Ê0

i ∩Q, E+
i := Ê+

i ∩Q, E−i := Ê−i ∩Q. (4.22)

Observe that E0
i = Ê0

i ∩ Q = Ê0
i ∩ Ti where Ti = {si} × T . This holds true since

the original currents G1 ({si} × R2) have support in the triangle {si} × T .

Lemma 4.5. It holds

SB(G1) ({si} × R2) = [E+
i \ E

−
i ]− [E−i \ E

+
i ]. (4.23)

In particular
|SB(G1) ({si} × R2)| = |E+

i ∆E−i |.

Proof. We can always split
G1 = (G1

i )+ + (G1
i )−,

where (G1
i )+ :=

∑
h θh[U

1
h ∩ ({x < si})] and (G1

i )− :=
∑
h θj[U

1
h ∩ ({x > si})]. It is then

easy to see that their boundaries (seen as sets, with a little abuse of notation) are

∂(G1
i )+ = (∪hU̇1

h)i
⋃

(∪h∈I+∂U1
h ∩ ({si} × R2)),

and similarly

∂(G1
i )− = (∪hU̇1

h)i
⋃

(∪h∈I−∂U1
h ∩ ({si} × R2)).

In particular the symmetrizations of (G1
i )+ and (G1

i )−, namely SB(G1
i )+ and SB(G1

i )−, have

boundaries on {si}×R2 given by Ê+
i and Ê−i respectively. To study the symmetrization of

G1
i we consider the sum of SB(G1

i )+ and SB(G1
i )−. Since their orientations are opposite, the

thesis follows just by considering the restrictions to Q.

The positive and negative part of the current SB(G1) ({si} × R2) are

SB(G1)+ ({si} × R2) = [E+
i \ E

−
i ],

SB(G1)− ({si} × R2) = [E−i \ E
+
i ] (4.24)

shortly denoted by

SB(G1
i )

+ = SB(G1)+ ({si} × R2), SB(G1
i )
− = SB(G1)− ({si} × R2), (4.25)

and

SB(G1) ({si} × R2) = SB(G1
i ) = SB(G1

i )
+ − SB(G1

i )
−. (4.26)

At this stage it is convenient to define Yi = Y Ai − Y Ci = (Y Ai )+− (Y Ci )+− (Y Ai )−+
(Y Ci )− (the second equality due to (4.9)); it turns out that

Yi =
∑
h

[(Di)
+
h ]−

∑
h

[(Di)
−
h ],

for suitable sets (Di)
+
h and (Di)

−
h in {si}×R2 (notice that by hypothesis of undecomposibility

it turns out that ∪h(Di)
+
h and ∪h(Di)

−
h are essentially disjoint). Hence we decompose Y i

in a positive and negative part, namely Yi = Y +
i − Y

−
i , where

Y ±i :=
∑
h

[(Di)
±
h ]. (4.27)
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Figure 8: In the picture on the left we have drawn the current G1 ({si} × R2). The set
colored in blue is ∪h(U̇1

h)i, the one in yellow is (∪j(U̇1
h)i)

⋃
(∪h∈I+(∂U1

h) ∩ ({si} × R2))

whereas the one in green is (∪j(U̇1
h)i)

⋃
(∪h∈I−(∂U1

h) ∩ ({si} × R2)). The picture on the
right is the symmetrized set. In particular, the blue zone is the set E0

i , the one in blue green
is the set E−i , while the one in blue and yellow is E+

i . In this case we see that E+
i contains

E−i (we have to consider that the yellow area overlaps the green one, i.e. the green area is
part of the yellow one in this example).

It turns out

|Yi| = |Y Ai − Y Ci | = |Y +
i |+ |Y

−
i |. (4.28)

Consider now the currents F+
i ,F

−
i ∈ D2({si} × R2) given by

F±i := G1 ({si} × R2)
± − Y ±i , (4.29)

where we employed the notation (4.21). Note that

F+
i −F

−
i = G1 ({si} × R2)− Yi.

Decomposing F±i in undecomposable components, we find two families of sets (Z+
i )h and

(Z−i )h such that

F+
i =

∑
h

θh[(Z
+
i )h], F−i =

∑
h

θh[(Z
−
i )h] θh ∈ {−1, 1}. (4.30)

We are then led to define:

Definition 4.6. The set F̂+
i is the Steiner symmetrization with respect to ĥB of the set

(∪hU̇1
h)i
⋃
∪h(Z+

i )h

(again considered as union of disjoint sets in {si} × R2, up to translation) and F̂−i is the
Steiner symmetrization of the set

(∪hU̇1
h)i
⋃
∪h(Z−i )h.

We consider their restrictions to Q, and, since also in this case Fi have supports in Ti, such
restrictions coincide with

F+
i := F̂+

i ∩ Ti, F−i := F̂−i ∩ Ti.
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The symmetrizations of the currents Y Ai and Y Ci are then defined as follows:

Definition 4.7. Let Πα be the halfplane in R2 bounded by the axis ĥB and containing α.
Let Πγ be the complementary halfplane. We define

SB(Y Ai ) := [E+
i ∩Πα]− [E−i ∩Πα]− [F+

i ∩Πα] + [F−i ∩Πα], (4.31)

−SB(Y Ci ) := [E+
i ∩Πγ]− [E−i ∩Πγ]− [F+

i ∩Πγ] + [F−i ∩Πγ]. (4.32)

It is also convenient to define SB(Yi) = SB(Y Ai )− SB(Y Ci ) = SB(Y +
i )− SB(Y −i ) with

SB(Y ±i ) := [E±i ]− [F±i ].

First, by definition, it turns out that the currents SB(Y Ai ) and SB(Y Ci ) are supported
on disjoint sets. Therefore

|SB(Y Ai )− SB(Y Ci )| = |SB(Y Ai )|+ |SB(Y Ci )|.

Moreover, we have the following

Lemma 4.8. The currents SB(Y Ai ) and SB(Y Ci ) satisfy

|SB(Y Ai )|+ |SB(Y Ci )| = |SB(Y Ai )− SB(Y Ci )| ≤ |Y Ai − Y Ci | ≤ |Y Ai |+ |Y Ci |. (4.33)

Proof. By writing
[E±i ]− [F±i ] = [E±i \ F

±
i ]− [F±i \ E

±
i ],

we infer

SB(Y Ai )− SB(Y Ci ) = [E+
i \ F

+
i ]− [F+

i \ E
+
i ]− [E−i \ F

−
i ] + [F−i \ E

−
i ].

Now, since |Y +
i |+ |Y

−
i | = |Y Ai − Y Ci | (by hypothesis on the decomposition), the thesis will

be proved if we show that

|[E+
i \ F

+
i ]− [F+

i \ E
+
i ]| ≤ |Y +

i |, (4.34)

|[E−i \ F
−
i ]− [F−i \ E

−
i ]| ≤ |Y −i |. (4.35)

To see the first inequality (the second is similar) we argue by slicing, considering sections of

the currents G+
i = G1 ({si} × R2)

+
and (Fi)+ at {y2 = t}. First observe that the mass

|[E+
i \ F

+
i ]− [F+

i \ E
+
i ]| = |E+

i ∆F+
i | =

∫ +∞

−∞
|(E+

i ∆F+
i ) ∩ {y2 = t}|dt,

and then that |(E+
i ∆F+

i )∩{y2 = t}| ≤ |(Ê+
i ∆F̂+

i )∩{y2 = t}|. Moreover, at fixed t it follows,

by Definitions 4.4 and 4.6, that |(Ê+
i ∆F̂+

i ) ∩ {y2 = t}| = ||〈G+
i , t〉| − |〈F

+
i , t〉|| (here we use

that the decompositions in (4.13) and (4.30) are made of undecomposable components; see
also Remark 4.2), and hence |(E+

i ∆F+
i )∩{y2 = t}| ≤ ||〈G+

i , t〉|−|〈F
+
i , t〉|| ≤ |〈G

+
i −F

+
i , t〉| =

|〈Y +
i , t〉|. Therefore we conclude

|[E+
i \ F

+
i ]− [F+

i \ E
+
i ]| ≤

∫ +∞

−∞
|〈Y +

i , t〉|dt ≤ |Y
+
i |. (4.36)

Case si = 0. In this case we define the sets Ê0
0 , Ê+

0 , Ê−0 , E0
0 , E+

0 , E−0 as in Definition

4.4. First let us observe that the component G1 ({0} × R2)
+

is null together with the sets

(U̇1
j )0 (see (4.21)). As a consequence the sets Ê0

0 , Ê+
0 , E0

0 , and E+
0 , are all empty. In this

case we need a different definition for the symmetrization of Y A0 = Y A ({0} × R2) and
Y C0 = Y C ({0} × R2). As before, we define

Y0 = Y A0 − Y C0 .
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Figure 9: The figure on the left represents the two currents Y Ai and Y Ci . On the right,
referring also to Figure 8, the two sets F+

i and F−i are depicted; the first one is the union of
all the colored area (yellow, that overlaps the green one, and blue) whereas F−i is the union
of the blue and green areas. These areas are a bit bigger than the corresponding in Figure
8, their difference will give rise to the symmetrized currents SB(Y A) and SB(Y C).

Then, in place of (4.29), we define

−F−0 := −G1 ({0} × R2)
− − Y0. (4.37)

Decomposing F−0 in undecomposable components we find

F−0 =
∑
h

θh[(Z0)h] θh ∈ {−1, 1},

and therefore we arrive at:

Definition 4.9. The set F̂−0 is the Steiner symmetrization with respect to ĥB of the set
∪h(Z0)h (again considered as union of disjoint sets in {0}×R2). We consider its restriction
to Q,

F−0 := F̂−0 ∩Q.

We can now introduce the symmetrizations of the currents Y A0 and Y C0 :

Definition 4.10. We define

SB(Y A0 ) := −[E−0 ∩Πα] + [F−0 ∩Πα], (4.38)

−SB(Y C0 ) := −[E−0 ∩Πγ] + [F−0 ∩Πγ]. (4.39)

We also set SB(Y0) = SB(Y A0 )− SB(Y C0 ) so that

SB(Y0) := −[E−0 ] + [F−0 ].

Lemma 4.11. The currents SB(Y A0 ) and SB(Y C0 ) satisfy

|SB(Y A0 )|+ |SB(Y C0 )| = |SB(Y A0 )− SB(Y C0 )| ≤ |Y A0 − Y C0 | ≤ |Y A0 |+ |Y C0 |. (4.40)

Proof. As in Lemma 4.8 we infer

SB(Y A0 )− SB(Y C0 ) = −[E−0 \ F
−
0 ] + [F−0 \ E

−
0 ].

Then we will prove that

|[E−0 \ F
−
0 ]− [F−0 \ E

−
0 ]| ≤ |Y0|, (4.41)
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Y0 = Y A0 − Y C0 . Also in this case we proceed by slicing considering sections of the currents

(G1
0)− = G1 ({0} × R2)

−
and F−0 at {y2 = t}.

We then conclude as in the proof of Lemma 4.8 by observing that

|[E−0 \ F
−
0 ]− [F−0 \ E

−
0 ]| = |E−0 ∆F−0 | =

∫ +∞

−∞
|(E−0 ∆F0) ∩ {y2 = t}|dt,

and using the inequality |(E−0 ∆F−0 ) ∩ {y2 = t}| ≤ ||〈(G1
0)−, t〉| − |〈F−0 , t〉|| ≤ |〈(G1

0)− −
F−0 , t〉| = |〈Y0, t〉|.

We now define the symmetrization of the current W1. We recall that this is the
current in D2({0} × R2) such that ∂W1 = −V1 − [{0} × (α1, γ1) × {α2}]. There exist sets
Wh ⊂ {0} × R2 with

W1 −H =
∑
h

θh[Wh] θh ∈ {−1, 1}.

Definition 4.12. The Steiner symmetrization of ∪hWh with respect to the axis ĥB is the
set ŜB(W1), and its intersection with Q0 := Q∩({0}×R2) is denoted by SB(W1). We define
the current

SB(W1) := −[SB(W1)] +H,

where, by convention, the set SB(W1) is oriented by the unit vector (1, 0, 0). We define

SB(V1) := −[{0} × (α1, γ1)× {α2}]− ∂SB(W1). (4.42)

It turns out that

|SB(W1)| ≤ |W1|. (4.43)

Notice that such inequality will be an equality if the symmetrization of ∪hWh is already en-
closed in Q0. Moreover it is observed that SB(V1) coincides with the restriction of ∂SB(W1)
to the halfplane {0}×R× l+B . Hence by the property of the Steiner symmetrization it follows
that

|SB(V1)| ≤ |V1|, (4.44)

(it is straightforward that, in addition, such inequality is strict if the symmetrization of ∪hWh

exceeds the set Q0, since the left-hand side becomes even smaller after the intersection).
Finally, observe that SB(V1) will have support in T0 = T ∩ ({0} × R2).

We are now in position to define the symmetrization of the current Ŝ1.

Definition 4.13. The symmetrization of the current Ŝ1 with respect to the axis ĥB is the
current SB(Ŝ1) ∈ D2((−∞, lj)× R2) defined as

SB(Ŝ1) := SB(G1)− SB(Y A) + SB(Y C)− Lα + Lγ +H − SB(W1). (4.45)

Since SB(G1) is closed it turns out that

∂SB(Ŝ1) = −∂SB(Y A) + ∂SB(Y C)− (Id× α)][[0, lj ]] + (Id× γ)][[0, lj ]] + SB(V1) (4.46)

We now prove the crucial result:

Theorem 4.14. It holds
|SB(Ŝ1)| ≤ |Ŝ1|.
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Proof. We first decompose SB(Ŝ1) as

SB(Ŝ1) = SB(L1) +
∑
i

SB(Ŝ1) ({si} × R2),

where {si} ⊂ [0, lj) is the countable set such that for all si the current SB(Ŝ1) ({si} × R2)
is nonnegligible. The complementary current is SB(L1). Roughly speaking, SB(L1) is the

lateral part of the current SB(Ŝ1). It is easy to see, by the definition of the Steiner sym-
metrization, that the symmetrization SB(U) of a set U does not increase the mass of both
the lateral part of the set, and its complementary part (∂U ∩ {si} × R2). Moreover inter-
secting SB(U) with the solid Q gives rise to a still smaller lateral part. In particular we
infer

|SB(L1)| ≤ |L1|, (4.47)

so that to conclude the proof we have to show that for all sections {si} × R2 it turns out

|SB(Ŝ1)| ({si} × R2) ≤ |Ŝ1| ({si} × R2). (4.48)

We distinguish the cases si = 0 and si 6= 0. In the previous one we have

SB(Ŝ1) ({0} × R2) = −SB(G1
0)− − SB(Y0)− SB(W1) +H, (4.49)

(indeed in this case SB(G1
0)+ = 0) whereas in the latter

SB(Ŝ1) ({si} × R2) = SB(G1
i )

+ − SB(G1
i )
− − SB(Y +

0 ) + SB(Y −0 ), (4.50)

(recall notation (4.25)). Let us treat the first case. We establish (4.48) arguing by slicing, as
in the proof of Lemma 4.8, namely restricting to every section of this currents at {0}×R×{t},
t ≥ α2 (since the currents involved are integration over sets, this argument can be reduced

to Fubini Theorem). Recall that Ŝ1 ({0} × R2) = −(G1
0)− − Y0 − W1 + H, so that, by

(4.43), for t ≥ α2,

|〈Ŝ1 ({0} × R2), t〉| ≥ ||〈(G1
0)− + Y0), t〉| − |〈W1, t〉||

= ||F̂−0 ∩ {y2 = t}| − |ŜB(W1) ∩ {y2 = t}||. (4.51)

Here we have used ŜB(W1), the set obtained by Steiner symmetrization of ∪hWh without
intersection with Q0 (see Definition 4.12). Notice that, by definition of Steiner symmetriza-
tion with respect to hB , and taking into account that the edge of T0 has length

√
3, it turns

out that

|F−0 ∩ {y2 = t}| = τ(|F̂−0 ∩ {y2 = t}|),

|SB(W1) ∩ {y2 = t}| = τ(|ŜB(W1) ∩ {y2 = t}|), (4.52)

where τ(x) = min{|x|, l(t)}, with l(t) = 3/2 − t be the width of the triangle T at height t.
Since τ is Lipschitz continuous with constant 1, from (4.51) it follows that

|〈Ŝ1 ({0} × R2), t〉| ≥ ||F−0 ∩ {y2 = t}| − |SB(W1) ∩ {y2 = t}||. (4.53)

On the other hand, recalling that −SB(G1
0)− = −[E−0 ] and −SB(Y0) = −[F−0 ] + [E−0 ],

from (4.49) we infer

〈SB(Ŝ1) ({0} × R2), t〉 = −〈[F−0 ], t〉 − 〈SB(W1), t〉, (4.54)

and, since for every t ≥ α2 it holds (F−0 ∩ {y2 = t}) ⊂ (SB(W1) ∩ {y2 = t}) (or viceversa),
we conclude

|〈SB(Ŝ1) ({0} × R2), t〉| = ||F−0 ∩ {y2 = t}| − |SB(W1) ∩ {y2 = t}||.
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Combining this with (4.53) and integrating over t ≥ α2 we get (4.48) for si = 0.
Let us now treat the case si 6= 0. Starting from (4.50) and taking into account

that SB(G1
i ) = SB(G1

i )
+ − SB(G1

i )
− = [E+

i ] − [E−i ] and SB(Yi) = SB(Y +
i ) − SB(Y −i ) =

[E+
i ]− [F+

i ]− [E−i ] + [F−i ] we obtain

|〈SB(Ŝ1) ({si} × R2), t〉| = |〈[F+
i ], t〉 − 〈[F−i ], t〉| = |(F+

i ∆F−i ) ∩ {y2 = t}|.

This is less or equal to

|〈F+
i −F

−
i , t〉| = |〈Ŝ

1 ({si} × R2), t〉|.

by (4.12) and (4.29). Integrating over t ≥ α2 we conclude (4.48).

We are going to define the symmetrizations of the currents Ŝ2 and Ŝ3. We proceed
as for Ŝ1, and we replace G1 defined in (4.12) by G̃1 given by

G̃1 := −Ŝ2 − Ŝ3 − Y A + Y C + Lα − Lγ + W̃1 −H. (4.55)

that is closed in D2((−∞, lj)×R2) as well. Here W̃1 is a current in D2({0}×R2) such that

∂W̃1 = V2 + V3 − [{0} × (γ1, α1)× {α2}].

Defining G̃1 ∈ D3((−∞, lj)× R2) with ∂G̃1 = G̃1, we are again led to write, as for (4.13),

G̃1 =
∑
h

θh[Ũ
1
h], θh ∈ {−1, 1}, (4.56)

for some Borel sets Ũ1
h ⊂ [0, lj)× R2 with local finite perimeters such that

|G̃1|A =
∑
h

|∂Ũ1
h |A,

for any bounded open set A ⊂ (−∞, lj) × R2. The symmetrization of G̃1, namely SB(G̃1),

is then defined as for SB(G̃1), the Steiner symmetrization of the union of the (disjoint) sets

Ũ1
h , and then restricting it to Q. Therefore:

Definition 4.15. The symmetrization with respect to the ĥB axis of G̃1 is

SB(G̃1) := ∂SB(G̃1). (4.57)

As for W1, we first symmetrize W̃1. We find sets W̃h ⊂ {0} × R2 such that

W̃1 −H =
∑
h

θh[W̃h].

Definition 4.16. The Steiner symmetrization of ∪hW̃h with respect to the axis ĥB and
restricted to Q0 is denoted by SB(W̃1) (again {W̃h}h are considered mutually disjoint). We
define the current

SB(W̃1) := −[SB(W̃1)] +H.

Moreover we set

J = SB(V2 + V3) := [{0} × (γ1, α1)× {α2}] + ∂SB(W̃1).
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Figure 10: In this picture is depicted the bottom face {0} × T of the prism P = (0, lj)× T .
On the left are drawn in red the three currents Vi, i = 1, 2, 3, before applying the operator
SB . The picture of the right represents the same currents after the symmetrization; on the
two segments denoted by zB ⊂ hB the two currents SB(V2) and SB(V3) overlap, and thus
cancel each other. The set zB is the support of the current rB (see Definition 4.17).

It turns out that

|SB(W̃1)| ≤ |W̃1|, (4.58)

with strict inequality if the symmetrization of ∪hW̃h exceeds Q0 (also in this case it is easily

observed that SB(W̃1) has support in T0). In order to define SB(V2) and SB(V3) we still
need some preliminary. The current J is supported on a 1-set that is symmetric with respect
to hB and has boundary δα − δγ . In particular the restriction of J to the halfplane Πα,
namely Jα, has boundary δα+

∑
h δPh−

∑
h δQh with {Ph}h and {Qh}h a sequence of points

on hB (and similarly Jγ has boundary −
∑
h δPh +

∑
h δQh − δγ). Let rB be the (unique)

1-current supported on hB with boundary −
∑
h δPh +

∑
h δQh − δβ , and let us denote by

zB its support (see Figure 10). Therefore

Definition 4.17. The currents SB(V2) and SB(V3) are defined as

SB(V2) := Jα + rB , SB(V3) := Jγ − rB . (4.59)

Notice that

∂SB(W̃1) = SB(V2) + SB(V3)− [{0} × (α1, γ1)× {α2}]. (4.60)

It can be proved that

|SB(V2)|+ |SB(V3)| ≤ |V3|+ |V2|. (4.61)

This will be addressed in Lemma 4.23 below.
Set K = Ŝ2 + Ŝ3. Let us recall that

∂K ((−∞, lj)× R2) =(Id× α)][[0, lj ]] + ∂Y A − (Id× γ)][[0, lj ]]− ∂Y C + V2 + V3.
(4.62)

In the spirit of Definition 4.13 we are led to:

Definition 4.18. The symmetrization of the current K = Ŝ2 + Ŝ3 with respect to the axis
ĥB is defined as

SB(K) = SB(Ŝ2 + Ŝ3) := −SB(G̃1) + SB(Y A)− SB(Y C) + Lα − Lγ + SB(W̃1)−H.
(4.63)
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The current SB(K) is symmetric with respect to hB and contained in P , in particular it
is an integral current SB(K) = {KS , τ, θ} where the rectifiable set KS is symmetric with

respect to ĥB . Therefore let KS = Kα
S ∪K

γ
S with Kα

S = KS ∩ Ξα, Kγ
S = KS ∩ Ξγ , where

Ξα = R × Πα (Ξγ = R × Πγ) is the halfspace bounded by R × ĥB and containing α (γ
respectively). Notice that, by symmetry, the component of the current SB(K) on the plane

R× ĥB is null. The currents SB(Kα) and SB(Kγ) are then defined as

SB(Kα) := SB(K) Kα
S , SB(Kγ) := SB(K) Kγ

S . (4.64)

By (4.63) it is easily seen that

∂SB(K) ((−∞, lj)× R2) =(Id× α)][[0, lj ]] + ∂SB(Y A)− (Id× γ)][[0, lj ]]

− SB(∂Y C) + SB(V2) + SB(V3),

and therefore

∂SB(Kα) ((−∞, lj)× R2) =(Id× α)][[0, lj ]]− ∂SB(Y A)− (ψβ)][[0, t]] + SB(V2),
(4.65)

where ψβ is a parametrization of the set SB(K) ∩ ([0, lj) × hB), t > 0 (more precisely,
ψβ might be a countable sum of disjoint curves; this is not an issue, and for simplicity of
exposition, in what follows we will still denote by ψβ the sum of these currents6). Let K0

be the 2-current in D2((0, lj)× hB) with boundary

∂K0 = (ψβ)][[0, t]]− (Id× β)][[0, lj ]].

(That is, the integration over the stripe enclosed between the set ψβ((0, t)) and the line
(0, lj)×{β}). Notice that by definition K0 will be the integration over a set and hence is an
integral current with multiplicity 1. This will be important to prove Theorem 4.20 below.

Definition 4.19. We set

SB(Ŝ2) = SB(Kα) +K0, SB(Ŝ3) = SB(Kγ)−K0.

Eventually, we define
SA(Y B) := 0.

In such a way it holds

∂SB(Ŝ2) ((−∞, lj)× R2) = (Id× α)][[0, lj ]] + ∂SB(Y A)− (Id× β)][[0, lj ]] + SB(V2),

∂SB(Ŝ3) ((−∞, lj)× R2) = (Id× β)][[0, lj ]]− (Id× γ)][[0, lj ]]− ∂SB(Y C) + SB(V3).
(4.66)

Theorem 4.20. It holds

|SB(Ŝ2)|+ |SB(Ŝ3)| ≤ |Ŝ2|+ |Ŝ3|. (4.67)

Proof. In the case that (ψβ)][[0, t]] = (Id × β)][[0, lj ]], namely K0 = 0, the thesis easily
follows arguing as for Theorem 4.14. Then we have to treat the case K0 6= 0. In this case,
following the lines of the proof of Theorem 4.14, we first infer

|SB(Ŝ2 + Ŝ3)| ≤ |Ŝ2 + Ŝ3|. (4.68)

Let us identify K0 with its support set; by construction SB(G̃1) is null in K0×R2, and since

SB(G̃1) (K0 × R2) corresponds to the symmetrization of G̃1 on K0×R, it follows that G̃1 is

6If there is a unique parametrization, let us emphasize that such curve might be non-injective and might
cross two times, with opposite directions, a segment; this might happen if the set SB(K) ∩ ([0, lj)× hB) is
not connected.
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null in the set K0×R (recall that here R denotes the line orthogonal to the plane containing

[0, lj)× hB). In particular it follows that the two currents Ŝ2 and Ŝ3 have null sum in this
set, that is

Ŝ2 (K0 × R) = −Ŝ3 (K0 × R). (4.69)

Now, by (4.68), writing

|SB(Ŝ2)|+ |SB(Ŝ3)| = |SB(Ŝ2 + Ŝ3)|+ 2|K0| ≤ |Ŝ2 + Ŝ3|+ 2|K0|, (4.70)

it remains to prove that

|K0| ≤ |Ŝ2|K0×R = |Ŝ3|K0×R. (4.71)

Indeed thanks to (4.69), from (4.71) we infer

|Ŝ2 + Ŝ3|+ |Ŝ2|K0×R|+ |Ŝ3|K0×R = |Ŝ2|Kc
0×R+ |Ŝ3|Kc

0×R+ |Ŝ2|K0×R+ |Ŝ3|K0×R ≤ |Ŝ2|+ |Ŝ3|,

that with (4.70) addresses the result. The claim (4.71) follows by an argument of slicing:
for s ∈ (0, lj) let us denote by σ(s) the length of the intersection between K0 and the plane
{s} × R2, namely

σ(s) = H1(K0 ∩ ({s} × R2)), (4.72)

then it holds,

|Ŝ2 (K0 × R)| ≥
∫ lj

0

|〈Ŝ2 (K0 × R), s〉|ds ≥
∫ lj

0

σ(s)ds = |K0|.

(Observe that the projection of the support of 〈Ŝ2 (K0 × R), s〉 onto ĥB coincides with
K0 ∩ ({s}×R2) for H1-a.e. s ∈ (0, lj))

7. The last equality follows since K0 has multiplicity
1.

Finally we define the symmetrization of the current T . Recalling Definitions 4.12
and 4.16 of SB(W1) and SB(W̃1), we set:

Definition 4.21. The symmetrization of the current T ∈ D2({0} × R2) is the current
SB(T ) ∈ D2({0} × R2) defined as

SB(T ) := SB(W)− SB(W̃). (4.73)

From (4.42) and (4.60) it follows

∂SB(T ) = −SB(V1)− SB(V2)− SB(V3). (4.74)

Moreover we can prove

Proposition 4.22. It holds

|SB(T )| ≤ |T |. (4.75)

Proof. We employ a simple argument of slicing, as in the proof of Theorem 4.14. Let t ∈ R,
and consider the section line {0} × R × {y2 = t}. First we observe that T = W1 − W̃1, so
that for all t ∈ R we have

|〈T , t〉| ≥ ||〈W1, t〉| − |〈W̃1, t〉||. (4.76)

7This is a consequence of the Constancy Lemma and (4.62). Indeed, roughly speaking, for a.e. s ∈ (0, lj)

the slice 〈Ŝ2, s〉 is a curve connecting β to α, and hence its projection onto hB is surjective.
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By Definition 4.12 and 4.16 we have

||SB(W1) ∩ {y2 = t}| − |SB(W̃1) ∩ {y2 = t}|| = |(SB(W1)∆SB(W̃1)) ∩ {y2 = t}|

= |〈SB(W1)− SB(W̃1), t〉| = |〈SB(T ), t〉|,

where we have used that (SB(W1) ∩ {y2 = t}) ⊂ (SB(W̃1) ∩ {y2 = t}) (or viceversa). This,
together with (4.76), and integrated over R gives (4.75) since

||SB(W1) ∩ {y2 = t}| − |SB(W̃1) ∩ {y2 = t}||

= |τ(ŜB(W1) ∩ {y2 = t})− τ(ŜB(W̃1) ∩ {y2 = t})| ≤ ||〈W1, t〉| − |〈Ŵ1, t〉||,

(recall that ŜB(W1) and ŜB(W̃1) are the symmetrizations of the sets {Wh}h and {W̃h}h
before intersecting with Q; then we employ the same argument in (4.52)).

We finally observe that the current

SB(T ) + SB(Ŝ1) + SB(Ŝ2) + S1(Ŝ3),

is closed in D2((−∞, lj)× R2). This follows from (4.46), (4.66), and (4.74).
Let us collect some crucial observations about the symmetrization operator, sum-

marized in the following lemma.

Lemma 4.23. The symmetrization operator SB enjoys the following features:

(a) It holds
|SB(Y A)|+ |SB(Y C)| ≤ |Y A|+ |Y C |,

whereas
|SB(Y B)| = 0.

Moreover, by definition, |SB(Y A)| = |SB(Y C)|.

(b) The currents SB(Ŝi), i = 1, 2, 3, satisfy

∂SB(Ŝ1) ((−∞, lj)× R2) =− (Id× α)][[0, lj ]]− SB(∂Y A)

+ (Id× γ)][[0, lj ]] + SB(∂Y C) + SB(V1),

∂SB(Ŝ2) ((−∞, lj)× R2) =(Id× α)][[0, lj ]] + SB(∂Y A)

− (Id× β)][[0, lj ]] + SB(V2),

∂SB(Ŝ3) ((−∞, lj)× R2) =(Id× β)][[0, lj ]]− SB(∂Y C)

− (Id× γ)][[0, lj ]] + SB(V3).

(c) The current SB(T ) satisfies

∂SB(T ) = −SB(V1)− SB(V2)− SB(V3), (4.77)

and
|SB(V1)| ≤ |V1|, |SB(V2)|+ |SB(V3)| ≤ |V2|+ |V3|. (4.78)

(d) We have

|SB(T )|+ |SB(Ŝ1)|+ |SB(Ŝ2)|+ |SB(Ŝ3)| ≤ |T |+ |Ŝ1|+ |Ŝ2|+ |Ŝ3|. (4.79)

Proof. Statement (a) is given by Lemma 4.8 and by definition of SB(Y B). Item (b) follows
from (4.46) and (4.66). The first equation in (c) is (4.74). Let us demonstrate the second
equation in (4.78) (the first inequality is (4.44)). The argument is very similar to the one
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employed in the proof of Theorem 4.20; let us sketch it. Recalling Definition 4.17, we want
to prove that

|J |+ 2|zB | ≤ |V2|+ |V3| = |V2|R×zB + |V2|R×(hB\zB) + |V3|R×zB + |V3|R×(hB\zB), (4.80)

where zB is the support set of the current rB (see Figure 10). Now, by Steiner symmetriza-
tion it is easily seen that |J | ≤ |V2|R×(hB\zB) + |V3|R×(hB\zB), whereas the proof that
|zB | ≤ |V2|R×zB follows by noticing that zB is exactly the projection on hB of the support of
V2 (R× zB), that is onto on zB since V2 is an arc connecting α to β. Finally, we achieve
(d) just gathering together (4.75) with Theorems 4.14 and 4.20.

The operators SA and SC are the symmetrizations with respect to the plane R× ĥA
and R× ĥC , respectively, constructed like SB switching the role of A, B, and C, accordingly.

5 Proof of Theorem 3.7

We are now ready to prove Theorem 3.7. Our strategy will be to apply repeatedly the
symmetrization operators to the currents Ŝi and T . We proceed as follows: we define
S := SA ◦ SB ◦ SC and set

(Ŝi)k := Sk(Ŝi), i = 1, 2, 3,

Tk := Sk(T ),

for every h ∈ N. We will prove the following:

Proposition 5.1. There exists integral currents S
i
, T ∈ D2((−∞, lj)× R2) such that

(Ŝi)k ⇀ S
i

for i = 1, 2, 3,

Tk ⇀ T , (5.1)

and

|S1|+ |S2|+ |S3|+ |T | ≤ |(Ŝ1)k|+ |(Ŝ2)k|+ |(Ŝ3)k|+ |Tk|, (5.2)

for all k ∈ N. Moreover S
1

+ S
2

+ S
3

+ T is a closed current in D2((−∞, lj)× R2), and

∂S
1

((0, lj)× R2) =− (Id× α)][[0, lj ]] + (Id× γ)][[0, lj ]],

∂S
2

((0, lj)× R2) =(Id× α)][[0, lj ]]− (Id× β)][[0, lj ]],

∂S
3

((0, lj)× R2) =(Id× β)][[0, lj ]]− (Id× γ)][[0, lj ]]. (5.3)

Remark 5.2. Notice that after one application of S nothing ensures us that the currents
NA, NB , and NC vanish. This is because every application of a symmetrization operator
reduces their mass but not necessarily nullify it. For these reason we will need to apply S
infinite times.

Proof. The weak convergences (5.1) entail

|S1|+ |S2|+ |S3|+ |T | ≤ lim inf
k→∞

|(Ŝ1)k|+ |(Ŝ2)k|+ |(Ŝ3)k|+ |Tk|, (5.4)

and Lemma 4.23 (d) implies that the sequence on the right-hand side is nonincreasing, so
that for all h ∈ N we have

lim inf
k→∞

(
|(Ŝ1)k|+ |(Ŝ2)k|+ |(Ŝ3)k|+ |Tk|

)
≤ |(Ŝ1)h|+ |(Ŝ2)h|+ |(Ŝ3)h|+ |Th|,
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and inequality (5.2) follows. Let us prove (5.1). We first focus on the currents Y A, Y B , and
Y C . Owing to Lemma 4.23 (a) it is easy to prove that after an application of S we have

|S(Y A)|+ |S(Y B)|+ |S(Y C)| ≤ 1

4
(|Y A|+ |Y B |+ |Y C |).

Thus by induction we get

|Sk(Y A)|+ |Sk(Y B)|+ |Sk(Y C)| ≤ 1

4k
(|Y A|+ |Y B |+ |Y C |).

In particular

Sk(YA)→ 0, Sk(YB)→ 0, Sk(YC)→ 0. (5.5)

Let us set

P 1
k := (Ŝ1)k + Sk(Y A)− Sk(Y C),

P 2
k := (Ŝ2)k + Sk(Y B)− Sk(Y A),

P 3
k := (Ŝ3)k + Sk(Y C)− Sk(Y B); (5.6)

from Lemma 4.23 (b) we infer that

∂P 1
k ((−∞, lj)× R2) =− (Id× α)][[0, lj ]] + (Id× γ)][[0, lj ]] + Sk(V1),

∂P 2
k ((−∞, lj)× R2) =− (Id× β)][[0, lj ]] + (Id× α)][[0, lj ]] + Sk(V2),

∂P 3
k ((−∞, lj)× R2) =− (Id× γ)][[0, lj ]] + (Id× β)][[0, lj ]] + Sk(V3). (5.7)

Since Sk(Vi) have uniformly bounded masses by Lemma 4.23 (c), thanks to (4.79) as well,

we find limit integral currents S
i
, T ∈ D2((−∞, lj)× R2) such that, up to subsequences,

(P i)k ⇀ S
i

for i = 1, 2, 3,

Tk ⇀ T .

Thanks to (5.5) and (5.6) we infer (5.1). The fact that S
1

+S
2

+S
3

+ T is a closed current

in D2((−∞, lj)× R2) follows from the fact that (Ŝ1)k + (Ŝ2)k + (Ŝ3)k + Tk is closed for all

k and tends to S
1

+ S
2

+ S
3

+ T . Finally (5.3) follows from (5.7) passing to the limit.

The currents S
i
, T ∈ D2((−∞, lj)× R2) satisfy the following properties:

(i) The integral current T is supported in {0} × T and has boundary

∂T = −V1 − V2 − V3
.

There exist three Lipschitz functions ψi : [0, 1]→ T , i = 1, 2, 3, such that

Vi = (ψi)][(0, 1)] i = 1, 2, 3,

ψ1(0) = α, ψ1(1) = γ = ψ3(0), ψ3(1) = β = ψ2(0), ψ2(1) = α.

Moreover there is a constant C > 0 such that

3∑
i=1

|Vi| ≤ C. (5.8)

(ii) The three currents S
i
i = 1, 2, 3 are integral and satisfy

∂S
1

=− (Id× α)][[0, lj ]] + (Id× γ)][[0, lj ]] + V1
, (5.9)

∂S
2

=(Id× α)][[0, lj ]]− (Id× β)][[0, lj ]] + V2
, (5.10)

∂S
3

=(Id× β)][[0, lj ]]− (Id× γ)][[0, lj ]] + V3
. (5.11)
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Figure 11: This figure represents the geometric setting introduced before Proposition 5.3.
The prism P is the union of the three prisms Pi with base Ti, i = 1, 2, 3. The lateral surface
of the prism P is made of three rectangles Ri, i = 1, 2, 3. For instance, the rectangle R1 is
the one with vertices (0, α), (0, γ), (lj , γ), and (lj , α).

We can write down an additional condition, which however is a consequence of (i)
and (ii):

(ii’) The current U := S
1

+ S
2

+ S
3

+ T is a closed current in D2((−∞, lj)× R2).

We then are led to the following minimum problem

min
{
|S1|+ |S2|+ |S3|+ |T | : Si (i = 1, 2, 3), and T satisfy (i) and (ii)

}
. (5.12)

The existence of a minimizer follows from the Compactness Theorem for integral currents.
Let (S1, S2, S3, T ) be a minimizer. Of course, thanks to (5.2) for k = 0 and the definition
of (S1, S2, S3, T ) we have

|Ŝ1|+ |Ŝ2|+ |Ŝ3|+ |T | ≥ |S1|+ |S2|+ |S3|+ |T |.

Therefore if we prove that (S1, S2, S3, T ) satisfies (3.63) then the proof of Theorem 3.7 is
complete. To this aim we will first prove three preliminary results. We begin with some
geometric definitions. The triangle T with vertices α, β, and γ, can be seen as the union
of the three triangles Ti, i = 1, 2, 3, where T1 has vertices α, γ and O, T2 has vertices α,
β, and O, while T3 has vertices β, γ, and O. The prism P = (0, lj)× T can be seen as the
union of the three prisms P1, P2, and P3, given by Pi = (0, lj)× Ti, i = 1, 2, 3. Let us recall
that R1, R2, and R3 are the rectangles with edges αγ× (0, lj), βα× (0, lj), and γβ× (0, lj),
respectively (see Figure 11).

Proposition 5.3. There is a minimizer (S1, S2, S3, T ) of the minimum problem (5.12) such
that the currents Si, i = 1, 2, 3, are the graphs of Cartesian maps on D2(Ri×R), i = 1, 2, 3.
Namely, there are functions ui ∈ BV (Ri;R), i = 1, 2, 3 such that

Si = (Id× ui)][Ri], |Si (Ri × R)| = A(ui;Ri), (5.13)

for i = 1, 2, 3.
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Proof. We will use the fact that, by the minimality assumption of (S1, S2, S3, T ), if we apply
a symmetrization operator to these currents, their total mass cannot strictly decrease. We
proceed in three steps.

Step 1. We consider lines in R3 which are orthogonal to the s-axis and to the height
hB (i.e. parallel to the y1-axis). These lines are rs,t := {s} × R × {t} with s ∈ [0, lj ] and
t ∈ (α2, β2) (recall we choose the system (y1, y2) is such a way that α2 = γ2). Let us identify
the current Si with its support set. We claim that

H2({(s, t) ∈ (0, lj)× (α2, β2) : ]{Si ∩ rs,t} > 1 for some i = 2, 3}) = 0. (5.14)

First notice that for both i = 2, 3 it holds

]{Si ∩ rs,t} ≥ 1 for H2 − a.e. (s, t). (5.15)

To see (5.14) we argue by contradiction, and denoting by A the set in (5.14), suppose

H2(A) > 0. Let G̃1 be the current in D3((0, lj)× R2) with boundary S2 + S3 +R1 (we are
neglecting the boundaries in {0}× T if we look at S2 + S3 +R1 as currents in (0, lj)×R2).

We identify G̃1 with its support set (which coincides with the area enclosed between the
surfaces S2, S3, and R1). Define

CK = {(s, t) ∈ (0, lj)× (α2, β2) : H1(rs,t ∩ G̃1) > 0}

and CcK := ((0, lj)× (α2, β2)) \CK8. By definition of SB(S2) it is seen that the operator SB
transforms S2 ∩ (CK ×R) into SB(∂G̃1)∩Kα (see Definition 4.18) and sends S2 ∩ (CcK ×R)
into K0 (see Definition 4.19); similarly for S3. If H2(A) > 0 then either H2(A∩CcK) > 0 or
H2(A ∩ CK) > 0. Let us treat the two cases separately:

(1) (Case H2(A∩CcK) > 0) suppose that (5.14) takes place in CcK and for the index i = 2,
namely

H2({(s, t) ∈ (0, lj)× (α2, β2) ∩ CcK : ]{S2 ∩ rs,t} > 1}) > 0.

Since both the sets S2 ∩ (CcK ×R) and S3 ∩ (CcK ×R) are transformed into K0 by SB ,
we can write

|S2|+ |S3| =
= |S2 ∩ (CK × R)|+ |S2 ∩ (CcK × R)|+ |S3 ∩ (CK × R)|+ |S3 ∩ (CcK × R)|
≥ |SB(S2) ∩ (CK × R)|+ |SB(S3) ∩ (CK × R)|

+

∫
CcK

]{rs,t ∩ S2}dH2 +

∫
CcK

]{rs,t ∩ S3}dH2

> |SB(S2) ∩ (CK × R)|+ |SB(S3) ∩ (CK × R)|+
∫
CcK

2dH2

= |SB(S2) ∩ (CK × R)|+ |SB(S3) ∩ (CK × R)|+ 2|K0 ∩ (CcK × R)|
= |SB(S2)|+ |SB(S3)|.

The fact that such inequality is strict contradicts the assumption that (S1, S2, S3, T )
is a minimizer.

(2) (Case H2(A ∩ CK) > 0) now we take into account that SB transforms S2 ∩ (CK × R)

into SB(∂G̃1)∩Kα and S3 ∩ (CK ×R) into SB(∂G̃1)∩Kγ . In CK ×R it happens that

∂G̃1 ∩ rs,t ≥ 2. Suppose first that the subset B ⊂ CK defined as

B := {(s, t) ∈ CK : ]{∂G̃1 ∩ rs,t} > 2}
8In other words Ck is the projection of G̃1 onto the rectangle (0, lj)× hB .
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satisfies H2(B) > 0. In this case, as a property of Steiner symmetrization, it is

known that |∂SB(G̃1) ∩ (B × R)| < |∂G̃1 ∩ (B × R)|, and thus we easily arrive to
|S2|+ |S3| > |SB(S2)|+ |SB(S3)|, again a contradiction. Suppose then that

]{∂G̃1 ∩ rs,t} = 2, for H2 − a.e. (s, t) ∈ CK . (5.16)

On the other hand we have, by hypothesis, H2(A ∩ CK) > 0, therefore we again can
assume that the set

B2 := {(s, t) ∈
(
(0, lj)× (α2, β2)

)
∩ CK : ]{S2 ∩ rs,t} = 2} (5.17)

has positive H2 measure (similarly we might assume this happens for S3). At the same
time, by (5.15), it must occur that

]{S3 ∩ rs,t} ≥ 1 for H2 − a.e.(s, t) ∈ CK . (5.18)

Since ∂G̃1 ⊂ S2 ∪ S3 we have two cases:

(a) H2((S2 ∪ S3) ∩ (CK × R)) > H2(∂G̃1 ∩ (CK × R)) and hence we have H2((S2 ∪
S3)∩(CK×R)) > H2(SB(∂G̃1)∩(CK×R)) = H2((SB(S2)∪SB(S3))∩(CK×R)),
again contradicting the minimality;

(b) H2((S2 ∪S3)∩ (CK ×R)) = H2(∂G̃1 ∩ (CK ×R)), we find that essentially ((S2 ∪
S1) ∩ (CK × R)) = ∂G̃1 ∩ (CK × R). Recall that, by (5.16), H2-a.e. (s, t) ∈ CK
it holds ∂G̃1 ∩ rs,t = 2; this together with (5.17) implies that, up to a negligible

set, ∂G̃1 = S2 in B2 × R (see Figure 12). Thus, thanks to (5.18) we infer

|S2 ∩ (B2 × R)|+ |S3 ∩ (B2 × R)| > |S2 ∩ (B2 × R)| = |∂G̃1 ∩ (B2 × R)|

≥ |SB(∂G̃1) ∩ (B2 × R)| = |SB(S2) ∩ (B2 × R)|+ |SB(S3) ∩ (B2 × R)|,

from which we again arrive at H2((S2 ∪S3)∩ (CK ×R)) > H2(SB(∂G̃1)∩ (CK ×
R)) = H2((SB(S2) ∪ SB(S3)) ∩ (CK × R)), concluding the proof of (5.14).

Step 2. From (5.14) it follows that for H2-a.e. (s, t) ∈ (0, lj) × (α2, β2) it holds
]{S2 ∩ rs,t} = 1 where rs,t are lines parallel to αγ, i.e. rs,t ‖ αγ. Arguing as in Step 1 we
infer that the same is true if we consider lines rs,t parallel to the edge βγ. Thus we have

]{S2 ∩ rs,t} = 1 rs,t ‖ αγ and rs,t ‖ βγ. (5.19)

Consider now lines rs,t parallel to the height hC , so that we can assume (s, t) ∈ R2 =
(0, lj)× (β1, α1). We claim

]{S2 ∩ rs,t : rs,t ‖ hC} = 1 for H2 − a.e (s, t) ∈ R2. (5.20)

Denote by E the set of all (s, t) ∈ R2 such that ]{S2 ∩ rs,t} > 1, namely

E := {(s, t) ∈ R2 : ]{S2 ∩ rs,t} > 1},

and assume by contradiction that E has positive H2-measure. Define Eθ := {(s, t) ∈ E :
s = θ}. As a consequence the set

Θ := {θ ∈ (0, lj) : H1(Eθ) > 0}

has positive H1-measure. We are going to show that for H1-a.e. θ ∈ Θ either the set

{t ∈ (β1, α1) : ]{S2∩rθ,t} > 1 for rθ,t ‖ αγ} or {t ∈ (β1, α1) : ]{S2∩rθ,t} > 1 for rθ,t ‖ βγ}

has positive measure. This will contradict (5.19) and hence prove (5.20).
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Figure 12: This figure is a section of the prism P at fixed θ ∈ (0, lj). The area colored in

yellow is the set G̃1; on the right are represented the set CK (black) and its subset B2 in
(5.17) (red). The dotted lines parallel to αγ are rθ,t.

Let θ ∈ Θ be fixed, we can find t ∈ (β1, α1) such that ]{S2 ∩ rs,t : rs,t ‖ hC} > 1.
For almost every s ∈ (0, lj) the section S2 ∩ ({s} × R2) is given by the union of Lipschitz
curves {γi}i≥0 such that γ0 connects α and β, and {γi}i>0 are closed (by the decomposition
theorem for integral 1-currents, Theorem 2.1), therefore we can assume this for our choice
of θ. Moreover each γi is injective. Since Eθ has positive measure, we can find t such that
either (1) rs,t intersects γ0 in two points, say P and Q, or (2) rs,t intersects γ0 at one point
and another curve γ1. Let us treat the two cases separately:

(1) in this case, up to change the choice of t, we can assume that the tangent vectors to
γ0 at P and Q are defined and are not vertical, i.e. parallel to hC (namely, the curve
γ0 crosses the lines rθ,t at P and Q and is not tangent to that, see Figure 13). Since
the curve γ0 connects α to β, it is easy to see, as a consequence of the Theorem of
the Jordan curve, that there must be another point, say R, in the intersection of rθ,t
and γ0. Up to rename the points, suppose R stays between P and Q on the line rθ,t.
Suppose first that R is also between P and Q on the curve γ0 (see picture 13 left). In
this case P is connected to α and Q to β, so that if P is below (above) R and Q above
(below) it, we see that the line passing through R and parallel to αγ (βγ, respectively)
will intersect γ0 in three points. Instead, suppose that R is not between P and Q on
the curve γ0. Let Q be the middle point, and suppose that P is connected to β and P
is below R (see picture 13 right; the other cases are similar). In such a case the line
passing through R and parallel to βγ intersects γ0 at least three times, one on the arc
connecting β to P , one at R, and one in the sub-curve of γ0 connecting P to Q.

(2) This case is simpler. Indeed all the lines parallel to βγ (and also αγ) passing through
γ1 also intersect γ0. Moreover also almost every lines intersecting γ1 must intersect it
in at least two points (again thanks to the Theorem of the Jordan curve).

In both cases (1) and (2) we can find a set of lines parallel to αγ or βγ intersecting S2

in more than one point, which (suitably parametrized by coordinates in the corresponding
rectangle) have a H1-nonnegligible measure. Since this happens for H1-a.e. s ∈ Θ, and Θ
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Figure 13: In this figure the case (1) of step 2 of the proof of Proposition 5.3 is depicted in
two possible configurations.

has nonzero measure, by Fubini Theorem we contradict (5.19) and therefore, by absurd, get
(5.20).

Step 3. Notice that assertion (5.20) holds true for all Si, i = 1, 2, 3. Fix i, say i = 1.

]{S1 ∩ rs,t : rs,t = (s, t)× R} = 1 for H2 − a.e (s, t) ∈ R1. (5.21)

Note also that S1 ∈ D2(R1 × R) is closed (its boundary is supported in ∂R1 × R). Recall
that R1 = (0, lj) × (α1, γ1) × {α2} ' (0, lj) × (α1, γ1), again with an appropriate choice of
the coordinate system (x, y1, y2). We assume α2 = γ2 = 0. There exists an integral current
G1 ∈ D3(R1 × R) with ∂G1 = S1. Moreover there are sets Ui such that

G1 =
∑
h

θh[Uh], (5.22)

and it holds S1 =
∑
h [∂Uh]. As a consequence the set S1∆(∪h∂Uh) has H2-null measure.

We will prove that in this decomposition there is a unique set Uh (with boundary the whole
S1).

By (5.21) for H2-a.e. (s, t) ∈ R1 there is a unique point in the intersection of the
vertical line rs,t = (s, t)×R with S1. If this point is Ys,t := (s, t, y2) we denote by u1(s, t) = y2

its last coordinate. We see that u1 defines a map in L∞(R1) (the measurability of u1 easily
follows from the fact that S1 is an integral current, and thus it is the union of subsets of
Lipschitz surfaces). We denote by π : (s, t, y2)→ (s, t) ∈ R1 the projection of R1 × R onto
R1. From the fact that S1 = ∪h∂Uh (up to negligible sets) it follows that

∪hπ(Uh) = R1. (5.23)

By slicing it is easily seen that Uh ∩ rs,t has boundary the unique point Ys,t, for H2-a.e.
(s, t) ∈ R1; hence Uh∩rs,t is a halfline, either (s, t)×(−∞, u1(s, t)) or (s, t)×(u1(s, t),+∞).
Denote by

U+
h :=

{
(s, t, z) : z ∈ (u1(s, t),+∞), Uh ∩ rs,t = {(s, t)× (u1(s, t),+∞)}

}
,

and
U−h :=

{
(s, t, z) : z ∈ (−∞, u1(s, t)), Uh ∩ rs,t = {(s, t)× (−∞, u1(s, t))}

}
.

(where equalities are intended up to negligible sets). But now it easily follows that ∂U+
h =

(S1 ∩ ∂Uh) ∪ V +
h , where V +

h is the set

V +
h := {(s, t, r) : (s, t) ∈ ∂π(U+

h ), z > u1(s, t)},
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and similarly ∂U−h = (S1 ∩ ∂Uh) ∪ V −h , with

V −h := {(s, t, z) : (s, t) ∈ ∂π(U−h ), z < u1(s, t)}.

Therefore, in order that ∂Uh ⊂ S1 it must hold that both V +
h and V −h have null H2-measure

in (0, lj) × (α1, γ1) × R (S2 has support in the prism P and hence compact support while
V ±h are unbounded). This implies that ∂π(U+

h ) ∪ ∂π(U−h ) must be a subset of ∂R1. In
particular ∂π(Uh) ⊂ ∂R1. This is possible only if π(Uh) = R1, and thus ∂π(Uh) coincides
with R1

9. In particular we have proved that for some h we have π(Uh) = R1 and, since for
every other index i 6= h the set π(Ui)∩ π(Uh) has null H2-measure (by (5.21)), we conclude
that there is only one index h for which Uh has positive measure (namely, the decomposition
of G1 in (5.22) consists of only one set, call it U). Finally, since the same argument applies
to ∂π(U+

h ) and ∂π(U−h ), we also have obtained that the relative sets U+
h and U−h cannot

have both nonzero measure. Hence, say U = U−h (up to change orientation of S1).
The subgraph of u1 is defined as the set

SG1 := {(s, t, z) ∈ R1 × R : z ≤ u1(s, t)}.

Let Ĝ1 be the current defined as the integration on the subgraph of u, namely

Ĝ1 = [SG1]. (5.24)

By definition, it turns out that SG1 = U−h = U , and thus Ĝ1 coincides with G1 defined in

(5.22). Therefore ∂Ĝ1 = ∂G1 = S1. Now we invoke [11, Theorem 2, Section 4.2.4], that,
combined with [11, Proposition 3, Section 4.2.4], implies that S is a Cartesian current in
Cart(R1 × R), u1 ∈ BV (R1;R), and

|S1|R1×R = A(u1,R1). (5.25)

The assertion for i = 2, 3 follows similarly.

Lemma 5.4. There is a minimizer (S1, S2, S3, T ) satisfying the hypotheses of Proposition
5.3 such that T = 0.

Proof. Let (S1, S2, S3, T ) be as in Lemma 5.3. Up to applying SB again we can assume
that S1, S2, S3 are symmetric with respect to hB . Moreover V1 Πα (see Definition 4.7 for
Πα) is the graph of a nondecreasing function u1 defined on [α1, 0] (here 0 = β1 is the ascissa
corresponding to the segment hB). Let P be the intersection between the curve V1 and hB .
Consider the segment Pβ. The arc V1 Πα ∪ Pβ connects α to β.

The curve V1 Πα has H1-a.e. tangent vector ~v that forms an angle θ ∈ [0, π/2]
with the segment αγ. As a consequence the angle between ~v and hC is θ+π/6 ∈ [π/6, 2π/3]
(see figure 14 left). This means that the curve V1 Πα ∪ Pβ can be seen as the graph of
a function v2 defined on the segment βα. Furthermore we know that V2 is the graph of a
function u2 on βα.

Notice that the current T Πα is the integral over the area enclosed between the
two graphs of u2 and v2. Let us denote by Tα := T Πα such current. We hence redefine V2

as V̂2 := V1 Πα ∪Pβ, namely the graph of v2. Moreover S2 is redefined as Ŝ2 := S2 + Tα.
A similar construction is made on the halfplane Πγ and S3 is defined in a symmetric way. It

results that T , seen as the current with boundary the new V̂1 := V1, V̂2, and V̂3, becomes
null. Hence we infer

|Ŝ2|+ |Ŝ3| ≤ |S2|+ |Tα|+ |S3|+ |Tγ | = |S2|+ |S3|+ |T |. (5.26)

The thesis is achieved since we got a minimizer with the desired properties.

9This is a consequence of the Constancy Lemma; if R1\π(Uh) and π(Uh) have both H2-positive measure,
and considering sections R1

s of R1 at s fixed, we find that for a positive H1-measure subset of (0, lj) the
section R1

s contains an inner point Xs that belongs to the mutual boundary of R1 \ π(Uh) and π(Uh); this
would imply that such mutual boundary has positive H1-measure inside R1.
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Consider now the baricenter O of the triangle T . Let us denote by Λ1 := αO ∪Oγ,
Λ3 := Oγ ∪Oβ, Λ2 := Oβ ∪ αO.

Lemma 5.5. There is a minimizer (S1, S2, S3, T ) as in Lemma 5.4 with Vi = Λi, for
i = 1, 2, 3.

Proof. Step 1. Apply SB and assume V2 is symmetric to V3 with respect to hB . By the
previous lemma we have V1 = −V2 −V3. Let P be the (unique) intersection of V1 with hB ;
by symmetry the segment PB ⊂ hB is the common part of V2 and V3. When we apply SA
the point P is sent to P ′ := πhA(P ) the orthogonal projection of P onto hA (see figure 14
right). Denote by V the union of the support of the currents Vi. This is composed by three
arcs VA, VB , VC connecting P to α, β, and γ respectively. By definition of SA this transforms
VA into SA(VA) = αP ′. In particular |VA| > |SA(VA)| if P is not on hA (i.e. if P does not
coincide with O). On the other hand it is easy to see that |VB |+ |VC | ≥ |SA(VB)|+ |SA(VC)|,
and therefore we arrive at

3∑
i=1

|Vi| >
3∑
i=1

|SA(Vi)|, (5.27)

if P 6= O.
Step 2. We now consider the following minimum problem:

min{
∑
i

|Vi| : (S1, S2, S3, T ) is as in Lemma 5.4}. (5.28)

From the features of the minimizers of problem (5.12) it is easily seen that such family is
compact in the set of integral currents. Moreover, thanks to (5.8), also the corresponding
currents {Vi}i=1,2,3 form a compact family, and hence we infer the existence of a solution
of (5.28). We claim that the (not relabeled) minimizer (S1, S2, S3, T ) satifies the thesis.
Indeed, if not, we have two cases: P 6= O, and thus after applying some symmetrization
operator as described in Step 1 we got a best minimizer, a contradiction. The second case is
P = O but some among VB , VA, VC does not coincide with Oβ, Oα, or Oγ, respectively. Say
VA 6= Oα; now again SA transforms VA into SA(VA) = αO and in particular |VA| > |SA(VA)|,
again a contradiction.

We are finally ready to prove Theorem 3.7.

Proof of Theorem 3.7. We consider a minimizer (S1, S2, S3, T ) as in Lemma 5.5. Let u1 :
R1 → R be the map in Proposition 5.3. The graph of u1, namely S1, has boundary

∂S1 = −(Id× α)][[0, lj ]] + (Id× γ)][[0, lj ]] + V1. (5.29)

in D1((−∞, lj) × R2). Moreover, up to choose coodinates of R2 in such a way that α2 =
γ2 = 0 we see that the currents (Id× α)][[0, lj ]] and (Id× γ)][[0, lj ]] are exactly the graph
over (0, lj) × {α1} and (0, lj) × {γ1} (respectively) of the function u1 = 0. We also know
that the current V1 is exactly the integration over the graph of the function ϕ in (1.14) on
{0} × (γ1, α1). Extending ϕ on (0, lj) × {α1} and (0, lj) × {γ1} by setting ϕ = 0 we see
that ϕ is then a Lipschitz function on ∂R1 ∩R (set R = (−∞, lj)× R), and then it can be
extended to a Lipschitz function (still denoted by ϕ) defined on R \ R1 (let us also take it
with compact support on R, for simplicity). Consider the graph of ϕ over R \ R1, namely
(Id× ϕ)][R \ R1]; it is then easily observed that the current

S :=

{
S on R1 × R
(Id× ϕ)][R \ R1] on (R \ R1)× R,

(5.30)
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Figure 14: In the picture on the left is an example of the proof of Lemma 5.4. In yellow
it is depicted the area enclosed between V1 and V2, support of the current T Πα. The
tangent vector ~v to V1 forms an angle θ ∈ [0, π/2] with the line αγ. The picture on the right
describes the proof of Lemma 5.5; the operator SA projects P in P ′ = πhA(P ).

defines a Cartesian current in D2(R × R). We are then led to considering the following
minimum problem:

min{|Ŝ|R1×R : Ŝ ∈ cart1(R× R) and Ŝ ((R \ R1)× R) = S ((R \ R1)× R)}. (5.31)

By [12, Theorem 8, Section 6.1.2] (see also [13, Theorem 15.9]), it is well-known that this

minimization problem admits a solution Ŝ, and moreover Ŝ satisfies the following property:
there exists û ∈ BV (R1) such that |S|R1×R = A(û;R1), and

û ∈ argmin {
∫
R1

√
1 + |Du|2dx+

∫
∂R1∩R

|u− ϕ|dH1 : u ∈ BV (R)}. (5.32)

Finally, thanks to [5, Remark 2.1], it is observed that the minimum of the value in
the last expression is exactly mlj , so that we infer |S|R1×R = A(û;R1) = mlj (the value of

mlj is defined in (1.16)). From (5.31), since S1 is a competitor, we conclude

|S1| ≥ mlj . (5.33)

The same being true for S2 and S3, we have addressed Theorem 3.7.

Remark 5.6. The equivalence of problems (5.31) and (5.32) only holds when the codimen-
sion of the Cartesian current is 1 (that is when we consider real valued BV-functions graphs).
This is a consequence of the fact that, for N = 1, it holds true cart1(Ω;RN ) = Cart1(Ω;RN )
(see Proposition 3 in [11, Section 4.2.4]).

6 An example in a thin domain

In this section we consider the problem of the area functional in a thin domain Ub, a tubular
neighborhood of the jump set of u, instead of the whole ballB1(0). The domain Ub is depicted
in Figure 1 in the introduction. We then construct a sequence of Lipschitz functions {vk}
which converges in L1(Ub) to the triple junction function u and whose area of the graphs
satisfies

lim inf
k→∞

A(vk;Ub) < L2(Ub) + 3m.
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In particular we infer that the construction made in [5] for (done for Ω the disk) do not
provide a recovery sequence for the area functional, which in fact satisfies

A(u;Ub) < L2(Ub) + 3m.

This dependence on the domain has been pointed out, for a different function, in [7]. As
explained in the introduction, the inequality above is due to a certain interaction between
the jump set of u and the boundary of the domain. This interactions has been observed
indeed already in [7, Section 7] (see also the example for the vortex map in [1] upon which
the examples in [7] are inspired). The main issue is the absence of uniform convergence of
vk outside the jump set.

An auxiliary construction. We start by defining an auxiliary function. Consider
two fixed real numbers h1, h2 > 0. Let x0 < x1 < x2 < x3 < x3 < x4 < x5, and
δ, ε > 0 be real numbers with ε < h2, and set di := xi − xi−1 for i = 1, . . . , 5. In a plane
with Cartesian coordinates x and y consider the rectangles Ai, of vertices (xi−1, δ), (xi, δ),
(xi,−δ), (xi−1,−δ), for i = 1, . . . , 5, and set R := ∪5

i=1Ai. The set R is a rectangle with

basis of width d =
∑5
i=1 di and height 2δ. We define the following partition of A4 and A5:

write Ai = A0
i ∪A

+
i ∪A

−
i , i = 4, 5, where

A0
4 := A4 ∩ {(x, y) : |y| ≤ δε

ε(1− x−x3

d4
) + h2

x−x3

d4

},

A+
4 := A4 ∩ {(x, y) :

δε

ε(1− x−x3

d4
) + h2

x−x3

d4

< y ≤ δ},

A−4 := A4 ∩ {(x, y) : −δ ≤ y < − δε

ε(1− x−x3

d4
) + h2

x−x3

d4

},

A0
5 := A5 ∩ {(x, y) : |y| ≤ δε

h2
(1− x− x4

d5
)},

A+
5 := A5 ∩ {(x, y) :

δε

h2
(1− x− x4

d5
) < y ≤ δ},

A−5 := A5 ∩ {(x, y) : −δ ≤ y < − δε
h2

(1− x− x4

d5
)},

We will now define a continuous map v = (v1, v2) : R→ R2. The first component v1 of v is
defined as follows:

v1(x, y) = 0 on A1 ∪A2,

v1(x, y) = h1
x− x2

d3
on A3,

v1(x, y) = h1 on A0
4 ∪A0

5,

v1(x, y) =
h1

h2 − ε

(
h2 −

y

δ

(
ε(1− x− x3

d4
) + h2

x− x3

d4

))
on A+

4 ,

v1(x, y) =
h1

h2 − ε

(
h2 +

y

δ

(
ε(1− x− x3

d4
) + h2

x− x3

d4

))
on A−4 ,

v1(x, y) = (h2 −
h2

δ
y)

h1

h2 − ε(1− x−x4

d5
)

on A+
5 ,

v1(x, y) = (h2 +
h2

δ
y)

h1

h2 − ε(1− x−x4

d5
)

on A−5 . (6.1)
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Figure 15: The rectangle R.

The component v2 is instead defined as:

v2(x, y) = y
h2

δ
on A1 ∪A5,

v2(x, y) = y
h2

δ
(1− x− x1

d2
) + y

ε

δ

x− x1

d2
on A2,

v2(x, y) = y
ε

δ
on A3,

v2(x, y) = y
ε

δ
(1− x− x3

d4
) + y

h2

δ

x− x3

d4
on A4. (6.2)

It is easily checked that the function v is Lipschitz continuous onR and has partial derivatives
given by

∂v1

∂x
(x, y) =

∂v1

∂y
(x, y) = 0 on A1 ∪A2 ∪A0

4 ∪A0
5,

∂v1

∂x
(x, y) =

h1

d3
,

∂v1

∂y
(x, y) = 0 on A3,

∂v1

∂x
(x, y) =

h1

h2 − ε
( yε
δd4
− yh2

δd4

)
on A+

4 ,

∂v1

∂x
(x, y) = − h1

h2 − ε
( yε
δd4
− yh2

δd4

)
on A−4 ,

∂v1

∂y
(x, y) = − h1

δ(h2 − ε)
(
ε(1− x− x3

d4
) + h2

x− x3

d4

)
on A+

4 ,

∂v1

∂y
(x, y) =

h1

δ(h2 − ε)
(
ε(1− x− x3

d4
) + h2

x− x3

d4

)
on A−4 ,

∂v1

∂x
(x, y) = −

(h2 − h2

δ y) εh1

d5∣∣(x−x4

d5
− 1)ε+ h2

∣∣2 on A+
5 ,

∂v1

∂x
(x, y) = −

(h2 + h2

δ y) εh1

d5∣∣(x−x4

d5
− 1)ε+ h2

∣∣2 on A−5 ,

∂v1

∂y
(x, y) = −h2h1

δ

1

(x−x4

d5
− 1)ε+ h2

on A+
5 ,

∂v1

∂y
(x, y) =

h2h1

δ

1

(x−x4

d5
− 1)ε+ h2

on A−5 ,
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and

∂v2

∂x
(x, y) = 0 on A1 ∪A3 ∪A5,

∂v2

∂y
(x, y) =

h2

δ
on A1 ∪A5,

∂v2

∂y
(x, y) =

ε

δ
on A3,

∂v2

∂x
(x, y) = y

ε

δd2
− y h2

δd2
,

∂v2

∂y
(x, y) =

h2

δ
(1− x− x1

d2
) +

ε

δ

x− x1

d2
on A2,

∂v2

∂x
(x, y) = y

h2

δd4
− y ε

δd4
,

∂v2

∂y
(x, y) =

ε

δ
(1− x− x3

d4
) +

h2

δ

x− x3

d4
on A4.

Moreover we can easily compute the Jacobian J(v) of v which turns out to be nonzero only
on sets A3, A+

5 , and A−5 where it holds

J(v)(x, y) =
εh1

δd3
on A3,

J(v)(x, y) = −
(h2 − h2

δ y) εh1h2

δd5∣∣(x−x4

d5
− 1)ε+ h2

∣∣2 on A+
5 ,

J(v)(x, y) = −
(h2 + h2

δ y) εh1h2

δd5∣∣(x−x4

d5
− 1)ε+ h2

∣∣2 on A−5 .

We now want to give an estimate of the area of the graph of v over R, considering a small
value of ε, say ε < h2/2. Using the inequality

A(v,R) ≤
∫
R

1 + |∂v1

∂x
|+ |∂v1

∂y
|+ |∂v2

∂x
|+ |∂v2

∂y
|+ |J(v)| dxdy, (6.3)

we infer A(v,R) ≤ 2δd+
∑5
i=1 Ii, where

Ii :=

∫
Ai

|∂v1

∂x
|+ |∂v1

∂y
|+ |∂v2

∂x
|+ |∂v2

∂y
|+ |J(v)| dxdy,

i = 1, . . . , 5, d =
∑
i di = x5 − x0. Tedious computations lead to

I1 = 2h2d1,

I2 = d2h2 + d2ε+ δ(h2 − ε),
I3 = 2δh1 + 2εd3 + 2εh1,

I4 = δh1 + δh1ε
2 + δ(h2 − ε) + d4(h2 + ε) + h1d4,

whereas, splitting I5 = I1
5 + I2

5 , with I2
5 =

∫
A5
|J(v)|dxdy, we can estimate

I1
5 ≤

δεh1h2

|h2 − ε|2
+

2h1h2d5

|h2 − ε|
+ 2h2d5,

I2
5 ≤

εh1h
2
2

|h2 − ε|2
. (6.4)

To bound these terms we have used that |y| ≤ δ and (x−x4

d5
− 1)ε+h2 ≥ h2− ε in A5 and we

integrated on the whole A5. From (6.4) we see that there exists a constant C > 0 depending
only on h1 and h2 (recall ε < h2/2) such that

A(v,R) ≤ C(δ + d) + Cε(d+ δ + δε). (6.5)
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Geometry and construction of v. We consider the points in R2,

α = (−1/2,
√

3/2), β = (1, 0), γ = (−1/2,−
√

3/2),

and fix a positive real number η < 1. Notice that identifying the Cartesian plane with the
complex one, we can also write α = e

2π
3 i, β = 1, γ = e

4π
3 i. Let us introduce the following

six halflines

l1 = {x < −η
2
, y = η

√
3

2
},

r1 = {x < −η
2
, y = −η

√
3

2
},

l2 = {x > η, y =
√

3x−
√

3η},

r2 = {x > −η
2
, y =

√
3x+

√
3η},

l3 = {x > −η
2
, y = −

√
3x−

√
3η},

r3 = {x > η, y = −
√

3x+
√

3η},

which have endpoints in one of the points A = ηα, B = ηβ, C = ηγ. Now we define
three subsets of B1(O), the ball centered at the origin O = (0, 0) with radius 1. The set

Ω̃1 is defined as the subset of the plane which is enclosed by the two halflines l1 and r1,
the segments OA and OC, and which contains the halfaxis {x < 0, y = 0}. Then we set

Ω1 := Ω̃1 ∩ B1(O). The sets Ω2 is constructed similarly using the halflines l2 and r2, or in
other words, is obtained clockwise rotating the set Ω1 of an angle of 2π

3 around O. Namely

Ω2 = e−
2π
3 iΩ1. Similarly, Ω3 = e−

2π
3 iΩ2. Finally we set Ω := ∪3

i=1Ωi.
Let ξ > 0 be a small parameter, ξ < η. Consider the triangle T ξ with vertices

Aξ = ξα, Bξ = ξβ, and Cξ = ξγ, and set Ωξi := Ωi \ T ξ, i = 1, 2, 3. Consider also the

halflines lξ1 = (ξ/η)l1, rξ1 = (ξ/η)r1, which are parallel to l1 and r1, but have as endpoints

Aξ and Bξ respectively. Similarly are constructed the halflines lξ2, rξ2, lξ3, rξ3, as shown in
figure 16.

Let us focus now on the set Ωξ1. This can be divided into three sectors

U+
1 = Ω1 ∩ {y >

√
3ξ/2}, U−1 = Ω1 ∩ {y < −

√
3ξ/2},

U0
1 = Ω1 ∩ {−

√
3ξ/2 < y <

√
3ξ/2}.

Consider x0 < x1 < x2 < x3 < x4 < x5 = −ξ/2, and let d = x5 − x0. In the rectangle
R1 := (x0, x5)× (−ξ

√
3/2, ξ

√
3/2) we define a function v as follows

v is defined in (6.1) and (6.2) with h1 = 1/2, h2 =
√

3/2, on R1. (6.6)

In the remaining part of U0
1 the function v is settled

v(x, y) = (0, y/ξ) on U0
1 \R1.

We then extend v on the sets U+
1 in the following way: define

V +
1 = U+

1 ∩ {y − ξ < −
√

3(x− x1)},

V +
2 = U+

1 ∩ {−
√

3(x− x1) < y − ξ < −
√

3(x− x2)},

V +
3 = U+

1 ∩ {−
√

3(x− x2) < y − ξ < −
√

3(x− x3)},

V +
4 = U+

1 ∩ {−
√

3(x− x3) < y − ξ < −
√

3(x− x4)},

V +
5 = U+

1 ∩ {−
√

3(x− x4) < y − ξ < −
√

3(x− x5)},

52



Figure 16: The thin domain Ω = Ub.

and

v(x, y) :=
(
0,

√
3

2

)
on V +

1 ∪ V
+
5 ,

v(x, y) :=
(
0,

√
3

2
(1− t(x)− x1

x2 − x1
) + ε

t(x)− x1

x2 − x1

)
on V +

2 ,

v(x, y) :=
(1

2

t(x)− x2

x3 − x2
, ε
)

on V +
3 ,

v(x, y) :=
(1

2
(1− t(x)− x3

x4 − x3
), ε(1− t(x)− x3

x4 − x3
) +

√
3

2

t(x)− x3

x4 − x3

)
on V +

4 ,

where, for brevity, we have set t(x) = x + (y − ξ) 1√
3
. In other words, the variable v1 is

constantly 0 on V +
1 , V +

2 , V +
5 , constantly 1

2 on the common boundary of V +
3 and V +

4 , and

affine on V +
3 and V +

4 . As for the variable v2, it equals
√

3
2 on V +

1 and V +
5 , equals ε on V +

3 ,

and is affine on V +
2 and V +

4 . Moreover if z is the new variable z := −
√

3x− y, so that the
line OA corresponds to the set where z = 0, we see that v on U1

+ depends only on z, and it
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holds

∂v

∂z
(x, y) =

(
0, 0
)

on V +
1 ,

∂v

∂z
(x, y) =

(
0,

√
3− 2ε

2
√

3(x2 − x1)

)
on V +

2 ,

∂v

∂z
(x, y) =

(
− 1

2
√

3(x3 − x2)
, 0
)

on V +
3 ,

∂v

∂z
(x, y) =

( 1

2
√

3(x4 − x3)
,−

√
3− 2ε

2
√

3(x4 − x3)

)
on V +

4 ,

∂v

∂z
(x, y) =

(
0, 0
)

on V +
5 .

In U−1 the function v is defined in such a way that v1 is even with respect to the variable y,
and v2 is odd with respect to y.

We also write, in complex coordinates, v = v1 + iv2, and we set

ṽ := v − 1/2.

For convenience we still denote ṽ by v. Notice that the function v is equal to e
2π
3 i on V +

1

and V +
5 , and is equal to e

4π
3 i on V −1 and V −5 .

We now define v on Ωξ2 and Ωξ3. In the complex coordinate ω ∈ C, this is defined as
follows

v(ω) = e−
2π
3 iv(e

2π
3 iω) on Ωξ2,

v(ω) = e−
4π
3 iv(e

4π
3 iω) on Ωξ3. (6.7)

It is easily checked that the function v is continuous on ∪3
i=1Ωξi and on the common bound-

aries of Ωξi , i = 1, 2, 3.

It remains to define v in the triangle T ξ. Let T ξ1 , T ξ2 , and T ξ3 be the midpoints of
the edges of T ξ, namely

T ξ1 = −ξ
2
, T ξ2 = ξe

π
6 i, T ξ3 = ξe

5π
6 i.

Notice that v = 0 at T ξi . We set v = 0 on the triangle with vertices T ξi , i = 1, 2, 3. Finally

since v = e
2π
3 i at Aξ, we set v to be linear in the triangle with vertices Aξ, T ξ1 , T ξ2 . Similarly v

is defined in the remaining triangles. It is straightforward to check that with such definition
v is Lipschitz continuous.

We now want to compute the area of the graph associated to the map v on Ω. By
symmetry, the area associated to the domains Ωi, i = 1, 2, 3, are equal. Let us first estimate
the area in U0

1 . In the rectangle R1 we can use formula (6.5) with d = x5 − x0, h1 = 1
2 ,

h2 =
√

3/2, so that we find an absolute constant C > 0 such that

|Gv|R1×R2 ≤ C(ξ + d) + C(d+ ξ)ε. (6.8)

In U0
1 \R1 the only nonzero component of the gradient of v is ∂v2

∂y = 1
ξ , and thus

|Gv|(U0
1 \R1)×R2 ≤

√
3ξ(1− d− ξ

2
) +
√

3(1− d− ξ

2
). (6.9)

Let us now estimate the contribution on U+
1 . Using the inequality (6.3) and the values of

the derivatives computed above, we easily get

|Gv|U+
1 ×R2 ≤ L2(U+

1 ) +
(η − ξ)√

3

(√
3− 2ε+ 1

)
. (6.10)
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Figure 17: The triangle T ξ.

The same estimate holds true in U−1 . Finally the contribution in the triangle T ξ is easily

computed. Indeed all the derivatives are zero in the triangle with vertices T ξi , i = 1, 2, 3,

and using the linearity of v in the triangle with vertices Aξ, T ξ1 , T ξ2 we get

|Gv|T ξ×R2 = L2(T ξ) +
3
√

3

4
ξ. (6.11)

Summing all the bounds obtained so far, we infer that there is a constant C with

|Gv| ≤ L2(Ω) + C(ξ + d+ ε+ dε+ ε2) + Cη + 3
√

3. (6.12)

The example. Let us introduce a parameter k ∈ N and let us choose a sequence ξk,
dk, εk of positive real numbers converging to 0. Let vk : Ω → R2 be the Lipschitz function
corresponding to these values. The functions vk are almost everywhere converging to the
function u : Ω→ {α, β, γ} given by (1.10) restricted to the thin domain Ω. Moreover, since
vk are uniformly bounded in L∞, they are converging to u in L1(Ω;R2). Inequality (6.12)
provides

A(u,Ω) ≤ |Gvk |Ω ≤ L2(Ω) + C(ξk + dk + εk + dkεk + ε2k) + Cη + 3
√

3. (6.13)

Passing to the limit in k →∞ we get

A(u,Ω) ≤ L2(Ω) + Cη + 3
√

3. (6.14)

Exploiting now the fact that m >
√

3, we can choose η small enough so that

A(u,Ω) ≤ L2(Ω) + Cη + 3
√

3 < L2(Ω) + 3m.
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