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Abstract

We give a quick and direct proof of the strong maximum principle on finite dimensional
RCD spaces based on the Laplacian comparison of the squared distance.
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1 Introduction

In the context of analysis in metric measure spaces it is by now well understood that a
doubling condition and a Poincaré inequality are sufficient to derive the basics of elliptic
regularity theory. In particular, one can obtain the Harnack inequality for harmonic functions
which in turns implies the strong maximum principle. We refer to [5] for an overview on the
topic and detailed bibliography.

RCD∗(K,N) spaces ([2], [11], see also [3], [8], [4]) are, for finite N , doubling ([16]) and
supporting a Poincaré inequality ([15]) and thus in particular the above applies. Still, given
that in fact such spaces are much more regular than general doubling&Poincaré ones, one
might wonder whether there is a simpler proof of the strong maximum principle.

Aim of this short note it show that this is actually the case: out of the several arguments
available in the Euclidean space, the one based on the estimates for the Laplacian of the
squared distance carries over to such non-smooth context rather easily.

Beside such Laplacian comparison, the other ingredient that we shall use is a result about
a.e. unique projection on closed subsets of RCD spaces which to the best of our knowledge has
not been observed before and, we believe, is of its own interest: see Lemma 2.6 and Remark
2.7.

We remark that the present result simplifies the proofs of those properties of RCD(K,N)
spaces which depend on the strong maximum principle, like for instance the splitting theorem
([9], [10]).
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2 Result

All metric measure spaces (X, d,m) we will consider will be such that (X, d) is complete and
separable, m is a Radon non-negative measure with supp(m) = X.

To keep the presentation short we assume the reader familiar with the definition of RCD∗

spaces and with calculus on them. Here we only recall those definitions and facts that will be
used in the course of the proofs. In particular, we shall take for granted the notion of W 1,2(X)
space on the metric measure space (X, d,m) and, for f ∈W 1,2(X), of the minimal weak upper
gradient |Df |. Recall that the minimal weak upper gradient is a local object, i.e.:

|Df | = |Dg| m− a.e. on {f = g} ∀f, g ∈W 1,2(X). (2.0.1)

Then the notion of Sobolev space over an open set can be easily given:

Definition 2.1 (Sobolev space on an open subset of X). Let (X, d,m) be a metric
measure space and let Ω ⊂ X open. Then we define

W 1,2
loc (Ω) := {f ∈ L2

loc(Ω) : for every x ∈ Ω there exists U ⊂ Ω neighbourhood of x

and there exists fU ∈W 1,2
loc (X) such that f |U = fU}.

For f ∈W 1,2
loc (Ω) the function |Df | ∈ L2

loc(Ω) is defined as

|Df | := |DfU | m− a.e. on U,

where |DfU | is the minimal weak upper gradient of fU and the locality of this object ensures
that |Df | is well defined.

Then we set
W 1,2(Ω) := {f ∈W 1,2

loc (Ω) : f, |Df | ∈ L2(Ω)}.

The definition of (sub/super)-harmonic functions can be given in terms of minimizers of
the Dirichlet integral (see [5] for a throughout discussion on the topic):

Definition 2.2 (Subharmonic/Superharmonic/Harmonic functions). Let (X, d,m) be
a metric measure space and Ω be an open subset in X. We say that f is subharmonic (resp.
superharmonic) in Ω if f ∈ W 1,2(Ω) and for any g ∈ W 1,2(Ω), g ≤ 0 (resp. g ≥ 0) with
supp g ⊂ Ω, it holds

1

2

∫
Ω
|Df |2 dm ≤ 1

2

∫
Ω
|D(f + g)|2 dm. (2.0.2)

f is harmonic in Ω if it is both subharmonic and superharmonic.

On RCD(K,∞) spaces, the weak maximum principle can be deduced directly from the
definition of subharmonic function and the following property, proved in [2]:

Let (X, d,m) be RCD(K,∞), K ∈ R, and f ∈W 1,2(X) be such that |Df | ∈ L∞(X).

Then there exists f̃ = f m-a.e. such that Lip(f̃) ≤ ‖Df |‖L∞ .
(2.0.3)

We can now easily prove the following:
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Theorem 2.3 (Weak Maximum Principle). Let (X, d,m) be an RCD(K,∞) space, Ω ⊂ X
open and let f ∈W 1,2(Ω) ∩ C (Ω̄) be subharmonic. Then

sup
Ω
f ≤ sup

∂Ω
f, (2.0.4)

to be intended as ‘f is constant’ in the case Ω = X.

proof We argue by contradiction. If (2.0.4) does not hold, regardless of weather Ω coincides
with X or not, we can find c < supΩ f such that the function

f̃ := min{c, f}

agrees with f on ∂Ω. The locality of the differential grants that

|Df̃ | = χ{f<c}|Df | (2.0.5)

and from the assumption that f is subharmonic and the fact that f̃ ≤ f we deduce that∫
Ω
|Df |2 dm ≤

∫
Ω
|Df̃ |2 dm

(2.0.5)
=

∫
{f<c}∩Ω

|Df |2 dm,

which forces
|Df | = 0 m-a.e. on {f ≥ c}. (2.0.6)

Now consider the function g := max{c, χΩf}, notice that our assumptions grant that g ∈ C(X)
and that the locality of the differential yields

|Dg| = χΩ∩{f>c}|Df |
(2.0.6)

= 0. (2.0.7)

Hence property (2.0.3) gives that g is constant, i.e. f ≤ c on Ω. This contradicts our choice
of c and gives the conclusion. �

We remark that in the finite-dimensional case one could conclude from (2.0.7) by using
the Poincaré inequality in place of property (2.0.3).

To prove the strong maximum principle we need to recall few facts. The first is the concept
of measure-valued Laplacian (see [11]), for which we restrict the attention to proper (=closed
bounded sets are compact) and infinitesimally Hilbertian (=W 1,2(X) is an Hilbert space, see
[11]) spaces:

Definition 2.4 (Measure valued Laplacian). Let (X, d,m) be proper and infinitesimally
Hilbertian, Ω ⊂ X open and f ∈W 1,2(Ω). We say that f has a measure valued Laplacian in
Ω, and write f ∈ D(∆,Ω), provided there exists a Radon measure, that we denote by ∆f |Ω,
such that for every g : X→ R Lipschitz with support compact and contained in Ω it holds∫

g d∆f |Ω = −
∫
〈∇f,∇g〉 dm. (2.0.8)

If Ω = X we write f ∈ D(∆) and ∆f .

3



Much like in the smooth case, it turns out that being subharmonic is equivalent to having
non-negative Laplacian. This topic has been investigated in [11] and [12], here we report the
proof of this fact because in [12] it has been assumed the presence of a Poincaré inequal-
ity, while working on proper infinitesimally Hilbertian spaces allows to easily remove such
assumption.

Theorem 2.5. Let (X, d,m) be a proper infinitesimally Hilbertian space, Ω ⊂ X open and
f ∈W 1,2(Ω).

Then f is subharmonic (resp. superharmonic, resp. harmonic) if and only if f ∈ D(∆,Ω)
with ∆f |Ω ≥ 0 (resp. ∆f |Ω ≤ 0, resp. ∆f |Ω = 0).

proof
Only if Let LIPc(Ω) ⊂ W 1,2(Ω) be the space of Lipschitz functions with support compact
and contained in Ω. For g ∈ LIPc(Ω) non-positive and ε > 0 apply (2.0.2) with εg in place of
g to deduce ∫

Ω
|D(f + εg)|2 − |Df |2 dm ≥ 0

and dividing by ε and letting ε ↓ 0 we conclude∫
Ω
〈∇f,∇g〉 dm ≥ 0.

In other words, the linear functional LIPc(Ω) 3 g 7→ −
∫

Ω 〈∇f,∇g〉 dm is positive. It is then
well known, see e.g. [6, Theorem 7.11.3], that the monotone extension of such functional to
the space of continuous and compactly supported functions on Ω is uniquely represented by
integration w.r.t. a non-negative measure, which is the claim.
If Recall from [1] that on general metric measure spaces Lipschitz functions are dense in
energy in W 1,2; since infinitesimally Hilbertianity implies uniform convexity of W 1,2, we see
that in our case they are dense in the W 1,2−norm. Then by truncation and cut-off argument
we easily see that{

g ∈ LIPc(Ω) : g ≤ 0
}

is W 1,2−dense in
{
g ∈W 1,2(Ω) : g ≤ 0 supp(g) ⊂ Ω

}
. (2.0.9)

Now notice that the convexity of g 7→ 1
2

∫
Ω |Dg|

2 dm grants that for any g ∈W 1,2(Ω) it holds

|D(f + g)|2 − |Df |2 ≥ lim
ε↓0

|D(f + εg)|2 − |Df |2

ε
= 2 〈∇f,∇g〉

and thus from the assumption ∆f |Ω ≥ 0 we deduce that∫
Ω
|D(f + g)|2 − |Df |2 dm ≥ 0 (2.0.10)

for every g ∈ LIPc(Ω) non-positive. Taking (2.0.9) into account we see that (2.0.10) also holds
for any g ∈W 1,2(Ω) non-negative with supp(g) ⊂ Ω, which is the thesis. �

For x ∈ X we write dx for the function y 7→ d(x, y). We shall need the following two
properties of the squared distance function valid on RCD(K,N) spaces, N <∞:

d2
x0
∈W 1,2

loc (X) and |D(d2
x0

)|2 = 2d2
x0

m-a.e., (2.0.11)

d2
x0
∈ D(∆) and ∆d2

x0
(x) ≤ `K,N (dx0)m, (2.0.12)
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where `K,N : [0,+∞)→ [0,+∞) is some continuous function depending only on K,N . Prop-
erty (2.0.11) can be seen as a consequence of Cheeger’s work [7]: recall that CD(K,N) spaces
are doubling ([16]) and support a 1-2 weak Poincaré inequality ([15]) and notice that, being
geodesic, the local Lipschitz constant of dx is identically 1. An alternative proof, more tailored
to the RCD setting, passes through the fact that d2

x0
/2 is c-concave and uses the regularity of

W2-geodesics, see for instance [14] for the details of the proof.
The Laplacian comparison estimate (2.0.12) is one of the main results in [11]. Notice that

in [11] such inequality has been obtained in its sharp form, but for our purposes the above
formulation is sufficient.

Beside these facts, we shall need the following geometric property of RCD spaces, which
we believe is interesting on its own:

Lemma 2.6 (a.e. unique projection). Let K ∈ R, N ∈ [1,∞), (X, d,m) an RCD(K,N) space
and C ⊂ X a closed set. Then for m-a.e. x ∈ X there exists a unique y ∈ C such that

d(x, y) = min
z∈C

d(x, z). (2.0.13)

proof Existence follows trivially from the fact that X is proper. For uniqueness define

ϕ(x) := inf
z∈C

d2(x, z)

2
= ψc(x) where ψ(y) :=

{
0, if y ∈ C,
−∞, if y ∈ X \ C.

Since ϕc = ψcc ≥ ψ, if x ∈ X and y ∈ C are such that (2.0.13) holds, we have

ϕ(x) + ϕc(y) ≥ ϕ(x) + ψ(y)
(2.0.13)

=
d2(x, y)

2
,

i.e. y ∈ ∂cϕ(x). Conclude recalling that since ϕ is c-concave and real valued, Theorem 3.4 in
[13] grants that for m-a.e. x there exists a unique y ∈ ∂cϕ(x). �

Remark 2.7. The simple proof of this lemma relies on quite delicate properties of RCD
spaces, notice indeed that the conclusion can fail on the more general CD(K,N) spaces.
Consider for instance R2 equipped with the distance coming from the L∞ norm and the
Lebesgue measure L2. This is a CD(0, 2) space, as shown in the last theorem in [17]. Then
pick C := {(z1, z2) : z1 ≥ 0} and notice that for every (x1, x2) ∈ R2 with x1 < 0 there are
uncountably many minimizers in (2.0.13). �

We can now prove the main result of this note:

Theorem 2.8 (Strong Maximum Principle). Let K ∈ R, N ∈ [1,∞) and (X, d,m)
an RCD(K,N) space. Let Ω ⊂ X be open and connected and let f ∈ W 1,2(Ω) ∩ C (Ω̄) be
subharmonic and such that for some x̄ ∈ Ω it holds f(x̄) = maxΩ̄ f . Then f is constant.

proof Put m := supΩ f , C := {x ∈ Ω̄ : f(x) = m} and define

Ω′ :=
{
x ∈ Ω \ C : d(x,C) < d(x, ∂Ω)

}
.

By assumption we know that C∩Ω 6= ∅ and that Ω is connected, thus since C is closed, either
C ⊃ Ω, in which case we are done, or ∂C ∩ Ω 6= ∅, in which case Ω′ 6= ∅. We now show that
such second case cannot occur, thus concluding the proof.
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Assume by contradiction that Ω′ 6= ∅, notice that Ω′ is open and thus m(Ω′) > 0. Hence by
Lemma 2.6 we can find x ∈ Ω′ and y ∈ C such that (2.0.13) holds. Notice that the definition
of Ω′ grants that y ∈ Ω, put r := d(x, y) and define

h(z) := e−Ad2(z,x) − e−Ar2 ,

where A� 1 will be fixed later. By the chain rule for the measure-valued Laplacian (see [11])
we have that h ∈ D(∆) with

∆h = A2e−Ad2x |Dd2
x|2 m−Ae−Ad2x∆d2

x

(2.0.11),(2.0.12)

≥ 2e−Ad2x
(
A2d2

x −A`K,N (dx)
)
m.

Hence we can, and will, choose A so big that ∆h|Br/2(y)
≥ 0. Now let r′ < r/2 be such that

Br′(y) ⊂ Ω and notice that for every ε > 0 the function fε := f + εh is subharmonic in Br′(y)
and thus according to Theorem 2.3 we have

fε(y) ≤ sup
∂Br′ (y)

fε, ∀ε > 0. (2.0.14)

Since {h < 0} = X \ B̄r(x) and h(y) = 0 we have

fε(y) > fε(z) ∀z ∈ ∂Br′(y) \ B̄r(x), ∀ε > 0. (2.0.15)

On the other hand, ∂Br′(y)∩ B̄r(x) is a compact set contained in Ω \C, hence by continuity
and the definition of C we have

f(y) > sup
∂Br′ (y)∩B̄r(x)

f

and thus for ε > 0 sufficiently small we also have

fε(y) > sup
∂Br′ (y)∩B̄r(x)

fε.

This inequality, (2.0.15) and the continuity of fε contradict (2.0.14); the thesis follows. �
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