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Abstract. Let f be a Lipschitz map from a subset A of a stratified group to a Banach homogeneous
group. We show that directional derivatives of f act as homogeneous homomorphisms at density
points of A outside a σ-porous set. At all density points of A we establish a pointwise characterization
of differentiability in terms of directional derivatives. These results naturally lead us to an alternate
proof of almost everywhere differentiability of Lipschitz maps from subsets of stratified groups to
Banach homogeneous groups satisfying a suitably weakened Radon-Nikodym property.

1. Introduction

Stratified groups are a special class of finite dimensional, connected, simply connected and nilpo-
tent Lie groups (Definition 2.4). These groups, equipped with the so-called homogeneous norm,
were introduced by Folland in the framework of subelliptic PDE [14]. They subsequently appeared
in the work of Pansu under the name of Carnot groups, where their metric structure was defined by
the so-called Carnot-Carathéodory distance [28]. In the last two decades there has been increasing
interest in the relationship between the geometry of stratified groups and other areas of mathematics,
such as PDE, differential geometry, control theory, geometric measure theory, mathematical finance
and robotics [1, 5, 6, 11, 17, 27, 38].

Nevertheless several interesting and challenging problems remain open, since the geometry of
stratified groups is highly non-trivial. For instance, rectifiability of the reduced boundary in higher
step groups, the isoperimetric problem, the regularity of minimal surfaces, the regularity of geodesics
and the validity of general coarea formulae for Lipschitz mappings. One of the basic reasons for
these difficulties is that any noncommutative stratified group contains no subset of positive measure
that is bi-Lipschitz equivalent to a subset of a Euclidean space [3, 18, 24, 37]. In all of these results
the key role is played by the Pansu’s generalization of Rademacher’s theorem to Carnot groups [28].

This differentiation theorem states that every Lipschitz map from an open subset of a stratified
group to another stratified group is differentiable almost everywhere with respect to the natural Haar
measure. Here differentiability is defined like classical differentiability, but takes into account the
new geometric and algebraic structure (Definition 2.18). More broadly, a great effort has been made
to understand differentiability properties of Lipschitz functions in different settings, like stratified
groups, Banach spaces and more general metric measure spaces. We mention only a few papers
[2, 4, 7, 8, 9, 10, 16, 21, 25, 29, 33, 34, 35] to give a glimpse of the many works in this area.
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In the setting of noncommutative stratified groups, the first named author and Rajala extended
Pansu’s theorem to Lipschitz mappings on a measurable set of a stratified group and taking values
in a Banach homogeneous group (Definition 2.3). They proved the following theorem [26].

Theorem 1.1. Suppose � is a Banach homogeneous group whose first layer H1 ⊂ � has the
RNP. If f : A → � is Lipschitz, A ⊂ � and � is a stratified group, then f is almost everywhere
differentiable.

It is easy to notice that every stratified group is a Banach homogeneous group and the class of
finite dimensional Banach homogeneous groups coincides with that of homogeneous groups, as
defined in [13]. Commutative Banach homogeneous groups coincide with Banach spaces. The
simplest example besides these is an infinite dimensional version of the Heisenberg group H2 × �.
We consider the infinite dimensional real Hilbert space H with scalar product 〈·, ·〉 and the group
operation is defined as follows:

(h1, h2, t1) · (h′1, h
′
2, t
′
1) = (h1 + h′1, h2 + h′2, t1 + t2 + 〈h1, h′2〉 − 〈h2, h′1〉),

for any (h1, h2, t1), (h′1, h
′
2, t
′
1) ∈ H2 ×�. We refer the interested reader to [26] for more examples.

The present paper continues the investigation started in [30], on the relationship between porosity
and differentiability of Lipschitz maps on stratified groups. A set in a metric space is (upper) porous
(Definition 2.19) if each of its points sees nearby relatively large holes in the set on arbitrarily small
scales. A set is σ-porous if it is a countable union of porous sets. Proving a set is σ-porous is useful
because σ-porous sets in metric spaces are first category and have measure zero with respect to any
doubling measure [39, 40]. Showing a set is σ-porous usually gives a stronger result than showing
it is of first category or has measure zero.

It is well known that porosity is a useful tool to study differentiability of Lipschitz mappings.
We refer the reader to the survey articles [39, 40] for more information about porous sets and their
applications. Porosity has been also recently used in Euclidean spaces to obtain the following result:
for any n > 1, there exists a Lebesgue null set in Rn containing a point of differentiability for every
Lipschitz mapping from Rn to Rn−1 [34]. In the Banach space setting, [21, 22] give a version
of Rademacher’s theorem for Frechét differentiability of Lipschitz mappings on Banach spaces in
which porous sets are negligible in a suitable sense. Other results have also been studied in stratified
groups [20, 29, 31, 32].

In [30], the second and third named authors used porosity to study some fine differentiability
properties of Lipschitz mappings from stratified groups to Euclidean spaces. In the present paper, we
improve upon [30] in two directions: we consider more general classes of domains and targets of the
Lipschitz mapping. We allow the mapping to be defined on a measurable subset of a stratified group.
Due to the absence in general of Lipschitz extensions between stratified groups, some technical
difficulties appear. The Euclidean space in the target is replaced by a Banach homogeneous group.
Thus, the noncommutative infinite dimensional structure of a Banach homogeneous group adds
further difficulties.

Let A be a subset of a stratified group �, � be a Banach homogeneous group, and consider a
Lipschitz map f : A ⊂ � → �. Our first result states that directional derivatives of f at density
points of the domain act as homogeneous homomorphisms outside a σ-porous set. Here it is worth
to emphasize that the notion of directional derivative (Definition 2.9) takes into account the fact that
f need not be defined on a whole neighborhood of the point. For the definition of homogeneous
homomorphism, see Definition 2.17. Note that ∂+ f (x, ζ) and δaζ denote directional derivatives and
dilations, as defined in Section 2 and D(A) denotes the set of density points of A ⊂ �.
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Theorem 1.2. Suppose A ⊂ � is measurable and f : A→� is Lipschitz. Then there is a σ-porous
set P ⊂ � such that directional derivatives act as homogeneous homomorphisms outside P. Namely,
whenever x ∈ A∩D(A)\P the following implication holds: if ∂+ f (x, ζ) and ∂+ f (x, η) exist for some
ζ, η ∈ �, then ∂+ f (x, δaζδbη) exists for every a, b > 0 and

∂+ f (x, δaζδbη) = δa∂
+ f (x, ζ)δb∂

+ f (x, η).

Surprisingly, the techniques of [35, Theorem 2] can be extended to the nonlinear framework of
stratified groups. Nontrivial obstacles arise from the structure of both the domain and the groups
involved. Theorem 1.2 precisely generalizes [30, Theorem 3.7] from real valued Lipschitz mappings
to Banach homogeneous group valued Lipschitz mappings.

For real valued Lipschitz mappings, directional derivatives were defined using the Lie algebra
of the stratified group and only horizontal directions were used. In the present paper we realize
that directional derivatives must be introduced for all directions, using the Lie group structures of �
and�. This important difference is necessary to reflect the noncommutative structure of the target
and it was rather unexpected. We notice, indeed, that the restriction of a Lipschitz mapping to a
nonhorizontal curve is no longer Lipschitz in the Euclidean sense.

Our second main result characterizes points of differentiability at density points of the domain.
For the definition of directional derivatives, see Definition 2.9.

Theorem 1.3. Suppose A ⊂ � is measurable, f : A→� is Lipschitz and x ∈ A ∩ D(A). Then f is
differentiable at x if and only if the following properties hold:

(1) f is differentiable at x in any direction ζ ∈ � \ {0}
(2) the mapping � 3 ζ → ∂+ f (x, ζ) ∈� is a homogeneous homomorphism.

As a consequence of Theorem 1.2 and Theorem 1.3 we prove that, at density points of the do-
main except for a σ-porous set, existence of directional derivatives in a spanning set of horizontal
directions implies differentiability. If the horizontal space of� satisfies the RNP then directional
derivatives in this finite set of directions exist at almost every point of A (Theorem 2.16). As a
byproduct, taking into account that porous sets have measure zero, we are lead to a different and
simpler way to establish both Theorem 1.1 and then also Pansu’s Theorem [28].

The results of this paper illustrate the role played by porosity to pass from almost everywhere
existence of horizontal directional derivatives [26, Theorem 3.1] to almost everywhere differentia-
bility of Lipschitz maps. The use of porosity provides a more natural approach to differentiability
and provides more precise information about how differentiability occurs.

We now describe the structure of the paper. In Section 2 we give the main definitions. In Section 3
we prove Theorem 1.2, while in Section 4 we prove Theorem 1.3. Section 5 is devoted to a few
technical facts. The first one is the construction of a separable Banach homogeneous target for
our given Lipschitz mapping. We then give a proof of a technical lemma that we use earlier for
estimating distances. Finally we prove that the set of points where f is differentiable in some
directions is measurable. This measurability is important to establish Theorem 2.16 and its proof is
rather technical since our Lipschitz mapping cannot be extended to the whole space.

Acknowledgement. The second and third named authors thank the organizers of the workshop
“Singular Phenomena and Singular Geometries”, Pisa, 20-23 June 2016, for the warm hospitality
and for the scientific environment that inspired the project of the present paper.
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2. Preliminaries

This section describes the main notions used throughout the paper.

2.1. Banach Lie algebras and Banach homogeneous groups. We recall only basic facts about
Banach homogeneous groups. More information and additional examples can be found in [26].

Definition 2.1. A Banach Lie algebra is a Banach space� equipped with a continuous Lie bracket,
namely a continuous, bilinear and skew-symmetric mapping [·, ·] :� ×� −→� that satisfies the
Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈�.

A Banach Lie algebra� is nilpotent if there is ν ∈ N such that whenever x1, x2, . . . , xν+1 ∈ �, we
have

[[[· · · [[x1, x2], x3] · · · ], xν], xν+1] = 0
and there exist y1, y2, . . . , yν ∈� such that

[[· · · [[y1, y2], y3] · · · ], yν] , 0.

The integer ν is uniquely defined and is called the step of nilpotence of�.

A nilpotent Banach Lie algebra� can be equipped with the Lie group operation

(2.1) xy = x + y +

ν∑
m=2

Pm(x, y) ,

which is the truncated Baker-Campbell-Hausdorff series where the Banach Lie bracket is used. For
any m ≥ 2, the polynomial Pm above is given by Dynkin’s formula

(2.2) Pm(x, y) =
∑ (−1)k−1

k
m−1

p1!q1! · · · pk!qk!
x ◦ · · · ◦ x︸     ︷︷     ︸

p1 times

◦

q1 times︷     ︸︸     ︷
y ◦ · · · ◦ y ◦ · · · ◦ x ◦ · · · ◦ x︸     ︷︷     ︸

pk times

◦

qk times︷     ︸︸     ︷
y ◦ · · · ◦ y .

Here we used the nonassociative product

xi1 ◦ xi2 ◦ · · · ◦ xik = [[· · · [[xi1 , xi2], xi3] · · · ], xik ]

and the sum is taken over the 2k-tuples (p1, q1, p2, q2, . . . , pk, qk) such that pi +qi ≥ 1 for all positive
i, k ∈ N and

∑k
i=1 pi + qi = m. Note that P2 has the simple form P2(x, y) = [x, y]/2. The explicit

formula for the group product will only be used in the technical Section 5.

Definition 2.2. A nilpotent Banach Lie algebra equipped with the group operation (2.1) is called a
Banach nilpotent Lie group.

If S 1, S 2, . . . , S n ⊂ � are closed subspaces of a Banach space � such that the mapping

J : S 1 × · · · × S n −→ � with J(s1, . . . , sn) =

n∑
l=1

sl

is a Banach isomorphism (continuous linear bijection), then we write � = S 1 ⊕ · · · ⊕ S n.

Definition 2.3. We say that a Banach nilpotent Lie group � of step ν is a Banach homogeneous
group if it admits a stratification. This means there exist ν closed subspaces H1, . . . ,Hν such that

� = H1 ⊕ · · · ⊕ Hν,

where [x, y] ∈ Hi+ j if x ∈ Hi and y ∈ H j and i + j ≤ ν, and [x, y] = 0 otherwise.
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The stratification equips any Banach homogeneous group� with dilations δr : � −→�, r > 0.
These are Banach isomorphisms defined by

δr ◦ πi = ri πi

where πi : � → Hi is the canonical projection for all i = 1, . . . , ν. These dilations respect the Lie
bracket and Lie group structure:

[δr x, δry] = δr[x, y] and δr(xy) = δr(x)δr(y) for all x, y ∈�, r > 0.

Throughout this article we denote by | · | the underlying Banach space norm on �. It can be
shown there exist positive constants σ1, . . . , σν with σ1 = 1 such that ‖ · ‖ : �→ � defined by:

(2.3) ‖x ‖ = max{σi|πi(x)|1/i : 1 ≤ i ≤ ν}

satisfies the standard properties

‖δr x‖ = r ‖x‖ and ‖xy‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈�, r > 0.

We say that ‖ · ‖ is a Banach homogeneous norm on�. The map ρ(x, y) = ‖x−1y‖ is a distance on
� satisfying

(2.4) ρ(zx, zy) = ρ(x, y) and ρ(δr x, δry) = r ρ(x, y) for all x, y, z ∈�, r > 0.

We say that ρ is a Banach homogeneous distance on�. We also write ρ(z) = ρ(z, 0) for z ∈�.
An important subclass of Banach homogeneous groups are stratified groups.

Definition 2.4. A stratified group � is a Banach homogeneous group for which the underlying
Banach space is finite dimensional and whose first layer V1 of the stratification � = V1 ⊕ · · · ⊕ Vs
satisfies

[V1,V j] = V j+1 for j ≥ 1 and V j = {0} for j > s.

As a finite dimensional Lie group, � is equipped with a Haar measure which we denote by µ.

Remark 2.5. While any stratified group is also a finite dimensional Banach homogeneous group,
the converse does not hold. To see this it suffices to consider a commutative Banach homogeneous
group� = H1⊕H2, where H1 and H2 are finite dimensional vector spaces. Clearly the commutative
Lie product yields [H1,H1] = {0} ⊂ H2, so� cannot be a stratified group.

We can equip any stratified group � with a homogeneous distance (i.e. a distance satisfying
(2.4)). The Haar measure µ then satisfies

µ(xA) = µ(A) and µ(δr(A)) = rQµ(A) for measurable A ⊂ � and x ∈ �

and
µ(B(x, r)) = rQµ(B(0, 1)) for every open ball B(x, r) ⊂ �.

Fixing a basis compatible with the stratification identifies � with Rn for a positive integer n.
In these coordinates, the Haar measure is simply the n-dimensional Lebesgue measure Ln (up to
constant multiplication).

From now on � will be a Banach homogeneous group with stratification � = H1 ⊕ · · · ⊕ Hν

equipped with the Banach homogeneous norm ‖ · ‖ and corresponding homogeneous distance ρ.
We denote by � a stratified group of step s with stratification � = V1 ⊕ · · · ⊕ Vs equipped with a
homogeneous distance d. We also use the notation d(x) = d(x, 0).
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2.2. Directional derivatives and differentiability. For functions defined on general measurable
domains we may not be able to approach each point from every direction inside the domain. We
will introduce an unusual but flexible definition of directional derivative, based on the following
approximation of directions inside a domain.

Definition 2.6. Let A ⊂ � be measurable and x ∈ �. We say that points ζ t
x ∈ � for t > 0

approximate in A the direction ζ at the point x if

(2.5) xζ t
x ∈ A for every t > 0 and

d(ζ t
x, δtζ)
t

→ 0 as t ↓ 0.

Definition 2.7. Let A ⊂ � be a measurable set. We say that x ∈ � is a density point of A if

lim
r↓0

µ(A ∩ B(x, r))
µ(B(x, r))

= 1.

We denote by D(A) the set of density points of A.

Since µ is doubling, the Lebesgue differentiation theorem applies and µ(A \ D(A)) = 0 for any
measurable set A ⊂ �. It is a standard fact that at every density point x ∈ D(A) we have

(2.6)
dist(A, y)

d(x, y)
→ 0 as y→ x.

At density points of a measurable set, we can approximate in every direction.

Lemma 2.8. Suppose A ⊂ � is measurable and x ∈ D(A). Then for every ζ ∈ � there exist
approximating points ζ t

x in direction ζ at the point x. In addition, we can choose ζ t
x such that the

limit in (2.5) is uniform for 0 < d(ζ) ≤ 1.

Proof. For each t > 0, choose yt ∈ A such that

d(yt, xδtζ) < dist(A, xδtζ) + t2d(ζ).

To conclude the proof, apply (2.6) with y = xδtζ and define ζ t
x = x−1yt. �

Definition 2.9. Let A ⊂ � be measurable and f : A→�. Suppose x ∈ A and ζ ∈ � \ {0} for which
there exist points which approximate in A the direction ζ at x.

We say that f is differentiable at x in direction ζ with directional derivative ∂+ f (x, ζ) ∈ � if for
any choice t 7→ ζ t

x of points approximating in A the direction ζ at x, we have

lim
t↓0

δ1/t
(

f (x)−1 f (xζ t
x)
)

= ∂+ f (x, ζ).

Proposition 2.10. Assume the hypotheses of Definition 2.9. Then the direction δaζ can be approx-
imated at x for every a > 0. Further, if ∂+ f (x, ζ) exists then also ∂+ f (x, δaζ) exists for every a > 0
and we have ∂+ f (x, δaζ) = δa∂

+ f (x, ζ).

Proof. Let ζ t
x approximate the direction ζ at x. Then xζat

x ∈ A and

d(ζat
x , δtδaζ)

t
=

ad(ζat
x , δatζ)
at

→ 0.

Hence ζat
x approximates the direction δaζ at x.

Now suppose ηt
x approximates the direction δaζ at x. By the above argument, ηt/a

x approximates
the direction ζ at x. Using differentiability in direction ζ gives

lim
t↓0

δ1/t( f (x)−1 f (xηt
x)) = δa lim

t↓0
δ1/t( f (x)−1 f (xηt/a

x )) = δa∂
+ f (x, ζ).
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Hence ∂+ f (x, δaζ) = δa∂
+ f (x, ζ). �

Remark 2.11. Let A ⊂ � be measurable, f : A→� be Lipschitz and x ∈ A. Suppose there exists
one curve ζ t

x ∈ � approximating direction ζ at x with

lim
t↓0

δ1/t
(

f (x)−1 f (xζ t
x)
)

= w ∈�.

Then for any other curve ηt
x approximating direction ζ at x, we also have

lim
t↓0

δ1/t
(

f (x)−1 f (xηt
x)
)

= lim
t↓0

δ1/t
(

f (x)−1 f (xζ t
x)
)

= w ∈�.

In other words, f is differentiable at x in direction ζ and w = ∂+ f (x, ζ).

Remark 2.12. In the simple case where A ⊂ � is open, we may choose the simplest curve ζ t
x = δtζ

for sufficiently small t. Hence, by Remark 2.11, to verify directional differentiability for a Lipschitz
function f : A→�, we have only to check the existence of the limit

lim
t↓0

δ1/t
(

f (x)−1 f (xδtζ)
)

= ∂+ f (x, ζ).

Since for Lipschitz functions directional differentiability requires only one curve ζ t
x, it is useful

to find those points of the domain where we have a natural choice.

Definition 2.13. Let A ⊂ � and x, ζ ∈ �. We say that A is dense at x in direction ζ if

L1 ({0 < θ < t : xδθζ < A})
t

→ 0 as t ↓ 0.

Proposition 2.14. Suppose A ⊂ � is measurable and dense at x ∈ A in direction ζ. Let f : A→�
be Lipschitz. Then the following are true:

(1) there exist ζ t
x approximating in A the direction ζ at x

(2) defining A(x, ζ) = {t ∈ R | xδtζ ∈ A}, we have 0 ∈ A(x, ζ)
(3) f is differentiable at x in direction ζ if and only if the following limit exists:

lim
t↓0, t∈A(x,ζ)

δ1/t( f (x)−1 f (xδtζ)).(2.7)

In either case, the above limit equals ∂+ f (x, ζ).

Proof. For t > 0, choose 0 < T (t) ≤ t such that xδT (t)ζ ∈ A and

t − T (t) < inf
{
t − a : 0 < a ≤ t, xδaζ ∈ A

}
+ t2.

Density of A at x in direction ζ implies T (t)/t → 1. The curve defined by ζ t
x = δT (t)ζ then satisfies

property (1).
Property (2) is clear from the definition of directional density.
Suppose now that the limit (2.7) exists. Choosing the previously defined curve ζ t

x, this gives the
existence of the limit

lim
t↓0

δ 1
t
( f (x)−1 f (xζ t

x)) = lim
t↓0

δ T (t)
t

(
δ 1

T (t)
( f (x)−1 f (xδT (t)ζ))

)
.

By Remark 2.11, f is differentiable at x in direction ζ with ∂+ f (x, ζ) equal to the limit in (2.7).
Conversely, assume that f is differentiable at x in direction ζ. Considering again the previous

curve ζ t
x = δT (t)ζ, it follows that

∂+ f (x, ζ) = lim
t↓0, t∈A(x,ζ)

δ1/t( f (x)−1 f (xζ t
x)) = lim

t↓0, t∈A(x,ζ)

(
δ1/t( f (x)−1 f (xδtζ))

)
Ex,ζ,t,(2.8)
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where we clearly have

ρ
(
Ex,ζ,t

)
= ρ

(
δ1/t( f (xδtζ)−1 f (xζ t

x))
)
≤

L d(δtζ, ζ
t
x)

t
→ 0.

This proves property (3). �

Recall that a Banach space X has the Radon-Nikodym property (RNP) if every Lipschitz map
f : [0, 1] → X is differentiable almost everywhere. We say that a subspace of a Banach space
has the RNP if it does when considered as a Banach space in its own right. To obtain directional
derivatives we use the following theorem [26, Theorem 3.1].

Theorem 2.15. Suppose H1 ⊂� has the RNP. Let A ⊂ � and γ : A →� be a Lipschitz mapping.
Then γ is almost everywhere differentiable.

Theorem 2.16. Suppose H1 ⊂ � has the RNP. Let A ⊂ � be measurable and ζ be horizontal,
namely ζ ∈ V1 \ {0}. If f : A→� is Lipschitz, then for almost every point x ∈ A:

(1) A is dense at x in direction ζ,
(2) f is differentiable at x in direction ζ.

Proof. Choose Ṽ1 ⊂ V1 such that Ṽ1 ⊕ span{ζ} = V1 and consider a basis (e1, . . . , en−1) of

N := Ṽ1 ⊕ V2 ⊕ · · · ⊕ Vs,

for which each ei belongs to some subspace V j. The basis (e1, . . . , en−1, ζ) of � allows us to define
Ψ : Rn → � as follows

Ψ(ξ, t) =

n−1∑
j=1

ξ je j

 (tζ).

The map Ψ is a global diffeomorphism (see [25, Proposition 7.6]). By 3.1.3(5) of [12], for a.e.
(ξ, t) ∈ Ψ−1(A) the set of points

{θ ∈ R : (ξ, θ) < Ψ−1(A)}
has density zero at t. Since ζ ∈ V1, hence Ψ(ξ, t) = Ψ(ξ, 0)δtζ, the previous statement implies that
for a.e. x = Ψ(ξ, t) ∈ A, the set A is dense at x in direction ζ. We denote the set of these points by
Aζ , observing that is measurable and µ(A \ Aζ) = 0.

Let D f ,ζ ⊂ Aζ be the set of points at which f is differentiable in direction ζ. Our proof is
completed once we have µ(Aζ \ D f ,ζ) = 0, that is Ln

(
Ψ−1(Aζ \ D f ,ζ)

)
. By the measurability of D f ,ζ

(whose proof is technical and postponed to Section 5.3), the set Z f ,ζ = Aζ \ D f ,ζ is also measurable.
We can then apply Fubini’s theorem to the measurable set

Ψ−1(Z f ,ζ),

whose measure can be recovered by integration of measures of the 1-dimensional sections(
Ψ−1(Z f ,ζ)

)
ξ

= Ψ(ξ, ·)−1(Z f ,ζ).

where ξ ∈ Rn−1. The composition t → f (Ψ(ξ, t)) ∈ � is Lipschitz on Ψ(ξ, ·)−1(Aζ) ⊂ R, therefore
Theorem 2.15 provides its a.e. differentiability on Ψ(ξ, ·)−1(Aζ) ⊂ R. It follows that Ψ(ξ, ·)−1(Z f ,ζ)
is negligible, hence so is Ψ−1(Z f ,ζ). �

Definition 2.17. A homogeneous homomorphism, in short h-homomorphism, from � to� is a map
L : �→� such that L(xy) = L(x)L(y) and L(δr(x)) = δr(L(x)) for all x, y ∈ � and r > 0.
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Any h-homomorphism is automatically Lipschitz. Indeed, since � is stratified there exist a posi-
tive integer N and v1, . . . , vN ∈ V1 such that for some T > 0 the set

V := {δt1v1 · · · δtN vN : |ti| < T }

contains the unit ball. The h-homomorphism property then yields the Lipschitz continuity. The
reader may also see [23, Proposition 3.11], which is stated there for stratified group targets, but
works equally well for Banach group targets.

Definition 2.18. Let A ⊂ � and x ∈ A ∩ D(A). We say that f : A −→ � is h-differentiable at x, or
simply differentiable at x, if there exists a h-homomorphism L : � −→� such that

ρ( f (x)−1 f (xz), L(z))
d(z)

→ 0 as z ∈ x−1A and d(z) ↓ 0.

The mapping L is unique and called the h-differential of f at x.

2.3. Porous sets. We now define porous sets and σ-porous sets.

Definition 2.19. Let (M, ρ) be a metric space, E ⊂ M and a ∈ M. We say that E is porous at a if
there exist Λ > 0 and a sequence xn → a such that

B(xn,Λρ(a, xn)) ∩ E = ∅ for every n ∈ N.

A set E is porous if it is porous at each point a ∈ E with Λ independent of a. A set is σ-porous
if it is a countable union of porous sets.

Porous sets in stratified groups have measure zero. This follows from the fact that Haar measure
on stratified groups is Ahlfors regular, hence doubling, so the Lebesgue differentiation theorem
applies [19, Theorem 1.8].

3. Directional derivatives act as h-homomorphisms outside a σ-porous set

In this section we study applications of porosity to directional derivatives. Recall that � is a
stratified group of step s and � is a Banach homogeneous group of step ν. We will need the
following estimate for the Banach homogeneous distance in�.

Lemma 3.1. Let N ∈ N and A j, B j ∈� for j = 1, . . . ,N. Suppose there exists b > 0 such that

ρ(B jB j+1 · · · BN) ≤ b and ρ(A j, B j) ≤ b for j = 1, . . . ,N.

Then there exists Cb > 0, depending on b, such that

ρ
(
A1A2 · · · AN , B1B2 · · · BN

)
≤ Cb

N∑
j=1

ρ(A j, B j)1/ν.(3.1)

The finite dimensional version of Lemma 3.1 can be found in [25, Lemma 3.7]. The proof
works in a similar way for Banach homogeneous groups. However, due to the key role played by
Lemma 3.1 in our arguments, we will present its proof in Section 5.2. Since any stratified group is
a Banach homogeneous group, we can also apply Lemma 3.1 in �, replacing ν by s and ρ by d.

We will also need the following estimate for distances in stratified groups [15, Lemma 2.13].

Lemma 3.2. There is a constant D > 0 such that

d(x−1yx) ≤ D
(
d(y) + d(x)

1
s d(y)

s−1
s + d(x)

s−1
s d(y)

1
s
)

for x, y ∈ �.
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Unless otherwise stated, we denote by f : A→� a fixed Lipschitz function on a measurable set
A ⊂ � with Lipschitz constant L.

Definition 3.3. Fix ζ, η ∈ �, y, z ∈ � and ε, δ > 0. Let C1 and C2 respectively be the con-
stants obtained from applying Lemma 3.1 in � with b = max{ε, ρ(y) + ρ(z)} and in � with
b = max{ε, ε/L, d(ζ) + d(η)}.

We define P(ζ, η, y, z, ε, δ, A) to be the set of points p ∈ A for which the following properties hold:
• For all 0 < t < δ there exist ζ t

p, η
t
p ∈ � satisfying

(3.2) pζ t
p ∈ A and d(ζ t

p, δtζ) < εt,

(3.3) pηt
p ∈ A and d(ηt

p, δtη) < εt,

(3.4) ρ( f (p)−1 f (pζ t
p), δty) ≤ εt,

(3.5) ρ( f (p)−1 f (pηt
p), δtz) ≤ εt.

• For arbitrarily small t there exist ωt
p ∈ � such that

(3.6) pωt
p ∈ A and d(ωt

p, δt(ζη)) < εt,

(3.7) ρ( f (p)−1 f (pωt
p), δt(yz)) >

(
3C1ε

1/ν + Lε + LC2
(
2 + L−1/s

)
ε1/s

)
t.

Intuitively, P(ζ, η, y, z, ε, δ, A) consists of points for which the directional derivatives in direction
ζ and η look like y and z respectively, at scales less than δ and with accuracy ε.

Notice that provided ε and δ are bounded by some fixed constant K, the constants C1 and C2 in
Definition 3.3 are bounded by constants independent of the precise value of ε and δ.

Lemma 3.4. The set P(ζ, η, y, z, ε, δ, A) is porous.

Proof. For this proof we abbreviate P = P(ζ, η, y, z, ε, δ, A). Let x ∈ P and choose 0 < t < δ/2 for
which there exist ωt

x ∈ � satisfying (3.6) and (3.7). Fix also ζ t
x satisfying (3.2) and (3.4). Since x

was any element of P and t could be chosen arbitrarily small, to prove P is porous it suffices to show
that B(xζ t

x, εt/L) ∩ P = ∅.
We suppose B(xζ t

x, εt/L) ∩ P , ∅ and deduce a contradiction. Choose p ∈ B(xζ t
x, εt/L) ∩ P. Use

the definition of P to choose ηt
p ∈ � satisfying (3.3) and (3.5). We first estimate

ρ( f (x)−1 f (pηt
p), δt(yz)).

To this end, observe we can write

δ1/t( f (x)−1 f (pηt
p)) = A1A2A3, yz = B1B2B3,

where

A1 = δ1/t( f (x)−1 f (xζ t
x)), A2 = δ1/t( f (xζ t

x)−1 f (p)), A3 = δ1/t( f (p)−1 f (pηt
p)),

and
B1 = y, B2 = 0, B3 = z.

We check Ai, Bi satisfy the hypotheses of Lemma 3.1 with b = max{ε, ρ(y) + ρ(z)}. Using (3.4)
gives

ρ(A1, B1) = ρ(δ1/t( f (x)−1 f (xζ t
x)), y) =

1
t
ρ( f (x)−1 f (xζ t

x), δty) ≤ ε.
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Recalling that p ∈ B(xζ t
x, εt/L), we obtain

ρ(A2, B2) = ρ(δ1/t( f (xζ t
x)−1 f (p)), 0) =

1
t
ρ( f (p), f (xζ t

x)) ≤
L
t

d(xζ t
x, p) ≤ ε.

Using (3.5) also gives

ρ(A3, B3) = ρ(δ1/t( f (p)−1 f (pηt
p)), z) =

1
t
ρ( f (p)−1 f (pηt

p), δtz) ≤ ε.

Hence ρ(Ai, Bi) ≤ ε for each i. Clearly also ρ(BiBi+1 · · · B3) ≤ ρ(y) + ρ(z) for each i. Hence the
hypotheses of Lemma 3.1 are satisfied for our choice of b and we get

(3.8) ρ( f (x)−1 f (pηt
p), δt(yz)) ≤ C1t

3∑
i=1

d(Ai, Bi)1/ν ≤ 3C1ε
1/νt.

Now let θt
x = x−1 pηt

p. Then xθt
x = pηt

p ∈ A and (3.8) gives

(3.9) ρ( f (x)−1 f (xθt
x), δt(yz)) ≤ 3C1ε

1/νt.

Now we estimate d(θt
x, δt(ζη)). Since p ∈ B(xζ t

x, εt/L), we may choose ht ∈ � with d(ht) ≤ εt/L
and p = xζ t

xht. Therefore

d(θt
x, δt(ζη)) = d(x−1 pηt

p, δt(ζη)) = d(ζ t
xhtηt

p, δt(ζη)).

Now define
A1 = δ1/tζ

t
x, A2 = δ1/tht, A3 = δ1/tη

t
p,

and
B1 = ζ, B2 = 0, B3 = η.

Let b = max{ε, ε/L, d(ζ) + d(η)}. Using (3.2) and (3.3) shows d(A1, B1) and d(A3, B3) are bounded
by ε. Using d(ht) ≤ εt/L gives d(A2, B2) ≤ ε/L. Clearly d(BiBi+1 · · · B3) ≤ d(ζ) + d(η) for each i.
Hence the hypotheses of Lemma 3.1 are satisfied, giving

d(θt
x, δt(ζη)) ≤ C2t

3∑
i=1

ρ(Ai, Bi)1/s ≤ C2
(
2 + L−1/s

)
ε1/st.

Recall ωt
x were chosen satisfying (3.6) and (3.7). Using also (3.9), we estimate as follows:

ρ( f (x)−1 f (xωt
x), δt(yz)) ≤ ρ( f (x)−1 f (xθt

x), δt(yz)) + ρ( f (xωt
x), f (xθt

x))

≤ 3C1ε
1/νt + Ld(ωt

x, θ
t
x)

≤ 3C1ε
1/νt + L

(
d(ωt

x, δt(ζη)) + d(θt
x, δt(ζη))

)
≤ 3C1ε

1/νt + Lεt + LC2
(
2 + L−1/s

)
ε1/st

=
(
3C1ε

1/ν + Lε + LC2
(
2 + L−1/s

)
ε1/s

)
t.

This contradicts the choice of ωt
x, forcing us to conclude B(xζ t

x, εt/L) ∩ P = ∅. Hence P is porous,
which concludes the proof. �

We now prove Theorem 1.2 by putting together countably many of the sets from Definition 3.3.
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Proof of Theorem 1.2. Using Theorem 5.2 we can assume that the Banach homogeneous group� is
separable. Let P be the countable union of sets P(ζ, η, y, z, ε, δ, A) for ζ, η in a countable dense subset
N� of �, y, z in a countable dense subsetN� of�, and ε, δ positive rationals. By Proposition 2.10,
it is enough to show that for points x ∈ A ∩ D(A) \ P we have

∂+ f (x, ζη) = ∂+ f (x, ζ)∂+ f (x, η)

whenever ζ, η ∈ � for which ∂+ f (x, ζ), ∂+ f (x, η) exist.
Suppose x ∈ A ∩ D(A) \ P and ∂+ f (x, ζ), ∂+ f (x, η) exist for some ζ, η ∈ �. Fix ε > 0 rational.

Choose ζ t
x, η

t
x ∈ � for t > 0 with xζ t

x, xη
t
x ∈ A and d(ζ t

x, δtζ)/t, d(ηt
x, δtη)/t → 0. Using the existence

of ∂+ f (x, ζ), ∂+ f (x, η), choose δ > 0 rational such that for 0 < t < δ:

d(ζ t
x, δtζ) < εt/2 and ρ(δ1/t( f (x)−1 f (xζ t

x)), ∂+ f (x, ζ)) ≤ ε/2,

d(ηt
x, δtη) < εt/2 and ρ(δ1/t( f (x)−1 f (xηt

x)), ∂+ f (x, η)) ≤ ε/2.

Now choose y, z ∈ N� such that

(3.10) ρ(∂+ f (x, ζ), y) < ε/2, ρ(∂+ f (x, η), z) < ε/2, ρ(∂+ f (x, ζ) ∂+ f (x, η), yz) < C1ε
1/ν.

In particular, we have

(3.11) ρ(δ1/t( f (x)−1 f (xζ t
x)), y) ≤ ε and ρ(δ1/t( f (x)−1 f (xηt

x)), z) ≤ ε for 0 < t < δ.

Now choose ζ′, η′ ∈ N� such that d(ζ, ζ′) < ε/2, d(η, η′) < ε/2 and d(ζη, ζ′η′) < ε/2. Then

(3.12) d(ζ t
x, δtζ

′) < εt and d(ηt
x, δtη

′) < εt for 0 < t < δ.

Equations (3.11) and (3.12) show that the point x satisfies the first four conditions of the set
P(ζ′, η′, y, z, ε, δ, A), i.e. (3.2)–(3.5) hold with ζ, η replaced by ζ′, η′ and p replaced by x.

Since x < P ⊃ P(ζ′, η′, y, z, ε, δ, A), the analogue of (3.6) or (3.7) for the set P(ζ′, η′, y, z, ε, δ, A)
must fail for sufficiently small t. Hence whenever t is sufficiently small and ωt

x satisfy the two
conditions

(3.13) xωt
x ∈ A and d(ωt

x, δt(ζ′η′)) < εt,

then we must have

(3.14) ρ( f (x)−1 f (xωt
x), δt(yz)) ≤

(
3C1ε

1/ν + Lε + LC2
(
2 + L−1/s

)
ε1/s

)
t.

Letωt
x approximate in A the direction ζη at x. Then xωt

x ∈ A and d(ωt
x, δt(ζη)) < εt/2 for sufficiently

small t. Since d(ζη, ζ′η′) < ε/2 it follows that ωt
x satisfy (3.13) and hence (3.14) for sufficiently

small t. Taking into account the third inequality of (3.10), we obtain for sufficiently small t:

(3.15) ρ( f (x)−1 f (xωt
x), δt(∂+ f (x, ζ)∂+ f (x, η))) ≤

(
4C1ε

1/ν + Lε + LC2
(
2 + L−1/s

)
ε1/s

)
t.

To summarize, if ωt
x approximate the direction ζη at x then (3.15) holds for sufficiently small t.

Provided ε, δ < 1, the constants C1 and C2 are independent of the precise value of ε and δ. We
conclude that ∂+ f (x, ζη) exists and is equal to ∂+ f (x, ζ)∂+ f (x, η). �
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4. From directional derivatives to differentiability

We now prove Theorem 1.3 which gives conditions for pointwise differentiability. Combining
these results with those of Section 3 will yield Theorem 1.1.

Proof of Theorem 1.3. First we suppose f is differentiable at x ∈ A ∩ D(A). Then there exists a
h-homomorphism Lx : �→� such that

ρ( f (x)−1 f (xz), Lx(z)) = o(d(z)) as z ∈ x−1A and z→ 0.(4.1)

Let ζ ∈ �. Using Lemma 2.8, choose ζ t
x such that xζ t

x ∈ A and d(ζ t
x, δtζ)/t → 0 as t ↓ 0. Then (4.1)

gives

ρ
(

f (x)−1 f (xζ t
x), Lx(ζ t

x)
)

= o(d(ζ t
x)) as t ↓ 0.(4.2)

Since d(ζ t
x, δtζ)/t → 0, there exists K = K(ζ) > 0 such that d(ζ t

x) < Kt for sufficiently small t.
Combining this with (4.2) gives

lim
t↓0

ρ
(
δ1/t( f (x)−1 f (xζ t

x)), δ1/tLx(ζ t
x)
)

= 0.(4.3)

Since Lx is a h-homomorphism (and hence Lipschitz), we have

ρ(Lx(ζ), δ1/tLx(ζ t
x)) = ρ(Lx(ζ), Lx(δ1/tζ

t
x)) ≤ Lip(Lx)

d(δtζ, ζ
t
x)

t
→ 0.

Combining this with (4.3) shows ∂+ f (x, ζ) exists and is equal to Lx(ζ) for any ζ ∈ �. Since Lx is a
h-homomorphism, the h-homomorphism property of directional derivatives follows.

For the converse statement, we assume ∂+ f (x, ζ) exists for any ζ ∈ � and Lx : � → � defined
by Lx(ζ) := ∂+ f (x, ζ) is a h-homomorphism. For every ζ ∈ � with d(ζ) ≤ 1, use Lemma 2.8 to
choose ζ t

x for t > 0 with xζ t
x ∈ A and d(ζ t

x, δtζ)/t → 0 as t ↓ 0 uniformly for ζ ∈ � with d(ζ) ≤ 1.
We first show that

(4.4) δ1/t( f (x)−1 f (xζ t
x))→ ∂+ f (x, ζ) as t ↓ 0 uniformly for ζ ∈ � with d(ζ) ≤ 1.

Let K = 1 + Lip(Lx) + 3L > 0 and fix ε > 0. Choose a finite set S ⊂ � such that for any η ∈ �
with d(η) ≤ 1, there exists ζ ∈ S with d(ζ, η) < ε/K. Choose δ > 0 such that

ρ
(
δ1/t( f (x)−1 f (xζ t

x)), ∂+ f (x, ζ)
)
< ε/K for every ζ ∈ S and 0 < t < δ,(4.5)

and

d(ηt
x, δtη)/t < ε/K for every η ∈ � with d(η) ≤ 1 and 0 < t < δ.(4.6)

Given η ∈ � with d(η) ≤ 1, choose ζ ∈ S with d(ζ, η) < ε/K. We observe that

ρ
(
δ1/t( f (x)−1 f (xηt

x)), ∂+ f (x, η)
)
≤ ρ

(
δ1/t( f (x)−1 f (xζ t

x)), ∂+ f (x, ζ)
)

(4.7)

+ ρ
(
δ1/t( f (x)−1 f (xηt

x)), δ1/t( f (x)−1 f (xζ t
x))

)
+ ρ

(
∂+ f (x, ζ), ∂+ f (x, η)

)
.
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The first term in (4.7) is estimated by (4.5) for 0 < t < δ. We estimate the second term of (4.7) as
follows:

ρ
(
δ1/t( f (x)−1 f (xηt

x)), δ1/t( f (x)−1 f (xζ t
x))

)
=

1
t
ρ
(

f (xηt
x), f (xζ t

x)
)

≤
L
t

d(ηt
x, ζ

t
x)

≤ L
(
d(ηt

x, δtη)
t

+
d(ζ t

x, δtζ)
t

+ d(ζ, η)
)
.

Using our choice of ζ and (4.6), we obtain

(4.8) ρ
(
δ1/t( f (x)−1 f (xηt

x)), δ1/t( f (x)−1 f (xζ t
x))

)
< 3Lε/K for 0 < t < δ.

We estimate the final term in (4.7) as follows:

ρ(∂+ f (x, ζ), ∂+ f (x, η)) = ρ(Lx(ζ), Lx(η)) ≤ Lip(Lx)d(ζ, η) < εLip(Lx)/K.(4.9)

Using (4.5), (4.8) and (4.9) in (4.7) together with the definition of K yields

ρ
(
δ1/t( f (x)−1 f (xηt

x)), ∂+ f (x, η)
)
< ε.

This proves the uniform convergence (4.4).
To conclude we will show that ρ( f (x)−1 f (xz), Lx(z)) = o(d(z)) as z → 0 with z ∈ x−1A. First

notice that for ζ ∈ � with d(ζ) ≤ 1:
1
t
ρ( f (x)−1 f (xζ t

x), Lx(ζ t
x)) = ρ(δ1/t( f (x)−1 f (xζ t

x)), δ1/tLx(ζ t
x))

≤ ρ(δ1/t( f (x)−1 f (xζ t
x)), ∂+ f (x, ζ)) + ρ(∂+ f (x, ζ), δ1/tLx(ζ t

x))

= ρ(δ1/t( f (x)−1 f (xζ t
x)), ∂+ f (x, ζ)) + ρ(Lx(ζ), Lx(δ1/tζ

t
x))

≤ ρ(δ1/t( f (x)−1 f (xζ t
x)), ∂+ f (x, ζ)) + Lip(Lx)d(ζ, δ1/tζ

t
x).

Hence (4.4) and our choice of ζ t
x gives

1
t
ρ( f (x)−1 f (xζ t

x), Lx(ζ t
x))→ 0 as t ↓ 0 uniformly for d(ζ) ≤ 1.(4.10)

Given ε > 0, use (4.10) and our choice of ζ t
x to choose δ > 0 such that

d(δtζ, ζ
t
x)

t
< ε and

ρ( f (x)−1 f (xζ t
x), Lx(ζ t

x))
t

< ε for d(ζ) ≤ 1 and 0 < t < δ.

Now let z ∈ x−1A with d(z) ≤ δ. Choose ζ ∈ � with d(ζ) = 1 such that z = δtζ for some 0 < t < δ.
We then estimate as follows:

ρ( f (x)−1 f (xz), Lx(z))
d(z)

≤
ρ( f (x)−1 f (xδtζ), f (x)−1 f (xζ t

x))
t

+
ρ( f (x)−1 f (xζ t

x), Lx(ζ t
x))

t

+
ρ(Lx(ζ t

x), Lx(δtζ))
t

≤ (L + Lip(Lx))
d(δtζ, ζ

t
x)

t
+
ρ( f (x)−1 f (xζ t

x), Lx(ζ t
x))

t
< (L + Lip(Lx) + 1) ε.

This shows that f is differentiable at x.
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�

Using our results above, we can now quickly show how Theorem 1.3 gives Theorem 1.1. By [25,
Lemma 4.9], there exists a spanning set of directions ν1, . . . , νN ∈ V1 for some N ∈ N, namely there
exists T > 0 such that {

δt1v1δt2v2 · · · δtN vN : 0 ≤ ti < T
}

contains the unit ball of �. If H1 ⊂� has the RNP then Theorem 2.16 yields a null set Z ⊂ A such
that for every x ∈ A \ Z: A is dense at x in direction νi and ∂+ f (x, νi) exists for every i = 1, . . . ,N.
By Theorem 1.2, we can find a σ-porous set P ⊂ � such that directional derivatives at x act as
h-homomorphisms whenever x ∈ A ∩ D(A) \ P.

Combining these with the spanning property of v1, . . . , vN , it follows that f is differentiable at
each x ∈ A∩D(A)\(P∪Z) in any direction ζ of the unit ball. Proposition 2.10 extends this directional
differentiability to all directions ζ of �. The same Theorem 1.2 shows that for x ∈ A∩D(A)\ (P∪Z)
the directional derivative � 3 ζ → ∂+ f (x, ζ) defines a h-homomorphism. We have established both
conditions 1 and 2 of Theorem 1.3, therefore f is differentiable at every point of A∩D(A) \ (P∪Z).
SinceHQ

d (A \ D(A)) = 0 and porous sets have measure zero, our claim follows.

Remark 4.1. Taking into account Remark 2.12, when the domain A of f is an open set, properties
(3.2) and (3.3) of Definition 3.3 are automatically satisfied. Hence several arguments in the proofs
of both Theorem 1.2 and Theorem 1.3 become simpler.

5. Appendix

5.1. Separable Banach Homogeneous Groups. Let� be a Banach homogeneous group of step
ν. For every v = (v1, . . . , vk) ∈�k, k ≥ 1, we define the nonassociative product

pk(v) = [· · · [[v1, v2], v3] · · · ], vk] = v1 ◦ v2 ◦ · · · ◦ vk,

where pk :�k →� is clearly a continuous multilinear mapping. For any countable subset

N =
{
x j ∈� : j ∈ N

}
,

we define its rational homogeneous span as follows

〈〈N〉〉 =


n∑

j=0

ν∑
l=1

λ jl πl(x j) : λ jl ∈ Q, n ∈ N

 ⊂�.
The closed homogeneous span of N is simply 〈N〉 = 〈〈N〉〉 ⊂ �. This is clearly a linear subspace
of� that is also homogeneous, that is δr〈N〉 ⊂ 〈N〉 for every r > 0. Since 〈〈N〉〉 is countable, 〈N〉
is a separable homogeneous Banach space, that in particular contains N .

Theorem 5.1. There exists a separable Banach homogeneous subgroup� ⊂� such that 〈N〉 ⊂ �.

Proof. Let �1 = 〈N〉 be the separable and homogeneous Banach space spanned byN and consider

�k =

∑
v∈I

pk(v) : I ⊂ �k
1 is finite


for each k = 2, . . . , ν. Since dilations are also Lie algebra homomorphisms and �1 is closed under
dilations, it follows that δr�k ⊂ �k for each k = 1, . . . , ν and r > 0. It is clear that �k is a linear
subspace also for k = 2, . . . , ν.
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We wish to show that for any couple of finite subsets I ⊂ �k
1 and J ⊂ �l

1 with∑
v∈I

pk(v) ∈ �k and
∑
w∈J

pl(w) ∈ �l

the following conditions hold

(5.1)

y, ∑
w∈J

pl(w)

 ∈ �l+1 and

∑
v∈I

pk(v),
∑
w∈J

pl(w)

 ∈ �k+l

where y ∈ �1. Notice that the nilpotence of � gives �k+l = {0} whenever k + l > ν. The first
condition of (5.1) is straightforward:y,∑

v∈J

pl(w)

 = −
∑
v∈J

pl+1((w, y)) ∈ �l+1.

The second one for k = 2 is a consequence of the Jacobi identity, that yields[v1, v2],
∑
w∈J

pl(w)

 = −


v2,

∑
w∈J

pl(w)

 , v1

 −

∑
w∈J

pl(w), v1

 , v2


=

∑
w∈J

pl+2((w, v2, v1)) −
∑
w∈J

pl+2((w, v1, v2)) ∈ �l+2

for every positive integer l. If we assume the second condition of (5.1) to hold for a fixed k ≥ 2 and
every l ≥ 1, then setting

v = (v1, v2, . . . , vk+1) ∈ �k+1
1 and ṽ = (v1, v2, . . . , vk) ∈ �k

1,

we consider the productpk+1(v),
∑
w∈J

pl(w)

 =

[pk(ṽ), vk+1],
∑
w∈J

pl(w)


= −


vk+1,

∑
w∈J

pl(w)

 , pk(ṽ)

 −

∑
w∈J

pl(w), pk(ṽ)

 , vk+1


= −

pk(ṽ),
∑
w∈J

pl+1((w, vk+1))

 +
∑
w∈J

[[pk(ṽ), pl(w)], vk+1] .

All addends of the previous sum belong to �k+l+1 by the inductive assumption, hence establishing
conditions (5.1). The linear subspace

V = �1 + �2 + · · · + �ν ⊂�

is closed under dilations, since so are all the subspaces � j. Conditions (5.1) immediately show that
V is a Lie subalgebra of�. It turns out that its closure

� = V

is a Banach Lie subalgebra, that is also closed under dilations, due to the continuity of the Lie
product and of dilations. Then the same argument in the proof of [25, Proposition 7.2] shows that
� is actually a direct sum of subspaces U1, . . . ,Uν with [Ui,U j] ⊂ Ui+ j and Ui+ j = {0} whenever
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i + j > ν. Since the group operation is given by the Baker-Campbell-Hausdorff formula, it turns out
that � is a Banach homogeneous subgroup of�.

To show that � is also separable, we first consider the countable subsets

〈〈N〉〉k =

∑
v∈I

pk(v) : I ⊂
(
〈〈N〉〉

)k is finite


where 2 ≤ k ≤ ν and define the closed subset

� = 〈〈N〉〉 + 〈〈N〉〉2 + · · · + 〈〈N〉〉ν.

Clearly � is separable, being all the addends 〈〈N〉〉 and 〈〈N〉〉k countable. The simple inclusion
〈〈N〉〉k ⊂ �k for k ≥ 2 joined with �1 = 〈〈N〉〉 immediately lead us to the following

〈〈N〉〉 + 〈〈N〉〉2 + · · · + 〈〈Nν〉〉ν ⊂ V,

that gives� ⊂ �.
The opposite inclusion follows from the following

(5.2) � ⊃ V.

To prove this, we consider any element

w = v +

ν∑
k=2

∑
v∈Ik

pk(v) ∈ V,

with v ∈ �1 and Ik finite subset of �k
1. Since 〈〈N〉〉 = �1, we find a sequence {yn} of 〈〈N〉〉 with

yn → v. For k ≥ 2 and any v ∈ Ik we find a sequence {vn} ⊂ (〈〈N〉〉)k such that vn → v. By the
continuity of p, we get

pk(vn)→ pk(v) as n→ ∞.

We conclude that

zn = yn +

ν∑
k=2

∑
v∈Ik

pk(vn) ∈ 〈〈N〉〉 + 〈〈N〉〉2 + · · · + 〈〈N〉〉ν

and zn → w ∈�, showing the validity of (5.2) and then concluding the proof. �

Theorem 5.2. If A ⊂ � and f : A → � is continuous, then there exists a separable Banach
homogeneous group�0 ⊂� such that f (A) ⊂�0.

Proof. LetN ⊂� be a countable subset such that f (A) ⊂ N . Then Theorem 5.1 provides us with a
separable Banach homogeneous group�0 ⊂� containing N , therefore concluding the proof. �

5.2. Proof of Lemma 3.1. Fix b > 0. Since each map πi is continuous and linear, the following
inequality holds for |x| ≤ b, where c > 0 only depends on�:

|πi(x)|1/i ≤ c1/i|x|1/i = c1/i(1 + b)1/i
(
|x|

1 + b

)1/i

(5.3)

≤ c1/i(1 + b)
1
i −

1
ν |x|1/ν

≤ max{c, 1} (1 + b)1− 1
ν |x|1/ν,



18 VALENTINO MAGNANI, ANDREA PINAMONTI, AND GARETH SPEIGHT

By (2.3) and (5.3) there exists C1,b > 0, depending on b, such that

(5.4) ‖x‖ ≤ C1,b |x|1/ν for |x| ≤ b.

Conversely, from (2.3) one may easily see that there exists C2,b > 0 such that

|x| ≤ C2,b for ‖x‖ ≤ b.(5.5)

The same formula also yields

(5.6) |x| ≤
ν∑

i=1

|πi(x)| ≤ max
1≤i≤ν

{
1

(σi)i

} ν∑
i=1

(
C1,b b1/ν

)i−1
‖x‖ = C3,b ‖x‖ for |x| ≤ b.

We observe that for the addends in (2.2) to be non-zero, the iterated nonassociative product must
always start from the factor x ◦ y or y ◦ x. Thus, the continuity of the Lie bracket yields

(5.7) |x ◦ · · · ◦ x︸     ︷︷     ︸
p1 times

◦

q1 times︷     ︸︸     ︷
y ◦ · · · ◦ y ◦ · · · ◦ x ◦ · · · ◦ x︸     ︷︷     ︸

pk times

◦

qk times︷     ︸︸     ︷
y ◦ · · · ◦ y | ≤ Cm−2bm−2|[x, y]|

where
∑k

i=1(pi + qi) = m and we have assumed in addition that |x|, |y| ≤ b for some b > 0.

Claim 1. Let b > 0. Then there exists C4,b > 0, depending on b, such that

‖y−1xy‖ ≤ C4,b |x|1/ν for |x|, |y| ≤ b.(5.8)

Proof. Recalling y−1 = −y and applying Dynkin’s formula with the pairs −y, xy then x, y, we obtain

y−1xy = x +

ν∑
m=2

Pm(x, y) +

ν∑
m=2

Pm(−y, xy).(5.9)

Taking into account (5.7), it is easy to see that there exists C5,b > 0, such that

|y−1xy| ≤ C5,b|x| +

∣∣∣∣∣∣∣
ν∑

m=2

Pm(−y, xy)

∣∣∣∣∣∣∣ .
Another application of (5.7), joined with (2.2), gives a constant C6,b > 0 such that

|xy| ≤ C6,b for |x|, |y| ≤ b.

Again using (5.7), it follows that

|Pm(−y, xy)| ≤ C7,b |[y, xy]|(5.10)

for each m = 2, . . . , ν and a suitable constant C7,b > 0, depending on b. Thus, we have proved the
existence of C8,b > 0, depending on b, such that

(5.11) |y−1xy| ≤ C8,b (|x| + |[y, xy]|).

Now, we observe that

[y, xy] =
[
y, x +

ν∑
m=2

Pm(x, y)
]

= [y, x] +
[
y,

ν∑
m=2

Pm(x, y)
]
.

This together with the continuity of [·, ·] leads us to the estimate

|[y, xy]| ≤ C0
(
|x||y| + |y|

ν∑
m=2

|Pm(x, y)|
)
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where C0 > 0 only depends on the Banach norm chosen on �. As a consequence, there exists
C9,b > 0 such that

(5.12) |[y, xy]| ≤ C9,b|x| for |x|, |y| ≤ b.

The previous inequality joint with (5.11) gives |y−1xy| ≤ C10,b for some C10,b > 0 depending on b.
This bound on |y−1xy| allows us to apply (5.4), that joined with (5.11) and (5.12) gives (5.8). �

Claim 2. Let N be a positive integer and let A j, B j ∈ � with j = 1, . . . ,N. Let b > 0 be such that
|B jB j+1 · · · BN | ≤ b and |B−1

j A j| ≤ b for every j = 1, . . . ,N. Then there exists C > 0 such that

ρ
(
A1A2 · · · AN , B1B2 · · · BN

)
≤ ρ(AN , BN) + C

N−1∑
j=1

|A−1
j B j|

1/ν.(5.13)

Proof. Define B̂ j = B jB j+1 · · · BN and Â j = A jA j+1 · · · AN . Using the left invariance of ρ and
Claim 1, we obtain

ρ
(
Â1, B̂1

)
= ρ

(
Â2, A−1

1 B1B̂2
)
≤ ρ(Â2, B̂2) + ‖B̂−1

2 A−1
1 B1B̂2‖

≤ ρ(Â2, B̂2) + C4,b|A−1
1 B1|

1/ν

≤ ρ(Â3, B̂3) + C4,b|A−1
2 B2|

1/ν + C4,b|A−1
1 B1|

1/ν

≤ ρ(AN , BN) + C
N−1∑
j=1

|A−1
j B j|

1/ν. �

From the hypotheses of Lemma 3.1, taking into account (5.5), we see

|B jB j+1 · · · BN | ≤ C2,b and |A−1
j B j| ≤ C2,b for j = 1, . . . ,N.

Hence we may apply Claim 2. Recalling that ρ(AN , BN) ≤ b and using (5.6) we obtain

ρ
(
A1A2 · · · AN , B1B2 · · · BN

)
≤ ρ(AN , BN) + C3,C2,b

N−1∑
j=1

‖A−1
j B j‖

1/ν ≤ Cb

N∑
j=1

ρ(A j, B j)1/ν,

where Cb = max
{
b1− 1

ν ,C3,C2,b

}
. This concludes the proof of Lemma 3.1.

5.3. Measurability of points where a directional derivative exists. The aim of this section is to
prove that the set D f ,ζ in the proof of Theorem 2.16 is measurable. Recall that f : A → � is
Lipschitz and A ⊂ � is measurable. It was shown earlier that the set Aζ of points at which A is
dense in direction ζ is measurable and µ(A\Aζ) = 0. The set D f ,ζ is the subset of points in Aζ where
f is differentiable in direction ζ. By Theorem 5.2, we can assume that the target� is a separable
Banach homogeneous group. Fix zi ∈ � with {zi : i ∈ N} = �. Let Pi(z) = ρ(z, zi) for z ∈ �. For
y ∈ A and t > 0, define measurable functions gi

t,y,+, g
i
t,y,− : Aζ → R ∪ {+∞,−∞} by:

gi
t,y,±(x) =

{
Pi

(
δ1/t

(
f (x)−1 f (y)

))
if y ∈ A ∩ B(xδtζ, t2)

±∞ if y ∈ A \ B(xδtζ, t2).

Fix a countable set S ⊂ A with A ⊂ S. Define

x→ ϕ(x) = lim
R→+∞

sup
i∈N

sup
0<s,t<1/R

s,t∈Q

sup
(y,z)∈S2

(
gi

t,y,−(x) − gi
s,z,+(x)

)
,
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which is well defined and measurable on Aζ . We claim that f is differentiable at x in direction ζ if
and only if ϕ(x) = 0.

First suppose x ∈ Aζ and f is differentiable at x in direction ζ. Proposition 2.14 implies that

lim
t↓0, xδtζ∈A

δ1/t
(

f (x)−1 f (xδtζ)
)

= ∂+ f (x, ζ).

Since x is a density point of A in direction ζ, there exists Tt > 0 with xδTtζ ∈ A and Tt/t → 1 as
t ↓ 0. For y ∈ B(xδtζ, t2), let

Ex,y,t = δ1/t
(

f (xδTtζ)−1 f (y)
)

Taking into account that ζ is horizontal, we have

ρ(Ex,y,t) ≤ L
d(xδTtζ, y)

t
<

L
t

(
|Tt − t| d(ζ) + t2

)
= Lθt,

where θt → 0 as t ↓ 0. We set

(δ f )x,ζ,t = δ1/t
(

f (x)−1 f (xδTtζ)
)
,

observing that (δ f )x,ζ,t → ∂+ f (x, ζ) as t ↓ 0. The following estimates hold∣∣∣∣Pi
(
δ1/t

(
f (x)−1 f (y)

))
− Pi

(
(δ f )x,ζ,t

)∣∣∣∣ =
∣∣∣∣Pi

(
(δ f )x,ζ,tEx,y,t

)
− Pi

(
(δ f )x,ζ,t

)∣∣∣∣ ≤ ρ(Ex,y,t) < Lθt

uniformly in y ∈ B(xδtζ, t2) and i ∈ N. Since P : � → `∞, z → (Pi(z))i∈N is an isometric
embedding, we get

sup
i∈N

∣∣∣∣Pi
(
(δ f )x,ζ,t

)
− Pi

(
∂+ f (x, ζ)

)∣∣∣∣→ 0 as t ↓ 0.

If we fix ε > 0, then for some Rε > 0 we obtain∣∣∣∣Pi
(
δ1/t

(
f (x)−1 f (y)

))
− Pi

(
∂+ f (x, ζ)

)∣∣∣∣ < ε/2
for 0 < t < 1/Rε, i ∈ N and y ∈ B(xδtζ, t2). In particular, for y ∈ B(xδtζ, t2) and z ∈ B(xδsζ, s2), it
follows that ∣∣∣∣Pi

(
δ1/t

(
f (x)−1 f (y)

))
− Pi

(
δ1/s

(
f (x)−1 f (z)

))∣∣∣∣ < ε
for 0 < t, s < 1/Rε and i ∈ N. The fact that A is dense at x in direction ζ implies that, up to taking a
larger Rε, the following

sup
0<s,t<1/Rε

s,t∈Q

sup
(y,z)∈S2

(
gi

t,y,−(x) − gi
s,z,+(x)

)
exactly equals

sup
0<s,t<1/Rε

s,t∈Q

sup
(y,z)∈S2

y∈B(xδtζ,t2), z∈B(xδsζ,s2)

Pi
(
δ1/t

(
f (x)−1 f (y)

))
− Pi

(
δ1/s

(
f (x)−1 f (z)

))
< ε

for every i ∈ N. This proves that ϕ(x) = 0.
Conversely, we assume that ϕ(x) = 0 and wish to prove that f is differentiable at x in direction ζ.

Let ε > 0 be arbitrarily fixed and choose Rε > 0 such that

(5.14) sup
i∈N

sup
0<s,t<1/Rε

s,t∈Q

sup
(y,z)∈S2

(
gi

t,y,−(x) − gi
s,z,+(x)

)
< ε.
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Observing that in the expression (5.14) we can exchange (t, y) with (s, z), if y ∈ B(xδtζ, t2) and
z ∈ B(xδsζ, s2) we get ∣∣∣∣Pi

(
δ1/t

(
f (x)−1 f (y)

))
− Pi

(
δ1/s

(
f (x)−1 f (z)

))∣∣∣∣ ≤ ε
for 0 < s, t ≤ 1/Rε. Since x ∈ A is a density point in direction ζ, we may consider again Tt > 0
such that xδTtζ ∈ A and Tt/t → 1 as t ↓ 0. Fix δ0 > 0 such that Tt < 2t for 0 < t ≤ δ0. Whenever
0 < s, t < 1/2Rε, we have 0 < Ts,Tt < 1/Rε and then

(5.15)
∣∣∣∣Pi

(
δ1/Tt

(
f (x)−1 f (xδTtζ)

))
− Pi

(
δ1/Ts

(
f (x)−1 f (xδTsζ)

))∣∣∣∣ ≤ ε
for all i ∈ N. In particular, there exists

li = lim
t↓0

Pi
(
δ1/Tt

(
f (x)−1 f (xδTtζ)

))
and we can pass to the limit in (5.15) with respect to s ↓ 0, that yields∣∣∣∣Pi

(
δ1/Tt

(
f (x)−1 f (xδTtζ)

))
− li

∣∣∣∣ ≤ ε.
In particular, w = (li) ∈ `∞ and

‖P
(
δ1/Tt

(
f (x)−1 f (xδTtζ)

))
− w‖`∞ → 0 as t ↓ 0.

Hence the following limit exists

lim
t↓0

δ1/Tt

(
f (x)−1 f (xδTtζ)

)
.

By Remark 2.11, this shows that f is differentiable at x in direction ζ.
We conclude that D f ,ζ =

{
x ∈ Aζ : ϕ(x) = 0

}
, from which the measurability of ϕ gives our claim.
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