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1. Introduction

In this note we examine the analytical part of the famous 1954 paper
of John F. Nash on the isometric embedding problem [48]. Our aim is to
emphasize how Nash’s discovery reaches far beyond differential geometry
and that, rather than a result in differential geometry, the construction of
Nash should be seen as a fully nonlinear iteration scheme that has potential
applications for constructing solutions to partial differential equations in
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general. In classical perturbation methods for nonlinear equations, such as
the Newton scheme, the linearization of the equation plays the key role. In
contrast, in the scheme of Nash the leading order term is quadratic in the
perturbation and the linearization becomes negligible. In some sense this
means that the Nash scheme is genuinely infinite dimensional, there is no
finite dimensional analogue! It is therefore not entirely surprising that a
scheme of this type leads to highly irregular solutions.

After giving some of the details of Nash’s argument we discuss how we
have taken advantage of this point of view in [30] to produce continuous
solutions of the incompressible Euler equations which behave in a surprising
way. Our paper has given the first approach to a well known conjecture of
Lars Onsager in the theory of turbulence, but rather than focusing on the
state of the art for the latter and similar problems in the PDE literature
(for which we refer to the survey article [27]), here we focus instead on the
main underlying ideas and their similarities to Nash’s astonishing iteration
technique.

1.1. The Nash-Kuiper theorem. The existence of isometric immersions
(resp. embeddings) of Riemannian manifolds into some Euclidean space is
a classical problem, explicitly formulated for the first time by Schläfli, see
[57]. Given a Riemannian manifold (Σ, g), an immersion (resp. embedding)
u : Σ→ Rn is called an isometry if it preserves the length of curves, namely
if

`g(γ) = `e(u ◦ γ) for any C1 curve γ : I → Σ. (1)

Here `e(η) denotes the usual euclidean length of a curve η, namely

`e(η) =

ˆ
|η̇(t)| dt ,

whereas `g(γ) denotes the length of γ in the Riemannian manifold (Σ, g):

`g(γ) =

ˆ √
g(γ(t))[γ̇(t), γ̇(t)] dt . (2)

If U ⊂ Σ is a coordinate patch, we can express g as customary in local
coordinates:

g = gijdxi ⊗ dxj ,
where we follow the Einstein’s summation convention. The square of the
integrand in (2) is then

g(γ(t))[γ̇(t), γ̇(t)] = gij(γ(t))γ̇i(t)γ̇j(t) .

Nash started working at this question shortly after his PhD, apparently
because of a bet with a colleague at the MIT department, where he had just
moved as a young faculty, cf. [47]. The problem was considered a formidable
one and at that time comparatively little was known. Janet [39], Cartan [15]
and Burstin [14] had proved the existence of local isometric embeddings in
the case of analytic metrics. For the very particular case of 2-dimensional
spheres endowed with metrics of positive Gauss curvature, Weyl in [62] had
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raised the question of the existence of isometric embeddings in R3. The
Weyl’s problem was solved by Lewy in [44] for analytic metrics and only
shortly before Nash’s work another brilliant young mathematician, Louis
Nirenberg, had settled the case of smooth metrics (in fact C4, see [51] and
[52]); the same problem had been solved independently by Pogorolev [54],
building upon the work of Alexandrov [1] (see also [55]).

In his two celebrated works on the topic which appeared in 1954 and
1956 (cf. [48, 49]; he wrote a third contribution in the sixties, cf. [50]) Nash
completely revolutionized the subject. He first proved a very counterintu-
itive fact which shocked the geometers of his time, namely the existence
of C1 isometric embeddings in codimension 2 in the absence of topologi-
cal obstructions. He then showed the existence of smooth embeddings in
sufficiently high codimension, introducing his celebrated approach to “hard
implicit function theorems”.

When u : Σ → Γ is an immersion of a differentiable manifold Σ into a
Riemannian manifold (Γ, h), it is customary to denote by u]h the induced
pull-back metric on Σ, which is given by the relation

u]h(p)[X,Y ] = h(u(p))[du(X), du(Y )] for X,Y tangent to Σ.

If we denote by e the standard euclidean metric on RN , an isometric im-
mersion of (Σ, g) into RN is characterized by the identity u]e = g (and note
that the relation itself guarantees that u must be an immersion even if we
do not assume it a priori). In a local coordinate patch the latter identity
gives a system of partial differential equations:

∂iu · ∂ju = gij , (3)

consisting of n(n+ 1)/2 equations in N unknowns.
A reasonable guess would therefore be that the system is solvable (at least

locally) when N = n(n+ 1)/2: this was in fact what Schläfli conjectured in
the nineteenth century and what Janet, Cartan and Burstin proved locally
for analytic metrics. However, to quote John Milnor, “Nash was never
a reasonable person” (cf. [26]): in his first (very short) paper in 1954 he
astonished the geometry world and proved that the only true obstructions to
the existence of isometric immersions are topological. As soon as N ≥ n+ 1
and there are no such obstructions, then there are in fact plenty of such
immersions. Indeed Nash gave a proof for N ≥ n + 2 and just remarked
that a similar statement could be proved for N ≥ n + 1: the details were
then given in two subsequent notes by Kuiper, [42].

The resulting theorem, which is nowadays called the Nash-Kuiper The-
orem on C1 isometric embeddings, is usually stated after introducing the
concept of “short map”.

Definition 1.1. Let (Σ, g) be a Riemannian manifold. An immersion v :
Σ→ RN is short if we have the inequality v]e ≤ g in the sense of quadratic
forms. If the inequality < holds we then say that v is strictly short.
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As usual, the inequality h ≤ g (in the sense of quadratic forms) is the
requirement hijv

ivj ≤ gijvivj for any tangent vector v, whereas h < g means
that the strict inequality holds whenever v is nonzero.

The Nash-Kuiper Theorem is then the following

Theorem 1.2. Let (Σ, g) be a smooth closed n-dimensional Riemannian
manifold and v : Σ → RN a C∞ short immersion with N ≥ n + 1. Then,
for any ε > 0 there exists a C1 isometric immersion u : Σ→ RN such that
‖u− v‖C0 ≤ ε. If v is, in addition, an embedding, then u can be assumed to
be an embedding as well.

A suitable version of this theorem can be proved even for open manifolds
and the smoothness of v and g can be considerably relaxed: the metric needs
only to be continuous, whereas it is sufficient that the short map is C1.

If Σ is a smooth closed manifold, as soon as there is an immersion v :
Σ→ RN we can make it short by simply multiplying it by a small positive
constant. Thus, Theorem 1.2 is not merely an existence theorem, but it
shows that there exists a huge (essentially C0-dense) set of solutions in
rather low codimension, even for the most general manifolds, because the
classical Theorem of Whitney guarantees the existence of an embedding
already in R2n−1.

This type of abundance of solutions is a central aspect of Gromov’s h-
principle, for which the isometric embedding problem is a primary example
(see [35, 32]). For C1 isometric embeddings of surfaces to R3 the h-principle
is particularly striking: for classical (e.g. C2) maps preservation of the met-
ric (i.e. being isometric) leads to higher order constraints, most notably the
Theorema Egregium of Gauss. In the Weyl problem, i.e. when (S2, g) has
positive Gauss curvature, this additional constraint is a crucial element in
the proof of rigidity: C2 isometric immersions into R3 are uniquely deter-
mined up to a rigid motion ([18, 37], see also [59] for a thorough discussion).

In particular any C2 isometric immersion of the standard sphere in R3

must map it to the boundary of some ball of radius 1, whereas the Nash-
Kuiper theorem implies the existence of C1 isometric embeddings which
crumple it in an arbitrarily small region of the 3-dimensional space. It
is thus clear that solutions to (3) have a completely different qualitative
behavior at low and high regularity (i.e. below and above C2).

1.2. The Euler equations. The original h-principle of Gromov pertains to
various problems in differential geometry, where one expects high flexibility
of the moduli space of solutions due to the underdetermined nature of the
problem. It was not expected that the same principle and similar methods
could be applied to problems in mathematical physics (we quote Gromov’s
speech at the Balzan Prize [36]: The class of infinitesimal laws subjugated by
the homotopy principle is wide, but it does not include most partial differen-
tial equations (expressing infinitesimal laws) of physics with a few exceptions
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in favor of this principle leading to unexpected solutions. In fact, the pres-
ence of the h-principle would invalidate the very idea of a physical law as it
yields very limited global information effected by the infinitesimal data. See
also the introduction in the book [32]).

In a first paper [28] (see also the survey article [29]) we however found
that some well known (and hard to construct) examples of non-uniqueness
of solutions due to Scheffer [56] and later to Shnirelman [58] for the incom-
pressible Euler equations ∂tv + divx(v ⊗ v) +∇p = 0,

divx v = 0,
(4)

could be interpreted as some kind of h-principle in a very natural way:
after introducing a suitable notion of “subsolution” for (4) (in analogy to
short maps) we could prove that it can be approximated arbitrarily well by
bounded weak solutions, in an appropriate weak topology, following a well-
known path in the literature for differential inclusions, see [16, 10, 21, 46].

Dealing with merely bounded (i.e. v ∈ L∞) weak solutions of the Euler
equations (4) is somewhat reminiscent of dealing with Lipschitz solutions
for the isometric embedding problem. Note that in this case one could give
two different notions of “weak solution”:

• one sticking to requirement (1);
• the other postulating (3) to be valid almost everywhere.

The first one is indeed stronger than the second. Of course if we consider
Lipschitz solutions it means that we are allowed to “fold” our Riemannian
manifold and thus an h-principle statement is much less surprising than the
Nash-Kuiper theorem. Moreover in the Lipschitz category one can even
impose the target to have the same dimension as the Riemannian manifold,
cf. [41].

Coming back to the Euler equations, classical (C1) solutions of (4) are
“rigid” in the following sense:

(a) they are uniquely determined by their initial data at time t = 0;
(b) the total kinetic energy 1

2

´
|v(x, t)|2 dx is constant in time.

Such additional constraints should be compared to the ones discussed for
C2 isometric embeddings of surfaces in R3: by the Gauss theorem the Gauss
curvature is preserved (which is true in general and can be considered as the
analog of (b)), and in the particular case of the Weyl problem C2 isometric
embeddings are unique up to affine transformations (which can be considered
as an analog of (a)). Both of these “rigidity statements” for the Euler
equations fail for the L∞ weak solutions of (4) constructed in [56, 58, 28].

The relation between the constructions in the theory of differential in-
clusions and those typical of the h-principle was first pointed out in an
important paper by Müller and Šverak [46] (see also [40]). Inspired by this
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connection and building upon some of the intuitions of Nash’s remarkable
work, we were able to prove a very counterintuitive fact, namely the exis-
tence of “badly behaved” continuous solutions, cf. [30]. More precisely, if
we denote by T3 the 3-dimensional torus S1 × S1 × S1, we then have the
following theorem.

Theorem 1.3. Let e : [0, 1] → R be a positive smooth function. For any
ε > 0 there exists a continuous weak solution (v, p) : T3× [0, 1]→ R3×R of
the Euler equations (4) such that supt ‖v‖H−1(T3) ≤ ε andˆ

T3

|v(x, t)|2 dx = e(t) ∀t ∈ [0, 1] . (5)

This theorem shows that the second “rigidity statement” (b) above fails
for continuous solutions. Here we concentrate on the issue of energy con-
servation because of its relevance to 3D turbulence (cf. Section 1.3 below),
but similar techniques can be used to show non-uniqueness for continuous
solutions as well [38, 22, 23]. Observe however a crucial difference between
Theorem 1.2 and Theorem 1.3: Nash’s theorem shows that any short map
can be approximated with isometries, whereas there is no reference to a
similar “density” result in Theorem 1.3. It is however possible to prove an
appropriate statement of that kind by improving upon the methods: we
refer the reader to the recent note [23] for the precise statement.

In the next sections we will show the similarities and the differences be-
tween the proofs of Theorem 1.2 and Theorem 1.3. Since the argument of
Nash is short and rather elementary, we give it in full details. We then
proceed to the main points in the proof of Theorem 1.3, highlighting how
Nash’s ideas turned out to be decisive for our proof, but also pointing out
some important differences.

1.3. Rigidity and flexibility: a Hölder threshold? In both problems
seen above a natural question is whether there is a sharp threshold regu-
larity which distinguishes between the two different behaviors of solutions,
i.e. between rigidity and h-principle statements. In the case of periodic

solutions of the Euler equations, this threshold is expected to be C0, 1
3 , due

to the following longstanding conjecture of Lars Onsager in the theory of
turbulence [53]:

Conjecture 1.4. Consider solutions (v, p) on T3 × [0, 1] of (4) satisfying
the Hölder condition

|v(x, t)− v(x′, t)| ≤ C|x− x′|θ, (6)

where the constant C is independent of x, x′ ∈ T3 and t. Then

(a) If θ > 1
3 , any weak solution (v, p) of (4) satisfying (6) conserves the

energy;
(b) For any θ < 1

3 there exist weak solutions (v, p) of (4) satisfying (6)
which do not conserve the energy.
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It was proved in the nineties that above this threshold weak solutions
satisfy the law of conservation of the energy (see [19, 33]). Concerning the
lower regularity range, a first adaptation of the arguments in [30] showed

that energy conservation is violated by some solutions in C0, 1
10
−ε, see [31].

The threshold was later improved in [38] to 1
5 , see also [12], whereas if one

gives up the uniform control of the Hölder exponent in time, it is possi-
ble to reach 1

3 − ε: more precisely there are non-conservative solutions in

L1((0, 1), C
1
3
−ε(T3)), see [13] for the exact statement (and [11] for an im-

portant first step).
For the isometric embedding problem the natural scale of spaces would

be C1,α and remarkably the question of rigidity and flexibility for solutions
in such spaces was already studied in the fifties and the sixties by Borisov.
In a series of papers in the fifties (see [4, 5, 6, 7]) Borisov proved that the

rigidity for the Weyl’s problem holds in fact when the immersion is C1, 2
3

+ε

(for a much shorter proof see [20]). Later in [8] he announced a general h-
principle statement for sufficiently small exponents (1

7 in the case of isometric

embeddings of 2-dimensional disks in R3) and published in [9] a proof of a
weaker conclusion. A complete proof of Borisov’s announced results has
been given in [20]. More recently in [25] the thresold for 2-dimensional
disks in R3 has been improved to 1

5 . Differently from the case of the Euler
equations, there is no physical motivation to guess the existence of a critical
exponent: however Gromov conjectures that the threshold is in fact 1

2 (see
[35]).

In this note we will not discuss how to pass from continuous to Hölder
solutions: the basic methods and ideas remain the same, the main points are
in carefully estimating the error terms which arise in the iterations leading
to the proofs of Theorem 1.2 and Theorem 1.3. This is by no means easy
and indeed there are several subtle points and new ideas involved, especially
if one is interested in getting the sharp exponents. However in this note we
have decided to focus on the most important ideas and in particular on the
relations and differences between Theorem 1.2 and Theorem 1.3.

2. Nash’s C1 iteration “stage”

In this section we introduce the main proposition of Nash’s scheme in the
proof of Theorem 1.2. We restrict on purpose to the codimension 2 case
(the one of Nash’s paper) to avoid as many technical points as possible,
although the codimension 1 case does not need much more conceptual work.
From now on we fix therefore a smooth closed Riemannian manifold Σ as in
Theorem 1.2 and a corresponding smooth atlas A = {U`} made of finitely
many coordinate patches U`, whose closures we assume to be topological
Euclidean balls.

Given any symmetric (0, 2) tensor h on Σ we write h = hijdxi ⊗ dxj
and denote by ‖h‖0,U` the supremum of the Hilbert-Schmidt norm of the

matrices hij(p) for p ∈ U`. Similarly, if v : Σ → RN is a C1 map, we write
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‖Dv‖0,U` for the supremum of the Hilbert-Schmidt norms of the matrices
Dv(p) = (∂1v(p), . . . , ∂nv(p)), where p ∈ U`. Finally we set

‖h‖0 := sup
`
‖h‖0,U`

‖Dv‖0 := sup
`
‖Dv‖0,U` .

We are now ready to formulate the main inductive statement, which Nash
calls “a stage”, cf. [48, Page 391].

Proposition 2.1. Let (Σ, g) be as in Theorem 1.2 and z : Σ → RN a
smooth strictly short immersion. For any η, δ > 0 there exists a smooth
short z1 : Σ→ RN such that

‖z − z1‖0 ≤ η , (7)

‖g − z]1e‖0 ≤ δ , (8)

‖Dz1 −Dz‖0 ≤ C
√
‖g − z]e‖0 , (9)

for a constant C which depends only upon Σ. If z is injective, then we can
choose z1 injective.

If we are only concerned with the case of immersions, Theorem 1.2 can
easily be reduced to Proposition 2.1: we start with the short map v =: v0 and
assume without loss of generality that it is strictly short. Apply Proposition
2.1 with z = v0, η = ε

4 and δ = 1
4 to produce a second short immersion

z1 =: v1. We then apply inductively the Proposition to z = vi with η = ε
2i+2

and δ = 4−i−1 to generate z1 =: vi+1. Thus the sequence vi converge in C0

to a map u with ‖v − u‖0 ≤ ε
2 . On the other hand by (9) we have

‖Dvi+1 −Dvi‖0 ≤ C
√
‖g − v]ie‖0 ≤

C

2i
,

which implies that the convergence of vi to u is in fact in C1. This fact

clearly implies that v]ie converges to u]e uniformly and thus that u]e = g.
As already observed, the latter identity guarantees that u is an immersion.

Note next that at each step of the iteration we can ensure that each vi
is indeed injective if the starting map v0 = v is injective (and hence an
embedding). This however does not guarantee the injectivity of the limit.
Assume to have performed the q−1 step and generated the maps v0, v1, . . . vq,
guaranteeing that all of them are injective. Define then the positive numbers

2γi := min{|vi(x)− vi(y)| : d(x, y) ≥ 2−i} for i < q,

where d is the geodesic distance induced by the Riemannian metric g. We
then set η := min{2−q−2ε, 2−q−1γ1, 2

−q−1γ2, . . . , 2
−q−1γq−1} and apply the

Proposition to w = vq with η and δ = 4−q−1 to generate vq+1. Clearly all
the conclusions above still apply: we claim however that now the limit u is
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injective. Fix indeed two points x 6= y and let q be some natural number
such that d(x, y) ≥ 2−q. We can then estimate

|u(x)− u(y)| ≥|vq(x)− vq(y)| −
∑
k≥q
‖vk+1 − vk‖0

≥2γq −
∑
k≥q

2−k−1γq ≥ γq > 0 .

As already said, in this note we wish to focus on the analytic aspects
of Nash’s paper and for this reason we give the following “local” version
of Proposition 2.1. Here “local” is understood in the following sense: (1)
we work in a single chart and (2) the metric error g − z]e is assumed to
be in a suitable neighborhood of the flat metric. Such requirements might
seem rather restrictive, but in fact even this weaker Proposition is enough
to prove Nash’s original statement (for the details we refer to [20]).

We define the following cone of positive-definite matrices for any r < 1:

Cr :=

{
A ∈ Symn×n :

∣∣∣∣∣ A
1
ntrA

− Id

∣∣∣∣∣ < r

}
.

Geometrically Cr is a convex cone of opening “angle” r centered around the
half-line {λId : λ > 0}.
Proposition 2.2. There exists a dimensional constant r0(n) > 0 with the
following property. Let U ⊂ Rn be a bounded simply connected open domain,
g ∈ C∞(U) a smooth metric and z : U → RN a smooth short map such that

g − z]e ∈ Cr0 for all x ∈ U. (10)

For any choice of positive numbers δ, η > 0 there exists a smooth short map
z1 : U → RN such that

g − z]1e ∈ Cr0 for all x ∈ U,
and the following estimates hold:

‖z1 − z‖0 ≤ η , (11)

‖g − z]1e‖0 ≤ δ , (12)

‖Dz1 −Dz‖0 ≤M
√
‖g − z]e‖0 , (13)

for a dimensional constant M . If z is injective, then we can choose z1

injective.

2.1. Nash’s spirals. We now examine how Propositions 2.1 and 2.2 are
proved. Nash splits each “stage” into a certain number of steps, where each
step aims at decreasing the metric error in a single coordinate direction.
To make this precise, we will call a “primitive metric” – following [32] –
any (0, 2) tensor having the structure a2dψ ⊗ dψ for some pair of smooth
functions a and ψ. Note that such two-tensor is only positive semidefinite
and not a Riemannian metric.
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In order to define the steps in a stage, we need to decompose a Riemannian
metric on Σ into a locally finite sum of primitive metrics. This is the content
of the next lemma.

Lemma 2.3. Let Σ be a smooth n-dimensional manifold, h a smooth positive
definite (0, 2) tensor on it and A = {U`} a finite atlas of charts on Σ.
Then there is a finite collection hj of primitive metrics such that each hj is
supported in some U`,

∑
hj = h and for each point p ∈ Σ there are at most

K(n) = n(n+1)2

2 primitive metrics hj which do not vanish at p.

The local version, suitable for Proposition 2.2, is the following simple geo-
metric lemma on matrices (we note in passing that this lemma is contained
in the paper of Nash [48], but has also proved useful in other contexts, see
[34, Lemma 17.13] and [45]):

Lemma 2.4. Consider the space Sn×n+ of positive definite symmetric ma-
trices. There exists a neighborhood W of the identity matrix Id and N(n) =
n(n+1)

2 unit vectors vk ∈ Rn such that any symmetric matrix A ∈ W can be
written in a unique way as a linear combination

A =
∑
k

λk(A)vk ⊗ vk (14)

with coefficients λk(A) ≥ ρ0(n), where ρ0(n) is a positive geometric constant.

Note that vk ⊗ vk can be thought as dψk ⊗ dψk for the linear function
ψk(x) = vk · x. The latter lemma is therefore a very natural counterpart
of Lemma 2.3: the factor n + 1 = K(n)/N(n) distinguishing the number
of primitive metrics appearing in the respective decompositions is due to
“global geometric aspects”, whereas the main (local) idea of both proofs
remains the same.

Leaving aside for a moment the (elementary!) proofs of Lemma 2.3 and
Lemma 2.4, we turn to the proofs of the Proposition 2.1 and Proposition
2.2.

Let us first focus on Proposition 2.2. In the following we work in local
coordinates in the set U . For a map z : U → RN we denote by Dz = (∂jz

i)ij
the Jacobian matrix consisting of all first order partial derivatives of z. Note
that in local coordinates (z]e)ij = 〈∂iz, ∂jz〉RN , so that in matrix notation

the tensor z]e can be identified with the symmetric n× n matrix DzTDz.
By assumption the matrix (g − DzTDz)(x) is positive definite on U .

Therefore, there exists γ > 0 so that g − DzTDz ≥ 2γId on U . We may
assume without loss of generality that γ ≤ δ. Set

h(x) = g(x)−DzT (x)Dz(x)− γId.

Then h(x) ∈ Cr0 for all x. Observe that by Lemma 2.4 and the “pinching”
condition, we can write

h(x) =
∑
k

a2
k(x)vk ⊗ vk =:

∑
k

hk(x) . (15)
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Indeed, observe that for any A ∈ Cr0 with r0 sufficiently small (depending
only on W from Lemma 2.3) we have n

trAA ∈W , so that

ak(x) =
√

1
ntrh(x)λk

(
n

trh(x)
h(x)

)
.

Observe moreover that, since clearly the coefficients λk(A) in (14) depend
linearly on A, the positive coefficients ak(x) vary smoothly with x.

In the first step we wish to perturb the map z slightly to a new map z̃
for which Dz̃TDz̃ is approximately DzTDz + a1v1 ⊗ v1, with a small error.
This is achieved in the proposition below. We then repeat this step a finite
number of times to “add” all primitive metrics in the decomposition and
estimate the resulting total error.

Proposition 2.5. Let U ⊂ Rn be a bounded simply connected open domain,
a1 ∈ C∞(U), v1 ∈ Rn a unit vector, and z : U → RN a smooth short map.

For any choice of positive numbers δ̃, η̃ > 0 there exists a smooth short map
z̃ : U → RN such that the following estimates hold:

‖z̃ − z‖0 ≤ η̃ , (16)

‖Dz̃TDz̃ −DzTDz − a2
1v1 ⊗ v1‖0 ≤ δ̃ , (17)

‖Dz̃ −Dz‖0 ≤ M̃‖a1‖0 , (18)

for a dimensional constant M̃ .

The map z̃ is completely explicit: Fix two smooth unit length normal
fields ν, b : U → RN , i.e. with the properties

• |ν(x)| = |b(x)| = 1 and ν(x) ⊥ b(x) for all x ∈ U ;
• ν(x) and b(x) are both orthogonal to Tω(x)(z(U)) for every x ∈ U .

The existence of such vector fields is the consequence of the trivial topology
of U and the fact that N ≥ n+ 2. We then set

z̃(x) :=z(x) + zp(x)

=z(x) +
a1(x)

λ

(
ν(x) cos(λv1 · x) + b(x) sin(λv1 · x)

)
, (19)

where λ� 1 is a large positive parameter, which will be chosen later. The
perturbation above makes then very fast spirals around the map z. It is
clear that z̃ satisfies the estimates (16) and (18) for sufficiently large λ� 1.
The heart of the matter is to verify estimate (17) – this will be done in
Section 2.2 below.

In the case of Proposition 2.1 we follow a very similar scheme to define z̄.
Let us fix Σ, g, w, η and δ as in the statement. Given the atlas A on Σ we
apply first Lemma 2.3 to the metric h = (1 − γ)(g − w]e) with some small
γ > 0, and let h =

∑
j a

2
jdψj ⊗ dψj be the corresponding decomposition in
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primitive metrics. Recalling that hj = a2
jdψj ⊗ dψj we set

z̄(x) =z(x) + zp(x)

=z(x) +
a1(x)

λ

(
ν(x) cos(λψ1(x)) + b(x) sin(λψ1(x))

)
. (20)

We see that (19) is a particular case of (20), corresponding to a function
ψ1(x) which is simply linear in the given coordinate patch.

2.2. An unusual perturbation: the quadratic term wins. Returning
to the local perturbation (19) and Proposition 2.5, we compute the matrix
Dz̃TDz̃ −DzTDz. First we calculate

Dzp(x) =−a1(x) sinλv1 · x ν(x)⊗ v1︸ ︷︷ ︸
A(x)

+ a1(x) cosλv1 · x b(x)⊗ v1︸ ︷︷ ︸
B(x)

+E(x) ,

where |E(x)| ≤ Cλ−1, for a constant C which depends on the smooth func-
tions a1, b and ν, but not on λ (note that in the line above we understand

all summands as N × n matrices). Next write the tensor h̃ := z̃]e − z]e in
coordinates as a symmetric matrix-valued function and observe that then
we simply have

h̃ = Dz̃TDz̃ −DzTDz = (DzTp Dz +DzTDzp)︸ ︷︷ ︸
=:L

+DzTp Dzp︸ ︷︷ ︸
=:Q

. (21)

The decomposition above gives simply the perturbation induced in the met-
ric tensor by the perturbing map zp as a sum of the parts which are, respec-
tively, linear and quadratic in zp. Recall that Dzp = A+ B + E and, since
ν and b are orthogonal to z(U) we have

0 = ATDzp = DzTp A = DzTp B = BTDzp .

Therefore
‖L‖0 ≤ Cλ−1 . (22)

On the other hand

(A+B)T (A+B) = a2
1(cos2 λv1 · x+ sin2 λv1 · x) v1 ⊗ v1 = a2

1v1 ⊗ v1 .

Hence we have
Q = a2

1v1 ⊗ v1 +O(λ−1) . (23)

Thus a choice of a very large λ makes the quadratic part much more impor-
tant than the linear one: this seems a rather “odd” approach from a classical
“PDE” point of view. Nonetheless it achieves the desired goal, namely the
addition of a primitive metric with an arbitrary small error. This concludes
the proof of Proposition 2.5.

The proof of Proposition 2.2 (and of Proposition 2.1) follow now in a
straightforward manner. Guided by the decomposition (15) we define z1 to
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be the resulting map after adding a finite number of spiraling perturbations
as above. In this way we achieve (11) and for any fixed ε > 0

‖DzT1 Dz1 − (DzTDz + h)‖0 ≤ ε.

Therefore

DzT1 Dz1 − g = γId +O(ε),

from which we easily deduce the “pinching condition” and (12) for ε suf-
ficiently small. Taking the trace of relation (15) leads to the estimate

‖ak‖0 ≤ C
√
‖h‖0, whereas from (18) we obtain

|Dz1 −Dz‖0 ≤ M̃
∑
k

‖ak‖0 ≤M
√
‖h‖0 . (24)

Finally, when z is injective the injectivity of the map z1 will again follow
from taking λ very small, since the corresponding perturbation will then be
a small normal displacement.

The argument for Proposition 2.1 is entirely analogous. Only slightly
more care is needed: although the number of perturbations added might be
very large, we do know that at any point p ∈ Σ at most K(n) perturbations
give a nonzero contribution.

3. Technical points

For the sake of completeness we present the arguments of Lemmas 2.3
and 2.4 as well as the proof of existence of the normal fields ν and b.

Proof of Lemma 2.4. We start with Lemma 2.4. Since the set of all matrices
of the form v⊗ v is a linear generator of Symn×n, there are N such matrices
A′i = wi ⊗ wi which are linearly independent. Consider M ′ :=

∑
iA
′
i. Since

any pair of positive definite symmetric matrices are similar, we can find a
linear isomorphism L of Rn such that LTM ′L = Id, where Id denotes the
identity matrix and thus, if we set Ai = LTA′iL = (Lwi)⊗ (Lwi) = vi ⊗ vi,
we conclude that Id =

∑
iAi. Next, since {vi⊗vi} forms a basis for Symn×n,

there exist unique linear maps Li : Symn×n → R such that A =
∑

i Li(A)vi⊗
vi for every A ∈ Symn×n. The continuity of such maps obviously gives the
claim that the coefficients will be positive in a neighborhood of the identity
matrix. Note only that the vi’s are not unique vectors: on the other hand
they are all nonzero vectors and thus the condition |vi| = 1 after the obvious
normalization. �

Proof of Lemma 2.3. As for Lemma 2.3, first of all, for each point p ∈ Σ

we find a neighborhood Vp ⊂ U` (for some `) and N(n) = n(n+1)
2 primitive

metrics hp1, . . . , hpN on Vp such that h = hp1 + . . .+hpN . This follows easily
from Lemma 2.4. Observe that, arguing as above, since we can write any
symmetric matrix M as LT IdL for some linear isomorphism L, Lemma 2.4
holds not only in a neighborhood of the identity matrix, but in fact it is
valid in a suitable neighborhood of any symmetric positive definite matrix.
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Hence for a suitable choice of Vp we find functions ψi(x) = vi · x (in local
coordinates) and smooth αi : Vp → R such that

h =

N∑
i=1

αidψi ⊗ dψi .

The “global aspect” of Lemma 2.4 can then be handled using the following
elementary combinatorial fact (the reader can consult [20] for instance).

Lemma 3.1. Let Σ be a closed differentiable n-dimensional manifold and
{Vλ} an open cover of Σ. Then there is a finite open cover {W`} with the
properties that:

(a) each W` is contained in some Vλ;
(b) the closure of each W` is diffeomorphic to an n-dimensional ball;
(c) for point p ∈ Σ has a neighborhood contained in at most n + 1 ele-

ments of the cover.

Apply then Lemma 3.1 and refine the covering Vp to a new covering W`

with the properties listed in the Lemma. For each W` we consider a Vp ⊃W`

and define the corresponding primitive metrics h(`1) = hp1, . . . , h(`N) = hpN
(we use the subscript (`j) in order to avoid confusions with the explicity
expression of the initial tensor h in a given coordinate system!). We then
consider compactly supported functions β` ∈ C∞c (W`) with the property
that for any point p there is at least a β` which does not vanish at p and we
set

ϕ` :=
β`√∑
j β

2
j

.

The tensors ϕ2
`h(`j) satisfy all the requirements of the lemma. �

Construction of normal fields. The pair of vector fields ν, b exists locally
in a sufficiently small neighborhood of any point p following a standard
procedure:

• select two orthonormal vectors ν(p) and b(p) which are normal to
Tω(p)(ω(B));

• set the functions ν̃ and b̃ constantly equal to these vectors in a neigh-
borhood of p;
• project ν̃(q) and b̃(q) to the vector space normal to Tω(q)(ω(B)) and

then use a Gram-Schmidt orthogonalization procedure to produce ν
and b.

Furthermore the problem of passing from the local statement to the global
one can be translated into the existence of a suitable section of a fiber
bundle: since B is topologically trivial, the existence of a “global” pair ν, b
is a classical conclusion.

However one can also use an elementary argument. If we set U = B1(0)
and we consider the set R of radii r for which a pair as required exists in the
closed ball Br(0), it is not difficult to use the ideas above to see that such
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set is both open and closed and thus it must be the entire interval [0, 1]. For
the full details of this elementary argument we refer to [24].

4. The Euler-Reynolds system and the iteration stage for
Euler

4.1. The Euler-Reynolds system. In order to start an iteration proce-
dure for Theorem 1.3 following the approach of Nash, we need to measure
the “distance” of a smooth pair (v, p) from being a solution of (4) and (5).

For this reason we introduce a function R̊ which takes values in the space
S3×3

0 of trace-free symmetric 3×3 matrices. Following [30] a (smooth) triple

(v, p, R̊) is a solution of the Euler-Reynolds system if it satisfies the following
system of partial differential equations ∂tv + div v ⊗ v +∇p = div R̊

div v = 0 .
(25)

Note that for R̊ = 0 the pair (v, p) solves the incompressible Euler equations.

The tensor R̊ is closely related to the Reynolds stress tensor, a classical
concept in fluid dynamics. It is generally accepted that the appearance of
high-frequency oscillations in the velocity field is the main reason responsible
for turbulent phenomena in incompressible flows. One related major prob-
lem is therefore to understand the dynamics of the coarse-grained, in other
words macroscopically averaged, velocity field. If v denotes such macro-
scopic average, then the Reynolds stress is usually defined as the difference
between the average of v ⊗ v and v ⊗ v. At this formal level the precise
definition of averaging plays no role, be it long-time averages, ensemble-
averages or local space-time averages. Indeed the latter can be interpreted
as taking weak limits: weak limits of Leray solutions of the Navier-Stokes
equations with vanishing viscosity have been proposed in the literature as a
deterministic approach to turbulence (see [2, 3, 17, 43]).

There is therefore a close analogy with the metric error v]e− g in Nash’s
iteration and the Reynolds stress R:

• If a sequence of continuous solutions (vk, pk) of the Euler equa-
tions converge weakly in L2 to some continuous pair (v, p), then
the Reynolds stress R is the limit of vk ⊗ vk minus v ⊗ v, namely

R = lim
k
vk ⊗ vk − v ⊗ v (26)

and we have the identity ∂tv + div v ⊗ v +∇p = −divR

div v = 0 .
(27)
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• If a sequence of C1 isometric embeddings uk of (Σ, g) converges uni-

formly to a C1 map u, then the metric error h is the limit of u]ke = g

minus u]e, namely h = g − u]e.
Note moreover that both h and R are positive semidefinite in the context
above: both short maps and the Euler-Reynolds system can be therefore
understood as a (convex) relaxation of the corresponding systems of partial
differential equations.

Observe that the field R̊ differs from the usual Reynolds stress because of
the trace-free condition. However, keeping in mind that in Theorem 1.3 we
aim at satisfying in addition (5), a natural analogy of the metric error and
the Reynolds stress can be obtained by setting

ρ(t) :=
1

3(2π)

(
e(t)−

ˆ
T3

|v(x, t)|2 dx
)

and R(x, t) := ρ(t)Id− R̊(x, t).

Thus, our approximations will consist of smooth solutions (v, p,R) of (27)
such that

trR(t) =
1

(2π)3

(
e(t)−

ˆ
T3

|v(x, t)|2 dx
)

(28)

and we will use ‖R‖0 to measure the distance of the pair (v, p) from being
a solution of (4)-(5).

Notice that (28) is consistent with (26) if one assumes that

e(t) =

ˆ
|vk|2(x, t) dx for all k.

Furthermore, we will see below that our iteration, analogous to the Nash
scheme, will require in addition that R be positive definite, in analogy with
short maps.

4.2. Selection of a good R̊. Note however an important difference be-
tween the Reynolds stress and the metric error: the latter is uniquely de-
termined from the metric g and the short map u, whereas the tensor R̊ is
not at all uniquely defined from the system (25). However it is possible to

select a good “elliptic operator” which solves the equations div R̊ = f for a
trace free symmetric R̊ given a smooth vector field f . The relevant technical
lemma is the following one.

Lemma 4.1 (The operator div−1). There exists a homogeneous Fourier-
multiplier operator of order −1, denoted

div−1 : C∞(T3;R3)→ C∞(T3;S3×3
0 )

such that, for any f ∈ C∞(T3;R3) with average
ffl
T3 f = 0 we have

(a) div−1f(x) is a symmetric trace-free matrix for each x ∈ T3;
(b) div div−1f = f .
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Proof. The proof follows from direct calculation by defining div−1 as

div−1f :=
1

4

(
DPg + (DPg)T

)
+

3

4

(
Dg + (Dg)T

)
− 1

2
(div g)Id,

where g ∈ C∞(T3;R3) is the solution of ∆g = f −
ffl
T3 f in T3 and P is the

Leray projector onto divergence-free fields with zero average. �

We recall that the Leray projection operator acts on a general smooth
vector field z by returning the divergence-free vector field z̄ with zero average
which is closest in L2 to z. As it is well known this is just one piece of the
Helmholtz decomposition of z. Moreover z̄ = P(z) is achieved as well by
solving an elliptic PDE: more precisely if

∆α = div z ,

then z̄ = z − ∇α −
ffl
z. Observe moreover that the operator Q(z) = z −ffl

z − P(z) is a Fourier-multiplier operator of order −1.

4.3. The iteration stage in Euler. As in Nash’s iteration to prove The-
orem 1.2, the proof of Theorem 1.3 is based on an iterative procedure
which constructs a sequence of triples (vq, pq, Rq) solving (27)-(28) and with
‖Rq‖0 → 0. The exact statement is the following, which we state in a
slightly different way from [30, Proposition 2.2] in order to emphasize the
similarities to Proposition 2.1 and Proposition 2.2. In particular, we again
refer to the cone Cr from Proposition 2.2.

Proposition 4.2. Let e be as in Theorem 1.3. Then there are positive
constants r < 1 and M with the following property.

Let δ, η > 0 be any positive numbers and let (v, p,R) be a smooth solution
of the Euler-Reynolds system (27)-(28) such that

R(x, t) ∈ Cr for all (x, t). (29)

Then there is a second smooth triple (v1, p1, R1) which solves as well (27)-
(28), which satisfies

R1(x, t) ∈ Cr for all (x, t), (30)

and such that the following estimates hold:

‖v1 − v‖H−1 ≤ η , (31)

‖R1‖0 ≤ δ , (32)

and

‖v1 − v‖0 ≤M
√
‖R‖0 ,

‖p1 − p‖0 ≤M‖R‖0 .
(33)

Observe that the tensor R is not only required to be positive definite,
but its values are restricted to a small cone around positive multiples of the
identity matrix. Hence Proposition 4.2 is really the analog of Proposition
2.2, namely the “local version” of Proposition 2.1. In particular (29) can be
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thought as a “pinching condition” for the Reynolds stress, in analogy with
the “pinching condition” (10).

Concluding Theorem 1.3 from Proposition 4.2 is now a trivial task: one
chooses δ = 1

2 and applies first the proposition to

• the triple (v, p,R) = (v0, p0, R0) with (v0, p0) = (0, 0) and R0 =
e(t)Id,
• η = ε

4 and δ = 1
4 .

We thus produce a second triple (v1, p1, R1).
The proposition is then applied iteratively to

• the triple (v, p,R) = (vq, pq, Rq),
• η = ε2−q−2 and δ = 4−q−1,

to produce the next triple (vq+1, pq+1, Rq+1).

It is therefore obvious that

(a) ‖Rq‖0 converges exponentially fast to zero;
(b) The kinetic energy

1

2

ˆ
|vq|2(x, t) dx

converges exponentially fast to e(t);
(c) (vq, pq) converge exponentially fast to a continuous pair (v, p) (in the
‖ · ‖0 norm).

We conclude that (v, p) is a continuous pair which solves the incompressible
Euler equations and that the corresponding kinetic energy of v is e(t) at any
time t.

5. The oscillatory ansatz

In analogy with Nash’s approach to Proposition 2.1 our strategy for the
proof of Proposition 4.2 is to perturb v to v1 by adding a highly oscillatory
vector field, which we will call wo. In analogy with the Nash spirals in (19),
we make the following ansatz on wo:

wo(x, t) = W
(
v(x, t), R̃(x, t), λx, λt

)
, (34)

where

R̃(x, t) = (1− γ)ρ(t)Id− R̊(x, t) (35)

and γ < 1
2 is a small positive parameter which will be determined later.

A lot of work will be put in determining the correct function W (v,R, ξ, τ),
which turns out to be much more complicated then the corresponding map
for Nash’s scheme. Since v1 must be 2π-periodic we will impose that W is
2π-periodic in the variable ξ.

Notice next that v1 must satisfy the divergence-free condition div v1 = 0
and v + wo is not likely to fulfill it. Indeed a stronger analogy with the
isometric embedding problem would be to consider first a vector potential
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for v, namely to write v as ∇×z for some smooth z. Subsequently we would
like to perturb z to a new

z1(x, t) = z(x, t) +
1

λ
Z(v(x, t), R(x, t), λx, λt) .

The resulting map v1 would then be given by

v1(x, t) = v(x, t) + (∇ξ × Z)(v(x, t), R̃(x, t), λx, λt)︸ ︷︷ ︸
(P )

+O

(
1

λ

)
,

and thus our perturbation wo in (34) corresponds actually to the term (P).
It is therefore natural to expect that one needs to add a further corrector
term wc(x, t) in order to ensure that

v1(x, t) = v(x, t) + wo(x, t) + wc(x, t)︸ ︷︷ ︸
=:w(x,t)

(36)

is divergence free. We can naturally expect that this perturbation will be
negligible, namely of order O(λ−1), for λ large.

This is indeed the case and a canonical way of defining wc is through the
Leray projector introduced above, namely

wc = P
(
wo −

 
wo

)
− wo . (37)

A rule of thumb here is the following:

(RT) If we apply an operator of order −1 to a function f which oscillates
at frequency λ and has a certain “size” S, we then expect an outcome
of order Sλ−1.

We will see later that indeed S can be taken to be ‖f‖0, at least under ap-
propriate assumptions: this fact will play a crucial role, but for the moment
we can ignore it. We also warn the reader that (RT) gives, in many ways,
only a very simplistic point of view on a much more complicated picture.
For instance, due to the failure of elliptic estimates at the endpoints of the
Schauder scale, we can only claim an estimate of type Sλ−1+ε for arbitrarily
small ε > 0.

5.1. First condition on the fluctuation profile W : stationary phase
argument. We now wish to determine the conditions upon the function W
in order to achieve a new triple (v1, p1, R1) which satisfies the conclusions
of Proposition 4.2. Recalling (35), we observe that

R(x, t)− R̃(x, t) = γρ(t)Id

is a function of t only.
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Thus, the triple (v, p, R̃) is also a solution of (27) and we can compute:

R̊1 = div−1
[
∂tv1 + div (v1 ⊗ v1) +∇p1

]
= div−1

[
∂tw + v · ∇w

]
+ div−1

[
div (w ⊗ w − R̃) +∇(p1 − p)

]
+ div−1

[
w · ∇v

]
= div−1

[
∂two + v · ∇wo

]
+ div−1

[
div (wo ⊗ wo − R̃) +∇(p1 − p)

]
+ div−1

[
wo · ∇v

]
+ R̊

(4)
1 (38)

where div−1 is the operator of order −1 from Lemma 4.1 and in R̊
(4)
1 we

have included all terms involving wc. We expect that R̊
(4)
1 is thus negligible,

given that ‖wc‖0 should be of size λ−1. Note also that, since div−1 is an
operator of order −1, by (RT) we can expect that the term

R̊
(3)
1 := div−1

[
wo · ∇v

]
(39)

has also size O(λ−1). In fact the term R̊
(3)
1 is the analog of the term L in

(21) in the isometric embedding problem.

A way to get an intuition for this is by expanding W (v, R̃, ξ, τ) as a Fourier
series in ξ. We then could compute

R̊
(3)
1 = div−1

[
wo · ∇v

]
= div−1

∑
k∈Z3

ck(x, t)e
iλk·x , (40)

where the coefficients ck(x, t) vary much slower than the rapidly oscillating
exponentials. When we apply the operator div−1 we can therefore treat the
ck as constants and gain a factor 1

λ in the outcome : a typically “stationary
phase argument”. Note however that this stationary phase argument cannot
be applied to the c0 term, there is no reason for div−1c0 to be of order λ−1.

Thus, to gain the factor 1
λ we impose that the trivial mode c0 in the

Fourier expansion (40) vanishes. Indicating with 〈·, ·〉 the average in the
2π-periodic ξ variable, this condition is equivalent to

〈W 〉 :=
1

(2π)3

ˆ
T3

W (v, R̃, ξ, τ) dξ = 0; (H1)

It also seems quite clear that the error term

R̊
(2)
1 := div−1

[
div (wo ⊗ wo − R̃) +∇(p1 − p)

]
(41)
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corresponds to the quadratic term Q (minus the metric change h̃!) in (21).
Therefore we hope to make this term small, namely to exploit the quadratic
expression wo ⊗ wo to cancel the error R.

5.2. Second condition on the fluctuation profile: fast variables. Ob-
serve however that there is a third error term, which is in fact not present
in the isometric embedding problem:

R̊
(1)
1 := div−1

[
∂two + v · ∇wo

]
. (42)

The latter “linear transport” term cannot be handled as R̊
(3)
1 : since the

derivatives inside the square bracket “fall onto” the perturbation wo, we
should expect a factor λ. Even though we can expect to balance such factor
λ with the factor λ−1 gained after applying the operator div−1, we still do

not have have any reason to expect that R̊
(1)
1 will be small.

In order to gain some more insight, we plug in our ansatz for wo and

compute explicitly the sum of the remaining error terms R̊
(1)
1 + R̊

(1)
2 :

div−1
[
∂two + v · ∇wo

]
+ div−1

[
div (wo ⊗ wo − R̃) +∇(p1 − p)

]
︸ ︷︷ ︸

=:E

Assume also that p1 − p is chosen of the form P (v(x, t), R̃(x, t), λx, λt). In
differentiating the composite functions wo or p1−p, there will be terms with
a prefactor λ (the ones where the outer derivative falls on ξ or τ), and other
terms without the factor λ. We will denote these latter derivatives in the
“slow variables” (v,R) as ∂slowt and ∇slow. Thus:

E =λ[∂τW + v · ∇ξW + div ξ(W ⊗W ) +∇ξP ](v, R̊, λx, λt)]︸ ︷︷ ︸
=:(F )

(43)

+ [(∂t + v · ∇)slowW ]︸ ︷︷ ︸
=:(S)

(44)

+ div slow[W ⊗W − R̃] +∇slowP︸ ︷︷ ︸
=:(Q)

(45)

Clearly we would like the “fast term” (F ) to disappear and this could be
achieved by imposing the condition ∂τW + v · ∇ξW + div ξ(W ⊗W ) +∇ξP = 0

div ξW = 0 .
(H3)

Furtheremore we could hope to treat the slow term (S) as we have done with

R̊
(3)
1 : assuming that this picture is correct, we only need to understand the

quadratic term (Q).

Again, we can use the same idea which helped us estimating R̊
(3)
1 : we can

expand W ⊗W (v,R, ξ, τ) in Fourier series of ξ. In order to gain a factor
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λ−1 from the operator div−1 we need the following condition, analogous to
(H1):

〈W ⊗W 〉 = R̃ (H2)

Summarizing the preceding discussion, if we could find a fluctuation profile
satisfying the conditions (H1), (H2) and (H3), we would be at a good point
in our proof of Proposition 4.2.

6. Beltrami flows

In order to construct a “fluctuation profile” W satisfying (H1)-(H3), our
building blocks (which in a sense play the same role as Nash’s spirals in
the proof of Proposition 2.1) belong to a special class of stationary periodic
solutions to the incompressible Euler equations, called Beltrami flows.

The starting point is the identity

div (U ⊗ U) = U × curlU − 1
2∇|U |

2 ,

for smooth 3-dimensional vector fields U . In particular any eigenspace of
the curl operator, i.e. the solution space of the system curlU = λ0U

divU = 0

for any λ0 constant, leads to a linear space of stationary flows of the incom-
pressible Euler equations. These can be written as∑

|k|=λ0

akBke
ik·ξ (46)

for normalized complex vectors Bk ∈ C3 satisfying

|Bk| = 1, k ·Bk = 0 and ik ×Bk = λ0Bk,

and arbitrary coefficients ak ∈ C. Choosing B−k = −Bk and a−k = ak
ensures that U is real-valued. A calculation then shows

〈U ⊗ U〉 =
1

2

∑
|k|=λ0

|ak|2
(

Id− k ⊗ k
|k|2

)
. (47)

Moreover, recalling the condition that W must be 2π-periodic in the ξ vari-
able, we impose that

k ∈ Z3 . (48)

6.1. Decomposition of the Reynolds stress. The identity (47) leads to
the following decomposition Lemma which is the analogue of Lemma 2.4.

Lemma 6.1. For every N ∈ N we can choose 0 < r0 < 1 and λ̄ > 1 with
the following property. There exist pairwise disjoint subsets

Λj ⊂ {k ∈ Z3 : |k| = λ̄} j ∈ {1, . . . , N}
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and smooth positive functions

γ
(j)
k ∈ C

∞ (Br0(Id)) j ∈ {1, . . . , N}, k ∈ Λj

such that

(a) k ∈ Λj implies −k ∈ Λj and γ
(j)
k = γ

(j)
−k;

(b) For each R ∈ Br0(Id) we have the identity

R =
1

2

∑
k∈Λj

(
γ

(j)
k (R)

)2
(

Id− k

|k|
⊗ k

|k|

)
∀R ∈ Br0(Id) . (49)

Note that the decomposition in (49) is valid only in the r0-neighborhood
of the identity matrix. Hence the latter statement is more similar to Lemma
2.4, namely the “single coordinate patch version” of Lemma 2.3. Note also
that Lemma 6.1 provides several “independent” decompositions of R, cor-

responding to the N families (γ
(j)
k )k, j = 1 . . . N . We will return to the

significance of this in the next section.
This lemma, taken from [30] (see also [38] for a geometric proof) allows

us to choose the amplitudes as

ak =
√
ρ γ

(j)
k

(
R̃

ρ

)
, (50)

where we recall that R̃ = (1 − γ)ρId − R̊ and ρ = 1
3trR. Observe that the

restriction for the argument of γk to lie in Br0(Id) then translates into the
condition

|R̊| ≤ (1− γ)r0ρ.

In light of the assumption (29) this requirement is satisfied by choosing
r = r0

2 (since γ ≤ 1
2).

With this choice of ak = ak(R̃),

Ws(R̃, ξ) :=
∑
j

∑
k∈Λ(j)

ak(R̃)Bke
ik·ξ

(defined through the Beltrami-flow relation (46)) satisfies (H1) and (H2).

6.2. Galilean transformations. As for (H3), notice that Ws would satisfy
it only for v = 0. For v 6= 0 a quick fix would be to use the Galilean
invariance of the Euler equations. Indeed, since (H3) is an equation in the
“fast” variables (ξ, τ) in which v is constant,

W (v, R̃, ξ, τ) := W (R̃, ξ − vτ) (51)

does yield a solution of (H3). Unfortunately this is not a valid solution, but
to see why, we need to return once more to the “rule of thumb” (RT) and

look more carefully how the O(λ−1) estimates for R̊1 are obtained in the
next section.
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Returning to (40) we see that the main point is to obtain a bound for

div−1
[
ck(x, t)e

iλk·x
]
.

We have already discussed this point: if ck were constant, we would immedi-
ately obtain the bound ckλ

−1 (assuming k 6= 0 of course). Then, for smooth
ck and large λ one may expect that, if at the scale λ−1 ck does not vary too
much, then we get an estimate of type∥∥∥div−1

[
c(x, t)eiλk·x

]∥∥∥
0
≤ C ‖ck‖0

λ
. (52)

One way to prove (52) is to use the Schauder theory in an apprioriate way.
Unfortunately the latter does not work in C0 for the elliptic operators which
define div−1 and we can only reach an the estimate Cα‖ck‖0λ−1+α for any
α ∈ (0, 1), with a constant Cα which blows up when α ↓ 0, (see [30]). Since
this small loss in the exponent has little effect on the overall proof, we are
going to ignore it in the sequel and assume the validity of (52).

Now, in the case of (40) the coefficients ck can be bounded by

‖ck‖0 ≤ ‖ak‖0‖Dv‖0,
whereas, using the identity (49) we obtain

‖ak‖0 ≤ C‖R‖
1/2
0 .

Observe the strong similarity with (24) in case of the Nash spirals! Since
(46) consists of a fixed finite sum, we conclude

‖R̊(3)
1 ‖0 ≤ C

‖R‖1/20 ‖Dv‖0
λ

.

Observe that the same estimate on ak also yields the square-root estimate
(33) – in complete correspondence to (9).

Next, let us again look at R̊
(1)
1 and in particular at the “slow derivative

term” (S) in (44). We calculate

(∂t + v · ∇)slowW = DvW (∂t + v · ∇)v +DRW (∂t + v · ∇)R.

The above expression is linear in W , hence, using (H1) we may (as in (40))
write it as

(∂t + v · ∇)slowW =
∑

k∈Z3,k 6=0

c̃k(x, t)e
iλk·x ,

for some coefficients c̃k. Recall that the Beltrami amplitudes ak are 1/2-
homogeneous in R, so that ‖DRW (∂t + v · ∇)R‖0 can be bounded in terms
of ‖R‖1. On the other hand, using the Galilean transformation (51) we
obtain

|DvW | ∼ τ = λt.

This means that, although using (52) we can remove the factor λ, again we
do not arrive at the required smallness. We therefore see that using the
Galilean transformation will not work to obtain sufficiently good bounds.
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Indeed, there are at least two other problems:

• The Galilean transformation is incompatible with the 2π-periodicity
of W in the variable ξ, except for very particular values of v (in fact,
only when v ∈ Z3);
• in our iteration v is not constant, only “slowly varying”, compared

to the scale λ−1.

However, the considerations of this section at least suggest which bounds
the fluctuation W should satisfy. These should be independent of τ , hence
considerations on the homogeneity with respect to R lead to

|W | ≤ C|R|1/2, |DvW | ≤ C|R|1/2, |DRW | ≤ C|R|−1/2 , (H4)

where C is just a geometric constant. Indeed, if we are able to find a
fluctuation profile W = W (v,R, ξ, τ) which satisfies (H1)-(H4), then the
oscillatory estimate (52) and arguments as presented in this section lead to

‖R̊1‖0 ≤
C

λ
,

as well as

‖v1 − v‖0 ≤M‖R‖1/20 , ‖p1 − p‖0 ≤M‖R‖0,
where C depends on v and R and M is a geometric constant.

More careful estimates along the same lines would even lead to an iteration
which yields a Cθ Hölder-continuous vector field for any θ < 1/3, namely to
a solution of the Onsager’s conjecture. For a more detailed exposition we
refer to [60] and to the lecture notes [61].

Unfortunately, we are not able to fulfill all criteria (H1)-(H4) as stated,
and it will be necessary to introduce additional error terms. This is the
main point of departure from the Nash’s scheme of Proposition 2.1. The
troublesome “fast transport term” corresponds to the “fast derivative term”
in the linear part L of (21). Nash can set this term to zero with a suitable
choice of the perturbation, namely because the vector fields ν and b in (19)
are perpendicular to the image of the starting map z. In Euler this seems
impossible.

7. A two scale correction to the oscillatory ansatz

As shown in the previous sections, the Beltrami flow (46) with amplitudes
given by (50) work well to satisfy (H1)-(H2), but we yet have to deal with
the (fast) transport part of (H3). We demonstrated above that a simple
Galilean transformation will not work, but we can still use the Galilean
invariance of the Euler equations in subtler ways.

7.1. The transport term and the second scale. Let us consider the
following modification of (46):∑

|k|=λ0

ak(R̃)φk(v, τ)Bke
ik·ξ , (53)
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where φk(v, τ) is a “phase function”, i.e. a complex valued function with
|φk(v, τ)| = 1. Plugging into (H3) leads then to the condition

∂τφk + i(v · k)φk = 0 (54)

with exact solution

φk(v, τ) = e−i(v·k)τ . (55)

As we explained above, this choice of φk, which corresponds to the Galilean
transformation, is incompatible with (H4) because |∂vφk| ∼ |τ | is unbounded.

Thus, rather than solving (54) exactly we introduce a suitable “error”,
namely we aim for

∂τφk + i(v · k)φk = O
(
µ−1

)
, |∂vφk| ≤ Cµ , (56)

where µ is a second large parameter. There are indeed several ways to solve
(56). In [30] we use a suitable partition of unity over the space of velocities
(with 8 families). However this approach turns out to have some drawbacks
when constructing Hölder continuous solutions: more efficient methods have
been found later in [38] and [12] (cf. Remark 7.1).

The introduction of this second scale leads to the following corrections to
(H3) and (H4). (H3) is only satisfied approximately:

∂τW + v · ∇ξW = O(µ−1), div ξ(W ⊗W ) +∇ξP = 0 . (57)

In (H4) the second inequality is replaced by

|∂vW | ≤ Cµ|R|1/2. (58)

These changes affect R̊
(1)
1 , in particular the “fast derivative term” (F) in

(43) and the “slow derivative term” (S) in (44). Now (F) is not identically
zero, but we can still use the oscillatory estimate (52) on ∂τW + v · ∇ξW so
that we obtain

‖div−1
(
(∂τ + v · ∇ξ)W

)
‖0 ≤ C‖R‖1/20

1

µ
, (59)

whereas for (S) we obtain

‖div−1
(
(∂t + v · ∇)slowW

)
‖0 ≤ C‖R‖1/20

µ

λ
. (60)

The optimal relation between the two parameters is then µ = λ1/2 (in fact
we will only be able to ensure this up to constants, because we require that
λ, µ, λµ ∈ N, cf. [30]). Hence the final estimate is

‖R̊(1)
1 ‖0 ≤ C

‖R‖1/20

λ1/2
.
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7.2. The energy profile and conclusions. Overall, with the modified
ansatz (53) we can ensure that (33) holds and

‖R̊1‖0 ≤ C
1

λ1/2

with some constant depending on v and R. In addition, using again the
oscillatory estimate (52), it is not difficult to show that

‖v − v1‖H−1 ≤ C
‖R‖1/20

λ
.

Hence, in order to complete the proof of Proposition 4.2 we only to estimate
how far is the “kinetic energy” of v1 from the targeted profile e and we need
to ensure (30).

Recall first that

R1(x, t) = ρ1(t)Id− R̊1(x, t) (61)

and

ρ1(t) =
1

3(2π)3

(
e(t)−

ˆ
T3

|v1(x, t)|2 dx
)
. (62)

Thus it remains to show that ρ1 is small and that R̊1 is comparatively smaller
(because we need to show (30) as well.

Recalling (H2) we can write

wo ⊗ wo − R̃ =
∑

k∈Z3,k 6=0

Ak(x, t)e
iλx·k ,

where the Ak’s are some matrix-valued smooth coefficients determined by v
and R. In particular, after taking the trace we obtain

|wo|2 − 3(1− γ)ρ(t) =
∑

k∈Z3,k 6=0

trAk(x, t)e
iλx·k .

By first integrating over x ∈ T3 and then integrating by parts we deduce∣∣∣∣ 
T3

|wo(x, t)|2 dx− 3(1− γ)ρ(t)

∣∣∣∣ ≤ C

λ
.

Recalling that v1 = v + wo + wc where wc = O(λ−1), we deduceˆ
T3

|v1(x, t)|2 dx =

ˆ
T3

|v(x, t)|2 dx+ 3(2π)3(1− γ)ρ(t) +O

(
1

λ

)
,

so that

e(t)−
ˆ
T3

|v1(x, t)|2 dx = γ

(
e(t)−

ˆ
T3

|v(x, t)|2 dx
)

+O

(
1

λ

)
.

Now, since v and e are continuous on the compact interval T3 × [0, 1] and

e(t) >

ˆ
T3

|v(x, t)|2 dx for all t ∈ [0, 1],
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there exists ε > 0 so that

e(t)−
ˆ
T3

|v(x, t)|2 dx ≥ ε for all t ∈ [0, 1].

Fix γ so that 4γ ≤ δ. Then, choosing λ sufficiently large we can ensure
that (33) and (31) hold, and furthermore ‖R̊1‖0 ≤ r

2γε and

1

2
γε ≤ 1

3(2π)3

(
e(t)−

ˆ
T3

|v1(x, t)|2 dx
)
≤ 2γ.

Then

‖R̊1‖0 ≤
r

2
γε ≤ r

3(2π)3

(
e(t)−

ˆ
T3

|v1(x, t)|2
)

=
r

3
trR1,

so that the tensor R1 of (61) satisfies (30) and (32). This concludes the
proof of Proposition 4.2.

Remark 7.1. The above is essentially following the ideas from [30] and [31].
A better modification of the original ansatz was introduced subsequently by
P. Isett in [38]: there the approximate Galilean phase function φk(v, τ) was
replaced by a nonlinear phase function, which is defined using the inverse
flow generated by the vector field v. This correction is key to obtaining im-
proved Hölder estimates, and lead to further progress in Onsager’s conjecture
(see also [12]).
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1927 (1927), 125–137.

[19] Constantin, P., E, W., and Titi, E. S. Onsager’s conjecture on the energy conser-
vation for solutions of Euler’s equation. Comm. Math. Phys. 165, 1 (1994), 207–209.
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[29] De Lellis, C., and Székelyhidi, Jr., L. The h-principle and the equations of fluid

dynamics. Bull. Amer. Math. Soc. (N.S.) 49, 3 (2012), 347–375.
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[31] De Lellis, C., and Székelyhidi, Jr., L. Dissipative Euler flows and Onsager’s

conjecture. J. Eur. Math. Soc. (JEMS) 16, 7 (2014), 1467–1505.
[32] Eliashberg, Y., and Mishachev, N. Introduction to the h-principle, vol. 48 of

Graduate Studies in Mathematics. American Mathematical Society, Providence, RI,
2002.

[33] Eyink, G. L. Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier
analysis and local energy transfer. Phys. D 78, 3-4 (1994), 222–240.

[34] Gilbarg, D., and Trudinger, N. S. Elliptic partial differential equations of second
order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998
edition.

[35] Gromov, M. Partial differential relations, vol. 9 of Ergebnisse der Mathematik und
ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1986.

[36] Gromov, M. Local and global in geometry. Balzan Prize, 1999.
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dans un espace Euclidien à n(n+1)
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[60] Székelyhidi Jr, L. The h-principle and turbulence. ICM 2014 Proceedings Volume
(2014).
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