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1. Introduction

Minimization of Blake & Zisserman functional is a variational approach to contour detec-
tion in image analysis which deals with free discontinuity and second derivatives.
Inpainting is the process of filling in the missing or desired image information on do-

mains where it is unavailable: this blank domains may correspond to scratches in a camera
picture, occlusion by objects, blotches in an old movie film, aging of canvas and colors of
a painting ([18], [19]).
In this paper we study Blake & Zisserman functional with Dirichlet boundary conditions.
There are several motivations for this kind of boundary condition, among them we mention
the possibility of facing some version of the inpainting problem. Moreover we emphasize
the relevance of global minimizer under Dirichlet boundary conditions in the study of local
minimizer under classic Neumann boundary conditions problem for Blake & Zisserman
functional, since the last one is defined as a global minimizer under Dirichlet boundary
condition ([14], [17]).
We refer to [5], [8], [9], [10], [14], [27], [28] for motivation and background analysis of
variational approach to image segmentation and digital image processing.
Here we focus on the functional

F (K0, K1, v) =
∫
Ω̃\(K0∪K1)

(
|D2v |2 + µ|v − g|q

)
dx

+αH1
(
K0 ∩ Ω̃

)
+ βH1

(
(K1 \K0) ∩ Ω̃

)
,

with the aim of minimizing F among admissible triplets (K0, K1, v), say triplets fulfilling




K0 , K1 Borel subsets of R2, K0 ∪K1 closed,

v ∈ C2
(
Ω̃ \ (K0 ∪K1)

)
, v approximately continuous in Ω̃ \K0,

v = w a.e. in Ω̃ \ Ω ,

where Ω, Ω̃ are open sets fulfilling Ω ⊂⊂ Ω̃ ⊂⊂ R2 and w is a given function in Ω̃.
If (K0, K1, u) is a minimizing triplet of F , then K0 ∪K1 can be interpreted as an optimal
segmentation of the monochromatic image of brightness intensity g, while the three ele-
ments of a minimizing triplet (K0, K1, u) play respectively the role of edges, creases and

smoothly varying intensity in the region Ω̃ \ (K0 ∪ K1) for the segmented image. The
second order functional F was introduced to overcome the over-segmentation of steep gra-
dients (ramp effect) and other inconvenient which occur in lower order models as in case of
Mumford & Shah functional ([5], [28], [29]). Here we mention our result in the simplified
case of smooth boundary and smooth boundary datum in order to avoid technicalities in
the assumptions.

Theorem 1.1. Let α, β, µ, q, g, Ω, Ω̃ and w be s.t.

(1.1) 0 < β ≤ α ≤ 2β, µ > 0, q > 1, g ∈ Lq(Ω̃) ∩ L2q
loc(Ω̃), w ∈ Lq(Ω̃),

(1.2) Ω ⊂⊂ Ω̃ ⊂⊂ R2 ,

(1.3) Ω is an open set with C2 boundary ∂Ω , Ω̃ is an open set,

(1.4) w ∈ C2(Ω̃) ,



(1.5) D2w ∈ L∞(Ω̃ ) .

Then there exists a triplet (C0, C1, u) which minimizes the functional F among admissible
triplets (K0, K1, v), with F (C0, C1, u) < +∞.
Moreover any minimizing triplet (K0, K1, v) fulfils:

(1.6) K0 ∩ Ω̃ and K1 ∩ Ω̃ are (H1, 1) rectifiable sets,

(1.7) H1(K0 ∩ Ω̃) = H1(Sv) , H1(K1 ∩ Ω̃) = H1(S∇v \ Sv) ,

(1.8)

{
v ∈ GSBV 2(Ω̃), hence

v and ∇v have well defined two-sided traces, finite H1 a.e. onK0 ∪K1 ,

where Sv and S∇v respectively denote the singular sets of v and ∇v.
Actually more accurate results than Theorem 1.1 are needed for our purposes (see

Remarks 2.4, 2.8): this will be achieved by Theorems 2.1, 2.2, 2.3 in Section 2, which
allow discontinuous Dirichlet datum w and piece-wise C2 boundary ∂Ω. About the case
of inpainting we emphasize that all these theorems can be proved exactly by the same
technique whenever the integral of fidelity term |v − g|q is evaluated on U \ (K0 ∪ K1)

instead of Ω̃ \ (K0 ∪ K1), where U ⊂ Ω is a given, possibly empty Borel set: e.g. the

image is noise-free in the region Ω̃ \ U and should be restored in U .
Theorems 2.1, 2.2, 2.3 are achieved by showing partial regularity of a suitably defined weak
solution with penalized Dirichlet datum (Theorem 3.1). The novelty here consists in the
regularization at the boundary for a free gradient discontinuity problem; the regularity
is proven at points which have 2-dimensional energy density by: suitable joining along
lunulae filling half-disk in order to take into account boundary effects (Lemma 4.1); blow-
up at boundary points and at points near the boundary (Theorems 7.1, 7.2) proven by
a new procedure, due to the presence of two parameters describing the lunulae; a decay
estimate of the weak functionals evaluated at local minimizers (Theorems 7.3, 7.4).
Usually performing regularity analysis at boundary points requires a smooth extension
with suitable estimates of the blown-up solution. The extension of bi-harmonic functions
is quite different from extension of an harmonic function vanishing at the diameter, the last
one is based on classical Schwarz reflection principle (see Remark 6.4) and doubles L2 norm
of the gradient in the whole disk: this doubling property was exploited in [6] to prove decay
property for local minimizers of Mumford & Shah functional with Dirichlet boundary
condition (see also [26]); unfortunately bi-harmonic extension lacks this doubling property
(see Remark 6.5). We overcome this difficulty by a new tool, precisely an L2 decay
estimate of hessian for a bi-harmonic function in a half-disk vanishing together with its
normal derivative on the diameter (Theorem 6.1): proving this decay requires a careful
application of Duffin extension formula [22] and Almansi decomposition [1], since the bi-
harmonic extension in the whole disk may increase a lot the L2 norm of the hessian in
the complementary half-disk.
The present paper focuses on the two dimensional case, nevertheless all the results proven
here are valid in the n dimensional case except the compactness property (Theorem 5.4)
and hessian decay of bi-harmonic functions in half-disk (Theorem 6.1 and Remark 7.5).
About minimization of the functional F under Neumann boundary condition we refer to
[8], [9], [13]. About the description of the rich list of (differential, integral and geometric)
extremality conditions for F we refer to [14].



The framework of the present paper will allow to prove existence of strong local minimizers
for Blake & Zisserman functional and several extremality conditions fulfilled by strong
local minimizers in the paper [17]. In general uniqueness of minimizers of the functionals
F fails due to lack of convexity: we refer to [4] for explicit examples of multiplicity and
property of generic uniqueness with respect to data α, β, g .
Moreover the results of the present paper are deeply exploited in [15], [16] and [17] to
study fine properties of local minimizers of Blake & Zisserman functional under Neuman
boundary condition, particularly about their singular set related to optimal segmentation.

2. Main result

The main result of this paper is the existence of strong minimizer for 2-D Blake & Zisser-
man functional F with Dirichlet boundary datum: Theorems 2.1, 2.2, 2.3. The boundary
condition is prescribed by imposing a penalization whenever the competing function and
its gradient do not coincide with the exterior traces of w and ∇w at ∂Ω. Motivation and
comments about the assumptions on Dirichlet datum are given in the Remarks at the end
of this Section.
First we focus on the main part of F , say functional E:

(2.1) E(K0, K1, v) =

∫

Ω̃\(K0∪K1∪M)

∣∣D2v
∣∣2 dx+ αH1

(
K0 ∩ Ω̃

)
+ βH1

(
(K1 \K0) ∩ Ω̃

)
,

where M ⊂ ∂Ω is a prescribed finite set (possible corners in ∂Ω), with the aim of mini-
mizing it among admissible triplets (K0, K1, v), say triplets fulfilling

(2.2)





K0 , K1 Borel subsets of R2, K0 ∪K1 closed,

v ∈ C2
(
Ω̃ \ (K0 ∪K1 ∪M)

)
, v approximately continuous in Ω̃ \ (K0 ∪M),

v = w a.e. in Ω̃ \ Ω .

Theorem 2.1. (Strong solution of Dirichlet problem for the functional E)

Let α, β,Ω, Ω̃, M, T0, T1 and w be s.t.

(2.3) 0 < β ≤ α ≤ 2β,

(2.4) Ω ⊂⊂ Ω̃ ⊂⊂ R2 ,

(2.5) Ω is an open set with Lipschitz boundary, Ω̃ is an open set,

(2.6) ∃ M finite set s.t. each connected component of (∂Ω\M) is uniformly C2,

(2.7) (T0 ∪ T1) ∩ ∂Ω is a finite set ,

(2.8) T0, T1 Borel sets , T0 ∪ T1 closed subset of R2 , H1
(
(T0 ∪ T1) ∩ Ω̃

)
< +∞,

(2.9) w ∈ C2
(
Ω̃ \ (T0 ∪ T1)

)
, w approximately continuous in Ω̃ \ T0 ,



(2.10)





D2w ∈ L2(Ω̃ \ (T0 ∪ T1) ), D2w ∈ L∞(A \ (T0 ∪ T1)
)

with A open set s.t. ∂Ω ⊂ A ⊂ Ω̃ ,
∃C > 0 : ‖w‖L∞ , ‖∇w‖L∞ , ‖∇2w‖L∞ ≤ C in A ,
Lip(γ′) ≤ C with γ arc-length parametrization of ∂Ω ,
∃ ¯̺> 0 : H1

(
∂Ω ∩B̺(x)

)
< C̺ ∀x ∈ ∂Ω , ∀̺ ≤ ¯̺ ,

(2.11)
there is no triplet (T0,T1, ω) fulfilling:

(2.8), (2.9), ω = aplimw in Ω̃ \ T0, and (T0 ∪ T1)⊂
6=
(T0 ∪ T1) .

Then there exists a triplet (C0, C1, u) minimizing the functional E defined by (2.1) with
finite energy, among admissible triplets (K0, K1, v) fulfilling (2.2). E(C0, C1, u) <∞.
Moreover any minimizing triplet (K0, K1, v) fulfills:

(2.12) K0 ∩ Ω̃ and K1 ∩ Ω̃ are (H1, 1) rectifiable sets,

(2.13) H1(K0 ∩ Ω̃) = H1(Sv) , H1(K1 ∩ Ω̃) = H1(S∇v \ Sv) ,

(2.14)

{
v ∈ GSBV 2(Ω̃), hence v and ∇v

have well defined two-sided traces, finite H1 a.e. onK0 ∪K1,

(2.15)

{
v minimizes the functional E defined below by (3.1)

among v s.t. v = w a.e. in Ω̃ \ Ω,

(2.16) E(v) = E(K0, K1, ṽ) .

Theorem 2.2. (Strong solution of Dirichlet problem for Blake & Zisserman
functional)

Let α, β, µ, q, g, Ω, Ω̃, M, T0, T1 and w be s.t. (2.3)-(2.11) and

(2.17) µ > 0, q > 1, g ∈ Lq(Ω̃) ∩ L2q
loc(Ω̃) , w ∈ Lq(Ω̃)

hold true.
Then there exists a triplet (C0, C1, u) which minimizes Blake & Zisserman functional F :

(2.18) F (K0, K1, v) = E(K0, K1, v) + µ

∫

Ω̃

| v − g |q dx ,

among triplets (K0, K1, v) fulfilling (2.2); F (C0, C1, u) < +∞; (2.12), (2.13) and (2.14)
hold true for any minimizing triplet (K0, K1, v) ; any third element v of a minimizing
triplet minimizes also the weak functional F defined by (3.7) below under constraint v = w

a.e. in Ω̃ \ Ω, and
(2.19) F(v) = F (K0, K1, ṽ) .

Theorem 2.3. Assume α, β, µ, q, g, Ω, Ω̃, M, T0, T1, and w fulfil (2.3)-(2.11), and

(2.20) α = β .

Then there exists a pair (K, v) which minimizes the functional

(2.21)

∫

Ω̃\(K∪M)

∣∣D2v
∣∣2 dx + αH1

(
K ∩ Ω̃

)

among pairs (K, v) with closed K ⊂ R2 , v ∈ C2(Ω̃ \ (K ∪M)) and v = w a.e. in Ω̃ \ Ω.



If in addition (2.17) holds true then there exists a pair (K, v) which minimizes the func-
tional

(2.22)

∫

Ω̃\(K∪M)

(∣∣D2v
∣∣2 + µ |v − g|q

)
dx + αH1

(
K ∩ Ω̃

)

among pairs (K, v) with closed K ⊂ R2 , v ∈ C2(Ω̃ \ (K ∪M)), and v = w a.e. in Ω̃ \ Ω.
In both cases K ∩ Ω̃ is (H1, 1) rectifiable for optimal K .

Moreover:
if the pair (K, v) minimizes (2.22) then v minimizes F among v ∈ GSBV 2(Ω̃) s.t. v = w

a.e. in Ω̃ \ Ω;
if the pair (K, v) minimizes (2.21) then v minimizes E among v ∈ GSBV 2(Ω̃) s.t. v = w

a.e. in Ω̃ \ Ω .
Remark 2.4. Theorems 2.1-2.3 can be exploited in the analysis of locally minimizing
triplets of E and F . About locally minimizing triplets we refer to Definition 2.6 in [17].

Remark 2.5. Hypothesis (2.11) seems a technical assumption; actually it is a natural
requirement: (2.11) simply says that the datum is expressed by an essential triplet (in the
sense of Definition 2.7 in [17], see also [9]); in particular (2.11) is automatically fulfilled
in case of a smooth datum.

Remark 2.6. The technical hypotheses (2.7)-(2.10) are natural assumptions: actually the
whole set of hypotheses says that w represents a Dirichlet datum which is noise-free in

the region Ω̃ \Ω, as it is typical when facing inpainting problem if noise, blotches and all
artifact to be removed are contained in Ω.

Remark 2.7. Finiteness property for (T0 ∪ T1)∩ ∂Ω in hypothesis (2.7) can be weakened
as follows (in Theorems 2.1, 2.2, 2.3):

(2.7 ′) H1 ( (T0 ∪ T1) ∩ ∂Ω ) = 0 .

Remark 2.8. Assumption (2.7) is fulfilled when (T0∪T1)∩∂Ω is a single point; assump-
tion (2.10) requires D2w in L∞ only around the boundary and far away from singular set
(T0 ∪ T1) of Dirichlet datum. Hence Theorem 2.1 applies with the choices T0 = negative
real axis, T1 = ∅, Ω = R2 and w = W, where in polar coordinates

W (r, θ) = ±
√

α

193 π
r3/2

(√
21
(
sin

θ

2
− 5

3
sin
(3
2
θ
))

±
(
cos

θ

2
− 7

3
cos
(3
2
θ
)))

is a candidate nontrivial local minimizer for E in R2 (see [17]). Notice that W belongs to
H2(B1(0) \ T0) while D2W is not bounded around the origin: D2W has a singularity of
order r−1/2 .

3. Weak Dirichlet problem for Blake & Zisserman functional

We denote by B̺(x) the open ball {y ∈ R2 ; |y − x| < ̺ }, and set B̺ = B̺(0) ,
B+
̺ = B̺ ∩ {(x, y) : y > 0} , B−

̺ = B̺ ∩ {(x, y) : y < 0} . We denote by χU the

characteristic function of U for any U ⊂ R2. If x, y are real numbers we denote by [x] the
integer part of x and set x ∨ y = max{x, y}, x ∧ y = min{x, y}. For any pair of vectors
a, b we denote the tensor product by a⊗ b and set a⊙ b = (1/2)(a⊗ b+ b⊗ a) .
For any pair of 2× 2 matrices A,B we set A : B =

∑2
i,j=1Ai j Bi j . For any real s > 1 we



denote by s′ the conjugate exponent s′ = s/(s− 1).
For any Borel function v : Ω → R and x ∈ Ω, z ∈ R := R ∪ {−∞,+∞}, we set
z = ap lim

y→x
v(y) (approximate limit of v at x) if, for every g ∈ C0(R),

g(z) = lim
̺→0

−
∫

B̺(0)

g(v(x+ ξ)) dξ ;

the function ṽ(x) = ap lim
y→x

v(y) is called representative of v ; the singular set of v is

Sv = {x ∈ Ω : 6 ∃z s.t. ap lim
y→x

v(y) = z}.
A Borel function v : Ω → R is approximately continuous at x ∈ Ω iff v(x) = ap lim

y→x
v(y).

By referring to [2], [9], [14]: Dv denotes the distributional gradient of v ,∇v(x) denotes the
approximate gradient of v , SBV (Ω) denotes the De Giorgi class of functions v ∈ BV (Ω)
such that ∫

Ω

|Dv| =
∫

Ω

|∇v| dx+

∫

Sv

|v+ − v−| dH1.

SBVloc(Ω) := {v ∈ SBV (Ω′) : ∀Ω′ ⊂⊂ Ω} ,
GSBV (Ω) :=

{
v : Ω → R Borel function;−k ∨ v ∧ k ∈ SBVloc(Ω) ∀k ∈ N

}
.

GSBV 2(Ω) :=
{
v ∈ GSBV (Ω), ∇v ∈

(
GSBV (Ω)

)2}
.

We will exploit the weak formulation E of the functional E introduced in [8]:

(3.1) E(v) =

∫

Ω̃

|∇2v|2 dx + αH1 (Sv) + βH1 (S∇v \ Sv) .

Theorem 3.1. (Dirichlet problem for weak form of Blake & Zisserman func-
tionals F and E)
Assume (2.3), (2.4), (2.5) and

(3.2) w ∈ C2
(
Ω̃ \ (Sw ∪ S∇w)

)
, w approximately continuous in Ω̃ \ Sw ,

(3.3) E(w) < +∞

(3.4) H1
(
(Sw ∪ S∇w) \ (Sw ∪ S∇w)

)
= 0 ,

(3.5) H1
(
(Sw ∪ S∇w) ∩ ∂Ω

)
= 0 ( or (Sw ∪ S∇w) ∩ ∂Ω finite) .

Set

(3.6) X(Ω̃)
def
=
{
v ∈ GSBV 2(Ω̃) s.t. v = w a.e. in Ω̃ \ Ω

}
.

Then there exists u minimizing the the functional E in X(Ω̃) with finite energy.

Moreover, if µ > 0, g ∈ Lq(Ω̃) and w ∈ Lq(Ω̃), then there exists u which minimizes the

functional F in X(Ω̃) with finite energy:

(3.7) F(v) =

∫

Ω̃

|∇2v|2 dx + αH1 (Sv) + βH1 (S∇v \ Sv) + µ

∫

Ω̃

|v − g|q dx



Proof. Assume µ > 0, g ∈ Lq(Ω̃), w ∈ Lq(Ω̃) . Obviously F(v) ≥ 0 ∀v ∈ X(Ω̃) .

Assumptions (3.2), (3.3), (3.4), (3.5) entail w ∈ X(Ω̃) and F(w) < +∞ .

Let vh ∈ X be a minimizing sequence for F . By Theorem 8 in [8] there is v∞ in X(Ω̃)

and a subsequence s.t., without relabeling, vh → v∞ a.e. in Ω̃.

vh = w in Ω̃ \ Ω entails v∞ = w in Ω̃ \ Ω. By Theorem 10 in [8]:

F(v∞) ≤ lim inf
h

F(vh) ,

hence F(v∞) = inf
v∈X(Ω̃)

F(v) . The same argument applies to E . �

Remark 3.2. Assumptions of Theorems 2.1, 2.2 and 2.3 (about Dirichlet datum for
strong formulation) on triplets (T0, T1, w) entail the assumptions (about Dirichlet datum
for weak formulation) on w of Theorem 3.1.

Remark 3.3. So far we know that both E and F achieve finite minimum under Dirichlet
boundary condition provided the structural assumptions ((2.3)-(2.11) and (2.17)) hold
true. We want to show that also E, F have the same property.

Definition 3.4. About the functionals defined by (2.1), (2.18), (3.1), (3.7) we will often
use the short notation E,F, E ,F ; nevertheless, whenever required by clearness of expo-
sition about interchange of various ingredients (functions, parameters, Dirichlet datum,
domains A) we will use several different (self-explaining) notation:

F(v), Fg(v), Fg w(v), F(v, A), Fg w(v, µ, α, β, A); F (K0, K1, v), Fg(K0, K1, v),

E(v), E(v, A), E(v, α, β, A); E(K0, K1, v) .

Lemma 3.5. (Scaling) Let v ∈ GSBV 2(Br(x0)) where x0 = (x0, y0).
For λ > 0 and for every x ∈ B1 set

(3.8) vr(x) =
v(x0 + rx)

λ1/2 r3/2
, gr(x) =

g(x0 + rx)

λ1/2 r3/2
.

Then vr ∈ GSBV 2(B1) and

(3.9) Fg(v, µ, α, β, Br(x0)) = λrFgr(vr, µλ
q

2
−1r1+

3

2
q,
α

λ
,
β

λ
,B1)

and, by setting K0r = (K0 − x0) /r, K1r = (K1 − x0) /r ,

(3.10) Fg(K0, K1, v, µ, α, β, Br(x0)) = λrFgr(K0r, K1r, vr, µλ
q

2
−1r1+

3

2
q,
α

λ
,
β

λ
,B1).

Proof. The thesis follows by change of variables. �

Definition 3.6. For any x ∈ Ω and r s.t. 0 < r < dist(x, ∂Ω̃), we say that u is an Ω
local minimizer of Fg w(·, µ, α, β, Br(x)) if

(3.11)





u ∈ GSBV 2(Br(x)) : u = w a.e. in Br(x)\Ω, Fg w(u, µ, α, β, A) < +∞,

Fg w(u, µ, α, β, A) ≤ Fg w(u+ η, µ, α, β, A)

∀A ⊂⊂ Br(x), ∀η ∈ GSBV 2(Br(x)) : spt η ⊂ A, η = 0 a.e. in Br(x)\Ω.



Definition 3.7. For any x ∈ Ω and r s.t. 0 < r < dist(x, ∂Ω̃), we say that u is an Ω
local minimizer of Ew(·, α, β, Br(x)) if

(3.12)





u ∈ GSBV 2(Br(x)) : u = w a.e. in Br(x) \ Ω, Ew(u, α, β, A) < +∞,

Ew(u, α, β, A) ≤ Ew(u+ η, α, β, A)

∀A ⊂⊂ Br(x), ∀η ∈ GSBV 2(Br(x)) : spt η ⊂ A, η = 0 a.e. in Br(x)\Ω.
Remark 3.8. Definitions 3.6 and 3.7 will be used also with open sets different from Ω
provided suitable data g, w are defined in the contest.
Definitions 3.6 and 3.7 are in fact equivalent to the ones given in [9], though they are
slightly different, since sublevels of energy F (or E) are linear subspaces of GSBV 2 (due
to Corollary 4.5 in [3]).

Remark 3.9. Due to Lemma 3.5, if u is a B̺(x) local minimizer of Fg w(·, µ, α, β, B̺(x))
then for any a, λ, c

y → u(y) = λ−1/2̺−3/2
(
u(x+ ̺y)− ̺ a · y − c

)

is a B1(0) local minimizer of Fγ ω(·, µλ
q

2
−1r1+

3

2
q, α/λ, β/λ,B1(0)) where

γ = λ−1/2̺−3/2
(
g(x+ ̺y)− ̺ a · y − c

)
,

ω = λ−1/2̺−3/2
(
w(x+ ̺y)− ̺ a · y − c

)
.

The same property holds true for Ew.
Now we prove a uniform density upper bound (Theorem 3.10 below) for the weak

functional F at the points x ∈ Ω; this result is analogous to the estimate which holds
true at interior points in case of Neuman boundary conditions (Theorem 2.12 and Remark
2.13 in [14]) and is a particular case of a global estimate in case of Dirichlet boundary
conditions which holds true uniformly up to the boundary.
We define a suitable constant in order to handle boundary conditions:

(3.13)





L =
(
C(∂Ω)

)2
+
(
Lip(∇w)

)2
, where C(∂Ω) is an uniform estimate for

second derivatives of piecewise arc-length parametrization of ∂Ω and
Lip(∇w) is the Lipschitz constant of ∇w in the neighborhood A of ∂Ω.

Theorem 3.10. (Density upper bound for the functional F at the boundary)

Let u be a minimizer in X(Ω̃) for the functional F with (2.3)–(2.11), (2.17). Then there
exist C ∈ (0,+∞) and ¯̺ = ¯̺(α, β, L, ‖w‖Lq , ‖g‖Lq) > 0, where L is defined by (3.13),
such that

(3.14) H1
(
∂Ω ∩ B̺(x)

)
< C̺ ∀x ∈ Ω , ∀̺ ≤ ¯̺ ,

and

(3.15) F(u,B̺(x)) ≤ c0̺ ∀̺ s.t. 0 < ̺ ≤ (¯̺∧ 1) and ∀x ∈ ∂Ω s.t. B̺(x) ⊂ Ω̃,

where c0 = Lπ + 2q−1π
1

2µ
(
‖w‖qL2q(B̺(x))

+ ‖g‖qL2q(B̺(x))

)
+ (2π + C)α.

If q = 2 and g , w ∈ L∞(Ω̃), then we can choose

c0 = Lπ + 2πµ
(
‖w‖2L∞ + ‖g‖2L∞

)
+ (2π + C)α .



Proof. Estimate (3.14) follows by (3.13) and the finiteness of L, which is due to (2.6),
(2.9), (2.10). By minimality of u for F we get

F(u) ≤ F(v) ,

where
v = uχΩ̃\(B̺(x)∩Ω).

By taking into account β ≤ α and F(u, Ω̃ \B̺(x)) = F(v, Ω̃ \B̺(x)), we obtain

F(u,B̺(x)) ≤ F(v,B̺(x)) ≤
∫

B̺(x)\Ω

(
|∇2w|2 + µ|w − g|q

)
dy + µ

∫

B̺(x)∩Ω
|g|q dy

+αH1
(
∂B̺(x) ∩ Ω

)
+ αH1

(
∂Ω ∩ B̺(x)

)

≤ Lπ ̺2 + 2q−1µ

∫

B̺(x)\Ω
(|w|q + |g|q) dy

+µ

∫

B̺(x)∩Ω

|g|q dy + 2πα̺+ αH1
(
∂Ω ∩ B̺(x)

)

≤ Lπ ̺2 + 2q−1µ
(
‖w‖qL2q(B̺(x))

+ ‖g‖qL2q(B̺(x))

)
(π̺2)

1

2 + 2πα̺+ Cα̺ ,

hence we achieve the proof. �

4. Joining and matching between lunulae

In this Section we prove some technical tools aimed to the proof of partial regularity at
boundary points.

Lemma 4.1. (Joining between lunulae)

Assume (2.3), (2.4), (2.17), z, u in GSBV 2(Ω̃), x0 = (x0, y0) ∈ ∂Ω , 0 < d < σ < s <

t < 1 and σ − d < t − s s.t. Bt(x0) ⊂ Ω̃, ∂Ω ∩ Bt(x0) ∈ C2 and d denotes the inner
normal to ∂Ω at x0. Set

(4.1) Bd
t = Bt(x0) ∩ {(x− x0) · d > d} , Md,σ

t,s = Bd
t \Bσ

s .

Then for every θ ∈ (0, 1) there are c = c(θ) > 0 and a cut-off function Ψ in C2(Bt(x0))∩
C2

0(B
d
t (x0)) s.t. Ψ ≡ 1 in a neighborhood of Bσ

s = Bs(x0) ∩ {(x − x0) · d > σ} and, by
setting

U = Ψu+ (1−Ψ)z

we have

F(U,Bd
t ) ≤ (1 + θ)

(
F(u,Bd

t ) + F(z, Bd
t \Bσ

s )
)
+

+
c

(σ − d)2

(∫

Bd
t \Bσ

s

|∇(u− z)|2dx +
c

θ d2 (σ − d)2

∫

Bd
t \Bσ

s

|u− z|2dx
)

and

E(U,Bd
t ) ≤ (1 + θ)

(
E(u,Bd

t ) + E(z, Bd
t \Bσ

s )
)
+

+
c

(σ − d)2

(∫

Bd
t \Bσ

s

|∇(u− z)|2dx +
c

θ d2 (σ − d)2

∫

Bd
t \Bσ

s

|u− z|2dx
)



Proof. Proving the estimates for the terms containing |∇2 · |2 will be enough.
Without loss of generality we assume x0 = 0 and d = e2 so that

{(x− x0) · d > d} = {y > d}
We fix θ ∈ (0, 1) and N = N(θ) where N = 1 + [C/θ] and C is a suitable constant. Let

sj = s + j
t− s

N
, j = 0, . . . , N,

d0 = σ , dj = d0 − j
σ − d

N
, j = 0, . . . , N,

and ψj (j = 0, . . . , N − 1) a list of C2 cut-off functions between Bsj and Bsj+1
(say

0 ≤ ψj ≤ 1, ψj ≡ 1 in a neighborhood of Bsj , ψj vanishes outside Bsj+1
) with

|Dψj| ≤ 2N

σ − d
,

∣∣D2ψj
∣∣ ≤ 8N2

d (σ − d)2
, in Cj

def
= Bsj+1

\Bsj

and a list of 1-dimensional cut-off functions ηj, j = 1, . . . , N, between {y > dj} and
{y > dj+1} (say 0 ≤ ηj ≤ 1, ηj ≡ 1 in a neighborhood of {y > dj}, ηj vanishes outside
{y > dj+1} ) with

|Dηj| ≤ 2N

σ − d
,

∣∣D2ηj
∣∣ ≤ 2N2

(σ − d)2
, in Ej

def
={dj+1 < y < dj}

Then define

Uj = ηj ψj u + (1− ηjψj) z .

For any w,

∇2 (ηj ψj w) = ηj ∇2 (ψj w) +

(
0 (ηj)y (ψjw)x

(ηj)y (ψjw)x (ηj)yy ψj w

)

We introduce the handlesMj
def
= (Cj ∩ {y > dj+1})∪(Ej ∩ {|x| < sj+1}) for j=1, . . ., N−1

and the lunula M0 = E0 ∩ {|x| < s} : we notice that the sets Mj , j = 0, . . . , N − 1, are
pair-wise disjoint ( j 6= k ⇒ Mj ∩Mk = ∅ ) and their union covers the whole lunula
{|x| < t} ∩ {y > d} up to a set of measure 0.
Since ψj is a radial function we obtain, for every j,
∫

Bd
t

|∇2Uj|2 dx ≤
∫

Bd
sj

|∇2u|2 dx +

∫

Bd
t \B

dj+1
sj

|∇2z|2 dx

+

∫

Mj

∣∣ ηj
(
ψj ∇2u + (1− ψj)∇2z + 2Dψj ⊙∇(u− z) + D2ψj (u− z)

)

+ (e1 ⊗ e2 + e2 ⊗ e1) (ηj)y (ψju)x + e2 ⊗ e2 (ηj)yy ψj u

+ (e1 ⊗ e2 + e2 ⊗ e1) (ηj)y ((1− ψj)z)x + e2 ⊗ e2 (ηj)yy (1− ψj) z|2 dx

≤
∫

Bd
t

|∇2u|2 dx +

∫

Bd
t \Bσ

s

|∇2z|2 dx

+C

∫

Mj

(
|∇2u|2 + |∇2z|2 + |Dψj|2|∇(u− z)|2 + |D2ψj|2|u− z|2

+ |Dηj|2|Dψj|2|u− z|2 + |Dηj|2|∇(u− z)|2 + |D2ηj|2|u− z|2
)
dx .



By taking into account that spt(ηjψj) ⊂
j+1⋃

k=0

Mk we add the last inequalities with respect

to j from 0 to N − 1 :

min
j

∫

Bd
t

|∇2Uj|2 dx ≤
∫

Bd
t

|∇2u|2 dx +

∫

Bd
t \Bσ

s

|∇2z|2 dx

+
C

N

∫

Bd
t \Bσ

s

(
|∇2u|2 + |∇2z|2 +

(
2N

σ − d

)2
|∇(u− z)|2 +

(
12N2

d(σ − d)2

)2
|u− z|2

)
dx

We select the index j achieving such minimum and set U = Uj . Hence
∫

Bd
t

|∇2U |2 dx ≤
∫

Bd
t

|∇2u|2 dx +

∫

Bd
t \Bσ

s

|∇2z|2 dx

+θ

∫

Bd
t \Bσ

s

(
|∇2u|2 + |∇2z|2 +

(
2(C + 1)

θ(σ − d)

)2
|∇(u− z)|2 +

(
12(C + 1)2

θd(σ − d)2

)2
|u− z|2

)
dx

and the thesis follows by inequalities with c = 12 (C +1)2/ θ , Ψ = ηjψj , since the terms
not containing ∇2 fulfill the inequality in the thesis with θ = 0 :

H1
(
SU ∩Bd

t

)
= H1

(
Su ∩ Bdj

sj

)
+H1

(
Sz ∩ (Bd

t \Bdj+1

sj+1
)
)

+H1
(
Su ∩ (B

dj+1

sj+1
\Bdj

sj )
)
+H1

(
Sz ∩ (B

dj+1

sj+1
\Bdj

sj )
)
,

H1
(
(S∇U \ SU) ∩ Bd

t

)

= H1
(
(S∇u \ Su) ∩ Bdj

sj

)
+H1

(
(S∇z \ Sz) ∩ (Bd

t \Bdj+1

sj+1
)
)

+H1
(
(S∇u \ Sv) ∩ (B

dj+1

sj+1
\Bdj

sj )
)
+H1

(
(S∇z \ Sz) ∩ (B

dj+1

sj+1
\Bdj

sj )
)
,

∫
Bd

t
|U − g|q dx ≤

∫
B

dj
sj

|u− g|q dx+
∫
Bd

t \B
dj+1
sj+1

|z − g|q dx

+
∫
B

dj+1
sj+1

\Bdj
sj

(ψj|u− g|q + (1− ψj)|z − g|q) dx .

�

Lemma 4.2. (Matching with lunulae) Let x0 = (x0, y0), z, v ∈ GSBV 2(Ω̃), Bt(x0) ⊂
Ω̃ and

H1
(
Sz ∩ ∂Bd

t

)
= H1

(
S∇z ∩ ∂Bd

t

)
= H1

(
Sv ∩ ∂Bd

t

)
= H1

(
S∇v ∩ ∂Bd

t

)
= 0

where Bd
t = Bt(x0) ∩ {y > y0 + d} . Then, by setting

u =

{
z in Bd

t

v in Ω̃ \Bd
t



we have

Fg(u, µ, α, β, Ω̃) ≤ Fg(z, µ, α, β, B
d
t ) + Fg(v, µ, α, β, Ω̃ \Bd

t )

+αH1
(
{z̃ 6= ṽ} ∩ ∂Bd

t

)
+ βH1

((
{∇̃z 6= ∇̃v} \ {z̃ 6= ṽ}

)
∩ ∂Bd

t

)
,

E(u, α, β, Ω̃) ≤ E(z, α, β, Bd
t ) + E(v, α, β, Ω̃ \Bd

t )

+αH1
(
{z̃ 6= ṽ} ∩ ∂Bd

t

)
+ βH1

((
{∇̃z 6= ∇̃v} \ {z̃ 6= ṽ}

)
∩ ∂Bd

t

)
.

Proof. The thesis follows by the definitions. �

Lemma 4.3. Let v ∈ GSBV 2(Ω̃) s.t.

Fg(v, µ, α, β, T ) < +∞ for every compact set T ⊂ Ω̃ .

Then

lim
̺→0

̺−1 Fg( v, µ, α, β, B̺(x) ) = 0 for H1 a.e. x ∈ Ω̃ \ (Sv ∪ S∇v) .

Proof. Apply the same argument of Lemma 2.6 in [21]. �

5. Truncation, Poincaré inequalities and compactness properties in GSBV
and GSBV 2

We recall a Poincaré-Wirtinger type inequality in the class GSBV which was proven
in [9] allowing surgical truncations of non integrable functions of several variables and
we refine its statement with the aim of taming blow-up at boundary points in case of
functions vanishing in a sector of positive measure. About this inequality we emphasize
that v ∈ GSBV 2(Ω) does not even entail that either v or ∇v belongs to L1

loc(Ω).
Let B be an open ball in R2. For every measurable function v : B → R we define the
least median of v in B as

med(v,B) = inf{ t ∈ R; |{v < t} ∩ B| ≥ 1

2
|B|}.

We remark that med(·, B) is a non linear operator and in general it has no relationship
with the averaged integral

∫
B
· dy / |B| .

Obviously we have med(vχB\E + med(v,B)χE, B) = med(v,B) for every E ⊂ B. For
every v ∈ GSBV (B) and a ∈ R with (2γ2H1(Sv))

2 ≤ a ≤ 1
2
|B|, we set

τ ′(v, a, B) = inf {t ∈ R; |{v < t}| ≥ a} ,
τ ′′(v, a, B) = inf {t ∈ R; |{v ≥ t}| ≤ a} ,

here γ2 is the isoperimetric constant relative to the balls of R2, i.e.

min{|E ∩ B| 12 , |B \ E| 12} ≤ γ2P (E,B) for every Borel set E ,

and P (E,B) denotes the perimeter of E in B : P (E,B) =
∫
B
|DχE| .

For η ≥ 0 we define the truncation operator

(5.1) T (v, a, η) = (τ ′(v, a, B)− η) ∨ v ∧ (τ ′′(v, a, B) + η).

We easily get T (T (v, a, η), a, η) = T (v, a, η) , |∇T (v, a, η)| ≤ |∇v| a.e. on B . Moreover
med(T (v, a, η), B) = med(v,B) and T (λv, a, λη) = λT (v, a, η) for every λ > 0 , and

(5.2) |{v 6= T (v, a, η)}| ≤ 2a.



In case v is vector-valued the operators med and T are defined componentwise.

For any given function in GSBV , we define an affine polynomial correction such that
both median and gradient median vanish.
Let Br(x) ⊂ Ω and v ∈ GSBV (Br(x)); for every y ∈ R2 we set

(5.3) (Mx,r v)(y) = med(∇v,Br(x)) · (y − x)

(5.4) (Px,r v)(y) = (Mx,r v)(y) + med(v −Mx,r v,Br(x)).

Since med(v − c, Br(x)) = med(v,Br(x))− c for every c ∈ R and
∇(Px,r v) = ∇(Mx,r v) = med(∇v,Br(x)) then we have Px,r (v − Px,r v) = 0, say

med(v − Px,r v,Br(x)) = 0, med(∇(v − Px,r v), Br(x)) = 0.

We notice that there are v such that med(v,Br(x)) 6= med(Px,r v,Br(x)), take e.g.
v(x, y) = (x2 − x)H(−x)− x

2
H(x), where H is the Heaviside function.

Theorem 5.1. (Poincaré-Wirtinger inequality for GSBV functions in a ball)
Let B ⊂ R2 be an open ball, v ∈ GSBV (B) and a ∈ R with

(5.5)
(
2γ2H1(Sv)

)2 ≤ a ≤ 1

2
|B|,

let η ≥ 0 and T (v, a, η) as in (5.1). Then

(5.6)

∫

B

|DT (v, a, η)| ≤ 2|B| 12
(∫

B

|∇T (v, a, η)|2 dy
) 1

2

+ 2ηH1(Sv).

We have also, for every s ≥ 2,

(5.7)

∫

B

|T (v, a, η)−med(v,B)|sdy ≤ 2s−1 (γ2s)
s

(∫

B

|∇T (v, a, 0)|2 dy
) s

2

|B|+ (2η)sa .

Proof. See [9], Theorem 4.1. �

Theorem 5.2. (Classical Poincaré inequality in BV)
For any x ∈ R2, r > 0, and 0 < ϑ < 1 there is Kϑ such that

(5.8) ‖v‖L2(Br(x)) ≤ Kϑ

∫

Br(x)

|Dv| ∀v ∈ BV (Br(x)) s.t.

(5.9) |{y ∈ Br(x) : v(y) = 0} | / |Br(x)| ≥ ϑ .

Proof. See [23], Theorem 5.6.1(iii). �

Theorem 5.3. (Poincaré-Wirtinger inequality for GSBV functions vanishing in
a sector)
Let B ⊂ R2 be an open ball, v ∈ GSBV (B) s.t. (5.9) holds true and a ∈ R with

(5.10)
(
2γ2H1(Sv)

)2 ≤ a ≤ 1

2
|B|,

let η ≥ 0 and T (v, a, η) as in (5.1). Then

(5.11)

∫

B

|DT (v, a, η)| ≤ 2|B| 12
(∫

B

|∇T (v, a, η)|2 dy
) 1

2

+ 2ηH1(Sv).



We have also, for every s ≥ 2,

(5.12)

∫

B

|T (v, a, η)|sdy ≤ 2s−1 (Kϑs)
s

(∫

B

|∇T (v, a, 0)|2 dy
) s

2

|B|+ (2η)sa .

Proof. Similar to the proof of Theorem 4.1 in [9] except for the use of Theorem 5.2 instead
of Poincaré-Wirtinger inequality (4.12) in [9], since we do not need to force vanishing of
least median of v. �

Theorem 5.4. (Compactness and lower semicontinuity for GSBV 2 functions

vanishing in a set of full measure)
Assume Br(x) ⊂ R2, uh ∈ GSBV 2(Br(x)), 0 < ϑ < 1

(5.13) |{y ∈ Br(x) : uh(y) = 0}| / |Br(x)| ≥ ϑ ,

(5.14) sup
h

∫

Br(x)

|∇2uh|2 dy < +∞

and

(5.15) lim
h

Lh = 0 , where Lh = H1(Suh ∪ S∇uh) .

Then there are a positive constant c (dependent on the left-hand side of (5.14)), u∞ ∈
H2(Br(x)) and a sequence zh ∈ GSBV 2(Br(x)) (whose explicit construction is given by
(5.23)-(5.28) ) s.t., up to a finite number of indices,

(5.16) | {zh 6= uh} | ≤ c Lh
2

(5.17) P ( {zh 6= uh}, Br(x)) ≤ c Lh

and there is a subsequence zhk such that

(5.18) lim
k

zhk = u∞ strongly in Lp(Br(x)) , ∀p ≥ 1 ,

(5.19) lim
k

∇ zhk = Du∞ strongly in Lp(Br(x)) , ∀p ≥ 1 ,

(5.20)

∫

Br(x)

|D2u∞|2 dy ≤ lim inf
k

∫

Br(x)

|∇2zhk |2 dy ≤ lim inf
k

∫

Br(x)

|∇2uhk |2 dy ,

(5.21) lim
k

uhk = u∞ a.e. in Br(x) ,

(5.22) lim
k

∇uhk = Du∞ a.e. in Br(x) .

Proof. Identical to the proof of Theorem 4.3 in [9], except for the fact that we can avoid
forcing least median of uh and ∇uh to vanish since we can use Theorem 5.3 for functions
vanishing in a sector instead of GSBV Poincaré-Wirtinger inequality given by Theorem
4.1 in [9].
For reader convenience we recall the explicit construction of the sequence zh :
by setting ah = 4γ2

2Lh
2 we have ah ≤ |Br|/2 for large h. Hence there is c dependent on

the left-hand side of (5.14) and there are ηkh ∈ (0, 1) , h ∈ N, k = 1, 2, s.t.

(5.23)
∣∣ {T (∇k uh, ah, ηkh) 6= ∇k uh }

∣∣ ≤ c Lh
2

(5.24) P
(
{T (∇k uh, ah, ηkh) 6= ∇k uh }, Br

)
≤ c

(
Lh +H1(S∇k uh)

)



Referring to definition (5.1) of truncating operator T , we set

(5.25) Eh =
⋃

k=1,2

{y ∈ Br : T (∇k uh, ah, ηkh) 6= ∇k uh }

(5.26) ξh = uh χBr\Eh

(5.27) bh = 4Kϑ
2
(
H1(Sξh ∪ S∇ξh)

)2 ≤ 1

2
|Br|

(5.28) zh = T (ξh, bh, ηh)

�

6. Hessian decay for bi-harmonic functions in half-disk

In this Section we prove that any function which is bi-harmonic in a half-disk and vanishes
together with its normal derivative on the diameter has a suitable decay of hessian L2-
norm.

Theorem 6.1. (L2-hessian decay for bi-harmonic functions in half-disk which

vanish together with normal derivative along diameter)
Set B+

1 = B1(0) ∩ {(x, y) ∈ R2 : y > 0} ⊂ R2 , Γ = B1(0) ∩ {(x, y) ∈ R2 : y = 0} .
Assume z ∈H2(B+

1 ), ∆
2z = 0 on B+

1, z = ∂z/∂y = 0 on Γ.
Then

(6.1) ‖D2z‖2
L2(B+

̺ )
≤ ̺2 ‖D2z‖2

L2(B+

1
)

∀̺ ≤ 1 .

Moreover there exists an unique extension Z of z in whole B1 such that ∆2Z ≡ 0 and
both z, Z have the following expansion in polar coordinates, which is strongly convergent
in L2(B1) and strongly convergent in H2(B+

1 ) :

(6.2) Z(x, y) =
∞∑

k=0

(
ak cos(kϑ) + bk sin(kϑ) + (αk cos(kϑ) + βk sin(kϑ)) r

2
)
rk .

Proof. Since z ∈ H2(B+
1 ), is bi-harmonic in B+

1 and z = ∂z/∂y = 0 on B1(0) ∩ {y =
0}, then z solves a boundary value problem in B+

1 for the bilaplacian operator with
homogeneous Dirichlet boundary conditions on the diameter; hence regularity properties
at a flat portion of the boundary (see [25], Chap.7) entail z ∈ C1(B+

1 (0) ∪ (B1(0) ∩ {y =
0})). So the classical Duffin formula [22] holds true:
z has a bi-harmonic extension Z in B1 defined by

{
Z(x, y) = z(x, y) ∀ (x, y) ∈ B+

1 ,
Z(x,−y) = −z(x, y) + 2yzy(x, y)− y2∆z(x, y) ∀ (x,−y) ∈ B−

1 .

Function Z belongs to L2(B1) by construction. Z is bi-harmonic in B1, hence by Almansi
decomposition [1], there exist two harmonic functions ψ, ϕ in L2(B1) such that Z =
ψ + (x2 + y2)ϕ: in polar coordinates,

(6.3) ϕ(r, ϑ) =
1

4 r

∫ r

0

∆z(̺, ϑ) d̺ , ψ = z − r2ϕ .



Hence Z can be represented, with suitable coefficients, by the expansion (6.2) which is
strongly convergent in L2(B1) and hence in H2(B̺) for all ̺ < 1.
Notice that only suitable combinations of terms in expansion (6.2), say

(6.4)

{
vk = rk+1

(
sin((k − 1)ϑ))− k−1

k+1
sin((k + 1)ϑ)

)
, k = 2, 3, 4, . . .

ωk = rk+1
(
cos((k − 1)ϑ))− cos((k + 1)ϑ)

)
, k = −1 and 1, 2, 3, . . .

fulfill also the conditions on diameter, nevertheless we disregard this complicate relation-
ship on coefficients (though it is implicitly understood) which is useless in the sequel since
system (6.4) is strongly entangled and far from providing any orthogonal basis either in
H2(B+

r ) or in L
2(B+

r ).
By denoting fk the k-th term of the expansion (6.2), we compute the second derivatives
of f0 and f1:

D2
xxf0 = 2α0 , D2

xyf0 = 0 D2
yyf0 = 2α0 ,

D2
xxf1 = 2r (3α1 cos(ϑ) + β1 sin(ϑ)) , D2

xyf1 = 2r (β1 cos(ϑ) + α1 sin(ϑ)) ,

D2
yyf1 = 2r (α1 cos(ϑ) + 3β1 sin(ϑ)) ,

then we compute the second derivatives of fk, with k ≥ 2:

D2
xxfk = rk−2

(
k
(
ak (k − 1) + αk (k + 1) r2

)
cos((k − 2)ϑ) + 2αk (k + 1) r2 cos(kϑ)

+ k
(
bk (k − 1) + βk (k + 1) r2

)
sin((k − 2)ϑ) + 2βk (k + 1) r2 sin(kϑ)

)
,

D2
xyfk = krk−2

( (
bk (k − 1) + βk (k + 1) r2

)
cos((k − 2)ϑ)

−
(
ak (k − 1) + αk (k + 1) r2

)
sin((k − 2)ϑ)

)
,

D2
yyfk = rk−2

(
−
(
k
(
ak (k − 1) + αk (k + 1) r2

)
cos((k − 2)ϑ)

)
+ 2αk (k + 1) r2 cos(kϑ)

− k
(
bk (k − 1) + βk (k + 1) r2

)
sin((k − 2)ϑ) + 2βk (k + 1) r2 sin(kϑ)

)
.

Hence for suitable coefficients ck = ci,jk , dk = di,jk , γk = γi,jk , δk = δi,jk , any second derivative
of z has the following strongly L2(B+

̺ ) convergent expansion, for every ̺ < 1 and i, j =
1, 2:

(6.5) D2
ijz =

∞∑

k=0

(
ck cos(kϑ) + dk sin(kϑ) + (γk cos(kϑ) + δk sin(kϑ)) r

2
)
rk .

Due to strong convergence, we can select partial sums in (6.5) as follows, by splitting
terms with different arguments in trigonometric functions,

(6.6)

D2
ijz = c0 + γ0 r

2

+ (c1 cos(ϑ) + d1 sin(ϑ)) r + (γ1 cos(ϑ) + δ1 sin(ϑ)) r
3

+ (c2 cos(2ϑ) + d2 sin(2ϑ)) r
2 + (γ2 cos(2ϑ) + δ2 sin(2ϑ)) r

4

+ (c3 cos(3ϑ) + d3 sin(3ϑ)) r
3 + (γ3 cos(3ϑ) + δ3 sin(3ϑ)) r

5

+ (c4 cos(4ϑ) + d4 sin(4ϑ)) r
4 + (γ4 cos(4ϑ) + δ4 sin(4ϑ)) r

6

+ . . .

The system {cos(2kϑ), sin(2kϑ)}k∈N is an orthogonal complete system in L2(0, π). Then
odd lines in (6.6) are mutually orthogonal also in L2(B+

r ) and we can expand all the



trigonometric functions with odd multiple of ϑ with respect to this system, in such a way
that even lines will be absorbed by odd ones. This is carefully performed by suppressing
even lines (the ones where (2k + 1)ϑ appears) in (6.6) one at each step and taking into
account the L2(B+

r ) orthogonal splitting L2(B+
r ) = V ⊕ V ⊥ , where V is the space

V
def
= span

{
1, r , r2 ,

{
r2k+1 , k = 1, 2, . . .

}}
.

At first the L2(0, π) convergent expansions

cos(ϑ) =
∞∑

n=1

ξ1n sin(2nϑ) , sin(ϑ) = φ1
0 +

∞∑

n=1

φ1
n cos(2nϑ)

allow to cancel second line (related to ϑ) in (6.6) by allocating the two terms with trigono-
metric functions evaluated at 2nϑ on (2n + 1)-th line and, taking into account r powers
and convergence properties, writing

D2
ijz = S1 + Σ1 , with S1 ∈ V, and Σ1 with empty first and second line of (6.6) :

S1 = c0 + γ0 r
2 + d1 φ

1
0 r + δ1 φ

1
0 r

3 .

Then the L2(0, π) convergent expansions

cos(3ϑ) =
∞∑

n=1

ξ3n sin(2nϑ) , sin(3ϑ) = φ3
0 +

∞∑

n=1

φ3
n cos(2nϑ)

allow to cancel fourth line (related to 3ϑ) in (6.6) by allocating all terms with trigonometric
functions evaluated at 2nϑ on (2n + 1)-th line and, taking into account r powers and
convergence properties, writing

D2
ijz = S2 + Σ2 with S2 ∈ V, and Σ2 with empty second and fourth lines of (6.6) :

S2 = S1 + d3 φ
3
0 r

3 + δ3 φ
3
0 r

5 .

By iteration (after expanding sin((2k+1)ϑ), cos((2k+1)ϑ), k = 0, . . . , n−1, and getting
D2
ijz = Sn−1 + Σn−1), we expand sin((2n+ 1)ϑ), cos((2n+ 1)ϑ), and get

D2
ijz = Sn + Σn with Sn ∈ V, and Σn with empty first n odd lines ,

where Sn is a finite sum in the space V :

Sn = Sn−1 + d2n−1 φ
2n−1
0 r2n−1 + δ2n−1 φ

2n−1
0 r2n+1 .

Though Σn might not belong to V ⊥, by exploiting L2(B+
r ) convergence in (6.6) we denote

by Ξn the modified odd lines from the third odd line (say the fifth one of (6.6)) to the
n-th odd line, explicitly (referring to the lines position in (6.6)):

Ξ1 = expansion of the second line ,
Σ1 = Ξ1 + all the lines after the second ,
Ξ2 = Ξ1 + third line + expansion of the fourth line ,
Σ2 = Ξ2 + all the lines after the fourth ,
Ξn = Ξn−1 + (2n− 1)-th line + expansion of the (2n)-th line ,
Σn = Ξn + all the lines after the (2n)-th line .

By denoting εn the sum of all lines in (6.6) after the (2n)-th line, we get

(6.7) D2
ijz = Sn + Ξn + εn Sn ∈ V , Ξn ∈ V ⊥, εn → 0 strongly in L2(B+

r ) .



(6.8) Sn → S strongly in L2(B+
r ) , Ξn → Ξ strongly in L2(B+

r ).

Hence

D2
ijz =

∞∑

k=0

(( ∞∑

h=0

(Ah,k + Bh,kr
2)rh

)
cos(2kϑ) +

( ∞∑

h=0

(Ch,k +Dh,kr
2)rh

)
sin(2kϑ)

)

where the expansion is strongly L2(B+
̺ ) convergent, ∀̺ ∈ (0, 1) .

Since
∫ ̺
0
r dr = ̺2/2 and

‖1 = cos 0‖2L2(0,π) = π, ‖ cos(2nϑ)‖2L2(0,π) = ‖ sin(2nϑ)‖2L2(0,π) = π/2 , n = 1, 2, . . . ,

by setting λ2 = λ
(i,j)
2 = π

2

(∑∞
h=0(A

i,j
h,0)

2 +
∑∞

h=0(B
i,j
h,0)

2
)
, Λ2 =

∑
ij λ

(i,j)
2 ,

via Plancherel identity in L2(B+
r ), we get the existence of λl = λ

(i,j)
l ≥ 0, l = 3, 4, . . ., s.t.

‖D2
ijz‖2L2(B+

̺ )
=

∫ ̺

0



π

∣∣∣∣∣

∞∑

h=0

(Ah,0 + Bh,0 r
2) rh

∣∣∣∣∣

2

+
π

2

∞∑

k=1



∣∣∣∣∣

∞∑

h=0

(Ah,k +Bh,k r
2) rh

∣∣∣∣∣

2

+

∣∣∣∣∣

∞∑

h=0

(Ch,k +Dh,k r
2) rh

∣∣∣∣∣

2




 r dr

= λ2 ̺
2 +

∞∑

l=3

λl ̺
l .

The last power series with positive coefficients is convergent (so the inner sums do con-
verge) and is estimated (uniformly in ̺ < 1) by ‖D2

ijz‖2L2(B+

1
)
< +∞; then it is ab-

solutely convergent even for ̺ = 1, and the sum is estimated in the same way. Then
D2z ∈ L2(B+

1 ) and has the same expansion since coefficients Ah,k, Bh,k, Ch,k, Dh,k are
independent of ̺ ∈ (0, 1] . Moreover (Sn + Ξn) converges strongly in L2(B+

1 ) to D2
ijz,

together with every reordering of its.
By summarizing the following expansion is strongly L2(B+

̺ ) convergent, ∀̺ ∈ (0, 1] :

D2
ijz =

∞∑

k=0

(( ∞∑

h=0

(Ah,k + Bh,kr
2)rh

)
cos(2kϑ) +

( ∞∑

h=0

(Ch,k +Dh,kr
2)rh

)
sin(2kϑ)

)
.

So, if ‖D2z‖L2(B+

1
) 6= 0, then

‖D2z‖2
L2(B+

̺ )

‖D2z‖2
L2(B+

1
)

=

(
Λ2 ̺

2 +
∞∑

l=3

Λl ̺
l

)/(
Λ2 +

∞∑

l=3

Λl

)
≤ ̺2 .

�

Remark 6.2. Since λ
(1,2)
2 = 0, by the proof of Theorem 6.1 we get a faster decay of mixed

derivative:

‖D2
xyz‖2L2(B+

̺ )
≤ ̺3 ‖D2

xyz‖2L2(B+

1
)
.

Remark 6.3. No nontrivial harmonic function fulfils assumptions of Theorem 6.1. Pre-
cisely any z ∈ H2(B+

1 ) s.t. ∆
2z = 0 on B+

1 and z =∂z/∂y=0 on B1(0)∩{y = 0} satisfies
also ∆z = 0 in B+

1 if and only if z ≡ 0.
Nevertheless there are (simple) examples with ∆z 6= 0 = ∆2z on B+

1 , z = ∂z/∂y = 0



on B1(0) ∩ {y = 0} with non trivial harmonic part in Almansi decomposition: e.g.
z(x, y) = y2 = (y2 − x2)/2 + (x2 + y2)/2.

Remark 6.4. Theorem 6.1 cannot be deduced by Schwarz reflection principle for harmonic
functions vanishing on the diameter, since the Almansi decomposition on the half-disk B+

1

([14], [1]) may not respect the vanishing value on the diameter:
e.g. ̺3

(
cosϑ− cos(3ϑ)

)
= ̺2ϕ + ψ where ϕ = x, ψ = 3xy2 − x3 are both harmonic but

do not vanish on the diameter {y = 0} (see [1] and Theorem 3.2 of [17]).

Remark 6.5. While Schwarz reflection for harmonic functions vanishing on the diameter
is bounded by 1 as a linear operator from H1(B+

1 ) to H
1(B−

1 ), Duffin extension map for
bi-harmonic functions vanishing on the diameter together with normal derivative provides
a poor control of H2(B−

1 ) in term of H2(B+
1 ) as shown by the following example: referring

to (6.4), if we choose z = ω2 − v3 + ω4 − v5 then ‖D2z‖L2(B−

1
) ≈ 12.5761 ‖D2z‖L2(B+

1
).

This depends on the fact that bi-harmonic extension of z may be either even in y (e.g.
z = y2) or odd in y (e.g. z = r3(3 sinϑ − sin(3ϑ)) = 4y3) or a mixing of the two (e.g.
z = ω2 − v3).

Remark 6.6. Several bi-harmonic functions like ̺3(cosϑ− cos(3ϑ)) and, quite surpris-
ingly, also combinations of multi-valued functions like ̺3/2

(
cos(ϑ/2)− cos(3ϑ/2)

)
or like

̺5/3
(
cos(ϑ/3)− cos(5ϑ/3)

)
actually turn out to be (H2(B+

1 ) strongly convergent) infinite
sums of the kind given by (6.2) above with vanishing value and normal derivative on T :
hence they have single-valued analytic (and bi-harmonic) extension to the whole disk B̺

and fulfil decay property (6.1).
In general if we set, for any t , τ ∈ N, ϕt(ϑ) = (sin(tϑ)− sin((t− 2)ϑ) t/(t− 2)) and
ψτ (ϑ) = ( cos(τϑ) − cos((τ − 2)ϑ) ), then both rtϕt(ϑ), r

τψτ (ϑ), though built with poly-
dromic functions, do have (unique) bi-harmonic extension to the whole disk B̺(0) : in
fact ∂hϑ ϕt(ϑ) |ϑ=0 = ∂hϑ ϕt(ϑ) |ϑ=2π ∀h (due to 2π periodicity of sin and cos), so that
their gluing at 2π is not only continuous but also analytic. The same argument holds true
for ψτ .

7. Blow-up and Decay at boundary points

In this Section we locally analyze the boundary around any point belonging to the set
∂Ω \ (T0 ∪ T1 ∪M) . At first (in Theorems 7.1, 7.2) we perform a blow-up of the func-
tionals F and E around the origin under the additional assumption that 0 belongs to ∂Ω.
Then we exploit this results (by translating and scaling) to estimate the decay of these
functionals when evaluated on local minimizers around boundary points (see Theorems
7.3, 7.4).

Theorem 7.1. (Blow-up of the functional F at boundary points)
Assume (2.4)-(2.8) and:

0 ∈ ∂Ω \ (T0 ∪ T1 ∪M) , Br(0) ⊂ Ω̃, ψh ∈ C2(−r, r) with ψh → 0 in W 2,∞(−r,+r),
ωh ∈ C2(Br) with ωh → ω∞ ≡ 0 in W 2,∞(Br(0))

(7.1)





ψh ∈ C2(−r, r) , ψh(0) = 0, ψ′
h(0) = 0 Lip (ψ′

h) ≤ 1 ,

Bψh+ def
= Br(0) ∩ {y > ψh(x) } , Bψh− def

= Br(0) ∩ {y < ψh(x) } ,

Bτ
̺ = {x = (x, y) : |x| < ̺, y > τ)} for 0 < τ < ̺ < r .



γh ∈ Lq(Ω̃) ∩ L2q
loc(Ω̃), let αh, βh, µh, three sequences of positive numbers with βh ≤ αh,

and let v∞ ∈ H2(Br(0)) s.t. v∞ ≡ 0 in B−
r (0). Assume vh ∈ GSBV 2(Ω̃)∩Lq(Ω̃), vh = ωh

a.e. in Bψh− and

(i) vh are Ω local minimizers of Fγh ωh
( · , µh, αh, βh, Br(0)) ,

(ii) limhH1 ((Svh ∪ S∇vh) ∩Br(0)) = 0 ,

(iii) ∃ limhFγh ωh
( vh, µh, αh, βh, Bτ

̺ )
def
= δ(̺, τ) ≤ 1

for a.e. ̺, τ ∈ (0, r) with τ < ̺ , and set δ(̺, τ) = 0 if ̺ < τ .

(iv) limh vh = v∞ a.e. in Br(0) ,

(v) limh µh = 0 , limh µh‖γh‖qLq(Br(0))
= 0 .

Then, for every ̺ ∈ (0, r), τ ∈ (0, ̺), v∞ minimizes the functional

(7.2)

∫

Bτ
̺ (0)

∣∣D2v
∣∣2 dx

over {v ∈ H2(Br(0)) : v = v∞ in Br(0)\Bτ
̺ ; in particular v = 0 in B−

r (0)} .
Moreover

(7.3) δ(̺, τ) =

∫

Bτ
̺ (0)

∣∣D2v∞
∣∣2 dx for almost all ̺, τ : 0 < τ < ̺ < r .

In particular ∆2v∞ = 0 in B+
r (0), v∞ = 0 = ∂v∞/∂y in Br(0) ∩ {y = 0}, and v∞ ∈

C1(Br(0)) .

Proof. By convergence assumptions on ψh, for any κ ∈ (0, r/2) we can assume |ψh| < κ <
r/2 for large h, that is the hypograph of ψh contains a fixed sector (of the disk Br) where
vh = ωh, hence uh = vh − ωh fulfil assumption (5.13) uniformly in h with ϑ ≥ 1/3, while
Dirichlet datum ωh is not imposed on the portion of the disk where y > κ.
By (iv) (v) we get, up to subsequences,

lim
h

µh
1/q |vh − γh| = 0 a.e in Br .

By (ii) (iii) sequence uh = vh − ωh fulfils all the assumptions of Theorem 5.4:

(7.4) sup
̺,τ

sup
h

∫

Bτ
̺

|∇2vh|2 dx ≤ 1 .

Then we can build a sequence zh as in (5.23)-(5.28), choose subsequences (without rela-
beling) zh, uh, vh = uh + ωh and u∞ ∈ H2 s.t. (5.16)-(5.20) hold true. Since ωh → 0 and
vh → v∞ a.e., we get uh → u∞ = v∞, a.e. By (5.20), ωh → 0 in W 2,∞ and by (iii) we
obtain, for a.e. ̺, τ , 0 < τ < ̺ < r ,∫

Bτ
̺

∣∣D2v∞
∣∣2 dy ≤ lim inf

h

∫

Bτ
̺

(∣∣∇2uh
∣∣2 + µh|uh − γh|q

)
dy

≤ lim inf
h

∫

Bτ
̺

(∣∣∇2vh
∣∣2 + µh|vh − γh|q

)
dy ≤ lim

h
Fγh ωh

(vh, Bτ
̺ ) = δ(̺, τ) .

To achieve the proof we have to show that for a.e. ̺, τ, 0 < τ < ̺ < r, for every
κ ∈ (0, r/2), and every u ∈ H2(Br) with u = v∞ in B+

r (0) \B2κ
̺ (hence u = 0 in B−

r (0)):

(7.5)

∫

Bτ
̺

∣∣D2u
∣∣2 dy ≥ δ(̺, τ) .



In fact (7.5) implies ∆v∞ = 0, B+
̺ and v∞ = ∂v∞/∂y = 0 on B1 ∩ {y = 0}; hence

v∞ ∈ C1(B+
r ∪(Br∩{y = 0}) ) ([25]). We prove the inequality (7.5) for fixed κ ∈ (0, r/2) :

the convergence property of ψh allows to repeat the proof for any such κ by selecting large
enough h .
The map δ is monotone non decreasing in ̺ and monotone non incresing in τ, hence:
for any frozen τ, the map δ is continuous up to a countable set of values for ̺,
for any frozen ̺, the map δ is continuous up to a countable set of values for τ.
For any selection of ̺, τ s.t. δ is separately continuous at ̺, τ, we get by monotonicity
that actually δ is a (two-variables) continuous map at ̺, τ. This continuity property holds
true for a.e. ̺, τ ∈ (0, r).
Assume by contradiction that there exist u ∈ H2(Br), ε > 0, s, σ, s.t. 2κ < σ < s < r, δ
is continuous at ̺ = s, τ = σ, u = v∞ in B+

r \B2κ
s (hence u = 0 in Br

−) and

(7.6)

∫

Bσ
s

∣∣D2u
∣∣2 dy ≤ δ(s, σ)− ε .

From now on we fix η, κ s.t.

(7.7) s < η < r , 0 < κ <
1

2
σ <

1

2

√
r2 − η2

Referring to (5.25), (5.27), we set

(7.8) Lh = H1 ((Svh ∪ S∇vh) ∩ Br(0))

(7.9) Ξh = {y ∈ Br : zh 6= ξh } ,

(7.10) Ah = { zh 6= uh } .
In particular Ah = Eh ∪ Ξh .
In order to get a contradiction we will paste together uh and zh along the boundary of a
suitably chosen lunula (the energy addition will tend to 0 as h → ∞ due to (iii), (5.17)
and Matching Lemma 4.2), then we will join such new function in a smaller lunula with u
(which has less squared hessian energy). Before some preliminary estimates are needed.
We emphasize that

(7.11) H1(Svh ∩ ∂B̺) = H1(S∇vh ∩ ∂B̺) = 0 for a.e ̺ ∈ (0, r)

and by (5.17)

(7.12) P (Ah, Br) ≤ c Lh .

By integrating first in polar coordinates, then in cartesian coordinates and taking into
account the isoperimetric inequality we get

(7.13) αh

∫ r

0

H1(Ah ∩ ∂B̺) d̺ = αh|Ah ∩ Br| ≤ αh(γ2P (Ah, Br))
2 ≤ c2γ22αhLh

2

(7.14)

αh

∫ √
r2−t2

0

H1(Ah ∩ {(x, y) : |x| ≤ t}) dy

= αh

∣∣∣Ah ∩ {|x| ≤ t, 0 ≤ y ≤
√
r2 − t2}

∣∣∣

≤ αh|Ah ∩ Br| ≤ αh(γ2P (Ah, Br))
2 ≤ c2γ22αhLh

2



since the sequence αhLh is bounded by (iii), then (ii) entails

lim
h

αh Lh
2 = 0.

Hence, by (7.13), we have, up to subsequence and without relabeling,

(7.15) ∃ lim
h

αhH1
(
Ah ∩ ∂Bt

+
)

= 0 for a.e. t ∈ (0, r) .

By assumption (7.7), the interval (2κ,
√
r2 − η2) is not empty and contains σ.

For any choice of t ∈ (s, r) as above (fulfilling (7.15)) and for a.e. d ∈
(
2κ,
√
r2 − η2

)

(thanks to (7.14)) we have

(7.16) lim
h

αhH1 (Ah ∩ {|x| ≤ t, y = d}) = 0 ;

by summarizing, for any t fulfilling (7.15) for a.e. d ∈
(
2κ,

√
r2 − t2

)
both (7.15), (7.16)

hold true, so that, up to subsequence and without relabeling,

(7.17) ∃ lim
h

αhH1
(
Ah ∩ ∂Bd

t

)
= 0 for a.e. t, d ,

and by (7.11), (7.17), (ii) and βh ≤ αh we get,

(7.18)
lim
h

(
αhH1

(
Szh ∩ ∂Bd

t

)
+ βhH1

(
(S∇zh \ Szh) ∩ ∂Bd

t

))
= 0

for a.e t ∈ (s, η) and a.e d ∈
(
2κ,

√
r2 − t2

)
.

Notice that the interval (2κ,
√
r2 − t2) is not empty since it contains σ due to (7.7). By

continuity of δ at ̺ = s, τ = σ and by (7.17), (7.18) and (iii) we can choose t ∈ (s, η)
close to s as needed, d ∈ (2κ, σ) close to σ as needed (and let them fixed in the following)

and h̃ ∈ N s.t. σ− d < t− s and, setting Md,σ
t,s = Bd

t \Bσ
s , the following list of inequalities

hold true:

(7.19) δ(t, d)− δ(s, σ) < ε/6 ,

(7.20) αhH1
(
Ah ∩ ∂ Md,σ

t,s

)
≤ ε/6 h > h̃ ,

(7.21) αhH1
(
Szh ∩ ∂ Md,σ

t,s

)
+ βhH1

(
(S∇zh \ Szh) ∩ ∂ Md,σ

t,s

)
≤ ε/6 h > h̃ ,

(7.22)

∫

Bd
t \Bσ

s

|D2u|2 dx < ε/6 ,

(7.23) F
(
vh, Bd

t \Bσ
s

)
≤ 2 ε/6 h > h̃ ;

In fact (7.19) expresses the continuity of δ at (s, σ); feasibility of choices (7.20), (7.21)
follows by (7.17), (7.18); inequality (7.22) follows by the absolute continuity of

∫
A
|D2u|2dx

with respect to the Lebesgue measure of A, eventually (7.23) follows by

lim
h

F
(
vh, Bd

t \Bσ
s

)
= δ(t, d)− δ(s, σ) + lim

h
F (vh, ∂B

σ
s )

which is estimated by 2 ε/6 thanks to (7.19), (7.21).
We fix the matching:

(7.24) ζh = uh χBr\Bd
t

+ zh χBd
t

,



Figure 1. Joining along handle Md,σ
t,s = Bd

t \Bσ
s

hence (7.17) and Lemma 4.2 entail, for a.e. ̺ ∈ (0, r), τ ∈ (d, σ),

(7.25) lim
h

Fγh ωh
(ζh, µh, αh, βh, B

τ
̺ ) = lim

h
Fγh ωh

(vh, µh, αh, βh, B
τ
̺ ) = δ(̺, τ) ≤ 1 .

Eventually we perform the joining of u+ ωh and ζh + ωh between lunulae Bd
t and Bσ

s : by
referring to Lemma 4.1, we choose Ψ ≡ 1 in a neighborhood of Bσ

s and set

(7.26) τh = Ψ(u+ ωh) + (1−Ψ) (ζh + ωh) ,

so that

(7.27) τh = uh + ωh = vh in Br \Bd
t , τh = u+ ωh in Bσ

s ,

hence

(7.28) F(τh, Br \Bd
t ) = F(vh, Br \Bd

t ) .

Then by Lemma 4.1 we obtain, for any θ > 0,

(7.29)

F(τh, Bd
t ) ≤ (1 + θ)

(
F(u+ ωh, Bd

t ) + F(ζh + ωh, Bd
t \Bσ

s )
)
+

+
c

(σ − d)2

(∫

Bd
t \Bσ

s

|∇(u− ζh)|2dx +
c

θ d2 (σ − d)2

∫

Bd
t \Bσ

s

|u− ζh|2dx
)

By compactness Theorem 5.4, with our choice for d, σ fulfilling 2κ < d < σ :

(7.30) lim
h

∫

Bd
t \Bσ

s

|∇(v∞ − ζh)|2dx = lim
h

∫

Bd
t \Bσ

s

|v∞ − ζh|2dx = 0 ,

hence, thanks to u = v∞ in B+
r \ B2κ

s , possibly by extracting subsequences without
relabeling and letting h→ +∞ in (7.29) we obtain

(7.31) lim
h

F(τh, Bd
t ) ≤ (1 + θ)

(
lim
h

F(u+ ωh, Bd
t ) + lim

h
F(ζh + ωh, Bd

t \Bσ
s )
)
.



By convergence ωh → 0 in W 2,∞(Br) there is h0 ≥ h̃ s.t.

(7.32)

∣∣∣∣∣

∫

Bd
t \Bσ

s

|D2(u+ ωh)|2 dx−
∫

Bd
t \Bσ

s

|D2u|2dx
∣∣∣∣∣ <

ε

6
for h > h0 .

By (5.26), ωh → 0 in W 2,∞, (7.23), (7.27) we get

(7.33)
lim
h

F
(
ζh + ωh, Bd

t \Bσ
s

)

= lim
h

F
(
zh + ωh, Bd

t \Bσ
s

)
≤ lim

h
F
(
vh, Bd

t \Bσ
s

)
≤ 2

ε

6

By letting ϑ→0 in (7.31), taking into account (7.20)-(7.24),(7.27),(7.32),(7.33), we get

(7.34) F
(
τh, Bd

t \Bσ
s

)
≤ 4 ε/6 h > h0 ;

By exploiting (7.6),(7.20), (7.21), (7.23), (7.34), τh = u + ωh in Bσ
s and eventually δ

monotonicity with respect to inclusion of sets, we get the contradiction:

(7.35)

δ(t, d) = lim
h

F
(
vh , Bd

t

) minimality of vh
≤ lim

h
F
(
τh , Bd

t

)

= lim
h

F
(
τh , Bσ

s

)
+ lim

h
F
(
τh , Bd

t \Bσ
s

)
− lim

h
F ( τh , ∂B

σ
s )

(7.34)
≤ lim

h
F
(
τh , Bσ

s

)
+ 4

ε

6

= lim
h

F
(
u+ ωh , Bσ

s

)
+ 4

ε

6
= lim

h

∫

Bσ
s

|D2(u+ ωh)|2 dx+ 4
ε

6

(7.32)
≤

∫

Bσ
s

|D2u|2 dx + 5
ε

6
≤ δ(s, σ) − ε + 5

ε

6
≤ δ(t, d)− ε

6
.

�

Theorem 7.2. (Blow-up of the functional E at boundary points)

Assume (2.4)-(2.11), 0 ∈ ∂Ω \ (T0 ∪ T1 ∪M) and Br(0) ⊂ Ω̃, let αh, βh, two sequences
of positive numbers with βh ≤ αh, ψh ∈ C2(−r, r) with ψh → 0 in W 2,∞(−r,+r), ωh ∈
C2(Br(0)) with ωh → ω∞ ≡ 0 in W 2,∞ and let v∞ ∈ H2(Br(0)) s.t. v∞ ≡ 0 in B−

r (0).

Assume (7.1), vh ∈ GSBV 2(Ω̃), vh = ωh a.e. in Bψh− and

(i) vh are Ω local minimizers of Eωh
( · , αh, βh, Br(0)) ,

(ii) limhH1 ((Svh ∪ S∇vh) ∩Br(0)) = 0 ,

(iii) ∃ limh Eωh
( vh, αh, βh, Bτ

̺ (0))
def
= δ(̺, τ) ≤ 1

for a.e. ̺, τ ∈ (0, r) with τ < ̺ , and set δ(̺, τ) = 0 if ̺ < τ .

(iv) limh vh = v∞ a.e. in Br(0) .

Then, for every ̺, τ : 0 < τ < ̺ < r , v∞ minimizes the functional

(7.36)

∫

B+
r (0)

∣∣D2u
∣∣2 dx



over {u ∈ H2(B̺(0)) : u = 0 in B−
r (0); u = v∞ in Br(0)\Bτ

̺ (0)} .
Moreover

(7.37) δ(̺, τ) =

∫

Bτ
̺ (0)

∣∣D2v∞
∣∣2 dx for almost all τ, ̺ : 0 < τ < ̺ < r .

In particular ∆2v∞ = 0 in B+
r (0), v∞ = 0 = ∂v∞/∂y in Br(0) ∩ {y = 0}.

Proof. Repeat the proof of the previous Theorem with µh = 0. �

Due to (2.5), (2.6) for any sequence of points xh ∈ ∂Ω \ (T0 ∪ T1 ∪ M) possibly after
suitable rotations of coordinates around each xh = (xh, yh), we can find ̺h and ϕh s.t.,
by setting

(7.38) Ωϕh+ = Ω ∩ B̺h(xh) , Ωϕh− = B̺h(xh) \ Ω ,
we have

(7.39)





w ∈ C2(B̺h(xh)) , Ωϕh+ = B̺h(xh) ∩ {y > ϕh(x) } ,

ϕh ∈ C2(xh − ̺h, xh + ̺h), ϕh(xh) = yh, ϕh
′(xh) = 0,Lip(ϕh

′) ≤ C.

Referring to (7.38), (7.39) we re-scale and translate the sets Ωϕh
to the the origin and

choose the graphs ψh to be used in the application of the blow-up Theorem (with r = 1)
as follows:

(7.40) ψh(x) = ̺h
−1 (ϕh(xh + ̺hx)− yh)

(7.41) Bψh+ = B1(0) ∩ {(x, y) : yh + ̺hy > ϕh(xh + ̺hx)} = B1(0) ∩ {y > ψh(x)}

(7.42) Bψh− = B1(0) ∩ {(x, y) : yh + ̺hy < ϕh(xh + ̺hx)} = B1(0) ∩ {y < ψh(x)} ;
we get

(7.43)





Bψh± = (Ωϕh± − xh) /̺h

ψh(0) = 0 , ψh
′(0) = 0

ψh
′(x) = ϕh

′(xh + ̺hx) = ̺hxϕh
′′(xh) + o(̺h)

ψh
′′(x) = ̺hϕh

′′(xh + ̺hx)

Lip(ψh) = Lip(ϕh) , Lip(ψh
′) = ̺h Lip(ϕh

′) .

Theorem 7.3. (Decay of the functional F at boundary points) Assume (2.3)-
(2.10) and (2.17). Then, by referring to (3.14) and to (3.15) about the meaning of ¯̺ and
c0,

(7.44) ∀k > 2, ∀η, σ ∈ (0, 1), ∃ε1 > 0, ∃ϑ1 > 0 such that

for all ε ∈ (0, ε1], for any x ∈ ∂Ω \ (T0 ∪ T1 ∪M) , for any u which is an Ωϕ+ local

minimizer of Fg w(·, µ, α, β,Ωϕ+) , for any ̺ s.t. B̺(x) ⊂ Ω̃ (we can assume without
restriction (7.39)), 0 < ̺ ≤

(
εk ∧ ¯̺∧ (c0 ∨ 1)−1

)
,
∫
B̺(x)

|g|2q ≤ εk and

(7.45) αH1
(
Su ∩ Ωϕ+

)
+ βH1

(
(S∇u \ Su) ∩ Ωϕ+

)
< ε̺ ,



we have

(7.46)
Fg w(u,Bη̺(x))

≤ η2−σ max
{
Fg w(u,B̺(x)) , ̺

2 ϑ1

((
Lip(ϕ′)

)2
+
(
Lip(Dw)

)2)}
.

Proof. Assume the Theorem is false. Then there are k > 2, η, σ ∈ (0, 1); three sequences
̺h, εh, ϑh s.t. h ≥ 3 and 0 < ̺h ≤

(
¯̺∧ (c0 ∨ 1)−1

)
, εh > 0, ϑh > 0 , εh ↓ 0, lim

h
ϑh = +∞;

a sequence xh ∈ ∂Ω \ (T0 ∪ T1 ∪M) ; a sequence wh ∈ C2(B̺h(xh)) s.t. |wh| ≤ C,
Lip(Dwh) ≤ C; a sequence ϕh ∈ C2

(
(xh − ̺h, xh + ̺h)

)
with ϕh(xh) = yh, ϕ

′
h(xh) =

0, Lip(ϕh
′) ≤ C and

Ωϕh+ = Ω ∩ B̺h(xh) ∩ {y > ϕh(x)} ;
a sequence uh ∈ X(Ω̃) of Ω local minimizers of Fg wh

(·, µ, α, β, B̺h(xh)) among v s.t.
v = wh on Ωϕh− ;

(7.47) ̺h ≤ εh
k ,

∫

B̺h
(xh)

|g|2q ≤ εh
k ;

(7.48) αH1
(
Suh ∩ Ωϕh+

)
+ βH1

(
(S∇uh \ Suh) ∩ Ωϕh+

)
< εh ̺h

and

(7.49)
Fg wh

(uh, µ, α, β, Bη ̺h(xh))

> η2−σmax
{
Fg wh

(uh, µ, α, β, B̺h(xh)), ̺
2
h ϑh

((
Lip(ϕh

′)
)2
+
(
Lip(Dwh)

)2)}
.

By translating xh to 0, re-scaling, and applying a common affine linear correction to data
and local minimizers, we set, for y ∈ B1(0) :

ωh(y) =
(
λh ̺h

3
)−1/2

(
wh(xh + ̺hy)− ̺hDwh(xh) · y − wh(xh)

)
(7.50)

γh(y) =
(
λh ̺h

3
)−1/2

(
g(xh + ̺hy)− ̺hDwh(xh) · y − wh(xh)

)
(7.51)

vh(y) =
(
λh ̺h

3
)−1/2

(
uh(xh + ̺hy)− ̺hDwh(xh) · y − wh(xh)

)
(7.52)

where

(7.53) λh =
(
̺h

−1 Fg wh
(uh, µ, α, β, B̺h(xh))

) ∨
εh .

Notice that, due to density upper bound in Theorem 3.10 and ̺h ≤ ¯̺∧ (c0 ∨ 1)−1,

λh ≤ c0 ∨ 1 < +∞ and λh ̺h ≤ 1 ∀h
and functions vh and ωh coincide on Bψh− = B1(0) ∩ {y < ψh(x)} .
Moreover, by uniform C2 property of wh, and applying Lagrange Theorem to each com-
ponent of Dωh

∀y ∈ B1, i, j = 1, 2 ∃ t̃(i) ∈ (0, 1) s.t. by setting ỹ(i) = t̃(i)y , we get

Dj ωh(y) = Dj ωh(0) +
∑

i

Dijωh( ỹ(i))yi

say, by denoting D̃2ωh(ỹ) the hessian of ωh with i-th row evaluated at ỹ(i),

Dωh(y) = Dωh(0) + D̃2ωh(ỹ) · y



then

(7.54)





ωh(0) = 0 , Dωh(0) = 0 ,

Dωh(y) = D̃2ωh(ỹ) · y

Dωh(y) = (λh ̺h )
−1/2

(
Dwh(xh + ̺hy)−Dwh(xh)

)

D2ωh(y) = ( ̺h/λh )
1/2 D2wh(xh + ̺hy)

|D2ωh(y)| ≤ (̺h/λh)
1/2 Lip(Dwh)

|Dωh(y)| ≤ |D̃2ωh(ỹ)| |y| ≤ (̺h/λh)
1/2 Lip(Dwh)

Lip(Dωh) = (̺h/λh)
1/2 Lip(Dwh)

hence

(7.55) |Dωh(y)| ≤ C ε
(k−1)/2
h , |D2ωh(y)| ≤ C ε

(k−1)/2
h .

Due to (2.6) ϕh are uniformly C2, hence (7.43) entails ψh → 0 in W 2,∞(−1, 1).
Estimates (7.55) entail strong W 2,∞(B1) convergence of ωh to ω∞ ≡ 0.
Due to Remark 3.9 functions vh are Ω local minimizers of Fγh,ωh

(·, µh, αh, βh, B1(0)) among
v with v = ωh in Bψh− where

(7.56) αh =
α

λh
, βh =

β

λh
, µh = µ λh

q

2
−1 ̺h

1+ 3

2
q .

By scaling Lemma 3.5, (7.49), last identity in (7.43), (7.54), and λh ̺h ≤ 1 we have

(7.57)

{
Fg wh

(uh, µ, α, β, B̺h(xh)) = λh ̺hFγh ωh
(vh, µh, αh, βh, B1(0))

Fg wh
(uh, µ, α, β, Bη̺h(xh)) = λh ̺hFγh ωh

(vh, µh, αh, βh, Bη(0))

and

(7.58)

Fγh ωh
(vh, µh, αh, βh, Bη(0)) = Fg wh

(uh, µ, α, β, Bη̺h(xh))/(λh ̺h)

> η2−σ
̺h
λh
ϑh

((Lip(ψh
′)

̺h

)2

+

(
Lip(Dωh)√

̺h/λh

)2 )

= η2−σ
ϑh
λh

((Lip(ψh′))2

̺h
+ λh (Lip(Dωh))

2
)

≥ η2−σϑh

(
(Lip(ψh

′))
2
+ (Lip(Dωh))

2
)

so that by (7.53), (7.57)

(7.59) Fγh ωh
(vh, µh, αh, βh, B1(0)) ≤ 1 ,

(7.60) αhH1
(
Svh ∩ Bψh+

)
+ βhH1

(
(S∇vh \ Svh) ∩ Bψh+

)
< εh

and (7.49), (7.57), (7.58) entail

(7.61) Fγh ωh
(vh, µh, αh, βh, Bη(0)) > η2−σ Fγh ωh

(vh, µh, αh, βh, B1(0)) .



By (7.59) and Theorem 5.4, up to subsequences and without relabeling,

(7.62) ∃ v∞ ∈ H2(B1) : lim
h

vh = v∞ a.e. in B1

say hypothesis (iv) of Theorem 7.1, which we want to apply to handle vh and v∞. We
proceed by checking the other assumptions of the Theorem 7.1.
Since uh is an Ω local minimizer of Fg wh

then vh is a ̺h
−1(Ω− xh) local minimizer of

Fγh ωh
, that is (i) holds true; (7.60) entails (ii); we must verify (iii), (v) and the structural

assumptions.
Now we prove (iii): choose a dense (in (0,1) ) sequence of radii ̺j = τj. Thanks to (7.59),
for any pair j, l ∈ N such that 0 < τl < ̺j < 1 we can extract a subsequence of vh and
then diagonalize (without relabeling) in such a way that

∃ finite δ(̺j, τl)
def
= lim

h
Fγh ωh

(vh, µh, αh, βh, B
τl
̺j
) ∀j, l ; δ(̺j, τl) ∈ (0, 1) .

Since ̺j, τl → δ(̺j, τl) is monotone non decreasing with respect to inclusion of lunulae,
there is a (unique) monotone non decreasing with respect to inclusion and one-side con-
tinuous with respect to exterior approximation extension defined for all lunulae in the two
parameters family, defined as follows:

δ(̺, τ) = inf
j, l

{ δ(̺j, τl) : ̺j > ̺, τl < τ } .

obviously:
∀τ, ̺→ δ(̺, τ) is right-continuous everywhere and continuous up to a countable set,
∀̺, τ → δ(̺, τ) is left-continuous everywhere and continuous up to a countable set.
Since 2-variables separate continuity together with monotonicity entail continuity, we get

∀τ, ̺→ δ(̺, τ) is continuous for a.e. ̺ , ∀̺, τ → δ(̺, τ) is continuous for a.e. τ

say, δ is continuous with respect to τ, ̺ almost everywhere in 0 < τ < ̺ < r .

Hence by monotonicity of Fγh,ωh
(vh, µh, αh, βh, · ) with respect to inclusion of sets and

the same monotonicity property of δ, together with the coincidence in a dense set of
δ(̺, τ) with the limit of Fγh,ωh

(vh, µh, αh, βh, B
τ
̺ ) we get the existence of such limit almost

everywhere and its coincidence with δ almost everywhere.
Estimate (7.59) entails Fγh ωh

(vh, µh, αh, βh, B
τ
̺ ) ≤ 1 , hence δ(̺, τ) ≤ 1 , for all ̺ , τ ,

0 ≤ τ ≤ ̺ ≤ r. Hence also the estimate in (iii) of Theorem 7.1 holds true.
Now we show that (v) holds true: by (7.53) λh ≥ εh, then by density upper bound in
Theorem 3.10, and (7.47) we get

(7.63) 0 < µh ≤
̺h
λh

≤ ̺h
εh

≤ εh
k−1 for large h,



hence limh µh = 0 ; moreover, by (7.50), (7.51) and (7.56), changing variables, using Hölder
inequality and (7.47) we find for large h:

(7.64)

µh

∫

B1

|γh − ωh|q dx

=
µh
̺h2

1

(λh̺h3)q/2

∫

B̺h
(xh)

∣∣gh(xh)− wh(xh)±
(
̺hDwh(xh) · y − wh(xh)

)∣∣qdy

≤ µh
̺h2

1

(λh̺h3)q/2

∫

B̺h
(xh)

|gh(xh)− wh(xh)|q dy

≤ 2q−1µ̺h
−1λh

−1

(∫

B̺h
(xh)

|gh|qdy +

∫

B̺h
(xh)

|wh|qdy
)

≤ 2q−1µ̺h
−1εh

−1

(∫

B̺h
(xh)

|gh|2qdy
)1/2√

π̺h + 2q−1µ̺h
−1εh

−1Cqπ̺2h

≤ 2q−1 µ
(√

π εh
k/2−1 + π Cq εh

k−1
)

≤ 2q µ
√
π ε

k/2−1
h

We know µh
∫
B1

|ωh|q → 0 as h → ∞ by the first statements in (7.54), (7.55). Hence

(7.64) entails limh µh
∫
B1

|γh|q dx = 0 .

By Theorem 7.1, v∞ is bi-harmonic in B+
1 (0), v∞ = 0 in B−

1 (0) by (7.62) and

(7.65)

∫

B̺(0)

|D2v∞|2 dx =

∫

B+
̺ (0)

|D2v∞|2 dx ̺ ∈ (0, 1) ,

hence, since v∞ ∈ H2(B1), (7.65) holds true also for ̺ = 1.
Since v∞=0 inB−

1 (0), traces continuity inH2 entails v∞= ∂v∞/∂y = 0 inB1(0)∩{y = 0}.
By (6.1) of Theorem 6.1 and (7.65) we get

(7.66)

∫

Bη(0)

|D2v∞|2 dx =
∫
B+

η (0)
|D2v∞|2 dx

≤ η2
∫
B+

1
(0)

|D2v∞|2 dx = η2
∫
B1(0)

|D2v∞|2 dx .

Therefore, by exploiting (iii), (7.3) of Blow-up Theorem 7.1 and (7.66)

(7.67) lim sup
h

Fγh,ωh
(vh, µh, αh, βh, Bη(0)) ≤ η2

∫

B1(0)

|D2v∞|2 dx

whereas, by (7.61),

(7.68)

limh Fγhωh
(vh, µh, αh, βh, Bη(0))

≥ η2−σ limh Fγhωh
(vh, µh, αh, βh, B1(0)) = η2−σ

∫
B1(0)

|D2v∞|2 dx

contradicting the assumption on η and σ. �



Theorem 7.4. (Decay of the functional E at boundary points) Assume (2.3)-
(2.11). Then,

(7.69) ∀ k > 2, ∀η, σ ∈ (0, 1) , ∃ ε̃ > 0, ∃ϑ̃ > 0 such that

for any ε ∈ (0, ε̃], any x ∈ ∂Ω \ (T0 ∪ T1 ∪M) , any u an Ωϕ+ local minimizer of

E(·, α, β,Ωϕ+) , any ̺ s.t. B̺(x) ⊂ Ω̃ and (7.39), 0 < ̺ ≤
(
εk ∧ ¯̺∧ (c0 ∨ 1)−1

)
and

(7.70) αH1
(
Su ∩ Ωϕ+

)
+ βH1

(
(S∇u \ Su) ∩ Ωϕ+

)
< ε̺ ,

we have

(7.71) E(u,Bη̺(x)) ≤ η2−σmax
{
E(u,B̺(x)) , ̺

2 ϑ̃
((

Lip(ϕ′)
)2

+
(
Lip(Dw)

)2)}
.

Proof. Straightforward consequence of Theorem 7.3 �

Remark 7.5. (Hessian decay and decay of F , E at points close to the bound-

ary) By exploiting L2 hessian decay at the boundary (Theorem 6.1) and L2-hessian decay
at interior points (Theorem 5.2 in [9]) we can show an L2-hessian decay at points close
to the boundary. Explicitly, by setting

(7.72) Bτ
̺ = B̺(0) ∩

{
(x, y) ∈ R2 : y > τ

}
, Γτ = B1(0) ∩

{
(x, y) ∈ R2 : y = τ

}
,

if −1 < τ < 0, z ∈H2(Bτ
1 ), ∆

2z = 0 on Bτ
1 and z = ∂z/∂y = 0 on Γτ , then there is c3

such that

(7.73) ‖D2z‖2L2(Bτ
̺ )

≤ c3 ̺
2 ‖D2z‖2L2(Bτ

1
) ∀̺ ∈ (0, 1).

Moreover a decay property of functional F at point close to the boundary analogous to
Theorem 7.3 can be proven:

(7.74)

{ ∃˜̺ : ∀k > 2, ∀η, σ ∈ (0, 1), with ησ < 1
c3
, ∃ε2 > 0, ∃ϑ2 > 0 s.t.

∀ε ∈ (0, ε2], ∀̺ ≤ ˜̺, ∀ x ∈ Ω \ (T0 ∪ T1) : dist(x, ∂Ω) < ̺
2
,

for any u ∈ GSBV 2(Ω) which is an Ω ∩B̺(x) local minimizer of F(·,Ω ∩ B̺(x)) , and

(7.75) αH1
(
Su ∩ Ω ∩ B̺(x)

)
+ βH1

(
(S∇u \ Su) ∩ Ω ∩ B̺(x)

)
< ε̺ ,

we have

(7.76) F(u,Bη̺(x)) ≤ η2−σ max
{
F(u,B̺(x)) , ̺

2 ϑ2 L
}
.

8. Proof of main results

In this Section we prove the main results.

Proof of Theorem 2.2 - Assume that v ∈ GSBV 2(Ω̃)∩Lq(Ω̃) is a minimizer of F among

v ∈ GSBV 2(Ω̃) ∩ Lq(Ω̃) s.t. v = w a.e. in Ω̃ \ Ω . The existence of such v is proven by
Theorem 3.1 and Remark 3.2.
First of all we notice that if B ⊂

(
Ω̃ \M

)
is an open ball and H1 (B ∩ (Sv ∪ S∇v)) = 0

then v is smooth in B since v ∈ H2(B) so that by standard regularity theory we get
ṽ ∈ C2(B ∩ Ω) (see [25]).



So we deduce ṽ ∈ C2
(
Ω̃ \ (Sv ∪ S∇v)

)
.

Now we evaluate H1
(
Ω̃ ∩

(
Sv ∪ S∇v \ (Sv ∪ S∇v)

))
. Set

(8.1) Ω0 =

{
x ∈ Ω̃ : lim

̺→0
̺−1 F(v,B̺(x)) = 0

}

We are going to prove that Ω0 is open.

Notice that Ω0 ∩
(
Ω̃ \ Ω

)
is trivially open by assumptions (2.8), (2.9), (2.11) so that we

have only to analyze points x in Ω∩Ω0, and show that they are all in the interior part of
Ω0.
The interior points x ∈ Ω can be handled by applying Theorems 5.1, 5.4 in [9], to get

(8.2) H1
(
Ω ∩

(
Sv ∪ S∇v \ (Sv ∪ S∇v)

))
= 0 ,

so we have obtained the information that Ω0∩Ω is open, and thanks to (2.6) (2.7) we are
left to show that all points x ∈ Ω0 ∩ (∂Ω \ (T0 ∪ T1 ∪M)) are interior points of Ω0.
From now on we fix

(8.3) x ∈ Ω0 ∩ (∂Ω \ (T0 ∪ T1 ∪M)) .

Let c0 be the constant in the density upper bound Theorem 3.10. In order to apply Decay
property of local minimizers (Theorem 7.3) fix k > 2, η ∈ (0, 1) , σ ∈ (0, 1), and related
constants ε1 = ε1(η, σ, α, β, . . .), ϑ1 = ϑ1(η, σ, α, β, . . .) whose existence is warranted by
Theorem 7.3 in the present paper and let ε0 the constant whose existence is warranted
by Theorem 5.4 of [9]. Choose η′ ∈ (0, η) s.t.

(8.4) (η′)1−σc0 < ε0 ∧ ε1 .
and denote by ε′, ϑ′ the related constants ε′ = ε′(η′, σ, α, β, . . .), ϑ′ = ϑ′(η′, σ, α, β, . . .)
whose existence is warranted by Theorem 7.3.
Set ε = (ε0 ∧ ε1 ∧ ε′)/2. Choose r s.t.

(8.5) 0 < r2ϑ1 < ϑ1 , 0 < r <
(
εk ∧ ¯̺∧ (c0 ∨ 1)−1

)
,

∫

Br(x)

|g|2q dy ≤ εk,

(8.6) r2(ϑ1 ∨ ϑ′)L < (c0 ∧ ε) r , Br(x) ∩ (T0 ∪ T1 ∪M) = ∅ ,

(8.7) F(v,Br(x)) ≤ ε η′ r .

We claim that B(1−η)r(x) ⊂ Ω0. In fact, if y ∈ B(1−η)r(x) there are 3 cases: if y ∈ Ω̃\Ω
then v coincides with w which is (C2 ∩W 2,∞) (Bηr(y)) hence the functional has a nice
decay; if Bηr(y) ⊂ Ω then F(v,Bηr(y)) ≤ F(v,Br(x)) ≤ ε0ηr, hence we can repeat the
argument in Section 6 of [9]; if

(8.8) y ∈ Ω ∩ B(1−η)r(x) , and dist(y, ∂Ω) ≤ ηr

additional analysis is required as follows.
In case (8.8) we have

(8.9) F(v,Bη′r(y)) ≤ F(v,Br(x)) ≤ ε η′ r .



By (8.4)-(8.7), by choosing ̺ = η′r < r in Theorem 7.3 and Remark 7.5, and by density
upper bound estimate (Theorem 3.10), referring to (3.13), we deduce

(8.10)
F(v,Bη′̺(y)) ≤ (η′)2−σ

(
F(v,B̺(y)) ∨ (̺2ϑ′L)

)

≤ (η′)2−σ ( (c0 ̺) ∨ ((c0 ∧ ε) ̺) ) ≤ ε0 η
′ ̺ ,

and

(8.11) αH1(Sv ∩ Bη′̺(y)) + βH1 ((S∇v \ Sv) ∩ Bη′̺(y)) < ε0 η
′ ̺

so that, by setting ̺′ = η′̺, the choice ̺ = η in Theorem 7.3 and Remark 7.5 entails

(8.12)
F(v,Bη ̺′(y)) ≤ η2−σ

(
F(v,B̺′(y)) ∨

(
(̺′)2ϑ0L

))

≤ η2−σ (F(v,B̺′(y)) ∨ (ε0̺
′)) .

Inequalities (8.10),(8.12) together with ̺′ = η′̺ entail

(8.13) F(v,Bη ̺′(y)) ≤ η2−σ ε0 ̺
′ .

In the same way we get: for any h ∈ N

(8.14) F(v,Bηh ̺′(y)) ≤ ηh(2−σ) ε0 ̺
′

entails

(8.15)





F(v,Bηh+1 ̺′(y)) ≤ η(h+1)(2−σ) ε0 ̺
′ ,

αH1(Sv ∩ Bηh+1̺′(y)) + βH1
(
(S∇v \ Sv) ∩ Bηh+1̺′(y)

)
< ε0 η

h+1̺′ .

Since (8.14) holds true for h = 1 due to (8.13), by induction we know that (8.15) holds
true for any h ∈ N. Then ∀h = 1, 2, ...

(8.16)
F(v,Bηh+1̺′(y)) ≤ η(h+1)(2−σ) ε0 ̺

′ = ηh(2−σ) η2−σ ε0 ̺
′ ≤

≤ ηh(2−σ) ε0 η ̺
′ = ηh(1−σ) ε0 (η

h+1 ̺′)

For every t s.t. 0 < t < η2̺′ there is j ≥ 3 s.t. ηj ̺′ ≤ t ≤ ηj−1 ̺′ , so that, by(8.16),

(8.17)
t−1 F(v,Bt(y)) ≤ t−1 F(v,Bηj−1̺′(y)) ≤ t−1 η(j−2)(1−σ) ε0 η

j−1 ̺′

= (t−1 ηj ̺′) η(j−2)(1−σ)−1 ε0 ≤ η(j−2)(1−σ)−1 ε0

and passing to the limit as t→ 0+ (say j → +∞) we get y ∈ Ω0 .
By summarizing we have shown that Ω0 is an open set.
Since Sv ∪ S∇v is countably (H1, 1) rectifiable, by Theorem 3.2.19 in [24] we get
H1 ((Sv ∪ S∇v) ∩ Ω0) = 0 , ∇v = Dv in Ω0 , ∇2v = D2v in Ω0 , so that ṽ ∈ C2(Ω0)

and (Sv ∪ S∇v) ∩ Ω0 = ∅ . Since Ω0 is open then Ω0 ∩ (Sv ∪ S∇v) = ∅ . By Lemma 4.3 we
have

(8.18) H1
(
Ω̃ ∩

(
(Sv ∪ S∇v) \ (Sv ∪ S∇v)

))
= 0 .

By setting

(8.19) K0 = Sv \ (S∇v \ Sv) , K1 = S∇v \ Sv ,



thanks to (2.6), (2.7), (2.8), (2.11), (8.18), (8.19) we obtain

(8.20) K0 ∪K1 is closed, H1(K0 ∩ Ω̃) = H1(Sv) , H1(K1 ∩ Ω̃) = H1(S∇v \ Sv) ,
hence K0 ∩ Ω̃ and K1 ∩ Ω̃ are (H1, 1) rectifiable, moreover

(8.21) F (K0, K1, ṽ) = F(v) = min{F(z) : z ∈ GSBV 2(Ω̃) ∩ Lq(Ω̃), z = w Ω̃\Ω}.
Then (by Lemma 3.2 and Remark 3.3 of [9]) we conclude that (K0, K1, ṽ) is a minimizing
triplet for F in the class of admissible triplets.
By (8.19), (8.20), (8.21) and trace properties of GSBV 2 functions, we can say that proper-
ties (2.12), (2.13), (2.14), (2.15) hold true for the minimizing triplet (K0, K1, ṽ) obtained
by partial regularity of a weak minimizer for F .
Eventually, by Lemma 3.2 of [9], we get for any other minimizing triplet (K0,K1, u) of F

(8.22) Su ⊂ K0 , (S∇u \ Su) ⊂ (K1 \ K0)

(8.23) F(u) ≤ F (K0,K1, u) = F (K0, K1, v) ;

assume by contradiction that inequality in (8.23) is strict, then (by Theorem 3.1) there

is z ∈ GSBV 2(Ω̃) ∩ Lq(Ω̃) s.t.
(8.24) F(z) = minF ≤ F(u)

and, by repeating on z the regularization procedure previously performed on v, we find a
minimizing triplet (Z0,Z1, z̃) for F fulfilling

(8.25) F (K0, K1, ṽ) = F (Z0,Z1, z̃) = F(z) .

Relationships (8.24) and (8.25) together contradict (8.23) with strict inequality; so in
(8.23) we must have equality, hence properties (2.12), (2.13), (2.14), (2.15) hold true also
for (K0,K1, u). �

Proof of Theorem 2.1 - The thesis follows immediately by Theorem 2.2 by dropping the
term µ

∫
Ω̃
|v − g|qdx and exploiting Theorem 7.4 instead of Theorem 7.3. �

Proof of Theorem 2.3 - The thesis follows immediately by Theorem 2.2 with the choice
K = Sv ∪ S∇v where v minimizes F and taking into account the assumption α = β . �

Proof of Theorem 1.1 - It is a Corollary of Theorem 2.2 since (2.10), (2.11) follows from
w̃ = w, T0 = T1 = ∅, M = ∅ e F (∅, ∅, w) < +∞ . �
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