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Abstract. A classical result of Milman roughly states that every Lipschitz function on Sn

is almost constant on a su�ciently high-dimensional sphere Sm ⊂ Sn. In this paper we ex-
tend the result by proving that any Lipschitz function on a positively curved homogeneous
space is almost constant on a high dimensional submanifold.

Introduction

The celebrated Lévy's concentration of measure inequality for the sphere, together with
the work of V. Milman on the asymptotic behavior of Banach spaces, put forward the
concentration of measure phenomenon in high dimensional spaces. Among the several results
achieved in this �eld, let us mention the work on Banach spaces [13, 11], in�nite-dimensional
groups [20], Riemannian manifolds [8, 11] or even general metric measure spaces [6, 1]. In
[15, 16], Milman extends the idea of concentration to some homogeneous structure like
Stiefel and Grassmann manifolds of an in�nite dimensional Hilbert space. Some very clever
applications of these results are proved by Gromov and Milman in [7] and [17]. We also
point out that recently Faifman, Klartag, and Milman [4] have discovered that a similar
result also holds on the torus, where the strong concentration property is not available due
to the �atness of the space.

The fundamental idea underlying these results is that a Lipschitz function tends to asymp-
totically concentrate near a single value. This type of results is usually stated in the sense
of the measure, meaning that the probability of the subset where the function is almost
constant tends to 1 when the dimension of the space approaches in�nity. Nevertheless, es-
pecially from the geometric point of view, it is important to �nd more structured subsets
on which the function is concentrated. A well-known result in this direction, due to Milman
[14], roughly states that every Lipschitz function on Sn is almost constant on a su�ciently
high-dimensional sphere Sm ⊂ Sn. The aim of this note is to extend the result of Milman
to the class of positively curved homogeneous space. Our main result, Theorem 2, will be
stated in section 2, after all the necessary preliminaries. In the last section of the paper we
also provide some explicit examples of spaces where the result can be applied.

1. Preliminaries

We now brie�y recall some elementary facts of Riemannian geometry, mainly to �x the
notation. In the paper we will use the overline notation for a quantity de�ned on the ambient
manifold, while the same quantity intrinsically de�ned on a submanifold will not have the
bar.

We consider a smooth, connected, complete, n-dimensional Riemannian manifold (M, g).
We denote by TxM the tangent space at the point x ∈ M . Let P ⊂ TxM be a 2-plane

1



2 NICOLÒ DE PONTI

spanned by (v, w), the sectional curvature at x is de�ned by

Secx(P ) =
Rx(v, w, v, w)

g(v, v)g(w,w)− (g(v, w))2
,

where Rx is the Riemannian (0, 4) curvature tensor at the point x. The Ricci curvature at
the point x ∈M in the direction v ∈ TxM is de�ned as

Ricx(v) =

n∑
j=2

Secx(Pj)

where {v, e2, ..., en} is a basis of TxM and Pj denotes the 2-plane spanned by (v, ej).

We write Sec(M) ≥ K (resp. Ric(M) ≥ K) standing for Secx(P ) ≥ K for every x ∈ M
and every 2-plane P ⊂ TxM (resp. Ricx(v) ≥ K for every x ∈ M and every v ∈ TxM). In
particular, if Sec(M) ≥ K then Ric ≥ (n− 1)K.

We recall that Sec(M) ≥ K > 0 implies that M is compact as a consequence of the
classical Myers's theorem ([12]).

1.1. Riemannian manifold as a metric measure space and the standard concen-

tration theorem. Let γ : [a, b] → M be a smooth curve in M , we de�ne the length of γ
as

L(γ) =

∫ b

a

√
g (γ̇(t), γ̇(t))dt.

We endow (M, g) with the Riemannian distance

dg(x0, x1) := inf{L(γ) | γ : [a, b]→M smooth, γ(a) = x0, γ(b) = x1}.
It is well known that the Riemannian distance induces the same topology of the manifold
(see e.g. [5, Proposition 2.91]).

Furthermore, every Riemannian manifold has a Riemannian measure ν. It is a Borel
measure and, if M is compact, it is �nite, i.e. V := ν(M) < ∞. In the paper we consider
on M the measure µ := ν/V ∈P(M), the so-called normalized Riemannian measure. Here
P(M) denotes the set of probability measures over M .

A median for a measurable function T : (M,µ) → R is a number mT ∈ R such that
µ(T ≤ mT ) ≥ 1

2 and µ(T ≥ mT ) ≥ 1
2 .

We now recall the classical concentration theorem for Riemannian manifolds with posi-
tive Ricci curvature, which follows from the Levy-Gromov isoperimetric inequality (see [11,
Theorems 2.3 and 2.4]):

Theorem 1. Let (M, g) be an n-dimensional Riemannian manifold equipped with the Rie-
mannian distance dg and the normalized Riemannian measure µ. Suppose that Ric(M) ≥
K(n− 1) > 0. Then, for every 1-Lipschitz function T :M → R and for every ε > 0

µ({|T −mT | ≤ ε}) ≥ 1−
√
π/2 exp

(
−K(n− 1)ε2/2

)
, (1)

where mT ∈ R is a median for T .

1.2. Isometry group, homogeneous spaces and Haar measure. We denote with
Iso(M) the isometry group of M , i.e. the set of maps f : M → M such that g(X,Y ) =
g(f∗X, f∗Y ) for every vector �elds X,Y , together with the operation of composition. Here
f∗ denotes the pushforward by f .

Myers and Steenrod [12] proved that every isometry is a metric isometry on (M,dg) and

Iso(M) is a Lie group.
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The group Iso(M) acts naturally on M via the map f · x = f(x).
We say thatM is an homogeneous space if this action is transitive, i.e. for every x, y ∈M

there exists f ∈ Iso(M) such that f(x) = y.
WhenM is compact, Iso(M) is a compact Lie group and we can equip it with the unique

left invariant Haar probability measure θ (see [5, Theorem 1.129]). The measure θ induces
a measure on M in the following way: let x ∈M and consider the map

hx : Iso(M)→M, hx(f) := f(x).

We de�ne µx ∈P(M) as the push-forward of the measure θ through the map hx, i.e.

µx(A) := θ
(
(hx)−1(A)

)
for every Borel set A ⊂M.

The measures {µx : x ∈ M} and the normalized Riemannian measure µ actually coincide,
at least when M is a compact homogeneous space (see [13, Theorem 1.3]).

To sum up the previous discussion, we state the following lemma:

Lemma 1. Let M be a compact homogeneous space and let µ be the normalized Riemannian
measure. Then, for every x ∈M and for every Borel set A ⊂M we have

µ(A) = θ
(
{f ∈ Iso(M) : f(x) ∈ A}

)
, (2)

where θ is the unique Haar left invariant probability measure on the compact Lie group
Iso(M).

1.3. Totally geodesic submanifolds. Let (M, g) be a complete Riemannian submanifold
of (M, g), i.e. a submanifold M ⊂ M endowed with the �rst fundamental form g := ι∗g,
where ι∗ denotes the pullback by the inclusion map ι :M →M .

We say that M is a totally geodesic submanifold if every geodesic on (M, g) is also a
geodesic on (M, g).

We write ∇ and ∇ for the Levi-Civita connections on M and M , respectively. We recall
that the second fundamental form is the symmetric tensor �eld de�ned by

II(X,Y ) = ∇XY −∇XY,

where X,Y are vector �elds on the submanifold M .
A classical fact is that M is totally geodesic if and only if the second fundamental form

II vanishes, i.e.

∇XY = ∇XY for every vector �elds X,Y on M. (3)

A direct consequence of (3) is that the Riemannian curvature tensors R of M and R of
M agree on the domain of R. In particular, it follows that

Sec(M) ≥ K implies Ric(M) ≥ (m− 1)K (4)

for every m-dimensional totally geodesic submanifold M .

2. Main result

We are now ready to state our main result:

Theorem 2. Let (M, g) be an n-dimensional, homogeneous space endowed with the geodesic
distance dg and the normalized Riemannian measure µ, n ≥ 2. Let us suppose that Sec(M) ≥
K > 0. Then, for every 1-Lipschitz function T : M → R and for every ε with 2π/

√
K >

ε > 0, there exists an s-dimensional submanifold S ⊂ M such that |T (x) − mT | < ε for
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every x ∈ S, where mT is a median of T and s is the largest dimension of a totally geodesic
submanifold contained in M satisfying

s <

(
ε2K(n− 1)

8
− ln

√
π/2

)
1

ln
(

2π
ε
√
K

) (5)

Remark 1. By recalling that Ss can be seen as a totally geodesic submanifold of the sphere
Sn for every s ≤ n, we recover the classical result of Milman (see [14] and [13, Theorem
2.4]) as a particular case.

Proof. Let M0 be an s-dimensional totally geodesic submanifold of M and let

Y := {M = f(M0) | f ∈ Iso(M)}.

The set Y = Iso(M)/H can be endowed with a structure of manifold, where H is the
closed Lie subgroup of all f ∈ Iso(M) such that f(M0) =M0. Let dy the Iso(M)-invariant
probability measure on Y . Then for every continuous function u :M → R it follows∫

M
u(x)dµ(x) =

∫
Y

(∫
M
u(x)dµM (x)

)
dy, (6)

where µ is the normalized Riemannian measure onM and µM is the normalized Riemannian
measure on M (see [9, Chapter 1]).

Let IAε be the characteristic function of the set Aε := {|T (x) − mT | ≤ ε/2}, where
2π/
√
K > ε > 0. By using now the identity (6) with a monotone sequence of continuous

functions converging to IAε (which exists since Aε is a closed subset of a metric space) and
by applying Theorem 1, we can infer the existence of a totally geodesic submanifold (S, g)
such that

µS(S ∩Aε) ≥ 1−
√
π/2 exp(−ε2K(n− 1)/8). (7)

Using the implication (4) we know that S has Ricci curvature bounded below by (s−1)K >
0, so that we can apply the Bishop-Gromov Theorem [5, Theorem 4.19] and for any x ∈ S
we have

µS(Bx(ε/2)) ≥
V ol(BK(ε/2))

V ol(BK(D))
, (8)

where Bx(r) := {y ∈ S : dg(x, y) < r}, µS is the normalized Riemannian measure on S,
D is the diameter of S and V ol(BK(D)) denotes the volume of the ball of radius D in the

s-dimensional sphere of constant sectional curvature K. By recalling that D ≤ π/
√
K as a

consequence of Myers Theorem [12], we obtain that for any x ∈ S

µS
(
Bx
(
ε/2
))
≥

∫ ε/2
0

(
sin(
√
Kt)

)s−1
dt∫ π/√K

0

(
sin(
√
Kt)

)s−1
dt

=

∫ ε√K/2
0 (sin t)s−1 dt∫ π

0 (sin t)
s−1dt

≥
(
ε
√
K

2π

)s
(9)

where the last inequality follows since

g(x) :=

∫ x
0 (sin t)s−1 dt

xs

is decreasing in [0, π] for every s ≥ 1. Indeed,

g′(x) =
xs(sinx)s−1 − sxs−1

∫ x
0 (sin t)s−1 dt

x2s
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and

h(x) := x(sinx)s−1 ≤ s
∫ x

0
(sin t)s−1 dt := w(x)

since h(0) = w(0) and

h′(x) = (sinx)s−1 + (s− 1)x(sinx)s−2 cosx ≤ s(sinx)s−1 = w′(x)

as a consequence of the inequality

x cos(x) ≤ sin(x) x ∈ [0, π].

If
µS(S ∩Aε) + µS (Bx(ε/2)) > 1, (10)

we obtain that any ball Bx(ε/2) in the s-dimensional submanifold S intersects Aε. In
particular, using (7) and (9), the inequality (10) is certainly satis�ed if

1−
√
π/2 exp(−ε2K(n− 1)/8) +

(
ε
√
K

2π

)s
> 1, (11)

i.e. if s satis�es the bound stated in (5).
In this situation, for any x ∈ S there exists z ∈ Bx(ε/2) ∩Aε, so that

T (x) = T (x)− T (z) + T (z) ≤ |T (x)− T (z)|+ T (z) < ε/2 +mT + ε/2 = mT + ε ,

T (x) = T (x)− T (z) + T (z) ≥ −|T (x)− T (z)|+ T (z) > −ε/2 +mT − ε/2 = mT − ε ,
where we have used the Lipschitz condition on T . In particular |T (x) −mT | < ε for every
x ∈ S. �

Remark 2. We notice that, by taking a slightly smaller s, Theorem 2 is still true for two
di�erent Lipschitz functions on the same submanifold (see [13, Remark 2.9]).

3. Symmetric spaces and examples

An isometry f :M →M is called involutive if f ◦ f = Id, the identity isometry.
M is a symmetric space if, for each point x ∈ M , there exists an involutive isometry fx

such that x is an isolated �xed point of fx.
A symmetric space is an homogeneous space [10, pag. 223].
A lot is known about totally geodesic submanifolds in symmetric spaces (see [3] for an

excellent exposition). Here it is useful to recall the following two facts:

1) A complete totally geodesic submanifold of a symmetric space is a symmetric space.
2) Let M be an n-dimensional symmetric space, n ≥ 2, then there exists a complete totally

geodesic submanifold M whose dimension satis�es n/2 ≤ dim(M) < n.

The �rst assertion is a standard result, which can be found in [10]. The second statement
was proved by Chen and Nagano in [2]. Thus, the class of symmetric spaces provides
an example of homogeneous manifolds that possesses su�ciently high dimensional totally
geodesic submanifolds.

To give some explicit examples where Theorem 2 can be applied, besides the aforemen-
tioned case of the sphere, we recall that the real projective space RPn is a n-dimensional
symmetric space of constant sectional curvature equal to 1 and RPn−1 ⊂ RPn is a totally
geodesic submanifold.

The complex projective space CPn is a 2n-dimensional manifold. We endowed it with the
Fubini�Study metric, so that it is a symmetric space with sectional curvature Sec(CPn) ≥ 1

4 .

RPn and CPn−1 are the maximal totally geodesic submanifolds of CPn.
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The quaternionic projective space HPn is a 4n-dimensional manifold. Equipped with the
Fubini�Study metric, it is a symmetric space with sectional curvature Sec(HPn) ≥ 1

4 and it

possesses CPn and HPn−1 as maximal totally geodesic submanifolds.
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