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Abstract
In this paper we discuss asymmetric length structures and asymmetric metric spaces.
A length structure induces a (semi)distance function; by using the total variation formula, a

(semi)distance function induces a length. In the first part we identify a topology in the set of paths
that best describes when the above operations are idempotent. As a typical application, we consider
the length of paths defined by a Finslerian functional in Calculus of Variations.

In the second part we generalize the setting of General metric spaces of Busemann, and discuss
the newly found aspects of the theory: we identify three interesting classes of paths, and compare
them; we note that a “geodesic segment” (as defined by Busemann) is not necessarily continuous in
our setting; hence we present three different notions of “intrinsic metric space”.

Keywords: asymmetric metric, general metric, quasi metric, ostensible metric, Finsler metric, run–continuity, intrinsic,
path metric, length structure

1 Introduction
“Besides, one insists that the distance function be symmetric, that is, d(x, y) = d(y, x).

(This unpleasantly limits many applications [· · · ]).” M. Gromov ([12], Intr.)

The main purpose of this paper is to study an “asymmetric metric theory”; this theory naturally
generalizes the metric part of Finsler Geometry, much as symmetric metric theory generalizes the metric
part of Riemannian Geometry.

In order to do this, we will define the “asymmetric metric space” as a set M equipped with a positive
b : M ×M → lR+ which satisfies the triangle inequality, but may fail to be symmetric (see Defn. 1.1 for
the formal definition). We also generalize the theory of “length structures” to the asymmetric case.

The invention of a (possibly) asymmetric distance function is quite useful in some applied fields, and
mainly in Calculus of Variation, as we will exemplify in the next section 1.1.3. It is then no surprise that
this theory was invented and studied many times in the past.

It was indeed shown in fundamental studies that, even if a metric space does not have the “smooth”
character of a Riemannian structure, still many definitions and results can be reformulated and carried
on. Results date back to the work of Hopf and Rinow [14] for the symmetric case, and to Cohn–Vossen
[9] for the asymmetric case 1; more recently, to works by Busemann, see e.g. [5, 6, 7].

A different point of view is found in the theory of quasi metrics (or ostensible metrics), where much
emphasis is given to the topological aspects of the theory; indeed, a quasi-metric will generate, in general,
three different topologies. This brings forth many different and non-equivalent definitions of “completeness”
(and of the other properties commonly stated in metric theory). In our definition of the “asymmetric
metric space” (M, b), we choose a different topology than the one used in “quasi metric spaces”. We will
∗This 2013 version corrects some inaccuracies that were present in previous 2004 and 2007 version; and a few in the

version published from AGMS, that are printed in red (see “errata” file for a description); and improves Prop.3.18.
†Scuola Normale Superiore Piazza dei Cavalieri 7, 56126 Pisa, Italy, andrea dot mennucci at sns dot it
1Busemann [5] attributes the first such results in this respect to Cartan, in 1928.
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compare the two fields in a forthcoming paper [16], since there we will present the different notions of
“complete” and “locally compact”.

Our set of hypotheses is more similar to Busemann’s theory of general metric spaces (as defined in
[5]); we generalize his definition, in that we do not assume that the topologies generated by “forward
balls” and “backward balls” coincide, but rather we associate to (M, b) the topology generated by both
families of balls. This generalization has a peculiar effect on the theory: it is not guaranteed that an
arc-parameterized rectifiable path is continuous (!) We will further detail differences and similarities in
Section A.1.

Summarizing, this presentation of the theory of asymmetric metrics is more specific and more focused
on “metric aspects” than what is seen in ostensible metric theory; at the same time it is less “geometric”
compared to what is seen in Busemann’s work.

In the rest of the introduction we will present shortly the main ideas in this paper, skipping many
details and definitions.

1.1 Length and distance
1.1.1 The Asymmetric Metric Space

Let M be a non empty set.

Definition 1.1 b : M ×M → [0,∞] is an asymmetric distance function if b satisfies

• b ≥ 0 and ∀x ∈M, b(x, x) = 0;

• b(x, y) = b(y, x) = 0 implies x = y;

• b(x, z) ≤ b(x, y) + b(y, z) ∀x, y, z ∈M .

The third condition is usually called “the triangle inequality”. If the second condition does not hold, then
we will call b an asymmetric semidistance function.2

We call the pair (M, b) an asymmetric metric space.
The space (M, b) is endowed with the topology generated by all forward balls B+(x, ε) and backward

balls B−(x, ε) for x ∈M, ε > 0, where

B+(x, ε) def= {y | b(x, y) < ε}, B−(x, ε) def= {y | b(y, x) < ε} ;

we postpone further details to Sec. 3.

There are subtle but important differences between asymmetric and symmetric distance functions; we
just present here an initial remark.

Remark 1.2 Let ε > 0 and x, y, z be such that b(x, y) < ε and b(x, z) < ε. This does not imply, in
general, that b(y, z) < 2ε

x

y

z

?

2This is elsewhere called a “pseudo distance function”; in some texts the term “semimetric” is instead used when the
triangle inequality does not hold, cf [2].
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1.1.2 The induced length

Given a (semi)distance function b, we define from b the length Lenb of paths by using the total
variation3

Lenb(γ) def= sup
T

n∑
i=1

b
(
γ(ti−1), γ(ti)

)
(1.1)

where, for a path γ : [α, β]→M , the sup is carried out over all finite subsets T = {t0, · · · , tn} of [α, β]
such that α ≤ t0 < · · · < tn ≤ β. When Lenb(γ) <∞ we say that γ is rectifiable.

1.1.3 An example in Calculus of Variations

One possible origin of the idea of asymmetric distance functions is in this example from Calculus of
Variations.
Example 1.3 Suppose that M is a differential manifold 4. Suppose that we are given a Borel function
F : TM → [0,∞], and that for all fixed x ∈M , F (x, ·) is positively 1-homogeneous. We define the length
lenF ξ of an absolutely continuous path ξ : [0, 1]→M as

lenF ξ =
∫ 1

0
F (ξ(s), ξ̇(s)) ds . (1.2)

We then define the asymmetric semidistance function bF (x, y) on M to be the infimum of this length
lenF ξ in the class of all absolutely continuous ξ with given extrema ξ(0) = x, ξ(1) = y.
This example generalizes the definitions of “length of paths” and “distance function” that are found
in Riemann or Finsler Manifolds (see e.g. section 6.2 in [1]); indeed it is called a Finslerian Length in
Example 2.2.5 in [4]. So we will call bF the Finslerian distance function.

1.1.4 Partially ordered sets

Another possible example is as follows.
Example 1.4 Let (M,≤) be a partially ordered set. Let a>, a<, a? ∈ [0,∞] satisfying the following

a? ≤ a< + a> , a> ≤ 2a? , a< ≤ 2a? , a? 6= 0 .

We define b on M ×M as

b(x, y) def=


0 if x = y

a< if x < y

a> if x > y

a? if x,y are not comparable

. (1.3)

b is an asymmetric distance. (This is the most general b that depends only on the relative order of x, y).
At the same time, if a> 6= a< then, for any x, y ∈M with x 6= y, from the values of b(x, y) and b(y, x) we
can recover the relative order of x, y.

Let us fix a< = 0, a> = a? = +∞; then the above example defines a functor from the category of
partially ordered sets (with “the monotonic non decreasing maps” as morphisms) to the category of
asymmetric metric spaces (with “the Lipschitz maps” as morphisms). Vice versa, given an asymmetric
metric space (M, b), we may define a partial order (M,≤) on M as

x ≤ y ⇐⇒ b(x, y) = 0 . (1.4)

This functor is the left inverse of the one defined previously. See [13] and references therein for more on
this categorical relationship.

Note that all this would not be possible if we required that b be a symmetric distance.
3According to Busemann [5], this definition goes back to Menger (1928).
4More precisely, let M be a finite dimensional connected smooth differential manifold, without boundary.
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1.1.5 The length structure

Both the length lenF defined in (1.2) and the length Lenb defined in (1.1) share common properties. We
will abstract them introducing the concept of length structure. (This is a commonly used concept in the
symmetric case, see e.g. [12], [4]).

In Section 2.1 we will define a length structure (C, len) where C is an appropriate family of paths
γ : [α, β]→M (and α, β vary) and len : C→ [0,∞] is the “length” of the paths. We remark that C and
len should satisfy some hypotheses, that we defer to Section 2.1 for ease of reading of the introduction.

In the case of lenF defined in (1.2), we would choose C to be the family of all absolutely continuous
paths. In the case of Lenb defined in (1.1) we may choose C to be the family of all continuous paths; but
we will see that this is not the only possible choice when b is asymmetric.

We can then induce a new semidistance function5 from (C, len). We say that a path γ : [a, b]→M
“connects x to y” when γ(a) = x, γ(b) = y.
Definition 1.5 Given a length structure, the induced semi distance function bl(x, y) on M , is defined
to be the infimum of the length len(ξ) in the class of all ξ ∈ C that connect x to y.

1.1.6 Idempotency

We can then iterate the above ideas: indeed from a length structure we may induce a distance using
Definition 1.5 above; whereas starting from a distance we may define a length structure using (1.1) (on an
appropriate class C of paths). The above operations may be chained in two ways,

length → distance → length →. . .
distance → length → distance →. . .

and this leads to two different points of view to the problem, one discussed in Section 2, and the other one
in Section 3; the two points of view essentially coincide in the symmetric case (as discussed in Sec. 3.5),
but they diverge in the asymmetric case.

Under reasonable assumptions, we expect the above operations to stabilize after few iterations; indeed
in the symmetric case the following propositions hold.

When we start from a length structure, the following results are known in the symmetric case.
Proposition 1.6 (Prop. 1.6 in [12]) Suppose that (C, len) is a symmetric length structure satisfying
the hypotheses in Sec. 1.A in [12]; let bl(x, y) be induced from (C, len) as explained in 1.5, and Lenb

l

be
defined as in (1.1). In general Lenb

l

≤ len. If len is lower semi continuous in the compact–open topology
of continuous paths from [0, 1] to M (considering M as a metric space with the distance function bl),
then Lenb

l

≡ len in C.

Proposition 1.7 (Prop. 2.4.3 in [4]) Suppose that (C, len) is a symmetric length structure satisfying
the hypotheses in Sec. 2.1 in [4]; add to M a compatible topology. Let bl and Lenb

l

be defined as above. If
len is lower semi continuous in the topology of pointwise convergence of continuous paths from [0, 1] to
M , then Lenb

l

≡ len in C.

(For more details on the hypotheses, see Remark 2.5 and Section 2.3.1). We call “idempotency” the
above property “Lenb

l

≡ len”. This type of property will hold in the hypotheses of this paper as well:
see Theorem 2.19; as an application in Section 2.5.3 we will prove idempotency for Example 1.3. In
Section 2.5.2 we will argue that the compact open topology is not in general the correct topology to
describe the problem. We will introduce (in Section 2.4.1) a specific topology, called “DF topology”. We
remark that the DF topology is not related to any choice of a “compatible” topology on M ; see e.g.
Proposition 3.18 and comments following. We will see in Sec. 2.5.4 that the proposed definitions and
methods can deal with a larger class of problems than previously possible.

When we start from a metric space, the following property holds.
5See also Remark 2.8.
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Proposition 1.8 Suppose that (M, b) is a symmetric metric space; let Lenb be defined as in (1.1); let C
be the class of all continuous and rectifiable paths in (M, b); then let bg(x, y) be defined as the infimum of
length Lenb(ξ) in all ξ ∈ C connecting x to y; eventually define Lenb

g

(using (1.1) with bg in place of b).
Then Lenb

g

≡ Lenb in C and bg = (bg)g (and so on).

(Note that the above statements hides a technical but important fact, see Proposition 3.11). It will turn
out though that in the asymmetric case the matter is more complex, and in particular we will have to
choose carefully the class C of admissible paths: we will present three interesting classes of paths, and
compare them; curiously, we will see that the commonly used class of “continuous rectifiable paths” does
not enjoy idempotency in the asymmetric case; whereas a newly defined class of “run–continuous paths”
does.

This ends the introduction. In the following sections we will review all the above ideas, and provide
detailed definitions, theorems and examples.

2 Length structures
Let M be a non empty set. Foremost we define the joining and reversal of paths.

Definition 2.1 (Reverse path) Given γ : [α, β]→M , the reverse path is γ̂ : [−β,−α]→M defined
by γ̂(t) def= γ(−t).

Definition 2.2 (Joining of paths) Suppose we are given two paths

γ′ : [α, ζ]→M , γ′′ : [ζ, β]→M .

Suppose γ′(ζ) = γ′′(ζ), then we may join6 the two paths and obtain

γ(t) =
{
γ′(t) if t ∈ [α, ζ]
γ′′(t) if t ∈ [ζ, β]

(2.1)

Clearly, if M is a topological set, and if γ′, γ′′ are continuous, then γ is continuous as well. Note that
paths will not necessarily be continuous in the following.

2.1 Definition and properties
Let M be a non empty set. Let C be a family of paths γ : [α, β]→M (note that α, β vary in the family).
The length functional is a function len : C→ [0,∞]. We define the pair (C, len) to be a length structure
on M when the following hypotheses are satisfied. 7

Hypotheses 2.3 1. Paths in C may be splitted, and len is monotonic: if γ ∈ C then its restriction
γ′ = γ|[c,d] is in C, and len γ′ ≤ len γ.

2. Paths in C may be joined, and len is additive. Suppose γ′, γ′′ ∈ C are as defined in 2.2 and γ is
their join: then γ ∈ C and

len γ = len γ′ + len γ′′ .

3. The case α = β behaves as follows: ∀x ∈ M , ∀α ∈ lR, the singleton path γ : {α} → M with
γ(α) = x is in C and len γ = 0.

4. (C, len) is independent of linear reparameterization: given γ ∈ C, given h > 0, k ∈ lR, we
define the linear reparameterization γ′ : [(α − k)/h, (β − k)/h] → M as γ′(s) = γ(hs + k); then
γ′ ∈ C, and len(γ) = len(γ′). 8

6For the record, [12] calls this operation “juxtaposition”, and [4],[17] “concatenation”.
7The following conditions are not independent, some of them imply some others; we do not detail.
8On this choice of hypothesis, see Sec. 2.5.1 and remark 2.26.
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Some other properties that we may cite sometimes are the following.

Definition 2.4 5. C connects points: ∀x, y ∈ M there is at least one γ ∈ C, γ : [α, β] → M such
that γ(α) = x, γ(β) = y.

6. len is run-continuous: that is, the running length

`γ : [α, β]→ [0,∞] , `γ(t) def= len(γ|[α,t]) (2.2)

is continuous for all γ ∈ C s.t. len(γ) <∞.

7. C is reversible: if γ ∈ C and γ̂(t) def= γ(−t) is the reverse path, then γ̂ ∈ C.

8. (C, len) is symmetric: if C is reversible and moreover len(γ) = len(γ̂).

9. It is independent of homeomorphic reparameterization when, given γ ∈ C, γ : [α, β]→ M ,
ϕ : [a, b]→ [α, β] an increasing homeomorphism such that γ ◦ ϕ ∈ C, then len(γ) = len(γ ◦ ϕ).

In example 1.3, choosing C = CAC to be the family of all absolutely continuous paths, we obtain
that (CAC, lenF ) satisfies all the above properties in 2.3 and 2.4, 9 but for “symmetry” (unless F (x, v) =
F (x,−v)∀x, v); moreover `γ is absolutely continuous when lenF (γ) is finite.

Remark 2.5 Length structures (at least in the symmetric case) are a well known mathematical object.The
set of hypotheses we present here are though more general; indeed

• the definition in Sec. 1.A in [12] assumes all properties listed in 2.3 and 2.4. (The symmetric property
follows from the fact that [12] assumes that len(γ) = len(γ ◦ φ) for all homeomorphisms φ.)

• The definition in Sec. 2.1 in [4] assumes all properties listed in 2.3, and also 2.4 but for (9), that
is proved to be a consequence. (Note that in [4] “C connects points” is not explicitly assumed; but in
the symmetric case the problem is addressed by working in path-connected components, as explained in
Exercise 2.1.3 in [4].)

The reason we did not enforce all properties 2.4 as part of the definition 2.3 is that they are not needed in
some following theorems, and are not satisfied in the examples we will see.

2.2 Length by total variation
Let b be an asymmetric semi distance function on M . We induce from b the length Lenb γ of a path
γ : [α, β]→M , by using the total variation (seen in eqn. (1.1)).

We remark that Lenb is defined for all paths (and not only those in C), and it satisfies all properties
listed in the hypotheses 2.3 in the previous section. It moreover satisfies these properties.

Proposition 2.6 Let b, b̃ be two asymmetric semidistance functions, then

Lenb+b̃ = Lenb + Lenb̃ .

Proof. The supremum in the definition of Lenb is also the limit in the directed family of finite subsets T
of [α, β] (the family is ordered by inclusion).

The following property will be quite useful; it follows straightforwardly from the definition of the total
variation length.

9Regarding property (9), see 2.26.
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Proposition 2.7 (Change of variable) Suppose b is an asymmetric semidistance function. Let γ :
[α, β]→M , γ2 : [α2, β2]→M be linked by

γ = γ2 ◦ ϕ

where ϕ : [α, β]→ [α2, β2] is monotone non decreasing, continuous, and ϕ(α) = α2, ϕ(β) = β2 ( i.e. ϕ is
surjective). Then

Lenb γ = Lenb γ2 .

The above property holds also when ϕ is not bijective10; this is very useful, since it simplifies some proofs.

2.3 Induced semidistance
Let (C, len) to be a length structure on M .

As we did in 1.5, we again define the induced semidistance function bl(x, y) as the infimum of
the length len(ξ) in the class of all ξ ∈ C connecting x to y. (If there is no such path, then bl(x, y) =∞).

Proposition 2.8 bl is an asymmetric semidistance function. Indeed bl satisfies the triangle inequality,
since len is independent of reparameterization and additive. Moreover bl ≥ 0, and bl(x, x) = 0 since
“singleton paths” are always in C (see property 3 in 2.3). Without additional hypotheses bl may fail to be
an asymmetric distance function, since we cannot be sure that bl(x, y) = bl(y, x) = 0 =⇒ x = y.

2.3.1 Compatible topology

[4] defines that

Definition 2.9 A topology τ on M is compatible with (C, len) when, for any x ∈ M and U ∈ τ with
x ∈ U there exists ε > 0 such that for any path γ ∈ C connecting x = γ(α) to a point γ(β) not in U , we
have len(γ) ≥ ε.

In the symmetric case bl is a symmetric semidistance function, so it induces a topology. (In the asymmetric
case the topology induced by bl is defined as explained in Sec. 3).

Proposition 2.10 Suppose that len and bl are symmetric.

• A topology τ is compatible with (C, len), if and only if

• τ is equal to, or coarser (has less open sets) than, the topology generated by bl.

So the topology induced by bl is always compatible. (In the asymmetric case the above proposition needs
some adjustments, in the second statement we need to consider the forward topology generated by bl).

Remark 2.11 [12] associates with M the (symmetric) distance function bl; [4] assumes that M is
endowed with a separated compatible topology; a consequence is that, in both approaches, any path γ ∈ C

has to be continuous: see Lemma 2.21.

Note that, if the compatible topology is separated, then bl is necessarily a distance (and not a semidistance)
function.

10This is sometimes overlooked in commonly found proofs, though it was noted already by Busemann in 1944.
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2.4 Inducing a length is a relaxation
We now combine the ideas in the two previous subsections. Let (C, len) be a length structure on M . Let bl

be the induced semidistance function. Eventually define Lenb
l

using the total variation (1.1) with b = bl.
In the following lemmas we suppose that the length structure (C, len) satisfies all the hypotheses 2.3

in the previous section.
The reparameterization property of (C, len) and the Prop. 2.7 entail that we may consider only paths

ξ : [0, 1]→M in the following.

Definition 2.12 We call C01 the class of ξ : [0, 1]→M with ξ ∈ C.

Lemma 2.13 Fix a path γ , γ : [0, 1]→M for simplicity. Given T ⊂ [0, 1] a finite subset we define

ΞC01,γ,T
def= {ξ ∈ C01,∀t ∈ T, ξ(t) = γ(t)} ; (2.3)

(we will write Ξγ,T instead of ΞC01,γ,T in the following when no confusion would arise). Then

Lenb
l

(γ) = sup
T

inf
ξ∈Ξγ,T

len(ξ) (2.4)

where the sup is done on all choices of T as above, and the inf is done on the class Ξγ,T .

Proof. We insert the definition of bl into the definition (1.1) of Lenb
l

γ:

Lenb
l

(γ) = sup
T

n∑
i=1

inf
ξi

len(ξi) (2.5)

where the sup is done on all choices T = {t0, t1, . . . tn−1, tn} where we vary n and t1 · · · < tn; and the inf
is done on choices of paths ξi ∈ C01, connecting γ(ti−1) to γ(ti). Since the paths are chosen independently,
then

n∑
i=1

inf
ξi

len ξi = inf
ξ1,...,ξn

n∑
i=1

len ξi (2.6)

Equivalently (since (C, len) is independent of reparameterization) we may choose ξi : [ti−1, ti]→M ; so
we can join all the ξi and we obtain (2.4)

To anybody familiar with Calculus of Variations, the right hand side in (2.4) really looks like the
relaxation len∗ of len.

Definition 2.14 Given a real function F defined on a topological space, the relaxation F∗, a.k.a. the
lower semi continuous envelope, is the largest lower semi-continuous function less or equal to F .
(See e.g. Sec. 2.3.4 in [10], or Sec. 1.3 in [8]). F∗ is defined as

F∗(x) = sup
U,x∈U

inf
y,y∈U

F (y)

where U are open sets in the domain of F ; moreover

F∗(x) = min{F (x), lim inf
y→x

F (y)} .

(In the following we will often abbreviate lower semi-continuous as “l.s.c.”).
That is, (2.4) will be a relaxation as soon as we properly define the appropriate topology on C01.
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2.4.1 The DF topology

Proposition 2.15 The family Ξγ,T with γ ∈ C01 and T ⊂ [0, 1] finite, is a base for a topology on C01.

For lack of a better name, the topology generated by the above base will be called the DF topology
on C01; the family of all open sets will be denoted by τDF . Note that τDF is the restriction to C01 of the
product of discrete topologies on M .

Note that
if T ⊆ T̃ then Ξγ,T̃ ⊆ Ξγ,T (2.7)

so the family of neighborhoods of a path is a directed ordered set indexed by finite subsets T .
Note also that the DF topology may be equivalently defined on the family of all paths M [0,1] and

then restricted to C01.

Properties The DF topology enjoys the following properties.

• This topology is separated. Indeed if γ, γ̃ ∈ C01 and γ 6= γ̃ then let t ∈ [0, 1] be s.t. γ(t) 6= γ̃(t): the
neighborhoods

Ξγ,{t} ∩ Ξγ̃,{t} = ∅ .

• C01 is dense in all the paths M [0,1], iff for any T = {t0, · · · , tn} ⊂ [0, 1] and choices x0, . . . xn ∈M
there is a γ ∈ C01 s.t. γ(ti) = xi, iff C connects points.

• Given x, y ∈M , the set of all curves γ ∈ C01 that connect x to y is open and closed.

• Let M = [0, 1]2 (with Euclidean topology) and

γn : [0, 1]→M , γn(t) =
{(
t, nt(1− nt)

)
t ∈ [0, 1/n]

(t, 0) t ∈ [1/n, 1]

in this classical example we have that γn → γ0 pointwise and in the τDF topology, but γn 6→ γ0
uniformly.

• Usually C01 is not compact in this topology. Indeed consider this simple example. Let again
M = [0, 1]2 and the family of paths γs(t) = (t, s) for s ∈ [0, 1]: then the neighborhoods Ξγs,{0} are
all disjoint.

• The previous example does not satisfy the first and the second axiom of countability. So in general
we do not expect that the DF topology be metrizable.

• In the previous example, we have that γ1/n →n γ0 uniformly, but γ1/n 6→n γ0 in the DF topology.
So the topology of uniform convergence and the DF topology are in general incomparable. See
though Lemma 2.22.

• The DF topology and the topology of pointwise convergence are comparable.

Lemma 2.16 Let M be a topological Hausdorff space. Let τPW be the topology of pointwise
convergence (that is the product topology in M [0,1]). Then τPW ⊆ τDF , that is, the DF is finer than
the topology of pointwise convergence.
In particular if γn → γ0 in the τDF topology, then γn → γ0 pointwise; if len is l.s.c. in the
pointwise–convergence topology, it is l.s.c. in the DF topology.

• “Reparameterization” is a homeomorphism.

Lemma 2.17 Suppose that ϕ : [0, 1] → [0, 1] is a bijection; suppose that forall γ ∈ C01, we have
that γ ◦ φ−1 ∈ C01 and γ ◦ φ ∈ C01; define Φ : C01 → C01 by Φ(γ) def= γ ◦ ϕ; associate to C01 the DF
topology; then Φ is a homeomorphism.
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This property is enjoyed also by the topology of pointwise convergence (when M is a topological
space) and by the topology of uniform convergence (when M is a metric space); but is valid in
Sobolev spaces only if ϕ is regular.

Note that the topology τDF itself is not related to any choice of “compatible topology” on M .

2.5 Idempotency in length structures
The length by total variation is l.s.c. in all the topologies listed in the previous section.

Proposition 2.18 In general, let b be an asymmetric semidistance function on M . Consider the length
Lenb, associated to all the paths γ : [0, 1]→M ; that is, let’s consider the length structure (M [0,1],Lenb).
Lenb is always l.s.c. in the DF topology; if we endow M with a topology s.t. b is continuous, then Lenb is
l.s.c. in the product topology τPW .

The above is well known in the symmetric case (see e.g. Prop. 2.3.4 in [4]), and holds similarly in the
asymmetric case as well.

The relaxation enjoys some well known properties; so we immediately obtain these results.

Theorem 2.19 Let (C, len) be a length structure. Let bl be the induced semidistance function.

1. If γ ∈ C,
Lenb

l

(γ) ≤ len(γ) , (2.8)

this immediately follows from (2.4) since γ ∈ Ξγ,T ,∀T ; or, if we prefer, from the well known fact
the relaxation is less or equal than the original function.

2. Suppose γ ∈ C; len is lower semi continuous at γ according to the DF topology, if and only if
Lenb

l

(γ) = len(γ).

When Lenb
l

≡ len, that is, when len is l.s.c. on all C, we say that the length structure enjoys
idempotency.
(For many practical purposes, usually this property is required only on rectifiable curves, that is
C ∩ {len <∞}. Note that (C ∩ {len <∞}, len) is again a length structure.)

3. Suppose γ ∈ C; if γ is a “limit point” for C then

Lenb
l

(γ) = min{len(γ), lim inf
ξ∈C,ξ→γ

len(ξ)} ;

if γ is not a “limit point” for C, Lenb
l

(γ) = len(γ). 11

4. Let bll be induced from the length structure (C,Lenb
l

); and then Lenb
ll

defined using the total
variation (1.1) with b = bll. Then Lenb

ll

≡ Lenb
l

on C. Indeed len∗ ≡ (len∗)∗. So (C,Lenb
l

) always
enjoys idempotency.

5. Suppose γ 6∈ C; if γ is a “limit point” for C then

Lenb
l

(γ) = lim inf
ξ∈C,ξ→γ

len(ξ) ;

if γ is not a “limit point” for C, Lenb
l

(γ) = +∞.
11But recall that , if C connects points, then it is dense, so all paths are “limit points”.
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2.5.1 Homeomorphic reparameterization

We also note a curious fact. As soon as len is l.s.c. in the DF topology we obtain that len is independent
of homeomorphic reparameterization, as defined in 2.4.(9), since Lenb

l

enjoys this property.
In [4] the property 2.4.(9) is a consequence of the theory, since the hypotheses of the lemma 2.22 are

all verified by the axioms of the length structures; whereas in [12] it is an axiom of the length structure.
If a length structure satisfies the hypotheses 2.3 but not the other properties, it may be the case that

len(γ) 6= len(γ ◦ ϕ) for a generic homeomorphism.

Example 2.20 Let M = lR and C be the family of continuous non decreasing paths γ : [α, β] → M
that can be piecewise written as parabolas, that is ∃t0 = α < t1 . . . < tn = β, ∀t ∈ (ti, ti+1), γ(t) =
a2,i(t− ti)2 + a1,i(t− ti) + γ(ti) with a2,i ≥ 0, a1,i > 0; let

len(γ) def=
∫ β

α

γ̈(s)/γ̇(s)ds .

The pair (C, len) is a run–continuous length structure; 2.4.(9) does not hold for it; (C, len) is not l.s.c. in
the DF topology, and len∗ ≡ 0.

2.5.2 Comparison to other approaches

We now compare our approach to previous settings in [12] and [4].
In all of the following, let (C, len) be a length structure, let bl be the induced asymmetric semi distance

function; let dl(x, y) = max{bl(x, y), bl(y, x)}, then dl is a symmetric semi distance function (more details
will be in Sec. 3).

Lemma 2.21 Let (C, len) be a length structure. Suppose that len is run–continuous, that C is reversible;
then any rectifiable path γ ∈ C is continuous w.r.t. dl.

Proof. Let γ ∈ C, γ : [0, 1]→M . Let ` be the run length of γ, so that

`(t)− `(s) = len(γ|[s,t]) ;

by hypotheses ` is continuous; note that, for s < t, bl(γ(s), γ(t)) ≤ `(t)− `(s). Since C is reversible, the
same holds for γ̂(t) = γ(−t). We conclude that γ is continuous w.r.t. dl.

This is the reason why curves are usually assumed to be continuous in classical definitions on length
structures, [12] and [4].

We now propose a result that connects Prop 1.6 in [12] (see 1.6 here) to our present approach.
Proposition 2.22 Suppose that len is run–continuous, that C is reversible; suppose moreover that len is
l.s.c. in the uniform convergence w.r.t. dl; then len is l.s.c. in the DF topology.
Even if some of the methods employed in the proof are similar to those used in [12], we provide in Sec. B.1
the needed Lemmas, for convenience of the reader, since some adaptations are needed in the asymmetric
cases.

Proof. Let γ ∈ C01 a path that is non isolated in C01 w.r.t. the DF topology. Let l = lim infξ→γ len(ξ)
in the DF topology. If l ≥ len(γ) the proof ends. Suppose instead that l < len(γ). We define
Sk = {i/2k, i = 0, . . . 2k}; by the Lemma B.3 in appendix B.1, there is a sequence (ξk) ⊂ C01 such that
limn len(ξn) = l and ξk →k γ uniformly w.r.t. dl, so by the hypothesis l ≥ len(γ) (contradicting the
previous assumption).

As we before mentioned, in [12] and [4] a length structure is supposed to satisfy all the above properties:
in this case the Lemma shows that lower–semi-continuity in the uniform convergence topology is sufficient
to guarantee that Lenb

l

≡ len.
If we though drop the extra hypotheses, then we remarked that the uniform convergence topology is

incomparable to the DF topology, so in general the DF topology is the correct topology to address the
problem. This will be exemplified in Section 2.5.4.
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2.5.3 Idempotency in Calculus of Variation

Let’s go back to Example 1.3. The pair (CAC, lenF ) satisfies all hypotheses 2.3 and hence it is a length
structure; it is also run–continuous and reversible.

Lemma 2.17 applies as follows. Let CAC01 the family of absolutely continuous paths ξ : [0, 1]→M .

Lemma 2.23 Suppose that ϕ : [0, 1] → [0, 1] is a homeomorphism with ϕ,ϕ−1 absolutely continuous;
ϕ,ϕ−1 satisfy the Fichtenholz condition (see exercises 5.8.51, 5.8.61 in [3]) so for any ξ : [0, 1]→M , ξ
is AC iff ξ ◦ ϕ is AC. Define Φ : CAC01 → CAC01 by Φ(γ) def= γ ◦ ϕ; associate to CAC01 the DF topology;
then Φ is a homeomorphism.

The above Lemma is useful when associated with the one following.

Lemma 2.24 Let γ ∈ CAC, γ : [a, b]→M such that lenF (γ) <∞; forall ε > 0 there exists ϕ : [a, b]→
[a, b] an increasing homeomorphism with ϕ absolutely continuous and ϕ−1 Lipschitz and s.t. setting
θ = γ ◦ ϕ we have lenF (γ) = lenF (θ) and

∼
∀ s ∈ [a, b] , (b− a)F

(
θ(s), θ̇(s)

)
≤ ε+ lenF (γ) .

Proof. Let δ = ε/(b− a) and

ψ(t) =
∫ t

a

max{δ, F (γ(s), γ̇(s))}ds , ϕ(t) = ψ(t)(b− a)
ψ(b) + a

so ϕ is a homeomorphism; note that

ψ(b) ≤ ε+ lenF (θ) = ε+ lenF (γ) <∞ .

Let θ = γ ◦ ϕ−1 then

(b− a)F (θ(s̃), θ̇(s̃)) = F (γ(s), γ̇(s))
max{δ, F (γ(s), γ̇(s))}ψ(b) ≤ ψ(b)

setting s̃ = ϕ(s) for convenience.

With this tool in hand, we now prove this idempotency result.

Proposition 2.25 Let M , F and lenF be defined as in Example 1.3. Suppose that F is also a
Caratheodory integrand, that is

• F is lower semi continuous,

• F (x, ·) is convex and positively 1-homogeneous for all x.

Suppose moreover that there is a Riemannian metric g on M such that F (x, v)2 ≥ gx(v, v) ∀(x, v) ∈ TM .
Then lenF is l.s.c. in the DF topology, in all paths with lenF (γ) <∞.

Proof. Let bF be the distance function induced by lenF and

dF (x, y) = max{bF (x, y), bF (y, x)} .

Let dg be the distance function induced by (M, g); the second hypothesis implies that dg ≤ dF . Let
|v|x =

√
gx(v, v) when (x, v) ∈ TM .

Let γ ∈ CAC01 with lenF (γ) <∞. (Note that γ is not isolated in CAC01 w.r.t. the DF topology). If
F (γ, γ̇) 6∈ L∞, possibly using Lemma 2.23 and 2.24 and replacing γ with θ, we then assume wlog that
F (γ, γ̇) ∈ L∞ and we set ‖F (γ, γ̇)‖L∞ = L.

12[this footnote was deleted]
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The image of γ is compact; we define 0 = s1 < s2, . . . < sI = 1 so that the image of γ on [si, si+1] is
contained in a local chart Ψi, for i = 1, . . . I − 1; let S = {s1, . . . sI}.

Let l = lim infξ→γ len(ξ) in the DF topology, with ξ ∈ CAC01. If l ≥ lenF (γ) the proof ends. Suppose
instead that l < len(γ). We define Sk = {i/2k, i = 0, . . . 2k} ∪ S; by the Lemma B.3 in appendix B.1,
there is a sequence Tk ⊇ Sk of finite subsets of [0, 1] and a sequence (ξk) ⊂ CAC01 satisfying: ξk ∈ Ξγ,Tk
and limn len(ξn) = l; ξk →k γ uniformly w.r.t. dF and a fortiori w.r.t. dg; there exists K such that for
k > K, for any t, t′ ∈ Tk consecutive points13

lenF (ξk|[t,t′]) ≤ lenF (γ|[t,t′]) . ((B.2))

Moreover, for any t, t′ ∈ Tk consecutive points, we can reparameterize ξk in [t, t′] using the Lemma 2.24
above (with ε = t′ − t), so that, after reparameterization,

∼
∀ s ∈ [t, t′] , (t′ − t)F (ξk(s), ξ̇k(s)) ≤ (t′ − t) + lenF (ξk|[t,t′]) ≤

≤ (t′ − t) + lenF (γk|[t,t′]) ≤ (t′ − t)(1 + L)

but then
|ξ̇k(s)|ξk(s) ≤ F (ξk(s), ξ̇k(s)) ≤ 1 + L (2.9)

for almost all s ∈ [t, t′]. This reparameterization does not affect all other properties of ξk.
We recall that, by Ioffe theorem [8], when M = lRn, lenF is l.s.c. when ξh →h γ strongly in L1 and

ξ̇h →h γ̇ weakly in L1.
We proved that ξh →h γ uniformly, so for k large, for all si, si+1 ∈ S consecutive points, forall

s ∈ [si, si+1] both ξh(s) and γ(s) are contained in one of the aforementioned local charts Ψi; in that chart
ξh →h γ strongly in L1. Moreover by (2.9) we obtain that |ξ̇k|ξk are uniformly bounded, so that, possibly
up to a subsequence, ξ̇h →h γ̇ weakly in L1 (again in local charts).

So lim infn lenF (ξk) ≥ lenF (ξ), but lim infn lenF (ξk) = limn lenF (ξk) = l.

So we conclude that the Example 1.3 enjoys idempotency.
A further result will be in Prop. 3.19.
We moreover remark this fact.

Remark 2.26 When verifying that (CAC, lenF ) satisfies all hypotheses 2.3, we have to verify that lenF
is “independent of linear reparameterization”: this is a trivial proof.

At the end of discussion we then obtain that lenF is also “independent of homeomorphic reparameter-
ization”, that is, lenF (γ) = lenF (γ ◦ϕ) for a generic increasing homeomorphism ϕ (as long as both γ and
γ ◦ ϕ are absolutely continuous).

2.5.4 A further example in Calculus of Variation

Suppose that M is a metric space; let J : M → [0,∞) be a fixed function. Consider the family C0 of
continuous paths γ : [α, β]→M , and the length defined (when α < β) as

lenJ(γ) def=
∑

t∈(α,β)

J(γ(t)) + coutJ(γ(α)) + cinJ(γ(β))

with cin, cout ≥ 0 and cin +cout = 1. (C0, lenJ ) satisfies all hypotheses 2.3 and hence it is a length structure;
it is not run–continuous.

We present a possible application of the above framework.

Example 2.27 (International commerce) Let M = lR2. It is divided in finitely many “nations” that
are open connected sets M1,M2, . . .MN , pairwise disjoint; the boundaries of the nations are contained in
S ⊆M , a closed set; moreover S is covered by finitely many smooth 1-dimensional submanifolds of M .

13That is, t < t′ and Tk ∩ (t, t′) = ∅.
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We define J as above, and require that {J > 0} = S. Let CLip the class of Lipschitz paths; let F and lenF
be defined as in the previous sections. The length

len7(γ) = lenF (γ) + lenJ(γ)

is composed of two costs, the cost lenF of moving goods inside the nations, and the duty cost lenJ(γ) of
moving it across nation borders.

If we further assume that cin = cout = 1/2 and F (x, v) = F (x,−v), we obtain that (CLip, len7) is a
symmetric length structure: this is a simple–looking problem, but it is not easy to attack it using standard
tools in Calculus of Variations or (symmetric) Metric space theory. Indeed we note that lenJ is not l.s.c.
in the topology of uniform convergence or pointwise convergence (w.r.t. the Euclidean distance). We also
remark that lenJ is not run–continuous, so it does not fall in the classical hypotheses (as seen in [12] or
[4]).

We can instead attack it using the framework proposed in this paper.

Proposition 2.28 lenJ is l.s.c. in the DF topology, at all γ ∈ C0 where lenJ(γ) <∞.

Proof. Let T̃ = {t ∈ (α, β), J(γ(t)) > 0}; when lenJ(γ) <∞ we obtain T̃ is at most countable; suppose
that it is countable, let (tk)k be an injective enumeration of T̃ ; given ε > 0 then there exists K large such
that

∑∞
k=K+1 J(γ(tk)) < ε; let T = {t1, t2, . . . tK} ∪ {α, β}; for all ξ ∈ Ξγ,T then

lenJ(ξ) ≥
K∑
k=1

J(γ(tk)) ≥ lenJ(γ)− ε .

When T is finite we choose T = T̃ ∪ {α, β}.

Let then C7 be the class of all Lipschitz paths such that len7(γ) < ∞; suppose that F satisfies all
properties in 2.25; then (C7, len7) enjoys idempotency.

2.6 Changing admissible paths
It is important to remark that in all the discussion above the family of paths C was fixed and never
changed. In the following section 3 we will instead deal with different families of paths. We anticipate an
important idea.

Proposition 2.29 Suppose that C1,C2 are two family of paths with C1 ⊆ C2, and len : C2 → [0,∞], so
that (C1, len) and (C2, len) are two length structures using the same length functional. From each length
structure we induce a semi distance function, so we obtain b1 and respectively b2.

Obviously b2 ≤ b1, and hence by the sheer definition Lenb2(γ) ≤ Lenb1(γ) on any path. By the previous
theorem’s eqn. (2.8), Lenb2 ≤ Lenb1 ≤ len on C1, and Lenb2 ≤ len on C2.

Suppose moreover that len is l.s.c. in the DF topology on C2 (and hence on C1 as well). Then by the
previous theorem

len ≡ Lenb1 ≡ Lenb2 on C1

and
len ≡ Lenb2 ≤ Lenb1 in C2

but there may be a γ ∈ C2 \ C1 where len(γ) = Lenb2(γ) < Lenb1(γ).

3 The Asymmetric Metric Space
Let (M, b) be an asymmetric metric space, as defined in 1.1.
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3.1 Topology
We agree that b defines a topology τ on M , generated by the families of forward and backward open
balls

B+(x, ε) def= {y | b(x, y) < ε}, B−(x, ε) def= {y | b(y, x) < ε}

that is, the topology is generated by the symmetric distance function

d(x, y) def= b(x, y) ∨ b(y, x) (3.1)

with balls
B(x, ε) def= {y | d(x, y) < ε} = B+(x, ε) ∩B−(x, ε) .

By the above definition,

Proposition 3.1 xn → x if and only if d(xn, x)→ 0, if and only if both b(xn, x)→ 0 and b(x, xn)→ 0.

We will sometimes denote by τ+ (resp. τ−) the topology generated by forward (resp. backward) balls
alone; we remark that those may differ from τ .

It is important to remark that b is continuous.

Proposition 3.2 The asymmetric metric b is continuous with respect to the symmetric topology τ . Indeed
if we provide M2 with the metric

d2((x, y), (x′, y′)) def= d(x, x′) + d(y, y′) ,

then (x, y) 7→ b(x, y) is Lipschitz w.r.t. d2, since

|b(x, y)− b(x′, y′)| ≤ |b(x, y)− b(x, y′)|+ |b(x, y′)− b(x′, y′)| ≤ d(x, x′) + d(y, y′) .

Remark 3.3 We say that
b(x, y) def= b(y, x) (3.2)

is the conjugate distance function; we defined in 2.1 γ̂(t) def= γ(t) to be the reverse path; we remark
that all the theory we present is invariant under the joint transformation γ 7→ γ̂, b 7→ b.

We conclude with this definition, due to Busemann.

Definition 3.4 A “General metric space” is a space satisfying all requisites in Defn. 1.1, and
moreover

∀x, y ∈M, b(x, y) = 0 =⇒ x = y ;

and

∀x ∈M, ∀(xn) ⊂M, b(xn, x)→ 0 iff b(x, xn)→ 0 . (3.3)

This is equivalent to saying that τ+ ≡ τ−. We do not in general assume that (3.3) holds; the reason is
that we do not need it, and that it clashes with some examples, see the discussion in Sec. A.1.

3.2 Length by total variation (again)
Let (M, b) an asymmetric metric space. We induce from b the length Lenb γ of a path γ : [α, β]→M , by
using the total variation seen in eqn. (1.1). If Lenb(γ) <∞, then γ is called rectifiable. In Section 2.2
we saw many properties of Lenb. We add a further remark.
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Remark 3.5 The length Lenb is in general not symmetric: if γ̂(t) def= γ(−t), then in general Lenb γ will
be different from Lenb γ̂; hence there does not exist a measure H on M such that the length of a path is
the measure of its image, that is

H(image(γ)) = Lenb γ ;

indeed image(γ) = image(γ̂) which is incompatible with the general case in which Lenb γ 6= Lenb γ̂.

We now propose an asymmetric version of Example 1.4.b in [12], that immediately shows the above
remark in action.

Example 3.6 Let M = lR and

b(x, y) =
{
y − x if y ≥ x
√
x− y if y < x

then the topologies τ+ and τ− (generated by forward and backward balls) are equal and coincide with the
Euclidean topology. Let ε > 0 and γ̂, γ : [−ε, ε]→M be defined simply as γ(t) = t, γ̂(t) = −t; both paths
are continuous, but Lenb γ = 2ε whereas Lenb γ̂ =∞.

3.3 Running length
We suppose in this section that γ : [α, β]→M is a rectifiable path. As in (2.2) we define the running
length `γ : [α, β]→ lR+ of γ to be the length of γ restricted to [α, t], that is

`γ(t) def= Lenb
(
γ|[α,t]

)
. (3.4)

We will write ` instead of `γ in the following, to ease notation.
The following properties hold.

• `(t) is monotonic. (In general is not left or right continuous).

• Let α ≤ s ≤ t ≤ β, since Lenb is additive, then the length of γ restricted to [s, t] is `(t)− `(s).

• So, by the definition (1.1) we obtain that

b
(
γ(s), γ(t)

)
≤ `(t)− `(s) . (3.5)

• We will see in Prop. 3.9 that, if γ is rectifiable and continuous, then ` is continuous.

• The fact that ` is continuous does not imply that γ is continuous, as shown in the example 4.1.
This is counter-intuitive since it is contrary to what is seen in symmetric metric spaces, and in
Busemann’s general metric spaces.

We will call run-continuous a rectifiable path γ such that ` is continuous.

Remark 3.7 Note that “run–continuity” cannot be expressed as “continuity according to topology . . . ”;
indeed this would violate the invariance described in 3.3. Note also that if γ is run–continuous then
it is right–continuous in the τ+ topology and left–continuous in the τ− topology; but it may fail to be
continuous in the τ+ or τ− topology, as in Example 4.2.

Proposition 3.8 Let b(x, y) = b(y, x) as in (3.2), and d(x, y) def= b(x, y) ∨ b(y, x) as in (3.1). The three
following facts are equivalent.

1. γ is continuous and rectifiable, and the reverse path γ̂(t) = γ(−t) is rectifiable as well;

2. both γ and γ̂ are run-continuous;

3. γ is continuous and Lend(γ) < ∞ ( ie it is continuous and rectifiable in symmetric metric space
(M,d)).



3 THE ASYMMETRIC METRIC SPACE 17

The proof (1) =⇒ (2) follows from Prop. 3.9 here following; (2) =⇒ (1) follows from eqn. (3.5); (2)⇐⇒ (3)
from the relations b ≤ d, b ≤ d, d ≤ b+ b and Prop. 2.6.

We conclude with this important proposition.

Proposition 3.9 If γ is rectifiable and continuous, then ` is continuous.

In the symmetric case, this is known, see Prop. 2.3.4 in [4] or 1.1.13 in [17]. The asymmetric proof needs
some adjustments; we provide it for convenience of the reader, see Section B.2.

We will talk more about the relationship between continuity and run-continuity of γ in [16].

3.4 The induced distance
Suppose now that C is a family of paths such that (C,Lenb) is a length structure. Let bl be the induced
semidistance function.

Proposition 3.10 For x, y ∈M we have

b(x, y) ≤ bl(x, y) . (3.6)

Given γ ∈ C, γ : [α, β]→M , connecting x = γ(α) to y = γ(β), we have that

bl(x, y) ≤ Lenb(γ) . (3.7)

but
Lenb

l

(γ) = Lenb(γ) . (3.8)

Proof. Indeed for any path ξ ∈ C connecting x to y, by the sheer definition, we have that b(x, y) ≤ len(ξ)
hence passing to the inf we obtain (3.6). For (3.7) we just use the definition of bl. For (3.8) we use (3.6)
and (2.8).

In particular bl is a distance (and not only a semidistance) function.

3.5 The symmetric case
In the symmetric case, there is one main natural choice for the family of paths, and that is the family Cg
of all rectifiable and continuous paths14; moreover a rectifiable path is continuous iff it is run–continuous.
So from (Cg,Lenb) we induce a new (symmetric) distance bg. When bg ≡ b, b is said to be intrinsic or a
path metric or a length space. In general bg ≥ b, the topology on (M, bg) is finer than the topology
in (M, b); but this result holds.

Proposition 3.11 A path γ : [a, b]→M is continuous and rectifiable in (M, b) iff it is continuous and
rectifiable in (M, bg).

The above is found as Exercises 2.1.4 and 2.1.5 in [4], or Prop. 2.1.9 in [17]; the proof is simply based on
Prop. 3.9 and 3.10. So when we consider the length Lenb

g

, the natural choice for the family of paths is
again the same family Cg. So the discussion in the previous section applies. We thus easily prove that
Lenb

g

≡ Lenb and bg = (bg)g, that is, bg is always intrinsic. These facts are found e.g. in Prop. 2.3.12
and Prop. 2.4.1 in [4], or Prop. 2.1.10 and following in [17].

14Another commonly used family is the family of Lipschitz paths; but this choice does not significantly alter the discussion.
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3.6 Length structures in (M, b)
In the asymmetric case, there is not only one natural choice for the family of paths. We propose three
different structures, that use the same length functional Lenb, but employ three different admissible
classes of paths:
• Cr is the class of all run-continuous paths;

• Cg is the class of all continuous rectifiable paths (that are also run-continuous, by Prop. 3.9);

• Cs is the class of all continuous paths such that both γ and γ̂(t) def= γ(−t) are rectifiable (note that
other equivalent definitions are in Prop. 3.8).

Obviously
Cr ⊇ Cg ⊇ Cs ;

in symmetric metric spaces the three classes coincide, but we see in Examples 3.6, 4.1 and 4.4 that in
general in the asymmetric case these classes do not coincide.

By using the previous results such as 2.7 it is easy to see that the paths in the above classes may be
reparameterized, joined and splitted; moreover constants are in the classes; so

(Cr,Lenb), (Cg,Lenb), (Cs,Lenb)

are three length structures. So they induce three new distance functions. Let then br(x, y) (respectively
bg(x, y), bs(x, y)) be the infimum of Lenb(ξ) for all ξ connecting x, y and ξ ∈ Cr (respectively ξ ∈ Cg,
ξ ∈ Cs). Obviously

b ≤ br ≤ bg ≤ bs , (3.9)
where the first inequality was already seen in (3.6). Moreover, by (3.9), we obtain that if b is a distance
then br, bg, bs are distances (and not just semidistances), cf 2.8.

Remark 3.12 A consequence of the above inequality (3.9) is that the identity maps

(M, bs)→ (M, bg)→ (M, br)→ (M, b)

are continuous, that is, arrows go from finer to coarser topologies.15 The opposite arrows are in general
not continuous (not even in the symmetric case) as we see in Example 4.7.

At this point we obtain 3 new lengths Lenbr ,Lenbg ,Lenbs . The following is an application of the
principles presented in Prop. 2.18, Theorem 2.19, Prop. 2.29 and Prop. 3.10.
Proposition 3.13 From (3.9) and the sheer definition (1.1) we obtain that

Lenb(γ) ≤ Lenbr (γ) ≤ Lenbg (γ) ≤ Lenbs(γ) ; (3.10)

moreover, by eqn. (2.8)
if γ ∈ Cr then Lenb

r

γ = Lenb γ , (3.11)

if γ ∈ Cg then Lenb
g

γ = Lenb
r

γ = Lenb γ , (3.12)

if γ ∈ Cs then Lenb
s

γ = Lenb
g

γ = Lenb
r

γ = Lenb γ . (3.13)

Remark 3.14 The next step, in the spirit of Section 1.1.6, would be to derive new metrics from the 3
new lengths Lenbr ,Lenbg ,Lenbs ; the problem now is in choosing the class of admissible paths; indeed at
this point we have at hand three new asymmetric metric spaces

(M, br) , (M, bg) , (M, bs) ,

and for each one we would have the choice of three classes C∗r,C∗g,C∗s.
Hence it becomes urgent to study the idempotency of the above operation i.e. to see which choices

provide the same results, to tame the combinatorial zoo (see figure 1 on the following page).

15A finer topology has more open sets and less compact sets.
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(M, b) (Cg,Lenb)

(Crs,Lenb
r

)

(Cgg,Lenb
g

)

(Cgr,Lenb
g

)

(Crr,Lenb
r

)

(Cs,Lenb)

(Crg,Lenb
r

)

(Csg,Lenb
s

)
(Css,Lenb

s

)

(Csr,Lenb
s

)

(Cgs,Lenb
g

)

(Cr,Lenb) (M, br)

(M, bg)

(M, bs)

Figure 1: The combinatorial zoo.

3.6.1 Idempotency

The first such results are as follows.

Theorem 3.15 • Cr = Crr, hence br ≡ (br)r.

• Cs = Css = Cgs = Crs, hence bs ≡ (bs)s ≡ (bg)s ≡ (br)s.

• We add some inclusions.

Csg ⊆ Cgg ⊆ Crg ⊆ Cg , Csr ⊆ Cgr ⊆ Crr = Cr .

Proof. We first prove that

Css ⊆ Cgs ⊆ Crs ⊆ Cs , Csg ⊆ Cgg ⊆ Crg ⊆ Cg , Csr ⊆ Cgr ⊆ Crr ⊆ Cr .

Indeed, by remark 3.12, a path γ : [a, b]→M that is continuous in (M, bs) is continuous in (M, bg) as
well; and so on. A consequence of the inequality (3.10) is moreover that if γ is run–continuous in (M, bs)
then it is run–continuous in (M, bg) as well; and so on. So γ ∈ Css iff γ, γ̂ are run–continuous in (M, bs)
(by point 2 in Prop. 3.8), hence γ, γ̂ are run–continuous in (M, bg), so γ ∈ Cgs. All other cases are similar.

If γ ∈ Cr then by (3.11) Lenb(γ|[a,b]) = Lenb
r

(γ|[a,b]) so γ is run–continuous in (M, br) as well, that is,
γ ∈ Crr.

If γ ∈ Cs then we use (3.13), we apply the previous idea to both γ and γ̂, and use point 2 in
Prop. 3.8 and obtain that γ ∈ Css. Alternatively we use the symmetric metric theory and use point 3 in
Prop. 3.8.

In the symmetric case (Prop. 3.11) we have that Cg = Cgg; in the asymmetric case this fails, see
Example 4.4.

Currently, at this level of generality, the above are the only idempotencies and inclusions we could
prove; the picture is not yet complete, see figure 2 on the next page.

3.6.2 Intrinsic asymmetric spaces

We thus propose this definition

Definition 3.16 An asymmetric metric space (M, b) is called

• r–intrinsic when b ≡ br,
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Cgr

Cgg

(M, b)

Csr

Crr

(M, bg) (M, bs)(M, br)

Cr

Cg

Cs Crs Cgs Css

Crg
Csg

Figure 2: Inclusion between families of paths (arrows go from smaller to larger sets; arrows are bold when
the inclusion is strict in some examples).

• g–intrinsic when b ≡ bg,

• s–intrinsic when b ≡ bs.

(By eqn. (3.9) the third implies the second, the second implies the first). The previous theorem shows
that the induced metric space (M, br) is always r–intrinsic, and (M, bs) is always s–intrinsic.

We will see in [16] that many important results valid in symmetric intrinsic metric spaces hold also in
asymmetric r–intrinsic metric spaces; but not all!

Remark 3.17 Let D+(x, ε) def= {y | b(x, y) ≤ ε}. In g–intrinsic spaces, B+(x, ε) = D+(x, ε). In
r–intrinsic spaces, it does not (set x = ε = 1 in Example 4.1).

3.6.3 Applications

We now cross the boundaries between the sections 3 and 2 and their point of views. Similarly to the
symmetric case, we can state this.

Proposition 3.18 Consider these two statements.

1. (M, b) is r-intrinsic.

2. (C, len) is a run-continuous length structure on M , and induces b.
[we do not need to assume “ l.s.c. in the DF topology” here]

These two are equivalent, in the following sense.
If (1), then we set C = Cr, len = Lenb and then b = br = bl and we obtain a length structure as

specified in (2); moreover we know that (C, len) = (Cr,Lenb) is l.s.c. in the DF topology.
Vice versa, suppose that a length structure as in (2) exists, then b is r–intrinsic.

Proof. Let E be the set of γ ∈ C such that len(γ) < ∞. Note that b is also the distance induced by
(E, len). Consider the class Cr in (M, b) and induce br from (Cr,Lenb). Recalling from Theorem 2.19 that
len ≥ Lenb on C, we obtain that E ⊆ Cr. Consider the class E in (M, b) and bl the distance induced by
(E,Lenb) then (by the point 4 in the aforementioned theorem) b ≡ bl. Since E ⊆ Cr so bl ≥ br; but also
b ≤ br. (If moreover len is l.s.c. in the DF topology then len = Lenb on C.)

We again remark that the second statement above does not require any “compatible” topology on M . We
also remark that this proposition needs fewer hypotheses than lemma 2.22. (Note also that in the proof
we obtain that C ⊆ Cr: this really needs the hypothesis that the length structure be run–continuous,
indeed in the example in Sec. 2.5.4, C and Cr are incomparable).

As an application we propose this result.
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Proposition 3.19 Suppose that b is a Finslerian distance function, as defined in Example 1.3. Then
b ≡ br, that is, (M, b) is r–intrinsic.

The proof follows from the above proposition, letting C be the class of absolutely continuous paths ξ
such that lenF (ξ) <∞.

Note that, even in Riemannian manifold, CAC
6=
⊂Cr, since the latter contains also rectifiable curves that are

not absolutely continuous. Note that also that the Finslerian distance function may fail to be g-intrinsic
and s–intrinsic, see Example 4.1.

4 Examples
We present some examples of length structures and asymmetric metric spaces that provide many interesting
counterexamples.

Example 4.1 Let M = [−1, 1] ⊂ lR and let f1 : M × lR → lR be

f1(x, v) =
{
|v| if v ≥ 0 or x ≤ 0
|v|/x if v < 0 and x > 0 . (4.1)

We proceed as explained in the Example 1.3. From f1 we define the length

lenf1(ξ) =
∫ 1

0
f1(ξ(s), ξ̇(s))ds

of an absolutely continuous path ξ : [0, 1]→M ; choosing CAC to be the family of all absolutely continuous
paths, we obtain that (CAC, lenf1) is a length structure; we induce the asymmetric distance function

b1(x, y) =

 |x− y| if x ≤ y or y < x ≤ 0
log(x/y) if 0 < y < x
+∞ if y ≤ 0 < x

. (4.2)

Moreover, if ξ is monotonic, then

lenf1(ξ) = Lenb1(ξ) = b1
(
ξ(0), ξ(1)

)
.

(The first equality holds on all AC curves as discussed in Sec. 2.5.3).
We now concentrate on the space ([−1, 1], b1). This example enjoys a lot of interesting features.

1. The topology τ+ generated by forward balls is the usual Euclidean topology on [−1, 1]; whereas the
topology τ− generated by backward balls divides M into two disconnected components [−1, 0] and
(0, 1], each one with the (induced) Euclidean topology; moreover τ = τ−.
[point 2 was deleted since it was a repetition of 7]

3. Since the lengths are invariant w.r.t. reparameterization, we will consider in the following only two
family of paths γ, γ̂: the paths γ : [a, b]→M with −1 ≤ a ≤ b ≤ 1 and γ(t) = t, and their reverses
γ̂(t) = −t.

4. Let `γ(t) def= Lenb1
(
γ|[a,t]

)
be the running length. The path γ has `γ(t) = t−a, so it is run-continuous

but when a < 0, b > 0 it is not continuous, hence γ ∈ Cr, γ 6∈ Cg.

5. Let a < b. Let again γ(t) = t. Since γ ∈ Cr then br1(a, b) = b1(a, b) = b− a; since γ 6∈ Cg, γ 6∈ Cs
then bg1(a, b) = bs1(a, b) =∞.

6. Consequently, Lenb
r
1 (γ) = Lenb1(γ) = b−a (as proved by Prop. 3.13) but Lenb

g
1 (γ) = Lenb

s
1(γ) =∞.

7. By prop. 3.19 (M, b1) is r–intrinsic i.e. b1 ≡ br1.
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8. If we wish to use continuous rectifiable curves, that is the class Cg, then we hit the problem that
(M, b1) is disconnected, so (M, b1) is not g–intrinsic since so bg1(−1, 1) =∞ 6= b1(−1, 1) = 2.

Note that, as remarked at the end of Sec. 2.1, in the case of Finslerian lengths, `ξ is absolutely
continuous when it is finite; hence if ξ ∈ Cr, ξ 6∈ Cg then lenf1

(
ξ̂
)

=∞. In the example 4.6 we will see
that this does not hold for generic length structures.

Example 4.2 Let again M = [−1, 1] and let f2 : M × lR → lR be

f2(x, v) =
{
|v| if v ≥ 0 or x = 0
|v|/|x| if v < 0 and x 6= 0. (4.3)

From this we induce

b2(x, y) =


y − x if y ≥ x
log(x/y) if 0 < y < x
log(y/x) if y < x < 0
+∞ if y ≤ 0, x ≥ 0 and x 6= y

(4.4)

This example has another lot of interesting features.

1. The topology τ+ makes [−1, 0) disconnected from [0, 1]; whereas the topology τ− makes [−1, 0]
disconnected from (0, 1]. The topology τ divides [−1, 1] in 3 connected components [−1, 0), {0}, (0, 1],
each one equipped with the Euclidean topology.

2. Again γ : [−1, 1]→M defined by γ(t) = t has `γ(t) = t− 1, but is not continuous.

Other properties are as in the previous example.

The following examples are built by using a joining principle.

Lemma 4.3 (Joining of metric spaces) Suppose that (M̃, b̃) and (M, b) are asymmetric metric spaces,
and that M̃ ∩M = {x}; we can then define an asymmetric metric b on M̃ ∪M by

b(x, y) =


b̃(x, y) if x, y ∈ M̃ ,
b(x, y) if x, y ∈M ,
b̃(x, x) + b(x, y) if x ∈ M̃, y ∈M ,
b(x, x) + b̃(x, y) if x ∈M,y ∈ M̃ .

(4.5)

Example 4.4 Let M = [−1, 1], we define

b3(x, y) =


y − x if x ≤ y ,
x− y if y < x ≤ 0 ,√
x2 + 2x− x− y if y < 0 ≤ x ,√
x2 + 2(x− y)− x if 0 ≤ y < x .

(4.6)

This distance b3 is the join of two asymmetric metrics defined on [0, 1] and [−1, 0]. (See in the
appendix B.3 for detailed proof). This metric has these features.

1. With some straightforward computation, we prove that

1
3 |x− y| ≤ b3(x, y) ≤ 2

√
|x− y| . (4.7)

There follows that the topologies τ+, τ−, τ generated by b3 are all equal to the Euclidean topology.
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2. Let γ : [0, 1] → M be a continuous and monotonically decreasing path connecting x to y with
0 < y < x . Then Lenb3 γ = log(x/y).

3. Again, since the lengths are invariant w.r.t. reparameterization, we will consider only the paths
γ : [a, b]→M with −1 ≤ a ≤ b ≤ 1 and γ(t) = t, and their reverses γ̂(t) = −t in the following.

4. Let `γ(t) def= Lenb3
(
γ|[a,t]

)
be the running length. The path γ has `γ(t) = t−a, so it is run-continuous

and continuous but when a < 0, b > 0 the reverse path γ̂ is not rectifiable, hence γ ∈ Cg but γ 6∈ Cs.

5. There follows that (b3)r = (b3)g = b1.
So, this example has a counterintuitive property: the space (M, b3) has Euclidean topological
properties and is a General Metric Space, but the geodesic induced space (M, bg3) is quite non-
Euclidean and is not a General Metric Space.(See also Remark A.1).

6. Moreover γ ∈ Cg but γ 6∈ Crg.

7. But then ((b3)g)g 6= (b3)g.

8. To conclude we remark that the class Cs contains only curves whose image is restricted to [−1, 0],
hence Cs does not connect points.

Example 4.5 Let M = [−1, 1], we define

b4(x, y) =


y − x if x ≤ y ,√
y2 + 2(x− y) + y if y < x ≤ 0 ,√
x2 + 2x− x+

√
y2 − 2y + y if y < 0 ≤ x ,√

x2 + 2(x− y)− x if 0 ≤ y < x .

(4.8)

This metric b4 is again the join of two asymmetric metrics defined on [0, 1] and [−1, 0].
Again, b4 satisfies (4.7), so the topologies τ+, τ−, τ generated by b4 are all equal to the Euclidean

topology. But (b4)r = (b4)g = b2. Similar comments as above follow.

Example 4.6 Let again M = [−1, 1]. Let CH be the family of all paths ξ : [α, β]→M that are continuous
and injective (hence monotonic). Let len5 be defined as

len5(ξ) = |ξ(α)− ξ(β)|+
{

1 ξ(β) ≤ 0, ξ(α) > 0
0 otherwise

(4.9)

the effect being that, when paths run rightwards the space looks as the usual Euclidean interval [−1, 1]
whereas when they run leftwards, it looks as if there is a gap of width 1 between [−1, 0] and (0, 1].

We then define CP as the class of ξ : [α, β]→ lR that are continuous and piecewise injective (hence
monotonic), and extend the length len5 to CP by addittivity. (CP , len5) is a length structure. We then
induce the distance function b5 so we obtain that

b5(x, y) = |x− y|+
{

1 y ≤ 0, x > 0
0 otherwise

(4.10)

and the topologies are as in 4.1.
We now concentrate on the space ([−1, 1], b5). It is easy to prove that Lenb5 ≡ len5 on CP

16. Again
in the following we will consider only the paths γ, γ̂ with γ(t) = t , γ̂(t) = −t. Let `γ(t) def= Lenb5

(
γ|[a,t]

)
be the running length. The path γ has `γ(t) = t− a, so it is run-continuous, but when a < 0, b > 0 it is
not continuous, hence γ ∈ Cr, γ 6∈ Cg; moreover γ̂ is rectifiable so `γ̂(t) is bounded but it is discontinuous.

All other properties are as in the previous example 4.1.
16 Use neighborhoods Ξξ,T with T containing all points where ξ changes monotonicity.
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Example 4.7 Consider

M = {x ∈ lR2 | − 1 ≤ x1 ≤ 1, x2 = 0} ∪⋃
n≥1
{x ∈ lR2 | − 1 ≤ x1 ≤ 1, x2 = (x1 − 1)/n}

and b the Euclidean distance function (see fig. 3). In this case br ≡ bg ≡ bs. (M, b) is compact but (M, bg)
is not.

Figure 3: example 4.7

We tweak the example 4.7 a bit, to build this new example.

Example 4.8 Consider

M = {x ∈ lR2 | − 1 ≤ x1 ≤ 1, x1 6= 0, x2 = 0} ∪
{x ∈ lR2 | − 1 ≤ x1 ≤ 1, 1/4 ≥ x2 > 0} ∪⋃

n

{x ∈ lR2 | − 1 ≤ x1 ≤ 1, x2 = (x1 − 1)/n}

and b the Euclidean distance function (see fig. 4); let bg be the distance induced by the length of continuous
rectifiable curves. Let A = (−1, 0), B = (1, 0). Then (M, b) is locally compact, but is not path-metric and is
not complete; (M, b) does not admit geodesics locally around A, that is, the points A and xn = (−1,−2/n)
do not admit a minimal connecting geodesic.

The disc {y | b(B, y) ≤ 1/2} is compact for b; but the discs {y | bg(B, y) ≤ ε} are never compact for
bg.

A B

Figure 4: example 4.8

A Comparison with related works
To conclude, we compare our approach to “asymmetric metric spaces” to other approaches.

A.1 Comparison with Busemann’s “General metric spaces”
The foundation of the theory of non-symmetric metric spaces was given by Busemann in his paper Local
Metric Geometry [5], where it was christened as “General metric spaces”.

It should be noted that, although Busemann has presented the foundation of that theory, most of
his work makes the assumption that the distance function be symmetric; such is the case e.g. of the
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renowned work on The Geometry of Geodesics [6]. The study of non-symmetric “General metric spaces”
was carried on for example in Phadke’s [18] and Zaustinsky’s [19].

We report now the theory of “General metric spaces” here, in a language that is more similar to our
presentation and to [19], than to [5].

• A “General metric space” was defined in 3.4.

• A “General metric space” is finitely compact if any closed set that is contained in B+(x, r) ∪
B−(x, r) (for a choice of x ∈M and r > 0) is compact.

• A “General metric space” is weakly finitely compact if small closed forward balls are compact17.

We add some comments that highlight the differences between the approach in the present paper and
in [5].

• The additional hypothesis (3.3) used in defining “General metric spaces” holds in many applications;
for example, when the space is locally compact, as in [15]. Still it is possible to find interesting
examples of spaces where it does not hold, such as the examples 4.1 and 4.2, that are Finslerian
Metrics, induced from a Calculus of Variations problem of the form discussed in introduction.

• Another problem we see in the definition of General Metric Spaces is that the induced space may
not be.

Remark A.1 In the examples 4.4 and 4.5, (M, b) is a General Metric Space, it is topologically
Euclidean, 18 but the induced geodesic space (M, bg) does not satisfy (3.3), so it is an asymmetric
metric space as defined in this paper, but not a General Metric Space.

• One consequence of (3.3) is that any rectifiable run-continuous path is also continuous; so the
classes Cr ≡ Cs; we instead need additional hypotheses for that implication (as “completeness” or
“compactness”, see [16]). (Note that, as far as we know, the class Cr was not contemplated at the
time of [5]).

• In the aforementioned papers it was (sometimes silently) assumed that the metric b be intrinsic; 19

that is, no distinction was made between b and bg; this is restrictive, since in many simple examples
and situations we have considered the two do differ.
A situation where we are led to consider non-path-metric spaces is as follows: suppose (M ′, b′) is
an asymmetric metric space, and (M, b) is a subset of it, with b being the restriction of b′; then
it easy to devise examples where (M ′, b′) is path-metric but (M, b) is not and vice versa. For
example, in [11] a family of (symmetric) metric space are studied that are not (and cannot possibly)
be path-metric; the reason being this theorem (adapted from [11]).

Theorem A.2 Suppose that (M,d) is a complete symmetric path-metric space, and that i : M → E
is an isometric immersion in a uniformly convex Banach space E: then i(M) is convex, and any
two points in M can be joined by a unique minimal geodesic (unique up to reparameterization).

So in most of this paper we will carefully distinguish the two metrics b and bg.

• In most of the cited works (with the exception of Phadke’s [18]) the space is assumed to be locally
compact (or even finitely compact).
According to the notes at end of the introduction of [7], some work was carried on at that time to
extend known results to weakly finitely compact spaces; but the results in this paper and in [16] do
not appear in the announced papers.

17This is called forward local compactness in [16].
18It is also complete, as defined in [16].
19Note that the definition of “intrinsic metric” was not used at the time of [5]: it was in a sense replaced by the “Menger

convexity” hypothesis; see [16] for further comments.
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B Proofs
B.1 Lemmas for 2.22 and 2.25
This Lemma illustrates the general idea that would otherwise be hidden in the following Lemma.

Lemma B.1 Let (X, τ) be a topological space and f : X → lR a function; let x ∈ X be a point that is
not isolated; let eventually Un be a family of open neighborhoods of x with Un ⊇ Un+1. Then there exists
a sequence (xn) ⊂ X with xn ∈ Un and xn 6= x and such that

lim
n→∞

f(xn) = lim inf
x→x

f(x) .

Proof. Let l = lim infx→x f(x); let
F (V ) = inf

x∈V \{x}
f(x) (B.1)

then l = supV F (V ) where V are chosen in a fundamental family V of open neighborhoods of x; so
there exists a decreasing sequence (Vn) ⊆ V such that l = supn F (Vn) = limn F (Vn) but then a fortiori
l = limn F (Vn∩Un); so by (B.1) there exists xn ∈ Vn∩Un with xn 6= x such that f(xn) is near F (Vn∩Un)
enough to obtain the thesis.

This Lemma is useful when (X, τ) does not satisfy the first axiom of countability — indeed we do not
claim neither expect that xn →n x. So we will exploit it to study the DF topology.

Definition B.2 Given T ⊂ [a, b] a finite subset T = {t1, . . . , tn} with a ≤ t1 < t2 < . . . tn ≤ b, the
“finess |T | of T in [a, b]” is

|T | def= max
i=0,...n

(ti+1 − ti)

(where t0 = a, tn+1 = b for convenience).

Lemma B.3 Let (C, len) be a length structure; let γ ∈ C01 a point that is non isolated in C01 w.r.t. the
DF topology; let l = lim infξ→γ len(ξ) in the DF topology; fix an increasing sequence Sk of finite subsets
of [0, 1].

1. There exists a sequence Tk of finite subsets of [0, 1] with Tk ⊇ Sk, and a sequence (ξn) ⊂ C01 with
ξn ∈ Ξγ,Tn , ξn 6= γ and limn len(ξn) = l.

2. If l < len(γ) and 0, 1 ∈ Sk, then we can assume moreover that ∃K, ∀k > K,∀t, s ∈ Tk consecutive
points20

len(ξk|[t,s]) ≤ len(γ|[t,s]) . (B.2)

3. Suppose that len is run–continuous, that C is reversible. Suppose that 0, 1 ∈ Sk and |Sk| →k 0.
Suppose that (B.2) holds. Let bl be the induced asymmetric semi distance function from (C, len).
Let d(x, y) = max{bl(x, y), bl(y, x)} 21. Then ξk →k γ uniformly w.r.t. d.

The final claim is adapted from Prop. 1.6 in [12], we provide a detailed proof, for convenience of the
reader, since some adaptations are needed in the asymmetric cases.

Proof. • The first claim just follows from the general idea expressed in Lemma B.1; we reread the proof
of B.1 while letting Un = Ξγ,Sn , F (V ) = infx∈V \{γ} len(x) using V = {Ξγ,T } as the fundamental
family, setting Vn = Ξγ,T̃n , eventually noting that Vn ∩ Un = Ξγ,Tn by setting Tn = Sn ∩ T̃n so that
l = limn F (Ξγ,Tn) = limn len(ξn).

20That is, t < s and Tk ∩ (t, s) = ∅.
21We recall that d is a symmetric semi distance function, see in Section 3.
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• If l < len(γ) then ∃K,∀k > K we have len(ξk) < len(γ).
Now fix for a moment k > K, let 0 = t1 < . . . < tn = 1 such that Tk = {t1, . . . , tn}. For all
i = 1, . . . n, ξk(ti) = γ(ti). We build ξ̃k as follows, for any i = 1, . . . n− 1 s.t.

len(ξk|[ti,tt+1]) ≤ len(γ|[ti,tt+1])

we set ξ̃k = ξk on [ti, tt+1]; when instead

len(ξk|[ti,tt+1]) > len(γ|[ti,tt+1])

we replace a piece of ξk by a piece of γ, that is we set ξ̃k = γ on [ti, tt+1]. At this point (B.2) is
satisfied for ξ̃k; note that ξ̃k 6= γ since len(ξ̃k) ≤ len(ξk) < len(γ). We also obtain by construction
that ξ̃n ∈ Ξγ,Tn so F (Ξγ,Tn) ≤ len(ξ̃n) ≤ len(ξn) hence l = limn len(ξ̃n) as well. So we can substitute
ξn with ξ̃n to obtain the thesis.

• We write b for bl for simplicity. By the first and second claim there exist Tk ⊇ Sk and ξk ∈ Ξγ,Tk
s.t. l = limk len(ξk) and (B.2) holds.
By Lemma 2.21 any curve is continuous. Since γ is continuous then ∀ε > 0∃δ > 0 such that
∀s, t ∈ [0, 1] with 0 ≤ s < t ≤ 1, t− s < δ then d

(
γ(s), γ(t)

)
< ε, that is

b
(
γ(s), γ(t)

)
< ε , b

(
γ(t), γ(s)

)
< ε .

Since len is run-continuous, possibly reducing δ > 0 we obtain also that

`(t)− `(s) = len(γ|[s,t]) < ε .

Consider any k with |Sk| ≤ δ, then |Tk| ≤ δ; for any point s ∈ [0, 1], there ∃t, t′ ∈ Tk, with |t′−t| ≤ δ
and t ≤ s ≤ t′:

b(ξk(s), γ(s)) ≤ b(ξk(s), ξk(t′)) + b(γ(t′), γ(s)) ≤ len(ξk|[s,t′]) + ε ≤
≤ len(ξk|[t,t′]) + ε ≤ len(γ|[t,t′]) + ε ≤ 2ε

and similarly

b(γ(s), ξk(s)) ≤ b(γ(s), γ(t)) + b(ξk(t), ξk(s)) ≤ ε+ len(ξk|[t,s]) ≤
≤ ε+ len(ξk|[t,t′]) ≤ ε+ len(γ|[t,t′]) ≤ 2ε

Hence ξk → γ uniformly (w.r.t. the symmetric distance d)

B.2 Proof of 3.9
Proof. (The proof is depicted in figure 5 on the following page). We will prove that limh→0+ `(t0+h) = `(t0)
(the other limit being quite similar in proof). Since ` is monotonic, this is equivalent to infh>0 `(t0 + h) =
`(t0). Let then ρ def= infh>0 `(t0 + h), obviously ρ ≥ `(t0) so we will prove in the following that ρ ≤ `(t0).
Let ε > 0 be fixed. There exists a δ > 0 small enough so that `(t0 + δ) ≤ ρ+ ε and for all 0 ≤ h ≤ δ,

b(γ(t0), γ(t0 + h)) ≤ ε (B.3)

(using the fact that γ is continuous, and 3.2, and by definition of ρ). Since the length of γ restricted to
[t0, t0 + δ] is `(t0 + δ)− `(t0), then by the definition (1.1) we find t1 . . . tn−1 with t0 < t1 · · · < tn = t0 + δ
such that

n∑
i=1

b
(
γ(ti−1), γ(ti)

)
≥ `(t0 + δ)− `(t0)− ε
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so

b(γ(t0), γ(t1)) +
n∑
i=2

b
(
γ(ti−1), γ(ti)

)
≥ `(t0 + δ)− `(t0)− ε

and then
n∑
i=2

b
(
γ(ti−1), γ(ti)

)
≥ `(t0 + δ)− `(t0)− 2ε

by (B.3). At the same time t1 > t0 so
n∑
i=2

b
(
γ(ti−1), γ(ti)

)
≤ `(t0 + δ)− `(t1) ≤ `(t0 + δ)− ρ ;

subtracting and comparing

`(t0) + 2ε ≥ `(t0 + δ)−
n∑
i=2

b
(
γ(ti−1), γ(ti)

)
≥ ρ

and by arbitrariness of ε this implies that ρ = `(t0).

t1t0

`(t)

t

ρ

`(t0)

t2

b(γ(t1), γ(t2))
ε

t3 = t0 + δ

ε

Figure 5: Proof of 3.9

B.3 Example 4.4
We now return to Example 4.4. We now prove that b3 is an asymmetric metric on M = [−1, 1].

Proof. For x, y ∈ [0, 1] we define

b3(x, y) =
{
y − x if 0 ≤ x ≤ y√
x2 + 2(x− y)− x if 0 ≤ y < x

(B.4)

whereas for x, y ∈ [−1, 0] we define b3(x, y) = |x− y|. If we join the two definitions by setting

b3(x, y) = b3(x, 0) + b3(0, y)

in all cases when xy < 0, we arrive at the definition in (4.6).
We want to prove that the triangle inequality

b(x, y) + b(y, z) ≥ b(x, z)

holds for all possible choices of x, y, z ∈ [−1, 1]. Since the joining process does preserve this inequality, we just
need to prove its validity for x, y, z ∈ [0, 1].

We divide two cases, dependent on the relative position of {x, z}; each case may have at most three subcases
(depending on the position of y). (Note that we always omit the cases x = z or x = y or y = z, where the result is
trivial).
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Case 0 < x < z. Three subcases.

Case 0 < x < z < y.
(y − x) + (

√
y2 + 2(y − z)− y) ≥ (z − x)

that is √
y2 + 2(y − z) ≥ z (B.5)

that is
(y + z + 2)(y − z) ≥ 0 .

Case 0 < x < y < z. Euclidean
Case 0 < y < x < z.

(
√
x2 + 2(x− y)− x) + (z − y) ≥ (z − x)

that is √
x2 + 2(x− y) ≥ y

and then
(x+ y + 2)(x− y) ≥ 0 .

Case 0 ≤ z < x. Three subcases.

Case 0 < z < x < y.
(y − x) + (

√
y2 + 2(y − z)− y) ≥

√
x2 + 2(x− z)− x

that is
(
√
y2 + 2(y − z) ≥

√
x2 + 2(x− z)

squaring
(y + x+ 2)(y − x) ≥ 0 .

Case 0 < z < y < x. We prove that

(
√
x2 + 2(x− y)− x) + (

√
y2 + 2(y − z)− y) ≥

√
x2 + 2(x− z)− x

that is √
x2 + 2(x− y) +

√
y2 + 2(y − z) ≥

√
x2 + 2(x− z) + y

both sides are positive, so we square and simplify√
(x2 + 2(x− y))(y2 + 2(y − z)) ≥ y

√
x2 + 2(x− z)

then again squaring and simplifying

(y − z)
(
(2x+ x2)− (2y + y2)

)
≥ 0 .

Case 0 < y < z < x.
(
√
x2 + 2(x− y)− x) + (z − y) ≥

√
x2 + 2(x− z)− x

that is √
x2 + 2(x− y) + (z − y) ≥

√
x2 + 2(x− z)

that is trivial, since (x− y) ≥ (x− z).
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