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Abstract

In this paper we discuss asymmetric metric spaces (that is, quasi-metric spaces)
in an abstract setting, mimicking the usual theory of metric spaces, but adding ideas
derived from Finsler geometry. As a typical application, we consider asymmetric
metric spaces generated by functionals in Calculus of Variation.
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1 Introduction

“Besides, one insists that the distance function be symmetric, thétis,z’) = d(z’, x).
(This unpleasantly limits many applicatiops -])." M. Gromov ([7], Intr.)

The main purpose of this paper is to extract a “metric theory” from Finsler Ge-
ometry, as Gromov extracted a metric theory from Riemannian Geometry, (see section
I'in [7]). In order to do this, we need to define “asymmetric metric spaces”, and use
“asymmetric definitions” such as “forward completeness”, “forward boundedness”, etc
(see in§2). In §3 we study a typical application from Calculus of Variations.

§1.i Previous work

In section | in [7], Gromov models the “metric part” of Riemannian Geometry, as
follows.

Consider a metric spa¢@/, d): we can define the lengthn -y of a Lipschitz curve
7 : e, B] — M using the total variation formula (see (2.4)); then we can define a new
metricd?(z, y) as the inf oflen v in the class of all Lip curves connectingo y.

Gromov defines that a metric space is “path-metrial # d9; he then proves in
§1.11§1.12 in [7] that®

Theorem 1.1 (symmetric Hopf-Rinow) Suppose that)M, d) is path-metric and lo-
cally compact; then the two following facts are equivalent

i). (M,d)iscomplete
ii). closed bounded sets are compact

and they imply that each pair of points can be joined by a geodesic (i.e. a minimum of
len 7).

*Scuola Normale Superiore Piazza dei Cavalieri 7, 56126 Pisa, Italy
Mactually, we have added the easy implicatiea=i to the statement in [7]
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The above is the “metric only” counterpart of the theorem of Hopf-Rinow in Rie-
mannian Geometry: indeed, ([f\/, g) is a finite-dimensional Riemannian manifold,
andd is the associated distance, thed, d) is path-metric and locally compact.

Since there is a Hopf-Rinow theorem in Finsler Geometry, we would expect that
there would be a corresponding theorem for “asymmetric metric spaces”.

An “asymmetric metric spaces M, b) is a setM equipped with a metrié : M x
M — RR™ which satisfy the triangle inequality, but may fail to be symmetric §2e
for the formal definition).

These metrics have already been studied in the past, with the name of “quasi met-
rics”. A quasi-metric will generate, in gener#éthree different topologietsee§2.v.1).
In our definition of the “asymmetric metric spac@l/, b), we chose a different topol-
ogy associated to the space than the one used in “quasi metric spaces”: this makes
it difficult to compare the results in the two fields. We discuss further this issue in
sec.§2.v.

In asymmetric metric spaces we can state the “metric only” Hopf-Rinow theorem:

Theorem 1.2 Suppose that thasymmetric metric spac@\/,b) is path-metric and
forward-locally compact; then the following two facts are equivalent

¢ forward-bounded closed sets are compact
e (M,b) is forward-complete
and they imply that any two points can be joined by a geodesic.

This is the main result, proved as Theorem 2.37 in this paper. While trying to under-
stand this result, we explored the “asymmetric metric spaces”: they appear to be more
complexX? than it appears at first sight.

§1.ii  Origin of the problem

Let M be a smooth connected differential manifold.
Consider an integranl : TM — IR that is continuous and such that- F'(z,v)
is positively 1-homogeneous, and convex. Consider the length

1m7:1;ma@g@»@ (1.3)

where~ : [0,1] — M is a locally Lipschitz curve; this generates a “distantg’, y),
which is called & insler metrig but this distance will be, in general, asymmetric.
Consider also the Hamilton-Jacobi equation

{H@JM@»:Q u(a) = 0 (1.4)

whereH : T*M — IR is continuous ang — H(x,p) is convex, and the solution
u: M — IR is in the viscosity sense; arde M.
In the above settings, a broad number of ideas appear naturally:

e we may conside(}M, b) as anasymmetric metric spacéhen we would expect
to be able to imitate many results from the theorysginmetric metric spacgs
for example, sinc€M, b) is path-metric and locally compact, then we may use
the Hopf—Rinow theorem 1.2 (see below 1.5);

@and wild! see sed2.vi
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e we may want to use theorems from the Calculus of Variations, Hamilton-Jacobi
theory and Optimal control: indeed, we expect that the Hamilton-Jacobi equa-
tion (1.4) is naturally associated with the distahte, y), so thatu(z) = b(a, x)
is the viscosity solution of (1.4).

Unfortunately, it is often assumed that € C?(T'M) (where theL(z,v) =
F(x,v)?) andH € C?(T*M) ©; few results (see [12]) are known in absence
of regularity assumptions of.

We believe that the theory asymmetric metric spacesll provide a theorem of
existence and uniqueness for Hamilton—Jacobi equations. This issue is explored
in[11].

e The field of Finsler Geometry readily admits thatmay be asymmetric: but
in most common books, € C*, andv — L(z,v) is strongly convex for
v # 0 (cf. 1.6); whereas we expect that many theorems would hold in less regular
spaces.

The results regarding problem (1.3) are§®; in particular, theorem 3.9 shows
that the Hopf—Rinow theorem implies a purely geometric criteria for the existence of a
minimum curve for problem (1.3), as follows:

Theorem 1.5 ® The two following are equivalent.
e (M,b) is forward-complete (resp. backward-complete) if and only if
o forward (resp. backward) bounded closed sets are compact;

in both cases, for any,y € M, there is a locally Lipschitz curvé connecting them
that minimizes (1.3).

§1.iii  Notation
We conclude the introduction with a remark on definitions

Definition 1.6 Letf : Q2 — IR where2 € R" is convex. We recall that

i). “ f is strongly convex” wherf € C? and the HessiaD?f(z) = a‘rfgx (x) is
positive definité® Vz; whereas

ii). “ fis strictly convex” when
fQz+ (1= Ny) <Af(x) + (1= A)f(y)
forallz,y e Q,z #y,0< A< 1
Note that many authors use different definitions (defining (i) as “strictly convex”).

2 Asymmetric metric spaces

We review some basilar concepts and results, commonly found in books on metric
spaces (and we refer to ch. 4 in [1] and ch. 1 [7]), which we extend and discuss in the
wider context of asymmetric metric spaces.

In all of this chapterp/ will be a generic set.

Ofor example, ir§2.4.2 [4]; or L € C® and strongly convex i§1.8 in [5]
(Dthe detailed statement is in Theorem 3.9.
Othatis,a - D2 f(z)a > Oforalla € R™, ac # 0
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§2.1  Asymmetric metric space

Definition 2.1 b: M x M — R is anasymmetric distand® if b satisfies”)
e b>0andb(z,y) =0iff x =y
o b(z,y) <b(z,z) +b(z,y) Va,y,z € M.
We call the pair(M, b) anasymmetric metric space

We agree that defines a topology on M, ® generated by the families éfrward
andbackwardopen balls

B (z,e)={y | b(z,y) <e}, B (z,e)={y|bly.z) <<}

that is, the topology is generated by the symmetric distance

d(z,y)=b(z,y) V b(y, ) (2.2)

with balls
B(x,e)={y | d(z,y) <e} = Bt (z,6) N B~ (x,¢)

By the above definition,
Proposition 2.3 x,, — z iff d(z,,x) — 0, iff bothb(x,,, z) — 0 andb(z, z,) — 0

We note thafz, y) — b(z, y) is Lipschitz w.r.td: see sectiof§2.ii.

§2.ii  Lipschitz maps

Let (N, d) be a symmetric metric space, afid N — M ,g: M — N. We could
define thatf andg are “Lipschitz w.r.t.b", or “Lipschitz w.r.t. d". That s, in the first
case

b(f(x), f(y)) < Cé(z,y), d(g(x),9(y)) < Cb(,y)
for some constant’ > 0. In the second case
d(f(z), f(y)) < Cé(z,y), d(g(x),9(y)) < Cd(z,y)
for some constant’ > 0.
The two concepts are equivalent fiyrbut not equivalent foy.
§2.1ii  Length

We induce frond the lengthen® ~ of a continuous curve : [, 5] — M, by using the
total variation

len” y= Sl%pzb(V(ti—l)ﬁ(ti)) (2.4)
i=1

where the sup is carried out over all finite subsBts= {t,---,t,} of [«, 8] and
to < -+ < tp. If len®y < oo, theny is calledrectifiable

®)also known asjuasi metricor ostensible metric
(™ the first constraint is replaced by > 0 andb(z, =) = 07, thenb is anasymmetric semidistance
®)The forward (resp. backward) balls may generate a different topology: this issue is discussegrvsec.
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Remark 2.5 The above length iasymmetric if 5(¢)=~(—t), then in generalen®
will be different fromlen® 4; hence there does not exist a measkf@n M such that
the length of a curve is the measure of its image, that is

H(imaggy)) = len”y ;

indeed imagéy) = imag€g#¥) which is incompatible in the general case in which
len® y # len” 4.

We define)?
b (x,y) = inflen® (2.6)

where the inf is taken in the class of all Lipschitz curgesonnectinge to y. If the
infimum is a minimum, then the minimum curve is teodesiconnectingr to y.
Note that

len” v > b(y(a),¥(8)) 2.7)

and therhd > b.

If the space M, b) is Lipschitz-arcwise connected, then it is also easily proved that
b9 is an asymmetric distancé? is indeed calledhe geodesic (asymmetric) distance
induced by. We may endowl with the distanceld (z, y)= b9 (z,y) V b9 (y, x): then
the resulting topology is finer than the one inducedlfilas more open sets and less
compact sets).

Suppose that is rectifiable. We define theunning length® ¢ : [a, 8] — R of
~ to be the length ofy restricted tda, ¢], that is

((t)=len” (V]a,n) (2.8)
Note that:
e Fort > s,
b(v(s),v(t)) < €(t) —£(s) (2.9)
(by (2.7)) so, if¢ is continuous, then is continuous? if ¢ is Lipschitz, theny
is Lipschitz;

e whereas ity is Lipschitz of constant, then, by direct substitution in (2.4),
Lt) —L(s) < (t—s)L

so/ is Lipschitz.

In this case the derivativéf exists for almost alt, and it is called themetric
derivativeof ~.

§2.iv  Definitions

We add some definitions

e We say that the (asymmetric) metric spdadé, b) is a path-metric spacé b =
bg; (11)

Owe may as well call ipartial total variation

(0whenb is symmetric, ify is rectifiable and continuous, théris continuous; this seems to be true also
for asymmetric distances, but was not carefully checked

(Dit (M, b) is path-metric, we agree thaf is Lipschitz-arc-connected, by definition and by 2.33
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e and we say that iadmits geodesi¢c®r thatgeodesics existf, for all z,y € M,
the inf that defined?(z,y) in (2.6) is attained by a minimizing curve, that is
called a “geodesic”.

e We say that(M,b) forward-locally admits geodesic®r thatgeodesics exist
forward-locallyif Vo € M Je > 0 such that'y € B (z, ), there is a geodesic
connectinge to y (that is, (2.6) has a minimum)

e Asequencéz,) C M is calledforward Cauchy®? if

Ve >0, IN € N suchthat'n,m, m >n > N, b(z,,zn) <e (2.10)

We say that{ M, b) is forward completdf any forward Cauchysequencéz,,)
converges to a point. %)

e We say thatd ¢ M is forward boundedf these two equivalent propositions
hold

—JdzeM,r>0st.AcC BT (z,r)
—VzeM,Ir>0st.AC B (z,r)

For anyforward definition above there is a correspondirarkwarddefinition, ob-
tained by exchanging the first and the second argumentafby using thesonjugate
distanceb defined by

b(z,y) =by,z) ; (2.11)

and a correspondingymmetrialefinition, obtained by substitutingfor b.

For the same reason, in this paper we will present mostlydiveard versions of
the theorems, sindeackwardresults are obtained as above.

We nonetheless emphasize these definitions.

e We say that M, b) is forward-locally compacif Va 3 > 0 such thafy | b(z,y) <
e} is compact.

e We say thatM, b) is backward-locally compadt Vo 3= > 0 such thafy | b(y, z) <
¢} Is compact.

e We say that(M, b) is symmetrically-locally compadf Vz 3¢ > 0 such that
{y | d(x,y) < e} is compact.

e We say that M, b) is locally compacif Vz Je > 0 such that botHy | b(z,y) <
e} and{y | b(y,z) < e} are compact.

The following implications hold:

locally compact ———  torward locally compact

} }

backward locally compact—  symmetrically locally compact

(12)This definition agrees with the one used in Finsler Geometry (see ch. VI of [2]). See 2.13 for a different
definition.
(13)according to the topology: cf. 2.3 and§2.v.1 on the notion of convergence
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§2.v. Comparison with quasi metric spaces
§2.v.1 Topology

As already pointed out, the definition 2.1 of theymmetric metricoincides with
the definition of aquasi metricthat is found in the literature, cf. Kelly [9], Reilly,
Subrahmanyam and Vamanamurthy {8 Fletcher and Lindgren [6, (pp 176-181)],
Kiinzi [10].

The main difference between our theoryasfymmetric metric spacesd quasi
metric spacess in the choice of the associated topologfy)

Indeed, we have three topologies at hand:

¢ the topologyr , generated by the families of forward and backward balls, or
equivalently by the metrid defined in (2.2);

e the topologyr* generated by the families of forward balls;
¢ the topologyr— generated by the families of backward balls;

it may happen that these three topologies are different.

This problem has been studied in [9]: there Kelly introduces the notiorbbpo-
logical space(M, 7", 77), and extends many definition and theorems, (such as the
Urysohn lemma, the Tietze's extension theorem, the Baire category thé®)etm
these spaces. Unfortunately Kelly does not include the topotdgyhis studies.

In many applications = 7+ = 77 see 2.17 ang3. We have chosen to associate
the topologyr to the “asymmetric metric space’. is asymmetric kind of objectas
a consequence, we have only one notiontbg“sequencér,,) converges ta:”, and
only one notion of the functionsf : N — M andg : M — N are continuous
Furthermore

Proposition 2.12 If 2, — z (according tor) then the sequende:,,) is both afor-
ward Cauchy sequenead abackward Cauchy sequence

in accordance with the symmetric case.

§2.v.2 Cauchy sequences, and completeness

In papers orguasi metric spaceshe quasi-metric spadé/, b) is instead usually en-
dowed with the topology *: this entails a different notion afonvergencendcom-
pactnessand poses the problem to find a good definition Galichy sequente?)
and ‘complete space

This problem has been studied in [8], where 7 different notionsQ#uchy se-
quencé are presented.!8) Combining these 7 definition with thet topology, [8]
presents 7 different definitions oEdmplete space 19

(14)[8] provides also a wide discussion of the referencequasi metrics

(5)This explain our choice of a different name.

(8)Another version of Baire theorem, using a better definition of completeness, is found in Theorem 2 in
[8].
I7what do we mean by “good definition”? We may need that the definition would satisfy a proposition
similar to 2.12; see statement iv) below

(18)The listin [8] includes the three that we definedhiv: a “forward Cauchy sequence” (resp. backward)
is a “left K-Cauchy sequence” (resp. right); a “symmetrical Cauchy sequence” is a “b-Cauchy sequence”

(19)Actually, by combining 7 Cauchy sequencewith all the above 3 topologies, we may reach a total of
14 (1) different definitions of tomplete spacdeconsidering the symmetry of using tieinstead ofb, see
eg. (2.11)). To our knowledge, no one has taken the daunting task of examining all of them.
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One of the notions ofCauchy sequentand “complete spacdrom [8] has been
further studied by Kinzi [10]; we present it here.

Definition 2.13 e A sequencéz,) C M is a “left b-Cauchy sequentaevhen
Ve > 0 3z € M and3k € IN such that(z, z,,,) < € wheneverm > k.

e (M,b) is a “left b-sequentially complete spdaéany left b-Cauchy sequence
converges to a point, according to the topolagy.

It is easy to prove that
i). if z, — x according tor™ then the sequende,, ) is a “left b-Cauchy sequente

ii). Any “forward Cauchy sequenté¢as defined in (2.10)) is aléft b-Cauchy se-
quenceé 9,

iii). If 7 =77, then any feft b-sequentially complete spdds a “forward complete
metric spackas defined in this paper.
In caser # 71, the implication may not hold.

iv). Whereas, ifz, — a according tor™ then the sequencgr,,) may fail to be

either a forward Cauchy sequenter a “backward Cauchy sequericeé?!) Cf.
example 2.27.(iv) here.

For those reasons, it is not easy to compare the results and examples in the above
papers, with the result and examples here.

From here on, we return to our setting of “asymmetric metric spaces”. we will
always use the topology.

§2.vi  Comparison with symmetric case

There are subtle but important differences betwasymmetricand symmetric dis-
tanced??. We start with a striking remark.

Remark 2.14 Lete > 0 andz,y, z be such thab(z,y) < € andb(x, z) < . This
does not imply, in general, thaty, z) < 2¢

/?

/

y

This has consequences such as

i). In example 2.27.(iv) there exists a sequence suchithat ) — 0 butz,, A~ =

(20just chooser = N = k andz = z,, in the definition ofleft b-Cauchy sequence

(@Dindeed, Kelly [9] had encountered this problem, which was a motivation of [8]

(22)These are fundamental remarks: since ‘Sygmmetric metric space’ls the metric space commonly
studied in mathematics, mathematicianslaedwiredto use their properties while proving theorems; so it
is quite important to keep in mind that some of the basilar propertiésyafimetric metric spaceséare lost
in the asymmetric case
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ii). Fix a sequencéz,,) C M. Suppose thats > 0 there exists a converging
sequencéy,,) such thab(y,,, z,) < . If bis symmetric andM, b) is complete,
then(x,,) converges. Ib is asymmetric and}M, b) is complete, then there is a
counter-example in 2.27.(vi).

iii). In example 2.28.(iv) there is a bal®* (a, r) and pointsz; ¢ BT (a,r) such that
B*(a,r) c UB™"(a;,r/2): it is then difficult to find a useful definition of a
“precompact set” %3

Further examples are §2.vii.3 and§2.viii.2.

To circumvent the above problems, we will use often the following propositions.

Proposition 2.151If (z,) C M is a sequence such thafz,x,) — 0, and M is
forward-locally compact, then,, — .

The above may be proved by using this Lemma

Lemma 2.16 (modulus of symmetrization)Let C C M be a compact set: then
there exists a continuous monotonically (weakly) increasing funatiolR ™ — R,
with w(0) = 0, such that

Ve,y € C,  b(z,y) < w(b(y,z))

Proof. Define
fr)=" s byw)

z,y€C, b(z,y)<r
and thenf is monotone. Sinc€' is compact, therf < oo andlim,_, f(r) = 0:
otherwise we may find > 0 andx,,y, S.t. b(x,,y,) — 0 while b(y,,z,) > &:
extracting converging subsequences, we obtain a contradiction.
From f we can define aw as required, for example(r) = 1 ffT f(s)ds (note

T or

thatw > f). O

This lemma may also be used as follows
Corollary 2.17 If (M, ) is locally compact thelwz € M, > 0 3r > 0 s.t.
B*(z,7) C B (z,¢), B (x,7) C B (x,¢)

and then the topology ol can be equivalently generated by the fandily™ (z, r) | x, r}
of forward balls (or equivalently byB~—(x,r) | z,r} alone).

Therefore, in locally compact spaces, asymmetry is not importarntbfmiogical
guestions (in the sense explainedithv.1); but we still care for asymmetry metric
questions (such as completeness). Cf. example 2.28 and sec. 3.

@3An useful definition of “precompact set” is found in [10], where, though, a different completeness
hypothesis is used (see 2.13 here).
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§2.vii  Properties

Proposition 2.18 For any A C M, the following properties are equivalent
® sup, ,c4b(w,y) < oo
o Aisforward bounde@ndbackward bounded
e Aissymmetrically bounded

But note that in example 2.27.(v) there exists aset M that isforward boundedut
notbackward bounde¢and vice versa in 2.28.(i)).
Similarly

Proposition 2.19 Let(x,,) C M be a sequence; then the following are equivalent
e (z,) isforward Cauchyandbackward Cauchy
e (z,) issymmetrically Cauchy

From that we obtain: if(M, b) is either forward or backward complete, then it is
symmetrically complete.

See examples 2.28, 2.29.

Proof. Suppose thatM, b) is forward complete; letz,,) be symmetrically Cauchy
then it isforward Cauchy and then, sincéM, b) is forward complete, there is an
such that,, — . Similarly if (M, b) is backward Cauchy. O

§2.vii.1 Mid-point properties

In path metric spaces, for any two pointsy, there is always a curve joining them
with a quasi optimal distance (that is, very neab(to, y)): this is used in the following
proposition, in many different but equivalent fashions, to fimérmediate points at

a prescribed distandefrom z andy.

Proposition 2.20 Suppose that the (asymmetric) metric sp@tg b) is path-metric:

i). letp > 0and
S™(a,p)={y | b(a,y) = p}
D (a, p)={y | b(a,y) < p}
(which are closed, sinckeis continuous) then

B*(a,p) = D*(a,p), S*(a,p) =0

ii). V6 € (0,1),

Va,y € M,Ve >0 dz € M such that
b(x,z) < 0b(z,y) +¢, blz,y) < (1—0)b(x,y)+e (2.20%)

ii). let z,y € M ande > 0,e < b(z,y) then

inf b =b(z,y) — 2.20
Lednf bey) =bla,y) —e (2.204%)
inf  b(z,y) =b(x,y) —€ . (2.200)

z€D* (z,e)
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Note that, if there exists a minimum poihe D (z,€) to (2.200), thend(z,z) =
g, i.e.z e ST (x,e).
On the other hand, i is either forward or backward complete, and either

e 30 € (0,1) s.t. (2.20x) holds, or

e 30 € (0,1) s.t. Va, y, whens = 0b(x, y), (2.20%*) holds, or

e 36 € (0,1) s.t.Vz,y, whene = 0b(x, y), (2.20¢) holds,
then(M, b) is path-metric.®4

If M admits geodesics, then, for any two pointg, there is always a curve joining
them with optimal distance (but not necessarily equaltg y)): this is again used to

find intermediate pointg at a prescribed distandé from x andy, as shown in the
following proposition.

Proposition 2.21 If b admits geodesics théfd < (0, 1)
Va,y € M, 3z € M such that
V(2 2) = 06 (x,y), b9(z,y) = (1— )b (z,y) . (2.214)

Whend = 1/2, the above: is called amiddle pointof z, y.
Vice versa ifM is either forward or backward complete, and the above holds for a
6 € (0,1), thenb admits geodesics.

The proof of the two propositions above is essentially the same as in the symmetric
case (cf. 1.8 [7]).

Remark 2.22 Letb(z,y) = |z —y|, M C R". If M is closed inR™ andVz,y €
M3z € M suchthat(z, z) = b(z,y)/2 = b(z, y), thenM is convex.

§2.vii.2 Properties of path metrics

For any asymmetric metrig, we may build many other asymmetric metrigsas fol-
lows

Proposition 2.23 Let : R* — R™ be continuous and concavg(x) = 0 only for
x = 0; let b=y o b: thenb is an asymmetric distance.

The above famil;éap o b is quite large; hence the following question arises: what
happens if we induc&’ from b: can we build a large family of path metrics an, by
this simple procedure? The answer is no.

Proposition 2.24 Set everything as in the previous proposition. If moreover the deriva-
tive of p exists and is finite &, then

©'(0)len” y = len®

and

b (2, y)¢'(0) = 0% (z,y) .

(%see example 2.25
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Proof. Lete > 0. In the definition (2.4) ofen” v it is not restrictive to use only subsets
T of [a, B8] such thab(y(t;), v(tit:)) <eVie {l,...,n—1}.
Let nowd > 0; then there existsa > 0 such that

z(a—9) < ¢(x) <z(a+9d) Vzel0e]
with a = ¢’(0); we obtain that
(a—8)len®y < leni’v < (a+6)len’y
hence the conclusion O

If ¢'(0) = oo, wild things may happen: see for example 1.4.bin [7].

It is also possible to prove that we cannot generate other path metrics by iterating
the operation (2.6): indedd = (b9)9; see 2.44.
§2.vii.3 Examples

We consider several examples, for a better understanding of the above properties and
definitions.

Example 2.25Letb(z,y) = |z —y| and M C R

o If M = Q? then (2.20x) is satisfied: but\/ is neither complete nor connected,
and (M, b) is not path-metric, sinc’ = co.

o If M = (R x Q) U ({0} x R) then (2.20x) is satisfied, and\/ is Lip-arc-
connected, bufM,b) is not complete; andM,b) is not path-metric, since
b9(2,y) = |z1] + [y1] + |22 — y2| whenzy # ys.

Example 2.26 ConsiderM C IR™ to be an open set, antlto be the Euclidean
distance; then

e (M,b) is locally compact and locally path-metric; whereas
e (M,b) admits geodesics iff/ is convex,
e and(M,b) is complete ifM = R™;

e if moreover)M is equal to the interior of the closure 8f in R", then(M,b) is
path-metric iffM is convex.

Example 2.27 Let M be the disjoint union of segments

M= ({n} < [0,1])/ ~

neZ

with ~ identifying all Os into a class[0], and 1s into [1], i.e. (n,0) ~ (m,0) and
(n,1) ~ (m,1). Letl, = {n} x (0,1). Letb be defined on segments as

b, )= e —yl(l+e”) ifx>yandx,y€l,
Y= lr —yl(1+e™) ifzx<yandz,yel,

and
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and extend (geodesically) using the rule
b(w,y) = inf {b(x,y), b(x,[0]) +b([0), ), b, [1])+b([1],y)}
We highlight the following properties
i). (M,d)is acomplete path-metric space.
ii). (M,b) is not locally compact.
iii). There is no geodesic connectiffg to [1]
iv). Letz, = (—n,1/n)then
b(zn,[0)) =(1+e")/n—0

but
b([0],z,) =(1+€")/n— o

v). Moreover the sed = {[0],x, | n} is backward bounded but not forward
bounded.

vi). Moreoverve > 0 we can define

 Jx, ifne<?2
Yn = [0] ifne>2

and therb(x,,, y,) < € andy,, — [0]; but nonetheless,, 4 [0].

Example 2.28 Let M = IR and let

_fe¥—e” ife<y
b(l‘,y) - {ey _ efw |f T > y (228*)

thenb generates ofR the usual topology, an@/, b) is locally compact (this may be
proved using 3.6 sinckcomes from a Finsler structure: see in sgt0.iii.1 in [11]).
The balls are the open intervals

Bt (a,r) = {y|bla,y) <r} = ( —log(r +e%),log(r + ea))

B~ (a,r) = {z | b(z,a) < r} = (log(e" — 1), —log(e™* — 1))

wherelog(z) = —oo if z < 0. (see fig. 1 and 2)
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Figure 1:forward andbackwardballs, left andright extrema {/ is vertical,r = 1/2,
a in abscissa)

Figure 2:forward andbackwardballs, left andright extrema {/ is vertical,a = 1/2,
r in abscissa)
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i). We immediately note tha®~(0,1) = R, that is, M is backward bounded (but
is not forward bounded).

ii). Letz, = n:thenform < n,b(z,,z,,) =e ™ — e~ ™ < e~™ so this sequence
is backward-Cauchy: thei is not backward complete.

ii). (M,b) is forward complete (and then is complete, by 2.19).

iv). Consider the ballB* (0, p) of extrema(—R, R) with R(p) = log(p + 1), and
then the two balls

BT (R,r) = (—log(r+e_R),log(r+eR)), BY(=R,r) = (—log(r+eR),log(r+e_R))
then ifr > p/(p+ 1),

BT(0,p) ¢ BY(R,r)UB"(~R,r)

Example 2.29 Consider two copie$M, b) of the above space, join them at the ori-
gin, reverse the metric on one: the resulting spadeb is complete, but is neither
forward nor backward complete.

More precisely: letM, =R x {+}, M_ =R x {-},

M=M,UM_/~

where(0, +) ~ (0, —). Let

- b(z7y) T,y € M+
b(%,y) = l}(y,l’) N X,y € M_
b(z,[0]) + b([0],y) otherwise

§2.viii Geodesics

Lemma 2.30 (change of variable)Let~ : [, 8] — M, & : [aq, 51] — M be linked
by

y=Eop
wherey : [a, 8] — [a1, £1] is monotone increasing, and continuous, ard) = o,

»(B) = p1. Then
len® v = len® ¢

Proof. For any partitionT = {t,} of [«, 5] we associate the partitiof = {s; =
@(t;)} of [a, B1]: inthis case,

n

Zb(’)’(tifl)v'y(ti)) = Zb(f(sifl)vg(si)) (2.31)
i=1

=1

Similarly, for any partitionS = {s;} of [a1, 3] we chooset; € ¢~ !({s;}), and
associate the partitiofi = {¢;} of [«, 5]: then again (2.31) is verified regardless of the
choice oft;: indeed ift; € =1 ({s;}) thenvy(t;) = v(¢}). O

Remark 2.32 The above lemma holds also wheiis not bijective: this is not noted
in commonly found proofs, but is very powerful, since it simplifies the next lemma, and
leads to a very short and simple proof of 2.34 and the theorem of Buseman 2.35.
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Lemma 2.33 (reparametrization to arc parameter) ?% For any curvey : [a, 8] —
M of length L such that¢” is continuous, there exists an unique Lipschitz curve
¢ :[0, L] — M such that

V() =€), ¢ty =t telo,L]

where(” is therunning lengthof v, and /¢ of £ (see eq. (2.8)).
¢ is thereparametrization to arc parametéry.

Proof. ~(t) = £(£7(t)) uniquely defines: indeed, if¢7 (t) = ¢7(t') theny(t) = v(t')
by (2.9). Letl = ¢7(¢). If we restricty to [a, ] and¢ to [0, [], we can writey = £ o £7.
By the previous lemma, () = ¢4(1), that isl = ¢¢(1). O

Lemma 2.34 (existence of local geodesic§)x z. Lete > 0s.t. D = {y | b9(z,y) <
e} is compact. Then for any such that9(z, y) < ¢, there is a geodesic connecting
to y.

Proof. Fixz,e > 0 D, y as above. Lel. = b9(x, y); suppose # x (otherwisey = z
is the geodesic).

Let~, : [0,1] — M be a sequence of Lip paths franto y such thaten~,, — L,
andlen~, < e. By (2.9), we know that all ofy,, is contained inD. By using the
above lemma 2.33, we assume without loss of generality that the Lip constapts of
are bounded by.

Then by the Ascoli-Arzela theorem, we know that there is a+ip[0,1] — M
such that, up to a subsequence, there is uniform convergengge-ofv; this uniform
convergence is w.r.t the distanéér, y) = b(x,y) V b(y, x).

The functionaly — len’~ is lower semicontinuous w.r.t. uniform convergence,
since it is the supremum of the continuous functionals

n

O

Note that if D ¢ M is compact foh? then it is compact fob; the opposite is not true,
see 2.39
This lemma immediately implies the Buseman'’s theorem (see also thm. 4.3.1, [1]):

Theorem 2.35 (Buseman'’s theorem)Suppose thatM, b) is compact, ther(M,b)
admits geodesics.

As another consequence:

Proposition 2.36 Suppose that)M, b) is forward-locally compact and path-metric,
then (M, b) forward-locally admits geodesics.

(25)ct, Theorem 4.2.1 in [1]: but we do not include here thetric derivativeissue
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§2.viii.1 Hopf-Rinow Theorem
We now restate and prove theorem 1.2

Theorem 2.37 (Hopf-Rinow) Suppose thatM, b) is path-metric and forward-locally
compact; then the following are equivalent

e (M,b) is forward complete
o forward-bounded and closed sets are compact
and both imply that M, b) admits geodesics

Proof. Let D (a, p)={y | b(a,y) < p}.
We define theadius of compactnesk : M — R U {oc} as

R(z)=sup{p > 0| D" (x, p) is compact} .

Then, for anyp < R(x), D" (z, p) is compact.
Either R = oo, or R < oo andR is 1-Lipschitz w.r.td: indeed, for any:,y € M,
for anyp < R(z), we have thaD™ (y, p — b(z, y)) is compact, since

D*(y,p—b(z,y)) € D*(z,p)

This implies thatR(y) > p — b(z,y), and thenR(y) > R(z) — b(z,y); if Ris
finite, the above entaild(z, y) > |R(z) — R(y)|, sincez, y are arbitrary.
(M, b) is forward-locally compact iffR(x) > 0 at all points.

e Suppose that)M, b) is forward complete.

Let y,, be a forward-bounded sequence; we want to extract a converging subse-
guence from it; to this end, we will define iteratively a functionIN x IN — IN.

Fix o € M; up to a subsequence, we may assumetthat, y,) — L.
Leteg = inf{R(xo)/2, L/2}: thenD™(z, o) is compact. By (2.20),

min b(Z, yn) = b<$0»yn) —¢&o - (238)

2€D+(z0,20)

Let z, , be corresponding minimum points. By 2.20.(ii}zo, 20,n) = €o.
SinceD ™ (z, g¢) is compact, we extract a subsequence, k) so that

20,n(0,k) 7k L1

(and therb(z¢, 1) = £¢), and extract a corresponding subsequepegy,) from
Yn. Sincery € DT (zg,0), by (2.38),b(x1, yn) > b(xo, yn) — €0 @and then

liminf b(z1,y,) > L —€g

But, by triangle inequality,
b(l‘l, yn> < b(131, Zn) + b(Zn, yn) = b(xly Zn) + b(an yn) — €0
remembering tha ,, o 1) —« =1 andb(zo, yn) — L,

lim sup b(21, Yn(o,k)) < L — €0
k
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and hence we obtain that

Hin b(21, Yn(o,x)) = L — €0

We iterate the above reasoning to defing «,,, n(m, k) such that

m
Sm = E Ej
=0

em = inf {R(z)/2, (L — 5m-1)/2}
b(xm» xm+1) = E&m
lim W(Tmi1s Ynimk)) = L —sm

andk — n(m, k) is a subsequence &f— n(m — 1, k).

By definitione,,, < (L — s,,—1)/2, theny_ > &,, = lim,, s, < L ande,,, —
0. By the triangle inequality, foh > m,

b(Tm, ) < Sh—1 — Sm—1

we obtain that:,, is forward-Cauchy. Hence there existsuch thatr,, — Z.

We want to prove that,, — L; otherwise we would have thaf, = R(x,)/2
for m large, and the®R(z,,,) — 0 whereasc,, — Z andR(z) > 0.

Lety, = yn(x,k) be the diagonal sequence. Therefore, for any fixedj, is
definitely a subsequence 9f ,,, 1)

liin b(Tm11,Tg) = L — s

We write
b(Z, 7)) < b(T, Tmy1) + 0(Tmy1, Yy)

Fix € > 0; then we can choose large so thab(Z, ©,,+1) < € andL — s, < €.
Now chooseh large so thab(x,,11,7;) < L — s, + € < 2¢ foranyk > h:
thereforeb(z,7,) < 3e for & > h. This proves thab(z,7,) — 0, and then
7, — 7 (by 2.15).

e Suppose that forward-bounded closed sets are compact,, i§ a forward-
Cauchy sequence, then there exidts.t. b(zn,z,) < 1 form > N, that
is, z.,, € DV (zy,1) that is compact; then we can extract a converging subse-
quence, and use lemma 2.16 to obtain the result.

e Existence of geodesics is guaranteed by lemma 2.34.
O

We remark that the proof of the above equivalence cannot simply follow from the
proof for metric space$l.11 in [7], since that proof uses the property (ii) in sgtvi;
neither it does follow from the proof in Finsler Geometry (see section VI of [2]), since
the latter uses the exponential map.

Hence we devised a different proof, that combines the idea of the diagonalization of
a sequence of subsequences, as in [7], and the idea of repeated application ¢f (2.20.
as in [2], plus some special ingredients such asdlais of compactnesand (2.38).
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§2.viii.2 More examples

We show some examples to highlight the impact of the hypotheses in the above theo-
rems 2.37 (a.k.a. 1.2) and 2.34.

Example 2.39 Consider

M={zeR?| —1<z;<1,2;#0,20 =0} U
{reR?| 1<z, <1, 1/4>1z,>0}U
Uz eR?| —1<a1 <1, 2= (21— 1)/n}

and b the Euclidean distance (see fig. 3). Lét= (—1,0), B = (1,0). (M,b) is
locally compact, but is not path-metric and is not compldt®{, b) does not admit
geodesics locally around.

The disc{y | b(B,y) < 1/2} is compact fob; but the discqy | b¥9(B,y) < ¢} are
never compact fob9.

Figure 3: example 2.39

Example 2.40 Let

M=| J{z € R? |27 + n’23 = 1,22 > 0}

andb be the geodesic distance inducedMdrby the Euclidean distance; loosely speak-
ing, M is the disjoint union of countable segmehjswith length~ 2 + 1 /n, and with
common end points.

Then (M, b) is path-metric, is complete, and is bounded, and it locally admits
geodesics; but is not locally compact (and then it is not compact), and there is no
geodesic curve connectirfg-1, 0) to (1, 0).

§2.ix Length structure

We hereby define #&ngth structurden : ¢ — RR™, where( is a family of curves
7 : [a, B] — M (anda, 3 may vary); we say thaf®

e C connects pointsvz,y € M there is atleastong € C, v : [a, 5] — M such
thaty(a) = z,7(8) = y

e Cisreversible if v € C and¥(t)=vy(—t) theny € C

(?6)the following conditions are not independent: some of them imply some others; we do not detail
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¢ len isindependent of reparametrizatioif v € C then,vh > 0,k € R, its linear
reparametrization’(s) = y(hs + k) isinC, andleny = len+/,

e len is monotonic if v € C then its restrictiony’ = 7| 4 is in C, andleny’ <
len ~

e len is additive if v,v" € C,~' : [&/,0] — M, v : [&/,8"] — M, and
B = ", then we may join the two curves and obtainthen~ is inC, and

leny = leny’ + len~"

e len is run-continuousthat is, the running length— len(v|,,4) is continuous
forally € C

e leny = 0 when~ is constant (and constants areCin

We then definé(z,y) on M to be the infimum of this lengtten + in the class of
all¢ e C,€:[0,1] — M with given extremg(0) = z,£(1) = y.

Proposition 2.41 b is an asymmetric semidistandesatisfies the triangle inequality,
sincelen is independent of reparametrizatiand additive

b > 0, andb(x, x) = 0 sincelen is zero on constant curves.

b may fail to be an asymmetric distance, since we cannot be suré(haj) =
0=z=y

We also inducéen® ~ from b using the total variation, as in (2.4).

Lemma 2.42 Supposéen andC satisfy all the hypotheses aboveleli is lower semi
continuous w.r.t. uniform convergence, tHen~ = len”  for any~ € C

The proof for the asymmetric case is not different from the symmetric case (cf. 1.6 [7]).

Corollary 2.43 Suppose we are given an asymmetric sgddeb); let C be the class
of rectifiable curves with continuous run-length, dad = len’: this is a length struc-
ture satisfying all above hypothesdsn’ inducesh? which induceden®’ ~. len’ v is
lower semi continuous since it is the supremum of the continuous functionals

n

By the lemma

len® v = len®’ ~

This immediately entails the result:

Corollary 2.44 The operatiorb — b9 is idempotent, that i) is path-metric, idem
estyd = (b9)9.
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3 Asymmetric metric manifold

Suppose now thal/ is a differential manifold?”, with an atlas4 and a topology-*/.

Definition 3.1 (A-Lip) We will say that a curvé : [a, 5] — M is locally Lipschitz
w.r.t. A, if for any local charty : U — IR" in the atlasA, ¢ o £ is locally Lipschitz for

te ).

Hypotheses 3.2Suppose that we are given a positive function: 7M — R™;
suppose

e F'is lower-semi-continuous,
e v — F(x,v) is positively 1-homogeneous, that is,

F(z, v) = F(z,v)A YA >0

o F(zx,v)=0iffv=0.

We define thdengthlen” ~ of a locally Lipschitz curve : [0,1] — M as

lent = [ Ple(s). ) s (3.3)

Remark 3.4 (The regular Finsler case)lf we would suppose that
e F'is continuous, and’> on the slit tangent bund&M \ 0
e v — F?(x,v) is strongly convex foo # 0, (cf. 1.6)

then this section would be exactly what is found in section 6.2 [2]; we will instead use
less regular assumptions.

As in §2.ix, we then define the asymmetric distahge, y) on M to be the infimum
of this lengthlen” ~ in the class of all locally Lipschitz with given extrem& (0) =
T, 5(1) =Y.

In the above hypotheses 3bds an asymmetric distance; indeéds a semidistance
by 2.41, and the relatioh(z,y) = x = y can be proved by the methods in the
following Lemma.

This metric is also called Binsler metri¢ and is naturally associated to Hamilton-
Jacobi equations; see [12] and references therein.

There may be a confusion here, since we have two topologies at hand: the topology
M of the differential manifold/, and the topology® induced byb; but we may use
this lemma, that simply restates the lemma 6.2.1 in [2] (with less regularity assumptions
onF)

Lemma 3.5 Assume 3.2 and lef' be locally bounded from above. Then for any
z € M there existd/ a compact neighborhood ef associated with local coordinates
v : U — W C R", such that the push forward éfin local coordinates is bounded
from above and below by the Euclidean norm: thafig,> ¢ > 0

I =gl = b(x,y) = c|z — | (3.54)

wherey = ¢(y) andz = p(z).

(@more precisely, led be a finite dimensional connected smooth differential manifold, without boundary
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Proof. Let z € M andZ be a neighborhood af, with Z compact w.r.t7#, associated
to local coordinates : Z — W C R™, with W convex bounded.

Let F' be the push-forward of’; for any z,y € Z, we may joinj = ¢(y) to
& = p(x) with a segment, and thériz, y) < ¢'|p(x) — ¢(y)| wherec’ is the upper
bound of F'(w, v) for w € W and|v| < 1.

In the above setting, I€f cC Z, let ¢ be the minimum off’(w, v) for w € ¢(Z)
and |v| = 1 (this minimum exists and is positive, sinéeis |.s.c); and let be the
minimum of | (z) — ¢(z)| for z € AU, z € Z; leté=y o € when¢ € Z.

Then, for any connectinge to y,

1 t .
len” € = / F(€(s),E(s)) ds > / €(s)] ds > ele A | — 3]

wheret = 1 if £ never exits fromZ, otherwise it is the first time such that
£(s) € 0Z: thenb(x,y) > c(e AT — g|), and we choose a smaller. O

Corollary 3.6 Under the same hypothese$,= 7, i.e. b generates the same topol-
ogy that the atlas of\/ induces. Moreover both coincide with the topology generated
by the forward balls; or respectively, by the backward bafté)

This topology is locally compact: then

o x, — xiff b(xn, ) — 0iff b(x,z,) — 0 ?); and
e (M,b) locally admits geodesics (by 2.36).

By (3.5%), a curvet : [0,1] — M is locally Lipschitz w.r.t4, as defined in 3.1, iff
it is locally Lipschitz w.r.b, as defined ir§2.ii.

Proposition 3.7 i). (M,b) is path-metric, that ish = b9

i). suppose 3.2, and — F(z,v) is convex; then for any Lipschitg len” ~ coin-
cides with thden® ~ defined in (2.4).

Proof. i)is a consequence of 2.20.

if). We proceed as in lemma 2.42: we 8db be the class of Lipschitz curves, and
len =len”. Fix v, let L=1len” ~. If L is small, then the curve is contained in local
coordinates.

By (3.5x), the uniform convergence happens also in local coordinates. By well-
known theory (cf. thm. 2.3.3in[3])¢n” ~ is |.s.c, and we conclude as in the Lemma 3.5.

If we don’t suppose thaf(t) € U V¢ € [0,1]: we fix a very dense partitiof’, so
that we can associate to any poipte T a local chartp; : U; — R", so that J, U;
covers the image of, and more precisely([t;,t;+1]) C U;. We repeat the above
argument in any/;. O

Lemma 3.8 (Reparametrization) For any v : [«, 3] — M Lipschitz, defind :
[, 8] = [0, L]

I(t) = / F(y(s),4(s) ds

(whereL = len~).
Then there is a uniquésuch thaty = £ o [, and

F(&(s),6(s)) =1 Vs e0,L] (3.8%)

(8)cf. 2.17 , or sec. 6.2C in [2] for the regular case
(29)ct, 6.2.5 in [2] for the regular case
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Proof. We apply 2.33, and just note thét(t) = t means tha}fot F(g, é) =t O
We can then state this version of tHepf-Rinowtheorem

Theorem 3.9 Assume that the functiofi : TM — R™
e is locally bounded from above
e v — F(x,v) is positively 1-homogeneous, and convex,

and 3.2 holds.
Then the asymmetric metric spade, b) is path-metric, locally compact, and lo-
cally admits geodesics (that we can always reparametrize so that they satis#))(3.8.

e (M,b) is forward-complete (resp. backward-complete) if and only if

o forward (resp. backward) bounded closed sets are compact.

In both cases, for any,y € M, there is a locally Lipschitz curvé connecting
them that minimizes (3.3), satisfying (3)8.

Further applications of these ideas are in [11]; in particular, in the appendix of [11],
we consider a Lagrangiah: TM — R (that is defined a& (z,v) = F(z,v)?) and
its Legendre-Fenchel dual Hamiltoni&h: 7*M — R™; we show that, ifH € C'*-!
andp — H(x,p) is positively 2-homogeneous and strictly convex, we can define an
exponential map and add it to the statement of the Hopf-Rinow theorem, to obtain a
statement exactly as in ch. VI of [2].
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