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Abstract

In this paper we discuss asymmetric metric spaces (that is, quasi-metric spaces)
in an abstract setting, mimicking the usual theory of metric spaces, but adding ideas
derived from Finsler geometry. As a typical application, we consider asymmetric
metric spaces generated by functionals in Calculus of Variation.
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1 Introduction
“Besides, one insists that the distance function be symmetric, that is,d(x, x′) = d(x′, x).

(This unpleasantly limits many applications[· · ·]).” M. Gromov ([7], Intr.)

The main purpose of this paper is to extract a “metric theory” from Finsler Ge-
ometry, as Gromov extracted a metric theory from Riemannian Geometry, (see section
I in [7]). In order to do this, we need to define “asymmetric metric spaces”, and use
“asymmetric definitions” such as “forward completeness”, “forward boundedness”, etc
(see in§2). In §3 we study a typical application from Calculus of Variations.

§1.i Previous work

In section I in [7], Gromov models the “metric part” of Riemannian Geometry, as
follows.

Consider a metric space(M,d): we can define the lengthlen γ of a Lipschitz curve
γ : [α, β] → M using the total variation formula (see (2.4)); then we can define a new
metricdg(x, y) as the inf oflen γ in the class of all Lip curves connectingx to y.

Gromov defines that a metric space is “path-metric” ifd = dg; he then proves in
§1.11§1.12 in [7] that(1)

Theorem 1.1 (symmetric Hopf-Rinow) Suppose that(M,d) is path-metric and lo-
cally compact; then the two following facts are equivalent

i). (M,d) is complete

ii). closed bounded sets are compact

and they imply that each pair of points can be joined by a geodesic (i.e. a minimum of
len γ).

?Scuola Normale Superiore Piazza dei Cavalieri 7, 56126 Pisa, Italy
(1)actually, we have added the easy implicationii=⇒i to the statement in [7]
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The above is the “metric only” counterpart of the theorem of Hopf-Rinow in Rie-
mannian Geometry: indeed, if(M, g) is a finite-dimensional Riemannian manifold,
andd is the associated distance, then(M,d) is path-metric and locally compact.

Since there is a Hopf-Rinow theorem in Finsler Geometry, we would expect that
there would be a corresponding theorem for “asymmetric metric spaces”.

An “asymmetric metric spaces”(M, b) is a setM equipped with a metricb : M ×
M → lR+ which satisfy the triangle inequality, but may fail to be symmetric (see§2
for the formal definition).

These metrics have already been studied in the past, with the name of “quasi met-
rics”. A quasi-metric will generate, in general,three different topologies(see§2.v.1).
In our definition of the “asymmetric metric space”(M, b), we chose a different topol-
ogy associated to the space than the one used in “quasi metric spaces”: this makes
it difficult to compare the results in the two fields. We discuss further this issue in
sec.§2.v.

In asymmetric metric spaces we can state the “metric only” Hopf-Rinow theorem:

Theorem 1.2 Suppose that theasymmetric metric space(M, b) is path-metric and
forward-locally compact; then the following two facts are equivalent

• forward-bounded closed sets are compact

• (M, b) is forward-complete

and they imply that any two points can be joined by a geodesic.

This is the main result, proved as Theorem 2.37 in this paper. While trying to under-
stand this result, we explored the “asymmetric metric spaces”: they appear to be more
complex(2) than it appears at first sight.

§1.ii Origin of the problem

Let M be a smooth connected differential manifold.
Consider an integrandF : TM → lR that is continuous and such thatv 7→ F (x, v)

is positively 1-homogeneous, and convex. Consider the length

len γ =
∫ 1

0

F (ξ(s), ξ̇(s)) ds (1.3)

whereγ : [0, 1] → M is a locally Lipschitz curve; this generates a “distance”b(x, y),
which is called aFinsler metric; but this distance will be, in general, asymmetric.

Consider also the Hamilton-Jacobi equation{
H(x,Du(x)) = 0, u(a) = 0 (1.4)

whereH : T ∗M → lR is continuous andp 7→ H(x, p) is convex, and the solution
u : M → lR is in the viscosity sense; anda ∈ M .

In the above settings, a broad number of ideas appear naturally:

• we may consider(M, b) as anasymmetric metric space; then we would expect
to be able to imitate many results from the theory ofsymmetric metric spaces;
for example, since(M, b) is path-metric and locally compact, then we may use
the Hopf–Rinow theorem 1.2 (see below 1.5);

(2)and wild! see sec.§2.vi
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• we may want to use theorems from the Calculus of Variations, Hamilton-Jacobi
theory and Optimal control: indeed, we expect that the Hamilton-Jacobi equa-
tion (1.4) is naturally associated with the distanceb(x, y), so thatu(x) = b(a, x)
is the viscosity solution of (1.4).

Unfortunately, it is often assumed thatL ∈ C2(TM) (where theL(x, v) =
F (x, v)2) andH ∈ C2(T ∗M) (3); few results (see [12]) are known in absence
of regularity assumptions onH.

We believe that the theory ofasymmetric metric spaceswill provide a theorem of
existence and uniqueness for Hamilton–Jacobi equations. This issue is explored
in [11].

• The field of Finsler Geometry readily admits thatb may be asymmetric: but
in most common books,L ∈ C∞, andv 7→ L(x, v) is strongly convex for
v 6= 0 (cf. 1.6); whereas we expect that many theorems would hold in less regular
spaces.

The results regarding problem (1.3) are in§3; in particular, theorem 3.9 shows
that the Hopf–Rinow theorem implies a purely geometric criteria for the existence of a
minimum curve for problem (1.3), as follows:

Theorem 1.5 (4) The two following are equivalent.

• (M, b) is forward-complete (resp. backward-complete) if and only if

• forward (resp. backward) bounded closed sets are compact;

in both cases, for anyx, y ∈ M , there is a locally Lipschitz curveξ connecting them
that minimizes (1.3).

§1.iii Notation

We conclude the introduction with a remark on definitions

Definition 1.6 Letf : Ω → lR whereΩ ⊂ lRn is convex. We recall that

i). “ f is strongly convex” whenf ∈ C2 and the HessianD2f(x) = ∂2f
∂x∂x (x) is

positive definite(5) ∀x; whereas

ii). “ f is strictly convex” when

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y)

for all x, y ∈ Ω, x 6= y, 0 < λ < 1

Note that many authors use different definitions (defining (i) as “strictly convex”).

2 Asymmetric metric spaces

We review some basilar concepts and results, commonly found in books on metric
spaces (and we refer to ch. 4 in [1] and ch. 1 [7]), which we extend and discuss in the
wider context of asymmetric metric spaces.

In all of this chapter,M will be a generic set.
(3)for example, in§2.4.2 [4]; orL ∈ C3 and strongly convex in§1.8 in [5]
(4)the detailed statement is in Theorem 3.9.
(5)that is,α ·D2f(x)α > 0 for all α ∈ lRn, α 6= 0
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§2.i Asymmetric metric space

Definition 2.1 b : M ×M → lR+ is anasymmetric distance(6) if b satisfies(7)

• b ≥ 0 andb(x, y) = 0 iff x = y

• b(x, y) ≤ b(x, z) + b(z, y) ∀x, y, z ∈ M .

We call the pair(M, b) anasymmetric metric space.

We agree thatb defines a topologyτ onM , (8) generated by the families offorward
andbackwardopen balls

B+(x, ε) .={y | b(x, y) < ε}, B−(x, ε) .={y | b(y, x) < ε}

that is, the topology is generated by the symmetric distance

d(x, y) .=b(x, y) ∨ b(y, x) (2.2)

with balls
B(x, ε) .={y | d(x, y) < ε} = B+(x, ε) ∩B−(x, ε)

By the above definition,

Proposition 2.3 xn → x iff d(xn, x) → 0, iff bothb(xn, x) → 0 andb(x, xn) → 0

We note that(x, y) 7→ b(x, y) is Lipschitz w.r.td: see section§2.ii.

§2.ii Lipschitz maps

Let (N, δ) be a symmetric metric space, andf : N → M , g : M → N . We could
define thatf andg are “Lipschitz w.r.t.b”, or “Lipschitz w.r.t. d”. That is, in the first
case

b(f(x), f(y)) ≤ Cδ(x, y), δ(g(x), g(y)) ≤ Cb(x, y)

for some constantC > 0. In the second case

d(f(x), f(y)) ≤ Cδ(x, y), δ(g(x), g(y)) ≤ Cd(x, y)

for some constantC > 0.
The two concepts are equivalent forf , but not equivalent forg.

§2.iii Length

We induce fromb the lengthlenb γ of a continuous curveγ : [α, β] → M , by using the
total variation

lenb γ
.=sup

T

n∑
i=1

b
(
γ(ti−1), γ(ti)

)
(2.4)

where the sup is carried out over all finite subsetsT = {t0, · · · , tn} of [α, β] and
t0 ≤ · · · ≤ tn. If lenb γ < ∞, thenγ is calledrectifiable.

(6)also known asquasi metricor ostensible metric
(7)If the first constraint is replaced by “b ≥ 0 andb(x, x) = 0”, thenb is anasymmetric semidistance
(8)The forward (resp. backward) balls may generate a different topology: this issue is discussed in sec.§2.v
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Remark 2.5 The above length isasymmetric: if γ̂(t) .=γ(−t), then in generallenb γ
will be different fromlenb γ̂; hence there does not exist a measureH on M such that
the length of a curve is the measure of its image, that is

H(image(γ)) = lenb γ ;

indeed image(γ) = image(γ̂) which is incompatible in the general case in which
lenb γ 6= lenb γ̂.

We definebg

bg(x, y) = inf lenb γ (2.6)

where the inf is taken in the class of all Lipschitz curvesγ connectingx to y. If the
infimum is a minimum, then the minimum curve is thegeodesicconnectingx to y.

Note that
lenb γ ≥ b(γ(α), γ(β)) (2.7)

and thenbg ≥ b.
If the space(M, b) is Lipschitz-arcwise connected, then it is also easily proved that

bg is an asymmetric distance.bg is indeed calledthe geodesic (asymmetric) distance
induced byb. We may endowM with the distancedg(x, y) .= bg(x, y) ∨ bg(y, x): then
the resulting topology is finer than the one induced byb (has more open sets and less
compact sets).

Suppose thatγ is rectifiable. We define therunning length(9) ` : [α, β] → lR+ of
γ to be the length ofγ restricted to[α, t], that is

`(t) .= lenb
(
γ|[α,t]

)
(2.8)

Note that:

• For t ≥ s,
b
(
γ(s), γ(t)

)
≤ `(t)− `(s) (2.9)

(by (2.7)) so, if̀ is continuous, thenγ is continuous;(10) if ` is Lipschitz, thenγ
is Lipschitz;

• whereas ifγ is Lipschitz of constantL, then, by direct substitution in (2.4),

`(t)− `(s) ≤ (t− s)L

so` is Lipschitz.

In this case the derivatived`
dt exists for almost allt, and it is called themetric

derivativeof γ.

§2.iv Definitions

We add some definitions

• We say that the (asymmetric) metric space(M, b) is a path-metric spaceif b =
bg; (11)

(9)we may as well call itpartial total variation
(10)whenb is symmetric, ifγ is rectifiable and continuous, then` is continuous; this seems to be true also

for asymmetric distances, but was not carefully checked
(11)if (M, b) is path-metric, we agree thatM is Lipschitz-arc-connected, by definition and by 2.33
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• and we say that itadmits geodesics, or thatgeodesics exist, if, for all x, y ∈ M ,
the inf that definedbg(x, y) in (2.6) is attained by a minimizing curve, that is
called a “geodesic”.

• We say that(M, b) forward-locally admits geodesics, or that geodesics exist
forward-locally if ∀x ∈ M ∃ε > 0 such that∀y ∈ B+(x, ε), there is a geodesic
connectingx to y (that is, (2.6) has a minimum)

• A sequence(xn) ⊂ M is calledforward Cauchy(12) if

∀ε > 0, ∃N ∈ lN such that∀n, m, m ≥ n ≥ N, b(xn, xm) < ε (2.10)

We say that(M, b) is forward completeif any forward Cauchysequence(xn)
converges to a pointx. (13)

• We say thatA ⊂ M is forward boundedif these two equivalent propositions
hold

– ∃x ∈ M, r > 0 s.t.A ⊂ B+(x, r)

– ∀x ∈ M,∃r > 0 s.t.A ⊂ B+(x, r)

For anyforward definition above there is a correspondingbackwarddefinition, ob-
tained by exchanging the first and the second argument ofb, or by using theconjugate
distanceb defined by

b(x, y) = b(y, x) ; (2.11)

and a correspondingsymmetricdefinition, obtained by substitutingd for b.
For the same reason, in this paper we will present mostly theforward versions of

the theorems, sincebackwardresults are obtained as above.
We nonetheless emphasize these definitions.

• We say that(M, b) is forward-locally compactif ∀x ∃ε > 0 such that{y | b(x, y) ≤
ε} is compact.

• We say that(M, b) isbackward-locally compactif ∀x ∃ε > 0 such that{y | b(y, x) ≤
ε} is compact.

• We say that(M, b) is symmetrically-locally compactif ∀x ∃ε > 0 such that
{y | d(x, y) ≤ ε} is compact.

• We say that(M, b) is locally compactif ∀x ∃ε > 0 such that both{y | b(x, y) ≤
ε} and{y | b(y, x) ≤ ε} are compact.

The following implications hold:

locally compact

backward locally compact

forward locally compact

symmetrically locally compact

(12)This definition agrees with the one used in Finsler Geometry (see ch. VI of [2]). See 2.13 for a different
definition.

(13)according to the topologyτ : cf. 2.3 and§2.v.1 on the notion of convergence
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§2.v Comparison with quasi metric spaces

§2.v.1 Topology

As already pointed out, the definition 2.1 of theasymmetric metriccoincides with
the definition of aquasi metricthat is found in the literature, cf. Kelly [9], Reilly,
Subrahmanyam and Vamanamurthy [8](14) Fletcher and Lindgren [6, (pp 176-181)],
Künzi [10].

The main difference between our theory ofasymmetric metric spacesandquasi
metric spacesis in the choice of the associated topology.(15)

Indeed, we have three topologies at hand:

• the topologyτ , generated by the families of forward and backward balls, or
equivalently by the metricd defined in (2.2);

• the topologyτ+ generated by the families of forward balls;

• the topologyτ− generated by the families of backward balls;

it may happen that these three topologies are different.
This problem has been studied in [9]: there Kelly introduces the notion of abitopo-

logical space(M, τ+, τ−), and extends many definition and theorems, (such as the
Urysohn lemma, the Tietze’s extension theorem, the Baire category theorem(16)) to
these spaces. Unfortunately Kelly does not include the topologyτ in his studies.

In many applicationsτ = τ+ = τ−: see 2.17 and§3. We have chosen to associate
the topologyτ to the “asymmetric metric space”.τ is asymmetric kind of object: as
a consequence, we have only one notion of “the sequence(xn) converges tox”, and
only one notion of “the functionsf : N → M and g : M → N are continuous”.
Furthermore

Proposition 2.12 If xn → x (according toτ ) then the sequence(xn) is both afor-
ward Cauchy sequenceand abackward Cauchy sequence,

in accordance with the symmetric case.

§2.v.2 Cauchy sequences, and completeness

In papers onquasi metric spaces, the quasi-metric space(M, b) is instead usually en-
dowed with the topologyτ+: this entails a different notion ofconvergenceandcom-
pactness, and poses the problem to find a good definition of “Cauchy sequence” (17)

and “complete space”.
This problem has been studied in [8], where 7 different notions of “Cauchy se-

quence” are presented.(18) Combining these 7 definition with theτ+ topology, [8]
presents 7 different definitions of “complete space”. (19)

(14)[8] provides also a wide discussion of the references onquasi metrics
(15)This explain our choice of a different name.
(16)Another version of Baire theorem, using a better definition of completeness, is found in Theorem 2 in

[8].
(17)What do we mean by “good definition”? We may need that the definition would satisfy a proposition

similar to 2.12; see statement iv) below
(18)The list in [8] includes the three that we defined in§2.iv: a “forward Cauchy sequence” (resp. backward)

is a “left K-Cauchy sequence” (resp. right); a “symmetrical Cauchy sequence” is a “b-Cauchy sequence”
(19)Actually, by combining 7 “Cauchy sequences” with all the above 3 topologies, we may reach a total of

14 (!) different definitions of “complete space” (considering the symmetry of using theb instead ofb, see
eq. (2.11)). To our knowledge, no one has taken the daunting task of examining all of them.
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One of the notions of “Cauchy sequence” and “complete space” from [8] has been
further studied by K̈unzi [10]; we present it here.

Definition 2.13 • A sequence(xn) ⊂ M is a “ left b-Cauchy sequence” when
∀ε > 0 ∃x ∈ M and∃k ∈ lN such thatb(x, xm) < ε wheneverm ≥ k.

• (M, b) is a “ left b-sequentially complete space” if any left b-Cauchy sequence
converges to a point, according to the topologyτ+.

It is easy to prove that

i). if xn → x according toτ+ then the sequence(xn) is a “left b-Cauchy sequence”.

ii). Any “ forward Cauchy sequence” (as defined in (2.10)) is a “left b-Cauchy se-
quence” (20).

iii). If τ = τ+, then any “left b-sequentially complete space” is a “forward complete
metric space” as defined in this paper.

In caseτ 6= τ+, the implication may not hold.

iv). Whereas, ifxn → x according toτ+ then the sequence(xn) may fail to be
either a “forward Cauchy sequence” or a “backward Cauchy sequence”. (21) Cf.
example 2.27.(iv) here.

For those reasons, it is not easy to compare the results and examples in the above
papers, with the result and examples here.

From here on, we return to our setting of “asymmetric metric spaces”: we will
always use the topologyτ .

§2.vi Comparison with symmetric case

There are subtle but important differences betweenasymmetricand symmetric dis-
tances(22). We start with a striking remark.

Remark 2.14 Let ε > 0 andx, y, z be such thatb(x, y) < ε andb(x, z) < ε. This
does not imply, in general, thatb(y, z) < 2ε

x

y

z

?

This has consequences such as

i). In example 2.27.(iv) there exists a sequence such thatb(xn, x) → 0 butxn 6→ x

(20)just choosen = N = k andx = xn in the definition ofleft b-Cauchy sequence
(21)Indeed, Kelly [9] had encountered this problem, which was a motivation of [8]
(22)These are fundamental remarks: since the“symmetric metric space”is the metric space commonly

studied in mathematics, mathematicians arehardwiredto use their properties while proving theorems; so it
is quite important to keep in mind that some of the basilar properties of“symmetric metric spaces”are lost
in the asymmetric case
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ii). Fix a sequence(xn) ⊂ M . Suppose that∀ε > 0 there exists a converging
sequence(yn) such thatb(yn, xn) < ε. If b is symmetric and(M, b) is complete,
then(xn) converges. Ifb is asymmetric and(M, b) is complete, then there is a
counter-example in 2.27.(vi).

iii). In example 2.28.(iv) there is a ballB+(a, r) and pointsai 6∈ B+(a, r) such that
B+(a, r) ⊂

⋃
B+(ai, r/2): it is then difficult to find a useful definition of a

“precompact set”.(23)

Further examples are in§2.vii.3 and§2.viii.2.

To circumvent the above problems, we will use often the following propositions.

Proposition 2.15 If (xn) ⊂ M is a sequence such thatb(x, xn) → 0, and M is
forward-locally compact, thenxn → x.

The above may be proved by using this Lemma

Lemma 2.16 (modulus of symmetrization)Let C ⊂ M be a compact set: then
there exists a continuous monotonically (weakly) increasing functionω : lR+ → lR+,
with ω(0) = 0, such that

∀x, y ∈ C, b(x, y) ≤ ω(b(y, x))

Proof. Define

f(r) = sup
x,y∈C, b(x,y)≤r

b(y, x)

and thenf is monotone. SinceC is compact, thenf < ∞ and limr→0 f(r) = 0:
otherwise we may findε > 0 andxn, yn s.t. b(xn, yn) → 0 while b(yn, xn) > ε:
extracting converging subsequences, we obtain a contradiction.

From f we can define anω as required, for exampleω(r) = 1
r

∫ 2r

r
f(s)ds (note

thatω ≥ f ).

This lemma may also be used as follows

Corollary 2.17 If (M, b) is locally compact then∀x ∈ M, ε > 0 ∃r > 0 s.t.

B+(x, r) ⊂ B−(x, ε), B−(x, r) ⊂ B+(x, ε)

and then the topology onM can be equivalently generated by the family{B+(x, r) | x, r}
of forward balls (or equivalently by{B−(x, r) | x, r} alone).

Therefore, in locally compact spaces, asymmetry is not important fortopological
questions (in the sense explained in§2.v.1); but we still care for asymmetry inmetric
questions (such as completeness). Cf. example 2.28 and sec. 3.

(23)An useful definition of “precompact set” is found in [10], where, though, a different completeness
hypothesis is used (see 2.13 here).
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§2.vii Properties

Proposition 2.18 For anyA ⊂ M , the following properties are equivalent

• supx,y∈A b(x, y) < ∞

• A is forward boundedandbackward bounded

• A is symmetrically bounded

But note that in example 2.27.(v) there exists a setA ⊂ M that isforward boundedbut
notbackward bounded(and vice versa in 2.28.(i)).

Similarly

Proposition 2.19 Let (xn) ⊂ M be a sequence; then the following are equivalent

• (xn) is forward Cauchyandbackward Cauchy

• (xn) is symmetrically Cauchy

From that we obtain: if(M, b) is either forward or backward complete, then it is
symmetrically complete.

See examples 2.28, 2.29.

Proof. Suppose that(M, b) is forward complete; let(xn) be symmetrically Cauchy:
then it is forward Cauchy, and then, since(M, b) is forward complete, there is anx
such thatxn → x. Similarly if (M, b) is backward Cauchy.

§2.vii.1 Mid-point properties

In path metric spaces, for any two pointsx, y, there is always a curve joining them
with a quasi optimal distance (that is, very near tob(x, y)): this is used in the following
proposition, in many different but equivalent fashions, to findintermediate pointsz at
a prescribed distanceb from x andy.

Proposition 2.20 Suppose that the (asymmetric) metric space(M, b) is path-metric:

i). let ρ > 0 and
S+(a, ρ) .={y | b(a, y) = ρ}
D+(a, ρ) .={y | b(a, y) ≤ ρ}

(which are closed, sinceb is continuous) then

B+(a, ρ) = D+(a, ρ), S̊+(a, ρ) = ∅

ii). ∀θ ∈ (0, 1),

∀x, y ∈ M,∀ε > 0 ∃z ∈ M such that

b(x, z) < θb(x, y) + ε, b(z, y) < (1− θ)b(x, y) + ε (2.20.?)

iii). let x, y ∈ M andε > 0, ε ≤ b(x, y) then

inf
z∈S+(x,ε)

b(z, y) = b(x, y)− ε (2.20.??)

inf
z∈D+(x,ε)

b(z, y) = b(x, y)− ε . (2.20.�)
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Note that, if there exists a minimum pointz ∈ D+(x, ε) to (2.20.�), thenb(x, z) =
ε, i.e. z ∈ S+(x, ε).

On the other hand, ifM is either forward or backward complete, and either

• ∃θ ∈ (0, 1) s.t. (2.20.?) holds, or

• ∃θ ∈ (0, 1) s.t.∀x, y, whenε = θb(x, y), (2.20.??) holds, or

• ∃θ ∈ (0, 1) s.t.∀x, y, whenε = θb(x, y), (2.20.�) holds,

then(M, b) is path-metric.(24)

If M admits geodesics, then, for any two pointsx, y, there is always a curve joining
them with optimal distance (but not necessarily equal tob(x, y)): this is again used to
find intermediate pointsz at a prescribed distancebg from x andy, as shown in the
following proposition.

Proposition 2.21 If b admits geodesics then∀θ ∈ (0, 1)

∀x, y ∈ M, ∃z ∈ M such that

bg(x, z) = θbg(x, y), bg(z, y) = (1− θ)bg(x, y) . (2.21.?)

Whenθ = 1/2, the abovez is called amiddle pointof x, y.
Vice versa ifM is either forward or backward complete, and the above holds for a

θ ∈ (0, 1), thenb admits geodesics.

The proof of the two propositions above is essentially the same as in the symmetric
case (cf. 1.8 [7]).

Remark 2.22 Let b(x, y) = |x − y|, M ⊂ lRn. If M is closed inlRn and∀x, y ∈
M∃z ∈ M such thatb(x, z) = b(x, y)/2 = b(z, y), thenM is convex.

§2.vii.2 Properties of path metrics

For any asymmetric metricb, we may build many other asymmetric metricsb̃, as fol-
lows

Proposition 2.23 Letϕ : lR+ → lR+ be continuous and concave,ϕ(x) = 0 only for
x = 0; let b̃

.=ϕ ◦ b: then b̃ is an asymmetric distance.

The above familỹb
.=ϕ ◦ b is quite large; hence the following question arises: what

happens if we inducẽbg from b̃: can we build a large family of path metrics onM , by
this simple procedure? The answer is no.

Proposition 2.24 Set everything as in the previous proposition. If moreover the deriva-
tive ofϕ exists and is finite at0, then

ϕ′(0) lenb γ = lenb̃ γ

and
bg(x, y)ϕ′(0) = b̃g(x, y) .

(24)see example 2.25
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Proof. Let ε > 0. In the definition (2.4) oflenb γ it is not restrictive to use only subsets
T of [α, β] such thatb(γ(ti), γ(ti+i)) ≤ ε ∀i ∈ {1, . . . , n− 1}.

Let nowδ > 0; then there exists aε > 0 such that

x(a− δ) ≤ φ(x) ≤ x(a + δ) ∀x ∈ [0, ε]

with a = ϕ′(0); we obtain that

(a− δ) lenb γ ≤ lenb̃ γ ≤ (a + δ) lenb γ

hence the conclusion

If ϕ′(0) = ∞, wild things may happen: see for example 1.4.b in [7].
It is also possible to prove that we cannot generate other path metrics by iterating

the operation (2.6): indeedbg = (bg)g; see 2.44.

§2.vii.3 Examples

We consider several examples, for a better understanding of the above properties and
definitions.

Example 2.25 Let b(x, y) = |x− y| andM ⊂ lR2.

• If M = Q2 then (2.20.?) is satisfied: butM is neither complete nor connected,
and(M, b) is not path-metric, sincebg ≡ ∞.

• If M = (lR × Q) ∪ ({0} × lR) then (2.20.?) is satisfied, andM is Lip-arc-
connected, but(M, b) is not complete; and(M, b) is not path-metric, since
bg(x, y) = |x1|+ |y1|+ |x2 − y2| whenx2 6= y2.

Example 2.26 ConsiderM ⊂ lRn to be an open set, andb to be the Euclidean
distance; then

• (M, b) is locally compact and locally path-metric; whereas

• (M, b) admits geodesics iffM is convex,

• and(M, b) is complete iffM = lRn;

• if moreoverM is equal to the interior of the closure ofM in lRn, then(M, b) is
path-metric iffM is convex.

Example 2.27 LetM be the disjoint union of segments

M
.=

⋃
n∈Z

({n} × [0, 1])/ ∼

with ∼ identifying all 0s into a class[0], and 1s into [1], i.e. (n, 0) ∼ (m, 0) and
(n, 1) ∼ (m, 1). Let ln = {n} × (0, 1). Letb be defined on segments as

b(x, y) .=
{
|x− y|(1 + en) if x ≥ y andx, y ∈ ln
|x− y|(1 + e−n) if x ≤ y andx, y ∈ ln

and
b([0], [1]) = b([1], [0]) = 1
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and extendb (geodesically) using the rule

b(x, y) = inf
{
b(x, y), b(x, [0]) + b([0], y), b(x, [1]) + b([1], y)

}
We highlight the following properties

i). (M, b) is a complete path-metric space.

ii). (M, b) is not locally compact.

iii). There is no geodesic connecting[0] to [1]

iv). Letxn = (−n, 1/n) then

b(xn, [0]) = (1 + e−n)/n → 0

but
b([0], xn) = (1 + en)/n →∞

v). Moreover the setA = {[0], xn | n} is backward bounded but not forward
bounded.

vi). Moreover∀ε > 0 we can define

yn =
{

xn if nε < 2
[0] if nε ≥ 2

and thenb(xn, yn) < ε andyn → [0]; but nonethelessxn 6→ [0].

Example 2.28 LetM = lR and let

b(x, y) =
{

ey − ex if x < y
e−y − e−x if x > y

(2.28.?)

thenb generates onlR the usual topology, and(M, b) is locally compact (this may be
proved using 3.6 sinceb comes from a Finsler structure: see in sec.§10.iii.1 in [11]).
The balls are the open intervals

B+(a, r) = {y | b(a, y) < r} =
(
− log(r + e−a), log(r + ea)

)
B−(a, r) = {x | b(x, a) < r} =

(
log(ea − r),− log(e−a − r)

)
wherelog(z) = −∞ if z ≤ 0. (see fig. 1 and 2)
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i). We immediately note thatB−(0, 1) = lR, that is,M is backward bounded (but
is not forward bounded).

ii). Let xn = n: then form < n, b(xn, xm) = e−m − e−n < e−m so this sequence
is backward-Cauchy: thenM is not backward complete.

iii). (M, b) is forward complete (and then is complete, by 2.19).

iv). Consider the ballB+(0, ρ) of extrema(−R,R) with R(ρ) = log(ρ + 1), and
then the two balls

B+(R, r) =
(
−log(r+e−R), log(r+eR)

)
, B+(−R, r) =

(
−log(r+eR), log(r+e−R)

)
then ifr ≥ ρ/(ρ + 1),

B+(0, ρ) ⊂ B+(R, r) ∪B+(−R, r)

Example 2.29 Consider two copies(M, b) of the above space, join them at the ori-
gin, reverse the metric on one: the resulting spaceM̃, b̃ is complete, but is neither
forward nor backward complete.

More precisely: letM+ = lR× {+}, M− = lR× {−},

M̃ = M+ ∪M−/ ∼

where(0,+) ∼ (0,−). Let

b̃(x, y) =

 b(x, y) x, y ∈ M+

b(y, x) x, y ∈ M−
b̃(x, [0]) + b̃([0], y) otherwise

§2.viii Geodesics

Lemma 2.30 (change of variable)Letγ : [α, β] → M , ξ : [α1, β1] → M be linked
by

γ = ξ ◦ ϕ

whereϕ : [α, β] → [α1, β1] is monotone increasing, and continuous, andϕ(α) = α1,
ϕ(β) = β1. Then

lenb γ = lenb ξ

Proof. For any partitionT = {ti} of [α, β] we associate the partitionS = {si =
ϕ(ti)} of [α1, β1]: in this case,

n∑
i=1

b
(
γ(ti−1), γ(ti)

)
=

n∑
i=1

b
(
ξ(si−1), ξ(si)

)
(2.31)

Similarly, for any partitionS = {si} of [α1, β1] we chooseti ∈ ϕ−1({si}), and
associate the partitionT = {ti} of [α, β]: then again (2.31) is verified regardless of the
choice ofti: indeed ift′i ∈ ϕ−1({si}) thenγ(ti) = γ(t′i).

Remark 2.32 The above lemma holds also whenϕ is not bijective: this is not noted
in commonly found proofs, but is very powerful, since it simplifies the next lemma, and
leads to a very short and simple proof of 2.34 and the theorem of Buseman 2.35.
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Lemma 2.33 (reparametrization to arc parameter) (25) For any curveγ : [α, β] →
M of lengthL such that`γ is continuous, there exists an unique Lipschitz curve
ξ : [0, L] → M such that

γ(t) = ξ(`γ(t)), `ξ(t) = t, t ∈ [0, L]

where`γ is therunning lengthof γ, and`ξ of ξ (see eq. (2.8)).
ξ is thereparametrization to arc parameterof γ.

Proof. γ(t) = ξ(`γ(t)) uniquely definesξ: indeed, if`γ(t) = `γ(t′) thenγ(t) = γ(t′)
by (2.9). Let̂l = `γ(t̂). If we restrictγ to [a, t̂] andξ to [0, l̂], we can writeγ = ξ ◦ `γ .
By the previous lemma,̀γ(t̂) = `ξ(l̂), that isl̂ = `ξ(l̂).

Lemma 2.34 (existence of local geodesics)Fix x. Letε > 0 s.t.D = {y | bg(x, y) ≤
ε} is compact. Then for anyy such thatbg(x, y) < ε, there is a geodesic connectingx
to y.

Proof. Fix x, ε > 0 D, y as above. LetL = bg(x, y); supposey 6= x (otherwiseγ ≡ x
is the geodesic).

Let γn : [0, 1] → M be a sequence of Lip paths fromx to y such thatlen γn → L,
and len γn ≤ ε. By (2.9), we know that all ofγn is contained inD. By using the
above lemma 2.33, we assume without loss of generality that the Lip constants ofγn

are bounded byε.
Then by the Ascoli-Arzela theorem, we know that there is a Lipγ : [0, 1] → M

such that, up to a subsequence, there is uniform convergence ofγn → γ; this uniform
convergence is w.r.t the distanced(x, y) = b(x, y) ∨ b(y, x).

The functionalγ 7→ lenb γ is lower semicontinuous w.r.t. uniform convergence,
since it is the supremum of the continuous functionals

n∑
i=1

b
(
γ(ti−1), γ(ti)

)

Note that ifD ⊂ M is compact forbg then it is compact forb; the opposite is not true,
see 2.39

This lemma immediately implies the Buseman’s theorem (see also thm. 4.3.1, [1]):

Theorem 2.35 (Buseman’s theorem)Suppose that(M, b) is compact, then(M, b)
admits geodesics.

As another consequence:

Proposition 2.36 Suppose that(M, b) is forward-locally compact and path-metric,
then(M, b) forward-locally admits geodesics.

(25)cf. Theorem 4.2.1 in [1]: but we do not include here themetric derivativeissue
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§2.viii.1 Hopf-Rinow Theorem

We now restate and prove theorem 1.2

Theorem 2.37 (Hopf-Rinow) Suppose that(M, b) is path-metric and forward-locally
compact; then the following are equivalent

• (M, b) is forward complete

• forward-bounded and closed sets are compact

and both imply that(M, b) admits geodesics

Proof. Let D+(a, ρ) .={y | b(a, y) ≤ ρ}.
We define theradius of compactnessR : M → lR+ ∪ {∞} as

R(x) .=sup{ρ ≥ 0 | D+(x, ρ) is compact} .

Then, for anyρ < R(x), D+(x, ρ) is compact.
EitherR ≡ ∞, or R < ∞ andR is 1-Lipschitz w.r.t.d: indeed, for anyx, y ∈ M ,

for anyρ < R(x), we have thatD+(y, ρ− b(x, y)) is compact, since

D+(y, ρ− b(x, y)) ⊂ D+(x, ρ) .

This implies thatR(y) > ρ − b(x, y), and thenR(y) ≥ R(x) − b(x, y); if R is
finite, the above entailsd(x, y) ≥ |R(x)−R(y)|, sincex, y are arbitrary.

(M, b) is forward-locally compact iffR(x) > 0 at all points.

• Suppose that(M, b) is forward complete.

Let yn be a forward-bounded sequence; we want to extract a converging subse-
quence from it; to this end, we will define iteratively a functionn : lN× lN → lN.

Fix x0 ∈ M ; up to a subsequence, we may assume thatb(x0, yn) → L.

Let ε0 = inf{R(x0)/2, L/2}: thenD+(x0, ε0) is compact. By (2.20.�),

min
z∈D+(x0,ε0)

b(z, yn) = b(x0, yn)− ε0 . (2.38)

Let z0,n be corresponding minimum points. By 2.20.(iii),b(x0, z0,n) = ε0.
SinceD+(x0, ε0) is compact, we extract a subsequencen(0, k) so that

z0,n(0,k) →k x1

(and thenb(x0, x1) = ε0), and extract a corresponding subsequenceyn(0,k) from
yn. Sincex1 ∈ D+(x0, ε0), by (2.38),b(x1, yn) ≥ b(x0, yn)− ε0 and then

lim inf
n

b(x1, yn) ≥ L− ε0 .

But, by triangle inequality,

b(x1, yn) ≤ b(x1, zn) + b(zn, yn) = b(x1, zn) + b(x0, yn)− ε0

remembering thatz0,n(0,k) →k x1 andb(x0, yn) → L,

lim sup
k

b(x1, yn(0,k)) ≤ L− ε0
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and hence we obtain that

lim
k

b(x1, yn(0,k)) = L− ε0 .

We iterate the above reasoning to definexm, εm, n(m, k) such that

sm =
m∑

j=0

εj

εm = inf
{
R(xm)/2, (L− sm−1)/2

}
b(xm, xm+1) = εm

lim
k

b(xm+1, yn(m,k)) = L− sm

andk 7→ n(m, k) is a subsequence ofk 7→ n(m− 1, k).

By definitionεm ≤ (L− sm−1)/2, then
∑∞

m=0 εm = limm sm ≤ L andεm →
0. By the triangle inequality, forh > m,

b(xm, xh) ≤ sh−1 − sm−1

we obtain thatxm is forward-Cauchy. Hence there existsx such thatxm → x.

We want to prove thatsm → L; otherwise we would have thatεm = R(xm)/2
for m large, and thenR(xm) → 0 whereasxm → x andR(x) > 0.

Let yk = yn(k,k) be the diagonal sequence. Therefore, for any fixedm, yk is
definitely a subsequence ofyn(m,k):

lim
k

b(xm+1, yk) = L− sm

We write
b(x, yk) ≤ b(x, xm+1) + b(xm+1, yk)

Fix ε > 0; then we can choosem large so thatb(x, xm+1) < ε andL− sm < ε.
Now chooseh large so thatb(xm+1, yk) < L − sm + ε < 2ε for anyk > h:
thereforeb(x, yk) < 3ε for k > h. This proves thatb(x, yk) → 0, and then
yk → x (by 2.15).

• Suppose that forward-bounded closed sets are compact. Ifxn is a forward-
Cauchy sequence, then there existsN s.t. b(xN , xm) ≤ 1 for m > N , that
is, xm ∈ D+(xN , 1) that is compact; then we can extract a converging subse-
quence, and use lemma 2.16 to obtain the result.

• Existence of geodesics is guaranteed by lemma 2.34.

We remark that the proof of the above equivalence cannot simply follow from the
proof for metric spaces§1.11 in [7], since that proof uses the property (ii) in sec.§2.vi;
neither it does follow from the proof in Finsler Geometry (see section VI of [2]), since
the latter uses the exponential map.

Hence we devised a different proof, that combines the idea of the diagonalization of
a sequence of subsequences, as in [7], and the idea of repeated application of (2.20.�)
as in [2], plus some special ingredients such as theradius of compactness, and (2.38).



§2.ix Length structure 19

§2.viii.2 More examples

We show some examples to highlight the impact of the hypotheses in the above theo-
rems 2.37 (a.k.a. 1.2) and 2.34.

Example 2.39 Consider

M = {x ∈ lR2 | − 1 ≤ x1 ≤ 1, x1 6= 0, x2 = 0} ∪
{x ∈ lR2 | − 1 ≤ x1 ≤ 1, 1/4 ≥ x2 > 0} ∪⋃

n

{x ∈ lR2 | − 1 ≤ x1 ≤ 1, x2 = (x1 − 1)/n}

and b the Euclidean distance (see fig. 3). LetA = (−1, 0), B = (1, 0). (M, b) is
locally compact, but is not path-metric and is not complete;(M, b) does not admit
geodesics locally aroundA.

The disc{y | b(B, y) ≤ 1/2} is compact forb; but the discs{y | bg(B, y) ≤ ε} are
never compact forbg.

A B

Figure 3: example 2.39

Example 2.40 Let

M
.=

⋃
n

{x ∈ lR2 | x2
1 + n2x2

2 = 1, x2 ≥ 0}

andb be the geodesic distance induced onM by the Euclidean distance; loosely speak-
ing, M is the disjoint union of countable segmentsln, with length∼ 2 + 1/n, and with
common end points.

Then (M, b) is path-metric, is complete, and is bounded, and it locally admits
geodesics; but is not locally compact (and then it is not compact), and there is no
geodesic curve connecting(−1, 0) to (1, 0).

§2.ix Length structure

We hereby define alength structurelen : C → lR+, whereC is a family of curves
γ : [α, β] → M (andα, β may vary); we say that(26)

• C connects points: ∀x, y ∈ M there is at least oneγ ∈ C, γ : [α, β] → M such
thatγ(α) = x, γ(β) = y

• C is reversible: if γ ∈ C andγ̂(t) .=γ(−t) thenγ̂ ∈ C
(26)the following conditions are not independent: some of them imply some others; we do not detail
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• len is independent of reparametrization: if γ ∈ C then,∀h > 0, k ∈ lR, its linear
reparametrizationγ′(s) = γ(hs + k) is in C, andlen γ = len γ′,

• len is monotonic: if γ ∈ C then its restrictionγ′ = γ|[c,d] is in C, andlen γ′ ≤
len γ

• len is additive: if γ′, γ′′ ∈ C, γ′ : [α′, β′] → M , γ : [α′′, β′′] → M , and
β′ = α′′, then we may join the two curves and obtainγ: thenγ is in C, and

len γ = len γ′ + len γ′′

• len is run-continuous: that is, the running lengtht 7→ len(γ|[α,t]) is continuous
for all γ ∈ C

• len γ = 0 whenγ is constant (and constants are inC)

We then defineb(x, y) on M to be the infimum of this lengthlen γ in the class of
all ξ ∈ C, ξ : [0, 1] → M with given extremaξ(0) = x, ξ(1) = y.

Proposition 2.41 b is an asymmetric semidistance:b satisfies the triangle inequality,
sincelen is independent of reparametrizationandadditive.

b ≥ 0, andb(x, x) = 0 sincelen is zero on constant curves.
b may fail to be an asymmetric distance, since we cannot be sure thatb(x, y) =

0 =⇒ x = y

We also inducelenb γ from b using the total variation, as in (2.4).

Lemma 2.42 Supposelen andC satisfy all the hypotheses above. Iflen is lower semi
continuous w.r.t. uniform convergence, thenlen γ = lenb γ for anyγ ∈ C

The proof for the asymmetric case is not different from the symmetric case (cf. 1.6 [7]).

Corollary 2.43 Suppose we are given an asymmetric space(M, b); let C be the class
of rectifiable curves with continuous run-length, andlen .= lenb: this is a length struc-
ture satisfying all above hypotheses.lenb inducesbg which induceslenbg

γ. lenb γ is
lower semi continuous since it is the supremum of the continuous functionals

n∑
i=1

b
(
γ(ti−1), γ(ti)

)
By the lemma

lenb γ = lenbg

γ

This immediately entails the result:

Corollary 2.44 The operationb 7→ bg is idempotent, that is,bg is path-metric, idem
estbg = (bg)g.
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3 Asymmetric metric manifold

Suppose now thatM is a differential manifold(27), with an atlasA and a topologyτM .

Definition 3.1 (A-Lip) We will say that a curveξ : [α, β] → M is locally Lipschitz
w.r.t.A, if for any local chartϕ : U → lRn in the atlasA, ϕ ◦ ξ is locally Lipschitz for
t ∈ ξ−1(U).

Hypotheses 3.2Suppose that we are given a positive functionF : TM → lR+;
suppose

• F is lower-semi-continuous,

• v 7→ F (x, v) is positively 1-homogeneous, that is,

F (x, λv) = F (x, v)λ ∀λ ≥ 0

• F (x, v) = 0 iff v = 0.

We define thelengthlenL γ of a locally Lipschitz curveξ : [0, 1] → M as

lenL γ =
∫ 1

0

F (ξ(s), ξ̇(s)) ds (3.3)

Remark 3.4 (The regular Finsler case)If we would suppose that

• F is continuous, andC∞ on the slit tangent bundleTM \ 0

• v 7→ F 2(x, v) is strongly convex forv 6= 0, (cf. 1.6)

then this section would be exactly what is found in section 6.2 [2]; we will instead use
less regular assumptions.

As in §2.ix, we then define the asymmetric distanceb(x, y) onM to be the infimum
of this lengthlenL γ in the class of all locally Lipschitzξ with given extremaξ(0) =
x, ξ(1) = y.

In the above hypotheses 3.2,b is an asymmetric distance; indeed,b is a semidistance
by 2.41, and the relationb(x, y) =⇒ x = y can be proved by the methods in the
following Lemma.

This metric is also called aFinsler metric, and is naturally associated to Hamilton-
Jacobi equations; see [12] and references therein.

There may be a confusion here, since we have two topologies at hand: the topology
τM of the differential manifoldM , and the topologyτ b induced byb; but we may use
this lemma, that simply restates the lemma 6.2.1 in [2] (with less regularity assumptions
onF )

Lemma 3.5 Assume 3.2 and letF be locally bounded from above. Then for any
z ∈ M there existsU a compact neighborhood ofz, associated with local coordinates
ϕ : U → W ⊂ lRn, such that the push forward ofb in local coordinates is bounded
from above and below by the Euclidean norm: that is,∃c′ > c > 0

c′|x̂− ŷ| ≥ b(x, y) ≥ c|x̂− ŷ| (3.5.?)

whereŷ = ϕ(y) andx̂ = ϕ(x).
(27)more precisely, letM be a finite dimensional connected smooth differential manifold, without boundary
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Proof. Let z ∈ M andZ be a neighborhood ofz, with Z compact w.r.t.τA, associated
to local coordinatesϕ : Z → W ⊂ lRn, with W convex bounded.

Let F̂ be the push-forward ofF ; for any x, y ∈ Z, we may joinŷ = ϕ(y) to
x̂ = ϕ(x) with a segment, and thenb(x, y) ≤ c′|ϕ(x) − ϕ(y)| wherec′ is the upper
bound ofF̂ (w, v) for w ∈ W and|v| ≤ 1.

In the above setting, letU ⊂⊂ Z, let c be the minimum ofF̂ (w, v) for w ∈ ϕ(Z)
and |v| = 1 (this minimum exists and is positive, sinceF is l.s.c); and letε be the
minimum of|ϕ(x)− ϕ(z)| for x ∈ ∂U, z ∈ ∂Z; let ξ̂

.=ϕ ◦ ξ whenξ ∈ Z.
Then, for anyξ connectingx to y,

lenL ξ =
∫ 1

0

F (ξ(s), ξ̇(s)) ds ≥
∫ t

0

c| ˙̂ξ(s)| ds ≥ c(ε ∧ |x̂− ŷ|)

where t = 1 if ξ never exits fromZ, otherwise it is the first times such that
ξ(s) ∈ ∂Z: thenb(x, y) ≥ c(ε ∧ |x̂− ŷ|), and we choose a smallerU .

Corollary 3.6 Under the same hypotheses,τ b = τM , i.e. b generates the same topol-
ogy that the atlas ofM induces. Moreover both coincide with the topology generated
by the forward balls; or respectively, by the backward balls.(28)

This topology is locally compact: then

• xn → x iff b(xn, x) → 0 iff b(x, xn) → 0 (29); and

• (M, b) locally admits geodesics (by 2.36).

By (3.5.?), a curveξ : [0, 1] → M is locally Lipschitz w.r.tA, as defined in 3.1, iff
it is locally Lipschitz w.r.tb, as defined in§2.ii.

Proposition 3.7 i). (M, b) is path-metric, that is,b = bg

ii). suppose 3.2, andv 7→ F (x, v) is convex; then for any Lipschitzγ, lenL γ coin-
cides with thelenb γ defined in (2.4).

Proof. i) is a consequence of 2.20.
ii) . We proceed as in lemma 2.42: we setC to be the class of Lipschitz curves, and

len .= lenL. Fix γ, let L
.= lenL γ. If L is small, then the curve is contained in local

coordinates.
By (3.5.?), the uniform convergence happens also in local coordinates. By well-

known theory (cf. thm. 2.3.3 in [3]),lenL γ is l.s.c, and we conclude as in the Lemma 3.5.
If we don’t suppose thatγ(t) ∈ U ∀t ∈ [0, 1]: we fix a very dense partition̂T , so

that we can associate to any pointti ∈ T̂ a local chartϕi : Ui → lRn, so that
⋃

i Ui

covers the image ofγ, and more preciselyγ([ti, ti+1]) ⊂ Ui. We repeat the above
argument in anyUi.

Lemma 3.8 (Reparametrization) For any γ : [α, β] → M Lipschitz, definel :
[α, β] → [0, L]

l(t) =
∫ t

a

F (γ(s), γ̇(s)) ds

(whereL = len γ).
Then there is a uniqueξ such thatγ = ξ ◦ l, and

F (ξ(s), ξ̇(s)) = 1 ∀̃s ∈ [0, L] (3.8.?)

(28)cf. 2.17 , or sec. 6.2C in [2] for the regular case
(29)cf. 6.2.5 in [2] for the regular case
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Proof. We apply 2.33, and just note that`ξ(t) = t means that
∫ t

0
F (ξ, ξ̇) = t

We can then state this version of theHopf-Rinowtheorem

Theorem 3.9 Assume that the functionF : TM → lR+

• is locally bounded from above

• v 7→ F (x, v) is positively 1-homogeneous, and convex,

and 3.2 holds.
Then the asymmetric metric space(M, b) is path-metric, locally compact, and lo-

cally admits geodesics (that we can always reparametrize so that they satisfy (3.8.?)).

• (M, b) is forward-complete (resp. backward-complete) if and only if

• forward (resp. backward) bounded closed sets are compact.

In both cases, for anyx, y ∈ M , there is a locally Lipschitz curveξ connecting
them that minimizes (3.3), satisfying (3.8.?).

Further applications of these ideas are in [11]; in particular, in the appendix of [11],
we consider a LagrangianL : TM → lR+ (that is defined asL(x, v) = F (x, v)2) and
its Legendre-Fenchel dual HamiltonianH : T ∗M → lR+; we show that, ifH ∈ C1,1

andp 7→ H(x, p) is positively 2-homogeneous and strictly convex, we can define an
exponential map and add it to the statement of the Hopf-Rinow theorem, to obtain a
statement exactly as in ch. VI of [2].
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