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1 Preface

In this paper I will make an overview of the theory of flows associated to nonsmooth vector
fields, describing also some applications to PDE’s. My presentation reflects the content
and the style of my Santalo lecture, aimed at the description of the origin and of the main
developments of the theory, including the most recent ones. In the years more extended
lecture notes (in chronological order, [10, 11, 25, 29]) on this subject appeared, which
contain proofs and many more technical details, and the interested reader is referred to
them.
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In the theory that I am going to illustrate, the basic idea is to exploit some randomness
on the set of initial conditions of the ODE; this point of view has many connections with
stochastic ODE’s, where randomness acts in an additive or multiplicative way on the drift
(see for instance [80, 81, 99] and the references therein), and with the theory of invariant
measures for specific classes of PDE’s, typically of Hamiltonian type (viewed as infinite-
dimensional ODE’s, see [37]). To keep the exposition simple, I will not describe these
connections, that can be easily recognized by the experts. Even with these limitations,
the subject is very wide and the references do not pretend to be exhaustive.

2 Introduction to the problem

Let T > 0, d ≥ 1 and let b(t, x) = bt(x) : (0, T ) × Rd → Rd be a vector field. The flow
map X(t, x) associated to b is defined by

d

dt
X(t, x) = bt

(
X(t, x)

)
,

X(0, x) = x,

where, as typical in the theory of ODE’s, we assume that the functionX(·, x) is absolutely
continuous in [0, T ], so that the derivative above makes sense for L 1-a.e. t ∈ (0, T ) and
also the initial condition makes sense. On the other hand, we are going to assume very
little regularity on b; already in the classical theory one can assume only a measurable
dependence w.r.t. t, but weaking the regularity assumptions w.r.t. x (e.g. a uniform in
time Lipschitz property) is much more demanding.

The goal is to provide a good notion of flow map X(t, x) even in situations when b is
not so regular, and even defined only up to L 1 × L d-negligible sets. From the point
of view of the applications, “good” means in particular stable w.r.t reasonable smooth
approximations of b, since this leads to a consistency between weak and relaxed models
in many PDE’s of Mathematical Physics (see for instance [90], [91]). In the classical
theories, more refined existence/uniqueness results are available (one-sided Lipschitz con-
dition [47], Osgood condition,....), but still these results arise as variants of the standard
Lipschitz condition (another special case is given by 1d problems, see for instance [44]).
More refined results arise if a special structure of the vector field is assumed: the most
important case is maybe the case of gradient flows b(x) = −∇V (x): by looking at refined
energy dissipation identities and monotonicity properties (even in the more general case
of maximal monotone operators) the theory of gradient flows provides very general and
elegant existence, uniqueness and stability results, see [14], [53], [58], [59].
The philosophy of the theory illustrated here, initiated by DiPerna-Lions in their seminal
paper [76], is a bit different, since also a reference measure (typically L d in Euclidean
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spaces) plays a major role. As a matter of fact, the reference measure is used to quantify
the concentration of trajectories and to specify exceptional sets.
The following axiomatization, slightly different from the one of the original paper [76],
has been introduced in [8]. In order to introduce it, let us recall a notation typical of
Optimal Transport: if U, V are metric spaces and f : U → V is a Borel map, any Borel
measure µ in U induces a Borel measure f]µ in V , defined by

f]µ(B) := µ
(
f−1(B)

)
B ∈ B(V ).

This construction works if µ is nonnegative, or with finite total variation, and in the first
case preserves the total mass or the σ-finiteness property. It is also useful to remind the
change of variables formula for the push-forward measure:∫

V

g df]µ =

∫
U

g ◦ f dµ

whenever g ∈ L1(V, f]µ), or g is Borel and nonnegative.

Definition 1 (Regular Lagrangian Flow) We say thatX(t, x) is a Regular Lagrangian
Flow associated to bt if:

(1) for L d-a.e. x ∈ Rd, t 7→ X(t, x) is an absolutely continuous solution to the ODE
d
dt
X(t, x) = bt(X(t, x)) with X(0, x) = x;

(2) for some constant C, X(t, ·)]L d ≤ CL d for all t ∈ [0, T ].

Here “regular” refers to (2), which encodes a non-concentration property of the trajectories
at any given time t and fully involves the reference measure L d (unlike (1), which involves
only the σ-ideal of L d-negligible sets). Indeed, one of the open problems of the theory is
to see if one can develop a good theory using only a σ-ideal of “exceptional sets”.
Only for very special classes of vector fields, as the 2-dimensional, autonomous, curl-free
vector fields b = ∇⊥f , the sharp regularity assumption for existence/uniqueness of the
RLF is known, see [4, 5, 6], and it involves a weak Sard property and the factorization of
the dynamics into a family of 1-dimensional problems along the level sets of f . Without
restriction on dimension, and for general classes of vector fields, one of the key results
of [76] deals with Sobolev regularity w.r.t. the space variable. The statement below
is a small refinement of the corresponding one in [76], since only one-sided bounds on
divergence are assumed (see [8]).

Theorem 2 If b ∈ L1
t

(
W 1,1

loc (Rd;Rd)
)
, under the global growth conditions

|b|
1 + |x|

∈ L1
t (L

1
x) + L1

t (L
∞
x ), (div b)− ∈ L1

t (L
∞
x )

the regular Lagrangian flow exists, is unique and stable w.r.t. smooth approximations.
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I will not specify exactly here what stability means, see [25] for more precise statements;
it deals with a sequence of vector fields bh for which the flows Xh are classically defined,
and stability means convergence in measure of the path-valued maps x 7→ Xh(·, x) to
x 7→X(·, x).
Looking at the assumptions of Theorem 2, it is is useful to separate the growth assump-
tions from the regularity assumptions. Indeed, if we remove the latter, we can still provide
existence (but not uniqueness, in general) of a generalized solution. It involves, in a nat-
ural probabilistic language, probability measures on paths concentrated on absolutely
continuous solutions to the ODE. See also [48, 49, 50] for an application of these ideas to
the construction of (very) weak solutions to the system of incompressible Euler equations.

Theorem 3 ([8]) Under the only assumptions

|b|
1 + |x|

∈ L1
t (L

1
x) + L1

t (L
∞
x ), (div b)− ∈ L1

t (L
∞
x )

there exists a regular generalized flow, namely a family of probability measures ηx in
C([0, T ];Rd) concentrated on absolutely continuous solutions to the Cauchy problem with
γ(0) = x, with∫

Rd

(∫
φ(γ(t)) dηx(γ)

)
dx ≤ C

∫
Rd
φ(y) dy ∀t ∈ [0, T ], φ ≥ 0,

with C = exp
[∫ T

0
(‖(div bt)

−‖∞) dt
]
.

The strategy of proof is natural: first one proves that the global bounds on b provide
existence of weak solutions w ∈ L∞t (L1 ∩ L∞(Rd)) to the continuity equation

(CE)
d

dt
wt + div (btwt) = 0

for any w0 ∈ L1 ∩ L∞(Rd). This can be obtained by mollifying bt, to get approximate
solutions wε to

d

dt
wεt + div (bεtw

ε
t) = 0.

Then, since the equation is linear w.r.t. w, any weak∗ limit point of wε is a solution. This
construction provides also the informations∫

Rd
wt dx =

∫
Rd
w0 dx, wt ≥ 0 if w0 ≥ 0.

Then, one can apply the following superposition principle (going back to L.C.Young [106],
see also [97] in the context of 1-dimensional currents) adapted to nonnegative solutions to
continuity equations [14, Thm. 8.2.1]. See also [92] for the case of inhomogeneous transport
equations and [32] for more on the theory of Young measures and its applications in the
study of the limiting behaviour of oscillating functions.
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Theorem 4 (Superposition principle) Let µt = wtL d be a weakly continuous solu-
tion to (CE), with wt ≥ 0,

∫
wt dx = 1 and∫ T

0

∫
Rd
|bt|wt dxdt <∞.

Then there exists a probability measure η in C([0, T ];Rd) concentrated on absolutely
continuous solutions to the ODE such that (et)]η = wtL d for all t ∈ [0, T ] (where
et : C([0, T ];Rd) → Rd is the evaluation map at time t ∈ [0, T ]). In particular, if
‖wt‖∞ ∈ L∞(0, T ), η satisfies the non-concentration condition∫

C([0,T ];Rd)

φ(γ(t)) dη(γ) ≤ C

∫
Rd
φ(y) dy ∀t ∈ [0, T ], φ ≥ 0.

Finally the regular generalized flow ηx is simply given by the conditional probabilities of
η, ηx = E(η|γ(0) = x).
In analogy with optimal transportation (think to the dichotomy Kantorovich plans versus
transport maps, [14, 103]) it is the local regularity of b which prevents branching and
leads from ηx to a “deterministic” flow δX(·,x), and therefore to existence and uniqueness.
How regularity of x 7→ bt(x) enters into play? This topic is discussed in the next section.

3 Uniqueness of RLF via PDE well-posedness

One of the main tools which provide uniqueness of the regular Lagrangian flow is provided
by the following general principle: as soon as we are able to prove uniqueness, at the PDE
level, in the class of bounded nonnegative solutions, uniqueness at the Lagrangian level
follows.

Theorem 5 ([8]) If (CE) is well posed in L∞
(
L1

+∩L∞+ (Rd)
)
, then any regular generalized

flow ηx is deterministic, namely ηx is a Dirac mass for L d-a.e. x ∈ Rd.

Heuristically, the proof in [8] goes along this line: if there exists a non-deterministic regular
generalized flow ηx, then one can carefully select paths γ to build distinct solutions w1, w2

to (CE) in the class L∞
(
L1

+ ∩ L∞+ (Rd)
)

and with the same initial condition.
In view of Theorem 5 we need then to prove well-posedness of (CE). Even for bounded
and divergence-free vector fields this is a nontrivial problem, since oscillations might lead
to loss of uniqueness (see the nice counterexamples in [72], [1]) and, more generally, to the
typical phenomenon of the deterioration of regularity [52], [71], [65]. A possible strategy,
which goes back to DiPerna-Lions, is to write down the PDE satisfied by wεt = wt ∗ ρε,
namely

wεt + div (wεtbt) = Cε[bt, wt]
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where Cε[bt, wt] is the commutator

Cε[bt, wt] := div ((wt ∗ ρε)bt)−
(
div (wt bt)

)
∗ ρε.

Notice that the commutator acts on the single time slices and that, obviously, it converges
to 0 weakly in the sense of distributions as ε → 0. However, in order to transfer so to
speak uniqueness from the approximate problems to the limit one, the crucial technical
point is to show strong L1

loc convergence of Cε[bt, wt] as ε→ 0. This improved convergence
is useful to estabilish the so-called renormalized property of w.

Definition 6 (Renormalized solutions) Let b ∈ L1
loc((0, T )×Rd) be such that D ·bt �

L d for L 1-a.e. t ∈ (0, T ), with density div bt satisfying

div bt ∈ L1
loc

(
(0, T );L1

loc(Rd)
)
.

Let w ∈ L∞loc((0, T )× Rd) and assume that, in the sense of distributions, one has

c :=
d

dt
w + b · ∇w ∈ L1

loc((0, T )× Rd). (1)

Then, we say that w is a renormalized solution of (1) if

d

dt
β(w) + b · ∇β(w) = cβ′(w) ∀β ∈ C1(R).

Equivalently, recalling the definition of the distribution b · ∇w = D · (bw) − wD · b, the
definition could be given in a conservative form, writing

d

dt
β(w) +Dx · (bβ(w)) = cβ′(w) + β(w)div bt.

This concept is also reminiscent (see [70], [75]) of Kruzkhov’s concept of entropy solution
for a scalar conservation law

d

dt
u+Dx · (f(u)) = 0, u : (0,+∞)× Rd → R.

In this case only a distributional one-sided inequality is required:

d

dt
η(u) +Dx · (q(u)) ≤ 0

for any convex entropy-entropy flux pair (η, q) (i.e. η is convex and η′f ′ = q′).
If we assume strong convergence of the commutators, by writing down the PDE satisfied
by β(wε) and passing to the limit as ε → 0 it is easy to obtain that w is a renormalized
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solution. Now, if we are given two bounded solutions to (CE) with the same initial condi-
tion, we can call w the difference, which still solves (CE), and apply the renormalization
property with a smooth approximation of β(z) = |z| (for instance βδ(z) =

√
z2 + δ2−δ) to

obtain that w vanishes identically. This proves the well posedness of (CE) in the class of
bounded solutions. In this connection, it is worthwile to remark that it has been proved in
[41] that the relation between the existence of strong approximations and renormalization
is not incidental.
All in all, according to this strategy, everything depends on the possibility to prove strong
convergence of commutators. For even convolution kernels ρ it is not hard to obtain the
explicit expression

Cε[c, v](x) =

∫
Rd
v(x− εy)〈c(x+ εy)− c(x)

ε
,∇ρ(y)〉 dy. (2)

Therefore, if c is of class W 1,1, the strong convergence of difference quotients

c(x+ εy)− c(x)

ε
→ ∇c(x)(y) in L1

loc(Rn), for all y ∈ Rn

and and integration w.r.t. x, together with the uniform bound in L∞ on v, provide the
strong convergence.

In the BV case, where the difference quotients converge only weakly as measures, this
scheme has to be refined, using very anisotropic smoothing kernels. This idea, introduced
by F.Bouchut, used in [89] for piecewise Sobolev vector fields, then in [46] for “split”
vector fields b(x, v) = (v,F(x)) (see also [62], [61] and the more recent paper [39] that
we mention later on), shows that one can make the contribution of the commutator very
small by choosing a “local” convolution kernel adapted to the local structure of c. For
instance for the split vector fields above, one has to mollify faster in the x direction,
compared to the v direction. In general one can use the celebrated Alberti’s rank one
theorem [2] to detect the “good” and “bad” directions.

Theorem 7 ([8]) If b ∈ L1
t

(
BVloc(Rd;Rd)

)
, under the global growth conditions

|b|
1 + |x|

∈ L1
t (L

1
x) + L1

t (L
∞
x ), (div b)− ∈ L1

t (L
∞
x )

the regular Lagrangian flow exists, is unique and stable w.r.t. smooth approximations.

See also [13], [19], [63], [88], [83], [84], [85], [93], [95], [94] for more results, not only in the
BV setting, more will be quoted later on.
In particular, I want to discuss in this section some more recent developments motivated
by [9] (that I describe in more detail in the next section) and by Bressan’s compactness
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conjecture [51], [52]. Bressan’s conjecture predicts the strong compactness of the flows
Xh(t, x) associated to sequences of smooth and uniformly bounded vector fields bh with
the properties

sup
n

∫ T

0

∫
Rd
|∇t,xbh(t, x)| dxdt <∞,

C−1 ≤ det
(
∇xXh(t, x)

)
≤ C for some C > 0

(so, in some sense, an integral version of the divergence along the flow is uniformly
bounded). In connection with these papers and problems, one realizes that the most
natural assumption at the level of the divergence of b(t, ·) is not really absolute continuity
with bounded density, but rather the existence of a nonnegative density ρ, transported
by b, namely

d

dt
ρ+D · (ρb) = 0,

with the property that both ρ and ρ−1 are uniformly bounded. For instance, this is the
case of the vector field arising in [9] and vector fields with this property have been called
in [19] “nearly incompressible”. It was also proved in [19] that the well posedness of (CE)
in the class of nearly incompressible BV vector fields implies the validity of Bressan’s
conjecture, but well-posedness was proved only for the class of SBV vector fields (those
for which the distributional derivative has no “Cantor” part, see [7]). In a very recent
work [36], S.Bianchini and P.Bonicatto estabilished, among other things, the property for
all nearly incompressible BV vector fields in all space dimensions (see [34], [35] for the
2d case), and then Bressan’s conjecture. This important progress has been possible by a
careful analysis of the decomposition of the space-time vectorfield (ρ, ρb) (viewed as a 1-
dimensional current) as a superposition of elementary currents associated to curves, as in
Smirnov’s theorem [97]. A structural assumption leading essentially to uniqueness of the
decomposition is formulated in terms of the flux of the vector field along suitable “tubular
neighbourhoods” of the curves used in the decomposition. The structural assumption is
then proved to be hold for nearly incompressible BV vector fields; here Alberti’s rank 1
theorem plays again a role, as in the proof in [8].
Let me close this section with a remark in another direction, for instance understanding
how one can study the problem in Riemannian manifolds via commutator estimates. In
this connection, we realize that (2) is too “Euclidean-like”, since it involves difference of
vectors at different points. Of course one can localize the problem in many ways, for
instance working in local coordinates (which is however the source of a new difficulty,
since the estimates have eventually to be patched together) or using parallel transport.
We will see in the next sections (see (4) in particular) how a coordinate-free approach to
the commutator estimate can bypass these difficulties.
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4 Some applications

Before moving to the more recent developments of the theory, I want to illustrate some
applications of the theory of flows to PDE.

The Keyfitz-Kranzer system. This system, first studied in [86], can be written as

d

dt
u+

d∑
i=1

∂

∂xi
(fi(|u|)u) = 0, u : Rd × (0,∞)→ Rk.

Formally, with the position u = θρ, ρ = |u|, this system decouples into a scalar conserva-
tion law for ρ, namely

d

dt
ρ+

d∑
i=1

∂

∂xi
(fi(ρ)ρ) = 0,

and a transport equation driven by b = f(ρ), namely

d

dt
θ + b · ∇θ = 0.

In [9], [12], this formal decoupling is made rigorous by using on one hand the notion of
entropy solution for the scalar conservation law (which provides BV regularity of ρ and
then of b, see [70]), on the other hand the regular Lagrangian flow associated to b to build
solutions to the transport equation. Stability plays a key role here, in order to prove that
the function u built in this way is a distributional solution.

The semi-geostrophic system. This system is widely used in the modelling of atmo-
spheric phenomena on a large scale, see [67] for more informations on this topic. In the
case d = 2, and considering for the sake of simplicity the problem on the 2-dimensional
torus T2, it reads 

d

dt
J∇pt + J∇2ptut +∇pt + Jut = 0

∇ · ut = 0

p0 = p0

with ut (the velocity) and pt (the pressure) periodic,

J :=

(
0 −1
1 0

)
.

Setting ν = LT2 , physical considerations suggest the change of variables ωtν = (∇Pt)]ν,
with Pt(x) := pt(x) + |x|2/2, leading to the so-called dual problem

d

dt
ωt + div

(
(T ωtν − Id)⊥ωt) = 0.
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Here T ωtν is the optimal map from a reference measure ν to ωtν, so that the velocity
field bt = (T ωtν − Id)⊥ is divergence free. In connection with its regularity, since optimal
maps are gradients of convex functions (see for instance [14], [103], [104]), BV regularity
comes for free [3], [78], [7]. Using these informations, a “Lagrangian” solution to the
semi-geostrophic system has been built in [69] starting from the weak solutions to the
dual problem provided by [33], [68]. In more recent times, progress on the regularity of
the optimal transport map (which turns out to be of class W 1,p for some p > 1 [73], [74],
[96] even in the borderline case of Caffarelli-Urbas theory [54], [55], [56]), [101], [102] has
led in [23] to genuine distributional solutions to the semigeostrophic system, see also [24]
for a 3-dimensional version of the problem.

Semiclassical limits in quantum mechanics. The problem of convergence of the
linear Schrödinger equation in quantum mechanics iε∂tψ

ε
t = − ε2

2
∆ψεt + Uψεt

ψε0 = ψ0,ε.

to the Hamiltonian of classical mechanics (i.e. the continuity equation in phase space
with velocity b(x, p) = (p,−∇U(x)) has been studied in several papers, under regularity
assumptions on U , via the so-called Wigner transform

Wε(x, p) :=
1

(2π)n

∫
ψ
(
x+

ε

2
y
)
ψ(x− ε

2
y
)
e−ipy dy.

However, in some physical models (the so-called Born-Oppenheimer theory), U arises
from the minimization of an interaction energy and, because of the crossing of eigenval-
ues, no more than BV regularity of ∇U can be expected. In [15] the theory of regular
Lagrangian flows has been used to prove the convergence result under this ”critical” reg-
ularity assumption on ∇U . Furthermore, to prove a stability result also at the level of
flows, in [16] it has been crucial to extend the notion of flow from the space Rd to the
space P(Rd) (viewing the continuity equation as an infinite-dimensional ODE in P(Rd))
and to provide a good, at least for this purpose, notion of flow in this larger state space
(see in particular [22]).

5 Differentiability of the flow

In [87] LeBris-Lions proved that the general theory of flows I outlined before still works
for 2d-dimensional vector fields of the form

Bt(x, v) =
(
bt(x),∇bt(x)v

)
(x, v) ∈ Rd × Rd
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with b ∈ W 1,1. This is remarkable, since the last d components are only measurable w.r.t.
the x variable. Again, the key is an anisotropic mollification scheme. The vector field B
is natural in connection with the linearization of the ODE, since at least formally one has

d

dt
∇X(t, x)v = ∇bt

(
X(t, x)

)
∇X(t, x)v ∀v ∈ Rd.

It turns out that the linearization can be made rigorous even without adding one derivative
to b (as done in the classical Ck,1 theory), provided the derivative is understood in a very
weak sense, namely

lim
ε→0+

X(t, x+ εv)−X(t, x)

ε
= Z(t, x)v locally in measure in Rd

x × Rd
v,

where (X(t, x),Z(t, x)v) is the regular Lagrangian flow relative to Bt.
A natural question, then, arises. In Geometric Measure Theory there is a well estabilished
weak notion of differentiability, Federer’s approximate differentiability [79]: we say that f
is approximately differentiable at x if, for some linear map L (the approximate differential)
one has

L d

({
y ∈ Br(x) \ {x} :

|f(y)− f(x)− L(y − x)|
|y − x|

> δ

})
= o(rd) ∀δ > 0.

Functions in W 1,p are approximately differentiable at L d-a.e. x, with approximate dif-
ferential equal to the weak gradient of the Sobolev theory, and this weak differentiability
property improves to classical differentiability as soon as p > d. More generally, approx-
imate differentiability L d-a.e. on a Borel set A is equivalent to the property of being
Lipschitz on “large” sets, i.e., Lipschitz on subsets of A whose complement has arbitrarily
small Lebesgue measure. In [18], we proved that Federer’s notion is strictly stronger.

Theorem 8 For a Borel map f : Rd → Rm, approximate differentiability L d-a.e. implies
differentiability in measure, but the converse does not hold in general. The differential in
measure is always linear w.r.t. v.

Is the flow mapX differentiable only in the very weak sense of differentiability in measure,
or can we improve the differentiability to Federer’s one? In a nutshell, we want to control
“on large sets” the gradient or even the difference quotients of the flow X.
Let us start from an elementary apriori estimate, in the smooth setting:

d

dt
ln(1 + |∇X|) =

1

1 + |∇X|
∇X
|∇X|

· ∇bt(X) · ∇X ≤ |∇bt(X)|.

An integration in time and the regularity of the flow (namely the quantitative non-
concentration condition) yield∫

Rd
ln(1 + |∇X(T, x)|) dx ≤ C

∫ T

0

∫
Rd
|∇bs|(y) dyds.
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This estimate is promising, since in the right hand side only the L1 norm of the derivative
of the vector field appears. However, there is no way to pass to the limit in this form,
since the logarithm is a concave function, and therefore lower semicontinuity of the left
hand side fails. In [17] replacing gradients by difference quotients, it was possible indeed
to pass to the limit, showing the following result:

Theorem 9 If p > 1 and b ∈ L1
t

(
W 1,p

loc (Rd;Rd)
)

is bounded, then for any R, ε > 0 there
exists a compact set Kε ⊂ BR such that L d(BR \Kε) < ε and X restricted to [0, T ]×Kε

is Lipschitz. In particular X is approximately differentiable L 1+d-a.e. in (0, T )× Rd.

This has been the first indication that the DiPerna-Lions theory is much closer to the
classical Cauchy-Lipschitz theory than expected, at least for not so wild velocity fields:
as for measurable functions versus continuous functions, or Sobolev functions versus Lip-
schitz functions, the removal of a set of arbitrarily small (but positive) measure provides
a gain in regularity.
This “logarithmic estimate of |∇X|” has been very much improved by Crippa-De Lellis in
[66]. First, using Lp maximal estimates [98] for the gradient of the vector field, they made
quantitative the Lipschitz estimate on “large” sets (getting LipX|Kε×[0,T ] ≤ exp(c/ε1/p)).
Then, if X i are RLF’s relative to bi, i = 1, 2, by differentiation of∫

BR

ln

(
1 +
|X1(t, x)−X2(t, x)|

δ

)
dx

and playing with the choice of δ, they got a global quantitative stability estimate, of the
form ∫

BR

max
[0,T ]
|X1 −X2| dx ≤ c(R, T, ‖bi‖∞, ‖∇bi‖p) ln−1

( 1

1 ∧ ‖b1 − b2‖L1

)
.

This result provides a totally Lagrangian approach to the uniqueness of RLF’s. In ad-
dition, refinements of this technique have led to new classes of vector fields for which
existence and uniqueness of regular Lagrangian flows is available:

(a) Vector fields b =
∑

j gj ∗Kj, with gj ∈ L1, Kj(x) ∼ x/|x|d, see [43], [64] and [42].
The inclusion of this class of vector fields in the theory requires more advanced tools
of harmonic analysis, compared to those of [66]. Notice that this result covers W 1,1

vector fields, thanks to the formula (with G Green’s function for the Laplacian)

bi(x) =

∫
Rd
〈∇yG(x, y),∇bi(y)〉 dy

but not BV vector fields, which are representable still in this way, but with gj
Radon measures. On the other hand, not all vector fields representable in the form∑

j gj ∗Kj with gj ∈ L1 are W 1,1.

12



(b) Vector fields with a split structure

b(x, v) = (v, F (x)) F ∈ H3/4,2,

see [60]. This is the first positive result assuming only existence of a fractional
derivative of order strictly less than 1! Notice that

BV ∩ L∞ ⊂
⋂

s∈(0,1/2)

Hs,2, BV ∩ L∞ 6⊂ H3/4,2.

Hence, also this result is not comparable with the BV case.

(c) Vector fields b(x, v) with a split structure, arising from a convolution with measures

Db = Dx,v(b1, b2) =

(
S1 ∗ L1 S2 ∗ L1

S3 ∗M S4 ∗ L1

)
with Si(x) ∼ x/|x|d+1, see [39]. Its proof, in a fully Lagrangian scheme, arises from
a deep combination of the anisotropic smoothing (here the split structure of the
vector field comes into play) with the logarithmic estimates.

The last result is relevant in connection with the Vlasov-Poisson system, where b(x, v) =
(v, ρ ∗ x/|x|d), as we will see in the next section.

6 Local theory and applications to the Vlasov-Poisson

system

In the previous section we pointed out some analogies between the classical Cauchy-
Lipschitz theory and the DiPerna-Lions theory. Recall that in the former theory one
needs only local regularity and growth conditions to get existence and uniqueness of
maximal solutions; in addition, the maximal existence time TX : Rd → (0,∞) for the
ODE is lower semicontinuous and the condition

lim
t↑TX
|X(t, x)| =∞

characterizes the blow-up time. Can we get something like this inside the weaker theory,
dropping completely the growth bounds on b and on its spatial divergence? The definition
of regular Lagrangian flow can be easily localized, by looking at arbitrary sets of initial
points and arbitrary intervals [0, τ(x)]; the non-concentration condition then reads

X(t, ·)](L d {τ > t}) ≤ CL d ∀t > 0.

This theme is investigated in [27], where among other things we proved the following
result.
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Theorem 10 ([27]) Assume that b ∈ L1
(
(0, T );W 1,1

loc (Rd;Rd)
)
,
(
div bt

)− ∈ L1
t (L

∞
loc,x)

and no other growth condition on b. Then there exists a unique maximal regular La-
grangian flow X(t, x), defined for 0 ≤ t < TX(x), with TX > 0 L d-a.e. and

(BU) lim sup
t↑TX (x)

|X(t, x)| =∞ for L d-a.e. x ∈ {TX < T}.

In addition, if
(
div bt

)− ∈ L1
t (L

∞
x ), then the lim sup in (BU) is a limit.

In connection with the proof of the above theorem, one should notice that at the Eulerian
level the assumptions we made seem hard to localize (except maybe in the divergence-free
case, when one can use vector potentials of the vector field, provided by Hodge theorem,
and use cutoff functions for the potentials): if χ is a smooth cutoff function then the
divergence of bχ is not even L∞loc, since b is not locally bounded, and very little is known
when the divergence does not belong to L∞loc. So, the actual proof uses localization,
but really at the level of curves (with stopping times, as in probability theory) and the
superposition principle is used to transfer results from the ODE to the PDE level.
In addition, also the regularity assumption can be made somehow more local, and in-
dependent of the Sobolev theory, having in mind Theorem 5: it suffices to assume that
uniqueness holds for the continuity equation in the class of bounded and compacty sup-
ported solutions. This assumption covers the more general classes of vector fields con-
sidered in the previous sections and, in particular, those appearing in the Vlasov-Poisson
system that we describe below.
In connection with the “pointwise” characterization of the blow-up time, we proved that
limt↑TX (x) |X(t, x)| = ∞, as in the classical Cauchy-Lipschitz theory, if the global as-

sumption
(
div bt

)− ∈ L1
t (L

∞
x ) is made at the level of the divergence. If the bounds on

(div bt)
− are local in space, we have indeed an example of 3-dimensional vector field b

whose maximal regular flow X satisfies TX <∞ and

lim sup
t↑TX (x)

|X(t, x)| =∞ and lim inf
t↑TX (x)

|X(t, x)| <∞

in a set with positive Lebesgue measure. Hence, local bounds on the divergence are
compatible with an oscillatory behaviour of the solution, unlike the classical case.
We also remark that in [27] we provide a new characterization of renormalized solutions,
independent of [41]: essentially our result gives that renormalized solutions are in 1-1
correspondence with densities transported by the maximal regular flow, see Theorem 4.10
of [27] for a precise statement. Finally, we have no analog of the lower semicontinuity
property of TX of the classical theory. One can only use the techniques of the previous
section to obtain local bounds on the distribution function of TX .
Let us close this section with the illustration of the application, given in [28], of the
maximal regular Lagrangian flow to the Vlasov-Poisson system. We consider in the phase
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space Rd
x × Rd

ξ a time-dependent probability density f(t, x, ξ) = ft(x, ξ) satisfying

(VP)


d

dt
f + ξ · ∇x f + Et · ∇ξ f = 0

f(0, x, ξ) = f̄(x, ξ).

This PDE has the structure of continuity equation with the divergence-free vector field
bt(x, ξ) = (ξ,Et(x)). Setting

ρf (x) :=

∫
f(x, ξ) dξ,

the vector field is coupled to ft via Et = −ε∇φt where −∆φt = ρft , i.e. (for d ≥ 3)

Et(x) = ε cd

∫
Rd

x− y
|x− y|d

ρft(y) dy.

Notice that ε = −1 corresponds to the attractive (gravitational) case, considered in Cos-
mology, while ε = 1 corresponds to the repulsive (electrostatic) case considered in Plasma
Physics.
There exists a wide literature on classical solutions in smooth spaces or with assump-
tions on moments and integrability of the initial condition that, if sufficiently strong, are
propagated and lead even to global solutions. In [28] we look for solutions in the natu-
ral energy space L1

+(R2d). Notice that in this case the definition |bt|ft fails even to be
locally integrable in space time; to overcome this difficulty, one adopts the weaker notion
of renormalized solution, where only renormalization functions β ∈ C1

c (R) are allowed.
Then, using as a tool the maximal regular flow, we prove:

Theorem 11 In the repulsive case, if the initial density f̄ satisfies∫
Rd×Rd

|ξ|2f̄(x, ξ) dxdξ +

∫
Rd×Rd

ρf̄ (x)ρf̄ (y)

|x− y|d−2
dxdy <∞,

then there exists a global renormalized solution f to (VP).
In addition, if d = 3 or d = 4, for this solution f the maximal regular flow is globally
defined, hence

t 7→
∫
β(ft) dxdξ

is constant for any β ≥ 0 Borel.

A closely related result in dimension d = 3 is proved in [40]; in addition, for the verifi-
cation that the vector field bt arising in the (VP) system satisfies the assumption of well
posedness in the class of bounded and compactly supported solutions to (CE) (needed to
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get existence and uniqueness of the maximal regular Lagrangian flow) we adapt to our
case the proof the main result in [39] we already mentioned in Section 5, dealing with
vector fields with a split structure.
Notice that since the flow curves in phase space can blow up and disappear in finite
time (both forward and backwards), the total mass

∫
ftdxdξ of the global renormalized

solution need not to be constant, or monotonic. However, when d = 3, 4 the apriori bound
on potential and kinetic energy is sufficient to provide global existence of the maximal
regular Lagrangian flow and then constancy of all Casimir integrals

∫
β(ft) dxdξ.

7 The theory in metric measure spaces

Assume that we have a metric measure structure (X, d,m), namely (X, d) is a metric space
and m is a nonnegative Borel measure on X, that we assume for the sake of simplicity to
be finite. We denote in the sequel by Lipb(X, d) the space of bounded Lipschitz functions
on X, by |∇f | the local Lipschitz constant of f , namely

|∇f |(x) := lim sup
y→x

|f(y)− f(x)|
d(y, x)

and by L0(m) the space of m-measurable functions on X. In this section I will illustrate
how the DiPerna-Lions theory can be extended to this very abstract context, a task
performed in [26] (see also [29]).
In order to extend the theory of flows to this quite abstract context we have to understand
what we mean by “regular vector field” and “flow” relative to that vector field. The
concept of vector field, or derivation, goes back to the seminal work of Weaver [105].

Definition 12 (Weaver’s derivation) A derivation b is a linear map from Lipb(X, d)
to L0(m) satisfying the Leibniz rule

b(fg) = fb(g) + gb(f) m-a.e. in X.

We keep the more familiar notation df(b) for the action of a derivation b on f .

The definition is clearly inspired by basic Differential Geometry, where derivations are
thought as operators on C∞ satisfying the Leibniz rule. In Weaver’s theory, however,
there is no attempt to define the fibers of the tangent bundle, for a given point: the
philosophy is that the tangent bundle is implictly defined by the collection of its sections,
and that only these sections matter, from the calculus point of view (see also [82] for
much more on this subject).
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Definition 13 (Modulus of a derivation) By duality, we define the modulus |b| of a
derivation as the smallest (in the m-a.e. sense) function g satisfying

|df(b)| ≤ |∇f |g for m-a.e. in X, for all f ∈ Lipb(X, d).

Definition 14 (Divergence of a derivation) Still duality can be used to define the di-
vergence of a derivation b with |b| ∈ L1(X,m). We say that b has divergence in L1(X,m)
if ∫

X

df(b) dm = −
∫
X

fk dm ∀f ∈ Lipb(X, d)

for some k ∈ L1(X,m). If k exists it is unique, and denoted div b.

The language of derivations is also very appropriate to deal with weak solutions to the
continuity equation d

dt
ut + div (utbt) = 0, that we denoted (CE): a family of probability

densities ut, with t 7→ utm continuous, is said to be a weak solution of (CE) if

d

dt

∫
X

fut dm =

∫
X

utdf(bt) dm for L 1-a.e. t > 0, for all f ∈ Lipb(X, d).

By Hilbert space techniques one obtains existence of solutions to (CE) under mild growth
bounds on b and div b.

Theorem 15 ([26]) Assume |b| ∈ L1
t (L

2
x) and (div b)− ∈ L1

t (L
∞
x ). Then, for all p ∈

[2,∞] and ū ∈ Lp there exists a solution u ∈ L∞t (Lpx) to (CE) with initial condition ū.

As in the Euclidean theory, some regularity of bt in space is needed for uniqueness. The
notion of W 1,2 vector field can be studied in a more systematic way, see [82], but we
learned from [57] that bounds on the symmetric part of the derivative can be sufficient to
provide strong convergence of commutators. It turns out that the Riemannian identity
(emphasized by Bakry and collaborators)∫

X

〈Dsymb∇f,∇g〉 dm := −1

2

∫
X

〈b,∇f〉∆g + 〈b,∇g〉∆f − 〈∇f,∇g〉 div b dm

can be used, also in the abstract context, to define Dsymb as a functional on (gradient)
sections of the tangent bundle:∫

X

Dsymb(f, g) dm := −1

2

∫
X

df(b)∆g + dg(b)∆f − Γ(f, g) div b dm. (3)

In the formula above, ∆ should be thought as the infinitesimal generator of the heat semi-
group Pt and Γ as the Carré du champ (so that Γ(f) = Γ(f, f) plays the role of the square
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of the gradient); both objects can be canonically derived either from a (sufficiently regu-
lar) Dirichlet form, or from an infinitesimally Hilbertian metric measure space (X, d,m),
see [31], [82] for a more precise discussion.
All in all, by saying that the right hand side in (3) is controlled by ‖

√
Γ(f)‖4‖

√
Γ(g)‖4, we

are saying that Dsymb is in L2. Besides this, for uniqueness we need also a mild regularity
property of the heat semigroup Pt, always true under lower bounds on Ricci curvature:
we say that L4-Γ gradient inequalities hold if(∫

X

Γ2(Ptf) dm

)1/4

≤ c√
t
‖f‖4 ∀f ∈ L4(X,m), t ∈ (0, 1).

Theorem 16 ([26]) If |b| ∈ L1
t (L

2
x), (div b)− ∈ L1

t (L
∞
x ), ‖Dsymb‖2 ∈ L1

t and if L4-Γ
gradient inequalities hold, then the continuity equation is well posed in L∞t (L4

x) for any
initial condition ū ∈ L4.

In the proof we follow a smoothing scheme based on the heat semigroup, uεt = Pεut:

uεt + div (uεtbt) = Cε[bt, ut] with Cε[bt, ut] := div ((Pεut)bt)− Pε
(
div (utbt)

)
.

This strategy already proved to be succesful in the Wiener space, see [21] for the Sobolev
case and [100] for the BV case (and also [38] for closely related results), but in that case
the explicit knowledge of the transition probabilities of the Ornstein-Uhlenbeck semigroup
Pt played a role:

Ptf(x) =

∫
X

f(e−tx+
√

1− e−2ty) dγ(y).

In this more general case we apply Bakry’s interpolation to provide a new (even in the
Euclidean case) expression of Cε[c, v]:

Cε[c, v] =

∫ ε

0

d

ds
Pε−s(div ((Psv)c)) ds

=

∫ ε

0

−Pε−s∆(div ((Psv)c)) + Pε−s( div ((∆Psv)c)) ds.

Playing carefully with integration by parts and using the L4-Γ gradient estimates as well
as the regularity of c one can show strong convergence of the commutator. This can be
understood better if we write the expression above in the easier case when c is divergence-
free, testing the commutator in duality with a function w:∫

X

wCε[c, v] dm =

∫ ε

0

∫
X

Dsymc(Psv, Pε−sw) dm ds. (4)

Now, let us come to the notion of flow associated to a family bt of time-dependent deriva-
tions. For gradient flows, it is a well-known fact that one can characterize the solution
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to the ODE by looking at the maximal energy dissipation rate. Here, since we have no
specific energy at our disposal, we use all the energies in Lipb(X, d), having in mind that
(f ◦ γ)′(t) = dγ(t)f(γ′(t)) in a smooth setup:

Definition 17 We say that γ ∈ ACloc([0,∞);X) solves the ODE γ̇ = bt(γ) if

d

dt
(f ◦ γ)(t) = df(bt)(γt) for L 1-a.e. t ∈ (0,∞)

for all f ∈ Lipb(X, d).

Given this, the definition of regular Lagrangian flow, relative to (X, d,m), follows verba-
tim the Euclidean one. Notice also that since df(bt) is only defined up to m-negligible
sets, Definition 17 makes little sense for single paths, unless there is the possibility to
specify df(bt) in a more precise way. On the other hand, for non-concentrating families
of paths, as those appearing in the definition of regular lagrangian flow, the definition
makes sense, i.e., it is independent of modifications on df(bt) in m-negligible sets.
One can then reproduce the superposition principle to get existence of a generalized flow
ηx (assuming upper bounds on (div bt)

−) and then use the well posedness of (CE) (as-
suming bounds on Pt and on ‖Dsymb‖2) to obtain the following existence and uniqueness
result:

Theorem 18 ([26]) If |b| ∈ L1
t (L

2
x), div b ∈ L1

t (L
∞
x ), ‖Dsymb‖2 ∈ L1

t and if L4-Γ gradi-
ent inequalities hold, then the regular Lagrangian flow exists and is unique.

Finally, let us mention that, at this level of generality, it makes sense even to consider
stability across different metric measure structures. This theme is investigated in [30], in
connection with measured Gromov-Hausdorff convergence and with the theory of metric
measure spaces with Ricci curvature bounded from below.
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