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Abstract. We study a nonlocal perimeter functional inspired by the Minkowski content, whose main feature is
that it interpolates between the classical perimeter and the volume functional.

This nonlocal functionals arise in concrete applications, since the nonlocal character of the problems and the
different behaviors of the energy at different scales allow the preservation of details and irregularities of the image
in the process of removing white noises, thus improving the quality of the image without losing relevant features.

In this paper, we provide a series of results concerning existence, rigidity and classification of minimizers, com-
pactness results, isoperimetric inequalities, Poincaré-Wirtinger inequalities and density estimates. Furthermore,
we provide the construction of planelike minimizers for this generalized perimeter under a small and periodic
volume perturbation.
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1. Introduction

The main goal of this paper is to study a class of variational problems which interpolate between the classical
perimeter and the volume functionals. Generalized energies of this type have been analyzed in [7,10,11,17], and
also in anisotropic contexts and in view of discretizations methods in [8, 9]. In terms of applications, nonlocal

2010 Mathematics Subject Classification. 49Q05, 49N60.
Key words and phrases. Nonlocal perimeters, Dirichlet forms, planelike minimizers.
This work has been supported by the Andrew Sisson Fund 2017.

Annalisa Cesaroni: Dipartimento di Scienze Statistiche, Università di Padova, Via Battisti 241/243, 35121 Padova, Italy.
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functionals interpolating between perimeter and volume are often used in image processing to keep fine details
and irregularities of the image while denoising additive white noises, see e.g. [2, 13].

These objects are modeled by an energy which, at large scales, resembles the perimeter using an approximation
based on the Minkowski content, but on small scales they present predominant volume contributions, giving
rise to a sort of nonlocal behavior, which may produce severe losses of regularity and compactness properties.
We will call r-perimeters these nonlocal perimeter functionals.

We recall that in recent years a lot of attention has been devoted to the analysis of other type of nonlocal
perimeter functionals, starting from the seminal work of Caffarelli, Roquejoffre and Savin [6], where it was
initiated the study of the Plateau problem for such kind of nonlocal perimeters. A regularity theory for
minimizers of such perimeters has been developed in analogy to the regularity theory of classical minimal
surfaces, and also the geometric and variational relation with the classical perimeter has been investigated. For
a general overview on the subject we refer to [33] and references therein.

In this paper, we develop a preliminary study of the main properties of the r-perimeters. First of all we
analyze the main features of sets with finite r-perimeter, in particular compactness properties, to get existence
for the Dirichlet problem, and then isoperimetric inequalities. The global isoperimetric inequality is a direct
consequence of the Brunn-Minkowski inequality, whereas its local version is valid at the appropriate scale.

We show some rigidity results for minimizers of the r-perimeter, in dimension 2, and we presents some prop-
erties of minimizers. In particular we consider their density properties, pointing out an interesting phenomenon
not appearing in the classical case. Indeed in the density estimates two scales of growth appear: if the initial
density is below a given threshold depending on r, then there is an exponential density growth, then, over the
threshold, the growth reduces to the usual one, that is the radius to the power n.

An important feature of these results is that they always need to capture the “local” behavior of the mini-
mizers, which can be rather different than the “global” one, due to nonlocal effects at small scales. In addition,
these problems are not scale invariant and they do not possess any associated extended problem of local type,
therefore many classical techniques related to scaled iterations and monotonicity formulas are not easily ap-
plicable in our setting. In particular, we show with a concrete example (see Theorem 1.19) that compactness
and regularity properties can fail, at a small scale, for minimizers of the r-perimeter with the addition of a
sufficiently large volume term.

Finally the last section is devoted to the construction of plane-like minimizers for the r-perimeters in a
periodic medium. A classical problem in different fields, including geometry, dynamical systems and partial
differential equations, consists in the determination of objects that are embedded into a periodic medium and
present bounded oscillations with respect to a reference hyperplane. These objects are somehow the natural
extension of “flat” objects such as hyperplanes and linear functions and have the important property that,
for these solutions, the forcing term produced by the lack of homogeneity of the medium “averages out” at a
large scale. We refer to [22, 25] for the first results of this type on geodesics, to [26] for the introduction of
this setting in the case of elliptic integrands, to [1, 4, 12] for the case of hypersurfaces with prescribed mean
curvature, to [30,32] for the case of partial differential equations and to [5,15] for problems related to statistical
mechanics. The planelike structures are also useful to construct pinning effects and localized bump solutions,
see e.g. [28,29]. See also [16] for planelike constructions related to nonlocal problems of fractional type and [14]
for a general review.

We also address the problem of existence of planelike minimizers for energy functionals in which the r-
perimeter in (1.2) is modulated by a volume term which is periodic and with a sufficiently small size. This is
a setting not comprised in the existing literature, since, as far as we know, the only nonlocal cases taken into
account are the ones arising from fractional minimal surfaces or related to the Ising model.

In the rest of this section, we formalize the mathematical setting in which we work and we present our main
results. The nonlocal perimeter functional based on Minkowski content will be introduced in Subsection 1.1.
Some rigidity properties of minimizers will be also discussed.

In Subsections 1.2 we present some compactness results at large scales and some Γ-convergence results for
this nonlocal perimeter. Then, in Subsection 1.3 we discuss the Dirichlet problem and in Subsection 1.4 we
present some rigidity results.

In Subsection 1.5 we introduce global and relative isoperimetric inequalities. Furthermore, we provide density
estimates for the nonlocal perimeter, which in turn show that the compactness and regularity properties of the
nonlocal perimeter minimizers may be deeply influenced by oscillations at small scales.

Finally, the planelike minimizers for the nonlocal perimeter are discussed in Subsection 1.6.
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A detailed organization of the paper is then presented at the end of the Introduction, in Subsection 1.7.

1.1. The nonlocal perimeter and the corresponding Dirichlet energy. We start with some preliminary
definitions. Given r > 0 and E ⊆ Rn, we let

E ⊕Br :=
⋃
x∈E

Br(x) = (∂E ⊕Br) ∪ E = (∂E ⊕Br) ∪ (E 	Br),

where E 	Br := E \

( ⋃
x∈∂E

Br(x)

)
= E \

(
(∂E)⊕Br

)
.

(1.1)

We shall identify a set E ⊆ Rn with its points of density one and ∂E with the topological boundary of the set
of points of density one.

Given r > 0 and a domain Ω ⊆ Rn, for any measurable set E ⊆ Rn, we use the notation in (1.1) and we
consider the functional

(1.2) Perr(E,Ω) :=
1

2r
Ln
((

(∂E)⊕Br
)
∩ Ω

)
=

1

2r
Ln
(
(∂E)r ∩ Ω

)
.

As customary, we denoted here by Ln the n-dimensional Lebesgue measure. When Ω = Rn, we simply
write Perr(E) := Perr(E,Rn). Note that our definition agrees with that in [8, 9], since we are identifying
a set with its points of density one, therefore

Perr(E,Ω) = min
|E′∆E|=0

Perr(E
′,Ω).

We observe (see e.g. [10]) that Perr is weak lower semicontinuous in L1
loc and that, for every A,B measurable

sets,
Perr(A ∩B,Ω) + Perr(A ∪B,Ω) 6 Perr(A,Ω) + Perr(B,Ω).

The definition of Perr is inspired by the classical Minkowski content (which would be recovered in the limit,
see e.g. [8,9,19]). In particular, for sets with compact and (n− 1)-rectifiable boundaries, the functional in (1.2)
may be seen as a nonlocal approximation of the classical perimeter functional, in the sense that

lim
r↘0

Perr(E) = Hn−1(∂E).

Hence, in some sense, Perr recovers a perimeter functional for small r and a volume energy for large r.
We observe that recently a great attention has been devoted to the fractional perimeters introduced in [6],

which also interpolate the classical perimeter with an area type functional (see e.g. [18] for a review on such
topic). The functional in (1.2) is however very different in spirit from that in [6], since the lack of scaling
invariance does not allow a classical regularity theory and causes severe lack of compactness at small scales (as
we will discuss in details in the sequel).

More generally, given a domain Ω ⊆ Rn and a function g ∈ L1
loc(Rn), we define the energy

(1.3) Fr,g(E,Ω) := Perr(E,Ω) +

∫
E∩Ω

g(x) dx.

The functional in (1.2) is related via a coarea formula to a Dirichlet energy which takes into account the local
oscillation of a function, which is described as follows. Let Ω ⊆ Rn be a domain and u ∈ L1

loc(Ω ⊕ Br). Then
for any x ∈ Ω we consider the oscillation of u in Br(x), given by

osc
Br(x)

u := sup
Br(x)

u− inf
Br(x)

u.

In this paper, in the sup and inf notation, we mean the “essential supremum and infimum” of the function (i.e.,
sets of null measure are neglected). It can be checked by using the definition that a triangular inequality holds:
for all v, u ∈ L1

loc(Ω⊕Br)
osc
Br(x)

(u+ v) 6 osc
Br(x)

(u) + osc
Br(x)

(v).

We have the following generalized coarea formula (see formulas (4.3) and (5.7) in [11] for similar formulas in
very related contexts):

Lemma 1.1. It holds that

(1.4)

∫
Ω

osc
Br(x)

u dx = 2r

∫ +∞

−∞
Perr({u > s},Ω) ds.
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In the setting of (1.2) and (1.3), we introduce the definition of local minimizer and Class A minimizer. We
are interested in existence, compactness and regularity properties of such minimizers. Moreover we will also
provide construction of planelike minimizers for such energies in periodic media.

Definition 1.2 (Local minimizer and Class A minimizer). A set E is a minimizer for Perr (resp. for Fr,g) in a
bounded domain Ω if for any measurable set F ⊆ Rn with F \ (Ω	Br) = E \ (Ω	Br) it holds that

Perr(E,Ω) 6 Perr(F,Ω) (resp. Fr,g(E,Ω) 6 Fr,g(F,Ω)).

E is a Class A minimizer if it is a minimizer in this sense in any ball of Rn.

We observe that if E is a Class A minimizer, then

Perr(E,BR) 6 nωnR
n−1, if R > 2r.

Indeed,

Perr(E,BR) 6 Perr(E \BR−r, BR) 6 Perr(BR−r, BR) =
ωn
2r

(Rn − (R− 2r)n) .

Note that in Definition 1.2 we allow competitors only away from the boundary of the domain, in a way
compatible with the natural scale of the problem. Actually, this is the appropriate notion of minimizer, since
the following result shows that the problem trivializes if competitors are allowed to produce modifications up
to the boundary of the domain.

Proposition 1.3. Let E ⊆ Rn be such that for every ball B ⊆ Rn, and for any measurable set F ⊆ Rn
with F \B = E \B it holds that

Perr(E,B) 6 Perr(F,B).

Then either E = ∅ or E = Rn.

1.2. Γ-convergence results and compactness properties. We start with some convergence results on Perrk
as rk → r. We focus also on compactness properties of sets with bounded energy.

Theorem 1.4. Let Ω be either an open and bounded subset of Rn, or equal to Rn. Let also rk → r ∈ (0,+∞).
Then the following holds.

(1) Perrk(E,Ω)→ Perr(E,Ω) and Frk,g(E,Ω)→ Fr,g(E,Ω) for all E ⊆ Rn.
(2) Perrk(·,Ω) (resp. Frk,g(·,Ω)) Γ-converges in L1

loc(Ω) to Perr(·,Ω) (resp. to Fr,g(·,Ω)).
(3) Let Ek ⊆ Rn be such that

sup
k∈N

Perrk(Ek,Ω) < +∞.

Assume that, up to subsequences, χEk
⇀ u, in L1

loc

(
Ω) with u : Rn → [0, 1]. Let Σ := {x ∈ Ω : u(x) ∈

(0, 1)} and

(1.5) ` := lim inf
rk→r

Perrk(Ek,Ω).

Then the following holds true:

(1.6) Ln(Σ⊕Br ∩ Ω) 6 2`r, χEk
→ u in L1

loc(Ω \ Σ
)
,

∫
Ω

osc
Br(x)

u dx 6 2r`.

Observe that we cannot expect a stronger compactness result, due to the following observation.

Remark 1.5. Families of sets Ek for which Perr(Ek,Ω) 6 1 are not necessarily compact in L1(Ω) (and, more
generally, it is not necessarily true that χEk

converges pointwise up to a subsequence).

Remark 1.6. When Ω is unbounded and rk ↘ r > 0, some pathological counterexamples to the claim in (1)
of Theorem 1.4 may arise. For instance, one may have that

(1.7) Perrk(E,Ω) = +∞ while Perr(E,Ω) = 0.

We recall also the following result, which is proved in [9, Theorem 3.1 and Remark 3.4].

Theorem 1.7. Let Ω ⊆ Rn be open and bounded, and r → 0. Then the following holds.

(1) Perr(·,Ω) Γ-converges in L1
loc(Ω) to Per(·,Ω), where Per is the standard perimeter.



MINIMIZERS FOR NONLOCAL PERIMETERS OF MINKOWSKI TYPE 5

(2) Let Er ⊆ Rn be such that

sup
r

Perr(Er,Ω) < +∞.

Then there exists E ⊆ Rn such that

χEr → χE in L1
loc(Ω) up to a subsequence

and

Per(E,Ω) 6 lim inf
r→0

Perr(Er,Ω).

An analogous result holds for the functional Fr,g.

Dealing with compactness issues, it is interesting to point out that sequences of minimizers (differently than
sequences of sets with bounded r-perimeter) always provide a limit which is also a minimizer, on a smaller set.
From the technical point of view, such limit is obtained from the support of the weak limit, once sets of zero
measure are neglected. The precise statement goes as follows:

Theorem 1.8. Let Ω be a bounded open set and Ek be a sequence of local minimizers of Fr,g in Ω such that
χEk

⇀ u, with u : Rn → [0, 1], in L1(Ω).
Let E be such that {u = 1} ⊆ E ⊆ Ω\{u = 0}, and Σ := {x ∈ Ω : u(x) ∈ (0, 1)}. Then E is a local minimizer

of Fr,g in Ω	Br and g(x) = 0 for a.e. x ∈ Σ.
Moreover, if Ln({g = 0}) = 0 then χEk

→ χE.

1.3. The Dirichlet problem. We now consider the Dirichlet problem for the functional Perr.

Theorem 1.9. Let Eo ⊆ Rn and Ω a bounded open set. Fix Ω′ b Ω. Then, there exists E ⊆ Rn such
that E \ Ω′ = Eo \ Ω′, and

Perr(E,Ω) 6 Perr(F,Ω)

for any F ⊆ Rn for which F \ Ω′ = Eo \ Ω′.
The same holds for the functional Fr,g.

1.4. Class A minimizers. In this subsection, we present some rigidity results for the nonlocal functionals
introduced in (1.2).

Next result shows that half-spaces are always Class A minimizers for Perr.

Proposition 1.10. Let ω ∈ Rn and E = {x |x · ω < 0}. Then E is a Class A minimizer for Perr.

In addition, we give the complete characterization of Class A minimizers in dimension 1, according to the
following result:

Theorem 1.11. If E is a Class A minimizer for Perr and n = 1, then E is either ∅ or R or a halfline of the
type either (a,+∞) or (−∞, a), for some a ∈ R.

It would be interesting to study the Bernstein problem for Perr. In particular, in analogy with the classical
perimeter, one could expect that the the Class A minimizers are only ∅ or Rn or half-spaces, at least in small
dimension.

1.5. Isoperimetric inequalities and density estimates. We now discuss the isoperimetric properties of
the functional Perr. To this end, we first point out that balls are isoperimetric for the functional in (1.2), as a
consequence of the Brunn-Minkowski Inequality. Namely, we have that:

Lemma 1.12. (i) For any R > 0 and any measurable set E ⊆ Rn such that Ln(E) = Ln(BR) it holds that

(1.8) Perr(E) > Perr(BR).

(ii) Viceversa, if Ln(E) = Ln(BR) and

Perr(E) = Perr(BR),

then E = BR(p) \N, for some set N of null measure and some p ∈ Rn.

We present now a version of the relative isoperimetric inequality for Perr in an appropriate scale:
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Theorem 1.13. Let assume there exists λ > 1 such that

(1.9) λR > r > 0.

There exists C > 0, possibly depending on n, such that for all E ⊆ Rn with

(1.10)
Ln(E ∩BR)

Ln(BR)
6

1

2
,

there holds

(1.11)
(
Ln(E ∩BR)

)n−1
n
6 CλPerr(E,BR).

For the proof of this result we will need the following technical lemma (which can be seen as a working version
of the compactness result in Theorem 1.7).

Lemma 1.14. Let Ω ⊆ Rn be open and bounded. Consider a sequence of sets Ωk ⊇ Ω, such that

(1.12) ∂Ωk is uniformly locally Lipschitz.

Let

(1.13) rk → 0 as k → +∞
and Ek ⊆ Rn such that

(1.14) sup
k∈N

Perrk(Ek,Ωk) < +∞.

Then, there exist Êk ⊆ Rn, E ⊆ RN and a constant C > 0 only depending on n such that

Êk ⊇ Ek,(1.15)

Per(Êk, Ωk) 6 C Perrk(Ek,Ωk)(1.16) ∫
Ωk

|χEk
− χ

Êk
| dx 6 C rk Perrk(Ek,Ωk)(1.17)

and χEk
→ χE in L1(Ω) up to a subsequence.(1.18)

Remark 1.15. We stress that (1.11) holds with a constant which depends on λ, that is, on the ratio r
R , if

r > R. Namely, if r > R, (1.11) may fail to be true for C just depending on n.

As a simple consequence of Theorem 1.13, we also provide the following nonlocal Poincaré-Wirtinger inequal-
ity:

Theorem 1.16. There exists C > 0, only depending on n, such that the following statement holds. Let λ > 1,
with λR > r > 0, and u ∈ L∞(Br) ∩ L1(BR). Let

〈u〉R :=
1

Ln(BR)

∫
BR

u.

Then,

(1.19)

∫
BR

∣∣u− 〈u〉R∣∣ 6 CRλ

r

∫
BR

osc
Br(x)

u dx.

Remark 1.17. When r > R, the estimate (1.19) does not necessarily hold true with a constant independent
of λ.

We address now the density properties of the minimizers of Perr. Differently than the classical cases, the
density properties of the minimizers may depend on the initial density for small scales: nevertheless, we can
obtain a density growth in larger balls, and the constants become uniform once a suitable density threshold is
reached. More precisely, our result is the following:

Theorem 1.18. Let Ω ⊆ Rn, r > 0 and E be a minimizer for Perr. Let Ro > 0. Suppose that BRo ⊆ Ω and

(1.20) ωo := Ln(E ∩BRo) > 0.

Let also k ∈ N be such that BRo+2kr ⊆ Ω. Then,

(1.21) Ln(E ∩BRo+2kr) > (ω
1
n
o + 2c?kr)

n,
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for a suitable c? > 0, possibly depending on n, r and ωo.
Moreover,

(1.22) if n = 1, c? is a pure number, independent of r and ωo.

Also,

(1.23) if ωo > c rn for some c > 0, then c? only depends on n and c, and it is independent of Ω and ωo.

In addition, if

(1.24) Ln(E ∩BRo+2(k−1)r) 6 Cr
n,

for some C > 0, then

(1.25) Ln(E ∩BRo+2(k−1)r) > ωo (1 + c̃)k ,

for some c̃ > 0, depending on n and C.

It is interesting to point out that Theorem 1.18 detects two scales of growth (and this fact is different from
the case of the classical minimal surfaces, as well as of the nonlocal minimal surfaces in [6], where there is only
one type of growth, given by the dimension of the space). Indeed, in our framework, if the initial density is
below the threshold prescribed by rn (as stated in (1.24)), then there is an exponential density growth (as stated
in (1.25)), till the density reaches the quantity rn. Then, once a density of order rn is reached, the growth
reduces to the usual one, that is the radius to the power n (as stated in (1.21)). In such case of polynomial
growth away from an initial rn, the constant become uniform (as stated in (1.23), being the onedimensional
case special, in view of (1.22)).

We think that it would be interesting to establish whether or not the growth in (1.25) is optimal or if sharper
estimates may be obtained independently on the initial density.

Finally it is interesting to remark that compactness and regularity properties related to Perr can be prob-
lematic, or even fail, at a small scale, also for minimizers. To make a concrete example, we consider K > 0 and
the function g(x) := −KχBr\Br/2

. We let

FK(E) := Fr,g(E) = Perr(E)−K Ln
(
E ∩ (Br \Br/2)

)
.

Then, minimizers are not necessarily smooth and sequences of minimizers are not necessarily compact. Indeed,
we have:

Theorem 1.19. There exists C > 0, only depending on n, for which the following statement holds true.
Suppose that

(1.26) K >
C

r
.

Then, there exists E∗ ⊆ Rn satisfying

FK(E∗) 6 FK(E)

for any bounded set E ⊆ Rn, and such that ∂E∗ is not locally a continuous graph (and, in fact, can be “arbitrarily
bad” inside Br/2).

Moreover, there exists a sequence Ek ⊆ Rn satisfying

FK(Ek) 6 FK(E)

for any bounded set E ⊆ Rn, and such that χEk
is not precompact in L1(Br).

Given the negative result in Theorem 1.19, we think that it is an interesting problem to develop a regularity
theory for minimizers of Perr and of functionals such as Fr,g.

1.6. Planelike minimizers in periodic media. In the spirit of [4], we recall the following definition:

Definition 1.20. We say that a set E ⊆ Rn is planelike if, up to an appropriate change of coordinates, there
exists K > 0 such that

E ⊇ {(x1, . . . , xn) s.t. xn 6 0} and Rn \ E ⊇ {(x1, . . . , xn) s.t. xn > K}.
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To state our result, we recall some notation. We say that a direction ω ∈ Sn−1 is rational if the orthogonal
space has maximal dimension over the integers, i.e.

there exist K1, . . . ,Kn−1 ∈ Zn which are linearly independent

and such that ω ·Kj = 0 for any j ∈ {1, . . . , n− 1}.(1.27)

Given a rational direction ω ∈ Sn−1, we say that a set E is ω-periodic if, for any k ∈ Zn with ω · k = 0, we have
that E + k = E. Similarly, a function u : Rn → R is said to be ω-periodic if, for any k ∈ Zn with ω · k = 0, it
holds that u(x+ k) = u(x) for any x ∈ Rn.

Then, we state the following:

Theorem 1.21. There exist η ∈ (0, 1) and M > 1, only depending on n, such that the following result holds
true. Let r ∈ (0, 1), g : Rn → R be Zn-periodic, with zero average in [0, 1]n and such that ‖g‖L∞(Rn) 6 η.

Let ω ∈ Sn−1. Then, there exists E∗ω which is a Class A minimizer for Fr,g, such that

(1.28) {ω · x 6 −M} ⊆ E∗ω ⊆ {ω · x 6M}.

Moreover, if ω is rational, then E∗ω is ω-periodic.

1.7. Organization of the paper. The rest of the paper is devoted to the proofs of our main results. Section 2
contains the proofs of Proposition 1.3.

The Γ-convergence results and the compactness properties for the functional Fr,g, together with the proofs
of Theorem 1.4, Remarks 1.5 and 1.6, and Theorem 1.8, are presented in Section 3.

The proof of Theorems 1.9 is contained in Section 4.
The characterizations of Class A minimizers in Proposition 1.10 and in Theorem 1.11 are dealt with in

Section 5.
We address the isoperimetric inequalities in Section 6, which contains the proofs of Lemma 1.12, Lemma 1.14,

Theorem 1.13, Remark 1.15, Theorem 1.16 and Remark 1.17.
The regularity and density estimates, with the proofs of Theorems 1.18 and 1.19, are discussed in Section 7.
Finally, in Section 8, we deal with the construction of the planelike minimizers in periodic media and we

prove Theorem 1.21.

2. Basic properties of minimizers of Perr – Proof of Proposition 1.3

We provide the proof of Proposition 1.3, which justifies our definitions of local and Class A minimizers, given
in Definition 1.2.

Proof of Proposition 1.3. First of all, we claim that there exists a universal ε > 0 such that

(2.1)
{[(

Rn \B1/ε

(en
ε

))
∩ (Rn \B1−ε)

]
⊕B1

}
∩Bε(en) = ∅.

A picture can easily convince the reader about this simple geometric fact.
From now, we fix ε as in (2.1) and, without loss of generality, we take ε ∈

(
0, 1

2

]
. As a matter of fact,

scaling (2.1), we see that{[(
Rn \Br/ε

(ren
ε

))
∩
(
Rn \B(1−ε)r

)]
⊕Br

}
∩Bεr(ren) = ∅

and therefore

Ln
({[(

Rn \Br/ε
(ren
ε

))
∩
(
Rn \B(1−ε)r

)]
⊕Br

}
∩Br

)
6 Ln

(
Br \Bεr(ren)

)
< Ln(Br).

(2.2)

Now we take E to be a Class A minimizer for Perr and we claim that

either there exists p ∈ Rn such that Br/ε(p) ⊆ E,

or there exists p ∈ Rn such that Br/ε(p) ⊆ Rn \ E.
(2.3)

The proof of (2.3) is by contradiction: if not, any ball of radius r/ε contains both points of E and of its
complement, and so it contains at least one point of ∂E.

Let now M > 10 to be taken suitably large in the sequel and R := Mr/ε. We consider N disjoint balls
of radius 2r/ε contained in the ball BR, and we observe that we can take N > cRn

(r/ε)n = cMn, for some
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universal c > 0. Let us call B2r/ε(p1), . . . , B2r/ε(pN ) such balls. We know that each ball Br/ε(pj) contains a
point qj ∈ ∂E and so (∂E)⊕Br contains at least the balls Br(qj) which are disjoint and contained in BR.

Consequently,

(2.4) 2rPerr(E,BR) >
N∑
j=1

Ln(Br(qj)) = NLn(Br) > c̄M
nrn,

for some c̄ > 0.
Now we consider F := E ∪BR−r. Notice that ∂F ⊆ Rn \BR−r and thus (∂F )⊕Br ⊆ Rn \BR−2r. This and

the minimality of E give that

2rPerr(E,BR) 6 2rPerr(F,BR) 6 Ln(BR \BR−2r) 6 CR
n−1r =

CMn−1rn

εn−1
.

From this and (2.4) a contradiction easily follows by taking M appropriately large (possibly also in dependence
of the fixed ε). This completes the proof of (2.3).

Now, from (2.3), we can suppose that E contains a ball of radius r/ε and we prove that E = Rn (if
instead Rn \ E contains a ball of radius Br/ε, a similar argument would prove that E is void).

Sliding the ball till it touches the boundary of E, we find a ball of radius r/ε which lies in E and whose bound-
ary contains a point of ∂E. Therefore, up to a rigid motion, we can suppose that 0 ∈ ∂E and Br/ε(ren/ε) ⊆ E.
We define

G := E ∪B(1−ε)r ⊇ Br/ε(ren/ε) ∪B(1−ε)r.

Notice that

∂G ⊆ Rn \
(
Br/ε(ren/ε) ∪B(1−ε)r

)
=
(
Rn \Br/ε(ren/ε)

)
∩
(
Rn \B(1−ε)r

)
and so

(∂G)⊕Br ⊆
[(
Rn \Br/ε(ren/ε)

)
∩
(
Rn \B(1−ε)r

)]
⊕Br.

This, (2.2) and the minimality of E give that

(2.5) 2rPerr(E,Br) 6 2rPerr(G,Br) < Ln(Br).

On the other hand, since 0 ∈ ∂E, we have that (∂E)⊕Br ⊇ Br and therefore

2rPerr(E,Br) > Ln(Br).

This is in contradiction with (2.5). The proof of Proposition 1.3 is thus complete. �

3. Γ-convergence results and compactness properties for the functional Fr,g – Proofs of
Theorem 1.4, Remarks 1.5 and 1.6, and Theorem 1.8

We start with a preliminary result on the convergence of characteristic functions.

Lemma 3.1. Let Ω be an open subset of Rn and let Ek be a sequence of sets such that χEk
converges to u

weakly in L1
loc(Ω). Then, letting Σ := {x ∈ Ω : u(x) ∈ (0, 1)}, there holds

(3.1) χEk
→ u in L1(Ω \ Σ).

In particular, if u is a characteristic function, then χEk
→ u in L1

loc(Ω).

Proof. Without loss of generality we can assume that Ω is bounded.
Let uk := χEk

. Since 0 6 uk 6 1, we have that

lim
k→+∞

∫
Ω\Σ
|uk − u| = lim

k→+∞

(∫
Ω∩{u=1}

(1− uk) +

∫
Ω∩{u=0}

uk

)

= lim
k→+∞

(
Ln
(
Ω ∩ {u = 1}

)
−
∫

Ω
ukχ{u=1} +

∫
Ω
ukχ{u=0}

)
= Ln

(
Ω ∩ {u = 1}

)
−
∫

Ω
uχ{u=1} +

∫
Ω
uχ{u=0} = 0,

which proves (3.1). �
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Remark 3.2. Note that a consequence of the previous lemma is the following fact: if Fk is a sequence of sets
such that χFk

→ χF in L1
loc(Ω), for some open set Ω and for some F ⊂ Rn then χλkFk

→ χF in L1
loc(Ω) for

all λk → 1. Indeed it is sufficient to prove that χλkFk
converges to χF weakly in L1

loc(Ω) and then apply the
previous lemma.

We now provide the proof of the convergence result for Perr.

Proof of Theorem 1.4. First of all, we prove the claim in (1). For this, we observe that, for every r > 0, it holds
that

(3.2) Ln
(
∂
(
(∂E)⊕Br

))
= 0.

This can be obtained e.g. as a consequence of the estimate proved in [23, Theorem 2]: for all closed sets A and
all r > 0, it holds that Hn−1(∂(A⊕Br)) 6 C

r L
n
(
(A⊕Br) \A

)
, where C > 0 is a dimensional constant. Using

this with A := Am = (∂E) ∩Bm, for any fixed m ∈ N, we find that Hn−1(∂(Am ⊕Br)) < +∞, and therefore

(3.3) Ln

( ⋃
m∈N

∂(Am ⊕Br)

)
= 0.

We conclude observing that

(3.4) ∂
(
(∂E)⊕Br

)
⊆
⋃
m∈N

∂(Am ⊕Br).

Using (3.2), we see that χ(∂E)⊕Brk
→ χ(∂E)⊕Br

a.e. in Ω.

Hence, if Ω is bounded, or if Ω = Rn and ∂E is bounded, the assertion in (1) follows from the Dominated
Convergence Theorem.

To complete the proof of (1), we have only to consider the case in which Ω = Rn and ∂E is unbounded. In
this case, we can take a sequence pj ∈ ∂E, with |pj | > 2r + 2 + |pj−1|. In this way Bρ(pj) ∩ Bρ(pi) is void
when j 6= i and ρ ∈ (0, r + 1), which gives that Ln

(
(∂E)⊕Bρ

)
= +∞. This says that, in this case,

Perrk(E,Ω) = +∞ = Perr(E,Ω),

and so (1) holds true.

Now, we prove the claim in (2). By (1), we immediately deduce that

Γ− lim sup
rk→r

Perrk(·,Ω) 6 Perr(·,Ω).

We are left to prove that, if Ek → E in L1
loc(Ω), then

lim inf
rk→r

Perrk(Ek,Ω) > Perr(E,Ω).

To see this, we observe that, if we set

(3.5) Ẽk :=
r

rk
Ek, Ω̃k :=

r

rk
Ω,

then

(3.6) Perrk(Ek,Ω) =
(rk
r

)n−1
Perr(Ẽk, Ω̃k),

and, recalling Remark 3.2,

(3.7) χ
Ẽk
→ χE in L1

loc(Ω).

Notice that, again by Remark 3.2 applied with Fk := Ω̃k and F := Ω, we have that

(3.8) |Perr(Ẽk, Ω̃k)− Perr(Ẽk,Ω)| 6 1

2r
|Ω̃k∆Ω| → 0 as k →∞.

Therefore, by the lower semicontinuity of the functional Perr, from (3.6), (3.7) and (3.8) we conclude that

lim inf
rk→r

Perrk(Erk ,Ω) = lim inf
rk→r

(rk
r

)n−1
Perr(Ẽrk ,Ω) > Perr(E,Ω).

This completes the proof of (2).
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To prove (3), we define Ẽrk as in (3.5). Then

` = lim inf
rk→r

Perr(Ẽrk ,Ω).

Let uk := χ
Ẽrk

. Then, up to subsequences, uk converges to u weakly-? in L∞loc(Ω) and then also uk converges

to u weakly in L1
loc(Ω), with u : Rn → [0, 1]. So, by the lower semicontinuity of the functional E1,Ω, we have

that ∫
Ω

osc
Br(x)

u dx 6 lim inf
k

∫
Ω

osc
Br(x)

uk dx = 2r lim inf
k

Perr(Ẽrk ,Ω) = 2r`,

which proves the third inequality in (1.6).
So, by Lemma 3.1, we have

(3.9) uk → u in L1(Ω \ Σ).

Also, (3.9) gives that, for all x ∈ Σ⊕Br, it holds that

(3.10) (∂Ek) ∩Br(x) 6= ∅ for k large enough.

Indeed, if this is not true, then either Br(x) ⊆ Ek or Br(x) ⊆ Rn\Ek for infinitely many k’s, and so either uk = 1
or uk = 0 a.e. in Br(x) for infinitely many k. This would imply that either u = 1 or u = 0 a.e. in Br(x), in
contradiction with the fact that Σ ∩Br(x) 6= ∅, and so (3.10) is proved.

Using (3.10), we get that oscBr(x) uk → 1 for x ∈ Σ⊕Br, therefore

Ln((Σ⊕Br) ∩ Ω) 6 lim inf
k

∫
(Σ⊕Br)∩Ω

osc
Br(x)

uk dx 6 2r lim inf
k

Perr(Ẽrk ,Ω) = 2r`,

which completes the proof of (1.6).
Then, the proof of Theorem 1.4 is complete. �

We now exhibit the lack of compactness that was claimed in Remark 1.5.

Proof of Remark 1.5. Let us take, for example, r := 1 and Ω := (−3, 3)×(0, 1)n−1 ⊆ Rn. Let also, for any k > 1,

Ek :=
2k−1⋃

j=−2k−1

(
2j

2k
,
2j + 1

2k

)
× (0, 1)n−1.

If χEk
converged pointwise, it would also converge in L1(Ω), due to the Dominated Convergence Theorem. But

this is not the case, since the norm in L1(Ω) of χEk
−χEk+m

is always bounded from below independently on k
and m. �

Now we present the pathological counterexample to Theorem 1.4, as stated in Remark 1.6.

Proof of Remark 1.6. We take n > 2, r > 0, rk := r + 1
k , Ω := {xn > 0} and E := {xn < −r}. In this way, for

any ρ > r,
(∂E)⊕Bρ = {xn = −r} ⊕Bρ =

{
xn ∈ (−r − ρ, −r + ρ)

}
.

Therefore (
(∂E)⊕Br

)
∩ Ω = {xn ∈ (−2r, 0)} ∩ {xn > 0} = ∅,

and
(
(∂E)⊕Brk

)
∩ Ω =

{
xn ∈

(
−2r − 1

k
,

1

k

)}
∩ {xn > 0} =

{
xn ∈

(
0,

1

k

)}
.

These considerations prove (1.7). �

Now we show that sequences of minimizers for the functional Fr,g produce a limit minimizer.

Proof of Theorem 1.8. First of all we consider the case in which E = {u = 1}, and we show that it is a local
minimizer in Ω and that g = 0 a.e. on Σ.

Observe that for all x ∈ A := (Σ ∪ ∂E)⊕Br it holds that

(3.11) (∂Ek) ∩Br(x) 6= ∅ for k large enough.

The proof of this fact is the same as the proof of (3.10) above (in the proof of Theorem 1.4).
Fix Ω′ ⊆ Ω	Br and let

E?k := (E ∪ (Σ ∩ {g < 0}) ∩ Ω′) ∪ (Ek \ Ω′).
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Observe that

(3.12)

∫
Ek

g dx =

∫
E?

k

g dx+

∫
(Ek∩(Σ∩{g>0}))∩Ω′

g dx−
∫

((Σ∩{g<0})\Ek)∩Ω′
g dx+ ω′k

with

ω′k :=

∫
Ek∩{u=1}∩Ω′

g dx−
∫
{u=1}∩Ω′

g dx+

∫
Ek∩{u=0}∩Ω′

g dx.

Note that

lim
k→+∞

ω′k = lim
k→+∞

∫
{u=1}∩Ω′

gχEk
dx−

∫
{u=1}∩Ω′

g dx+ lim
k→+∞

∫
{u=0}∩Ω′

gχEk
dx = 0.

We define Σk := (Ek∆{g < 0}) ∩ Σ ∩ Ω′. So (3.12) reads

(3.13)

∫
Ek∩Ω′

g dx =

∫
E?

k∩Ω′
g dx+

∫
Σk

|g| dx+ ω′k.

We also let
C :=

(
(Ek \ E?k) ∪ (E?k \ Ek)

)
∩ ∂Ω′.

Notice that for all x ∈ D := (C ⊕Br) ∩ Ω′ there holds

(3.14) (∂Ek) ∩Br(x) 6= ∅ for k large enough.

To check this, we argue by contradiction and we suppose that, for instance, Br(x) ⊆ Ek for k large enough.
Then, uk = 1, and so u = 1 a.e. in Br(x), i.e. Br(x) ∩ Ω′ ⊆ E ∩ Ω′. Recalling that Br(x) \ Ω′ ⊆ Ek \ Ω′, this
implies that Br(x) ⊆ E?k . Accordingly, we have that Br(x) ∩ C = ∅, and so x 6∈ D, against our assumption.
This proves (3.14).

Properties (3.11) and (3.14) imply that

(3.15) (A ∪D) ∩ Ω′ ⊆
(
((∂Ek)⊕Br) ∩ Ω′

)
∪Ok,

for some Ok ⊆ Rn with

(3.16) ωk :=
1

2r
Ln
(
Ok
)
→ 0 as k → +∞.

By definition of E?k , there holds

(3.17)
(
(∂E?k)⊕Br

)
∩ Ω′ ⊆ (A ∪D ∪ ((∂Ek)⊕Br)) ∩ Ω′,

Therefore, from (3.15) and (3.17) it follows that

Ln
(
((∂E?k)⊕Br) ∩ Ω′

)
6 Ln

(
((∂Ek)⊕Br) ∩ Ω′

)
+ 2rωk

and then

(3.18) Perr(E
?
k ,Ω

′) 6 Perr(Ek,Ω
′) + ωk.

From (3.18) and (3.13) we get

Perr(E
?
k ,Ω

′) +

∫
E?

k∩Ω′
g dx 6 Perr(Ek,Ω

′) +

∫
Ek∩Ω′

g dx+ ωk −
∫

Σk

|g| dx− ω′k.

Therefore, by minimality of Ek we deduce that

0 = lim
k→+∞

∫
Σk

|g| dx =

∫
Σ∩{g>0}

gu dx−
∫

Σ∩{g<0}
g(1− u) dx.

This implies that u = 0 on Σ ∩ {g > 0} and u = 1 on Σ ∩ {g < 0}, which, recalling the definition of Σ, implies
that Ln(Σ∩{g > 0}) = 0 = Ln(Σ∩{g < 0}), so g = 0 almost everywhere on Σ. If Ln({g = 0}) = 0, we deduce
that Ln(Σ) = 0, and then we conclude the strong convergence of χEk

to χE .
Moreover, since Σk ⊆ Σ, we conclude that

(3.19) Perr(E
?
k ,Ω

′) +

∫
E?

k∩Ω′
g dx 6 Perr(Ek,Ω

′) +

∫
Ek∩Ω′

g dx+ ωk − ω′k.

Let now F be such that F∆E ⊆ Ω′ 	Br. We define

Fk := (F ∩ Ω′) ∪ (Ek \ Ω′).
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By construction

Perr(Fk,Ω
′)− Perr(E

?
k ,Ω

′) = Perr(F,Ω
′)− Perr(E,Ω

′).

Recalling (7.5) we then get

Perr(F,Ω
′) +

∫
F∩Ω′

g dx− Perr(E,Ω
′)−

∫
E∩Ω′

g dx = Perr(Fk,Ω
′) +

∫
Fk∩Ω′

g dx− Perr(E
?
k ,Ω

′)−
∫
E?

k∩Ω′
g dx

> Perr(Fk,Ω
′) +

∫
Fk∩Ω′

g dx− Perr(Ek,Ω
′)− ωk −

∫
Ek∩Ω′

g dx+ ω′k > −ωk + ω′k,

where the last inequality follows by the minimality of Ek. Now we send k → +∞ and we obtain that

Perr(F,Ω
′) +

∫
F∩Ω′

g dx− Perr(E,Ω
′)−

∫
E∩Ω′

g dx > 0,

thanks to (3.16). This concludes the proof of the local minimality of E = {u = 1}.
Now, let E be any set such that {u = 1} ⊆ E ⊆ Ω \ {u = 0}. Then we can define E?k = ((E ∪ (Σ ∩ {g <

0}) ∩Ω′) ∪ (Ek \Ω′) and repeat the same argument as above (recalling that g = 0 almost everywhere on Σ) to
get that (7.5) holds. The proof of Theorem 1.8 is thus complete. �

4. The Dirichlet problem – Proof of Theorem 1.9

Proof of Theorem 1.9. Let Ek be a minimizing sequence. Then, up to subsequences, χEk
⇀ u in L1

loc(Ω), with
u : Rn → [0, 1]. By the lower semicontinuity in L1 of the functional v →

∫
Ω oscBr(x) v dx proved in [9] and the

coarea formula, we get

lim inf
k→+∞

Perr(Ek,Ω) = lim inf
k→+∞

1

2r

∫
Ω

osc
Br(x)

χEk
dx >

1

2r

∫
Ω

osc
Br(x)

u dx =

∫ 1

0
Perr({u > s},Ω) ds.(4.1)

Notice that

(4.2)

∫ 1

0
Perr({u > s},Ω) ds > Perr({u > sΩ},Ω),

for a suitable sΩ ∈ (0, 1). So, we define E := {u > sΩ}. Since χEk
does not depend on k outside Ω′, we have

that E = Ek outside Ω′ and thus it is an admissible competitor. Then, (4.1) says that E is a minimizer for Perr,
and this proves Theorem 1.9. �

5. Class A minimizers – Proofs of Proposition 1.10 and of Theorem 1.11

Now we prove the results about Class A minimizers. We start showing that half-spaces are Class A minimizers
for Perr in every dimension.

Proof of Proposition 1.10. In this proof, we write x = (x′, xn) ∈ Rn. Up to translations and rotations, we can
assume that E = {x ∈ Rn s.t. xn < 0}. We fix BR with R > r, and we consider F ⊆ RN such that F∆E b BR.
Let CR be the cylinder {x′ ∈ Rn−1 s.t. |x′| 6 R} × [−R,R], and observe that Perr(E,CR) = nωnR

n−1.
For any fixed x′ ∈ Rn−1, let also `x′ = {(x′, xn) ∈ Rn s.t. xn ∈ R}. We compute

2rPerr(F,CR) =

∫
|x′|6R

H1((∂F ⊕Br) ∩ `x′) dx′ > 2r

∫
|x′|6R

dx′ = 2rPerr(E,CR),

where we used the observation that H1((∂F ⊕Br) ∩ `x′) > 2r, for every x′. This proves Proposition 1.10. �

Now we characterize the Class A minimizers of the nonlocal perimeter functional in dimension 1

Proof of Theorem 1.11. Suppose that E ⊆ R is a Class A minimizer for Perr. Assume also that E 6= ∅ and
E 6= R. Observe that this implies that E 6⊆ (a, b) and Rn \ E 6⊆ (a, b) for every −∞ < a < b < +∞. Indeed, if
E ⊆ (a, b) with −∞ < a < b < +∞, then the empty set would be an admissible competitor for E in (a−r, b+r)
and this would contradict the minimality of E. Similarly for Rn \ E.

To conclude, it is sufficient to show that E is connected:

(5.1) if p, q ∈ E with p < q, then (p, q) ⊆ E.

We prove (5.1) by contradiction.
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Assume it is not true, then there exists a point β ∈ (∂E) ∩ (p, q). We define F := E ∪ (p, q) and we observe
that F and E coincide outside (p, q). Also,

(5.2) (∂F ) ∩ (p, q) = ∅ while (∂E) ∩ (p, q) 3 β.

We also observe that

(5.3) (∂F ) \ [p, q] = (∂E) \ [p, q].

We claim that

(5.4) (∂F ) \ (p, q) ⊆ (∂E) \ (p, q).

Indeed, if ζ ∈ (∂F ) \ (p, q) then either ζ ∈ (∂F ) \ [p, q], or ζ ∈ {p, q}. If ζ ∈ (∂F ) \ [p, q], then, by (5.3), we have
that ζ ∈ (∂E) \ [p, q] ⊆ (∂E) \ (p, q), and we are done.

Hence, we can focus on the case in which, for instance, ζ = p. Since F contains (p, q), the fact that ζ ∈ ∂F
implies that there exists ζk ∈ Rn \ F with ζk 6 ζ = p. Then, by the definition of F , we see that ξk ∈ Rn \ E.
On the other hand, we know that ξ = p ∈ E (recall (5.1)). These observations imply that ζ = p ∈ ∂E. This
proves (5.4) also in this case.

From (5.2) and (5.4) we get that

Ln
((

(∂E)⊕ (−r, r)
)
∩ (p− r, q + r)

)
− Ln

((
(∂F )⊕ (−r, r)

)
∩ (p− r, q + r)

)
= Ln

((
(∂E)⊕ (−r, r)

)
∩ (p, q)

)
− Ln

((
(∂F )⊕ (−r, r)

)
∩ (p, q)

)
+Ln

((
(∂E)⊕ (−r, r)

)
∩
(
(p− r, q + r) \ (p, q)

))
−Ln

((
(∂F )⊕ (−r, r)

)
∩
(
(p− r, q + r) \ (p, q)

))
> Ln

(
(β − r, β + r)

)
− Ln

(
(0, r)

)
> 0.

This implies that Perr(E, (p− r, q + r)) > Perr(F, (p− r, q + r)), which is against minimality, and so the proof
of (5.1) is completed. �

6. Isoperimetric inequalities – Proofs of Lemma 1.12, Lemma 1.14, Theorem 1.13, Remark 1.15,
Theorem 1.16 and Remark 1.17

Now, we deal with the isoperimetric problems.

Proof of Lemma 1.12. First of all, we prove (i). To this end, we remark that, without loss of generality, we can
suppose that ∂E is bounded (if not, there would exist a sequence xj ∈ ∂E such that |xj | > j and |xj+1 − xj | >
2r + 1, and thus ∂E ⊕Br would contain the disjoint balls Br(xj), thus yielding that Perr(E) = +∞).

In addition, we notice that (∂BR)⊕Br = BR+r \B(R−r)+ and therefore

2rPerr(BR) = Ln
(

(∂BR)⊕Br
)

= Ln(BR+r \B(R−r)+).

By the Brunn-Minkowski Inequality (see e.g. [31] or Theorem 4.1 in [20]) we have that(
Ln
(
E ⊕Br

))1/n
>
(
Ln(E)

)1/n
+
(
Ln(Br)

)1/n

=
(
Ln(BR)

)1/n
+
(
Ln(Br)

)1/n
=
(
Ln(BR+r)

)1/n
.

(6.1)

As a consequence, we get

Ln
(
E ⊕Br

)
− Ln(E) > Ln

(
BR+r

)
− Ln(BR).(6.2)

We observe that if R < r, then BR−r = ∅ and E 	Br = ∅. Therefore (6.2) implies (i).

On the other hand, if R > r, let us take R̃ ∈ [0, R] such that

Ln
(
E 	Br

)
= Ln

(
B
R̃

)
.

Also, recalling that
(
E 	Br

)
⊕Br ⊆ E, we have that

Ln
(
(E 	Br)⊕Br

)
6 Ln(E) = Ln(BR).
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Accordingly, applying again the Brunn-Minkowski Inequality we get that

Ln(BR)1/n > Ln
(
(E 	Br)⊕Br

)1/n
>
(
Ln(E 	Br)

)1/n
+
(
Ln(Br)

)1/n
=
(
Ln(B

R̃+r
)
)1/n

,

which implies that R̃ 6 R− r.
From this, we obtain that if R > r

Ln(E)− Ln
(
E 	Br

)
= Ln(BR)− Ln(B

R̃
)

> Ln(BR)− Ln
(
BR−r

)
.

(6.3)

Putting together (6.2) and (6.3) if R > r we obtain

2rPerr(E) = Ln
(
E ⊕Br

)
− Ln(E 	Br)

> Ln
(
BR+r

)
− Ln

(
BR−r

)
= 2rPerr(BR),

thus proving (i).
Now, we prove (ii). For this, we observe that if equality holds, then all the previous equalities hold true with

equal sign. In particular, formula (6.1) would give that(
Ln
(
E ⊕Br

))1/n
=
(
Ln(E)

)1/n
+
(
Ln(Br)

)1/n
.

Hence (see e.g. page 363 in [20]), since equality holds in the Brunn-Minkowski inequality if and only if the two
sets are homothetic convex bodies (up to removing sets of measure zero), we have that E = BλR(p) \ N, for
some set N of null measure, some p ∈ Rn and some λ > 0. Since

Ln(BR) = Ln(E) = Ln
(
BλR(p) \N

)
= λnLn(BR),

we obtain that λ = 1, which establishes (ii). �

Having settled the global isoperimetric problem, we now deal with the proof of the relative isoperimetric
inequality. First of all we give the proof of the technical lemma.

Proof of Lemma 1.14. We consider a partition of Rn into adjacent cubes of side rk
4
√
n

(hence, the diameter of

each cube is rk
4 ). These cubes will be denoted by {Qj}j∈N. For any k ∈ N, we set

(6.4) Ik := {j ∈ N s.t. Qj ∩ Ek 6= ∅}.

Let also

Êk :=
⋃
j∈Ik

Qj .

Notice that (1.15) is obvious in this setting. We now prove (1.16). For this, we say that Qj is a k-boundary
cube if j ∈ Ik and there exists a cube Qi that is adjacent to Qj with i 6∈ Ik. We let βk be the number of
k-boundary cubes which intersect Ωk.

We remark that

(6.5) Per(Êk, Ωk) 6 Cβkr
n−1
k ,

for some C > 0. We also claim that

(6.6) βk 6
C Perrk(Ek,Ωk)

rn−1
k

.

up to renaming C > 0. To this end, let Qj be a k-boundary cube and Qi be its adjacent cube with j ∈ Ik
and i 6∈ Ik. Thus, by (6.4), there exists pj,k ∈ Qj∩Ek and pi,k ∈ Qi\Ek. Consequently, we find a point p?k ∈ ∂Ek
which lies at distance at most rk/4 from Qj . Therefore

(6.7) (∂Ek)⊕Brk ⊇ Brk(p?k) ⊇ Qj ⊕B rk
100
.

In addition, if Qj intersects Ωk, it follows from (1.12) that (for large k)

Ln
(
(Qj ⊕B rk

100
) ∩ Ωk

)
>
rnk
C
,
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for some C > 0. Hence, if Q?j denotes the dilation of Qj by a factor 2 with respect to its center, we have
that Q?j ⊇ Qj ⊕B rk

100
and

Ln
(
(Qj ⊕B rk

100
) ∩ Ωk ∩Q?j

)
= Ln

(
(Qj ⊕B rk

100
) ∩ Ωk

)
>
rnk
C
.

This and (6.7) give that

(6.8) Ln
((

(∂Ek)⊕Brk
)
∩ Ωk ∩Q?j

)
>
rnk
C
.

Our goal is now to sum up (6.8) for all the indices j for which Qj is a boundary cube that intersects Ωk. Notice
that the family {Q?j}j∈N is overlapping (differently from the original nonoverlapping family {Qj}j∈N), but the

number of overlappings is finite, say bounded by some C? > 0. Hence, since (6.8) is valid for any k-boundary
cube Qj which intersect Ωk, summing up (6.8) over the indices j gives that

C?Ln
((

(∂Ek)⊕Brk
)
∩ Ωk

)
>
∑
j∈N

Ln
((

(∂Ek)⊕Brk
)
∩ Ωk ∩Q?j

)
>

∑
k-boundary cube Qj

which intersect Ωk

Ln
((

(∂Ek)⊕Brk
)
∩ Ωk ∩Q?j

)
>
βkr

n
k

C

and thus

C? Perrk(Ek,Ωk) >
βkr

n−1
k

C
,

that establishes (6.6), up to renaming constants.
From (6.5) and (6.6) it follows that (1.16) holds true, as desired.

In addition, from (1.14) and (1.16), we obtain a uniform bound for Per(Êk, Ωk) and thus on Per(Êk, Ω), so
by compactness, up to a subsequence we have that there exists E ⊆ Rn for which

(6.9) χ
Êk
→ χE in L1(Ω).

Now we prove (1.17). For this, let

Jk :=
{
j ∈ Ik s.t. Qj ∩ Ωk 6= ∅ and Qj \ Ek 6= ∅

}
and Hk :=

⋃
j∈Jk

Qj .

Notice that

(6.10) (Êk \ Ek) ∩ Ωk ⊆ Hk.

To check this, let x ∈ (Êk \ Ek) ∩ Ωk. Then, there exists j ∈ Ik such that x ∈ Qj . Notice that x ∈ Qj \ Ek
and x ∈ Qj ∩ Ωk, which means that j ∈ Jk, and so x ∈ Hk, thus proving (6.10).

Now we prove that

(6.11) the cardinality of Jk is bounded by
C Perrk(Ek,Ωk)

rn−1
k

,

Indeed, if j ∈ Jk, then also j ∈ Ik, therefore Qj ∩ Ek 6= ∅ and also Qj \ Ek 6= ∅. Hence there exists xj,k ∈
Qj ∩ (∂Ek). Notice that

(6.12) Brk(xj,k) ⊇ Qj ⊕B rk
100

Also, Qj ∩ Ωk 6= ∅. Consequently, making use of (1.12) and (6.12), we see that

Ln
((

(∂Ek)⊕Brk
)
∩ Ωk ∩ (Qj ⊕B rk

100
)
)
> Ln

(
Brk(xj,k) ∩ Ωk ∩ (Qj ⊕B rk

100
)
)

> Ln
(
(Qj ⊕B rk

100
) ∩ Ωk

)
>
rnk
C
,
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up to renaming C > 0. Since this is valid for any j ∈ Jk and there is a finite number of overlaps between
different Qj ⊕B rk

100
, we conclude that

Ln
((

(∂Ek)⊕Brk
)
∩ Ωk

)
>
rnk #Jk
C

,

up to renaming C > 0 that implies (6.11).
Now, in view of (6.10) and (6.11), we find that

Ln
(
(Êk \ Ek) ∩ Ωk

)
6 Ln(Hk) 6

∑
j∈Jk

Ln(Qj)

6 C rnk #Jk 6 C rk Perrk(Ek,Ωk).

This implies (1.17).
Finally, (1.13), (1.14) and (1.17) give that

χ
Êk
− χEk

→ 0 in L1(Ω),

and this, combined with (6.9), implies (1.18), as desired. �

With this, we can now complete the proof of Theorem 1.13.

Proof of Theorem 1.13. First of all we consider the case in which R < r 6 λR for λ > 1. By assumption we
know that Ln(E ∩ BR) 6 1

2L
n(BR) = 1

2ωnR
n. So either Ln(E ∩ BR) = 0 and there is nothing to prove, or

Ln(E ∩BR) 6= 0. In this case ∂E ∩BR 6= ∅, and so Perr(E,BR) > 1
2r

Ln(BR)
3 = ωnRn

6r . Summarizing we get

Perr(E,BR) >
ωnR

n

6r
>
ωnR

n−1

6λ
>
ωn
6λ

(
2Ln(E ∩BR)

ωn

)n−1
n

=
C

λ
(Ln(E ∩BR))

n−1
n .

We consider now the case λ = 1, so r 6 R, and we argue by contradiction. If (1.11) were not true, recalling
also (1.9) and (1.10), we would infer that there exist sequences

(6.13) Rk > rk > 0

and Ek ⊆ Rn such that

Ln(Ek ∩BRk
)

Ln(BRk
)
6

1

2

and
(
Ln(Ek ∩BRk

)
)n−1

n
> kPerrk(Ek, BRk

).

(6.14)

We define λk :=
(
Ln(Ek ∩BRk

)
)− 1

n , Ẽk := λkEk, r̃k := λkrk and R̃k = λkRk. With this scaling, we have that

(6.15) Ln(Ẽk ∩BR̃k
) = Ln

(
λk(Ek ∩BRk

)
)

= λnkL
n(Ek ∩BRk

) = 1.

Moreover,

Perr̃k(Ẽk, BR̃k
) = Perλrk(λkEk, λkBRk

) = λn−1
k Perrk(Ek, BRk

).

Therefore (6.14) becomes

(6.16) Ln(B
R̃k

) > 2 and Perr̃k(Ẽk, BR̃k
) = λn−1

k Perrk(Ek, BRk
) <

1

k
λn−1
k

(
Ln(Ek ∩BRk

)
)n−1

n
=

1

k
.

Thanks to the first inequality in (6.16), setting

R̃o := lim inf
k→+∞

R̃k,

we have that Ro ∈ (0,+∞] and

(6.17) Ln(B
R̃o

) > 2.

Here, the obvious notation B
R̃o

= Rn if Ro = +∞ has been used.
Now we claim that

(6.18) r̃k → 0.

For this, we observe that R̃k > r̃k, thanks to (6.13).
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In addition,

Ln(Ẽk ∩BR̃k
) = 1 < 2 6 Ln(B

R̃k
),

thanks to (6.15) and (6.16). Therefore both Ẽk ∩ BR̃k
and B

R̃k
\ Ẽk are nonvoid, and so there exists pk ∈

(∂Ẽk) ∩BR̃k
. Accordingly,

Perr̃k(Ẽk, BR̃k
) >

1

2r̃k
Ln(Br̃k(pk) ∩BR̃k

) >
c min{r̃nk , R̃nk}

r̃k
= c r̃n−1

k ,

for some c > 0. From this and (6.16) we deduce that

c r̃n−1
k 6 Perr̃k(Ẽk, BR̃k

) <
1

k
,

which proves (6.18), as desired.
In light of (6.18), we can now exploit Lemma 1.14 (with Ωk := B

R̃k
and Ω := ∩kBR̃k

, which is nontrivial

thanks to (6.17)). In particular, from (1.15) and (1.16), we know that there exists Êk ⊆ Rn such that

(6.19) Êk ⊇ Ẽk

and

Per(Êk, BR̃k
) 6 C Perr̃k(Ẽk, BR̃k

).

Therefore, recalling (6.16),

(6.20) Per(Êk, BR̃k
) 6

C

k
.

Moreover, using (1.17),

(6.21)

∫
B

R̃k

|χ
Ẽk
− χ

Êk
| dx 6 C r̃k Perr̃k(Ẽk, BR̃k

) 6
Cr̃k
k
.

Using (6.15) and (6.21), we see that

Ln(Êk ∩BR̃k
) 6 Ln(Ẽk ∩BR̃k

) + Ln
(
(Êk \ Ẽk) ∩BR̃k

)
6 1 +

Cr̃k
k
.

This and (6.17) imply that

(6.22) lim
k→+∞

Ln(Êk ∩BR̃k
)

Ln(B
R̃k

)
6

1

Ln(B
R̃o

)
6

1

2
.

So, we can assume that, for large k,

Ln(Êk ∩BR̃k
)

Ln(B
R̃k

)
6

3

4
,

hence we can apply the classical relative isoperimetric inequality and find that(
Ln(Êk ∩BR̃k

)
)n−1

n
6 C Per(Êk, BR̃k

).

Consequently, recalling (6.19) and (6.20), (
Ln(Ẽk ∩BR̃k

)
)n−1

n
6
C

k
.

From this, sending k → +∞ and recalling (6.15), we obtain a contradiction that proves Theorem 1.13. �

Now we check that (1.11) cannot hold with a constant independent of λ.
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Proof of Remark 1.15. As an example, let n = 2, R = 100 and E := B1. Notice that (1.10) is satisfied,
but (1.11) cannot be true for arbitrarily large r for some constant C independent of the rate r

R . Indeed, we
have that ∂E ⊆ B100, hence (

(∂E)⊕Br
)
∩BR ⊆ B100+r ∩BR = B100.

As a consequence, if r is sufficiently large,

Perr(E,BR) 6
1

2r
Ln(B100) <

1

C

(
Ln(B1)

)n−1
n

=
1

C

(
Ln(E ∩BR)

)n−1
n
,

thus violating (1.11). �

Now, we can provide the easy proof of the Poincaré-Wirtinger inequality in Theorem 1.16:

Proof of Theorem 1.16. Up to a vertical translation, we may and do suppose that

(6.23) u has zero average in BR.

Moreover,
Ln({u > 0} ∩BR) + Ln({u < 0} ∩BR) 6 Ln(BR).

Thus, possibly exchanging u with −u, we may and do suppose that

(6.24) Ln({u > 0} ∩BR) 6
Ln(BR)

2
.

Let also u+ := max{u, 0}. Then, using (6.23), we see that∫
BR

|u| =
∫
BR∩{u>0}

u−
∫
BR∩{u<0}

u

= 2

∫
BR∩{u>0}

u−
∫
BR

u = 2

∫
BR∩{u>0}

u+ − 0.

Hence, integrating with respect to the distribution function (see e.g. Theorem 5.51 in [34]), we have that

(6.25)

∫
BR

|u| = 2

∫
BR∩{u>0}

u+ = 2

∫ +∞

0
Ln({u+ > s} ∩BR) ds.

In addition, from (6.24), for any s > 0 we have that

Ln({u+ > s} ∩BR) = Ln({u > s} ∩BR) 6 Ln({u > 0} ∩BR) 6
Ln(BR)

2
.

Consequently, we can exploit our relative isoperimetric inequality in Theorem 1.13 with E := {u+ > s} and
conclude that, for any s > 0,(

Ln({u+ > s} ∩BR)
)n−1

n
6 CλPerr({u+ > s}, BR),

for some C > 0. Multiplying this estimate by
(
Ln({u+ > s} ∩BR)

) 1
n

, we obtain that, for any s > 0,

Ln({u+ > s} ∩BR) 6 CλPerr({u+ > s}, BR)
(
Ln({u+ > s} ∩BR)

) 1
n

6 Cλ RPerr({u+ > s}, BR),

up to renaming C > 0. Accordingly,∫ +∞

0
Ln({u+ > s} ∩BR) ds 6 CλR

∫ +∞

0
Perr({u+ > s}, BR) ds

6 CλR
∫
R

Perr({u+ > s}, BR) ds =
CλR

r

∫
BR

osc
Br(x)

u,

thanks to the coarea formula in (1.4). Hence, recalling (6.25), we conclude that∫
BR

|u| 6 2CλR

r

∫
BR

osc
Br(x)

u,

which is the desired result, up to renaming constants. �
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Now we check that Theorem 1.16 does not hold in general when r > R with a constant independent of the
rate r

R :

Proof of Remark 1.17. Let R = 1 and

u(x) :=

 1 if x > 0,
0 if x = 0,
−1 if x < 0.

Notice that u has zero average and its oscillation is always bounded by 2. Therefore, if r is large enough,

CR

r

∫
BR

osc
Br(x)

u dx 6
C

r
2Ln(B1) < Ln(B1) =

∫
BR

∣∣u− 〈u〉R∣∣,
which violates (1.19). �

7. Regularity issues and density estimates – Proofs of Theorems 1.18 and 1.19

In this section we prove the nonlocal density estimates in Theorem 1.18:

Proof of Theorem 1.18. We set f(R) := Ln(E ∩BR). We notice that if R− r > r and f(R− r) 6 Ln(BR)
2 , then

we can apply the relative isoperimetric inequality in Theorem 1.13 and obtain that

(7.1)
(
f(R− r)

)n−1
n
6 C Perr(E,BR−r).

Furthermore,

∂(E \BR) ⊆
(
(∂E) \BR

)
∪
(
(∂BR) ∩ E

)
.

Observe that

(E ⊕Br) ∩ (BR+r \BR−r) =
(
E ∩ (BR+r \BR−r)

)
∪
(
(∂E ⊕Br) ∩ (BR+r \BR−r)

)
.

Consequently (
∂(E \BR)

)
⊕Br ⊆

((
(∂E)⊕Br

)
\BR−r

)
∪
(
(E ⊕Br) ∩ (BR+r \BR−r)

)
⊆

((
(∂E)⊕Br

)
∩ (BR+r \BR−r)

)
∪
(
E ∩ (BR+r \BR−r)

)
and therefore

Ln
((

(∂(E \BR))⊕Br
)
∩BR+r

)
6Ln

((
(∂E)⊕Br

)
∩ (BR+r \BR−r)

)
+ Ln

(
E ∩ (BR+r \BR−r)

)
= 2rPerr(E, BR+r \BR−r) +

(
f(R+ r)− f(R− r)

)
.

(7.2)

Assume also that BR+r ⊆ Ω. Then, the minimality of E in BR+r and (7.2) give that

0 6 2r
[
Perr(E \BR, BR+r)− Perr(E, BR+r)

]
= Ln

((
(∂(E \BR))⊕Br

)
∩BR+r

)
− 2rPerr(E, BR+r)

=
(
f(R+ r)− f(R− r)

)
+ 2r

[
Perr(E, BR+r \BR−r)− Perr(E, BR+r)

]
=

(
f(R+ r)− f(R− r)

)
− 2rPerr(E, BR−r).

This and (7.1) give that, if BR+2r ⊆ Ω, R > 2r and f(R− r) 6 Ln(BR)
2 , then

0 6
(
f(R+ r)− f(R− r)

)
−

2r
(
f(R− r)

)n−1
n

C
.

That is, if R > r and f(R) 6 Ln(BR)
2 ,

(7.3) f(R+ 2r) > f(R) +
2r

C

(
f(R)

)n−1
n
.
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Now we define, for k ∈ N, the sequence xk := f(Ro + 2kr), and we claim that, if BRo+2kr ⊆ Ω, then

(7.4) xk > (ω
1
n
o + 2c?kr)

n

where

(7.5) c? :=
1

C

(
n+ 2(n−1)r

Cω
1
n
o

) ,
being ωo as in (1.20) and C as in (7.3). The proof of (7.4) is by induction. First of all, from (1.20) we have that

x0 = f(Ro) = ωo,

and so (7.4) holds true when k = 0. Now we suppose that it holds true for k − 1, namely

xk−1 > (ω
1
n
o + 2c?(k − 1)r)n.

Thus, from (7.3),

xk = f(Ro + 2(k − 1)r + 2r)

> f(Ro + 2(k − 1)r) +
2r

C

(
f(Ro + 2(k − 1)r)

)n−1
n

= xk−1 +
2r

C

(
xk−1

)n−1
n

=
(
xk−1

)n−1
n

((
xk−1

) 1
n

+
2r

C

)
> (ω

1
n
o + 2c?(k − 1)r)n−1

(
ω

1
n
o + 2c?(k − 1)r +

2r

C

)

= (ω
1
n
o + 2c?kr)

n (ω
1
n
o + 2c?(k − 1)r)n−1

(ω
1
n
o + 2c?kr)n−1

ω
1
n
o + 2c?(k − 1)r + 2r

C

ω
1
n
o + 2c?kr

= (ω
1
n
o + 2c?kr)

n

(
1− 2c?r

ω
1
n
o + 2c?kr

)n−1 (
1 +

2r
C − 2c?r

ω
1
n
o + 2c?kr

)
.

(7.6)

Now, by a first order Taylor expansion, we see that, for any τ ∈ [0, 1],

(1− τ)n−1 > 1− (n− 1)τ

and therefore (
1− 2c?r

ω
1
n
o + 2c?kr

)n−1

> 1− 2(n− 1) c?r

ω
1
n
o + 2c?kr

.

As a consequence, (
1− 2c?r

ω
1
n
o + 2c?kr

)n−1 (
1 +

2r
C − 2c?r

ω
1
n
o + 2c?kr

)

>

(
1− 2(n− 1) c?r

ω
1
n
o + 2c?kr

) (
1 +

2r
C − 2c?r

ω
1
n
o + 2c?kr

)

= 1 +
2r
C − 2c?r − 2(n− 1) c?r

ω
1
n
o + 2c?kr

− 2(n− 1) c?r

ω
1
n
o + 2c?kr

·
2r
C − 2c?r − 2(n− 1) c?r

ω
1
n
o + 2c?kr

> 1 +
2r
C − 2n c?r

ω
1
n
o + 2c?kr

− 2(n− 1) c?r

ω
1
n
o + 2c?kr

·
2r
C

ω
1
n
o

= 1 +

2r
C − 2n c?r − 4(n−1) c?r2

Cω
1
n
o

ω
1
n
o + 2c?kr

= 1,
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thanks to (7.5). This and (7.6) give that xk > (ω
1
n
o + 2c?kr)

n, which completes the inductive proof of (7.4).
From (7.4) and (7.5), we obtain (1.21), (1.22) and (1.23).
Now, we prove (1.25). To this end, we take k as in (1.24) and we observe that

x0 6 . . . 6 xk−1 6 Cr
n.

Hence, for any j ∈ {1, . . . , k},
r (xj−1)−

1
n > C

− 1
n ,

thus we deduce from (7.3) that

xj = f(Ro + 2(j − 1)r + 2r) > f(Ro + 2(j − 1)r) +
2r

C

(
f(Ro + 2(j − 1)r)

)n−1
n

= xj−1 +
2r

C
(xj−1)

n−1
n > xj−1

(
1 +

1

2C C
1
n

)
.

Iterating, we thus obtain

xk > x0

(
1 +

1

2C C
1
n

)k
,

that establishes (1.25). This completes the proof of Theorem 1.18. �

Now we address the compactness and lack of regularity issues exemplified in Theorem 1.19:

Proof of Theorem 1.19. We start with some preliminary observations. First of all, if we denote by {e1, . . . , en}
the Euclidean basis of Rn, it is clear that

(7.7) Ln
(
B1/8(e1/2) ∩ (B1 \B1/2)

)
> 0 and Ln

(
B1/8(e1) ∩ (B1 \B1/2)

)
> 0.

Moreover, there exists a constant c? > 0, only depending on n, such that, for any x ∈ B3/2 it holds that

(7.8) Ln
(
B1(x) ∩ (B1 \B1/2)

)
> c?.

To prove (7.8), we argue for a contradiction: if not, there exists a sequence of points xk ∈ B3/2 such that

(7.9) Ln
(
B1(xk) ∩ (B1 \B1/2)

)
6

1

k
.

Up to a subsequence, we may assume that xk → x̄ as k → +∞, for some x̄ ∈ B3/2, and, passing to the
limit (7.9), we obtain that

(7.10) Ln
(
B1(x̄) ∩ (B1 \B1/2)

)
= 0.

Up to a rotation, we can assume that x̄ is parallel to e1, namely x̄ = λe1, for some λ ∈
[
0, 3

2

]
. We define

λ? :=

1/2 if λ ∈
[
0, 3

4

]
1 if λ ∈

(
3
4 ,

3
2

]
.

Notice that, by (7.7), we have that

(7.11) Ln
(
B1/8(λ? e1) ∩ (B1 \B1/2)

)
> 0.

In addition, we note that |x̄− λ?e1| = |λ− λ?| 6 1/2. Consequently, if p ∈ B1/8(λ?e1), we have that |x̄− p| 6
|x̄− λ?e1|+ |λ?e1 − p| 6 1

2 + 1
8 < 1, which gives that B1/8(λ?e1) ⊆ B1(x̄).

Therefore, we conclude that B1/8(λ? e1)∩ (B1 \B1/2) ⊆ B1(x̄)∩ (B1 \B1/2). From this and (7.11), we obtain

that Ln
(
B1(x̄)∩ (B1 \B1/2)

)
> 0, and this is in contradiction with (7.10). The proof of (7.8) is thus completed.

We also notice that, by scaling (7.8), it holds that, for any x ∈ B3r/2,

(7.12) Ln
(
Br(x) ∩ (Br \Br/2)

)
> c? r

n.

Now we claim that there exists δ? > 0, only depending on n, such that

if H ⊆ Br and Ln
(
H ∩ (Br \Br/2)

)
> (1− δ?)Ln(B1)

(
1− 1

2n

)
rn,

then {0} ∪
(
(∂H)⊕Br

)
⊇
(
∂(H ∪Br/2)

)
⊕Br.

(7.13)
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To prove this, let

(7.14) x ∈
(
∂(H ∪Br/2)

)
⊕Br.

Our aim is to show that

(7.15) either x = 0 or Br(x) ∩ (∂H) 6= ∅,

since this would imply that x ∈ {0} ∪
(
(∂H)⊕Br

)
, thus establishing (7.13).

Also, since (7.15) is obvious when x = 0, we can assume that

(7.16) x 6= 0.

Notice that, from (7.14), we know that there exists y ∈ Br(x)∩
(
∂(H ∪Br/2)

)
. Consequently, we can find ξk ∈

(H ∪Br/2) and ηk ∈ (Rn \H) ∩ (Rn \Br/2) with the property that ξk → y and ηk → y as k → +∞.
We observe that ηk ∈ Rn \H: hence, if ξk ∈ H, it follows that y ∈ ∂H and so (7.15) holds true. Therefore,

we can restrict ourselves to the case in which ξk ∈ (Br/2 \H). In particular

r

2
6 lim

k→+∞
|ηk| = |y| = lim

k→+∞
|ξk| 6

r

2
,

and so y ∈ ∂Br/2.

Consequently, we see that |x| 6 |y|+ |x− y| 6 r
2 + r = 3r

2 , and so we are in the position of exploiting (7.12).
Accordingly, we have that

(7.17) Ln
(
Br(x) ∩ (Br \Br/2)

)
> c? r

n.

In addition, from the hypothesis of (7.13), we find that

Ln(B1)

(
1− 1

2n

)
rn = Ln(Br \Br/2)

= Ln
(
(Br \Br/2) ∩H

)
+ Ln

(
(Br \Br/2) \H

)
> (1− δ?)Ln(B1)

(
1− 1

2n

)
rn + Ln

(
(Br \Br/2) \H

)
.

This says that

Ln
(
(Br \Br/2) \H

)
6 δ?L

n(B1)

(
1− 1

2n

)
rn 6

c?
2
rn,

as long as we choose δ? appropriately small. Thus, recalling (7.17), we find that

c? r
n 6 Ln

(
Br(x) ∩ (Br \Br/2)

)
6 Ln

(
Br(x) ∩ (Br \Br/2) ∩H

)
+ Ln

((
Br(x) ∩ (Br \Br/2)

)
\H

)
6 Ln

(
Br(x) ∩ (Br \Br/2) ∩H

)
+ Ln

(
(Br \Br/2) \H

)
6 Ln

(
Br(x) ∩ (Br \Br/2) ∩H

)
+
c?
2
rn,

which gives that Ln
(
Br(x) ∩ (Br \Br/2) ∩H

)
> c?

2 r
n. In particular, we have that

(7.18) Br(x) ∩H 6= ∅.

So, we claim that

(7.19) Br(x) ∩ (∂H) 6= ∅.

To prove (7.19), we suppose the contrary, namely that Br(x) ∩ (∂H) = ∅. Then, from (7.18) we have

that Br(x) ⊆ H. In particular, recalling (7.16), we have that, if pj := x+
(
r − 1

j

)
x
|x| , then

|pj − x| =
∣∣∣∣r − 1

j

∣∣∣∣ = r − 1

j
< r,

for large j. Accordingly, we obtain that pj ∈ Br(x) ⊆ H ⊆ Br, where one assumption in (7.13) has been used
for the latter inclusion.
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So, we have found that

r > lim
j→+∞

|pj | = lim
j→+∞

∣∣∣∣x+

(
r − 1

j

)
x

|x|

∣∣∣∣ = lim
j→+∞

∣∣∣∣|x|+ (r − 1

j

)∣∣∣∣ = |x|+ r.

This is a contradiction with (7.16), and so we have proved (7.19).
Then, since (7.19) implies (7.15), we have thus completed the proof of (7.13).

Now, we deal with the core of the proof of Theorem 1.19. For this, we observe that

FK(Br \Br/2) := Perr(Br \Br/2)−K Ln(Br \Br/2)

=
Ln
(
(∂(Br \Br/2))⊕Br

)
2r

−K Ln(Br \Br/2)

=
Ln(B2r)

2r
−K Ln(Br \Br/2)

= 2n−1 Ln(B1) rn−1 − Ln(B1)

(
1− 1

2n

)
Krn.

(7.20)

Now we claim that

(7.21) FK(Br \Br/2) 6 FK(E)

for any bounded set E ⊆ Rn. To this end, we distinguish two cases, namely

either Ln
(
E ∩ (Br \Br/2)

)
6 (1− δ?)Ln(B1)

(
1− 1

2n

)
rn(7.22)

or Ln
(
E ∩ (Br \Br/2)

)
> (1− δ?)Ln(B1)

(
1− 1

2n

)
rn,(7.23)

being δ? the constant in (7.13).
When (7.22) holds true, we have that

−FK(E) 6 K Ln
(
E ∩ (Br \Br/2)

)
6 (1− δ?)Ln(B1)

(
1− 1

2n

)
K rn.

Accordingly, from (7.20), we have that

FK(Br \Br/2)− FK(E)

6 2n−1 Ln(B1) rn−1 − Ln(B1)

(
1− 1

2n

)
Krn + (1− δ?)Ln(B1)

(
1− 1

2n

)
K rn

= 2n−1 Ln(B1) rn−1 − δ?Ln(B1)

(
1− 1

2n

)
K rn

6 0,

provided that K is large enough, as prescribed by (1.26). This proves (7.21) when (7.22) holds true, hence we
can now focus on the case in which (7.23) is satisfied.

Thanks to (7.23), we can exploit (7.13) with

(7.24) H := E ∩Br.
In this way, setting

(7.25) G := H ∪Br/2,

we have that {0} ∪
(
(∂H)⊕Br

)
⊇ (∂G)⊕Br. In particular, we have that

(7.26) Perr(H) > Perr(G).

We also point out that Ln
(
G∩ (Br \Br/2)

)
= Ln

(
H ∩ (Br \Br/2)

)
, thanks to (7.25). Hence, exploiting (7.26),

we find that

(7.27) FK(H) > FK(G).

In addition, we claim that

(7.28) Perr(H) 6 Perr(E).
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To check this, we recall (see formulas (2.4)-(2.5) in [10]) that

(7.29) Perr(E ∩Br) + Perr(E ∪Br) 6 Perr(E) + Perr(Br).

Let now R > r be such that Ln(E ∪ Br) = Ln(BR). Then, from the isoperimetric inequality in (1.8), we see
that

Perr(E ∪Br) > Perr(BR) =
Ln(BR+r)

2r
>

Ln(B2r)

2r
= Perr(Br).

Hence, we insert this inequality into (7.29) and we obtain (7.28), as desired.
We also notice that, by (7.24), we have that Ln

(
H ∩ (Br \Br/2)

)
= Ln

(
E ∩ (Br \Br/2)

)
, and so

(7.30) FK(H) 6 FK(E),

thanks to (7.28).
Let also ρ > 0 be such that

(7.31) Ln(G) = Ln(Bρ).

We point out that, by (7.24) and (7.25),

(7.32) Br/2 ⊆ G ⊆ Br,
and so

(7.33) ρ ∈
[r

2
, r
]
.

Also, making use of the isoperimetric inequality in (1.8), we see that

(7.34) Perr(G) > Perr(Bρ) =
Ln(Br+ρ)

2r
=

Ln(B1) (r + ρ)n

2r
.

Furthermore,

Ln
(
G ∩ (Br \Br/2)

)
= Ln(G ∩Br)− Ln(G ∩Br/2) = Ln(G)− Ln(Br/2)

= Ln(Bρ)− Ln(Br/2) = Ln(B1)
(
ρn −

(r
2

)n)
,

(7.35)

thanks to (7.31) and (7.32).
Hence, by (7.34) and (7.35), we have that

(7.36) FK(G) >
Ln(B1) (r + ρ)n

2r
− Ln(B1)K

(
ρn −

(r
2

)n)
=: Φ(ρ).

We notice that, for any t ∈
[
r
2 , r

]
,

Φ′(t) = nLn(B1)

(
(r + t)n−1

2r
−K tn−1

)
= nLn(B1) tn−1

(
1

2r

(r
t

+ 1
)n−1

−K
)

6 nLn(B1) tn−1

(
1

2r

(
r

r/2
+ 1

)n−1

−K

)
6 0,

as long as K is large enough, as prescribed in (1.26). Therefore, recalling (7.20) and (7.33), we have that

FK(Br \Br/2) = Ln(B1)

[
2n−1rn−1 −K

(
1− 1

2n

)
rn
]

= Φ(r) = inf
t∈[ r2 , r]

Φ(t) 6 Φ(ρ).

Hence, we insert this information into (7.36), and we conclude that FK(G) > FK(Br \Br/2). From this, (7.30)
and (7.27), we conclude that

FK(E) > FK(H) > FK(G) > FK(Br \Br/2),

which completes the proof of (7.21).
Now, for any (arbitrarily ugly) set U ⊆ Br/2, we set EU := (Br \ Br/2) ∪ U . We notice that (∂EU ) ⊕ Br =

B2r = (Br \Br/2)⊕Br, and also Ln
(
EU ∩ (Br \Br/2)

)
= Ln(Br \Br/2), and therefore

FK(EU ) = FK(Br \Br/2).



26 A. CESARONI, S. DIPIERRO, M. NOVAGA, AND E. VALDINOCI

Hence, from (7.21), we have that EU is also a minimizer for FK , from which the claims in Theorem 1.19 plainly
follow. �

8. Planelike minimizers in periodic media – Proof of Theorem 1.21

In this section we establish the existence of planelike minimizers for periodic volume perturbations of Perr.

Proof of Theorem 1.21. The proof is given in two steps: in the first one, we fix a rational slope ω and we provide
the construction of a planelike minimizer E∗ω which is also ω- periodic. Then, in the second step, we consider
irrational slopes by means of an approximation procedure.

Step 1: construction of planelike minimizers with rational slope. The idea of the proof is to perform
an argument based on a constrained minimal minimizer procedure, as in [4]. A major difference with [4] here
is that optimal density estimates at small scales do not hold, hence the width of the strip may depend, in
principle, on r. Indeed, roughly speaking, here one needs an initial density to improve the density in the large,
and so, to let the density reach a uniform threshold, a large number (in dependence of r) of fundamental cubes
may be needed, and this has a rather strong consequence on the energy estimates when r is small.

Hence, the proof of this step will be performed in two parts: first, we obtain an initial bound on the width of
the strip that depends on r, and then we improve this bound up to a uniform scale. This method will combine
the minimal minimizer argument in [4] with an ad-hoc procedure of finely selecting appropriating cubes and
performing a cut at a suitable level. These estimates will be based on a fine analysis of cubes, to detect local
densities and energy contributions.

The details of the proof go like this. We consider a “fundamental domain” for the ω-periodicity, i.e. we
take K1, . . . ,Kn−1 ∈ Zn which are linearly independent and such that ω ·Kj = 0 for any j ∈ {1, . . . , n − 1},
and we set

Fω :=
{
t1K1 + · · ·+ tn−1Kn−1, t1, . . . , tn−1 ∈ (0, 1)

}
.

Notice that the existence of K1, . . . ,Kn−1 is a consequence of the rationality of ω in (1.27).
Given M > 2, we also consider the parallelepipedon

Sω,M :=
{
t1K1 + · · ·+ tn−1Kn−1 + tnω, t1, . . . , tn−1 ∈ (0, 1), tn ∈ (−M,M)

}
=

{
p+ tnω, p ∈ Fω, tn ∈ (−M,M)

}
.

We consider the functional

Fω,M (E) := Perr(E,Sω,2M ) +

∫
E∩Sω,2M

g(x) dx.

We now introduce the set of periodic constrained minimizers for this functional. Namely we define Cω,M the
family of sets E ⊆ Rn which are ω-periodic and such that

{ω · x 6 −M} ⊆ E ⊆ {ω · x 6M}.

Let also Lω := {ω · x 6 0}. Then

(8.1) Perr(Lω, Sω,2M ) 6 CHn−1(Fω),

for some C > 0.
We also consider the family of finite overlapping dilated cubes

Q := {j + [0, n]n, j ∈ Zn}.

We define QM the family of cubes Q ∈ Q which intersect {ω · x = ±M}. The fact that g has zero average in
each Q ∈ Q implies that∣∣∣∣∣

∫
E∩Sω,2M

g(x) dx

∣∣∣∣∣ 6 ∑
Q∈Q2M

∫
Q
|g(x)| dx 6 ‖g‖L∞(Rn)

∑
Q∈Q2M

Ln(Q) 6 CηHn−1(Fω),

up to renaming C > 0, and therefore, in view of (8.1), it holds that

(8.2) Fω,M (Lω) 6 CHn−1(Fω).

This says that there exists at least one set in Cω,M with finite energy, hence we can proceed to the minimization
of the functional. The existence of the minimum in this case follows along the lines of Theorem 1.9.
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So we define Mω,M as the family of sets E ∈ Cω,M such that

Fω,M (E) = inf
F∈Cω,M

Fω,M (F ).

Following a classical idea of [4], we now define the minimal minimizer as

E∗ω,M :=
⋂

E∈Mω,M

E.

We remark that

(8.3) Perr(E ∩ F,Ω) + Perr(E ∪ F,Ω) 6 Perr(E,Ω) + Perr(F,Ω),

for any E, F ⊆ Rn and any domain Ω, and thus

(8.4) Fω,M (E ∩ F ) + Fω,M (E ∪ F ) 6 Fω,M (E) + Fω,M (F ).

By (8.4), we have that E∗ω,M ∈ Mω,M , that is the minimal minimizer is indeed a minimizer. Moreover, E∗ω,M
satisfies the inclusion properties (for a proof of this we refer to [4, Lemma 6.5])

if k ∈ Zn and ω · k 6 0, then E∗ω,M + k ⊆ E∗ω,M ;

if k ∈ Zn and ω · k > 0, then E∗ω,M + k ⊇ E∗ω,M .
(8.5)

Consequently, since E∗ω,M is the smallest possible minimizers,

if Bn(p) ∩ E∗ω,M = ∅, then E∗ω,M ⊆ {ω · (p− x) 6 n}
and if Bn(p) ⊆ E∗ω,M , then E∗ω,M ⊇ {ω · (p− x) > −n}.

We now divide the cubes in Q according to their “color”, i.e. their density properties with respect to the
set E∗ω,M (pictorially, we think that the set E∗ω,M is “black” and its complement is “white”).

Namely, we consider the “family of black cubes” given by

QBl := {Q ∈ Q s.t. Q ⊆ E∗ω,M}

and the “family of white cubes”

QWh := {Q ∈ Q s.t. Q ∩ E∗ω,M = ∅}.
We also take into account the “family of grey cubes”

QGr := Q \
(
QBl ∪ QWh

)
= {Q ∈ Q s.t. Q \ E∗ω,M 6= ∅ and Q ∩ E∗ω,M 6= ∅}.

We also subdivide the grey cubes into the ones which are “foggy black” and the ones which are “foggy white”:
the first family contains cubes with a sufficient density of E∗ω,M , while the second family contains cubes with a
sufficient density of the complement of E∗ω,M , being the notion of “sufficient density” the one compatible with
uniform scales in the density estimates of Theorem 1.18. That is, we define

Qf.Bl := {Q ∈ QGr s.t. Ln(Q ∩ E∗ω,M ) > rn}
and Qf.Wh := {Q ∈ QGr s.t. Ln(Q \ E∗ω,M ) > rn}.

Notice that, since r ∈ (0, 1),

QGr = Qf.Bl ∪ Qf.Wh.

On the other hand, in general, we have that Qf.Bl∩Qf.Wh 6= ∅, since there might be cubes with sufficiently high
density of both E∗ω,M and its complement (these cubes are, in some sense, “multicolored” inside). So, we define

QMu := {Q ∈ Qf.Bl ∩ Qf.Wh}

=
{
Q ∈ QGr s.t. min

{
Ln(Q ∩ E∗ω,M ), Ln(Q \ E∗ω,M )

}
> rn

}
.

Notice that the cubes in Qf.Bl \ QMu have a sufficiently high density of E∗ω,M and a rather low density of its
complement, so they “look almost black”. For this reason, we set

Qa.Bl := {Q ∈ Qf.Bl \ QMu}
=

{
Q ∈ QGr s.t. Ln(Q ∩ E∗ω,M ) > rn > Ln(Q \ E∗ω,M )

}
.
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Similarly, we define the family of almost white cubes as

Qa.Wh := {Q ∈ Qf.Wh \ QMu}
=

{
Q ∈ QGr s.t. Ln(Q \ E∗ω,M ) > rn > Ln(Q ∩ E∗ω,M )

}
.

We are now going to show that the strip is divided into five ordered “color layers”: on the bottom stay all the
black cubes, then the almost black ones, then cubes of multicolor type, then almost white cubes and finally
white cubes on the top (rigorous statements below). We also estimate carefully the width of these layers.

To this end, we observe that the “color density” of the cubes is monotone with respect to ω, in the sense
that the color of an upper translation is more pale than the color of a lower translation. The precise statement
goes as follows: we claim that, for any k ∈ Zn with ω · k > 0, we have that

(8.6) Ln
(
(Q+ k) ∩ E∗ω,M

)
6 Ln

(
Q ∩ E∗ω,M

)
6 Ln

(
(Q− k) ∩ E∗ω,M

)
.

To check this, we exploit (8.5) to see that E∗ω,M − k ⊆ E∗ω,M ⊆ E∗ω,M + k and therefore(
(Q+ k) ∩ E∗ω,M

)
− k = Q ∩ (E∗ω,M − k) ⊆ Q ∩ E∗ω,M

and
(
(Q− k) ∩ E∗ω,M

)
+ k = Q ∩ (E∗ω,M + k) ⊇ Q ∩ E∗ω,M .

Accordingly

Ln
(
(Q+ k) ∩ E∗ω,M

)
= Ln

((
(Q+ k) ∩ E∗ω,M

)
− k
)
6 Ln

(
Q ∩ E∗ω,M

)
and Ln

(
(Q− k) ∩ E∗ω,M

)
= Ln

((
(Q− k) ∩ E∗ω,M

)
+ k
)
> Ln

(
Q ∩ E∗ω,M

)
,

thus proving (8.6).
As a consequence of (8.6), we have that, for any k ∈ Zn with ω · k > 0,

if Q ∈ QBl, then Q+ k ∈ QBl ∪ QGr ∪ QWh,

if Q ∈ QGr, then Q+ k ∈ QGr ∪ QWh,

if Q ∈ QWh, then Q+ k ∈ QWh,

if Q ∈ Qa.Bl, then Q+ k ∈ Q \ QBl,

if Q ∈ Qa.Wh, then Q+ k ∈ Qa.Wh ∪ QWh,

(8.7)

and similar statements hold in the case ω · k 6 0.
We now point out that, if Q ∈ QGr, then Q ∩ (∂E∗ω,M ) 6= ∅ and therefore

(8.8) Perr(E
∗
ω,M ∩Q,Sω,2M ) > crn−1,

for some c > 0. We also observe that, for any E ⊆ Rn,

(8.9)

∣∣∣∣∫
E∩Q

g(x) dx

∣∣∣∣ 6 ‖g‖L∞(Rn) min
{
Ln(E ∩Q), Ln(Q \ E)

}
.

To check this, let us first suppose that Ln(E ∩Q) 6 Ln(Q \ E). Then,∣∣∣∣∫
E∩Q

g(x) dx

∣∣∣∣ 6 ∫
E∩Q
|g(x)| dx 6 ‖g‖L∞(Rn) L

n(E ∩Q),

which gives (8.9) in this case. Conversely, if Ln(E ∩ Q) > Ln(Q \ E) we use that g has zero average and we
write ∣∣∣∣∫

E∩Q
g(x) dx

∣∣∣∣ =

∣∣∣∣∫
Q
g(x) dx−

∫
E∩Q

g(x) dx

∣∣∣∣
=

∣∣∣∣∣
∫
Q\E

g(x) dx

∣∣∣∣∣ 6 ‖g‖L∞(Rn) L
n(Q \ E),

thus completing the proof of (8.9).
In view of (8.8) and (8.9), we know that

for any Q ∈ QGr,

Fω,M (E∗ω,M ∩Q,Sω,2M ) > crn−1 − ‖g‖L∞(Rn) r
n > rn−1(c− ηr) > crn−1

2
,

(8.10)
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provided that η is small enough.
On the other hand, if Q ∈ QMu, we are in the uniform density setting of (1.23) and, consequently, by (1.21)

we can write that

(8.11) min
{
Ln(E∗ω,M ∩Q′),Ln(Q′ \ E∗ω,M ),

}
> c,

up to renaming c > 0, where Q′ is the dilation of Q with respect to its center by a factor 2 (we stress that
the condition Q ∈ QMu has been used here to guarantee an initial estimate on the density, which makes the
constants in Theorem 1.18 uniform).

Then, from (8.11) and the relative isoperimetric inequality in Theorem 1.13, up to renaming c > 0, we have
that if Q ∈ QMu, then

Perr(E
∗
ω,M ∩Q′, Sω,2M ) > c.

Therefore

for any Q ∈ QMu,

Fω,M (E∗ω,M ∩Q′, Sω,2M ) > c− ‖g‖L∞(Rn) L
n(Q′) >

c

2
,

(8.12)

provided that η is small enough.
Now we denote by JMu, Ja.Bl and Ja.Wh the number of cubes in QMu, Qa.Bl and Qa.Wh, respectively. Then,

up to renaming constants, we deduce from (8.10) and (8.12) that

Fω,M (E∗ω,M , Sω,2M ) > crn−1 (Ja.Bl + Ja.Wh) + c JMu.

Comparing with (8.2) and using minimality, we thus obtain that

rn−1 (Ja.Bl + Ja.Wh) + c JMu 6 CH
n−1(Fω),

up to renaming C > 0. Hence, in view of the layer structure described in (8.7), we have that

(8.13) the family of cubes in QMu lies in a strip of width at most C,

while

(8.14) the families of cubes in Qa.Bl and in Qa.Wh lie in strips of width at most C
rn−1 .

We observe that the bound in (8.13) is already satisfactory, but the one in (8.14) needs to be improved if we
want to arrive at a strip of uniform width (independent of r). That is, we are now in a situation in which
“almost white” or “almost black” cubes may have a long tail in the strip when r is small, and we want to rule
out this possibility.

For this, we need a careful procedure of cutting cubes in Qa.Wh. The idea is that once we have a cube which
is “almost white” we can color the region above it in full white, gaining energy.

The goal is thus to replace (8.14) with

(8.15) the families of cubes in Qa.Bl and in Qa.Wh lie in strips of width at most C,

up to renaming C (the situation of formulas (8.13) and (8.15) is graphically depicted in Figure 1). So, if we
can bound the width in (8.14) with a uniform bound, we are done; otherwise suppose that, for instance, Qa.Wh

occupies a strip of width Wr > 2n, possibly depending on r (from (8.14), we only know that Wr 6 C/rn−1),
say {Co 6 ω · x 6 Co +Wr} (notice that the position of the lower boundary of this strip is uniformly bounded,
thanks to (8.13), so we denoted it by Co for the sake of clarity).

The idea is now to replace E∗ω,M with E∗ω,M ∩ {ω · x 6 Co +
√
n}. To compute the effect of this cut, let

us consider that, at levels {ω · x ∈ [Co, Co + n]}, we may have created additional r-perimeter adding portions
of {ω · x = Co +

√
n} to the boundary of the set. Since this portion is flat, the cut procedure has produced an

energy increasing for the r-perimeter of size at most CHn−1(Fω) rn−1. As for the bulk energy produced by g,
in each cube Q in {ω · x = Co +

√
n}, we have produced an energy increasing of at most

‖g‖L∞(Rn) min
{
Ln(E∗ω,M ∩Q), Ln(Q \ E∗ω,M )

}
6 ηLn(E∗ω,M ∩Q) 6 ηrn,

thanks to (8.9) and to the fact that Q ∈ Qa.Wh. That is, the total bulk energy increased at levels {ω ·
x ∈ [Co, Co + n]} is bounded by C ηHn−1(Fω) rn. Summarizing, the modifications of the cubes in Qa.Wh at
levels {ω · x ∈ [Co, Co + n]} produce an energy increasing bounded by

(8.16) CHn−1(Fω) rn−1 + C ηHn−1(Fω) rn 6 CHn−1(Fω) rn−1
(
1 + ηr

)
.
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Figure 1. The geometry of the colored cubes in (8.13) and (8.15).

To prove that the total energy has in fact decreased, we now check that the cut procedure produces a considerable
gain at the other levels {ω · x ∈ [Co + n,Co +Wr]}. For this, notice that

(8.17) {ω · x ∈ [Co + n,Co +Wr]} contains at least cWrH
n−1(Fω) cubes of Qa.Wh.

In each of these cubes, the cut has produced an energy gain, due to the r-perimeter, and possibly an energy loss
due to the bulk energy of g. From (8.8), we know that the energy gain in each of these cubes is at least crn−1,
up to renaming c > 0. On the other hand, from (8.9) and the fact that the cube belongs to Qa.Wh, we deduce
an upper bound of the bulk energy loss in each cube of the form Cηrn, for some C > 0. Hence, the variation
of energy in each of these cubes is of the form −crn−1 + Cηrn (which is negative for small η).

Summarizing, and recalling (8.17), we have that the cut procedure has produced in {ω ·x ∈ [Co+n,Co+Wr]}
an energy variation bounded from above by

cWrH
n−1(Fω)(−crn−1 + Cηrn) 6 cWrH

n−1(Fω) rn−1(−1 + Cηr),

up to renaming c and C. From this and (8.16), up to renaming constants line after line, we obtain that the
variation of the energy produced by the cut is in total bounded from above by

CHn−1(Fω) rn−1
(
1 + ηr

)
+ cWrH

n−1(Fω) rn−1(−1 + Cηr)

6 Hn−1(Fω) rn−1
(
C + Cηr − cWr + CWr ηr

)
6 Hn−1(Fω) rn−1

(
C + CWr ηr − cWr

)
.
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Since, by the minimal property of E∗ω,M , this energy variation has to be positive, we conclude that

0 6 C + CWr ηr − cWr 6 C +Wr (C η − c)

and thus, for small η, we obtain that Wr is bounded uniformly, by a constant independent of r.
This proves (8.15) for the families of cubes in Qa.Wh (the cases of the cubes in Qa.Bl is similar).
From (8.15), one can exploit the methods in [4], namely find that there exists a uniform M0 > 0 such that

if M > M0, then E∗ω,M = E∗ω,M0
and then, checking that the minimal minimizer is stable with respect to

multiples of the period, establish that it is a Class A minimizer, thus completing the proof of Theorem 1.21 for
rational slopes ω.

Step 2: planelike minimizers with irrational slopes. Since the quantity M is a universal constant,
independent of n, in order to construct minimizers with an irrational slope ω ∈ Sn−1 we approximate ω with
rational frequencies ωk, which produce planelike minimizers E∗ωk

and then pass to the limit in k, using Theorem
1.8, which applies in particular to the Class A planelike minimizers. �
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