
OPTIMIZING THE FRACTIONAL POWER IN A MODEL WITH

STOCHASTIC PDE CONSTRAINTS

CARINA GELDHAUSER AND ENRICO VALDINOCI

Abstract. We study an optimization problem with SPDE constraints, which has the pecu-
liarity that the control parameter s is the s-th power of the diffusion operator in the state

equation. Well-posedness of the state equation and differentiability properties with respect

to the fractional parameter s are established. We show that under certain conditions on the
noise, optimality conditions for the control problem can be established.

1. Introduction

Generally speaking, optimal control problems with constraints are formulated as

(1.1) min
y∈Y,u∈U

J (y, u) subject to Constr(y, u) = 0

where J is a cost functional, y the state variable, u the control variable and Constr is a constraint,
usually in the form of an equation for y, called the “state equation”. An important subcategory
arises when the Constr is a partial differential equation, so that the task is the identification
of coefficient functions or right hand sides in the PDE: these are often called “identification
problems” in the literature.

The purpose of this work is to study an identification problem with two peculiarities: (1)
the control variable appears as the (fractional) exponent of a diffusion operator, and (2) the
constraint will be a stochastic PDE in the sense of a PDE driven by a Wiener Process. The
model we present possesses a biological interpretation, in which y represents the density of a
biological species exhibiting anomalous diffusion driven by a fractional operator and combined
with a random perturbation. Such fractional diffusion processes are supposed to model very well
the forage behaviour or certain species, see e.g. [11].

The problem of optimization under uncertainties is wide-spread in engineering and economics.
Our model could serve as a very first toy problem to understand the maximization of the proba-
bilistic incremental Net Present Value for selecting the location of injection and production wells
in petroleum engineering. The geometry and extension of such wells are crucial to the success of
oil extraction in mature oil fields, where the diffusion of injected polymers within the oil field is
studied see e.g. [21, 24].

We stress that in the available literature, the term “stochastic PDE constraints” usually refers
to deterministic PDEs with “random input” in the sense of random coefficients of the PDE or
of the force term, see [4, 6, 9, 10, 12] and [25]. These problems, where the cost functional
has deterministic output (due to the usage of (L2(D) ⊗ L2(Ω))-norms, see e.g. [10], [19]), are
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interesting due to their challenges for numerical approximation, in particular avoiding the “curse
of dimensionality”. A different approach is to study expectation and variance of random cost
functionals under stochastic constraints. These arise in economics, for example when optimizing
a portfolio with finitely many assets, see e.g. [8] or [17]. The scope here is to find efficient
portfolios, namely those minimizing the risk (i.e. the uncertainty of the return) or maximize the
mean return for a given risk value using stochastic dominance constraints, see also [16] for an
overview on the (finite dimensional) mean variance analysis.

Motivated by such applications, this work derives optimality conditions and the existence of
optimal controls for a random cost functional, a task which was, to the author’s best knowledge,
not considered up to now.

The second peculiarity in our approach is that the control variable of our problem is the
fractional power of the differential operator. Our work is therefore the prototypical stochastic
extension of the work [22], where this class of identification problems was introduced for the first
time in a deterministic setting. This new type of problem poses several interesting mathematical
challenges, among which we mention the need for a compactness theorem adapted for variable
Banach spaces and the need for pathwise existence of the stochastic convolution, which is crucial
for the derivation of the optimal random cost functional.

The control theory of fractional operators of diffusion type is a very new topic. Available
results include the recent papers [2], [3], [1], and [5]. In these works, however, the fractional
operator was fixed a priori. In our case, the type of fractional order operator itself is to be deter-
mined. From the point of view of applications, it is natural to optimize over the fractional power
s: As a possible application, we can interpret the model as optimizing the mean radius of search
for qualified workforce around a given location (normally the company’s production site). Un-
certainty enters into these questions when considering non-negligible fluctuations in the mobility
of the workforce, for example due to personal constraints. We note that the use of mathematical
models to deal with problems in the job market is an important topic of contemporary research,
see e.g.[18], [23] and the references therein.

Problem statement. Let D ⊂ R be a given bounded, open domain and denote by DT := D×
(0, T ) the space-time cylinder. In DT , we consider the evolution of a fractional diffusion process
governed by the s-th power of a positive definite operator L, which has a discrete spectrum. Note
that the fractional parameter s > 0 can be also greater than one. The prototypical example of
L which we have in mind is (minus) the Laplacian endowed with Dirichlet boundary conditions
with domain H2(D) ∩H1

0 (D).
For a given target function yDT

(x, t) ∈ L2(DT ) and a non-negative smooth penalty function
Φ(s), we want to prove the existence of a random variable J (ω), defined as a minimizer in s and
y of the cost functional

(1.2) J (y, s, ω) =

∫ T

0

∫
D

|y(s, x, t, ω)− yDT
(x, t)|2dxdt+ Φ(s)

subject to the state equation

(1.3)
dy(t) + Lsy(t)dt = dW (t) in D × [0, T ]

y(., 0) = y0 in D

where f(x, t) ∈ L2(DT ) and W is an L2-Wiener process. The minimizing random variable J (ω)
of (1.2) subject to (1.3) is called the solution to the identification problem (IP).

The penalty function Φ(s) is given a priori, to simplify technicalities we assume that Φ ∈
C2(0, L) (for some L ∈ (0,+∞]) is non-negative and satisfies

(1.4) lim
s→0

Φ(s) = +∞ = lim
s→L

Φ(s).
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Moreover, from a technical point of view, Φ(s) has to be chosen such that the problem has
sufficient compactness properties in s. A possible choice used in [22] is Φ(s) = 1

s(L−s) , when L ∈
(0,+∞), or Φ(s) = es

s when L = +∞.
Note that the operator Ls is defined as the s-th power of L and this definition does not

correspond to the usual definition of a fractional Laplacian operator via a singular integral. We
refer e.g. to [20] and to Section 2.1 here for details about this point.

To optimize the fractional exponent s is challenging already arise in the deterministic case,
as, when the fractional parameter s changes, so does the domain of definition of the operator L,
and with it the underlying space of functions of the fractional operator. This causes difficulties
e.g. when proving the existence of optimal controls, as the usual compactness arguments are
not directly applicable. Similar to the deterministic framework of [22], we tackle this issue by a
hand-tailored compactness argument.

Outline of this work. The structure of this work is as follows: In section 3 we establish
existence of solutions to (1.3) and identify the set of admissible controls. In section 4 we derive
the differentiability properties of the control-to-state mapping s 7→ u(s) and then use them to
identify necessary and sufficient optimality conditions for the control problem (IP), which means
optimizing (1.2) subject to (1.3). Finally, in section 5 we prove the existence of optimal controls,
Theorem 5.3, and, more specifically, we show that J(s, ω) attains a minimum if ω is fixed and s
is in the set of admissible controls.

The main results of this work are Theorem 5.3 and Theorem 4.5 on the optimality conditions,
which we state here in a non-technical form.

Theorem 1.1. Under natural assumptions on the regularity of the noise and on the initial data,
the control problem (IP) has a solution, that is, for almost every fixed ω ∈ Ω, the cost functional
J (ω) attains a minimum in the set of admissible controls.

Moreover, the following optimality condition hold for a fixed realisation ω ∈ Ω:
(i) necessary condition: If s̄ is an optimal parameter for (IP) and y(s̄) the associated unique
solution to the state system (1.3), then for almost every ω ∈ Ω

(1.5)

∫ T

0

∫
D

(y(s̄)− yD)∂sy(s̄) dxdt + Φ
′
(s̄) = 0.

(ii) sufficient condition: If s̄ ∈ (0, L) satisfies the necessary condition (4.29) and if in addition

(1.6)

∫ T

0

∫
D

(∂sy(s̄))
2

+ (y(s̄)− yD)∂2
ssy(s̄) dxdt + Φ

′′
(s̄) > 0

for almost every ω ∈ Ω, then s̄ is optimal for (IP).

2. Notation and setup

2.1. The functional analytic setting. We denote by D ⊂ R a bounded domain and x ∈ D
the space variable. We will work in the space L2(D) of square-integrable functions over D,
and denote by 〈., .〉 the scalar product in L2(D). We can write every v ∈ L2(D) in the form

v =
∑+∞
j=1〈v, ej〉ej , and denote

(2.1) vj := 〈v, ej〉

so that v =
∑+∞
j=1 vjej .

Let L : D(L) ⊂ L2(D) → L2(D) be a densely defined, linear, self-adjoint, positive operator,
which is not necessarily bounded but with compact inverse. Hence there exist an orthonormal
basis {ej}j∈N of L2(D) made of eigenfunctions of L and a sequence of real numbers λj such that
Lej = λjej and 0 < λ1 ≤ λ2 ≤ . . . λj → +∞ as j → +∞ the corresponding eigenvalues of L.
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The domain of L is characterized by

(2.2) D(L) =

v ∈ H :
∑
j∈N

λ2
j 〈v, ej〉2 < +∞

 .

Thus, −L is the generator of an analytic semigroup of contractions which has the well-known
structures S(t) =

∑+∞
j=1 e

−λjtvj(x)vj(y).

In analogy to [22], we use for v in the domain of L the notation v ∈ H1 := {φ ∈ L2(D) :
{λj〈φ, ej〉}j∈N ∈ l2}. In this way we can write

(2.3) Lv =
∑
j∈N

λj〈v, ej〉ej .

Similarly, given s > 0, we can define the s-th power of L via

(2.4) Lsv =
∑
j∈N

λsj〈v, ej〉ej

and describe the domain of Ls as

(2.5) D(Ls) =

v =

+∞∑
j=1

vjej : vj ∈ R, with ‖v‖2s := ‖Lsv‖2 =
∑
j∈N

λ2s
j v

2
j < +∞

 .

To define fractional powers of linear operators in this way is a classical approach in SPDE, see [7],
[15] or also the more recent work [13]. Next, we define the spaceHs :=

{
v ∈ L2(D) : ‖v‖Hs < +∞

}
with the norm

(2.6) ‖v‖Hs :=

∑
j∈N

λ2s
j |〈v, ej〉|2

1/2

.

Additional assumption. It will be technically advantageous (see e.g. in (3.7) ) to assume
that the eigenvalues of L are bounded away from zero, in formula

(2.7) α < λ1 ≤ λ2 ≤ . . . λj −→ +∞.

This is a standard assumption in SPDEs and satisfied for example by the operator L = (−∆+α)
with either Neumann or Dirichlet conditions, or L = −∆ with Dirichlet conditions.

2.2. The probabilistic setting. We denote by W : Ω × [0, T ] → L2(D) a Q-Wiener process
with values in L2(D). The underlying probability space is (Ω,F ,P), and we assume that the
Wiener process is adapted to a normal filtration Ft ∈ F .

We assume that the covariance operator Q is linear, bounded, self-adjoint, positive semidefi-
nite. Moreover, it is convenient to assume that Q has a common set of eigenfunctions with Ls
(and so with L). We fix notation as Qek = µkek. Finally, we assume that TrQ < +∞, which
implies that the sum of the eigenvalues of Q is bounded.

Note that the Q-Wiener process in L2(D) can be approximated in L2(Ω, C([0, T ], L2(D))) by
a sequence of i.i.d. Brownian motions {Bj}j∈N

(2.8) W (x, t) =

+∞∑
j=1

√
µjej(x)Bj(t),

and means of an exponential inequality and Borel-Cantelli Lemma, the convergence can be ob-
tained uniformly with probability one. Thus, the sample paths of W (t) belong to C([0, T ], L2(D))
almost surely, and we may therefore choose a continuous version.
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3. Construction of solutions

3.1. Itô equations and notion of solutions. In the spirit of the definition (2.4), we want to
find solutions of the state equation (1.3) by approximation with real-valued stochastic processes
yj(t, s) := 〈y(., t), ej〉, where ej(x) ∈ H1

0 (D) is an orthonormal basis of L2(D) built out of
eigenfunctions of L. In other words, for fixed s we define the solution of (1.3) as the infinite
series

(3.1) y(s)(x, t) =

+∞∑
j=1

〈y(s)(x, t), ej(x)〉ej(x) =

+∞∑
j=1

yj(s, t)ej(x).

Choosing a deterministic initial condition yj,0 = 〈y0(x), ej(x)〉 ∈ R, and employing the series
approximation of the Q-Wiener process (2.8), we get the infinite system of Itô equations

(3.2) dyj(t) = −λsjyj(t)dt+
√
µjdBj(t).

As
√
µj and λsj are constant for fixed j and −λsjyj(t) is Lipschitz continuous, for fixed s and

for every j, the Itô equation (3.2) has a unique strong solution which depends continuously on
the initial data, as proved for example on page 212 in [14].

We can explicitly solve (3.2) by applying Itô’s formula to eλ
s
j tyj(t) and get the independent

fractional Ornstein-Uhlenbeck processes

(3.3) yj(t) = yj,0e
−λs

j t +
√
µj

∫ t

0

e−λ
s
j(t−τ)dBj(τ).

Notation: We will often write

(3.4) mj(t, s) := yj,0e
−λs

j t, W j
L,s(t) :=

√
µj

∫ t

0

e−λ
s
j(t−τ)dBj(τ).

Lemma 3.1. Let the initial data y0 ∈ L2(D) be deterministic. Then the sum appearing in (3.1)
is convergent and its limit y(s)(x, t) is a L2(D)-valued adapted stochastic process.

Proof. We show first that for fixed t the series (3.1) converges in L2(Ω, L2(D)). For this, re-
call that we have identified above the summands for fixed s as fractional Ornstein-Uhlenbeck
processes, so the sum (3.1) reads formally

(3.5) y(s)(x, t) =

+∞∑
j=1

ej(x)yj,0e
−λs

j t +

+∞∑
j=1

ej(x)
√
µj

∫ t

0

e−λ
s
j(t−τ)dBj(τ).

As e−λ
s
j t ≤ 1 for all s, t > 0, we get for the first term

(3.6)

+∞∑
j=1

∣∣∣〈y0, ej(x)〉e−λ
s
j t
∣∣∣2 ≤ +∞∑

j=1

|〈y0, ej(x)〉|2 =: ‖y0‖2L2(D)

which is finite by assumption.
To show the convergence of the second term, the “random perturbation” part, we denote the

partial sum by Wn
L,s(t) =

∑n
j=1 ej(x)W j

L,s(t). As the sum is finite, we can exchange expectation
and summation, use the one-dimensional Itô Isometry and the lower bound assumption on the
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eigenvalues (2.7) to obtain

(3.7)

E
∥∥Wn
L,s(t)

∥∥2

L2(D)
=

n∑
j=1

E
∣∣∣∣√µj ∫ t

0

e−λ
s
j(t−τ)dBj(τ)

∣∣∣∣2

=

n∑
j=1

µj

∫ t

0

e−2λs
l (t−τ)dτ

=

n∑
j=1

µj
2λsj

(
1− e−2λs

j t
)

︸ ︷︷ ︸
≤1

(2.7)

≤ 1

2αs

n∑
j=1

µj

which is finite as µj are summable. Similarly, we can calculate for m > n

(3.8)

E
∥∥Wm
L,s(t)−Wn

L,s(t)
∥∥2

L2(D)
= E

∥∥∥∥∥
m∑

l=n+1

el(x)W l
L,s(t)

∥∥∥∥∥
2

L2(D)

=

m∑
l=n+1

µl
2λsl

(
1− e−2λs

l t
)

≤ 1

2αs

m∑
l=n+1

µl

and follow that Wn
L,s(t) is a Cauchy sequence for fixed control s and time t.

Note that from (3.7) we can already deduce boundedness in time

(3.9) sup
t≤T

E
∥∥Wn
L,s(t)

∥∥2

L2(D)

(2.7)

≤ 1

2αs

n∑
j=1

µj ≤
1

2αs
TrQ

from which we conclude that for n→ +∞

(3.10) sup
t≤T

E
∥∥WL,s(t)−Wn

L,s(t)
∥∥2

L2(D)
=

1

2αs

+∞∑
l=n+1

µl −→ 0

and so y(s)(., t) is a Ft-adapted L2(D)-valued process. �

3.2. Properties of the solution which need faster decay properties. In contrary to the
deterministic case described in [22], an additional assumption is necessary in the stochastic case:

Assumption 3.2. We assume that µj ∼ λ−2s−ε
j and s is such that

(3.11)

+∞∑
j=1

λ−sj < +∞

Notation From now on, we call the set of all s satisfying Assumption 3.2 the set of admissible
controls and denote it by S , and denote its interior by S ◦.

Example 3.3. Set L = ∆ on (0, π) with Dirichlet boundary conditions. Then the eigenfunctions
read ej(x) := cj sin(jx) and the corresponding eigenvalues are λj = j2. We get for (3.11)

(3.12)

+∞∑
j=1

λ−s−εj =

+∞∑
j=1

j−2s−2ε.

From this we conclude that S =
(

1
2 , L

)
.
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Proposition 3.4. Let L, s and Q be such that Assumption 3.2 holds. Let the initial data
y0 ∈ L2(D) be deterministic. Then the solution to the state equation (1.3) satisfies

(3.13) y(s, t, .) ∈ L2(Ω,Hs(D))

Proof. Recalling (2.6) and (3.4), we calculate for fixed s, using that the constant κ(t) :=
supr (re−rt) is finite for t ∈ (0, T ],

(3.14) λsj |mj(t, s)| = |〈y0, ej〉|λsje−λ
s
j t ≤ κ(t)|〈y0, ej〉|

and therefore, as y0 ∈ L2(D), the sequence {λsjmj(t, s)} ∈ `2 for any t ∈ (0, T ].

As for the random perturbation term, we denote the partial sum X2
N :=

∑N
j=1 λ

2s
j (W j

L,s(s, t))
2.

As we have just a finite sum, we can exchange expectation and summation and apply Itô’s
Isometry to get

(3.15)

E
[
X2
N

]
=

N∑
j=1

λ2s
j µjE

[(∫ t

0

e−λ
s
j(t−τ)dBj(τ)

)2
]

=

N∑
j=1

µjλ
2s
j

∫ t

0

e−2λs
j(t−τ)dτ

=

N∑
j=1

µjλ
s
j

(
1− e−2λs

j t
)

≤
N∑
j=1

µjλ
s
j ∼

N∑
j=1

λ−s−εj .

Therefore,
(3.16)

E
[
X2
N − X2

M

]
= E

 N∑
j=1

λ2s
j (W j

L,s(s, t))
2 −

M∑
j=1

λ2s
j (W j

L,s(s, t))
2

 = E

[
M∑

l=N+1

λ2s
j (W j

L,s(s, t))
2

]

≤
M∑

l=N+1

λ−s−εj

and this sum goes to zero due to the assumption (3.11) on the eigenvalues. Therefore, X2
N :=∑N

j=1 λ
2s
j (W j

L,s(s, t))
2 is a Cauchy sequence for fixed control s and time t, which concludes the

proof. �

3.3. Solution concept and existence of solutions.

Definition 3.5. We say that y : Ω × D × [0, T ] → R is an admissible solution to the state
equation (1.3) if and only if the following conditions are satisfied:

(1) y(.t) ∈ L2(Ω,H s(D)) for any t ∈ (0, T ]

(2) For fixed s, y(x, t) =
∑+∞
j=1 yj(t, s)ej(x) and the stochastic processes yj(t, s) solve the Itô

diffusion equation

(3.17) dyj(t) = −λsjyj(t)dt+
√
µjdBj(t)

for almost every t ∈ (0, T ).
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Theorem 3.6. Let L, and Q be such that Assumption 3.2 holds. Let the initial data y0 ∈ L2(D)
be deterministic. Then there exists for every s ∈ S a unique solution y = y(s) to the state
system (1.3) in the sense of Definition 3.5.

Proof. Condition (1) in Definition 3.5 was shown to hold in Proposition 3.4, condition (2) holds
by construction.

As
∑+∞
j=1

√
µjej(x)Bj(t) → W (x, t) uniformly with probability one for a Q-Wiener process

(see (2.8)), the sum y(x, t) =
∑+∞
j=1 yj(t, s)ej(x) is defined for almost every t. �

Remark 3.7 (Comparison to strong solutions). Our definition above resembles the definition
of a strong solution to SPDEs, see [7]. Strong solutions are required to be in the domain of the
differential operator, which is also the case for Definition 3.5. However, the solution formulation
for a strong solution,

(3.18) y(t) = y0 +

∫ T

0

Lsy(τ)dτ +W (t) P− a.s.,

is disadvantageous for our analysis, as we need the very explicit description of the solution of
Definition 3.5 in order to be able to derive concrete optimality conditions and the existence of

optimal controls. In our analysis, the almost sure finiteness of
∫ T

0
Lsy(τ)dτ as required in (3.18)

is not needed, it is sufficient to have finiteness in the L2-sense, which is Proposition 3.8 below.

3.4. Combined space-time regularity. In this section we prove space-time regularity results
on solutions to the state system (1.3), which we will need in sections 4 and 5.

Proposition 3.8. Let L, and Q be such that Assumption 3.2 holds. Let the initial data y0 be
deterministic and moreover y0 ∈ Hs/2(D). Then the solution to the state equation (1.3) satisfies

(3.19) ‖y(s)‖L2(Ω×[0,T ];Hs) ≤ C

for some C > 0.

Proof. We need to show

(3.20) E

∫ T

0

+∞∑
j=1

λ2s
j

∣∣∣∣yj,0e−λs
j t +
√
µj

∫ t

0

e−λ
s
j(t−τ)dBj(τ)

∣∣∣∣2
1/2

dt

 < +∞.



OPTIMIZING THE FRACTIONAL POWER IN A MODEL WITH STOCHASTIC PDE CONSTRAINTS 9

We use the algebraic estimate (a+ b)2 = a2 + b2 + 2ab ≤ 3(a2 + b2) to expand
(3.21)

(3.19) =

∫ T

0

E
[
‖y(s)‖2Hs

]
dt

=

∫ T

0

E

+∞∑
j=1

λ2s
j

(
mj(s, t) +W j

L,s(s, t)
)2

1/2

dt

≤ 3

∫ T

0

E

+∞∑
j=1

λ2s
j m

2
j (s, t) +

+∞∑
j=1

λ2s
j (W j

L,s(s, t))
2

1/2

dt

≤ 3 ·
√

2

∫ T

0

E


+∞∑
j=1

λ2s
j m

2
j (s, t)

1/2

+

+∞∑
j=1

λ2s
j (W j

L,s(s, t))
2

1/2
 dt

= 3 ·
√

2


∫ T

0

E

+∞∑
j=1

λ2s
j m

2
j (s, t)

1/2

dt +

∫ T

0

E

+∞∑
j=1

λ2s
j (W j

L,s(s, t))
2

1/2

dt


where we used in the second last line that a ≤ b⇒ (a+ b)1/2 ≤ (2b)1/2 ≤

√
2(a1/2 + b1/2).

We analyze (3.21) termwise: For the first term, which is deterministic, we take a finite sum
and exchange summation and integration to calculate

(3.22)

∫ T

0

N∑
j=1

λ2s
j m

2
j (s, t)dt =

∫ T

0

N∑
j=1

y2
0,jλ

2s
j e
−2λs

j tdt

=

N∑
j=1

y2
0,j

λsj
−2

(
e−2λs

jT − 1
)

︸ ︷︷ ︸
−1≤∗≤0

=

N∑
j=1

y2
0,j

λsj
2

(
1− e−2λs

jT
)

︸ ︷︷ ︸
0≤∗≤1

≤ 1

2
‖y0‖2Hs/2

and therefore

(3.23)

∫ T

0

N∑
j=1

λ2s
j m

2
j (s, t)−

M∑
j=1

λ2s
j m

2
j (s, t)dt =

∫ T

0

M∑
j=N+1

y2
0,jλ

2s
j e
−2λs

j tdt

≤ 1

2

M∑
j=N+1

y2
0,jλ

s
j −→ 0
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as ‖y0‖2Hs/2 is finite. For the second term we look at a partial sum and employ Itô’s isometry to
get

(3.24)

∫ T

0

N∑
j=1

λ2s
j µjE

[
|
∫ t

0

e−λ
s
j(t−τ)dBj(τ)|2

]
dt ≤

∫ T

0

N∑
j=1

λsjµj

(
1− e−2λs

j t
)
dt

≤
N∑
j=1

(
λsjµjT −

µj
2
e−2λs

jT +
µj
2

)

≤
N∑
j=1

(
λsjT +

1

2

)
µj

which is finite due to Assumption (3.2). Now we look at the difference between two partial sums,
and conclude

(3.25)

∫ T

0

E

| N∑
j=1

λ2s
j W

j
L,s(t)−

M∑
j=1

λ2s
j W

j
L,s(t)|

2

 dt ≤ M∑
j=N

(
λsjµjT +

µj
2

)
−→ 0

due to Assumption (3.2). �

In order for the solution y to qualify as a minimizer of the functional J , we need more regularity
properties of y, which we prove in the next proposition. Recall that DT := D × (0, T ) denotes
the space-time cylinder.

Proposition 3.9. Let y0 ∈ L2(D) be deterministic. Then any solution y = y(s) to the state
equation (1.3) satisfies the a priori estimate

(3.26) ‖y(s)‖L2(Ω,L2(DT )) ≤ C.

Moreover, for a fixed s ∈ (0,+∞), the random variable ω 7→ ‖y(s, ω)‖L2(D×[0,T ])) is almost surely
finite.

Note that we did not have to require s ∈ S here, as we need only space regularity L2(D).

Proof. By definition,

(3.27)

(3.26) = E

[∫ T

0

‖y(s)‖2L2(D)dt

]

=

∫ T

0

+∞∑
j=1

|y0,j(s)e
−λs

j t|2 + E

∫ T

0

|
+∞∑
j=1

√
µj

∫ t

0

e−λ
s
j(t−τ)dBj(τ)|2dt

 .
For the first term we calculate

(3.28)

∫ T

0

+∞∑
j=1

|y0,j(s)e
−λs

j t|2dt =
1

2

+∞∑
j=1

|y0,j(s)|2
1

2λsj

∣∣∣e−2λs
jT − 1

∣∣∣︸ ︷︷ ︸
≤1

≤ 1

2α
‖y0‖2L2 .
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For the second term, we consider the partial sum j ≤ N , due to which we can exchange expec-
tation and summation, and use Itô’s Isometry to get

(3.29)

E

∫ T

0

|
N∑
j=1

W j
L,s(t)|

2dt

 = E

∫ T

0

∣∣∣∣∣∣
N∑
j=1

√
µj

∫ t

0

e−λ
s
j(t−τ)dBj(τ)

∣∣∣∣∣∣
2

dt


≤
∫ T

0

N∑
j=1

µjE

[(∫ t

0

e−λ
s
j(t−τ)dBj(τ)

)2
]
dt

≤
∫ T

0

N∑
j=1

µj
2λsj

(
1− e−2λs

j t
)
dt

≤
N∑
j=1

µj
2λsj

T +
µj

4λ2s
j

(
e−2λs

jT − 1
)

︸ ︷︷ ︸
∈(−1,0)

≤
(
T

2αs
− 1

4α2s

) N∑
j=1

µj ≤ c(T, s).

Therefore,

(3.30) E

[∫ T

0

|
M∑

l=N+1

W j
L,s(t)|

2dt

]
≤
(
T

2α
+

1

4α2

) M∑
l=N+1

µl −→ 0

which proves convergence of y(s) in L2(Ω, L2(DT )).

To prove the almost sure statement, we define the random variable WN
T :=

∫ T
0

∑N
j=1W

j
L,s(t)dt.

We apply Chebychev’s inequality on (3.29) to see

(3.31)

P
(
WN
T > N

)
≤ 1

N2
E
[(
WN
T

)2]
=

1

N2
E


∫ T

0

N∑
j=1

W j
L,s(t)dt

2


≤ 1

N2
E

∫ T

0

|
N∑
j=1

W j
L,s(t)|

2dt

 ≤ c(T, s) 1

N2
.

From (3.31) we see

(3.32)

+∞∑
N=1

P
(
WN
T > N

)
≤ c(T, s)

+∞∑
N=1

1

N2

and conclude by the Borel-Cantelli Lemma that the random variable ‖y(s)‖L2(D×[0,T ]) is almost
surely finite. �

3.5. Hölder continuity. To ensure sufficient compactness properties needed to prove the ex-
istence of optimal controls in Section 5, we need to quantify the Hölder continuity in time of
solutions to (1.3) in dependence of s. This is proved via the factorization method (see [7], Chapter
II.5.3), which works with interpolation spaces.

Lemma 3.10. Let L, and Q be such that Assumption 3.2 holds. Let y0 be deterministic. Then
the sample paths of the process y(s)(x, t) are in Cδ([0, T ], L2(D)) for arbitrary δ ∈ (0, 1

2 ).



12 OPTIMIZING THE FRACTIONAL POWER IN A MODEL WITH STOCHASTIC PDE CONSTRAINTS

Proof. It suffices to verify that the trajectories of of the stochastic convolution are δ-Hölder
continuous. According to [7], Theorem 5.15, this holds with δ ∈ (0, β − ε) if the following
condition on the Hilbert-Schmidt norm of S(t)Q), where S(t) is the semigroup generated by Ls,
is satisfied:

(3.33)

∫ T

0

t−2β‖S(t)Q‖2HSdt < +∞.

Note that S(t) is self-adjoint, and we calculate, using Assumption 3.2 and Hölder’s inequality

(3.34)

‖S(t)Q‖2HS = Tr (S(t)QS(t))) =

+∞∑
j=1

〈(S(t)QS(t))ej , ej〉

=

+∞∑
j=1

〈S(t)ej , ej〉 〈Qej , ej〉 〈S∗t)ej , ej〉

=

+∞∑
j=1

µje
−2λs

j t

=

+∞∑
j=1

λ−2s−ε
j e−2λs

j t

≤

+∞∑
j=1

(
λ−2s−ε
j

)21/2+∞∑
j=1

e−4λs
j t

1/2

which is finite due to (3.11) and we conclude that (3.33) is verified when β < 1
2 , which proves

the Lemma. �

4. Differentiability of the control-to-state operator

As we are optimizing with respect to the exponent s of Ls, we make the dependence on the
control parameter explicit by defining the control-to-state operator S : s→ y(s) via

(4.1)
S(ω) : (0,+∞)→ L

(
(0,+∞), C([0, T ], L2(D))

)
s 7→ S(s)(x, t) = y(s)(x, t)

This means that we need our solution to exist pathwise, which is ensured by Lemma 3.10. We
start our derivation of necessary and sufficient optimality conditions with a basic property of the
Wiener Integral, which we prove here for the reader’s convenience.

4.1. A property of the Wiener Integral.

Lemma 4.1. Fix s ∈ S and let τ ∈ [0, T ]. Let g(s, ·) ∈ C([0, T ])∩C2(S ) and B one-dimensional
Brownian Motion. Then

(4.2)
d

ds

∫ T

0

g(s, τ)dB(τ) =

∫ T

0

∂sg(s, τ)dB(τ)

and the random variable
∫ T

0
∂sg(s, τ)dB(τ) belongs to L2(Ω).

Proof. Let Σ be the set of all decompositions {0 = t0 < t1 < . . . < tn = T} of [0, T ], σ =
{t0, t1, . . . , tn} an element of Σ with |σ| = max1≤i≤n |ti − ti−1| and define the Riemann sums

(4.3) Iσ =

n∑
j=1

g(s, tj−1)(B(tj)−B(tj−1)).



OPTIMIZING THE FRACTIONAL POWER IN A MODEL WITH STOCHASTIC PDE CONSTRAINTS 13

Then, as we have a finite sum,

(4.4)

d

ds
Iσ =

d

ds

n∑
j=1

g(s, tj−1) (B(tj)−B(tj−1))

=

n∑
j=1

∂sg(s, tj−1) (B(tj)−B(tj−1)) .

We show now that
(4.5)

lim
|σ|→0

d

ds
Iσ = lim

|σ→0|

n∑
j=1

∂sg(s, tj−1) (B(tj)−B(tj−1)) := lim
|σ|→0

Ĩσ :=

∫ T

0

∂sg(s, τ)dB(τ).

For this we pick a second partition σ̃ =
{
t̃0, t̃1, . . . , t̃n

}
∈ Σ and we define δ = δ(ε) such that

|σ| < δ and |σ̃| < δ. Take now the union of the two partitions η = σ ∪ σ̃ by defining

η = {r0, r1, . . . , rn} = {t0, t1, . . . , tn} ∪
{
t̃0, t̃1, . . . , t̃n

}
As the fractional parameter s is fixed, we define for simplicity f(τ) = ∂sg(s, τ). We show now

that the limit lim|σ|→0 Ĩσ of the right hand side of (4.5) exists by showing that

(4.6) E
[
|Ĩσ(f)− Ĩσ̃(f)|2

]
→ 0.

For this, note that

(4.7) Ĩσ(f)− Ĩσ̃(f) =

n∑
j=1

f1(rj−1)− f2(rj−1) (B(rj)−B(rj−1))

where f1 is defined in a stepwise manner on the whole interval [0, T ] with values f(tl) taken from
the partition σ and f2 on σ̃ in the same way.

By continuity of f , we deduce from rj − rj−1 ≤ δ (which holds as |σ| < δ and |σ̃| < δ) that
|f(rj−1)− f(rj−1)|2 < ε and therefore also

(4.8) E
[
|Ĩσ(f)− Ĩσ̃(f)|2

]
=

n∑
j=1

(f1(rj−1)− f2(rj−1))
2

(rj − rj−1) ≤ εT

where we employed the fact that E[Ĩ2
σ] =

∑n
j=1 f(tj−1)2 (tj − tj−1). This proves (4.6) and we

obtain the statement of the Lemma. �

4.2. The differential of the control-to-state operator. We first recall Lemma 2.2 of [22],
which is an auxiliary result on the derivatives of a function of exponential type. For this and for
the following computations, it is convenient to introduce two L2([0, T ])-functions as in the proof

of Theorem 2.3 in [22], namely φk(t) = 1 + | ln(t)|k and ψk(t) =
∫ t

0

(
1 + | ln(t− τ)|k

)
dτ .

Lemma 4.2. Define for fixed λ > 0 and t > 0 the real-valued function

(4.9) Eλ,t(s) := e−λ
st for s > 0.

Then there exists constants Ci such that for all λ > 0, t ∈ (0, T ] and s > 0 the function (4.9)
satisfies |Eλ,t(s)| ≤ C0 and for 1 ≤ k ≤ 4 holds

(4.10)

∣∣∣∣ dkdskEλ,t(s)
∣∣∣∣ ≤ Ck 1

sk
(
1 + | ln(t)|k

)
=

Ck
sk
φ(t)k

where we defined L2([0, T ]) 3 φk(t) := (1 + | ln(t)|)k.
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Proposition 4.3. Let y(s)(x, t) as in (3.1) and yj(t) as in (3.3). Let the initial condition
y0 ∈ L2(D) be deterministic. Then the functions

(4.11) ∂sy(s̄) :=

+∞∑
j=1

∂syj(·, s̄)ej and ∂2
ssy(s̄) :=

+∞∑
j=1

∂2
ssyj(·, s̄)ej

are in L2
(
Ω, L2(D × [0, T ])

)
.

Moreover, for a fixed s ∈ (0,+∞), the random variables ω 7→ ‖∂sy(s, ω)‖L2(D×[0,T ]) and
ω 7→ ‖∂ssy(s, ω)‖L2(D×[0,T ]) are almost surely finite.

Proof. We estimate the deterministic part and the stochastic part separately.
Step 1: derivatives of mj(t, s). The functions mj(t, s) are deterministic, and we can argue

as in [22] to get

(4.12)

∣∣∣∣ ∂k∂skmj(t, s̄)

∣∣∣∣ ≤ |〈y0, ej〉|
∣∣∣∣dkdkEλj ,t(s̄)

∣∣∣∣ ≤ Cs
s̄k

(1 + | ln(t)|k)|〈y0, ej〉|

which is finite as φk(t) = 1 + | ln(t)|k ∈ L2(0, T ). We then follow for 1 ≤ k ≤ 2

(4.13)

∥∥∥∥∥∥
N+M∑
j=N

∂k

∂sk
mj(t, s̄)ej

∥∥∥∥∥∥
2

L2(D×[0,T ])

≤ C(k, T )s̄−2k

∫ T

0

φ2
k(t)dt

N+M∑
j=N

|〈y0, ej〉|2 −→ 0.

Step 2: derivatives in s for the stochastic integral. As justified in Lemma 4.1, we can
exchange differentiation with respect to s and the stochastic integration and derive therefore the
integrand g(t−τ) := e−λ

s
j(t−τ) with respect to s first. Performing the stochastic integration with

the majorant (4.10), we get

(4.14)

E(

∫ t

0

∂sg(t− τ)dBj(τ))2 =

∫ t

0

(∂sg(t− τ))2dτ

≤ C

s2

∫ t

0

(1 + | ln(t− τ)|)2
dτ

≤ s−2C(k, T )

where we employed that

(4.15) (1 + | ln(t− τ)|)k ≤ 2k + 2k| ln(t− τ)|k = 2k
(
1 + | ln(t− τ)|k

)
= 2kψk(t).

Similarly,

(4.16)

E

[(∫ t

0

∂ssg(t− τ)dBj(τ)

)2
]

=

∫ t

0

(∂ssg(t− τ))2dτ

≤ C

s4

∫ t

0

(1 + | ln(t− τ)|)4
dτ

≤ s−4C(k, T ).

We then follow for 1 ≤ k ≤ 2

(4.17)

∥∥∥∥∥∥
N+M∑
j=N

E
[
dk

dsk
W j
L,s(t, s)

]∥∥∥∥∥∥
2

L2(D×[0,T ])

=

∥∥∥∥∥∥
N+M∑
j=N

∫ t

0

(∂ks g(t− τ))2dτ

∥∥∥∥∥∥
2

L2(D×[0,T ])

≤
N+M∑
j=N

C(k, T )s̄−2k

∫ T

0

ψ2
k(t)dt −→ 0
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which shows the finiteness of (4.11) in L2
(
Ω, L2(D × [0, T ])

)
.

Step 3: almost sure statement. Define the random variable WN
T,k :=

∫ T
0

∑N
j=1

dk

dsk
W j
L,s(t)dt

with k = 1, 2. By (4.14), (4.16) and Chebychev’s inequality, we infer that
(4.18)

P
(
WN
T,k > N

)
≤ 1

N2
E
[(
WN
T,k

)2] ≤ 1

N2
E

∫ T

0

dk

dsk

 N∑
j=1

W j
L,s(t)

2

dt

 ≤ c(T, s) 1

N2

and so

(4.19)

+∞∑
N=1

P
(
WN
T,k > N

)
≤ c(T, s)

+∞∑
N=1

1

N2
.

Consequently, the almost sure finiteness of ‖∂ky(s)‖L2(D×[0,T ]) and ‖∂kky(s)‖L2(D×[0,T ]) follows
by Borel-Cantelli’s Lemma. �

In the next theorem, we characterize the differential operator DsS for fixed ω in terms of
explicitly know quantities, which is crucial for the upcoming derivation of the optimality condi-
tions.

Theorem 4.4. Let the initial condition y0 ∈ L2(D) be deterministic. Then, for almost every
realisation S(ω) of S with ω ∈ Ω, the control-to-state operator S as defined in (4.1) is twice
differentiable and for every s̄ ∈ (0,+∞) the first and second derivatives can be identified with the
functions ∂sy(s̄, ω) and ∂2

ssy(s̄, ω) as

(4.20) DsS(s̄)(h) = h∂sy(s̄) and D2
ssS(s̄)(h)(h̃) = hh̃∂2

ssy(s̄)

Proof. It is sufficient to prove (4.20) in the L2-sense, as then the statement follows from the
almost sure existence of ∂sy(s̄) and ∂2

ssy(s̄), see Proposition 4.3.
Step 1: the initial condition. We apply Taylor’s theorem on the function Eλ,t(s) defined

in (4.9) and apply the estimates from Lemma 4.2 to get for a point ξh ∈ (s̄− |h|, s̄+ |h|)

(4.21)

∣∣∣Eλj ,t(s̄+ h)− Eλj ,t(s̄)− hE′λj ,t(s̄)
∣∣∣ =

h2

2

∣∣∣E′′λj ,t(ξh)
∣∣∣

≤ h2

2
c · ξ2

hφ2(t) ≤ ch2 · s̄−2φ2(t)

where we recall that φ2(t) := (1 + | ln(t)|)2 ∈ L2([0, T ]). Therefore,

(4.22)

∫ t

0

∣∣∣Eλj ,τ−t(s̄+ h)− Eλj ,τ−t(s̄)− hE′λj ,τ−t(s̄)
∣∣∣ dτ ≤ cs̄−2 · h2

∫ t

0

φ2(t− τ)dτ.

Analogously,

(4.23)

∫ t

0

∣∣∣E′λj ,τ−t(s̄+ h)− E
′

λj ,τ−t(s̄)− hE
′′

λj ,τ−t(s̄)
∣∣∣ dτ ≤ cs̄−3 · h2

∫ t

0

φ3(t− τ)dτ.

Consequently, we can estimate

(4.24) |mj(t, s̄+ h)−mj(t, s̄)− h∂smj(t, s̄)|2 ≤ K(s̄) · h4φ2
2(t)|〈y0, ej〉|2

and

(4.25)
∣∣∂smj(t, s̄+ h)− ∂smj(t, s̄)− h∂2

ssmj(t, s̄)
∣∣2 ≤ K(s̄) · h4φ2

3(t)|〈y0, ej〉|2.
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Step 2: the stochastic convolution. Using Lemma 4.1 and the additivity of the Wiener
Integral, we get

(4.26)

E
∣∣∣W j
L,s(t, s̄+ h)−W j

L,s(t, s̄)− h
d

ds
W j
L,s(t, s̄)

∣∣∣2
≤ µjE

∣∣∣∣∫ t

0

e−λ
s̄+h
j (t−τ)dBj(τ)−

∫ t

0

e−λ
s̄
j(t−τ)dBj(τ)− h d

ds

∫ t

0

e−λ
s̄
j(t−τ)dBj(τ)

∣∣∣∣2
≤ µjE

∣∣∣∣∫ t

0

e−λ
s̄+h
j (t−τ) − e−λ

s̄
j(t−τ) − h∂se−λ

s̄
j(t−τ) dBj(τ)

∣∣∣∣2
≤ µj

∫ t

0

∣∣∣e−λs̄+h
j (t−τ) − e−λ

s̄
j(t−τ) − h∂se−λ

s̄
j(t−τ)

∣∣∣2 dτ
≤ µj

(
ch2µj s̄

−2

∫ t

0

φ2(t− τ)dτ

)2

≤ K(s̄)µj · h4φ2
2(t)

where we employed (4.22) in the second-last inequality. Analogously, employing Lemma 4.1 and
(4.23), we get

(4.27)
E
∣∣∣ d
ds
W j
L,s(t, s̄+ h)− d

ds
W j
L,s(t, s̄)− h

d2

ds2
W j
L,s(t, s̄)

∣∣∣2 ≤ µj

(
ch2s̄−3

∫ t

0

φ3(t− τ)dτ

)2

≤ µjK(s̄) · h4φ2
3(t).

Therefore, we get

(4.28)

E
[∥∥∥y(s̄+ h)− y(s̄)− h

+∞∑
j=1

∂syj(·, s̄)ej(x)
∥∥∥2

L2(D×[0,T ])

]

≤ lim
N→+∞

N∑
j=1

E
[ ∫ T

0

|yj(t, s̄+ h)− yj(t, s̄)− h∂syj(t, s̄)ej(x)|2 dt
]

≤ C(s̄) · h4

which means that for any fixed s ∈ S, the L2(D × [0, T ])-valued random variable DsS(s̄) can be
identified in the L2(Ω) sense with the random variable ∂sy(s̄) ∈ L2

(
Ω, L2(D × [0, T ])

)
, which

proves (4.20) in the L2(Ω) sense. The statement then follows from the almost sure existence of
∂sy(s̄) and ∂2

ssy(s̄), see Proposition 4.3. �

4.3. Optimality conditions. In this section, we establish first-order necessary conditions and
sufficient optimality conditions of optimal controls. Usually, in optimal control theory the first-
order conditions are formulated in terms of a variational inequality, which encodes possible
control constraints, and an adjoint state equation.

As we have explicit formulas, i.e. for the representation of the solution y and its derivatives
in s, we can avoid these abstract concepts.

Theorem 4.5. Let the assumptions of Theorem 4.4 be satisfied. Moreover, let y0 ∈ L2(D) be
deterministic. Then the following holds true for a fixed realisation ω ∈ Ω:

(i) necessary condition: If s̄ is an optimal parameter for (IP) and y(s̄) the associated
unique solution to the state system (1.3), then for almost every ω ∈ Ω

(4.29)

∫ T

0

∫
D

(y(s̄)− yD)∂sy(s̄) dxdt + Φ
′
(s̄) = 0.
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(ii) sufficient condition: If s̄ ∈ (0, L) satisfies the necessary condition (4.29) and if in addition

(4.30)

∫ T

0

∫
D

(∂sy(s̄))
2

+ (y(s̄)− yD)∂2
ssy(s̄) dxdt + Φ

′′
(s̄) > 0

for almost every ω ∈ Ω, then s̄ is optimal for (IP).

Proof. We focus on the reduced cost functional J (ω,S(s), s) in dependence on s: By Theorem
4.4, s 7→ J (s) := J (y(s), s) is twice differentiable on (0,+∞). By the chain rule,

(4.31)

J ′(s̄) =
d

ds
J (y(s̄), s̄) = ∂yJ (y(s̄), s̄) ◦DsS(s̄) + ∂sJ (y(s̄), s̄)

=

∫ T

0

∫
D

(y(s̄)− yD)∂sy(s̄)dxdt + Φ
′
(s̄)

and assertion (i) follows. Assertion (ii) follows from

(4.32)

J
′′
(s̄) =

d

ds
J (y(s̄), s̄) = ∂yJ (y(s̄), s̄) ◦DsS(s̄) + ∂sJ (y(s̄), s̄)

=

∫ T

0

∫
D

(y(s̄)− yD)∂sy(s̄)dxdt + Φ
′
(s̄).

�

5. Existence of optimal controls

The existence of optimal controls is shown by showing that there exists a subsequence y(sk)
which strongly converges to the optimal y in L2(D × [0, T ]).

To show the strong convergence, we use a compactness result to find such a strongly converg-
ing subsequence. The compactness result proves that under certain assumptions there exists a
minimum Hölder regularity in time which is independent of the fractional exponent.

Assumption 5.1. (1) The sequence of eigenvalues λk → +∞ as k → +∞,
(2) For almost every ω ∈ Ω,

(5.1) sup
k

(
‖yk(ω)‖L2([0,T ],Hsk (D))

)
< +∞,

(3) For almost every ω ∈ Ω,

(5.2) sup
k

(
‖yk(ω)‖L2([0,T ]×D)

)
< +∞,

(4) The trajectories of the family of stochastic processes yk(t) are in Cδk([0, T ], L2(D)) for
every k and δk ≥ δ∗ ≥ δ0 > 0.

Lemma 5.2 (Compactness lemma). Given a sequence (in k) of L2(D)-valued stochastic processes
(in (x, t)) with δ-Hölder continuous sample paths and for which yk(ω) ∈ L2([0, T ],Hsk(D)) for
fixed ω ∈ Ω. Let Assumptions 5.1 hold for yk.

Then, for a fixed realisation ω ∈ Ω, the sequence {yk(ω)}k∈N contains a subsequence that

converges strongly in L2(D × [0, T ]).

Proof. Assumptions 5.1 ensure that the infinite string
(
{yk,1}k∈N , {yk,2}k∈N , . . .

)
lies in the space

(5.3) Cδ0([0, T ])× Cδ0([0, T ])× . . .
Hence, there is a subsequence denoted by km which converges in this product space to an infinite
string of the form (y∗1 , y

∗
2 , . . .), and every y∗j ∈ Cδ0([0, T ]). We define

(5.4) y∗(x, t) =
∑
j∈N

y∗j ej(x).
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The convergence of ykm −→ y∗ follows exactly as in the compactness lemma in the deterministic
case, which is Lemma 6.1. of [22], and is therefore omitted. �

Theorem 5.3. Suppose that Assumption 3.2 and Assumption 5.1 are satisfied. Moreover, let
the initial data satisfy sups∈S ‖y0‖Hs < +∞.

Then the control problem (IP) has a solution, that is, for almost every fixed ω ∈ Ω, J (ω)
attains a minimum in S ◦ and moreover

(5.5) inf
s∈S
J (ω) < +∞.

Proof. Note first that, by assumptions on Φ(s), we can find s∗ ∈ S ◦ such that J (s∗, ω) < +∞
and due to (1.4), we infer

(5.6) 0 < inf
s∈S ◦

J (s, ω) < +∞ for fixed ω ∈ Ω.

We pick a minimizing sequence {sk}k∈N ⊂ S ◦ and consider for every k ∈ N the unique solution
yk = S(sk) to the state system (1.3). Without loss of generality, we can assume

(5.7) J (sk) ≤ 1 + J (s∗) ∀k ∈ N for fixed ω ∈ Ω.

This gives us, first of all, employing the form of J , the almost sure finiteness of ‖yk(ω)‖L2(D×[0,T ]).
Due to the form of the penalty function Φ, the minimizing sequence sk is bounded and we may
assume without loss of generality that sk → s̄ for some s̄ ∈ S ◦. As the initial data satisfies
sups∈S ◦ ‖y(0)‖Hs < +∞ and recalling the a-priori estimates, we can apply the compactness
result in Lemma 5.2, with δ0 = 1

4 , and select a subsequence, which we again index by k, such

that {yk}k∈N converges strongly in L2(D × [0, T ]) for fixed ω to a random variable ȳ. The
identification ȳ = y(s̄), follows directly from the uniqueness of solutions to (1.3) in the sense of
Definition 3.5. �
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