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ABSTRACT. We study the I'-convergence of sequences of free-discontinuity functionals depending
on vector-valued functions v which can be discontinuous across hypersurfaces whose shape and
location are not known a priori. The main novelty of our result is that we work under very
general assumptions on the integrands which, in particular, are not required to be periodic in
the space variable. Further, we consider the case of surface integrands which are not bounded
from below by the amplitude of the jump of w.

We obtain three main results: compactness with respect to I'-convergence, representation of
the I'-limit in an integral form and identification of its integrands, and homogenisation formulas
without periodicity assumptions. In particular, the classical case of periodic homogenisation
follows as a by-product of our analysis. Moreover, our result covers also the case of stochastic
homogenisation, as we will show in a forthcoming paper.
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1. INTRODUCTION

In this paper we study the I'-convergence, as k — +o0, of sequences of free-discontinuity functionals of
the form
Ey(u, A) = / fe(z, Vu(z)) dz +/ gr(x, [u](z), vu())dH™ (), (1.1)
A 5,NA
where A C R" is a bounded open set, u: A — R™ is a generalised special function of bounded variation, Vu
is its approximate gradient, S, is the jump set of u and [u] is its jump on S, while v, is the approximate
normal to S, and H"~' denotes the (n — 1)-dimensional Hausdorff measure.

Functionals of the form (1.1) appear naturally in the study of quasistatic crack growth in nonlinear
elasticity (see [21, 14, 11, 20, 13] and the monograph [5]), and represent the energy associated to a
deformation u of an elastic body with cracks. The parameter £ may have different meanings: it may
represent the scale of a regularisation of the energy, the size of a microstructure, the ratio of the contrasting
values of the mechanical response of the material in different parts of the body. For example, for a high-
contrast medium fj and g represent the strength and the toughness of the material, respectively, and
may have a very different behaviour in each component. In the classical case of periodic homogenisation,
where fi(z,§) = f(z/e, &), gr(z,(,v) = g(z/er,(,v), and f and g are periodic in the first variable, e
describes the scale of the microstructure, with €, — 04 as k — +o00. In this case taking the limit of Ej,
in the sense of I'-convergence, corresponds to computing the effective energy of the material.

The first paper on this subject (and still one of the most general results to date) is [8], where the
authors consider the classical case of periodic homogenisation, assuming

ca(1+ ) < gu(z, ¢ v) <es(1+[¢]) forxzeR™, ¢ €R™, and v € R" with |v| =1, (1.2)

for suitable constants 0 < c4 < ¢5 < +oo independent of k. Conditions (1.2), together with standard
p-growth assumptions on fi, guarantee that sequences (ux) with bounded energy Ej(uk, A) are bounded
in the space BV (A,R™) of functions with bounded variation on A with values in R™. When 0A is
regular, BV (A,R™) is compactly embedded into L'(A,R™), hence in this case it is natural to study the
I'-convergence of Ex(-, A) in L'(A,R™).

In [19] the I'-convergence of (1.1) is studied under the assumption that w is scalar (m = 1) and that
gr. does not depend on ¢ and satisfies

cs < gi(x,v) <cs for z € R" and v € R" with |v] = 1. (1.3)
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These assumptions ensure that sequences (ux) with bounded ||ug||p(4) and bounded energy Ex(u,A)
are also bounded in BV (A), hence relatively compact in L*(A). Since for scalar functions (ux) a bound on
|luk||Loo(a) can be easily obtained by truncation, also in this case it is natural to study the I'-convergence
of Ey(-, A) with respect to the strong L' (A)-convergence.

The aim of the present paper is to study the I'-convergence of (1.1) in the vector-valued case (m > 1)
without any periodicity assumptions, and under the more general growth conditions

e < gr(z,(v) <es(1+[¢]) forxz eR", ¢ €R™, and v € R" with |v| =1, (1.4)

which include both (1.2) and (1.3). Unlike (1.2), assumption (1.4) does not guarantee a bound in
BV (A,R™) for sequences (ux) with bounded energy Ej(ux, A). Moreover, unlike in the scalar case con-
sidered in [19], in the vector-valued case an estimate for ||ux||poc(a rm) cannot be easily obtained by a
standard truncation procedure. For these reasons, in our setting sequences (ux) with bounded energy
Ey(ug, A) are, in general, not relatively compact in L'(A,R™).

Therefore, we study the I-convergence in the larger space L°(A,R™) of all £"-measurable functions
u: A — R™, endowed with the metrisable topology of convergence in measure. This is the natural choice of
convergence in our case: using compactness theorems for free-discontinuity functionals, it is indeed possible
to prove that sequences (ux) with equi-bounded energy Ej(usx,A) are relatively compact in L°(A, R™),
under a very weak integral bound on (uz). Therefore, I'-convergence of (Ex(-, A)) in L°(A4,R™) implies
convergence of the solutions of some associated minimisation problems obtained, for instance, by adding
a lower order term to Ej (see Corollary 6.1).

The present paper contains three main results. The first one, Theorem 3.5, is a compactness result
with respect to I'-convergence for sequences as in (1.1). Namely, we show that for every sequence (Ex)
with (fx) C F (see assumptions (f1)-(f4) in Definition 3.1) and (gr) C G (see assumptions (g1)-(g7) in
Definition 3.1) there exists a subsequence, not relabelled, such that, for every bounded open set A C R",
Ey (-, A) T-converges to a functional Fo (-, A), which can be written in the form (1.1) for suitable functions
foo € F and goo € G.

The second result, Theorem 3.7, identifies the I'-limit Eo (-, A). That is, it provides a connection
between the functions f; and gx, used to define Ej, and the functions fo and goo, which appear in the
integral representation of E.,. More precisely, we show that the volume density f- is obtained as

foo(z,€) =limsup lim iinf fe(y, Vu(y))dy, (1.5)
p—0+ k—rtoo p" Qp(x)

where the infimum is taken among all the functions u € W'?(Q,(z), R™) with u(y) = & - y near 9Q,(z),
and Q,(z) ==z + (—p/2,p/2)". For the surface density goo, we prove instead that

goo(®,¢,v) =limsup lim —— inf gk (y, [l (1), v (y))dH" " (y). (1.6)
p—0+ k—rtoo p SuNQY(x)

Here, the cube Q) (z) is a suitable rotation of Q,(x) (see item (1) of Section 2), and the infimum is taken
among all the functions v € SBV(Q}(x),R™) with Vu = 0 L"-a.e. in Q}(z) and that near 9Q, (x) agree
with the pure-jump function us ¢, (see item (n) of Section 2). This result shows, in particular, that the
problems for the volume and surface integrals are decoupled; i.e., fo depends only on the sequence (f%),
while goo depends only on the sequence (gx).

The third result (Theorem 3.8) deals with the case of homogenisation, that is fi(z,£) = f(z/ek,&)
and gx(z,¢,v) = g(x/ek, (,v) for a sequence e — 0+ as k — +oo. In this case, for given z, £, ¢, and
v, a natural change of variables in (1.5) and (1.6) leads to consider, for every r > 0, the two rescaled
minimisation problems

it {/ fly, Vu(y))dy: w € WHP(Qr(rz),R™), u(y) = & - y near E)Qr(”f)}’ (1.7)
Qr(ra)

TTL

and L
— inf 9(y, [u](y), vu(y))dH" " (y). (1.8)
r SuNQX (rz)

In the last formula, the infimum is taken among all the functions u € SBV(QY (rz),R™) with Vu = 0
L™-a.e. in QY (rx) and that near 0Qy (rx) agree with the pure jump function v = urz,¢c, (see item (n) of
Section 2).

Assume that the limits as 7 — 0+ of the expressions in (1.7) and (1.8) exist and are independent of
z, and denote them by fhom(£) and gnom({, V), respectively (see (3.14) and (3.15)). Then, we prove that
for every bounded open set A C R" the sequence Ej(-, A) with integrands f(z/ex,&) and g(z/ek, (,v)
I-converges to the functional Fyom (-, A) with integrands fhom(£) and ghom (¢, ). In particular, we recover




the case where f(z,€) and g(z,(,v) are periodic with respect to x, which was previously studied in [§]
assuming (1.2) for g.

In the forthcoming paper [9] we shall prove that, under our more general assumptions (1.3), the existence
of these limits and their independence of x can be proved even in the more general context of stochastic
homogenisation. Therefore Theorem 3.8 of the present paper will be a key ingredient in the proof of the
results on stochastic homogenisation for free-discontinuity problems.

The paper is organised as follows. In Section 2 we fix the notation and give the references for the
background material used in the paper. In Section 3 we list the general hypotheses on the integrands f
and g, and state our main results. We also prove that the result on homogenisation follows, through a
change of variables, from the result on the identification of the I'-limit.

In Section 4 we prove a compactness theorem for the perturbed functionals obtained by adding to
E(u, A) the regularising term ¢ |, SunA [[u]|[dH™ ", which allows us to use the results of [8]. This section
contains also some technical lemmas on smooth truncations that are used throughout the paper.

In Section 5 we begin the proof of Theorem 3.5, which gives the compactness of sequences of functionals
of the form (1.1) with respect to I'-convergence. The main tool is the analysis of the limit as &€ — 0+ of the
I'-limits of the perturbed functionals of Section 4. The conclusion of the proof is based on Theorem 5.2,
where the integrands of the functional obtained in this way are compared with (1.5) and (1.6). The proof
of this theorem is very technical and is given in Sections 7 and 8.

In Section 6 we prove the identification result for the I'-limit (Theorem 3.7) using Theorem 5.2. More-
over we show that, for some minimisation problems involving an L? (A, R™)-perturbation of the functionals
(1.1), T-convergence in L°(A,R™) implies convergence of the minimum values and, for a subsequence, con-
vergence in LP(A,R™) of the minimum points.

In Sections 7 and 8 we prove the statements of Theorem 5.2 concerning the volume and the surface
integrals, respectively.

The final section is an appendix which collects some technical results used in the paper.

2. PRELIMINARIES AND NOTATION

In this section we give a brief account of the mathematical tools that will be needed in the paper.

For the general notions on BV, SBV, and GSBV functions and their fine properties we refer to [3]
(see also [16, 22]). For u € BV, Du and D’u denote the distributional derivative of u and its singular
part with respect to the Lebesgue measure, respectively, while Vu stands for the density of the absolutely
continuous part of Du with respect to the Lebesgue measure. Vu coincides with the approximate gradient
of u, which makes sense also for u € GSBV. Moreover, S, denotes the set of approximate discontinuity
points of u, and v, the measure theoretic normal to S,,. The symbols ut denote the one-sided approximate
limits of u at a point of S, from the side of £uv,,.

For the general theory of I'-convergence we refer to the monograph [12]. Other results on this subject
can be found in [6] and [7].

We introduce now some notation that will be used throughout the paper.

(a) m and n are fixed positive integers, R is the set of real numbers, and Ry® := R™ \ {0}.

(b) S* P i={z=(21,...,20) ER" : 2} + - 422 =1} and S¥ 1 := {z eS" ' : +2;(,) > 0}, where
i(x) is the largest ¢ € {1,...,n} such that z; # 0.

(c) L™ denotes the Lebesgue measure on R™ and H" ! the (n — 1)-dimensional Hausdorff measure
on R™.

(d) 7 denotes the collection of all bounded open subsets of R"; if A, B € &/, by A CC B we mean
that A is relatively compact in B.

(e) For u € GSBV(A,R™), with A € <7, the jump of u across S, is defined by [u] := u™ —u™.

(f) For A € o/ we define

SBVye(A,R™) := {u € SBV(A,R™) : Vu =0 L a.e., H" ' (S,) < +oo};

it is known (see [3, Theorem 4.23]) that every uw in SBVyc(A,R™) N L*(A,R™) is piecewise
constant in the sense of [3, Definition 4.21], namely there exists a Caccioppoli partition (F;)
of A such that u is constant £"-a.e. in each set E;. We note that same result holds for u €
SBVpe(A,R™), however this property will never be used in the paper.

(g) For A € o and p > 1 we define

SBVP(A,R™) :={u € SBV(A,R™) : Vu € LP(A,R™*™), H" (S.) < +00}.



(h) For A € & and p > 1 we define
GSBVP?(A,R™) := {u € GSBV(A,R™) : Vu € L?(A,R™ ™), H"'(5,) < +oo};
it is known that GSBVP(A,R™) is a vector space and that ¢ (u) € SBVP(A,R™) N L*(A,R™)
for every u € GSBVP(A,R™) and for every ¢ € CL(R™,R™) (see, e.g., [13, page 172]).
(i) For every L£"-measurable set A C R"™ let L°(A,R™) be the space of all £L"-measurable functions
u: A — R™, endowed with the topology of convergence in measure on bounded subsets of A; we

observe that this topology is metrisable and separable.
(j) For z € R™ and p > 0 we define

By(z) :={y e R": |y — z| < p},
Qp(z) ={yeR": |[(y—x)-e| <p/2 fori=1,...,n},
where | - | is the Euclidean norm in R”, ey, ..., ey, is the canonical basis of R", and - denotes the
Euclidean scalar product; we omit the subscript p when p =1 (| - | denotes the absolute value in
R or the Euclidean norm in R™, R™, or R™*" depending on the context).

(k) For every v € S™ ! let R, be an orthogonal nxn matrix such that R,e, = v; we assume that
the restrictions of the function v + R, to the sets S~ defined in (b) are continuous and that
R_,Q(0) = R,Q(0) for every v € S""'; a map v — R, satisfying these properties is provided in
Example A.1 in the Appendix.

(1) Forz € R™, p >0, and v € S ! we set

Qp(x) = RuQ,(0) + =;

we omit the subscript p when p = 1.

(m) For & € R™*™ the linear function from R™ to R™ with gradient £ is denoted by £¢; i.e., le(z) := &z,
where z is considered as an nx1 matrix.

(n) For x € R", ¢ € Ry, and v € S*~! we define the function wus,c,, as

¢ if (y—x)-v>0,
um,(,u(y):: .
0 if (y—=x)-v<O.
(o) For x € R™ and v € S"™ !, we set
g :={yeR":y-v=0} and I :={yeR":(y—2x) -v=0}

3. STATEMENT OF THE MAIN RESULTS

Throughout the paper we fix six constants p,ci,...,c5, with 1 < p < 400, 0 < c1 <2 < 400, 1 <3 <
400, and 0 < ¢4 < ¢5 < +00, and two nondecreasing continuous functions o1, o2: [0,+oo) — [0, +00)
such that o1(0) = 02(0) = 0.

Definition 3.1 (Volume and surface integrands). Let F = F(p, c1, c2,01) be the collection of all functions
fiR"xR™*™ — [0, +00) satisfying the following conditions:

(f1) (measurability) f is Borel measurable on R™ xR™*";
(f2) (continuity in &) for every x € R™ we have

If(x,&1) — f(w, &) < o1l — &2

for every &1, & € R™*™,;
(f3) (lower bound) for every « € R"™ and every £ € R™*"

algl” < f(z,8);
(f4) (upper bound) for every z € R™ and every £ € R™*"
f(@,8) < o1+ [€]7).

Let G = G(cs,c4,c5,02) be the collection of all functions g: R™xRy*xS™" ™ — [0, +00) satisfying the
following conditions:

YA+ f(z,&) + f(z,8))

(g1) (measurability) g is Borel measurable on R™xR{* xS™~1;
(¢2) (continuity in ¢) for every € R™ and every v € S™! we have

l9(@, G2, v) = g(x, C1,0)| < 02(I¢1 = Cal) (9(x, C1,v) + g(, G2, v))
for every (1, (2 € RG;



(g3) (estimate for |¢1| < |C2]) for every & € R™ and every v € S"~! we have

g(x7C17V) S Cc3 9(37,(% V)
for every (1, (2 € RG" with (1] < |¢2l;
(g4) (estimate for c3|¢1| < |¢2]) for every € R™ and every v € S™~! we have
g(l‘v Cla V) < g(xv <27 V)
for every (1, (2 € RG® with ¢3|¢i] < |¢2);
(g5) (lower bound) for every z € R", ¢ € Ry, and v € S"™!
Cq S g(m,{,l/);
(g6) (upper bound) for every x € R", ¢ € Ry, and v € S"~!
9(z,¢v) < es(L+¢]);
(g7) (symmetry) for every x € R™, ¢ € RJ", and v € S"~*
g(m, Cv V) = g(xv 7(7 71/)'
Remark 3.2 (Assumptions (g3) and (g4)). Let g: R xRg*xS™ ™! — [0, 4+00) be a function satisfying the
following “monotonicity” condition: for every z € R"™ and every v € S"~*
g(m7clyy) S g(l’,éé,l/)

for every (1, (2 € Ry with |(1] < |C2|; then it is immediate to verify that g satisfies (¢3) and (g4).
On the other hand (¢3) and (g4) are weaker than monotonicity in |¢|. For instance, the function
9(x, ¢, v) = g(|¢]), with g : [0,400) — [0, 4-00) given by

t if t € [0,1],
g =1elLn] ittelal
L if t > es,

satisfies (¢g3) and (g4), but its behaviour in [1,c3] can be chosen quite freely, in particular it can be
nonmonotone.

Remark 3.3. We remark that assumptions (¢3) and (g4) on the surface integrand g will be crucial to prove
that the functional E defined in (3.4) decreases by smooth truncations up to an error term (see (4.13)
and the proof of Lemma 4.1). We also notice that (¢3) and (g4) could be omitted if assumption (g5) were
replaced by the stronger lower bound

c(1+¢) < g, ¢,v) for every (z,¢,v) € R" x Ry x S (3.1)
for some ¢ > 0 (see, e.g., the proof of [8, Lemma 3.5]). However, a lower bound as in (3.1) would rule
out, for instance, functionals of Mumford-Shah type, which we would like to cover in our analysis. For

this reason we prefer to work under the weaker growth condition (¢5) on g and under the additional
“monotonicity” assumptions (¢g3) and (g4).

Given f € F and g € G, we consider the integral functionals F, G, E: L°(R",R™)x.e/ — [0, +00)
defined as

/f(amVu)dac ifula € GSBVP(A,R™),
A

F(u, A) := (3:2)
+00 otherwise in L°(R",R™).
g(z, [u], va)dH" ™' ifula € GSBVP(A,R™),
Gl o / s | (4,R™) 5
+oo otherwise in L°(R", R™),
E(u,A) := F(u, A) + G(u, A). (3.4)
We also consider the integral functional E?: LY (R"™,R™)x.% — [0, +00], defined as the restriction of
E to L?,_(R", R™)x.o/.

Remark 3.4. Since [u] is reversed when the orientation of v, is reversed, the functional G is well defined
thanks to (g7).

The following compactness theorem, with respect to I'-convergence, is one of the main results of this
paper.



Theorem 3.5 (Compactness for I'-convergence). Let (fi) be a sequence in F, let (gr) be a sequence in
G, let By: L°(R™,R™)x.o — [0, +00] be the integral functionals defined by (3.4) corresponding to fi, and
gk, and let EY: LY (R™,R™)x o — [0, +00] be their restrictions to LY (R™,R™)x.</. Then there exist a

subsequence, not relabelled, and two functions f € F and g € G such that for every A € o

Ey(-, A) T-converges to E(-, A) in L°(R",R™),
E7(-, A) T-converges to E?(-, A) in LY (R",R™),
where the integral functional E: L°(R™,R™)x.a — [0,400] is given by (3.4) and EP is its restriction to
L2 (R",R™)x ..

loc

Similar results, under different hypotheses on the surface densities gi, have been obtained in [8] and
[19].

Let X be a subspace of L°(R",R™). For every H: X x.o/ — [0,4+00], A € o/, and w € L°(R",R™),
we set

my(w, A) := inf {H(u,A) :u € X, ula € W'P(A,R™), u = w near A}, (3.5)
mby(w, A) :=1inf {H(u, A) : u € X, ula € SBVpc(A,R™), u =w near A}, (3.6)
mu(w, A) :=inf {H(u, A) : v € X, ula € SBVP(A,R™), u=w near A}, (3.7)

with the standard convention inf @ = +oc0. In all the formulas above, by “u = w near JA” we mean that
there exists a neighbourhood U of 0A in R™ such that v = w L£™-a.e. in U N A.

Let (fx) be a sequence in F and let (gr) be a sequence in G. For every k, we consider the integral
functionals Fy, G, Ex: L°(R™,R™)x.o/ — [0, 40c0] defined by (3.2), (3.3), and (3.4) corresponding to fj
and gx. For every x € R™, £ € R™*™, ¢ € R, and v € S" ! we define

mg! (e, Qp(x))

/ . . .
z, &) := lim sup lim inf , 3.8
F(0,€) = timsup i nf “H (38)
1,p
meP (Le, T
" (x,€) := limsup lim sup M, (3.9)
p—=0+ k—+oo P
mb (Ug.c., QU (x
g (z,¢,v) := limsup lim inf Gy (Ut IQP( ))7 (3.10)
p—0+ koo e
mb (uz.c., Q4 (x
g (x,¢,v) := limsup lim sup . .
" C li li Gk( G QP( )) 3.11

p—0+ k—+oo pnt
Remark 3.6. Tt turns out that f', f” € F (see Lemma A.6), and ¢’, g” € G (see Lemma A.7).
The second main result of this paper is the identification of the I'-limit.

Theorem 3.7 (Identification of the I-limit). Let (fx), (gr), (Ex), and (EL) be as in Theorem 3.5, let
foo € F and goo € G, let Ex be defined as in (3.4) with foo and goo, and let EE, be its restriction to
LY (R™,R™)xa/. Assume that the following equalities are satisfied:

loc

(al) for L™-a.e. x € R™ we have

foo(w,8) = f'(2,6) = f"(x,€) for every € € R™*™;
(a2) for every A € @, for every u € GSBVP(A,R™), and for H" *-a.e. x € S, we have
goo (@, [u](2), vu(2)) = ¢ (z, [u](2), vu(@)) = " (2, [u] (), vu(2)).
Then
Ey(-, A) T-converges to Euoo(-, A) in L°(R™,R™), (3.12)
E? (-, A) T-converges to E% (-, A) in LV (R",R™), (3.13)

for every A € o7

The third main result of the paper concerns the case of homogenisation, where f(z,&) := f(z/ek, &)
and gi(z,(,v) := g(x/ek, (,v) for a sequence g — 0+.



Theorem 3.8 (Homogenisation). Let f € F and g € G, and let F and G be the functionals defined as in
(3.2) and (3.3), respectively. Assume that for every x € R™, £ € R™*", ¢ € RY", and v € S"™! the limits

1,p
lim Ty 6 riT8)) “i?”(m)) = faom (), (3.14)
TBTOO mgc(urx;i,i,lQZ(rx)) —. ghom(<7 l/) (315)

exist and are independent of x. Then fhom € F and ghom € G.
Let (ex) be a sequence of positive real numbers converging to 0, let fi and gi be defined by

fk(:ng) = f(x/ek,ﬁ) and gk(x7 4-7 V) = g(ZC/Ek, C7 V)7
let By, be defined as in (3.4) with fi and gk, let Enhom be defined as in (3.4) with fhom and ghom, and let
EY and E} = be their restrictions to LY (R",R™)x.a/. Then

hom loc
Ei(-, A) T'-converges to Enom(-, A) in LO(R",Rm),
EY (-, A) T-converges to Ef (-, A) in LY (R™,R™),

for every A € o .

Arguing as in [8] (see also [7] for the volume part) one can prove that (3.14) and (3.15) are always
satisfied when f and g are periodic of period 1 with respect to the space coordinates x1,...,x,. We
omit here the proof of this property, since in [9] we shall prove that (3.14) and (3.15) are satisfied almost
surely under the natural assumptions of stochastic homogenisation, which include, in particular, the case
of deterministic periodic homogenisation.

The complete proofs of Theorems 3.5 and 3.7 require several intermediate results which will be estab-
lished in the next sections. Theorem 3.8 instead follows easily from Remark 3.6 and from Theorem 3.7 by
means of a natural change of variables, as we show below.

Proof of Theorem 3.8. By Theorem 3.7 it is enough to show that

f/(mvé-) = f”(xvg) = fhom(§) and g/(x, Gv) = g//(w, ¢, ) = ghom (¢, V) (3.16)
for every € R, £ € R™*" ¢ € R, and v € S" ™. Indeed, if these equalities are satisfied, then fhom € F
and ghom € G by Remark 3.6, and the I'-convergence follows from Theorem 3.7 applied with foo = fhom
and goo = Ghom-

To prove the first equality in (3.16) we fix z € R", £ € R™*", p > 0, and k € N. Given u €
WhP(Q,(x),R™), let ur € W"P(Q,/c, (z/er), R™) be defined by ux(z) = u(exz)/ex for every z €
Qp/er (x/er). By the change of variables z = y/er we obtain Fi(u,Q,(x)) = epF(uk, Qp/e, (x/ck)).
Since u = £¢ near 0Q,(x) if and only if up = £¢ near 0Q,/c, (x/ex), we deduce that m};:(ﬁg,Qp(m))
= e mpP(le, Qpe, (v/k)) = (0™ /ri) mEP (be, Qry (ruw/p)), Where 1y, := p/ek. By applying (3.14) with x
replaced by z/p we obtain

lim pinm;f(fg,Qp(fE)) = fhom(§)-

By (3.8) and (3.9) this implies that f'(z,£) = f"(z,€) = fuom(£)-

To prove the second equality in (3.16) we fix ¢ € R™, ¢ € Ry, v € S™' p > 0, and k € N.
Given v € SBVpe(Qp(2),R™), let vy € SBV,e(Q})., (¥/€k), R™) be defined by vy (z) = v(exz) for every
z € Qp ., (w/er). Then S, = (1/ex)S, and, thanks to (¢97), we may assume that [vk](2) = [v](ex2) for
H" '-a.e. z € Sy,. By the change of variables z = y/e), we obtain G (v, Q% (z)) = e} " G (v, Qp/e, (T/k)).
From the fact that v = g, near 0Qy(z) if and only if vy = uy /e, ¢,» near 0Qy . (z/ex), we deduce
that mg; (ue,cv, Qp(2)) = 87" M (Ua/ep s Qpyey (@/ex)) = (0" /1) ME (Uryapcvs Q7 (r12/ p)),
where 7y, := p/e. By applying (3.15) with z replaced by z/p we obtain

. 1 c v
kl}rfoo Fm‘ék (Ua,¢,05, Qp (%)) = ghom (G, V).
By (3.10) and (3.11) this implies that ¢’(z,{,v) = ¢"(x,¢{,v) = ghom (¢, V). O

4. COMPACTNESS RESULT FOR PERTURBED FUNCTIONALS

In this section we prove a compactness result, Theorem 4.3, for the perturbed functionals obtained by
adding to E? (u, A) the regularising term ¢ [, ., [[u][dH"~", with € > 0. Theorem 4.3 will then be pivotal
to prove our main compactness result, Theorem 3.5.

In order to prove Theorem 4.3 we need some technical tools.



We start with a result (Lemma 4.1) establishing the existence of smooth truncations of u by which the
functionals F' and E “almost decrease” (see (4.12) and (4.13) below). Similar truncation results can be
found in [10, proof of Proposition 2.6] and [8, Lemma 3.5].

In what follows we use the shorthand {|u| > A} := {2 € R" : |u(z)| > A}, where v € L°(R™,R™) and
A>0.

Smooth truncations. Let ¢ € C*°(R) be fixed and such that ¢(t) =t for every t < 1, p(t) = 0 for
every t > 3, while ¢(t) > 0 and |¢'(t)] < 1 for every t > 0. We define ¢ € CZ(R™,R™) by
W(0) = e(IchE/ICl it ¢ # 0,
0 if ¢ =0.

Then 9(¢) = ¢ for every || < 1, ¥(¢) = 0 for every || > 3, and |¢(¢)| < 2 for every ¢ € R™. Moreover
for every n, 77 € R™ we have

Byp(C)-71 = (¢-m) (C-) @ (ICN/ICI* + (- 7)o (ICD/1C] = (¢ -m) (- 7) (IS /IS

Let !l and 17” be the orthogonal projections of 1 and 7 onto the one-dimensional space generated by (,
and let n and 7+ be the orthogonal projections of 1 and 7 onto the space orthogonal to ¢. Then

aup(Q)-ii = (') " (1C) + (- i) e (IED/1C] = -y (¢ /1€
="' (1 + -7 eICh/ G-
Since |¢’(t)] <1 and 0 < (t)/t < 1 for every ¢ € R, we obtain that
0 < I+ I 2| < Il 7]

Since 7 is arbitrary, this implies that |9,9(¢)| < |n| for every n € R™. By the mean value theorem this

inequality gives |1((2) — ¥(¢1)| < |(2 — (i for every (i1, (2 € R™.
For every A > 0 we set

Q) = AP(¢/A). (4.1)
Then ¢* € C°(R™,R™) and
() = ¢ for every ¢ € R™: [¢] < A, (4.2)
[ (¢)] < 2\ for every ¢ € R™, (4.3)
YM¢) =0 for every ¢ € R™: |¢]| > 3\, (4.4)
[ (¢2) =G| < 162 — G| for every (1,62 € R™. (4.5)
From (4.2) and (4.5) it follows that
WOl < [¢| for every ¢ € R™. (4.6)
Lemma 4.1. Letn >0 and let h € N, h > 1, be such that
c2/(cih) <m and 2c3/h <n, (4.7)

where c1,c2, and c3 are as in Definition 3.1. Let moreover o > 3 be such that a« — 1 > c3. Given A > 0,
let Mi,..., An+1 € R be such that

A > A (4.8)

Aiv1 > aX; fori=1,... h. (4.9)

We set pn:= Any1 and, fori=1,...,h, we define 1; := ™, where Y i is given by (4.1). Then for every
t=1,...,h we have ; € C(R™,R™),

0i(Q)| S i for every ¢ € R™, (4.10)

i () = ¢ for every ¢ € R™ with |¢| < . (4.11)

Moreover, the following property holds: if the function f: R"XR™*™ — [0,400) satisfies (f1), (f3),
(f4), and the function g: R"xRy"'xS™™1 — [0, +00) satisfies (g1), (g3), (g4), (g7), then for every u €
LY(R™,R™) and every A € of there exist i, j € {1,...,h} (depending also on f, g, u, and A) such that

F(hi(w), A) < (1 +n)F(u, A) + 2L (AN{[ul = A}), (4.12)
E(u), A) < (1+n)E(u, A) + c2L" (AN {Ju] = A}), (4.13)
where F' and E are as in (3.2) and (3.4), respectively.



Proof. Since a > 3, inequalities (4.10) and (4.11) follow from (4.2), (4.3), (4.8), and (4.9).

Let f, g, u, A, be as in the statement. To prove (4.12) and (4.13) it is enough to consider the case
ula € GSBVP(A,R™). For every i = 1,...,h let v; := v¢;(u). Then v; = u L"-a.e. in {|Ju| < \;} by (4.2)
and v; = 0 L™-a.e. in {|u] > Xiy1} by (4.4) and (4.9). Moreover (4.5) gives |Vv;| < |Vu| L™-a.e. in A.
Therefore (f3), (f4), (4.8), and (4.9) yield

Fus, A) < f(m,Vu)da:—i—cQﬁ"(Aﬁ{M2)\1-“})—&-@/ Vul? da
An{lul<X;} An{x<Ju|<Ai41}

< / F(x, V) do + c2 L (AN {Ju] > A\}) + 2 f(x, Vu) da. (4.14)
A C1 JAn{\i<|ul<Xit1}
Since
Z meudx</f:cVudw,
An{ri<lul<Aip1}
there exists i € {1,...,h} such that
fz,Vu)de < — /fou
An{ri<lul<Aip1}
By (4.14) this implies

FlonA) < (14 ) Flu, 4) + o™ (AN {Jul 2 AD),

which gives (4.12) thanks to (4.7).
To estimate G(vi, A) we use the inclusion S,, C Su N ({Ju’| < Aix1} U {Ju"| < Xig1}). Moreover,
thanks to (g7), we can choose the orientation of v,, so that v,, = v, H" '-a.e. in S,,. This leads to
= o;(uF) H" '-ae. in S,,. By (4.5) this implies that
l[i]] < |[u]] H" '-ae.on S,,. (4.15)
Therefore we have

G(vi, A) < / g(z, [u],ve) dH ! + /s g(z, [vi], vu) dH" ™" + /s gz, [vi], ) dH™ 1

SunAn{Jut|<x In{lu= <A} JSunAn{x <jut|<X;q1} WNAN{A; <Ju=|<Xiy1}
+ / g(x, [vi], v) dH™ + / g(x, [vi], ) dH™ . (4.16)
SunAn{lut|ZX; 1 3n{lu™ <A} SunAN{lut <X 3n{lu™[2Xi41}

For H™ '-a.e. point of {|u™| > Xiy1} N {|Ju"| < A} we have [v;] = —u~, hence |[v;]] < A;, while (4.9)
implies that

all = [ — ™| > [ — 7] > Aess — A > (@ — D > o,
hence cs3|[vi]| < [[u]|. By (g4) this implies

gz, [vil,va) < g(, [u],ve) H" '-ae.on  {jul] > Nipa} N {u| < A}

The same inequality holds H™ *-a.e. on {|u™| < A} N {|u"| > Ait1}. Therefore, from (4.15), (4.16), and
(93) we obtain

G(vi, A) < / g, [u], vy) dH" ™ + cs/ gz, [u], vu) dH" " + 63/ g, [u], va) dH™ . (4.17)
SuNA SuNAN{A; <|ut|<Xjq11} SuNAN{\; <|u™|<X;iy1}
Since

Z (c f(z, Vu)dz + C&/S g(z, [u],ve) dH* ' + 03/S g(z, [u], v) d?-l"_l)

=1 L JAn{N <|u\<>\z+1} wWNAN{A; <[ut|<Xigp1} wNAN{N; <|u™[<Xip1}

< —2/ f(x, Vu) dz + 263/ g(x, [u, va) dH"
€1 Ja SunA
there exists j € {1,...,h} such that

f(z,Vu)dx + c3 / g(z, [u], vu) dH" ! + ¢y / g(z, [u], vu) dH" !
Su s

1 JAan{x;<lul<xj41} ﬂAﬁ{A5<|u+\<)\j+1} WNAN{A;<|u=|<Xjp1}

< clh/ f(z,Vu) dx+ = gz, [u], vu) dH" . (4.18)

h SunA
Inequality (4.13) follows then from (4.7), (4.14), (4.17), and (4.18). O

C2

The estimate in the previous lemma can be extended to the I'-liminf, as the following result shows.
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Lemma 4.2. Let fi and gr be as in Theorem 3.5, let Ey be as in (3.4), with integrands fr and g,
and let EY be the restriction of Ej to LY _(R™,R™). Finally, let E': L°(R",R™)xo/ — [0,+00] and
EP: LV (R",R™)x/ — [0,+00] be defined as

E'(,A) = F—lkiminfEk(~,A) and E'P(-,A) :=T-liminf E} (-, A),
—+o0 k—+oco

where for E' we use the topology of L°(R™, R™), while for E'P we use the topology of LY. (R™,R™). Under

loc

the assumptions of Lemma 4.1 the following property holds: for every u € L°(R™,R™), v € LY (R™,R™)
and A € o, there exist 7, j € {1,...,h} (depending also on u, v, and A) such that

E'(¢i(u), A) < (1+0)E'(u, A) + c2L" (AN {[u] > A}), (4.19)
E"(¢5(u), A) < (1 +n)E"(u, A) + c2L™ (AN {|u| > A}). (4.20)
Proof. Let u € LO(R",R’") and A € & be fixed. Let (ux) be a sequence in LO(R",RW) converging to u
in measure on bounded sets and such that
E'(u, A) = liminf Ex (ug, A).
k—4oc0

There exists a subsequence (ux;) such that

E’(u,, A) = JEIJPOO Ekj (ukj,A). (421)

By Lemma 4.1 for every j there exists i; € {1,...,h} such that
Ek]’ (wlj (uk]‘ )7 A) < (1 + W)Ekj (uk]‘ yA) + CQﬁn(A N {‘ukj | > )‘})
Therefore there exist 2 € {1,...,h} and a sequence jp — +oo such that i;, = i for every £. This implies
that
Ek]‘[ (wi(ukje ), A) <1+ n)Ekje (uka A+ CQﬁn(A N {Iukje | > )‘})
Since ug;, — u and wg(ukn) — 1;(u) in measure on bounded sets, taking the limit as £ — +o0o and using
(4.21) we obtain (4.19). The same argument, with obvious changes, also proves (4.20). O

We are now ready to prove the I'-convergence of the perturbed functionals E;*, which are defined on

LY (R™,R™)xe/ — [0, 400] by
. Sfu(z, Vu dm—l—/ga(m, u],ve)dH" ™ ifula € SBVP(A,R™),
ESP(u, A) = /A ) Sutia b, ) | ) (4.22)
“+00 otherwise in LY (R™,R™),
where
gx(z, ¢, v) = gr(z, ¢, v) +¢[C]. (4.23)

Theorem 4.3. Under the assumptions of Theorem 3.5, for every € > 0 there exist a subsequence, not
relabelled, and a functional ESP: L} (R",R™)xa/ — [0,4+00] such that for every A € o/ the sequence
EP(-, A) defined in (4.22) T'-converges to E*P(-, A) in L} (R"™,R™). Let fP: R"XR™*"™ — [0, +0c0] and

=7 R" xR xS™ ™! — [0, +o00] be the functions defined by
maesr(le, Qp(x))

17 (x,€) = limsup , (4.24)
p—0+ P
9" (z,¢,v) = limsup Mgz (g, Qp(x)). (4.25)

p—0+ prt
Then fP € F, g7 salisfies (g1), (93), (g4), and (g7), with c3 replaced by ¢ := max{cz/c1,c3}, and

. foP(z, Vu dm—l—/ g5 (z, [u], v )dH™ ! if ula € SBVP(A,R™),
E,p(uvA):/A @ udet [ g ) | (A,R™)

(4.26)
+0o0 otherwise in LY (R"™,R™),

for every A € & .
Proof. For fixed € > 0 by (f3), (f4), (4.23), (¢5), and (g6), for every A € &/, we have

cl/ \vu|f'dx+/ (e + elfull) dH"" < S (u, A)

A SunA
< c2/ (1+|Vul?) dz + (cs + e)/ (1+|[u])ar™ " (4.27)
A SunA

u

if ula € SBVP(A,R™), while EZ”(u, A) = +oo if u|a ¢ SBV?(A,R™).
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Since the functionals E}? satisfy all assumptions of [8, Proposition 3.3], there exist a subsequence, not
relabelled, and a functional E?: LI (R™,R™)x.e — [0,400] such that for every A € &7 the sequence
E;P(-, A) T-converges to EP(-, A) in LP(A,R™).

Let ®°: LT (R™,R™)x% — [0, 4+00] be defined by

loc

VulP d +/ +e aH™ b it € SBVP(A,R™),
% (u, A) = CI/A| ul" do SunA (e elfull ula ( : (4.28)

+00 otherwise.

Since ®°(+, A) is lower semicontinuous in L} (R™,R™) (see [1, Theorems 2.2 and 3.7] or [2, Theorem 4.5

and Remark 4.6]), from (4.27) we deduce that for every u € L (R™,R™) and every A € & it holds

loc

cl/ \Vu|pd$+/ (e + elfull) dH"™" < B (u, A)
A SuNA

gcQ/A(H\vuV') d:r—|—(05+6)/s (14 [[ul])dH" (4.29)

WNA

if ula € SBVP(A,R™), while E*P(u, A) = +o0 if u|la ¢ SBVP(A,R™).
In order to apply the integral representation result [4, Theorem 1] we need a functional defined on

SBVP (R™,R™)x.4/. Since E*P(u, A) is not defined in SBV _(R™,R™)\ LY (R™,R™), we now introduce
the functional E: SBVP _(R",R™)x.« — [0,+0o0) defined by
Ef(u, A) := lim E*F(u, A), (4.30)
A—+o0

where u* := ¥*(u) and ¢ is as in (4.1).

Step 1: E° is well defined and E° = E*P on (SBVY (R™,R™) N LY (R",R™)) x /. We start by
proving that E° is well defined; i.e., that the limit in (4.30) exists. We prove it by contradiction. Namely,
if the limit in (4.30) does not exist we can find u € SBVP _(R",R™), A € &, a < b, \; = +oo, and
4; — 400 such that

E“P(u,A) >b and E“P(uM,A) < a. (4.31)
Fix n, h, @ as in Lemma 4.1, with (1 + n)a + n < b. By possibly removing a finite number of terms in
these sequences, it is not restrictive to assume that

e L(AN {Jul > M) <, (4.32)

and that A;11 > a); for ¢ = 1,...,h. Then by Lemma 4.2 for every j there exists i; € {1,...,h} such
that

E5P(iy(u"7), A) < (L4 ) ETP(u"7, A) + oL (AN {Ju | > A1}, (4.33)
where, here and below, we use the shorthand 1, for 9**. Therefore there exist i € {1,...,h} and a
sequence j; — +oo such that ij, = i for every £. Since u"J¢ — u in measure on bounded sets we have

that limsup, £ (AN {|u*e| > A1}) < L*(AN{|u| > A1}). Moreover o;(utie) — ;(u) in LY (R™,R™) as
£ — +o00. By the lower semicontinuity of the I'-limits, from (4.33) we obtain
E*P (i (u), A) < (1 + n) limsup E=P (u"e, A) + co L™ (AN {Ju| > A\1}). (4.34)
£—+oco

By (4.31) and (4.32) this implies that
b < E*(¢s(u), A) < (1 +mn)a+mn,

which contradicts the inequality (1 4+ n)a +n < b and hence yields the existence of the limit in (4.30).
We note that (4.30) and (4.34) imply that, under the assumptions of Lemma 4.1, for every u €
SBVE (R™,R™) and every A € o7, there exists i € {1,...,h} such that

EP(i(u), A) < (1 +n)E°(u, A) + 2L (AN {Ju| > \i}). (4.35)
‘We now show that

E*(u, A) = E°P(u, A) ¥ (u, A) € (SBVZ,(R",R™) N LD,

(R",R™)) x . (4.36)

Fix u and 4; since u* — u in L¥, (R",R™) as A — +o0 by (4.2) and (4.6), by the lower semicontinuity of
the I'-limits we have

E*P(u, A) < liminf Es”[’(u>‘7 A) = E(u, A).

A—+oo
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To prove the opposite inequality we fix n, h, and « as in Lemma 4.1 and we consider a sequence (A;),
i = 400 as i — +oo, such that \;11 > a); for every i. We now apply Lemma 4.2 to Ait1,..., Ai+n and
obtain that for every i there exists j; € {¢ +1,...,%+ h} such that

EP(us, A) < (14 0B (u, A) + 2L (A0 {Jul > Ai}).
Taking the limit as ¢ — o0, by (4.30) we get
E*(u, A) < (1+n)E~"(u, A),
and taking the limit as 7 — 0+ we obtain
Ef(u, A) < E®P(u, A),
which concludes the proof of (4.36).

Step 2: Lower semicontinuity of E° with respect to the strong convergence in Li... For fixed A € o we
now prove that E°(-, A) is lower semicontinuous on SBV{_(R", R™) with respect to the strong convergence

loc
in L{,.(R™,R™). Let us fix u € SBV? (R™,R™) and a sequence (ux) in SBV{?_(R™, R™) converging to u in

loc
L, (R™,R™) and such that limy E°(ug, A) exists. Let 1, h, o, and ()\;) be as in the previous step. We now
apply (4.35) to Ait1,...,Ai+n and obtain that for every i and every k there exists j;r € {i+1,...,i+ h}
such that

EZP (g, 5 (u), A) < (14 m) E" (uk, A) + c2L" (AN {Juk| 2 Ai}).
For every i there exist N; € {i +1,...,4i + h} and sequence k; — +00 as £ — +oo E such that Jiki = Ni

for every £. Since ¥n;, (uké) converges to ¢, (u) in L}

(R™,R™) as £ — 400, by the lower semicontinuity
of the I'-limits we obtain

EZ" (Y, (u), 4) < liminf BF (¢, (uy;), A)
—>+00
< (I+m) lim E(uy, A) + 2L (AN {[u] = Ai})
L—+oco [4
=L +n) lim E*(ur, 4) + e2L"(AN{Ju] 2 A}).

Taking the limit first as ¢ — +o00 and then as n — 0+, from (4.30) and from the previous inequalities we
obtain
Ef(u,A) < lim Ef(ug, A),
k—+oo

which proves the lower semicontinuity of E°(-, A).

Step 3: Integral representation of E<P. By [8, Proposition 3.3] for every u € SBVY (R",R™) N
LY (R",R™)) the function A — E*P(u, A) is the restriction to & of a measure defined on the o-algebra
of all Borel subsets of R". By (4.29) and (4.30), this implies that for every v € SBVY_(R",R™) the
function A — E®(u, A) is the restriction to &/ of a measure defined on the Borel o-algebra of R™ (see,
e.g., [15, Théoréme 5.7]).

It follows from the definition that E°* is local; i.e., if u, v € L (R",R™), A € &/, and u = v L -a.e.
in A, then E*P(u, A) = E*?(v, A). By (4.30), this property immediately extends to E¢; i.e., for every u,
v € SBVP (R*,R™), A € o/, with u =v L"-a.e. in A, we have E*(u, A) = E*(u, A). Moreover, by (4.5)

we have |[Vu*| < |Vu| L™-a.e. in A and |[u*]] < |[u]| H" *-a.e. in S,a N A C S, N A. Taking into account
the lower semicontinuity of ®° defined in (4.28), these inequalities, together with (4.29) and (4.30), yield

cl/ \vu|f'dx+/ (ca + elfull)dH™ ! < B (u, A)
A A

u

§02/4(1+\Vu|p) dx+(cs+5)/s (1+|[u])ar™ "

wNA

for every u € SBVY_(R",R™) and every A € 7.

Therefore E°P satisfies all the assumptions of the integral representation result [4, Theorem 1]. Con-
sequently, using also (4.36), for every v € SBVE_(R™,R™) N LY (R™,R™) and every A € & we have the
integral representation (4.26) with f©? and ¢g=? defined by (4.24) and (4.25). Indeed, it is easy to deduce
from (3.7), (4.2), (4.30), and (4.36) that for every € R™, £ € R™*", ( ¢ RY", v € ™!, and p > 0 we
have

e (be, Qp(w)) = inf {E*(u, Qp(x)) : u € SBV,

loc

mper (Us,cv, Qp(x)) = inf {E°(u, Q, () : u € SBVY,

loc

(R",R™), u = £ near 9Q,(2)},
(R™,R™), u = ug,c,, near 0Q} ()},
which coincide with the definitions used in [4]. By locality and inner regularity, formula (4.26) holds also

for every u € LY (R™,R™) and every A € & such that ula € SBVP(A,R™).

loc
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The Borel measurability of f©* and ¢ are then proved in Lemma A.5.

Step 4: f©F satisfies (f2), (f3) and (f4). We now show that f*? satisfies (f2). Since (f2) holds for
fr, for every A € &/ we have

EP(utle, A) < B (u, A) + o1 (IE) (£7(A) + By P (u+ Le, A) + B P (u, A))

for every £ € R™*" and for every u € LY (R",R™). We have

loc
(1= o1 (IEN)ELT (u+Le, A) < (14 01 (IE) BT (u, A) + o1 (IE)) £ (A), (4.37)
thus if 01 (]€]) < 1 taking the I'-limit gives
(1= or(IEN)E>"(u + L, A) < (14 o1(IEN)E™" (u, A) + o1 (1)) £ (A).
This implies that

(1 —01(|€2 = &1])) mEer (bey, Qp(2)) < (14 01(|€2 — &1])) mEew (bey, Qp(x)) + 01 (|62 — &1])p™  (4.38)

for every p > 0, z € R", and &, & € R™*™ with 01(|¢2 — &1]) < 1. Dividing by p™ and taking the limsup
as p — 0+ we obtain from (4.24) and (4.38)

(1 —o1(|€&2 = &) TP (x,&) < (1 +o1(]& — &) [P (z, &) + o1(]62 — &)
which implies
FoP (@, 62) < 2P (x,60) +oi([§e = &) (A + 7P (2, &) + [0 (2,62)).

This inequality is trivial if o1 (|€&2 — &1]) > 1. Exchanging the roles of &, and £ we obtain (f2) for 7.
Let us prove that [P satisfies (f3). By (4.27) for every u € LY (R™,R™) and every A € &/ we have that

E;P(u, A) > ®°(u, A) for every k, where ®° is defined by (4.28). Since ®°(-, A) is lower semicontinuous
in LY (R™,R™), this inequality is preserved in the I'-limit and hence we get

loc
E°P(u, A) > &° (u, A) (4.39)

for every u € LY (R™ R™) and every A € &.

loc

Let ¢°: R*xR™*"™ — [0, +00] be defined by

¢ (z,€) := limsup M. (4.40)
p—0+ p"
Note that, by translation invariance, ¢°(x,&) = ¢°(0,&) for every x € R™ and every £ € R™*"™. We can
now apply the integral representation result [4, Theorem 1] to ®° and, taking u = f¢ and A = Q(0), we
obtain
alglf = @°(L, Q(0)) = ( )¢E(y,£) dy = ¢°(0,8) = ¢°(z,¢)
Q0
for every x € R™ and every £ € R™*"™. Together with (4.24), (4.39), and (4.40), this gives the lower bound
(f3) for f=P.
To prove the upper bound (f4), we observe that E; (e, Qp(x)) < ca(l + [€]P)p" for every x € R™,
& € R™™ p >0 and k. This implies that E*P (e, Q,(z)) < c2(1 + [€]P)p™, hence mper (e, Qp(z)) <
c2(1 4 [£]P)p™. The upper bound (f4) for f©? follows from (4.24).

Step 5: ¢°P satisfies (¢93), (g4) and (¢g7). To prove (¢g3) we fix (1, (2 € Ry", with |¢1| < |¢2], and a
rotation R on R™ such that aR(2 = (1, where a := |(1|/|¢2] < 1. Since fi and g (see (4.23)) satisfy (f3),
(f4), and (g3), for every A € & and every u € LY (R",R™), with u|la € SBV?(A,R™), we have

loc

E;*(aRu, A) = / fr(z,aRVu) dz +/ gi(x, aR[u], v, )dH"
A s

WNA

< e2L™(A) + e / IVul? d + cs / 62 (@ [u], va) A
A S

WNA

<eL™(A)+ 0—2/ fr(z, Vu) de + 03/ gi(x, [u], v )dH™
€1 Ja SunA
Passing to the I-limit, we obtain E*?(aRu, A) < c2L"(A) + é3E*P(u, A), with és = max{cz/c1, c3}. This
implies that mpe.r (Us,arcs,w, Q5 () < c2p™ + esmper (Ua,cyv, Q4 (7)) for every x € R™, v € S"™', and
p > 0. Since aR(2 = (1, using (4.25) we obtain ¢°>?(z,(1,v) < é ¢°P(x, (2, V), which proves (g3), with cs
replaced by ¢és.
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To prove (g4) we fix (1, (2 € Ry*, with é3]¢1] < |¢2|, and a rotation R on R™ such that aR{2 = (1, where
a = |(1|/|¢2] € 1/é5 < 1. Since fir and g satisfy (f3), (f4), and (g4), the inequalities cza < ésa < 1
imply that for every A € & and every v € LY _(R™,R™), with u|a € SBV?(A4,R™), we have

loc

E;P(aRu, A) = / fr(z,aRVu)dx +/ gi(x, aR[u], vy )dH" !
A s

wNA

< e L"(A) + 02(1”/ |Vul? dx +/ gi(x, [u], v )dH™
A s

WNA
caa?

< CQ[,”(A) +

/ fu(x, Vu) dz +/ gi(x, [u], v )dH" ",
1 Ja SunA
Since a < 1 and ésa < 1, we have c2a”/c1 < cza/c1 < ésa < 1. Therefore E;?(aRu, A) < c2L™(A) +
E;P(u, A). Passing to the I'-limit, we obtain E®?(aRu, A) < c2L"(A) + E*P(u, A). This implies that
mper (Ue,aRcsws Q7)) < c2p™ + mper (Ua,cow, Q4 (x)) for every z € R”, v € S"7 ', and p > 0. Since
aR(2 = (1, using (4.25) we obtain ¢%"(x, (1,v) < ¢°P(z, (2,v), which proves (g4), with c3 replaced by és.
To prove the symmetry condition (g7) for g>'7, we observe that ug, —¢,—» = Ua,c,» — ¢ for every z € R™,
¢ € Ry, and v € S"'. Therefore u € SBV?(Q4(x),R™) N LP(Q%(z),R™) satisfies u = uaz,—¢,—» in
a neighbourhood of 9Q} () if and only if u = v — ¢ for some v € SBV?(Q}(z),R™) N LP(Q}(x),R™)
satisfying v = us¢,. in a neighbourhood of dQ}(x). Since Q,"(xz) = Q,(x) by (k) in Section 2, it
follows that mge.r (ue,—¢,—v, Q, " (%)) = MmEer (Us, ¢, Qp(x)). By (4.25) this implies that g% (z,(,v) =
g°P(x, —(, —v), which proves (g7) for g**. O

5. PROOF OF THE COMPACTNESS RESULT

In this section we begin the proof of the compactness result with respect to I'-convergence, Theorem 3.5.
We start with the following perturbation result, which, together with Theorem 4.3, provides a slightly
weaker version of Theorem 3.5. Indeed it does not establish that the surface integrand g°, defined in (5.2)
below, satisfies properties (¢92), (¢5), and (g6).

Theorem 5.1 (Perturbation result). Under the hypotheses of Theorem 3.5, let D be a countable subset
of (0,+00) with 0 € D. Assume that for every € € D there exists a functional E=P: L (R™,R™)x.o/ —

loc

[0, +00] such that for every A € o the sequence E)P (-, A) defined in (4.22) T'-converges to E*P(-, A) in

LY (R™ R™). Let f* and g=* be the functions defined by (4.24) and (4.25), and let f°: R" xR™*™ —
[0, +00] and ¢°: R™"xRF*xS™ 1 — [0, +00] be the functions defined by
0 — &p — 1 €,p
f(@,&) = Inf f2P(z,&) = lim f"(z,£), (5.1)
eeD
0 R g,p _ 3 &,p
g ($7<7]/) T Elggg (l‘?C?V) _E%%;+g ({L‘,C,V). (52)

Then f° € F and g° satisfies (g1), (g3), (g4), and (g7), with c3 replaced by é3 := max{ca/c1,c3}.
Let E° and Ey, be as in (3.4), with f and g replaced by f° and ¢° and by fi and gi, respectively, and
let EP and E} be the corresponding restrictions to LT (R™,R™)x./. Then

loc
E(-, A) T-converges to E°(-, A) in L°(R™,R™),
EP(-, A) T-converges to E”P(-, A) in LY, _(R™,R™),

loc

for every A € o7

Proof. By Theorem 4.3 E°P can be written in integral form as in (4.26), where P and ¢g=? are defined
by (4.24) and (4.25) and satisfy (f1)-(f4) and (g1), (93), (94), (7). It follows from (4.24) and (4.25) that
fEUP < fe2P and ¢°tP < g% for 0 < g1 < e2.
Properties (f1)-(f4) for f° and properties (g1), (g3), (94), (g7) for g° follow from (5.1) and (5.2) and
from the corresponding properties for f€'? and ¢=*.
By the Monotone Convergence Theorem we have
E%P(u, A) = lim E“P(u, A) (5.3)

e—0+4
eeD

for every A € &7 and every u € LY (R",R™) with ula € SBVP(A,R™).

loc
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Let E', E": L°(R™",R™)x.%7 — [0, +o0] and E’P, E"P: L2, _(R™,R™)x.%7 — [0, +00] be defined by

loc

E'(-,A) :=I-liminf Ey(-,A) and E"(-,A) := F-lIiCIEJSruDEk(vA),

k—+o00

E®(-,A) :=T-liminf EY (-, A) and E"?(-,A) :=T-limsup E}(-, A),
k—+o0 k—+oco
where for E' and E” we use the topology of L°(R™,R™), while for E’? and E"P we use the topology of
L;foc (Rn? Rm ) *
Then for every u € LY (R",R™) and for every € € D we have E" (u, A) < E"P(u, A) < E*P(u, A), thus
by (5.3)
E"(u, A) < E"(u, A) < E”(u, A) = E°(u, A) (5.4)
for every A € o and u € L} (R",R™) with ula € SBVP(A,R™).
We claim that
E%(u, A) = E*P(u, A) < E'(u, A) < E'P(u, A) (5.5)
for every A € o and every u € L™(R™,R™). Let us fix A and u. The inequality E'(u, A) < E"?(u, A) is
trivial. By I'-convergence there exists a sequence (ux) converging to u in L°(R™, R™) such that

E'(u, A) = liminf By, (ug, A). (5.6)
k—+oco

Let us fix A > ||lu||poo(rn,rm) and € > 0. By Lemma 4.1 there exist p > A, independent of k, and a
sequence (vy) C L (R™,R™), converging to u in measure on bounded sets, such that for every k we have

[vkllLoo ®n,rm) < 1, (5.7)
vg =ur  L"-ae. in {Jur| < A}, (5.8)
Er(vi, A) < (1 +€)Ex(uk, A) + c2L™ (AN {Juk| > A}). (5.9)
It follows from (5.7) that vy — w also in LY (R™,R™). If Ej(uk, A) < o0, by (f3), (¢5), and (5.9) the

function vy belongs to GSBVP(A,R™) and

H* (S, NA) < (1/ca)(1 4 &) Eg(ug, A) + (c2/ca) L™ (AN {|ur| > A}). (5.10)

By (4.22) and (5.7) this implies that
EpP (vg, A) < Eg(vg, A) + 2epH" ' (S, N A),
which, in its turn, by (5.9) and (5.10), leads to
Ef7 (e, A) < (1+2)(1+ (2ea/ea) B (ur, A) + e2(1 + (2ep/e0) £ (AN {Jur] > A}).
Clearly this inequality holds also when FEj(ur, A) = +oo. Therefore, using (5.6) and the inequality
[lw]| Loo (m, Rm) < A, by I'-convergence we get
B (u, 4) < (14 &)(1 + (22p/ca) E' (u, A)

for every € € D. By (5.3), passing to the limit as ¢ — 0+ we obtain (5.5) whenever v € L*(R",R™).
We now prove that

E"(u,A) < E°(u, A) for every u € L°(R",R™) and every A € .o7. (5.11)
Let us fix v and A. It is enough to prove the inequality when u|a € GSBVP(A,R™). By Lemma 4.1 for
every £ > 0 and for every integer k > 1 there exists ui € L (R",R™), with ug|a € SBVP(A,R™), such
that up = u L"-a.e. in {|u] < k} and
E%ur, A) < (14 ¢)E°(u, A) + c2L™ (AN {|u] > k}).
By (5.4) we have E” (uy, A) < E°(uy, A), hence
E" (ug, A) < (1 + €)E°(u, A) + c2 L™ (AN {|u| > k}).

Since uxr — u in measure on bounded sets, passing to the limit as £k — 400, by the lower semicontinuity
of the I'-limsup we deduce

E"(u,A) < (14 ¢)E°(u, A).
Hence letting & — 0+ we obtain (5.11). The same proof shows that

E'""(u, A) < E”P(u, A) for every u € L”, (R",R™) and every A € /. (5.12)

loc

We now prove that
E°(u,A) < E'(u, A) for every u € L°(R",R™) and every A € <. (5.13)



16

Let us fix uw and A. It is enough to prove the inequality when u|a € GSBVP(A,R™), since otherwise
E’(u, A) = 400 due to the lower bounds (f3) and (g5). By Lemma 4.2 for every € > 0 and every integer
k > 1 there exists ur € L (R",R™), with ux|a € SBVP(A,R™), such that up = u L"-a.e. in {|u] < k},
uf =u® H" lae. in S, N {|u| <k}, and

E'(u, A) < (1 +e)E' (u, A) + c2 L™ (AN {|u| > k}).
By (5.5) we have E°(ug, A) < E’(ux, A), hence

@ Vuydo+ [ g v a7 < E i, A) < (14 OB (u, ) + 2L (AN {lu] 2 K.
AN{Jul<k} SunAn{|ut|<k}n{lu-|<k}

As k — +o0o we get

B ) = [ e Vudet [ g ) a7 < (14 9F (w,A),
A SunA
and as ¢ — 0+ we obtain (5.13). Since E'(u, A) < E'P(u, A) for every u € LY (R",R™), from (5.13) we
also get
E%P(u, A) < E"(u, A) for every u € LF, (R",R™) and every A € <. (5.14)

The T-convergence of Ej(-, A) to E°(-, A) in L°(R™,R™) follows from (5.11) and (5.13), while the
I-convergence of E¥(-, A) to E%?(-, A) in LF (R™,R™) follows from (5.12) and (5.14). a

loc

To conclude the proof of Theorem 3.5 and to prepare the proof of Theorem 3.7, we now establish some
relations between the functions f° and ¢° introduced in Theorem 5.1 and the functions f’, f”, ¢, and g"”
defined in (3.8)-(3.11).

Theorem 5.2. Under the assumptions of Theorems 8.5 and 5.1, let f° and g° be defined by (5.1) and
(5.2) and let f', f", g’, and g" be defined by (3.8)-(3.11). Then
a) for every x € R™ and every &€ € R™*™ we have f°(x,&) < f'(x,€);
b) for L™-a.c. x € R™ we have f"(x,£) < fO(x,€) for every € € R™X™;
c) for every x € R™, every ¢ € RY", and every v € S™ " we have ¢°(x,¢,v) < ¢'(x,¢,v);
d) for every A € & and every uw € GSBVP(A,R™) we have
", @), (@) < 6 @), @) (515)
for H" t-a.e. x € S, N A.

(
(
(

The proof of Theorem 5.2 is postponed to Sections 7 and 8.

Remark 5.3. Since by definition f < f” and ¢’ < g”, Theorem 5.2 implies that for £"-a.e. z € R™ we have
f(x,€) = f'(x,6) = Oz, &) for every &€ € R™ ™, and that for every A € & and every u € GSBVF(A,R™)

we have
g' (@, [u](x), vu(x)) = g" (x, [u)(2), vu(x)) = ¢° (=, [u](z), vu(2)),
for H" t-a.e. z € Sy, N A.

Appealing to Theorem 5.2 we can now conclude the proof of the compactness result, Theorem 3.5.

Proof of Theorem 8.5. By combining Theorem 4.3 and a diagonal argument, we obtain a subsequence,
not relabelled, and, for every € € D, a functional E*?: [P (R" R™)x« — [0,+0o], such that for every

loc

A € o the sequence E;” (-, A) I'-converges in L}, (R",R™) to E*?(-, A) for every ¢ € D. By Theorem 5.1

loc

Ey(-, A) D-converges to E°(-, A) in L°(R™,R™) for every A € &7, and E° can be written as

E°(u, A) = / 2z, Vu) dz + / ¢ (x, [u], vu) dH" 1,
A SunA

where f° and ¢° are defined as in (5.1) and (5.2) (note that f° and ¢g° depend on the chosen subsequence).
Note that f° € F, but ¢° only satisfies (g1), (¢93), (g4), and (g7), with cs replaced by ¢é; := max{c2/c1, c3}.
To conclude the proof it remains to show that there exists g € G, possibly different from ¢°, such that E°
can still be represented as in (3.4) using f° and g.

Let now g’ be defined as in (3.10) (note that also this function depends on the chosen subsequence).
We can now apply Theorem 5.2 and Remark 5.3 to obtain

0 = O(z, Vu) dz Oz, [ul], va n—1
E(u,A>—Af<,V>d+/S ¢ (@ [u], vi) dH

WNA
— [ P@vodes [ g )
A SuNA

Since g’ € G by Lemma A.7, the theorem is proved. O
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6. IDENTIFICATION OF THE I'-LIMIT AND RELATED RESULTS

In this section we prove Theorem 3.7 using Theorem 5.2, which will be proved in Sections 7 and 8. We
also prove a result on the convergence of minimisers.

Proof of Theorem 8.7. To prove that (al) and (a2) imply (3.12), we observe that, by the Urysohn property
of D-convergence [12, Proposition 8.3], the sequence E(-, A) I'-converges to FEeo(-, A) in L°(R™,R™) for
every A € & if and only if for every A € & every subsequence of Ej(-, A) has a sub-subsequence I'-
converging to Eoo(-, A) in L°(R™,R™).

Let D be a countable subset of (0,400) with 0 € D. By Theorem 4.3, using a diagonal argument,
for every subsequence of (Ej) we obtain a sub-subsequence (Ekx;) which satisfies the assumptions of
Theorem 5.1. Let f°, ¢°, and E° be defined as in Theorem 5.1, corresponding to the subsequence (Ek;)-
Then Ey (-, A) T-converges to E°(-, A) for every A € «/. Thus, proving (3.12) is equivalent to showing
that

E%(u, A) = Ex(u, A) for every u € L°(R",R™) and every A € .o/ (6.1)
Let f', f”,§,§" be the functions defined as in (3.8)-(3.11), corresponding to the subsequences F}.; and
ij. Since
Fef<f'<f and ¢g<g<g<g,
equalities (al) give
foolx, &) = f(x,6) = f'(x,€) for L -a.e. € R™ and every £ € R™*™,
while (a2) implies that for every A € & and every u € GSBVP(A,R™) we have
o, [l (@), 2 (0)) = § (0, 1) (@), v () = 5 (2, ) (0), v ()

for H" t-ae. z € Sy N A.
By Theorem 5.2 and Remark 5.3 we have

2z, 8) = fl(z, &) = f'(x,€) for L -ae. 2 € R™ and every £ € R™*",
[ deane = [ Faldagie = [ e e
SunA SuNA SuNA
for every A € o and every u € GSBVP(A,R™).

Therefore

(2, 6) = fool(,£) for L™-ae. x € R™ and every £ € R™*",
/ G (x, [u], vy)dH" " = / Goo (, [u], v )dH" "
SunA SunA

for every A € o/ and every u € GSBVP(A,R™). By the definition of E. this implies (6.1), and hence
(3.12).
The same arguments also give (3.13). O

We now show that Theorem 3.7 implies the convergence of the solutions to some minimisation problems
involving Fx. Other minimisation problems can be treated in a similar way.

Corollary 6.1 (Convergence of minimisers). Under the hypotheses of Theorem 3.5, assume that conditions
(3.12) and (3.13) of Theorem 3.7 are satisfied for some A € o, and let h € LP(A,R™). Then

(B2, 4) + o = bl oy ) — _ min (B (0, A)+ o = Bllpamm))  (6:2)

inf m
vELP(A,R™) vELP(A,R™)

as k — 4o00. Moreover, if (ur) is a sequence in LP(A,R™) such that

BR uk, A) + k= Bl ooy €  inf (B2 4) 4 llo = Bl g ) + 2 (6.3)

for some e, — 0+, then there exists a subsequence of (ux) which converges in LP(A,R™) to a solution of
the minimisation problem
; P P
sopmin (BZ(, 4) + [0 = Al mmy ) (6.4)
Proof. Let us fix a sequence (ex) of positive numbers, with e, — 0+, and let (ur) be a sequence in
LP(A,R™) satisfying (6.3). By the lower bounds (f3) and (g5) we have that ux € GSBVP?(A,R™) and
we can apply [3, Theorem 4.36] to deduce that there exist a subsequence of (ug), not relabelled, and a
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function u € GSBVP(A,R™) such that u; — u in L°(A,R™) and L™-a.e. in A. Hence by the Fatou
Lemma we deduce that
llu— hHZL),P(A,]Rm) < lklgl_&l;‘f llux — h’HiP(A,]Rm)' (6.5)

This inequality, combined with the fact that (6.3) also ensures that supy, ||ux||Lr(a,rm) < +00, immediately
gives u € LP(A,R™).

Let us extend uy by setting ux = u on R™\ A. Since Ey (-, A) T-converges to Eoo(-, A) in L°(R™, R™),
we have

E2 (u,A) = Eoo(u, A) < lkim+inf Ey(uk, A) = lkim inf EY (uy, A).
—>+0o0

—+oo

This inequality, together with (6.3) and (6.5), gives
B2 (1, A) + lu = Bl g oy < iming (B2 (e, 4) + e = BlE o))
— i 4 s P P
=timinf inf (B0, A) + [0 = Bl )- (6.6)
Let us fix w € LP(A,R™), that we can extend to a function w € L}, (R",R™). By (3.13) we can find
a sequence (wg) in LY. _(R™,R™) such that

loc
wg = w in LY (R",R™) and klim E} (wg, A) = E% (w, A),
— 400

hence

limsup _inf (E}:(U,A) +lv— hngpmm)) <

k— oo VELP(AR™)

< lim (E‘Z(wk, A) + [Jwe — hHIiP(A,Rm)) =B (w,A) + [lw — hHIZP(A,]Rm)' (6.7)

T ka4

Gathering (6.6) and (6.7) gives

p _p P . p _p
B (u, A) + [[u h”LP(A,RmSlﬁ@l&fveﬁ?j,mm)(E’“(U’A)JFHU h””(A»Rm))

4 H P p P p
< 1}:3_?}:5) UeL,}?j’Rm) (Ek (v,4) +[[v— h”Lp(A,RM)) < E(w, A) + [lw — hHLP(A,]Rm)‘

Since this holds for every w € LP(A,R™), we deduce that u is a solution of the minimisation problem
(6.4).

Taking w = w in the previous chain of inequalities gives (6.2) for the subsequence selected at the
beginning of the proof. Since the limit does not depend on the subsequence, (6.2) holds for the whole
sequence (EY). O

7. PROOF OF THEOREM 5.2 (a) AND (b)
We start by proving the inequality f° < f.

Proof of Theorem 5.2 (a). Fixx € R", £ € R™*"™ p>0,and e € DN(0,1), where D is as in Theorem 5.1.
By (3.5) for every k there exists vy, € L°(R™,R™), with Vk|Q,(z) € WhP(Q,(x),R™), such that vy — ¢ €
Wy ? (Qp(x),R™) and
Ep (ve, Qp()) = Fu(vr, Qo(x)) < mgl (e, Qp(x)) + e p". (7.1)
Let k; be a strictly increasing sequence of integers such that
lim Ez;p(vkj,Qp(m)) = lklgligof E" (vk, Qp()).

Jj——+oo
From (f3), (f4), and (7.1) we obtain
Cl||VUk||ip(Qp<z>,Rmm) < (02(1 + |£|p) + E)pn‘

By the Poincaré Inequality we deduce that the sequence (vy,) is bounded in W7 (Q,(x),R™). Therefore,
up to a subsequence, vy — v weakly in WP(Q,(x),R™) for some v € WP(Q,(z),R™) such that
v—Le € Wy (Qp(x),R™). Let wy, w € WLP(R™,R™) be defined by

loc

wy, = Uk ?n Qz(a:), and wi=1" %n QZ(:C)’ (7.2)
Le  in R™\ Qp(z), L in R™\ Qp(x).

By the Rellich Theorem wy, — w in LY (R™,R™), hence
E*P(w,Q,(x)) < liminf B (wik, Qp(z)) = liminf EpP (vi, Qp(z))
k—+o0o k—+o0
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by the I-convergence of E{” (-, Qp(z)) to ESP(-,Q,(x)). Using this inequality, together with (f4), (7.1),
and (7.2), we get
mper (le, Qe (7)) < E¥P(w, Qp(x)) + c2(L+ [§7)((1+2)" —1)p"
< lim inf B (ux, Qp(x)) +en2" ea(1+[€]7)p"
— 400
. . 1,p n
< liminf mi? (fe, @ () +<Cep
where C¢ := 1+ n2" ca(1+ |€[7). Dividing by p™ and taking the limsup as p — 04, we obtain from (3.8)
and (4.24)
mEE”’(Zﬁ’ Q(1+s)p(m))

(1+&)" 7 (2,€) = limsup

p—0+ p"
P (g x
< lim sup lim inf M +eCe = f'(x,€) + eCk.
p—0+ hk—too P
Letting € — 04, from (5.1) we obtain that f°(z,&) < f'(x,€). O

We now prove (b). Namely, we show that f” < f°.

Proof of Theorem 5.2 (b). In view of Lemma A.6 we have f” € F, while by Theorem 5.1 f° € F, hence
in particular f° and f” are continuous with respect to £ by (f2). Therefore it is enough to prove that for
every £ € R™*" we have f”(x,&) < fO(z,€) for L™-a.e. x € R™.

We may assume that the set D considered in Theorem 5.1 is contained in (0,1). Let us fix £ € R™*™.
Since for every € € D

E®P(te, A) = / foP(z,&)dr  for every A € o, (7.3)
A

by the Lebesgue Differentiation Theorem for every € € D and for £"-a.e. x € R" we have

€,p
e (e Qp(@))
p—0+ pr

=[7"(,8) < (14 [¢]7), (7.4)

where the last inequality follows from the fact that f*'? € F by Theorem 4.3.
Let z € R™ be fixed and such that (7.4) holds for every ¢ € D. It follows that for every ¢ € D there
exists po(e) € (0,1) such that

E=P(¢
( ZnQp(x)) < ca(2+ [€]P) (7.5)
for every 0 < p < po(e).
Let € € D be fixed. Since E;*(-,Q(x)) I'-converges to E®

(,Q(z)) in LY (R™,R™), there exists
(ur) C LT, (R"™,R™), with ux|g@) € SBVP(Q(x),R™) N LP(Q(x),R™

), such that
(B R™) and  lim BE? (e, Q) = B (6, Q(a). (7.6)

loc

ug = b in LY

loc

By (7.3) we have E°P(le,Q(z)) = E“P(le,Q,(x)) + EZP(le, Q(x) \ Q,(x)) for all p € (0,1). By I-
convergence we have also

lim inf E.? (uk, Qp(x)) > E°P (e, Q,(x))

k—+oo

tim nf 557 (un, () \ @, (1)) > B (L, Q) \ @, (#)):
From these inequalities and from (7.6) it follows that
lim BT (us, Q) = B77 (le, Qo).
—+oco

This yields the existence of ko(e, p) > 0 such that |E®P(le, Qp(x)) — EpP (ur, Qp(x))| < ep™ whenever
k > ko(e, p), hence

B, Qu(e)) _ B (e, Q,(x)

pn pTL
In the remaining part of the proof we modify the sequence (ux) to construct a competitor for the
minimisation problem m (KE,Q,,( )), which appears in the definition of f”. To this end, for every

+e. (7.7)
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y € Q := Q(0) we set

up(y) = T ZlD),

) = fe(z +py,-).
Note that uf € SBV?(Q,R™) N LP(Q,R™) and ff € F.

We fix A > |€|v/n/2 and h, «, 91,...,¢n, and u as in Lemma 4.1 with n = . By (4.12) for every k
there exists ix € {1,...,h} such that

F (u(ug), Q) < (1 + ) F (u, Q) + c2L™(Q N {[ug] = A}), (7.8)
where FY is defined as in (3.2), with f replaced by f£.
We define
of = i (uf). (7.9)

Then v = uf in @ N {|uy| < A} and [v}| < pin Q. Since up — f¢ in LP(Q,(z),R™), we have uf — £
in LP(Q,R™), and since [l¢| < |¢{[v/n/2 < A in Q, it follows that v) — f¢ in LP(Q,R™) and that
LM(Q N {|uf] > A}) — 0 as k — +o00. Therefore, there exist k1(e, p) > ko(e, p) such that

lvg = lellLr@rmy <p and  LY(QN{|Juf] > A}) <p for every k > ki(e, p). (7.10)
Using (f3), (g5), (7.8)-(7.10), and a change of variables we obtain the two following estimates
1+e¢
01/ (Vg (y)[Pdy < / fe(x + py, Vop(y))dy < —— [ fi(y, Vur(y))dy + c2p, (7.11)
Q Q P JQp
C. n— C n— 1 e n—
S (S, N1Q) < S (S, N Qule) < 7/ 05y, [un)s v )AH™ (7.12)
P P P J 50, NQp(x)

for every k > ki(e, p), where g, is defined in (4.23).
From (7.5), (7.7), and (7.12), we deduce that there exists M > 0, independent of k, p, and &, such that

VPl L@ rmxny < M and ’H”_l(Svg NQ) < Mp, (7.13)

whenever € € D, 0 < p < po(e), and k > ki (g, p). Since |[vf]| < 2p H" '-a.e. on Sye by (7.9), from (7.13)
we obtain also that
|D*vp[(Q) < 2uMp. (7.14)

We now regularise v} in order to obtain a function w} € WhP(Q,R™) such that
/ fi(@ + py, Vwi(y))dy < / frlx + py, Vop(y))dy + e
Q Q

for a suitable choice of p and k. We follow the procedure introduced in [23, Lemma 2.1], which we now
illustrate in detail for the readers’ convenience.

Step 1: Regularisation of v. Let t > 0; we define the sets

| Dvg|(Br(y))
L™(Br(y))

t
Shi= Sy U{y e Q: IVl = 5 ).

For every k, by the Vitali Covering Lemma (see, e.g., [16, Section 1.5.1]), there exists a sequence of disjoint
closed balls B, (y;) C Q, with centres y; in Q \ R}, such that

| Do |(Br,(y;))
L7(Br,(y;))

R,Cf{yEQ <tforeveryr>0w1thB CQ}

>t forevery j and Q\ Ry, C U Bsr,(y;)- (7.15)
j=1

Hence

£ (U Bryw)) =t £"Bry(wi) < S 1D (Brun) = Dol (U B

Jj=1 Jj=1 Jj=1 Jj=1

W) (116)
On the other hand

ol (U B = 100 (st U B + 1D0f1 (@1 $E

j=1 Jj=1 j=1

8

) (7.17)
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We are going to estimate the two terms in the right-hand side of (7.17) separately. We observe that

IDefl((@\ %) mf] B.,()) = /( s VY S ;m(jf]l Bry()). (7.18)
By (7.16) we have, using also (7.17) and (7.18),
e ( G Buy(ys)) < IDufI (St [j () + z”([j Boy())-
This implies that a . a
c (Q Bry()) < 2Defl (S0 H Bou)- (7.19)

y (7.15) and (7.19) we have

LM(Q\ RY) <ZL" (Bsrj(y;)) = 5" ZC r(Y5)) =5"5"(UBrj(yj))

Jj=1 Jj=1 j=1
2. 5" 2-5™ s
) < 27 (10°utl(@) + [ 19tlay)
= S
1

22 (Iproti@ + ([ 1vetiran) (e (st)' ). (7.20)

Sk
Now, by the definition of S; and by (7.13) we have that

noaiy(E\P
e (sb)(3)" < [, 1vetray < e
k

oo

IA

REGEAY

2-5™

\A

whenever € € D, 0 < p < po(e), and k > ki(e,p). It then follows that £™(Sf) < 2°MP/t*, which,
combined with (7.13) and (7.20), gives

n 25" 3 2P Pt 2.5™
£Q\RE < 2 (107ugl(@) + ([ 19uray) ") <
Sk

2P5" MP

D UI(Q) + 22

tp—1
Hence we can conclude that
tPLM(Q\ Ry) < 2:5™P 71D |(Q) + 2°5" MP (7.21)

whenever € € D, 0 < p < po(e), and k > ki(e, p).
Now we choose tr,, > 0 such that tz;l\Dsuz\(Q) = 1. By (7.14) this implies

1
CDRl(Q) T 2uMp’

whenever € € D, 0 < p < po(e), and k > ki(e, p). Then, from (7.21) we obtain

tp

t ,LNQ\R?) < 25" + 275" MP =: My,
which gives in particular that

LMQ\ RS < i\f—l < Map?, (7.22)

k,p
with ¢ :=p/(p — 1) and M2 := My (2uM)1.

By [16, Section 3.1.1 (Theorem 1) and Section 6.6.2 (Claim #2 of Theorem 2)] there exist a constant
¢n, depending only on n, and Lipschitz functions 2z} on @, with Lipschitz constant bounded by cntx,p,
such that that z{ = v} L"-a.e. in Rzk’p. Note that, since |vf| < p L"-a.e. in @, it is not restrictive to
assume that |2}| < p in Q. By (7.13) and (7.22) we have also

/Q|v2,g|pdy < /Rk VollPdy + 8 £MQ\ RY) < MP + M,
k

Therefore the sequence (2)i is bounded in Wh?(Q,R™).
By (3.9) there exists a decreasing sequence p; — 0+, with 0 < p; < po(g), such that

fl/(aj7 &)= lim limsup %ka (Le, Qp; (z)). (7.23)

J=+0 pstoo
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By applying [18, Lemma 1.2] to the double sequence (z,’);x we find a double sequence (w}’);x in
WhP(Q,R™) such that |szj |? is equi-integrable, uniformly with respect to j and k, and

LM{wy #27}) =0 ask+j— +oo.

Note that, since |z;’| < p in @, it is not restrictive to assume that |w}’| < u L"-a.e. in Q. By (7.10)
and (7.22) these properties imply that for every j there exists k2(e,7) > ki(e, p;) such that for every
k > ka(e, j) we have

L{w? #vP}) < Map? and  [[wf’ — Lellioi@rm) < ps + 4pMy/? pl/? =i ;. (7.24)

Moreover,
/ fu(@ + piy, Vwy? (y))dy < / fe(@ + pjy, Voy? (y)dy + /{ b5 45, fe(@ + piy, Vwy? (y))dy.
Q Q wy Fzy

By the equi-integrability of \szj |P, by the upper bound (f4), and by (7.24) we can conclude that for
every € € D there exists jo(e), with p;, ) < po(e), such that

[, et oVl )y < e
{wpd 2207}
for every j > jo(¢) and every k, hence
[ 5ot il )y < [ il + o Vo 0))dy <, (7.25)
Q Q

for every j > jo(e) and every k > ka(e, j).

Step 2: Attainment of the boundary datum. We now modify ij so that it attains the linear boundary
datum /¢, which appears in the definition of f”(z,£). To this end, we will apply the Fundamental Estimate
to the functionals F}’ corresponding to the integrands f,’ (y,) := fi(z + p;y,-). Let Qi—- := Q1--(0).
By [12, Theorem 19.1] there exists a constant C. > 0 and a finite family of cut-off functions (¢;)1<i<n C
C(Q), with 0 < p; <1in @ and ¢; = 1 in Q1_., such that

FP ()7, Q) < (14 &) (F (W, Q) + FL (06, @\ Q) + Cellwf? — el g +
where W}’ = Pir, 5 wy? + (1 - @iy, ;e for a suitable iy ; € {1,..., N}. Clearly W, attains the boundary
datum £¢ in a neighbourhood of 9Q). Since L™(Q \ Q1—:) < ne, by (f4) and (7.24) it follows that
F,fj (?I]Zj, )< (1+ E)F,fj (wzj, )+ e(l+e)nea(1+ [€7) + Csré’ +e. (7.26)
Combining (7.7), (7.11), (7.25), and (7.26), and setting Be := 7 + 2ncz(1 + |€|P), we have the bound
2 Es,p(£§7 Qﬂj ('T))

Pj

lim sup/ fe(z + pjy, Vo’ (y))dy < (1 +¢) + Bee + Cery) + 2¢2pj, (7.27)
Q

k—+oo

whenever € € D, j > jo(e), and k > ka(e, 7).
Finally, we perform a change of variables in order to relate the left-hand side of (7.27) with the
minimisation problems on Q,; (z), appearing in (7.23). For y € Q,; (z), define

~p ~ P — T
o) =gy () + bele),

Clearly o, € WhP(Q,, (x)), )7 = ¢ in a neighbourhood of 0Qp; (), and
» 1 > 1
/ Jr(@ + pjy, VI (y))dy = — Fr (0, VO (9) dy > ——mp? (Ce, Qp, () -
Q Pi™ JQp,; (=) Pj
Therefore, from (7.27) we conclude that
ESP(6e, Q.
lim sup %m},’: (ﬁg, Qp; (x)) <(1+ s)QM

k—+oo Pj Pi

+ Bee + Cer¥ 4 2cap;.

Since r; — 0 by (7.24), taking the limit as j — 400, by (7.4) and (7.23) we obtain the estimate
f(@,6) < (L4 )" (2, €) + Bee
for every e € D. Taking the limit as ¢ — 0+, from (5.1) we obtain f”(z,€) < f°(z,€). 0O
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8. PROOF OF THEOREM 5.2 (c) AND (d)
We start by proving the inequality ¢° < ¢’.

Proof of Theorem 5.2 (c). Fix x € R", ¢ € Ry*, v € S"™', p > 0, and ¢ € DN (0,1), where D is as
in Theorem 5.1. By the definition of my;, , for every k there exists ux € L°(R™,R™), with uk|QZ(z> €
SBVpe(Q)(x),R™), such that ug = ue ¢, in a neighbourhood of 9Q} (z) and

Gr(ur, Q) (7)) < m, (uecw, Qp () +p" " (8.1)
Now fix A > [¢] and h, «, 91,...,%n, and p as in Lemma 4.1. Then by (4.13) for every k there exists
ir € {1,...,h} such that
By (tiy(ur), Qp(2)) < (1 + &) Ei(ur, Qp (7)) + c2L™(Q (x) N {|ur| = A}).

By (4.10) and (4.11) we have t;,(ug) = ugz ¢, in a neighbourhood of 0Q} () and [¢;, (ur)| < g in R™.
Moreover, the chain rule gives V(;, (ur)) = 0 L"-a.e. in Q},(x). Therefore the functions vz defined as

v 1= § V)i @) (8.2)
Ug,c,y 0 R™\ Q(x)
satisfy vi|a € SBV,c(A,R™) for every A € 7.
By definition we also have
log] <p in R™. (8.3)

Since vy, = vu, and, by (4.5), |[vi]] < [[uk]] H" '-ae. in Su, N QY (x) C Sy, N QY(x), by using (g3),
(gb), and (g6) we get
caH" " (Su, N Qp()) < Gr(ow, Qp (@) < esGi(uk, Q) ().
Therefore, appealing to (8.1) we conclude that for every k
H" 7 (Su, N Q) () < Mcp™ ™, (8.4)

where M := cs(es(1 +|C]) +1)/ca.
Since vy € SBV,c(Qp(x),R™), by combining (8.3) and (8.4) we can invoke [3, Theorem 4.8] to deduce
the existence of a function v € SBV,(Q}(x),R™) N L>(Q,(x),R™) and a subsequence, not relabelled,
such that vy — v in L°(Q%(z),R™). We extend v to R™ by setting v = u ¢, in R™ \ Q%(x) and observe
that v|a € SBV,c(A,R™) for every A € /. By the definitions of v, and v and by (8.3), the convergence
in L°(QY(z),R™) also implies that
vy — v in LY (R",R™),
|v| <p L"-ae. in R™.

Since U\Q?HE)[)(@ € SBVpe(Q146),(®), R™) and v = uz¢,0 in Q(14.),(2) \ Qp (), we have

mEEvP(Uz,g,V7Q2/1+e)p($)) < Es,p(,u’ Q(Vl+s)p( ))

Using the I'-convergence of E; (-, Q1 4.),(®)) to EZ?(-, Q1) ,()) in Lf, (R",R™), we deduce from (8.5)
that

—~ o~
S Ot
= =

E*P(v, Q’(/H—E)p(z)) < lklglﬁg E;’p(vk’ Q’(}l-‘rs)p(l’))-

Since vk = ug,c,, in a neighbourhood of 9Q%(z), we have H" ' (S,, N 0QY(x)) = 0. Therefore, from
(8.2) and (8.4) we obtain

M (So, N Qf1eyp(@)) < Mcp™ '+ (L +)" 7 = 1)p" T < Nep™ ™,
where N¢ := M 4 2""'. By (4.22) and (8.3), this inequality leads to the estimate
B (0k, Q110)p(2)) < Bi(vk, Q{1 40),(x)) + 2euNep" (8.8)

Gathering (f4), (¢6), (8.1)-(8.2), and (8.8) we obtain

ELP (0, Qli4e)p (1)) < Ex(vi, Qp () 4 Bk (ta,¢,vs Q(146)p(T) \@ (x)) + 2epuNep™™
< (14 ) Bx(ur, Qp(x)) + (14 2")c2p™ + Grluac.v, Q<1+e)p(w) \ @, (@) + 2euNep"
< (1 Gi{ow, Q) + (3+2')as” 4 (C + 2Nl
< (1 + &) m, (uscws Q) + (34 2")e2p” + (2 + C¢ + 2uN)p" ™
where C¢ := c5(1 + [¢])(n — 1)2"72. This inequality, together with (8.7)-(8.8), gives

e s Qg () < (14 €) B g %, (s 0 QL (2)) + (3 4 2")enp” + eKp™,
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where K¢ := 2+ C¢ + 2uNe¢. Hence dividing by p" ', taking the limsup as p — 04, and recalling (3.10)
and (4.25), we obtain

(L+e)" 'g"P(2,¢v) < (L+e)g(z,(,v) +eKe.
Eventually, by taking the limit as ¢ — 0+ and appealing to (5.2) we get

9°(z,¢,v) < g'(,¢,v),
which concludes the proof. O

We are now ready to conclude the proof of Theorem 5.2.

Proof of Theorem 5.2 (d). We divide the proof into several intermediate steps. In the first four steps we
prove the claimed inequality for functions v which belong to SBV?(A4,R™)NL*> (A, R™), while the general
case of functions in GSBVP(A,R™) is treated in Step 5.

We may assume that the set D introduced in Theorem 5.1 is contained in (0,1). Let A € &, u €
SBVP(A,R™)NL*(A,R™), and € € D be fixed. For every x € R"™ and every p > 0 we set

@) =2+ R ((- 5.0 < (-2, D)), (8.9)

where R, is the orthogonal matrix introduced in (k) Section 2. We fix € S, such that, by setting
¢ := [u](z) and v := vy (z), we have

¢H0, (8.10)
4 1 P —
Jim [ ) sy =0, (8.11)
ESP v,e
g (z,¢,v) = lim M. (8.12)

p—0+ p"71

Note that (8.10) and (8.11) are satisfied for H" '-a.e. x € S, (see, e.g., [3, Definition 3.67 and The-
orem 3.78]). The same property holds for (8.12), thanks to a generalized version of the Besicovitch
Differentiation Theorem (see [24] and [17, Sections 1.2.1-1.2.2]).

We extend u to R™ by setting v = 0 on R™ \ A. By the I'-convergence of E;”(-, A) to E°P(-, A) there

exists a sequence (uy) converging to v in L} (R"™, R™) such that

lim E;"(uk, A) = E5"(u, A).

k—+oco

Since E°P(u,-) is a finite Radon measure, we have that E?(u,0Q,°(x)) = 0 for all p > 0 such that
Qpf(x) C A, except for a countable set. As a consequence (ug) is a recovery sequence for E*¥(u,-) also
in Qy¢(x); d.e.,

i B, QU (1) = B0 (u, Q) (), (8.13)
for all p > 0 except for a countable set.

We now fix A > max{||[u|/poe®n zm), (|} and h, &, 1,...,%n, and p as in Lemma 4.1. We also fix p
satisfying (8.13). By (4.13) for every k there exists i € {1,...,h} such that

ESP Wu(ur), @y (2)) < (1+ ) B (uk, Q7 (7)) + c2L7(Qp" () N {Jur| = A}).
Let vy := i, (ux). By (4.10) and (4.11) we deduce that vy — u in L} (R™,R™) as well as

loc

lvg] < p in R, 1Ii€miup EXP (vr, Q% (%)) < (14 e)E*P(u, Q)¢ (x)).
—+oo

Hence there exists ko(p) > 0 such that whenever k > ko(p)
B (v, @y (2) < (14 ) E™P (u, Q0% (2)) + p". (8.14)

We now start a multi-step modification of vg in order to obtain a function z; which is an admissible
competitor in the k-th minimisation problem defining g”'(z, ¢, v).

Step 1. Attainment of the boundary datum for a blow-up of ux. The blow-up function v at = is defined
by

o) = oo+ py) fory € Q"7 = QVE(0).
We now modify vf so that it agrees with ug,¢,. in a neighbourhood of 8Q"°. To this end, we consider
the class #7(QV°) == {A € & : A C QV°} and apply the Fundamental Estimate to the functionals
Egh: (SBVP(QYE,R™) N LP(Q™5,R™)) xa (Q"F) — [0, +00) defined as

Epp(v, A) = /A Ji(@ + py, Vo(y))dy + /S gk (@ + py, [)(y), vo (y))dH" (1), (8.15)

wNA
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where g is defined in (4.23).
Let K. C Q”° be a compact set such that
e2L™(QV\ Ke) + (es(1+[¢]) +el¢)) H™ (g N (Q™° \ K2)) <. (8.16)

We can appeal to [8, Proposition 3.1] to deduce the existence of a constant M. > 0 and a finite family of
cut-off functions ¢1,...,¢n € C°(Q¥°) such that 0 < ¢; < 1 in Q¥°, ¢; = 1 in a neighbourhood of K.,
and

Epp(07,Q7%) < (L+ ) (B (v, Q) + Bip(uo.c., Q7 \ Ke))

+ Me|lvg — vo,¢,v |II7,P(Q”:5,RW) te, (8.17)
where 9f := ¢, v5 + (1 — ¢s, )uo,¢,» for a suitable i, € {1,..., N}. Clearly
[0f] < p in Q"F (8.18)
and 9} = uo,¢,, in a neighbourhood of 9Q"°. By (f4) and (g6) we have that
B0 (uoc, @\ Ke) = [ frlz+ py,0)dy + / gi (@ + py, ¢, v)dH" " (y)
QVE\Ke ogN(QY =\ Ke)

< eLM(Q\ Ke) + (es(1+[¢]) +el¢H"H(IIE N (Q7°\ Ke)) < &
where the last inequality follows from (8.16). Since vy — u in LP(Qy°(x),R™), it follows that
() =w(@+p) = ulxz+p) in L°(Q",R™) as k — +oo. (8.19)
Hence, from (8.17) and (8.19) we have

hmsup E,i’i(vk, Q") < (1+ 6)(hmsup Eg’p( , Q") + 8)

k—+ k—+oo
+ Mo + p°) = to.c.o Nl quee smy + (8.20)
Step 2. Estimate for Vv;. We now show that V¢} is small in LP-norm for k large and p small. By the
definition of 0§ we have
VRl e (@uie mmxny S IV @iy l[Loe(@ue mmll0g — to.c.vllLr(@re mm)
—+ ||¢'Lk HLoo<QV,5> Hv’UZ”Lp(Qu,E’R'an) (821)
< Cellog —wocwllze@uerm) + VOl Lo (@uie mmxny,

for a suitable constant C. > 0. We now estimate separately the two terms in the right-hand side of (8.21).
As for the first term, note that by (8.19) we can find k1(p) > ko(p) such that

lvp(-) —u(@ + p-)llLe(@rerm) < p for k> ki(p).
Hence from (8.11) we deduce that for k& > k1(p)
v, = wo,cwllLe(@ye mm)
<o () =l + po)|lLe(@re wmy + lu(z + p+) = uo,c, ()| Lr(@ree rmy < wi(p), (8.22)

where w1 (p) is independent of k and w1 (p) — 0 as p — 0+.
For the second term in (8.21), by the definition of v{, (f3), and the positivity of g, we have that

p—n
/ Vg |Pdy = p”’"/ Vor[Pdy < © / fi(y, Vor)dy
Qpe (=) “Jept@

P

[ ( 1 e )
< Ep 8.23
= e o 1 (vk7 ) ( )
By (8.12) there exists po > 0 such that E<?(u, Q% (x))/p" " < ¢°"(z,(,v) + 1 for every 0 < p < po.

g
Therefore, for every 0 < p < po satlsfylng (8.13) there exits k2(p) > ki(p) such that

)
Bt (uk, Q% (2)) < g7 (2, ¢, v) + 1,

pn—l

for every k > ka2(p). This inequality, together with (8.23), gives
-1

P
/ [VoplPdy < %(g”’(x,c,v) +1), (8.24)

for every k > ka2(p). Finally, putting together (8.21), (8.22), and (8.24) yields
V0Ll e (@uie rmxny < w2(p) (8.25)
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for every 0 < p < po satisfying (8.13) and every k > k2(p), where wa(p) is independent of k and w2(p) — 0
as p — 0+.

Step 8. Modification of v}, to make it piecewise constant. On account of estimate (8.25), we now further
modify 0§ using the same construction as in [8, page 332]. Let (1,...,(m be the coordinates of ¢. By
(8.10) for every 0 < p < po satisfying (8.13) there exists an integer N, > 0, with 2/m/N, < p and
1/N, < |G| for every i with ¢; # 0, such that,

N, — 400 and w2(p)N, -0+ as p— 0+. (8.26)

Note that, by (8.18), we have [07| < 2u — (1/N,) in Q"°. Let o ,,..., 0}, be the coordinates of 0.
Since v ; € SBV(Q"®) for i = 1,...,m, by the Coarea Formula the set {0} ; > ¢} has finite perimeter in
Q"¢ for L'-a.e. t € R and

2p
H* Q77 \ Sop) N0 {07, > t})dt,

—2u

[ Vet ddy = Dot @\ Sup) =
QV,E

where 9" denotes the reduced boundary in Q"°.

To simplify the exposition we assume that p is an integer. From the Mean Value Theorem, for every
integer £, with —2N,pu < £ < 2N,u, there exists tj, € R, with ¢/N, < tj < (£+1)/N,, such that {9} , >t}
has finite perimeter in Q"¢ and ,

2N, u—1
1 2 _ Ve * (A i

[ ity > W@\ S N0 o, > 6)): (8.27)

QV,E P e:—2Np}_L

We now define
Zy={y € Q" :+ 1y < 0f,(y) < tos1},

and note that Z; has finite perimeter in Q. Moreover, since 07| < 2u — (1/N,) in @, the sets Zj,
—2N,u < £ < 2N, pu, form a partition of Q¥°.
We finally define the piecewise constant function wy ;: @ — R as

0 if ) <0< thy,
wplz, =G if 1 <G <t
t; otherwise.

Note that wy, ; is well defined, since |(;| > 1/N, when ¢; # 0, and therefore in this case 0 and ¢; cannot
belong to the same interval [t}, ] ;). Moreover, wy ; € SBV;c(Q") since each set Z; has finite perimeter.
Then the function wy, := (wy ,,...,wy ) belongs to SBV,c(Q”°,R™).

We now claim that for every 0 < p < po satisfying (8.13) and for every k > k2(p) the following
properties hold:

wy = up,¢,, in a neighbourhood of 9Q"*, (8.28)
. m
lwy — 7|l Lo (@vee rmy < ]\( < i, (8.29)
P
lwillLoe (@ure mmy < 2, (8.30)
H" T (Sup \ Sop) N Q%) < wslp), (8.31)

where ws(p) is independent of k£ and w3(p) — 0+ as p — 0+.

Property (8.28) follows from the definition of wy. As for (8.29) we just note that |[wy ;=07 ;[|Leo(qv.e) =
max [lwy ; — @z’iHLoc(Zg) < 2/N,. Inequality (8.30) follows from (8.18) and (8.29). To prove (8.31) we
observe that, up to #" '-negligible sets, Swe C Ui U 9*Zj, and since Z; = {0f ; >t} \ {0f ; > tiy,}, it
follows that 0" Z; C 0" {v} ; > t;} UO™ {0} ; > ty;1}, and hence

m 2Npu—1

Swen@=cl) U @, >urnQ™).

i=14=—2N,u
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This inclusion implies that, by (8.25) and (8.27),

m  Npr—1
H T (Sup \Sep) Q) <D0 S0 1@\ Syp) N9 {af, > 1))
i=1f=—Np\

< mNp/ [VoR|dy < mNo ViRl Le(gre, mmxny < ws(p)
Qvie

where w3 (p) := mwa(p)N, — 0+ as p — 0+ by (8.26).
Step 4. Conclusion of the proof for bounded functions. We first note that by (8.15) and (8.20) we have

k—+oco

timsup [ giat o o)), v ) )
SppNQE

<(1+¢) (lim sup By b (v, Q%) + E) + Mellu(z + p-) = wo,c.o ()T p(guie gmy T € (8.32)
k—+o0o

Further, by (f4) and (8.24), we can control the volume integral in (8.32) as follows:

p—1

fr(z+ py, Vui(y))dy < 02/ (1+|Vop)")dy < 02(5—&—%
Qvie

(67"(2.¢,v) +1))
Qve

for every 0 < p < po satisfying (8.13) and every k > kz(p).
By (8.15), this inequality and (8.32) imply in particular that

tiwsup [ giat o o)), v )N )
Spp Qe ;

k—+oco

< (1+¢)lim Sup/ gk (@ + py, [F](y), vup (1)) dH" " (y)
k—+o00 svngv,s

p—1

+ 202 (e + (g7 (@,C0) + 1)) + Mellue + p) = wo.cw Ol (quee omy +32. (8:33)

C1
Since

[ site+ o b)) g ) ) = < [ G [ ) ),

v,e
W e

gathering (8.14) and (8.33) gives

tiwsup [ giat oy, o)), v ()N )
SﬁgﬁQ”’E

k—+oco

1 € v,e P*l €
< (o) B, Q@) + 20 + 262 (e + £ — (67" (@, G,0) + 1) (8:34)

+ Mellu(@ + p-) — 0,0 ()L (que mmy T 3¢
We now estimate the left-hand side in (8.34). We have

[ it ool )aH™ )

Sﬁz nQY:e

> / gi (@ + py, [07](y), vap (¥)dH" ™ (y)
(s

op
-/ 9@+ py, [0 (9), v (V)AH" ™ (9) = [y + Lz — L. (8.35)
(S,,0\S,0)NQ¥:
k k
We now claim that
[I2] Swa(p) and [Is] < ws(p) (8.36)

for k > ka(p), where ws(p) and ws(p) are independent of k and tend to 0+ as p — 0+.
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Thanks to the symmetry condition (g7), for the term I> we may choose the orientations of Vop and Vit
so that vye = v,p H" *-a.e. on Sge N Syp. Thus, by assumptions (92) and (g6),
|9k (z + oy, [07] (W), vor () — gr(@ + py, [Wi](Y), Ve (1))
< o2 (|[98)(v) — [wl W) (gk (2 + py, [07](W), vap (W) + gx (2 + py, (Wil (), vur (1))
< 2¢502(2[|0f, — wi [l Lo (@rerm)) (1 + (107 oo (@urerm) + [WE [l oo (@uoerm)),

for H™ tae. y € Sye N S, Therefore, using (8.18), (8.29), and (8.30) we obtain

|I2] < 2¢5(1 + 3p) 02(4/m/Np) H" ™ (S50 N1 Q)

for every k > ka2(p).
Now recall that, by the definition of 0%,
Sep NQ™" C (Sup NQ™) U (TIF N (Q°\ Ke)),
hence by (8.16),
Hn—l S n VEY < Hn—l S N v,e € _ 1 Hn—l S N v,e €

(S NQ™) < (S NQ )+;—F (So, N Q) (96))+g~
In terms of the functions v, by (8.14), this implies that
< 1+ELEa,p(u7 Z,E(x))+ ﬁ +£

cqa pr1 cs Cs

H' ™ (Sop N1 Q)

for every k > ka2(p). Hence, for the term I» we have
1+e . ve 3
|Ia] < 2e5(1+ 3u) o2(4v/m/N,) (=55 B (u, @ (@) + £ + =),
C4 P Ca Cs

Since o2(t) — 0+ as t — 0+, by (8.12) we obtain that |I2| < wa(p) for every k > ka2(p), where wa(p) is
independent of k and w4(p) — 0+ as p — 0+.
As for the term I3, proceeding as above and using (8.30) we get

1] < es(1+4u) H" 71 ((Sup \ Sop) NQ™),

which, by (8.31), implies that |I3] < ws(p) for every k > kz(p), where ws(p) := ¢5(1 + 4p)ws(p) — 0+ as
p — 0+. This concludes the proof of (8.36).

By combining (8.34), (8.35), and (8.36) we deduce that

tim sup | 9@ + py, [W0)(9), Vg (9) A" (1)
Sup Qe

k—+oco

<(1+¢)? E2P(u, QpF(x)) + 2p + wale, p) + ws(e, p)

n—1

p—1
20 (e 4+ P (67" (@.C) 4 1) + Melule 4 p°) = oo Ol guae oy + 3¢

We now define z{(y) := wi((y — x)/p) for every y € Qp°(x). Note that z{ € SBV;e(Qy°(x),R™) and
Z = Ug,¢,» in a neighbourhood of 0Q}*(x). In terms of the functions z the previous estimate gives

. 1 . 1
limsup ——mg, (Uas,¢,v, Qp (7)) < limsup ——me’ (uac, Q" (2))
k—+4o0 P k—+oo

. 1 _
< lim sup —— 9u (Y, [2£1 (), vap (9)dH" ™ (y)
k—4o00 P S,pNQp " (x)
k

< (L o) g B9, Q5 () + 20 + (e, p) + sl )
p1
200 (4 L (g7, + 1)) + Melfule + ) = 0O e oy + 35
Finally, taking the limsup as p — 0+ and invoking (3.11), (8.11), and (8.12), we obtain
g (x,¢,v) < (1 +)°g7P(x, ¢, v) + Ce,
with C' := 2c2 + 3. Recalling the definition of { and v, we obtain that
9" (z, [u)(x), vu(2)) < (1+ )97 (x, [u](x), vu(z)) + Ce
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holds true for H" *-a.e. x € S, N A. Taking the limit as ¢ — 0+ and using (5.2) we get

9" (, [u](2), vu(2)) < ¢° (2, [u](2), vu(z))
for H™ '-a.e. € S, N A, thus proving (5.15) for u € SBVP(A,R™) N L= (A,R™).

Step 5. Extension to unbounded functions in GSBV?. Let A € o and u € GSBV?(A,R™). For every
integer k > 1 we define zj, := ay(u), where oy, € C3(R™,R™) satisfies ay(¢) = ¢ for every ¢ € R™ with
[¢| < k. By (h) in Section 2 we have that z, € SBVP(A,R™) N L*°(A,R™). Let ¥ :={x € SuNA:
|u® (z)| < k}. By the definition of u® (z) as approximate limits, it is easy to see that for H" '-a.e. z €
we have either 2 (z) = u® () and v, () = vu(z) or 25 (z) = uT (z) and v, (z) = —vu(z) (see [3, Remark
4.32]). On the other hand, by the previous steps in the proof we have that

9" (@, [z (), vz, () < ¢°(x, [2] (), vz, ()
for H" '-a.e. z € ¥j. By (g7) this implies that

9" (z, [u](z), vu(2)) < ¢° (2, [u](z), vu(z)) (8.37)
for H" '-a.e. x € Ty. Since the integer k is arbitrary, (8.37) holds for H" '-a.e. € S,. 0
APPENDIX

In this section we collect some technical results that we have used throughout the paper. We begin with
an example of a family of orthogonal matrices R, satisfying all assumptions of (k) of Section 2.

Example A.1. Let ¢1: S" '\ {£e,} — R™ " be the stereographic projection from +e, into the plane
xn, = 0 and let ¢y: R*™™" — S 1\ {£e,} be its inverse function. For every v € /S\’j;l we consider
the vectors & (v) := 9ix(px(v)), 4 = 1,...,n — 1, which are tangent to S™' at v, and hence satisfy
&(v)-v = 0. Since 9z are conformal maps, we have & (v)-§;(v) =0 for ¢ # j. Let v;(v) := &(v)/|& (V).
Then the vectors vi(v),v2(v),...,vn—1(v),v form an orthonormal basis of R", therefore they are the
columns of an orthogonal matrix, denoted by R,. It is clear from the construction that R,e, = v and
that the restriction of v — R, to §’j;1 is continuous. Moreover, since ¢4 (—v) = —¢_(v) for every
v € S" 1\ {en, —en}, we have 4 (—y) = —1p_(y) for every y € R™ 1\ {0}. It follows that & (—v) = &(v),
hence v;(—v) = v;(v) for every v € S""!\ {en, —en}. This property is clearly true also for v = +e,, since
vi(e,) = e;. It follows that R—,Q(0) = R,Q(0) for every v € sm1,

The following remark will be used in [9].

Remark A.2. From the formulas defining the stereographic projections ¢4 it follows that v € (S~ N
Q™) \ {en, —en} if and only if ¢4 (v) € Q"' \ {0}. Therefore S*~* N Q" is dense in S"~*. Moreover, the
explicit formulas for 9;1+ show that v;(v) € S"~' N Q™ for every v € S""' N Q", hence R, € Q"*™ for
every v € S nQ".

The rest of this section is devoted to some technical lemmas needed to prove some of the properties
satisfied by the functions f’, ", ¢’, and ¢’ introduced in (3.8)-(3.11) and by the functions ¥ and g**
introduced in (4.24) and (4.25).

Lemma A.3 (Upper semicontinuity). Let X be either L°(R™,R™) or LL
[0, +00] be a functional such that

(k1) (locality) H(u, A) = H(v,A) ifu,ve X, A€ &, andu=v L"-a.e. in A,

(h2) (measure) for every u € X N SBVioc(R"™,R™) the function H(u,-) is the restriction to </ of a

countably additive function defined on the o-algebra of the Borel subsets of R™,
(h3) (upper bound) for every u € X N SBVioc(R™,R™) and every A € o/

H(u, A) < e /

A

(R™,R™), and let H: X x.of —

(14 |VulP)dz + cs / (14 |[u]]) dH" .

SunA
Let my”, mb, and my be as in (3.5)-(3.7), and let p > 0. Then
(a) the functions
(2,8) = mur(le, (@) and (x,€) = my"(le, Qp())

are upper semicontinuous in R™xR™*™;
(b) the restrictions of the function

(@, ¢, v) = mu (Uacu, Qp(2))

to the sets R™ xRg* xSfol and R*xRI'xS™ ™1 are upper semicontinuous;
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(c) for every (o € RG* the restrictions of the function
(@,v) = ml (ua.co.v, Qp (%))

to the sets R™ ><S7_‘1_71 and R*xS™™! are upper semicontinuous.

Proof. In the proof of (a) we only deal with mp, the proof of the upper semicontinuity of mH being
similar.
Fix zo € R", o € R™*", and € > 0. By the definition of mg there exist uo € X, with wuolg,(q) €
SBVP(Qu(z0),R™), and do € (0, p/3) such that
uo =Llgy, L™-ace. in Qp(z0) \ Qp—3s,(T0), (A.38)
H(uo, Qp(x0)) < mu(Ley, Qp(wo)) +e. (A.39)

Now fix § € (0,60), = € Qs(w0), £ € R™*™ with |€ —&| < 6, and p € C(R™) with suppp C Q,(z), o =1
in Qp—s5(z), 0 < <1inR", and |V¢| <3/6 in R". We define u; € SBV_(R",R™) by

w = uo in Q,—s(x),
@ley +(1—@)le inR™\ Qp25().
Since z € Qs(zo), we have Q,—s(z) \ Qp—25(x) CC Qp(z0) \ Qp—35,(x0). Therefore u; is well defined,
since, by (A.38), both formulas give the same value in the overlapping set Q,—s(z) \ Qp—2s(z). Moreover
u1 = {¢ in a neighbourhood of 9Q,(z), hence mu (Le, Q,o(z)) < H(u1, Qp(z)). Therefore, using (h1)-(h3),
we obtain

1 (le, Qp(x)) < H(uo, Qpos(x)) + /Q (14 [V [") dy (A.40)

Since Vuir = @& + (1 — p) + (Ley — L)@V in Q,(z) \ Qp—25(x), by convexity we have |Vu|? <
377 (€l + [€]” + €0 — €7 C1|Vepl?), where C1 = sup{|y|” : y € Qps (20)}-
Therefore (A.40), together with the estimates for |£o — £| and V|, yields
mu (e, Qp(x)) < H(uo, Qp(x)) + Ca(p” — (p —20)"),
where Cy := c2(1 + 377" (|&|” + 65 + C1)). Combining this inequality with (A.39) we get

mu (e, Qp(x)) < mu(leg, Qp(wo)) + € + 2nCop" .
Therefore, if 0 < § < min{do,e/(2nC2p"" 1)}, = € Qs(x0), and |€ — &o| < 6, then

mi (le, Qp(x)) < mu(ley, Qp(wo)) + 2¢.
This proves the upper semicontinuity of (z,&) — mg (le, Qp( ) at (z,€) = (z0,&0)-
To prove (b), we fix three points zo € R", (o € Ry, 1o € S” , three sequences (z;) C R", (¢;) C Ry,

(v;) C S+ , with z; — x0, v; = 1o, {; — (o, and a constant £ > 0. By definition there exist vy € X,
with vo|Q;o(w0> € SBVP(Q}° (z0),R™), and do € (0, p/3) such that

Vo = Uzg,coo  L7-ace. in Q1% (zo) \ Q:‘iwo (z0), (A.41)

H(vo, Qp(x0)) < mu(Uag,covo, @p° (T0)) + €. (A.42)
Let us fix § € (0,00/2). There exists an integer is such that Q,° 5(x;) C Q;° (x0), @,%5(%;) C Q)5 45(%0),
and Q7% 55 (z0) C Q% 55(w0) C Q)2 45(x;) for every j > is.

By (k) in Section 2 the function v +— R, is continuous on gn_l Consequently there exists an integer
js > is such that Qp 25(7) C Q2 5(2), v (x) C Q5 5(x), and Qp 15(x) C Q;{%(a:) for every j > js and
every x € R™. Therefore the previous inclusions imply that

Q7 55(2) \ @, 55(x5) C Q" (x0) \ Q2 55(w0) € Q)° (w0) \ Q)2 55, (o), (A.43)
Qp (w5) \ Qp 35(%) cQ +25(m0) \ Qp 56(330) (A.44)
for every j > js.

Let 1; € C°(R™) be such that suppv; C Q)7 (z;), ¥; = 1 in Q;ié(xj), 0 <%; <1in R", and
V| < 3/6 in R™. We define v; € SBVE_(R™,R™) by

loc
v = Yo in Q:j 26(Z5),
J
wjul‘o,Co,Vo + (1 - wj)ul‘j,ijVj in R™ \Qp 36(1;])

By (A.41) and (A.43) the function v; is well defined, since both formulas give the same value in the
overlapping set Q;];% (z5)\ Q:ig5(xj). Moreover v; = uz;,¢;,»; in a neighbourhood of 9Q;7 (z;), hence



31

mH(uwj,gj,yj,QZj (z;)) < H(vj,Q;j (z;)). So, using (h1)-(h3) and setting A; := sz (z;)\ Q:J;%(xj), we
obtain
mHu (uszijVj ) Q;J (xj)) < H(U()? Q:jf% (:B]))
+cz/ (1+ \ij|p)dy+C5/ (1 + |[v;]]) dH™ . (A.45)
Aj Su;N4;
Since |Vv;| < [V;|tzg,covo — Uaj.¢;m;| o0 Az, we have |Vu;| < (3/9)|uzg,covo — Uaj.¢sm;| o0 Az Tt
follows that
P n n 317 n—1 3p
(L +[Vy[")dy < p" = (p = 38)" + oy < 3ndp"™ " + <oy,
j
where 7, := fAJ_ [tzg,covo — Uzj,¢;m; [Py — 04, as j — +o0.
On the other hand by (A.44) we have S,; N A; C (TI59 N Qo5 (o) \ Q10 55(w0)) U (IT N Q7 (x5) \
Q:ﬂw(xj)). Moreover there exists a constant M; > 0 such that |[v;]] < My H" '-ae. on S,, N A; for
every j > js. Therefore

/ (L+[vg]) dH" ' <201+ M) ((p+20)" " = (p—58)" 1) < 145(1 + Mi)(n — 1)(2p)" "% (A.46)
Sy, NA;

From (A.42) and (A.45)-(A.46) it follows that for every j > js

v v 3P
My (Uaj,¢5,v5, @’ (T5)) < M (Uag om0, @p (T0)) + € + Mad + c2 501>

where My := 3ncap™ ! + 1dcs(1 4+ Mi)(n — 1)(2p)" 2. Taking the limit as j — 400 we get

lim sup mr (e ;,¢5,055 Qo (25)) < Mt (g o0, Qp° (20)) + € + Mad.

j——+oo
Since € > 0 and § € (0,00/2) are arbitrary, we obtain

lim sup mg (uzj NeRZE) Q;] (l’])) <mg (uI01<01V07 QZO (.TQ)),
j—+oo

which proves the upper semicontinuity of the restriction of (x, ¢, v) = mu (ta,c,v, Qp(x)) to R™ xR7" Xgi_l.
The same proof holds for R" xRg* xSr1.
To prove (c), we fix o, o, 1o, (x;), (vj), and € > 0 as in the proof of (b). By definition there exist
wo € X, with wo\on(xo) € SBV;e(Q}° (w0), R™), and do € (0, p/3) such that
Wo = Usg, oy L-ace. in Q0 (o) \ Q)2 35, (20), (A.47)
H(wo, Qy(x0)) < Ml (tag o0 @y° (T0)) + €. (A.48)

Fix ¢ € (0,90/2) and let js be an integer such that (A.43) and (A.44) are satisfied for every j > js. We
define w; € SBVP_(R",R™) by

w; =40 in ngfzé(,ij)’ (A.49)
Uz j,Go,vy; 1M R™\ Qp¥26(zj)'
) € SBVpe(Qp' (2;),R™) and w; = ug, v, in a neighbourhood of 0Q,’ (z;), hence

m%c(umj’gw,j,QZj (z;)) < H(w;, Q) (z;)). Therefore, using (h1)-(h3) and setting A; := Q)7 (z;) \
Q2135(xj), we obtain

Then w; \Q:j<

My (Ua, o> Qo () < H(wo, Q7 55(x5)) +C5/ (1 + |[w;])y aH" " (A.50)

Sw;NA,

By (A.43) and (A.47) we h;zye wj = 3750,40,”0 on Q:j_%(mj) \ Q;j_%(mj) for e\’//e?ryj > js, :yhile by (A.49)
we have wj = Uz, ¢o.; 0 Qp () \ Q7 55(25). Therefore Sy, NA; C (INQ,7 ,5(x5)\ Q7 35(x5)) UL, U
(Hzé NQy (z5)\ Qpims (mj)) C (H;% N QZO (wo) \ Q:O—&S (mo)) ux; u (HIJJ NQ, (z;)\ Qp126(1’j))7 where 3J;
is the set of points y € aQ:j_%(mj) such that (y — z;)-v; and (y — zo) - o have opposite sign. Moreover
[[w;]| = [Co| H" '-a.e. on Su, N Aj for every j > js and o; := H"'(X;) — 0 as j — 4o0. Therefore

/ (L 4+ [fwg]) dH™ " < 2(1+ G (0" = (p = 50)" " +05) < 2(1+1Gol) ((n = 1)p" 6 + ;). (A1)

Suw; N4,
From (A.48), (A.50), and (A.51) it follows that for every j > js
(s, cow; s Qp (€5)) < M (g o, @ (€0)) + € + 25(1+ [Gol) (0 = 1)p" %6 + o).



32

Since € > 0 and § € (0,d0/2) are arbitrary and o; — 0, we obtain

li‘m sup muy (quvCO»Vj ) sz (‘TJ)) <mg (uloyCo,Voa QZO (mo)),
Jj—+oo

which proves the upper semicontinuity of the restriction of (z,(,v) = my; (e, co,v, @y (2)) to R”Xgi_l.
The same proof holds for R" xgﬁfl. O

Lemma A.4 (Monotonicity in p). Letz € R™, £ € R™*", ¢ € Ry, and v € S"~'. Under the assumptions
of Lemma A.3 the functions

p = mu(le, Qp(x)) — c2(1+ [€7)p" p = my (be, Qp(@)) — e2(1+ [€7)p",
p = ma (s e, Qp (7)) = es(1+ [¢))p" p = i (e e, Q () = es(1+[¢))p" "
are nonincreasing in (0, +00).
Proof. Let pa > p1 > 0 and € > 0 be fixed. By the definition of my there exist u1 € X, with U1|Qp1(z) €
SBV?(Q,,(x),R™), and p’ € (0, p1), such that u; = ¢ L™-a.e. in Q,,(z) \ Q,(z) and
H(u1,Qp,(z)) < mu(le, Qpi(x)) + €. (A.52)
Let uz be defined by

le inR™\ Qo).
Then uz = {¢ in a neighbourhood of Q,,(x), hence mu (be, Qpy(x)) < H(u2,Qpy(x)). Let us fix p’ €
(p', p1). Using (h1)-(h3), from the previous inequality we obtain

m (e, Qpo(x)) < H(u1, Qpi()) + H(Le, Qpo(w) \ Qp()) < H(ur, Qpy(x)) + c2(1 + [€[7) (2 — (P//)n)
Taking the limit as p” — p1—, from (A.52) we obtain

mu (e, Qpy(7)) < mu(le, Qpi(2)) + € + c2(1 4 €7) (p2 — pT).
Taking the limit as ¢ — 0+ we obtain

mu(le; Qo)) — cs(1+ [€")p2 < mu(le, Qpi(w)) — c2(1 + [€]7)pT,

(e

which proves the monotonicity of p — mpu(le, Qp(x)) — c2(1 + |£[P)p™.

1,p P\,
my” (e, Qp(x)) — ca(1 4 [§]7)p".
We now consider m%;. By definition there exist v1 € X, with vi|gv () € SBVpe(Q%,(x),R™), and
H QY () pe\®py

p" € (0, p1) such that v1 = ug ¢, L -a.e. in Qpy(z) \ Q,(x) and
H(v1,Qp, () < my (Uac,v, Qp,()) + €. (A.53)

= {u1 in Qp,(z),

The same proof holds for p +—

Let vz be defined by

Ug,c,, 10 R™\ Qp ().
Then vz = ug,¢,» in a neighbourhood of 9Qj.(x), hence m¥y; (uz,¢,v, Qpy(x)) < H(va, Qp(x)). Let us fix
p" € (p',p1). Using (hl)-(h3), from the previous inequality we obtain

miy (U0, Qpy(0)) < H(vi, Qpy(2)) + H(uz v, Qpy(x) \ Qp())
< H(v1,Qp,(2)) + es(1+ ¢ (o5~ = (p")" 7).
Taking the limit as p” — p1—, from (A.53) we obtain
Ml (Ua,c.v, Q) < M (U ey Qpy (%)) + €+ es (L4 ¢ (o3 ™" = p7 7).
Taking the limit as ¢ — 0+ we obtain
M7 (i, ¢,y @po(0)) = es(1 4 [Py ™" < mi (ua e, @y (w0)) — es(1+[¢])p7

n—1

vy = {vl in Q7,(x),

which proves the monotonicity of p — m¥; (uac,v, Qp(x)) — cs(1 + |¢])p" . The same proof holds for
p = my(Uscw, Q5(z)) —es(1+|¢])p™ " -

Lemma A.5 (Borel measurability). Let (fix) be a sequence in F and let (gr) be a sequence in G. Then
for every € > 0 the functions f', f", f&P, and g% defined in (3.8), (3.9), (4.24), and (4.25) are Borel
measurable. Moreover, for every (o € Ry the functions

(xvy)'—)gl(xvéo»y) and (m,l/)»—>g//(x,§0,u)
defined in (3.10) and (3.11) are Borel measurable in R™xS™™1.
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Proof. We prove the result only for f’, the proof for f”, f&? ¢=P ¢', and g’ being analogous. For every
z €R™ £€R™*™ and p > 0 we set

V(@€ p) = liminf mf (b, Qp ().

By Lemma A.4 for every x € R” and every £ € R™*™ the function p — 9(z,&, p) — ca(1 + [€|P)p" is
nonincreasing on (0, +00). It follows that

lim (z,&,p) > ¢(x,&p) > lim (z,&,p) for every z € R", £ € R™™™, and p > 0.
p'—p— p'—p+

Therefore, if D is a countable dense subset of (0, +00), we have

. 1 . 1
llmSUPF¢($»§7P): lim sup ﬁﬂ’(%fyﬂ)a

p—0+ p—0+,pED P
hence
f(z,€) = limsup liminf lilm};‘:(fg,Qp(x))
p—0+, peD k—r+oo p"
for every x € R™ and £ € R™*". The conclusion follows now from Lemma A.3. O

The next lemma provides all properties of the functions f' and f”.

Lemma A.6. Let (fi) be a sequence in F and let f' and f” be as in (3.8) and (3.9). Then f’, f" € F.

Proof. Property (f1) for f' and f” is proved in Lemma A.5. The proof of (f2) for f' and f” can be
easily obtained by adapting the proof of the same property for f°? established in Theorem 4.3. In fact
it is enough to deduce from (4.37) that (4.38) holds, with mg=.» replaced by mllm’:. The conclusion then
follows from (3.8) and (3.9), passing to the limit first as k — +o0o0 and then as p — 0+.
We now prove (f3) for f' and f”. Let z, £ € R™*" be fixed. By (f3) for fx for any p > 0 and
u € WHP(Q,(x), R™) with u = £¢ near dQ,(z) we have
P, Qy(@)) 2

1 P
o wrazal [ vud =akr
P JQ, () P JQu ()

where we used Jensen’s inequality and the boundary conditions for u. By letting & — 400 and then
p — 0+, the lower bounds for f’ and f” follow from (3.8) and (3.9).
Since fy satisfies (f4), for any p > 0 we also have

1 1
S (e Qo)) < T Fi(le, Qp(@) < ca(1+1€P).
By letting k — 400 and then p — 0+ we obtain the upper bounds for f’ and f”. O

The next lemma, provides all properties of the functions ¢’ and g”.
Lemma A.7. Let (gi) be a sequence in G, and let g’ and g"” be as in (3.10) and (3.11). Then ¢’,g" € G.

Proof. We prove (g1)—(g7) only for g’, the proof for g” being similar.

We start by proving (g2). To this end fix x € R™, {1, & € RJ', v € S}, k € N, p > 0. There exists
up € L°(R™,R™), with u1lQy(z) € SBVue(Qp(2),R™) and u1 = s, v in a neighbourhood of 0Q7 (),
such that

Gr(ur, Q) () < mg, (us gy, Qp(2)) +ep" . (A.54)
Let £ :={y € Q,(x) : u1(y) = (1} and let xp be its characteristic function. Then xg € BV(Q}(x)) and
Sxr NQp(x) C Suy NQ}(x) (see [3, Theorem 4.23)).

Let u := u1+ (G2 — C1)xz. Then uz|qy(a) € SBVpe(Q(2),R™) and uz = uq,¢, v in a neighbourhood of
QY (). Moreover Sy, C Su, and [uz] = [u1] H" '-a.e. on Su; \ Sy, while [uz] = [u1] + (2 — G H" '-ace.
on Sy N Suy NQp(x). By (g2) we have

Gr(uz, Qp(@)) < Gi(ur, Q) (2)) + 02(|C1 — Gal) (G (u1, Qp (2)) + Gi(u2, Q) (2)))
hence
(1 —o2(|¢1 = ) Gr(u2, @ (x)) < (1 + 02(C1 — C2])) Gr(ur, Qp ().
Assume that o2(]¢1 — (2]) < 1. Then the previous inequality together with (A.54) yield
(1=o2(l¢i = §2|))m‘é°k (Ua,co0, Qp () < (14 02(|C1 — C2)) (TTLIC’;C,C (Uacy s Q) +ep"71).

n—1

Dividing by p and taking the liminf as k& — 400, then the limsup as p — 07, and finally the limit as

€ — 0+ we obtain

(1—02(1C1 = C21) g (2, Cayv) < (L4 02(1C — G)) g (2,1, v)
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hence

gl(fﬂy@: V) < gl(.’E7C1,l/) + 0—2(‘(1 - CQD(g/(:C7C17V) +g/($,<—2,l/)). (A55)

Inequality (A.55) is trivial if o2(|¢1 — (2|) > 1. Then (g2) can be obtained from (A.55) by interchanging
the roles of (1 and (s.

We now observe that the Borel measurability of g’ on R™ xRJ*xS™ ! follows from Lemma A.5 and from
the continuity estimate (g2). This concludes the proof of (g1).

To prove (g3) for ¢, let us fix € R™, (1, (o € RY, with |¢1] < |¢2|, v € S*7!, and a rotation R on R™
such that aR(> = (1, where a := |(1]/|(2] < 1. For every k the functions gi satisfy (g3), thus for every
p > 0 and every u € SBV,c(Qp(x), R™) we have

/ g (y, aR[u](y), vu(y))dH" " (y) < 63/ 9k (y, [l (), vu(y))dH" ™!
5.0QY (2)

SuNQY(x)

Since aR(2 = (1, this inequaliy implies that
mgck (U ¢y v QZ (z)) = m;éck (Uz,aR¢av, QZ(‘T)) < C3m2‘ck. (Ua,¢oov, QZ(z))

Using (3.10) we obtain ¢'(z, (1,v) < 3 ¢'(x, (2, V), which proves (g3).

To prove (g4) for ¢, let us fix z € R™, (1, (2 € RY, with ¢3|¢1| < [¢a], v € S* 1, and a rotation R on
R™ such that aR(2 = (1, where a := |(1]/|(2] < 1/ec3 < 1. For every k the functions g satisfy (g4), thus
for every p > 0 and every u € SBV,;c(Q)(x), R™) we have

/ gk (y, aR[u](y), vu(y))dH" " (y) < / 9k (y, [u] (), vu(y))dH"
SuNQY ()

Sy sz ()

Since aR(2 = (1, this inequaliy implies that

me, (Ue,civ, Qp (%) = M, (Ue,arco s Qp (%)) < MG, (Ua,co0, Qp ().

Using (3.10) we obtain ¢'(z, ¢1,v) < ¢'(z, (2, v), which proves (g4).

To prove (g5) for ¢, let us fix x € R", ¢ € RY*, v € S" ', k € N, and p > 0. Since (g5) holds for
gk, for every u € L°(R™,R™), with u\Q;<I> € SBV,e(QY(z), R™) we have Gi(u, Q5 (x)) > caH™ ' (Su).
If u agrees with ug ¢, in a neighbourhood of 9Q} (z), each straight line intersecting @} (x) and parallel
to v meets S, (see [3, Theorem 3.108]). This implies that H™ '(S,) > p" ', which, together with
the previous estimate, gives G(u,Q}(z)) > cap™ !, Taking the infimum with respect to u we obtain
me;, (Ua,cv, Qp(2)) > cap™ . By (3.10) this implies (g5) for g'.

On the other hand, appealing to (g6) for gr we have

me, (ua,c.v, Qp () < Grluac, Qp () < es(14[¢))p"

Then the latter leads to (¢6) for g’ by (3.10).

To prove the symmetry condition (g7), we observe that uz,—¢,—» = Uz,c,, — ¢ for every x € R", ¢ € Ry,
v € S"", and t > 0. Therefore u € SBV,(Q4(x),R™) satisfies u = uq,—¢,—» in a neighbourhood of
0Q}(x) if and only if u = v — ¢ for some v € SBV,,(Q}(x),R™) satisfying v = s ¢, in a neighbourhood
of 0Q; (). Since Q,"(z) = Q(z) by (k) and (1) in Section 2, it follows that mg’ (us,—¢,—v,Q,"(2)) =
me;, (Ua,c,v, Qp(2)) for every k. By (3.10) this implies that g (z,¢,v) = ¢g'(z,—¢, —v), which proves (g7)
for g'. O
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