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Abstract. We study the Γ-convergence of sequences of free-discontinuity functionals depending
on vector-valued functions u which can be discontinuous across hypersurfaces whose shape and

location are not known a priori. The main novelty of our result is that we work under very

general assumptions on the integrands which, in particular, are not required to be periodic in
the space variable. Further, we consider the case of surface integrands which are not bounded

from below by the amplitude of the jump of u.
We obtain three main results: compactness with respect to Γ-convergence, representation of

the Γ-limit in an integral form and identification of its integrands, and homogenisation formulas

without periodicity assumptions. In particular, the classical case of periodic homogenisation
follows as a by-product of our analysis. Moreover, our result covers also the case of stochastic

homogenisation, as we will show in a forthcoming paper.
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1. Introduction

In this paper we study the Γ-convergence, as k → +∞, of sequences of free-discontinuity functionals of
the form

Ek(u,A) =

∫
A

fk(x,∇u(x)) dx+

∫
Su∩A

gk(x, [u](x), νu(x))dHn−1(x), (1.1)

where A ⊂ Rn is a bounded open set, u : A→ Rm is a generalised special function of bounded variation, ∇u
is its approximate gradient, Su is the jump set of u and [u] is its jump on Su, while νu is the approximate
normal to Su and Hn−1 denotes the (n− 1)-dimensional Hausdorff measure.

Functionals of the form (1.1) appear naturally in the study of quasistatic crack growth in nonlinear
elasticity (see [21, 14, 11, 20, 13] and the monograph [5]), and represent the energy associated to a
deformation u of an elastic body with cracks. The parameter k may have different meanings: it may
represent the scale of a regularisation of the energy, the size of a microstructure, the ratio of the contrasting
values of the mechanical response of the material in different parts of the body. For example, for a high-
contrast medium fk and gk represent the strength and the toughness of the material, respectively, and
may have a very different behaviour in each component. In the classical case of periodic homogenisation,
where fk(x, ξ) = f(x/εk, ξ), gk(x, ζ, ν) = g(x/εk, ζ, ν), and f and g are periodic in the first variable, εk
describes the scale of the microstructure, with εk → 0+ as k → +∞. In this case taking the limit of Ek,
in the sense of Γ-convergence, corresponds to computing the effective energy of the material.

The first paper on this subject (and still one of the most general results to date) is [8], where the
authors consider the classical case of periodic homogenisation, assuming

c4(1 + |ζ|) ≤ gk(x, ζ, ν) ≤ c5(1 + |ζ|) for x ∈ Rn, ζ ∈ Rm, and ν ∈ Rn with |ν| = 1, (1.2)

for suitable constants 0 < c4 ≤ c5 < +∞ independent of k. Conditions (1.2), together with standard
p-growth assumptions on fk, guarantee that sequences (uk) with bounded energy Ek(uk, A) are bounded
in the space BV (A,Rm) of functions with bounded variation on A with values in Rm. When ∂A is
regular, BV (A,Rm) is compactly embedded into L1(A,Rm), hence in this case it is natural to study the
Γ-convergence of Ek(·, A) in L1(A,Rm).

In [19] the Γ-convergence of (1.1) is studied under the assumption that u is scalar (m = 1) and that
gk does not depend on ζ and satisfies

c4 ≤ gk(x, ν) ≤ c5 for x ∈ Rn and ν ∈ Rn with |ν| = 1. (1.3)
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These assumptions ensure that sequences (uk) with bounded ‖uk‖L∞(A) and bounded energy Ek(uk, A)

are also bounded in BV (A), hence relatively compact in L1(A). Since for scalar functions (uk) a bound on
‖uk‖L∞(A) can be easily obtained by truncation, also in this case it is natural to study the Γ-convergence

of Ek(·, A) with respect to the strong L1(A)-convergence.

The aim of the present paper is to study the Γ-convergence of (1.1) in the vector-valued case (m ≥ 1)
without any periodicity assumptions, and under the more general growth conditions

c4 ≤ gk(x, ζ, ν) ≤ c5(1 + |ζ|) for x ∈ Rn, ζ ∈ Rm, and ν ∈ Rn with |ν| = 1, (1.4)

which include both (1.2) and (1.3). Unlike (1.2), assumption (1.4) does not guarantee a bound in
BV (A,Rm) for sequences (uk) with bounded energy Ek(uk, A). Moreover, unlike in the scalar case con-
sidered in [19], in the vector-valued case an estimate for ‖uk‖L∞(A,Rm) cannot be easily obtained by a
standard truncation procedure. For these reasons, in our setting sequences (uk) with bounded energy
Ek(uk, A) are, in general, not relatively compact in L1(A,Rm).

Therefore, we study the Γ-convergence in the larger space L0(A,Rm) of all Ln-measurable functions
u : A→ Rm, endowed with the metrisable topology of convergence in measure. This is the natural choice of
convergence in our case: using compactness theorems for free-discontinuity functionals, it is indeed possible
to prove that sequences (uk) with equi-bounded energy Ek(uk, A) are relatively compact in L0(A,Rm),
under a very weak integral bound on (uk). Therefore, Γ-convergence of (Ek(·, A)) in L0(A,Rm) implies
convergence of the solutions of some associated minimisation problems obtained, for instance, by adding
a lower order term to Ek (see Corollary 6.1).

The present paper contains three main results. The first one, Theorem 3.5, is a compactness result
with respect to Γ-convergence for sequences as in (1.1). Namely, we show that for every sequence (Ek)
with (fk) ⊂ F (see assumptions (f1)-(f4) in Definition 3.1) and (gk) ⊂ G (see assumptions (g1)-(g7) in
Definition 3.1) there exists a subsequence, not relabelled, such that, for every bounded open set A ⊂ Rn,
Ek(·, A) Γ-converges to a functional E∞(·, A), which can be written in the form (1.1) for suitable functions
f∞ ∈ F and g∞ ∈ G.

The second result, Theorem 3.7, identifies the Γ-limit E∞(·, A). That is, it provides a connection
between the functions fk and gk, used to define Ek, and the functions f∞ and g∞, which appear in the
integral representation of E∞. More precisely, we show that the volume density f∞ is obtained as

f∞(x, ξ) = lim sup
ρ→0+

lim
k→+∞

1

ρn
inf

∫
Qρ(x)

fk(y,∇u(y))dy, (1.5)

where the infimum is taken among all the functions u ∈ W 1,p(Qρ(x),Rm) with u(y) = ξ · y near ∂Qρ(x),
and Qρ(x) := x+ (−ρ/2, ρ/2)n. For the surface density g∞, we prove instead that

g∞(x, ζ, ν) = lim sup
ρ→0+

lim
k→+∞

1

ρn−1
inf

∫
Su∩Qνρ(x)

gk(y, [u](y), νu(y))dHn−1(y). (1.6)

Here, the cube Qνρ(x) is a suitable rotation of Qρ(x) (see item (l) of Section 2), and the infimum is taken
among all the functions u ∈ SBV (Qνρ(x),Rm) with ∇u = 0 Ln-a.e. in Qνρ(x) and that near ∂Qνρ(x) agree
with the pure-jump function ux,ζ,ν (see item (n) of Section 2). This result shows, in particular, that the
problems for the volume and surface integrals are decoupled; i.e., f∞ depends only on the sequence (fk),
while g∞ depends only on the sequence (gk).

The third result (Theorem 3.8) deals with the case of homogenisation, that is fk(x, ξ) = f(x/εk, ξ)
and gk(x, ζ, ν) = g(x/εk, ζ, ν) for a sequence εk → 0+ as k → +∞. In this case, for given x, ξ, ζ, and
ν, a natural change of variables in (1.5) and (1.6) leads to consider, for every r > 0, the two rescaled
minimisation problems

1

rn
inf

{∫
Qr(rx)

f(y,∇u(y))dy : u ∈W 1,p(Qr(rx),Rm), u(y) = ξ · y near ∂Qr(rx)

}
, (1.7)

and
1

rn−1
inf

∫
Su∩Qνr (rx)

g(y, [u](y), νu(y))dHn−1(y). (1.8)

In the last formula, the infimum is taken among all the functions u ∈ SBV (Qνr (rx),Rm) with ∇u = 0
Ln-a.e. in Qνr (rx) and that near ∂Qνr (rx) agree with the pure jump function u = urx,ζ,ν (see item (n) of
Section 2).

Assume that the limits as r → 0+ of the expressions in (1.7) and (1.8) exist and are independent of
x, and denote them by fhom(ξ) and ghom(ζ, ν), respectively (see (3.14) and (3.15)). Then, we prove that
for every bounded open set A ⊂ Rn the sequence Ek(·, A) with integrands f(x/εk, ξ) and g(x/εk, ζ, ν)
Γ-converges to the functional Ehom(·, A) with integrands fhom(ξ) and ghom(ζ, ν). In particular, we recover
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the case where f(x, ξ) and g(x, ζ, ν) are periodic with respect to x, which was previously studied in [8]
assuming (1.2) for g.

In the forthcoming paper [9] we shall prove that, under our more general assumptions (1.3), the existence
of these limits and their independence of x can be proved even in the more general context of stochastic
homogenisation. Therefore Theorem 3.8 of the present paper will be a key ingredient in the proof of the
results on stochastic homogenisation for free-discontinuity problems.

The paper is organised as follows. In Section 2 we fix the notation and give the references for the
background material used in the paper. In Section 3 we list the general hypotheses on the integrands fk
and gk and state our main results. We also prove that the result on homogenisation follows, through a
change of variables, from the result on the identification of the Γ-limit.

In Section 4 we prove a compactness theorem for the perturbed functionals obtained by adding to
Ek(u,A) the regularising term ε

∫
Su∩A

|[u]|dHn−1, which allows us to use the results of [8]. This section

contains also some technical lemmas on smooth truncations that are used throughout the paper.
In Section 5 we begin the proof of Theorem 3.5, which gives the compactness of sequences of functionals

of the form (1.1) with respect to Γ-convergence. The main tool is the analysis of the limit as ε→ 0+ of the
Γ-limits of the perturbed functionals of Section 4. The conclusion of the proof is based on Theorem 5.2,
where the integrands of the functional obtained in this way are compared with (1.5) and (1.6). The proof
of this theorem is very technical and is given in Sections 7 and 8.

In Section 6 we prove the identification result for the Γ-limit (Theorem 3.7) using Theorem 5.2. More-
over we show that, for some minimisation problems involving an Lp(A,Rm)-perturbation of the functionals
(1.1), Γ-convergence in L0(A,Rm) implies convergence of the minimum values and, for a subsequence, con-
vergence in Lp(A,Rm) of the minimum points.

In Sections 7 and 8 we prove the statements of Theorem 5.2 concerning the volume and the surface
integrals, respectively.

The final section is an appendix which collects some technical results used in the paper.

2. Preliminaries and notation

In this section we give a brief account of the mathematical tools that will be needed in the paper.
For the general notions on BV , SBV , and GSBV functions and their fine properties we refer to [3]

(see also [16, 22]). For u ∈ BV , Du and Dsu denote the distributional derivative of u and its singular
part with respect to the Lebesgue measure, respectively, while ∇u stands for the density of the absolutely
continuous part of Du with respect to the Lebesgue measure. ∇u coincides with the approximate gradient
of u, which makes sense also for u ∈ GSBV . Moreover, Su denotes the set of approximate discontinuity
points of u, and νu the measure theoretic normal to Su. The symbols u± denote the one-sided approximate
limits of u at a point of Su, from the side of ±νu.

For the general theory of Γ-convergence we refer to the monograph [12]. Other results on this subject
can be found in [6] and [7].

We introduce now some notation that will be used throughout the paper.

(a) m and n are fixed positive integers, R is the set of real numbers, and Rm0 := Rm \ {0}.
(b) Sn−1 := {x = (x1, . . . , xn) ∈ Rn : x2

1 + · · ·+ x2
n = 1} and Ŝn−1

± := {x ∈ Sn−1 : ±xi(x) > 0}, where
i(x) is the largest i ∈ {1, . . . , n} such that xi 6= 0.

(c) Ln denotes the Lebesgue measure on Rn and Hn−1 the (n − 1)-dimensional Hausdorff measure
on Rn.

(d) A denotes the collection of all bounded open subsets of Rn; if A, B ∈ A , by A ⊂⊂ B we mean
that A is relatively compact in B.

(e) For u ∈ GSBV (A,Rm), with A ∈ A , the jump of u across Su is defined by [u] := u+ − u−.
(f) For A ∈ A we define

SBVpc(A,Rm) := {u ∈ SBV (A,Rm) : ∇u = 0 Ln-a.e., Hn−1(Su) < +∞};

it is known (see [3, Theorem 4.23]) that every u in SBVpc(A,Rm) ∩ L∞(A,Rm) is piecewise
constant in the sense of [3, Definition 4.21], namely there exists a Caccioppoli partition (Ei)
of A such that u is constant Ln-a.e. in each set Ei. We note that same result holds for u ∈
SBVpc(A,Rm), however this property will never be used in the paper.

(g) For A ∈ A and p > 1 we define

SBV p(A,Rm) := {u ∈ SBV (A,Rm) : ∇u ∈ Lp(A,Rm×n), Hn−1(Su) < +∞}.
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(h) For A ∈ A and p > 1 we define

GSBV p(A,Rm) := {u ∈ GSBV (A,Rm) : ∇u ∈ Lp(A,Rm×n), Hn−1(Su) < +∞};

it is known that GSBV p(A,Rm) is a vector space and that ψ(u) ∈ SBV p(A,Rm) ∩ L∞(A,Rm)
for every u ∈ GSBV p(A,Rm) and for every ψ ∈ C1

c (Rm,Rm) (see, e.g., [13, page 172]).
(i) For every Ln-measurable set A ⊂ Rn let L0(A,Rm) be the space of all Ln-measurable functions

u : A→ Rm, endowed with the topology of convergence in measure on bounded subsets of A; we
observe that this topology is metrisable and separable.

(j) For x ∈ Rn and ρ > 0 we define

Bρ(x) := {y ∈ Rn : |y − x| < ρ},
Qρ(x) := {y ∈ Rn : |(y − x) · ei| < ρ/2 for i = 1, . . . , n},

where | · | is the Euclidean norm in Rn, e1, . . . , en is the canonical basis of Rn, and · denotes the
Euclidean scalar product; we omit the subscript ρ when ρ = 1 (| · | denotes the absolute value in
R or the Euclidean norm in Rn, Rm, or Rm×n, depending on the context).

(k) For every ν ∈ Sn−1 let Rν be an orthogonal n×n matrix such that Rνen = ν; we assume that

the restrictions of the function ν 7→ Rν to the sets Ŝn−1
± defined in (b) are continuous and that

R−νQ(0) = RνQ(0) for every ν ∈ Sn−1; a map ν 7→ Rν satisfying these properties is provided in
Example A.1 in the Appendix.

(l) For x ∈ Rn, ρ > 0, and ν ∈ Sn−1 we set

Qνρ(x) := RνQρ(0) + x;

we omit the subscript ρ when ρ = 1.
(m) For ξ ∈ Rm×n, the linear function from Rn to Rm with gradient ξ is denoted by `ξ; i.e., `ξ(x) := ξx,

where x is considered as an n×1 matrix.
(n) For x ∈ Rn, ζ ∈ Rm0 , and ν ∈ Sn−1 we define the function ux,ζ,ν as

ux,ζ,ν(y) :=

{
ζ if (y − x) · ν ≥ 0,

0 if (y − x) · ν < 0.

(o) For x ∈ Rn and ν ∈ Sn−1, we set

Πν
0 := {y ∈ Rn : y · ν = 0} and Πν

x := {y ∈ Rn : (y − x) · ν = 0}.

3. Statement of the main results

Throughout the paper we fix six constants p, c1, . . . , c5, with 1 < p < +∞, 0 < c1 ≤ c2 < +∞, 1 ≤ c3 <
+∞, and 0 < c4 ≤ c5 < +∞, and two nondecreasing continuous functions σ1, σ2 : [0,+∞) → [0,+∞)
such that σ1(0) = σ2(0) = 0.

Definition 3.1 (Volume and surface integrands). Let F = F(p, c1, c2, σ1) be the collection of all functions
f : Rn×Rm×n → [0,+∞) satisfying the following conditions:

(f1) (measurability) f is Borel measurable on Rn×Rm×n;
(f2) (continuity in ξ) for every x ∈ Rn we have

|f(x, ξ1)− f(x, ξ2)| ≤ σ1(|ξ1 − ξ2|)
(
1 + f(x, ξ1) + f(x, ξ2)

)
for every ξ1, ξ2 ∈ Rm×n;

(f3) (lower bound) for every x ∈ Rn and every ξ ∈ Rm×n

c1|ξ|p ≤ f(x, ξ);

(f4) (upper bound) for every x ∈ Rn and every ξ ∈ Rm×n

f(x, ξ) ≤ c2(1 + |ξ|p).

Let G = G(c3, c4, c5, σ2) be the collection of all functions g : Rn×Rm0 ×Sn−1 → [0,+∞) satisfying the
following conditions:

(g1) (measurability) g is Borel measurable on Rn×Rm0 ×Sn−1;
(g2) (continuity in ζ) for every x ∈ Rn and every ν ∈ Sn−1 we have

|g(x, ζ2, ν)− g(x, ζ1, ν)| ≤ σ2(|ζ1 − ζ2|)
(
g(x, ζ1, ν) + g(x, ζ2, ν)

)
for every ζ1, ζ2 ∈ Rm0 ;
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(g3) (estimate for |ζ1| ≤ |ζ2|) for every x ∈ Rn and every ν ∈ Sn−1 we have

g(x, ζ1, ν) ≤ c3 g(x, ζ2, ν)

for every ζ1, ζ2 ∈ Rm0 with |ζ1| ≤ |ζ2|;
(g4) (estimate for c3|ζ1| ≤ |ζ2|) for every x ∈ Rn and every ν ∈ Sn−1 we have

g(x, ζ1, ν) ≤ g(x, ζ2, ν)

for every ζ1, ζ2 ∈ Rm0 with c3|ζ1| ≤ |ζ2|;
(g5) (lower bound) for every x ∈ Rn, ζ ∈ Rm0 , and ν ∈ Sn−1

c4 ≤ g(x, ζ, ν);

(g6) (upper bound) for every x ∈ Rn, ζ ∈ Rm0 , and ν ∈ Sn−1

g(x, ζ, ν) ≤ c5(1 + |ζ|);

(g7) (symmetry) for every x ∈ Rn, ζ ∈ Rm0 , and ν ∈ Sn−1

g(x, ζ, ν) = g(x,−ζ,−ν).

Remark 3.2 (Assumptions (g3) and (g4)). Let g : Rn×Rm0 ×Sn−1 → [0,+∞) be a function satisfying the
following “monotonicity” condition: for every x ∈ Rn and every ν ∈ Sn−1

g(x, ζ1, ν) ≤ g(x, ζ2, ν)

for every ζ1, ζ2 ∈ Rm0 with |ζ1| ≤ |ζ2|; then it is immediate to verify that g satisfies (g3) and (g4).
On the other hand (g3) and (g4) are weaker than monotonicity in |ζ|. For instance, the function

g(x, ζ, ν) := ĝ(|ζ|), with ĝ : [0,+∞)→ [0,+∞) given by

ĝ(t) =


t if t ∈ [0, 1],

∈
[
t
c3
, 1
]

if t ∈ [1, c3],

t
c3

if t ≥ c3,

satisfies (g3) and (g4), but its behaviour in [1, c3] can be chosen quite freely, in particular it can be
nonmonotone.

Remark 3.3. We remark that assumptions (g3) and (g4) on the surface integrand g will be crucial to prove
that the functional E defined in (3.4) decreases by smooth truncations up to an error term (see (4.13)
and the proof of Lemma 4.1). We also notice that (g3) and (g4) could be omitted if assumption (g5) were
replaced by the stronger lower bound

c(1 + |ζ|) ≤ g(x, ζ, ν) for every (x, ζ, ν) ∈ Rn × Rm0 × Sn−1 (3.1)

for some c > 0 (see, e.g., the proof of [8, Lemma 3.5]). However, a lower bound as in (3.1) would rule
out, for instance, functionals of Mumford-Shah type, which we would like to cover in our analysis. For
this reason we prefer to work under the weaker growth condition (g5) on g and under the additional
“monotonicity” assumptions (g3) and (g4).

Given f ∈ F and g ∈ G, we consider the integral functionals F , G, E : L0(Rn,Rm)×A −→ [0,+∞]
defined as

F (u,A) :=


∫
A

f(x,∇u) dx if u|A ∈ GSBV p(A,Rm),

+∞ otherwise in L0(Rn,Rm).
(3.2)

G(u,A) :=


∫
Su∩A

g(x, [u], νu)dHn−1 if u|A ∈ GSBV p(A,Rm),

+∞ otherwise in L0(Rn,Rm),
(3.3)

E(u,A) := F (u,A) +G(u,A). (3.4)

We also consider the integral functional Ep : Lploc(Rn,Rm)×A −→ [0,+∞], defined as the restriction of
E to Lploc(Rn,Rm)×A .

Remark 3.4. Since [u] is reversed when the orientation of νu is reversed, the functional G is well defined
thanks to (g7).

The following compactness theorem, with respect to Γ-convergence, is one of the main results of this
paper.
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Theorem 3.5 (Compactness for Γ-convergence). Let (fk) be a sequence in F , let (gk) be a sequence in
G, let Ek : L0(Rn,Rm)×A → [0,+∞] be the integral functionals defined by (3.4) corresponding to fk and
gk, and let Epk : Lploc(Rn,Rm)×A → [0,+∞] be their restrictions to Lploc(Rn,Rm)×A . Then there exist a
subsequence, not relabelled, and two functions f ∈ F and g ∈ G such that for every A ∈ A

Ek(·, A) Γ-converges to E(·, A) in L0(Rn,Rm),

Epk(·, A) Γ-converges to Ep(·, A) in Lploc(Rn,Rm),

where the integral functional E : L0(Rn,Rm)×A → [0,+∞] is given by (3.4) and Ep is its restriction to
Lploc(Rn,Rm)×A .

Similar results, under different hypotheses on the surface densities gk, have been obtained in [8] and
[19].

Let X be a subspace of L0(Rn,Rm). For every H : X×A −→ [0,+∞], A ∈ A , and w ∈ L0(Rn,Rm),
we set

m1,p
H (w,A) := inf

{
H(u,A) : u ∈ X, u|A ∈W 1,p(A,Rm), u = w near ∂A

}
, (3.5)

mpc
H (w,A) := inf {H(u,A) : u ∈ X, u|A ∈ SBVpc(A,Rm), u = w near ∂A} , (3.6)

mH(w,A) := inf {H(u,A) : u ∈ X, u|A ∈ SBV p(A,Rm), u = w near ∂A} , (3.7)

with the standard convention inf Ø = +∞. In all the formulas above, by “u = w near ∂A” we mean that
there exists a neighbourhood U of ∂A in Rn such that u = w Ln-a.e. in U ∩A.

Let (fk) be a sequence in F and let (gk) be a sequence in G. For every k, we consider the integral
functionals Fk, Gk, Ek : L0(Rn,Rm)×A → [0,+∞] defined by (3.2), (3.3), and (3.4) corresponding to fk
and gk. For every x ∈ Rn, ξ ∈ Rm×n, ζ ∈ Rm0 , and ν ∈ Sn−1 we define

f ′(x, ξ) := lim sup
ρ→0+

lim inf
k→+∞

m1,p
Fk

(`ξ, Qρ(x))

ρn
, (3.8)

f ′′(x, ξ) := lim sup
ρ→0+

lim sup
k→+∞

m1,p
Fk

(`ξ, Qρ(x))

ρn
, (3.9)

g′(x, ζ, ν) := lim sup
ρ→0+

lim inf
k→+∞

mpc
Gk

(ux,ζ,ν , Q
ν
ρ(x))

ρn−1
, (3.10)

g′′(x, ζ, ν) := lim sup
ρ→0+

lim sup
k→+∞

mpc
Gk

(ux,ζ,ν , Q
ν
ρ(x))

ρn−1
. (3.11)

Remark 3.6. It turns out that f ′, f ′′ ∈ F (see Lemma A.6), and g′, g′′ ∈ G (see Lemma A.7).

The second main result of this paper is the identification of the Γ-limit.

Theorem 3.7 (Identification of the Γ-limit). Let (fk), (gk), (Ek), and (Epk) be as in Theorem 3.5, let
f∞ ∈ F and g∞ ∈ G, let E∞ be defined as in (3.4) with f∞ and g∞, and let Ep∞ be its restriction to
Lploc(Rn,Rm)×A . Assume that the following equalities are satisfied:

(a1) for Ln-a.e. x ∈ Rn we have

f∞(x, ξ) = f ′(x, ξ) = f ′′(x, ξ) for every ξ ∈ Rm×n;

(a2) for every A ∈ A , for every u ∈ GSBV p(A,Rm), and for Hn−1-a.e. x ∈ Su we have

g∞(x, [u](x), νu(x)) = g′(x, [u](x), νu(x)) = g′′(x, [u](x), νu(x)).

Then

Ek(·, A) Γ-converges to E∞(·, A) in L0(Rn,Rm), (3.12)

Epk(·, A) Γ-converges to Ep∞(·, A) in Lploc(Rn,Rm), (3.13)

for every A ∈ A .

The third main result of the paper concerns the case of homogenisation, where fk(x, ξ) := f(x/εk, ξ)
and gk(x, ζ, ν) := g(x/εk, ζ, ν) for a sequence εk → 0+.
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Theorem 3.8 (Homogenisation). Let f ∈ F and g ∈ G, and let F and G be the functionals defined as in
(3.2) and (3.3), respectively. Assume that for every x ∈ Rn, ξ ∈ Rm×n, ζ ∈ Rm0 , and ν ∈ Sn−1 the limits

lim
r→+∞

m1,p
F (`ξ, Qr(rx))

rn
=: fhom(ξ), (3.14)

lim
r→+∞

mpc
G (urx,ζ,ν , Q

ν
r (rx))

rn−1
=: ghom(ζ, ν) (3.15)

exist and are independent of x. Then fhom ∈ F and ghom ∈ G.
Let (εk) be a sequence of positive real numbers converging to 0, let fk and gk be defined by

fk(x, ξ) := f(x/εk, ξ) and gk(x, ζ, ν) := g(x/εk, ζ, ν),

let Ek be defined as in (3.4) with fk and gk, let Ehom be defined as in (3.4) with fhom and ghom, and let
Epk and Ephom be their restrictions to Lploc(Rn,Rm)×A . Then

Ek(·, A) Γ-converges to Ehom(·, A) in L0(Rn,Rm),

Epk(·, A) Γ-converges to Ephom(·, A) in Lploc(Rn,Rm),

for every A ∈ A .

Arguing as in [8] (see also [7] for the volume part) one can prove that (3.14) and (3.15) are always
satisfied when f and g are periodic of period 1 with respect to the space coordinates x1, . . . , xn. We
omit here the proof of this property, since in [9] we shall prove that (3.14) and (3.15) are satisfied almost
surely under the natural assumptions of stochastic homogenisation, which include, in particular, the case
of deterministic periodic homogenisation.

The complete proofs of Theorems 3.5 and 3.7 require several intermediate results which will be estab-
lished in the next sections. Theorem 3.8 instead follows easily from Remark 3.6 and from Theorem 3.7 by
means of a natural change of variables, as we show below.

Proof of Theorem 3.8. By Theorem 3.7 it is enough to show that

f ′(x, ξ) = f ′′(x, ξ) = fhom(ξ) and g′(x, ζ, ν) = g′′(x, ζ, ν) = ghom(ζ, ν) (3.16)

for every x ∈ Rn, ξ ∈ Rm×n, ζ ∈ Rm0 , and ν ∈ Sn−1. Indeed, if these equalities are satisfied, then fhom ∈ F
and ghom ∈ G by Remark 3.6, and the Γ-convergence follows from Theorem 3.7 applied with f∞ = fhom

and g∞ = ghom.
To prove the first equality in (3.16) we fix x ∈ Rn, ξ ∈ Rm×n, ρ > 0, and k ∈ N. Given u ∈

W 1,p(Qρ(x),Rm), let uk ∈ W 1,p(Qρ/εk (x/εk),Rm) be defined by uk(z) = u(εkz)/εk for every z ∈
Qρ/εk (x/εk). By the change of variables z = y/εk we obtain Fk(u,Qρ(x)) = εnkF (uk, Qρ/εk (x/εk)).

Since u = `ξ near ∂Qρ(x) if and only if uk = `ξ near ∂Qρ/εk (x/εk), we deduce that m1,p
Fk

(`ξ, Qρ(x))

= εnk m
1,p
F (`ξ, Qρ/εk (x/εk)) = (ρn/rnk )m1,p

F (`ξ, Qrk (rkx/ρ)), where rk := ρ/εk. By applying (3.14) with x
replaced by x/ρ we obtain

lim
k→+∞

1

ρn
m1,p
Fk

(`ξ, Qρ(x)) = fhom(ξ).

By (3.8) and (3.9) this implies that f ′(x, ξ) = f ′′(x, ξ) = fhom(ξ).
To prove the second equality in (3.16) we fix x ∈ Rn, ζ ∈ Rm0 , ν ∈ Sn−1, ρ > 0, and k ∈ N.

Given v ∈ SBVpc(Qνρ(x),Rm), let vk ∈ SBVpc(Qνρ/εk (x/εk),Rm) be defined by vk(z) = v(εkz) for every

z ∈ Qνρ/εk (x/εk). Then Svk = (1/εk)Sv and, thanks to (g7), we may assume that [vk](z) = [v](εkz) for

Hn−1-a.e. z ∈ Svk . By the change of variables z = y/εk we obtain Gk(v,Qνρ(x)) = εn−1
k G(vk, Q

ν
ρ/εk

(x/εk)).

From the fact that v = ux,ζ,ν near ∂Qνρ(x) if and only if vk = ux/εk,ζ,ν near ∂Qνρ/εk (x/εk), we deduce

that mpc
Gk

(ux,ζ,ν , Q
ν
ρ(x)) = εn−1

k mpc
G (ux/εk,ζ,ν , Q

ν
ρ/εk

(x/εk)) = (ρn−1/rn−1
k )mpc

G (urkx/ρ,ζ,ν , Q
ν
rk (rkx/ρ)),

where rk := ρ/εk. By applying (3.15) with x replaced by x/ρ we obtain

lim
k→+∞

1

ρn−1
mpc
Gk

(ux,ζ,ν , Q
ν
ρ(x)) = ghom(ζ, ν).

By (3.10) and (3.11) this implies that g′(x, ζ, ν) = g′′(x, ζ, ν) = ghom(ζ, ν). �

4. Compactness result for perturbed functionals

In this section we prove a compactness result, Theorem 4.3, for the perturbed functionals obtained by
adding to Epk(u,A) the regularising term ε

∫
Su∩A

|[u]|dHn−1, with ε > 0. Theorem 4.3 will then be pivotal

to prove our main compactness result, Theorem 3.5.

In order to prove Theorem 4.3 we need some technical tools.
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We start with a result (Lemma 4.1) establishing the existence of smooth truncations of u by which the
functionals F and E “almost decrease” (see (4.12) and (4.13) below). Similar truncation results can be
found in [10, proof of Proposition 2.6] and [8, Lemma 3.5].

In what follows we use the shorthand {|u| > λ} := {x ∈ Rn : |u(x)| > λ}, where u ∈ L0(Rn,Rm) and
λ > 0.

Smooth truncations. Let ϕ ∈ C∞(R) be fixed and such that ϕ(t) = t for every t ≤ 1, ϕ(t) = 0 for
every t ≥ 3, while ϕ(t) ≥ 0 and |ϕ′(t)| ≤ 1 for every t ≥ 0. We define ψ ∈ C∞c (Rm,Rm) by

ψ(ζ) :=

{
ϕ(|ζ|)ζ/|ζ| if ζ 6= 0,

0 if ζ = 0.

Then ψ(ζ) = ζ for every |ζ| ≤ 1, ψ(ζ) = 0 for every |ζ| ≥ 3, and |ψ(ζ)| ≤ 2 for every ζ ∈ Rm. Moreover
for every η, η̃ ∈ Rm we have

∂ηψ(ζ)· η̃ = (ζ · η) (ζ · η̃)ϕ′(|ζ|)/|ζ|2 + (η · η̃)ϕ(|ζ|)/|ζ| − (ζ · η) (ζ · η̃)ϕ(|ζ|)/|ζ|3.

Let η|| and η̃|| be the orthogonal projections of η and η̃ onto the one-dimensional space generated by ζ,
and let η⊥ and η̃⊥ be the orthogonal projections of η and η̃ onto the space orthogonal to ζ. Then

∂ηψ(ζ)· η̃ = (η|| · η̃||)ϕ′(|ζ|) + (η · η̃)ϕ(|ζ|)/|ζ| − (η|| · η̃||)ϕ(|ζ|)/|ζ|

= (η|| · η̃||)ϕ′(|ζ|) + (η⊥ · η̃⊥)ϕ(|ζ|)/|ζ|.

Since |ϕ′(t)| ≤ 1 and 0 ≤ ϕ(t)/t ≤ 1 for every t ∈ R, we obtain that

∂ηψ(ζ)· η̃ ≤ |η|| · η̃|||+ |η⊥ · η̃⊥| ≤ |η| |η̃|.

Since η̃ is arbitrary, this implies that |∂ηψ(ζ)| ≤ |η| for every η ∈ Rm. By the mean value theorem this
inequality gives |ψ(ζ2)− ψ(ζ1)| ≤ |ζ2 − ζ1| for every ζ1, ζ2 ∈ Rm.

For every λ > 0 we set

ψλ(ζ) := λψ(ζ/λ). (4.1)

Then ψλ ∈ C∞c (Rm,Rm) and

ψλ(ζ) = ζ for every ζ ∈ Rm : |ζ| ≤ λ, (4.2)

|ψλ(ζ)| ≤ 2λ for every ζ ∈ Rm, (4.3)

ψλ(ζ) = 0 for every ζ ∈ Rm : |ζ| ≥ 3λ, (4.4)

|ψλ(ζ2)− ψλ(ζ1)| ≤ |ζ2 − ζ1| for every ζ1, ζ2 ∈ Rm. (4.5)

From (4.2) and (4.5) it follows that

|ψλ(ζ)| ≤ |ζ| for every ζ ∈ Rm. (4.6)

Lemma 4.1. Let η > 0 and let h ∈ N, h ≥ 1, be such that

c2/(c1h) < η and 2c3/h < η, (4.7)

where c1, c2, and c3 are as in Definition 3.1. Let moreover α ≥ 3 be such that α − 1 ≥ c3. Given λ > 0,
let λ1, . . . , λh+1 ∈ R be such that

λ1 ≥ λ (4.8)

λi+1 ≥ αλi for i = 1, . . . , h. (4.9)

We set µ := λh+1 and, for i = 1, . . . , h, we define ψi := ψλi , where ψλi is given by (4.1). Then for every
i = 1, . . . , h we have ψi ∈ C∞c (Rm,Rm),

|ψi(ζ)| ≤ µ for every ζ ∈ Rm, (4.10)

ψi(ζ) = ζ for every ζ ∈ Rm with |ζ| ≤ λ. (4.11)

Moreover, the following property holds: if the function f : Rn×Rm×n → [0,+∞) satisfies (f1), (f3),
(f4), and the function g : Rn×Rm0 ×Sn−1 → [0,+∞) satisfies (g1), (g3), (g4), (g7), then for every u ∈
L0(Rn,Rm) and every A ∈ A there exist ı̂, ̂ ∈ {1, . . . , h} (depending also on f , g, u, and A) such that

F (ψı̂(u), A) ≤ (1 + η)F (u,A) + c2Ln(A ∩ {|u| ≥ λ}), (4.12)

E(ψ̂(u), A) ≤ (1 + η)E(u,A) + c2Ln(A ∩ {|u| ≥ λ}), (4.13)

where F and E are as in (3.2) and (3.4), respectively.
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Proof. Since α ≥ 3, inequalities (4.10) and (4.11) follow from (4.2), (4.3), (4.8), and (4.9).
Let f , g, u, A, be as in the statement. To prove (4.12) and (4.13) it is enough to consider the case

u|A ∈ GSBV p(A,Rm). For every i = 1, . . . , h let vi := ψi(u). Then vi = u Ln-a.e. in {|u| ≤ λi} by (4.2)
and vi = 0 Ln-a.e. in {|u| ≥ λi+1} by (4.4) and (4.9). Moreover (4.5) gives |∇vi| ≤ |∇u| Ln-a.e. in A.
Therefore (f3), (f4), (4.8), and (4.9) yield

F (vi, A) ≤
∫
A∩{|u|≤λi}
f(x,∇u) dx+ c2Ln(A ∩ {|u| ≥ λi+1}) + c2

∫
A∩{λi<|u|<λi+1}
|∇u|p dx

≤
∫
A

f(x,∇u) dx+ c2Ln(A ∩ {|u| ≥ λ}) +
c2
c1

∫
A∩{λi<|u|<λi+1}

f(x,∇u) dx. (4.14)

Since
h∑
i=1

∫
A∩{λi<|u|<λi+1}

f(x,∇u) dx ≤
∫
A

f(x,∇u) dx,

there exists ı̂ ∈ {1, . . . , h} such that∫
A∩{λı̂<|u|<λı̂+1}

f(x,∇u) dx ≤ 1

h

∫
A

f(x,∇u) dx.

By (4.14) this implies

F (vı̂, A) ≤
(

1 +
c2
c1h

)
F (u,A) + c2Ln(A ∩ {|u| ≥ λ}),

which gives (4.12) thanks to (4.7).
To estimate G(vi, A) we use the inclusion Svi ⊂ Su ∩

(
{|u+| < λi+1} ∪ {|u−| < λi+1}

)
. Moreover,

thanks to (g7), we can choose the orientation of νvi so that νvi = νu Hn−1-a.e. in Svi . This leads to
v±i = ψi(u

±) Hn−1-a.e. in Svi . By (4.5) this implies that

|[vi]| ≤ |[u]| Hn−1-a.e. on Svi . (4.15)

Therefore we have

G(vi, A) ≤
∫
Su∩A∩{|u+|≤λi}∩{|u−|≤λi}

g(x, [u], νu) dHn−1 +

∫
Su∩A∩{λi<|u+|<λi+1}

g(x, [vi], νu) dHn−1 +

∫
Su∩A∩{λi<|u−|<λi+1}

g(x, [vi], νu) dHn−1

+

∫
Su∩A∩{|u+|≥λi+1}∩{|u−|≤λi}

g(x, [vi], νu) dHn−1 +

∫
Su∩A∩{|u+|≤λi}∩{|u−|≥λi+1}

g(x, [vi], νu) dHn−1. (4.16)

For Hn−1-a.e. point of {|u+| ≥ λi+1} ∩ {|u−| ≤ λi} we have [vi] = −u−, hence |[vi]| ≤ λi, while (4.9)
implies that

|[u]| = |u+ − u−| ≥ |u+| − |u−| ≥ λi+1 − λi ≥ (α− 1)λi ≥ c3λi,
hence c3|[vi]| ≤ |[u]|. By (g4) this implies

g(x, [vi], νu) ≤ g(x, [u], νu) Hn−1-a.e. on {|u+| ≥ λi+1} ∩ {|u−| ≤ λi}.
The same inequality holds Hn−1-a.e. on {|u+| ≤ λi} ∩ {|u−| ≥ λi+1}. Therefore, from (4.15), (4.16), and
(g3) we obtain

G(vi, A) ≤
∫
Su∩A

g(x, [u], νu) dHn−1 + c3

∫
Su∩A∩{λi<|u+|<λi+1}

g(x, [u], νu) dHn−1 + c3

∫
Su∩A∩{λi<|u−|<λi+1}

g(x, [u], νu) dHn−1. (4.17)

Since
h∑
i=1

(c2
c1

∫
A∩{λi<|u|<λi+1}
f(x,∇u) dx+ c3

∫
Su∩A∩{λi<|u+|<λi+1}

g(x, [u], νu) dHn−1 + c3

∫
Su∩A∩{λi<|u−|<λi+1}

g(x, [u], νu) dHn−1
)

≤ c2
c1

∫
A

f(x,∇u) dx+ 2c3

∫
Su∩A

g(x, [u], νu) dHn−1,

there exists ̂ ∈ {1, . . . , h} such that

c2
c1

∫
A∩{λ̂<|u|<λ̂+1}

f(x,∇u) dx+ c3

∫
Su∩A∩{λ̂<|u+|<λ̂+1}

g(x, [u], νu) dHn−1 + c3

∫
Su∩A∩{λ̂<|u−|<λ̂+1}

g(x, [u], νu) dHn−1

≤ c2
c1h

∫
A

f(x,∇u) dx+
2c3
h

∫
Su∩A

g(x, [u], νu) dHn−1. (4.18)

Inequality (4.13) follows then from (4.7), (4.14), (4.17), and (4.18). �

The estimate in the previous lemma can be extended to the Γ-liminf, as the following result shows.
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Lemma 4.2. Let fk and gk be as in Theorem 3.5, let Ek be as in (3.4), with integrands fk and gk,
and let Epk be the restriction of Ek to Lploc(Rn,Rm). Finally, let E′ : L0(Rn,Rm)×A → [0,+∞] and
E′p : Lploc(Rn,Rm)×A → [0,+∞] be defined as

E′(·, A) := Γ- lim inf
k→+∞

Ek(·, A) and E′p(·, A) := Γ- lim inf
k→+∞

Epk(·, A),

where for E′ we use the topology of L0(Rn,Rm), while for E′p we use the topology of Lploc(Rn,Rm). Under

the assumptions of Lemma 4.1 the following property holds: for every u ∈ L0(Rn,Rm), v ∈ Lploc(Rn,Rm)
and A ∈ A , there exist ı̂, ̂ ∈ {1, . . . , h} (depending also on u, v, and A) such that

E′(ψı̂(u), A) ≤ (1 + η)E′(u,A) + c2Ln(A ∩ {|u| ≥ λ}), (4.19)

E′p(ψ̂(u), A) ≤ (1 + η)E′p(u,A) + c2Ln(A ∩ {|u| ≥ λ}). (4.20)

Proof. Let u ∈ L0(Rn,Rm) and A ∈ A be fixed. Let (uk) be a sequence in L0(Rn,Rm) converging to u
in measure on bounded sets and such that

E′(u,A) = lim inf
k→+∞

Ek(uk, A).

There exists a subsequence (ukj ) such that

E′(u,A) = lim
j→+∞

Ekj (ukj , A). (4.21)

By Lemma 4.1 for every j there exists ij ∈ {1, . . . , h} such that

Ekj (ψij (ukj ), A) ≤ (1 + η)Ekj (ukj , A) + c2Ln(A ∩ {|ukj | ≥ λ}).
Therefore there exist ı̂ ∈ {1, . . . , h} and a sequence j` → +∞ such that ij` = ı̂ for every `. This implies
that

Ekj` (ψı̂(ukj` ), A) ≤ (1 + η)Ekj` (ukj` , A) + c2Ln(A ∩ {|ukj` | ≥ λ}).
Since ukj` → u and ψı̂(ukj` )→ ψı̂(u) in measure on bounded sets, taking the limit as `→ +∞ and using

(4.21) we obtain (4.19). The same argument, with obvious changes, also proves (4.20). �

We are now ready to prove the Γ-convergence of the perturbed functionals Eε,pk , which are defined on
Lploc(Rn,Rm)×A → [0,+∞] by

Eε,pk (u,A) :=


∫
A

fk(x,∇u) dx+

∫
Su∩A
gεk(x, [u], νu)dHn−1 if u|A ∈ SBV p(A,Rm),

+∞ otherwise in Lploc(Rn,Rm),
(4.22)

where
gεk(x, ζ, ν) := gk(x, ζ, ν) + ε|ζ|. (4.23)

Theorem 4.3. Under the assumptions of Theorem 3.5, for every ε > 0 there exist a subsequence, not
relabelled, and a functional Eε,p : Lploc(Rn,Rm)×A → [0,+∞] such that for every A ∈ A the sequence
Eε,pk (·, A) defined in (4.22) Γ-converges to Eε,p(·, A) in Lploc(Rn,Rm). Let fε,p : Rn×Rm×n → [0,+∞] and

gε,p : Rn×Rm0 ×Sn−1 → [0,+∞] be the functions defined by

fε,p(x, ξ) = lim sup
ρ→0+

mEε,p(`ξ, Qρ(x))

ρn
, (4.24)

gε,p(x, ζ, ν) = lim sup
ρ→0+

mEε,p(ux,ζ,ν , Q
ν
ρ(x))

ρn−1
. (4.25)

Then fε,p ∈ F , gε,p satisfies (g1), (g3), (g4), and (g7), with c3 replaced by ĉ3 := max{c2/c1, c3}, and

Eε,p(u,A) =


∫
A

fε,p(x,∇u) dx+

∫
Su∩A

gε,p(x, [u], νu)dHn−1 if u|A ∈ SBV p(A,Rm),

+∞ otherwise in Lploc(Rn,Rm),
(4.26)

for every A ∈ A .

Proof. For fixed ε > 0 by (f3), (f4), (4.23), (g5), and (g6), for every A ∈ A , we have

c1

∫
A

|∇u|p dx+

∫
Su∩A

(
c4 + ε|[u]|

)
dHn−1 ≤ Eε,pk (u,A)

≤ c2
∫
A

(
1 + |∇u|p

)
dx+ (c5 + ε)

∫
Su∩A

(
1 + |[u]|

)
dHn−1 (4.27)

if u|A ∈ SBV p(A,Rm), while Eε,pk (u,A) = +∞ if u|A /∈ SBV p(A,Rm).
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Since the functionals Eε,pk satisfy all assumptions of [8, Proposition 3.3], there exist a subsequence, not
relabelled, and a functional Eε,p : Lploc(Rn,Rm)×A → [0,+∞] such that for every A ∈ A the sequence
Eε,pk (·, A) Γ-converges to Eε,p(·, A) in Lp(A,Rm).

Let Φε : Lploc(Rn,Rm)×A → [0,+∞] be defined by

Φε(u,A) :=

c1
∫
A

|∇u|p dx+

∫
Su∩A

(
c4 + ε|[u]|

)
dHn−1 if u|A ∈ SBV p(A,Rm),

+∞ otherwise.
(4.28)

Since Φε(·, A) is lower semicontinuous in Lploc(Rn,Rm) (see [1, Theorems 2.2 and 3.7] or [2, Theorem 4.5
and Remark 4.6]), from (4.27) we deduce that for every u ∈ Lploc(Rn,Rm) and every A ∈ A it holds

c1

∫
A

|∇u|p dx+

∫
Su∩A

(
c4 + ε|[u]|

)
dHn−1 ≤ Eε,p(u,A)

≤ c2
∫
A

(
1 + |∇u|p

)
dx+ (c5 + ε)

∫
Su∩A

(
1 + |[u]|

)
dHn−1 (4.29)

if u|A ∈ SBV p(A,Rm), while Eε,p(u,A) = +∞ if u|A /∈ SBV p(A,Rm).
In order to apply the integral representation result [4, Theorem 1] we need a functional defined on

SBV ploc(Rn,Rm)×A . Since Eε,p(u,A) is not defined in SBV ploc(Rn,Rm) \Lploc(Rn,Rm), we now introduce
the functional Eε : SBV ploc(Rn,Rm)×A → [0,+∞) defined by

Eε(u,A) := lim
λ→+∞

Eε,p(uλ, A), (4.30)

where uλ := ψλ(u) and ψλ is as in (4.1).

Step 1: Eε is well defined and Eε = Eε,p on (SBV ploc(Rn,Rm) ∩ Lploc(Rn,Rm)) × A . We start by
proving that Eε is well defined; i.e., that the limit in (4.30) exists. We prove it by contradiction. Namely,
if the limit in (4.30) does not exist we can find u ∈ SBV ploc(Rn,Rm), A ∈ A , a < b, λj → +∞, and
µj → +∞ such that

Eε,p(uλj , A) > b and Eε,p(uµj , A) < a. (4.31)

Fix η, h, α as in Lemma 4.1, with (1 + η)a + η < b. By possibly removing a finite number of terms in
these sequences, it is not restrictive to assume that

c2Ln(A ∩ {|u| ≥ λ1}) < η, (4.32)

and that λi+1 ≥ αλi for i = 1, . . . , h. Then by Lemma 4.2 for every j there exists ij ∈ {1, . . . , h} such
that

Eε,p(ψij(u
µj ), A) ≤ (1 + η)Eε,p(uµj , A) + c2Ln(A ∩ {|uµj | ≥ λ1}), (4.33)

where, here and below, we use the shorthand ψk for ψλk . Therefore there exist ı̂ ∈ {1, . . . , h} and a
sequence j` → +∞ such that ij` = ı̂ for every `. Since uµj` → u in measure on bounded sets we have
that lim sup` Ln(A∩{|uµj` | ≥ λ1}) ≤ Ln(A∩{|u| ≥ λ1}). Moreover ψı̂(u

µj` )→ ψı̂(u) in Lploc(Rn,Rm) as
`→ +∞. By the lower semicontinuity of the Γ-limits, from (4.33) we obtain

Eε,p(ψı̂(u), A) ≤ (1 + η) lim sup
`→+∞

Eε,p(uµj` , A) + c2Ln(A ∩ {|u| ≥ λ1}). (4.34)

By (4.31) and (4.32) this implies that

b < Eε,p(ψı̂(u), A) ≤ (1 + η)a+ η,

which contradicts the inequality (1 + η)a+ η < b and hence yields the existence of the limit in (4.30).
We note that (4.30) and (4.34) imply that, under the assumptions of Lemma 4.1, for every u ∈

SBV ploc(Rn,Rm) and every A ∈ A , there exists ı̂ ∈ {1, . . . , h} such that

Eε,p(ψı̂(u), A) ≤ (1 + η)Eε(u,A) + c2Ln(A ∩ {|u| ≥ λ1}). (4.35)

We now show that

Eε(u,A) = Eε,p(u,A) ∀ (u,A) ∈
(
SBV ploc(Rn,Rm) ∩ Lploc(Rn,Rm)

)
×A . (4.36)

Fix u and A; since uλ → u in Lploc(Rn,Rm) as λ→ +∞ by (4.2) and (4.6), by the lower semicontinuity of
the Γ-limits we have

Eε,p(u,A) ≤ lim inf
λ→+∞

Eε,p(uλ, A) = Eε(u,A).
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To prove the opposite inequality we fix η, h, and α as in Lemma 4.1 and we consider a sequence (λi),
λi → +∞ as i→ +∞, such that λi+1 ≥ αλi for every i. We now apply Lemma 4.2 to λi+1, . . . , λi+h and
obtain that for every i there exists ji ∈ {i+ 1, . . . , i+ h} such that

Eε,p(uλji , A) ≤ (1 + η)Eε,p(u,A) + c2Ln(A ∩ {|u| ≥ λi}).
Taking the limit as i→ +∞, by (4.30) we get

Eε(u,A) ≤ (1 + η)Eε,p(u,A),

and taking the limit as η → 0+ we obtain

Eε(u,A) ≤ Eε,p(u,A),

which concludes the proof of (4.36).

Step 2: Lower semicontinuity of Eε with respect to the strong convergence in L1
loc. For fixed A ∈ A we

now prove that Eε(·, A) is lower semicontinuous on SBV ploc(Rn,Rm) with respect to the strong convergence

in L1
loc(Rn,Rm). Let us fix u ∈ SBV ploc(Rn,Rm) and a sequence (uk) in SBV ploc(Rn,Rm) converging to u in

L1
loc(Rn,Rm) and such that limk E

ε(uk, A) exists. Let η, h, α, and (λi) be as in the previous step. We now
apply (4.35) to λi+1, . . . , λi+h and obtain that for every i and every k there exists ji,k ∈ {i+ 1, . . . , i+ h}
such that

Eε,p(ψji,k (uk), A) ≤ (1 + η)Eε(uk, A) + c2Ln(A ∩ {|uk| ≥ λi}).
For every i there exist Ni ∈ {i+ 1, . . . , i+ h} and sequence ki` → +∞ as `→ +∞ E such that ji,ki

`
= Ni

for every `. Since ψNi(uki
`
) converges to ψNi(u) in Lploc(Rn,Rm) as `→ +∞, by the lower semicontinuity

of the Γ-limits we obtain

Eε,p(ψNi(u), A) ≤ lim inf
`→+∞

Eε,p(ψNi(uki
`
), A)

≤ (1 + η) lim
`→+∞

Eε(uki
`
, A) + c2Ln(A ∩ {|u| ≥ λi})

= (1 + η) lim
k→+∞

Eε(uk, A) + c2Ln(A ∩ {|u| ≥ λi}).

Taking the limit first as i→ +∞ and then as η → 0+, from (4.30) and from the previous inequalities we
obtain

Eε(u,A) ≤ lim
k→+∞

Eε(uk, A),

which proves the lower semicontinuity of Eε(·, A).

Step 3: Integral representation of Eε,p. By [8, Proposition 3.3] for every u ∈ SBV ploc(Rn,Rm) ∩
Lploc(Rn,Rm)) the function A 7→ Eε,p(u,A) is the restriction to A of a measure defined on the σ-algebra
of all Borel subsets of Rn. By (4.29) and (4.30), this implies that for every u ∈ SBV ploc(Rn,Rm) the
function A 7→ Eε(u,A) is the restriction to A of a measure defined on the Borel σ-algebra of Rn (see,
e.g., [15, Théorème 5.7]).

It follows from the definition that Eε,p is local; i.e., if u, v ∈ Lploc(Rn,Rm), A ∈ A , and u = v Ln-a.e.
in A, then Eε,p(u,A) = Eε,p(v,A). By (4.30), this property immediately extends to Eε; i.e., for every u,
v ∈ SBV ploc(Rn,Rm), A ∈ A , with u = v Ln-a.e. in A, we have Eε(u,A) = Eε(u,A). Moreover, by (4.5)

we have |∇uλ| ≤ |∇u| Ln-a.e. in A and |[uλ]| ≤ |[u]| Hn−1-a.e. in Suλ ∩A ⊂ Su ∩A. Taking into account
the lower semicontinuity of Φε defined in (4.28), these inequalities, together with (4.29) and (4.30), yield

c1

∫
A

|∇u|p dx+

∫
Su∩A

(
c4 + ε|[u]|

)
dHn−1 ≤ Eε(u,A)

≤ c2
∫
A

(
1 + |∇u|p

)
dx+ (c5 + ε)

∫
Su∩A

(
1 + |[u]|

)
dHn−1

for every u ∈ SBV ploc(Rn,Rm) and every A ∈ A .
Therefore Eε,p satisfies all the assumptions of the integral representation result [4, Theorem 1]. Con-

sequently, using also (4.36), for every u ∈ SBV ploc(Rn,Rm) ∩ Lploc(Rn,Rm) and every A ∈ A we have the
integral representation (4.26) with fε,p and gε,p defined by (4.24) and (4.25). Indeed, it is easy to deduce
from (3.7), (4.2), (4.30), and (4.36) that for every x ∈ Rn, ξ ∈ Rm×n, ζ ∈ Rm0 , ν ∈ Sn−1, and ρ > 0 we
have

mEε,p(`ξ, Qρ(x)) = inf {Eε(u,Qρ(x)) : u ∈ SBV ploc(Rn,Rm), u = `ξ near ∂Qρ(x)},
mEε,p(ux,ζ,ν , Q

ν
ρ(x)) = inf {Eε(u,Qνρ(x)) : u ∈ SBV ploc(Rn,Rm), u = ux,ζ,ν near ∂Qνρ(x)},

which coincide with the definitions used in [4]. By locality and inner regularity, formula (4.26) holds also
for every u ∈ Lploc(Rn,Rm) and every A ∈ A such that u|A ∈ SBV p(A,Rm).
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The Borel measurability of fε,p and gε,p are then proved in Lemma A.5.

Step 4: fε,p satisfies (f2), (f3) and (f4). We now show that fε,p satisfies (f2). Since (f2) holds for
fk, for every A ∈ A we have

Eε,pk (u+ `ξ, A) ≤ Eε,pk (u,A) + σ1(|ξ|)
(
Ln(A) + Eε,pk (u+ `ξ, A) + Eε,pk (u,A)

)
for every ξ ∈ Rm×n and for every u ∈ Lploc(Rn,Rm). We have

(1− σ1(|ξ|))Eε,pk (u+ `ξ, A) ≤ (1 + σ1(|ξ|))Eε,pk (u,A) + σ1(|ξ|)Ln(A), (4.37)

thus if σ1(|ξ|) < 1 taking the Γ-limit gives

(1− σ1(|ξ|))Eε,p(u+ `ξ, A) ≤ (1 + σ1(|ξ|))Eε,p(u,A) + σ1(|ξ|)Ln(A).

This implies that

(1− σ1(|ξ2 − ξ1|))mEε,p(`ξ2 , Qρ(x)) ≤ (1 + σ1(|ξ2 − ξ1|))mEε,p(`ξ1 , Qρ(x)) + σ1(|ξ2 − ξ1|)ρn (4.38)

for every ρ > 0, x ∈ Rn, and ξ1, ξ2 ∈ Rm×n with σ1(|ξ2 − ξ1|) < 1. Dividing by ρn and taking the limsup
as ρ→ 0+ we obtain from (4.24) and (4.38)

(1− σ1(|ξ2 − ξ1|))fε,p(x, ξ2) ≤ (1 + σ1(|ξ2 − ξ1|))fε,p(x, ξ1) + σ1(|ξ2 − ξ1|).

which implies

fε,p(x, ξ2) ≤ fε,p(x, ξ1) + σ1(|ξ2 − ξ1|)(1 + fε,p(x, ξ1) + fε,p(x, ξ2)).

This inequality is trivial if σ1(|ξ2 − ξ1|) ≥ 1. Exchanging the roles of ξ1 and ξ2 we obtain (f2) for fε,p.
Let us prove that fε,p satisfies (f3). By (4.27) for every u ∈ Lploc(Rn,Rm) and every A ∈ A we have that

Eε,pk (u,A) ≥ Φε(u,A) for every k, where Φε is defined by (4.28). Since Φε(·, A) is lower semicontinuous
in Lploc(Rn,Rm), this inequality is preserved in the Γ-limit and hence we get

Eε,p(u,A) ≥ Φε(u,A) (4.39)

for every u ∈ Lploc(Rn,Rm) and every A ∈ A .
Let φε : Rn×Rm×n → [0,+∞] be defined by

φε(x, ξ) := lim sup
ρ→0+

mΦε(`ξ, Qρ(x))

ρn
. (4.40)

Note that, by translation invariance, φε(x, ξ) = φε(0, ξ) for every x ∈ Rn and every ξ ∈ Rm×n. We can
now apply the integral representation result [4, Theorem 1] to Φε and, taking u = `ξ and A = Q(0), we
obtain

c1|ξ|p = Φε(`ξ, Q(0)) =

∫
Q(0)

φε(y, ξ) dy = φε(0, ξ) = φε(x, ξ)

for every x ∈ Rn and every ξ ∈ Rm×n. Together with (4.24), (4.39), and (4.40), this gives the lower bound
(f3) for fε,p.

To prove the upper bound (f4), we observe that Eε,pk (`ξ, Qρ(x)) ≤ c2(1 + |ξ|p)ρn for every x ∈ Rn,
ξ ∈ Rm×n, ρ > 0 and k. This implies that Eε,p(`ξ, Qρ(x)) ≤ c2(1 + |ξ|p)ρn, hence mEε,p(`ξ, Qρ(x)) ≤
c2(1 + |ξ|p)ρn. The upper bound (f4) for fε,p follows from (4.24).

Step 5: gε,p satisfies (g3), (g4) and (g7). To prove (g3) we fix ζ1, ζ2 ∈ Rm0 , with |ζ1| ≤ |ζ2|, and a
rotation R on Rm such that aRζ2 = ζ1, where a := |ζ1|/|ζ2| ≤ 1. Since fk and gεk (see (4.23)) satisfy (f3),
(f4), and (g3), for every A ∈ A and every u ∈ Lploc(Rn,Rm), with u|A ∈ SBV p(A,Rm), we have

Eε,pk (aRu,A) =

∫
A

fk(x, aR∇u) dx+

∫
Su∩A

gεk(x, aR[u], νu)dHn−1

≤ c2Ln(A) + c2

∫
A

|∇u|p dx+ c3

∫
Su∩A

gεk(x, [u], νu)dHn−1

≤ c2Ln(A) +
c2
c1

∫
A

fk(x,∇u) dx+ c3

∫
Su∩A

gεk(x, [u], νu)dHn−1.

Passing to the Γ-limit, we obtain Eε,p(aRu,A) ≤ c2Ln(A) + ĉ3E
ε,p(u,A), with ĉ3 = max{c2/c1, c3}. This

implies that mEε,p(ux,aRζ2,ν , Q
ν
ρ(x)) ≤ c2ρ

n + ĉ3mEε,p(ux,ζ2,ν , Q
ν
ρ(x)) for every x ∈ Rn, ν ∈ Sn−1, and

ρ > 0. Since aRζ2 = ζ1, using (4.25) we obtain gε,p(x, ζ1, ν) ≤ ĉ3 gε,p(x, ζ2, ν), which proves (g3), with c3
replaced by ĉ3.
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To prove (g4) we fix ζ1, ζ2 ∈ Rm0 , with ĉ3|ζ1| ≤ |ζ2|, and a rotation R on Rm such that aRζ2 = ζ1, where
a := |ζ1|/|ζ2| ≤ 1/ĉ3 ≤ 1. Since fk and gεk satisfy (f3), (f4), and (g4), the inequalities c3a ≤ ĉ3a ≤ 1
imply that for every A ∈ A and every u ∈ Lploc(Rn,Rm), with u|A ∈ SBV p(A,Rm), we have

Eε,pk (aRu,A) =

∫
A

fk(x, aR∇u) dx+

∫
Su∩A

gεk(x, aR[u], νu)dHn−1

≤ c2Ln(A) + c2a
p

∫
A

|∇u|p dx+

∫
Su∩A

gεk(x, [u], νu)dHn−1

≤ c2Ln(A) +
c2a

p

c1

∫
A

fk(x,∇u) dx+

∫
Su∩A

gεk(x, [u], νu)dHn−1.

Since a ≤ 1 and ĉ3a ≤ 1, we have c2a
p/c1 ≤ c2a/c1 ≤ ĉ3a ≤ 1. Therefore Eε,pk (aRu,A) ≤ c2Ln(A) +

Eε,pk (u,A). Passing to the Γ-limit, we obtain Eε,p(aRu,A) ≤ c2Ln(A) + Eε,p(u,A). This implies that

mEε,p(ux,aRζ2,ν , Q
ν
ρ(x)) ≤ c2ρ

n + mEε,p(ux,ζ2,ν , Q
ν
ρ(x)) for every x ∈ Rn, ν ∈ Sn−1, and ρ > 0. Since

aRζ2 = ζ1, using (4.25) we obtain gε,p(x, ζ1, ν) ≤ gε,p(x, ζ2, ν), which proves (g4), with c3 replaced by ĉ3.
To prove the symmetry condition (g7) for gε,p, we observe that ux,−ζ,−ν = ux,ζ,ν − ζ for every x ∈ Rn,

ζ ∈ Rm0 , and ν ∈ Sn−1. Therefore u ∈ SBV p(Qνρ(x),Rm) ∩ Lp(Qνρ(x),Rm) satisfies u = ux,−ζ,−ν in
a neighbourhood of ∂Qνρ(x) if and only if u = v − ζ for some v ∈ SBV p(Qνρ(x),Rm) ∩ Lp(Qνρ(x),Rm)

satisfying v = ux,ζ,ν in a neighbourhood of ∂Qνρ(x). Since Q−νρ (x) = Qνρ(x) by (k) in Section 2, it

follows that mEε,p(ux,−ζ,−ν , Q
−ν
ρ (x)) = mEε,p(ux,ζ,ν , Q

ν
ρ(x)). By (4.25) this implies that gε,p(x, ζ, ν) =

gε,p(x,−ζ,−ν), which proves (g7) for gε,p. �

5. Proof of the compactness result

In this section we begin the proof of the compactness result with respect to Γ-convergence, Theorem 3.5.
We start with the following perturbation result, which, together with Theorem 4.3, provides a slightly
weaker version of Theorem 3.5. Indeed it does not establish that the surface integrand g0, defined in (5.2)
below, satisfies properties (g2), (g5), and (g6).

Theorem 5.1 (Perturbation result). Under the hypotheses of Theorem 3.5, let D be a countable subset

of (0,+∞) with 0 ∈ D. Assume that for every ε ∈ D there exists a functional Eε,p : Lploc(Rn,Rm)×A →
[0,+∞] such that for every A ∈ A the sequence Eε,pk (·, A) defined in (4.22) Γ-converges to Eε,p(·, A) in

Lploc(Rn,Rm). Let fε,p and gε,p be the functions defined by (4.24) and (4.25), and let f0 : Rn×Rm×n →
[0,+∞] and g0 : Rn×Rm0 ×Sn−1 → [0,+∞] be the functions defined by

f0(x, ξ) := inf
ε∈D

fε,p(x, ξ) = lim
ε→0+
ε∈D

fε,p(x, ξ), (5.1)

g0(x, ζ, ν) := inf
ε∈D

gε,p(x, ζ, ν) = lim
ε→0+
ε∈D

gε,p(x, ζ, ν). (5.2)

Then f0 ∈ F and g0 satisfies (g1), (g3), (g4), and (g7), with c3 replaced by ĉ3 := max{c2/c1, c3}.
Let E0 and Ek be as in (3.4), with f and g replaced by f0 and g0 and by fk and gk, respectively, and

let E0,p and Epk be the corresponding restrictions to Lploc(Rn,Rm)×A . Then

Ek(·, A) Γ-converges to E0(·, A) in L0(Rn,Rm),

Epk(·, A) Γ-converges to E0,p(·, A) in Lploc(Rn,Rm),

for every A ∈ A .

Proof. By Theorem 4.3 Eε,p can be written in integral form as in (4.26), where fε,p and gε,p are defined
by (4.24) and (4.25) and satisfy (f1)-(f4) and (g1), (g3), (g4), (g7). It follows from (4.24) and (4.25) that
fε1,p ≤ fε2,p and gε1,p ≤ gε2,p for 0 < ε1 < ε2.

Properties (f1)-(f4) for f0 and properties (g1), (g3), (g4), (g7) for g0 follow from (5.1) and (5.2) and
from the corresponding properties for fε,p and gε,p.

By the Monotone Convergence Theorem we have

E0,p(u,A) = lim
ε→0+
ε∈D

Eε,p(u,A) (5.3)

for every A ∈ A and every u ∈ Lploc(Rn,Rm) with u|A ∈ SBV p(A,Rm).
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Let E′, E′′ : L0(Rn,Rm)×A → [0,+∞] and E′p, E′′p : Lploc(Rn,Rm)×A → [0,+∞] be defined by

E′(·, A) := Γ- lim inf
k→+∞

Ek(·, A) and E′′(·, A) := Γ- lim sup
k→+∞

Ek(·, A),

E′p(·, A) := Γ- lim inf
k→+∞

Epk(·, A) and E′′p(·, A) := Γ- lim sup
k→+∞

Epk(·, A),

where for E′ and E′′ we use the topology of L0(Rn,Rm), while for E′p and E′′p we use the topology of
Lploc(Rn,Rm).

Then for every u ∈ Lploc(Rn,Rm) and for every ε ∈ D we have E′′(u,A) ≤ E′′p(u,A) ≤ Eε,p(u,A), thus
by (5.3)

E′′(u,A) ≤ E′′p(u,A) ≤ E0,p(u,A) = E0(u,A) (5.4)

for every A ∈ A and u ∈ Lploc(Rn,Rm) with u|A ∈ SBV p(A,Rm).
We claim that

E0(u,A) = E0,p(u,A) ≤ E′(u,A) ≤ E′p(u,A) (5.5)

for every A ∈ A and every u ∈ L∞(Rn,Rm). Let us fix A and u. The inequality E′(u,A) ≤ E′p(u,A) is
trivial. By Γ-convergence there exists a sequence (uk) converging to u in L0(Rn,Rm) such that

E′(u,A) = lim inf
k→+∞

Ek(uk, A). (5.6)

Let us fix λ > ‖u‖L∞(Rn,Rm) and ε > 0. By Lemma 4.1 there exist µ > λ, independent of k, and a
sequence (vk) ⊂ L∞(Rn,Rm), converging to u in measure on bounded sets, such that for every k we have

‖vk‖L∞(Rn,Rm) ≤ µ, (5.7)

vk = uk Ln-a.e. in {|uk| ≤ λ}, (5.8)

Ek(vk, A) ≤ (1 + ε)Ek(uk, A) + c2Ln(A ∩ {|uk| ≥ λ}). (5.9)

It follows from (5.7) that vk → u also in Lploc(Rn,Rm). If Ek(uk, A) < +∞, by (f3), (g5), and (5.9) the
function vk belongs to GSBV p(A,Rm) and

Hn−1(Svk ∩A) ≤ (1/c4)(1 + ε)Ek(uk, A) + (c2/c4)Ln(A ∩ {|uk| ≥ λ}). (5.10)

By (4.22) and (5.7) this implies that

Eε,pk (vk, A) ≤ Ek(vk, A) + 2εµHn−1(Svk ∩A),

which, in its turn, by (5.9) and (5.10), leads to

Eε,pk (vk, A) ≤ (1 + ε)(1 + (2εµ/c4))Ek(uk, A) + c2(1 + (2εµ/c4))Ln(A ∩ {|uk| ≥ λ}).

Clearly this inequality holds also when Ek(uk, A) = +∞. Therefore, using (5.6) and the inequality
‖u‖L∞(Rn,Rm) < λ, by Γ-convergence we get

Eε,p(u,A) ≤ (1 + ε)(1 + (2εµ/c4))E′(u,A)

for every ε ∈ D. By (5.3), passing to the limit as ε→ 0+ we obtain (5.5) whenever u ∈ L∞(Rn,Rm).
We now prove that

E′′(u,A) ≤ E0(u,A) for every u ∈ L0(Rn,Rm) and every A ∈ A . (5.11)

Let us fix u and A. It is enough to prove the inequality when u|A ∈ GSBV p(A,Rm). By Lemma 4.1 for
every ε > 0 and for every integer k ≥ 1 there exists uk ∈ L∞(Rn,Rm), with uk|A ∈ SBV p(A,Rm), such
that uk = u Ln-a.e. in {|u| ≤ k} and

E0(uk, A) ≤ (1 + ε)E0(u,A) + c2Ln(A ∩ {|u| ≥ k}).

By (5.4) we have E′′(uk, A) ≤ E0(uk, A), hence

E′′(uk, A) ≤ (1 + ε)E0(u,A) + c2Ln(A ∩ {|u| ≥ k}).

Since uk → u in measure on bounded sets, passing to the limit as k → +∞, by the lower semicontinuity
of the Γ-limsup we deduce

E′′(u,A) ≤ (1 + ε)E0(u,A).

Hence letting ε→ 0+ we obtain (5.11). The same proof shows that

E′′p(u,A) ≤ E0,p(u,A) for every u ∈ Lploc(Rn,Rm) and every A ∈ A . (5.12)

We now prove that

E0(u,A) ≤ E′(u,A) for every u ∈ L0(Rn,Rm) and every A ∈ A . (5.13)
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Let us fix u and A. It is enough to prove the inequality when u|A ∈ GSBV p(A,Rm), since otherwise
E′(u,A) = +∞ due to the lower bounds (f3) and (g5). By Lemma 4.2 for every ε > 0 and every integer
k ≥ 1 there exists uk ∈ L∞(Rn,Rm), with uk|A ∈ SBV p(A,Rm), such that uk = u Ln-a.e. in {|u| ≤ k},
u±k = u± Hn−1-a.e. in Su ∩ {|u±| ≤ k}, and

E′(uk, A) ≤ (1 + ε)E′(u,A) + c2Ln(A ∩ {|u| ≥ k}).
By (5.5) we have E0(uk, A) ≤ E′(uk, A), hence∫

A∩{|u|≤k}
f0(x,∇u) dx+

∫
Su∩A∩{|u+|≤k}∩{|u−|≤k}

g0(x, [u], νu) dHn−1 ≤ E0(uk, A) ≤ (1 + ε)E′(u,A) + c2Ln(A ∩ {|u| ≥ k}).

As k → +∞ we get

E0(u,A) =

∫
A

f0(x,∇u) dx+

∫
Su∩A

g0(x, [u], νu) dHn−1 ≤ (1 + ε)E′(u,A),

and as ε → 0+ we obtain (5.13). Since E′(u,A) ≤ E′p(u,A) for every u ∈ Lploc(Rn,Rm), from (5.13) we
also get

E0,p(u,A) ≤ E′p(u,A) for every u ∈ Lploc(Rn,Rm) and every A ∈ A . (5.14)

The Γ-convergence of Ek(·, A) to E0(·, A) in L0(Rn,Rm) follows from (5.11) and (5.13), while the
Γ-convergence of Epk(·, A) to E0,p(·, A) in Lploc(Rn,Rm) follows from (5.12) and (5.14). �

To conclude the proof of Theorem 3.5 and to prepare the proof of Theorem 3.7, we now establish some
relations between the functions f0 and g0 introduced in Theorem 5.1 and the functions f ′, f ′′, g′, and g′′

defined in (3.8)-(3.11).

Theorem 5.2. Under the assumptions of Theorems 3.5 and 5.1, let f0 and g0 be defined by (5.1) and
(5.2) and let f ′, f ′′, g′, and g′′ be defined by (3.8)-(3.11). Then

(a) for every x ∈ Rn and every ξ ∈ Rm×n we have f0(x, ξ) ≤ f ′(x, ξ);
(b) for Ln-a.e. x ∈ Rn we have f ′′(x, ξ) ≤ f0(x, ξ) for every ξ ∈ Rm×n;
(c) for every x ∈ Rn, every ζ ∈ Rm0 , and every ν ∈ Sn−1 we have g0(x, ζ, ν) ≤ g′(x, ζ, ν);
(d) for every A ∈ A and every u ∈ GSBV p(A,Rm) we have

g′′(x, [u](x), νu(x)) ≤ g0(x, [u](x), νu(x)) (5.15)

for Hn−1-a.e. x ∈ Su ∩A.

The proof of Theorem 5.2 is postponed to Sections 7 and 8.

Remark 5.3. Since by definition f ′ ≤ f ′′ and g′ ≤ g′′, Theorem 5.2 implies that for Ln-a.e. x ∈ Rn we have
f ′(x, ξ) = f ′′(x, ξ) = f0(x, ξ) for every ξ ∈ Rm×n, and that for every A ∈ A and every u ∈ GSBV p(A,Rm)
we have

g′(x, [u](x), νu(x)) = g′′(x, [u](x), νu(x)) = g0(x, [u](x), νu(x)),

for Hn−1-a.e. x ∈ Su ∩A.

Appealing to Theorem 5.2 we can now conclude the proof of the compactness result, Theorem 3.5.

Proof of Theorem 3.5. By combining Theorem 4.3 and a diagonal argument, we obtain a subsequence,
not relabelled, and, for every ε ∈ D, a functional Eε,p : Lploc(Rn,Rm)×A → [0,+∞], such that for every
A ∈ A the sequence Eε,pk (·, A) Γ-converges in Lploc(Rn,Rm) to Eε,p(·, A) for every ε ∈ D. By Theorem 5.1

Ek(·, A) Γ-converges to E0(·, A) in L0(Rn,Rm) for every A ∈ A , and E0 can be written as

E0(u,A) =

∫
A

f0(x,∇u) dx+

∫
Su∩A

g0(x, [u], νu) dHn−1,

where f0 and g0 are defined as in (5.1) and (5.2) (note that f0 and g0 depend on the chosen subsequence).
Note that f0 ∈ F , but g0 only satisfies (g1), (g3), (g4), and (g7), with c3 replaced by ĉ3 := max{c2/c1, c3}.
To conclude the proof it remains to show that there exists g ∈ G, possibly different from g0, such that E0

can still be represented as in (3.4) using f0 and g.
Let now g′ be defined as in (3.10) (note that also this function depends on the chosen subsequence).

We can now apply Theorem 5.2 and Remark 5.3 to obtain

E0(u,A) =

∫
A

f0(x,∇u) dx+

∫
Su∩A

g0(x, [u], νu) dHn−1

=

∫
A

f0(x,∇u) dx+

∫
Su∩A

g′(x, [u], νu) dHn−1.

Since g′ ∈ G by Lemma A.7, the theorem is proved. �
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6. Identification of the Γ-limit and related results

In this section we prove Theorem 3.7 using Theorem 5.2, which will be proved in Sections 7 and 8. We
also prove a result on the convergence of minimisers.

Proof of Theorem 3.7. To prove that (a1) and (a2) imply (3.12), we observe that, by the Urysohn property
of Γ-convergence [12, Proposition 8.3], the sequence Ek(·, A) Γ-converges to E∞(·, A) in L0(Rn,Rm) for
every A ∈ A if and only if for every A ∈ A every subsequence of Ek(·, A) has a sub-subsequence Γ-
converging to E∞(·, A) in L0(Rn,Rm).

Let D be a countable subset of (0,+∞) with 0 ∈ D. By Theorem 4.3, using a diagonal argument,
for every subsequence of (Ek) we obtain a sub-subsequence (Ekj ) which satisfies the assumptions of

Theorem 5.1. Let f0, g0, and E0 be defined as in Theorem 5.1, corresponding to the subsequence (Ekj ).

Then Ekj(·, A) Γ-converges to E0(·, A) for every A ∈ A . Thus, proving (3.12) is equivalent to showing
that

E0(u,A) = E∞(u,A) for every u ∈ L0(Rn,Rm) and every A ∈ A . (6.1)

Let f̃ ′, f̃ ′′, g̃′, g̃′′ be the functions defined as in (3.8)-(3.11), corresponding to the subsequences Fkj and
Gkj . Since

f ′ ≤ f̃ ′ ≤ f̃ ′′ ≤ f ′′ and g′ ≤ g̃′ ≤ g̃′′ ≤ g′′,
equalities (a1) give

f∞(x, ξ) = f̃ ′(x, ξ) = f̃ ′′(x, ξ) for Ln-a.e. x ∈ Rn and every ξ ∈ Rm×n,

while (a2) implies that for every A ∈ A and every u ∈ GSBV p(A,Rm) we have

g∞(x, [u](x), νu(x)) = g̃′(x, [u](x), νu(x)) = g̃′′(x, [u](x), νu(x))

for Hn−1-a.e. x ∈ Su ∩A.
By Theorem 5.2 and Remark 5.3 we have

f0(x, ξ) = f̃ ′(x, ξ) = f̃ ′′(x, ξ) for Ln-a.e. x ∈ Rn and every ξ ∈ Rm×n,∫
Su∩A

g0(x, [u], νu)dHn−1 =

∫
Su∩A

g̃′(x, [u], νu)dHn−1 =

∫
Su∩A

g̃′′(x, [u], νu)dHn−1

for every A ∈ A and every u ∈ GSBV p(A,Rm).
Therefore

f0(x, ξ) = f∞(x, ξ) for Ln-a.e. x ∈ Rn and every ξ ∈ Rm×n,∫
Su∩A

g0(x, [u], νu)dHn−1 =

∫
Su∩A

g∞(x, [u], νu)dHn−1

for every A ∈ A and every u ∈ GSBV p(A,Rm). By the definition of E∞ this implies (6.1), and hence
(3.12).

The same arguments also give (3.13). �

We now show that Theorem 3.7 implies the convergence of the solutions to some minimisation problems
involving Ek. Other minimisation problems can be treated in a similar way.

Corollary 6.1 (Convergence of minimisers). Under the hypotheses of Theorem 3.5, assume that conditions
(3.12) and (3.13) of Theorem 3.7 are satisfied for some A ∈ A , and let h ∈ Lp(A,Rm). Then

inf
v∈Lp(A,Rm)

(
Epk(v,A) + ‖v − h‖pLp(A,Rm)

)
−→ min

v∈Lp(A,Rm)

(
Ep∞(v,A) + ‖v − h‖pLp(A,Rm)

)
(6.2)

as k → +∞. Moreover, if (uk) is a sequence in Lp(A,Rm) such that

Epk(uk, A) + ‖uk − h‖pLp(A,Rm) ≤ inf
v∈Lp(A,Rm)

(
Epk(v,A) + ‖v − h‖pLp(A,Rm)

)
+ εk (6.3)

for some εk → 0+, then there exists a subsequence of (uk) which converges in Lp(A,Rm) to a solution of
the minimisation problem

min
v∈Lp(A,Rm)

(
Ep∞(v,A) + ‖v − h‖pLp(A,Rm)

)
. (6.4)

Proof. Let us fix a sequence (εk) of positive numbers, with εk → 0+, and let (uk) be a sequence in
Lp(A,Rm) satisfying (6.3). By the lower bounds (f3) and (g5) we have that uk ∈ GSBV p(A,Rm) and
we can apply [3, Theorem 4.36] to deduce that there exist a subsequence of (uk), not relabelled, and a
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function u ∈ GSBV p(A,Rm) such that uk → u in L0(A,Rm) and Ln-a.e. in A. Hence by the Fatou
Lemma we deduce that

‖u− h‖pLp(A,Rm) ≤ lim inf
k→+∞

‖uk − h‖pLp(A,Rm). (6.5)

This inequality, combined with the fact that (6.3) also ensures that supk ‖uk‖Lp(A,Rm) < +∞, immediately
gives u ∈ Lp(A,Rm).

Let us extend uk by setting uk = u on Rn \A. Since Ek(·, A) Γ-converges to E∞(·, A) in L0(Rn,Rm),
we have

Ep∞(u,A) = E∞(u,A) ≤ lim inf
k→+∞

Ek(uk, A) = lim inf
k→+∞

Epk(uk, A).

This inequality, together with (6.3) and (6.5), gives

Ep∞(u,A) + ‖u− h‖pLp(A,Rm) ≤ lim inf
k→+∞

(
Epk(uk, A) + ‖uk − h‖pLp(A,Rm)

)
= lim inf

k→+∞
inf

v∈Lp(A,Rm)

(
Epk(v,A) + ‖v − h‖pLp(A,Rm)

)
. (6.6)

Let us fix w ∈ Lp(A,Rm), that we can extend to a function w ∈ Lploc(Rn,Rm). By (3.13) we can find
a sequence (wk) in Lploc(Rn,Rm) such that

wk → w in Lploc(Rn,Rm) and lim
k→+∞

Epk(wk, A) = Ep∞(w,A),

hence

lim sup
k→+∞

inf
v∈Lp(A,Rm)

(
Epk(v,A) + ‖v − h‖pLp(A,Rm)

)
≤

≤ lim
k→+∞

(
Epk(wk, A) + ‖wk − h‖pLp(A,Rm)

)
= Ep∞(w,A) + ‖w − h‖pLp(A,Rm). (6.7)

Gathering (6.6) and (6.7) gives

Ep∞(u,A) + ‖u− h‖pLp(A,Rm) ≤ lim inf
k→+∞

inf
v∈Lp(A,Rm)

(
Epk(v,A) + ‖v − h‖pLp(A,Rm)

)
≤ lim sup

k→+∞
inf

v∈Lp(A,Rm)

(
Epk(v,A) + ‖v − h‖pLp(A,Rm)

)
≤ Ep∞(w,A) + ‖w − h‖pLp(A,Rm).

Since this holds for every w ∈ Lp(A,Rm), we deduce that u is a solution of the minimisation problem
(6.4).

Taking w = u in the previous chain of inequalities gives (6.2) for the subsequence selected at the
beginning of the proof. Since the limit does not depend on the subsequence, (6.2) holds for the whole
sequence (Epk). �

7. Proof of Theorem 5.2 (a) and (b)

We start by proving the inequality f0 ≤ f ′.

Proof of Theorem 5.2 (a). Fix x ∈ Rn, ξ ∈ Rm×n, ρ > 0, and ε ∈ D∩(0, 1), where D is as in Theorem 5.1.
By (3.5) for every k there exists vk ∈ L0(Rn,Rm), with vk|Qρ(x) ∈ W 1,p(Qρ(x),Rm), such that vk − `ξ ∈
W 1,p

0 (Qρ(x),Rm) and

Eε,pk (vk, Qρ(x)) = Fk(vk, Qρ(x)) ≤ m1,p
Fk

(`ξ, Qρ(x)) + ε ρn. (7.1)

Let kj be a strictly increasing sequence of integers such that

lim
j→+∞

Eε,pkj (vkj , Qρ(x)) = lim inf
k→+∞

Eε,pk (vk, Qρ(x)).

From (f3), (f4), and (7.1) we obtain

c1‖∇vk‖pLp(Qρ(x),Rm×n)
≤ (c2(1 + |ξ|p) + ε)ρn.

By the Poincaré Inequality we deduce that the sequence (vk) is bounded in W 1,p(Qρ(x),Rm). Therefore,
up to a subsequence, vk ⇀ v weakly in W 1,p(Qρ(x),Rm) for some v ∈ W 1,p(Qρ(x),Rm) such that

v − `ξ ∈W 1,p
0 (Qρ(x),Rm). Let wk, w ∈W 1,p

loc (Rn,Rm) be defined by

wk :=

{
vk in Qρ(x),

`ξ in Rn \Qρ(x),
and w :=

{
v in Qρ(x),

`ξ in Rn \Qρ(x).
(7.2)

By the Rellich Theorem wk → w in Lploc(Rn,Rm), hence

Eε,p(w,Qρ(x)) ≤ lim inf
k→+∞

Eε,pk (wk, Qρ(x)) = lim inf
k→+∞

Eε,pk (vk, Qρ(x))
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by the Γ-convergence of Eε,pk (·, Qρ(x)) to Eε,p(·, Qρ(x)). Using this inequality, together with (f4), (7.1),
and (7.2), we get

mEε,p(`ξ, Q(1+ε)ρ(x)) ≤ Eε,p(w,Qρ(x)) + c2(1 + |ξ|p)((1 + ε)n − 1)ρn

≤ lim inf
k→+∞

Eε,pk (vk, Qρ(x)) + εn2n−1c2(1 + |ξ|p)ρn

≤ lim inf
k→+∞

m1,p
Fk

(`ξ, Qρ(x)) + εCξρ
n

where Cξ := 1 +n2n−1c2(1 + |ξ|p). Dividing by ρn and taking the limsup as ρ→ 0+, we obtain from (3.8)
and (4.24)

(1 + ε)nfε,p(x, ξ) = lim sup
ρ→0+

mEε,p(`ξ, Q(1+ε)ρ(x))

ρn

≤ lim sup
ρ→0+

lim inf
k→+∞

m1,p
Fk

(`ξ, Qρ(x))

ρn
+ εCξ = f ′(x, ξ) + εCξ.

Letting ε→ 0+, from (5.1) we obtain that f0(x, ξ) ≤ f ′(x, ξ). �

We now prove (b). Namely, we show that f ′′ ≤ f0.

Proof of Theorem 5.2 (b). In view of Lemma A.6 we have f ′′ ∈ F , while by Theorem 5.1 f0 ∈ F , hence
in particular f0 and f ′′ are continuous with respect to ξ by (f2). Therefore it is enough to prove that for
every ξ ∈ Rm×n we have f ′′(x, ξ) ≤ f0(x, ξ) for Ln-a.e. x ∈ Rn.

We may assume that the set D considered in Theorem 5.1 is contained in (0, 1). Let us fix ξ ∈ Rm×n.
Since for every ε ∈ D

Eε,p(`ξ, A) =

∫
A

fε,p(x, ξ) dx for every A ∈ A , (7.3)

by the Lebesgue Differentiation Theorem for every ε ∈ D and for Ln-a.e. x ∈ Rn we have

lim
ρ→0+

Eε,p(`ξ, Qρ(x))

ρn
= fε,p(x, ξ) ≤ c2(1 + |ξ|p), (7.4)

where the last inequality follows from the fact that fε,p ∈ F by Theorem 4.3.
Let x ∈ Rn be fixed and such that (7.4) holds for every ε ∈ D. It follows that for every ε ∈ D there

exists ρ0(ε) ∈ (0, 1) such that

Eε,p(`ξ, Qρ(x))

ρn
≤ c2(2 + |ξ|p) (7.5)

for every 0 < ρ < ρ0(ε).
Let ε ∈ D be fixed. Since Eε,pk (·, Q(x)) Γ-converges to Eε,p(·, Q(x)) in Lploc(Rn,Rm), there exists

(uk) ⊂ Lploc(Rn,Rm), with uk|Q(x) ∈ SBV p(Q(x),Rm) ∩ Lp(Q(x),Rm), such that

uk → `ξ in Lploc(Rn,Rm) and lim
k→+∞

Eε,pk (uk, Q(x)) = Eε,p(`ξ, Q(x)). (7.6)

By (7.3) we have Eε,p(`ξ, Q(x)) = Eε,p(`ξ, Qρ(x)) + Eε,p(`ξ, Q(x) \ Qρ(x)) for all ρ ∈ (0, 1). By Γ-
convergence we have also

lim inf
k→+∞

Eε,pk (uk, Qρ(x)) ≥ Eε,p(`ξ, Qρ(x))

lim inf
k→+∞

Eε,pk (uk, Q(x) \Qρ(x)) ≥ Eε,p(`ξ, Q(x) \Qρ(x)).

From these inequalities and from (7.6) it follows that

lim
k→+∞

Eε,pk (uk, Qρ(x)) = Eε,p(`ξ, Qρ(x)).

This yields the existence of k0(ε, ρ) > 0 such that |Eε,p(`ξ, Qρ(x)) − Eε,pk (uk, Qρ(x))| < ερn whenever
k ≥ k0(ε, ρ), hence

Eε,pk (uk, Qρ(x))

ρn
<
Eε,p(`ξ, Qρ(x))

ρn
+ ε. (7.7)

In the remaining part of the proof we modify the sequence (uk) to construct a competitor for the

minimisation problem m1,p
Fk

(`ξ, Qρ(x)), which appears in the definition of f ′′. To this end, for every
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y ∈ Q := Q(0) we set

uρk(y) :=
uk(x+ ρy)− uk(x)

ρ
,

fρk (y, ·) := fk(x+ ρy, ·).

Note that uρk ∈ SBV
p(Q,Rm) ∩ Lp(Q,Rm) and fρk ∈ F .

We fix λ > |ξ|
√
n/2 and h, α, ψ1, . . . , ψh, and µ as in Lemma 4.1 with η = ε. By (4.12) for every k

there exists ik ∈ {1, . . . , h} such that

F ρk (ψik(u
ρ
k), Q) ≤ (1 + ε)F ρk (uρk, Q) + c2Ln(Q ∩ {|uρk| ≥ λ}), (7.8)

where F ρk is defined as in (3.2), with f replaced by fρk .
We define

vρk := ψik(u
ρ
k). (7.9)

Then vρk = uρk in Q ∩ {|uρk| < λ} and |vρk| ≤ µ in Q. Since uk → `ξ in Lp(Qρ(x),Rm), we have uρk → `ξ
in Lp(Q,Rm), and since |`ξ| ≤ |ξ|

√
n/2 < λ in Q, it follows that vρk → `ξ in Lp(Q,Rm) and that

Ln(Q ∩ {|uρk| ≥ λ})→ 0 as k → +∞. Therefore, there exist k1(ε, ρ) ≥ k0(ε, ρ) such that

‖vρk − `ξ‖Lp(Q,Rm) < ρ and Ln(Q ∩ {|uρk| ≥ λ}) < ρ for every k ≥ k1(ε, ρ). (7.10)

Using (f3), (g5), (7.8)-(7.10), and a change of variables we obtain the two following estimates

c1

∫
Q

|∇vρk(y)|pdy ≤
∫
Q

fk(x+ ρy,∇vρk(y))dy ≤ 1 + ε

ρn

∫
Qρ(x)

fk(y,∇uk(y))dy + c2ρ, (7.11)

c4
ρ
Hn−1(Svρ

k
∩Q) ≤ c4

ρn
Hn−1(Suk ∩Qρ(x)) ≤ 1

ρn

∫
Suk∩Qρ(x)

gεk(y, [uk], νuk )dHn−1, (7.12)

for every k ≥ k1(ε, ρ), where gεk is defined in (4.23).
From (7.5), (7.7), and (7.12), we deduce that there exists M > 0, independent of k, ρ, and ε, such that

‖∇vρk‖Lp(Q,Rm×n) ≤M and Hn−1(Svρ
k
∩Q) ≤Mρ, (7.13)

whenever ε ∈ D, 0 < ρ < ρ0(ε), and k ≥ k1(ε, ρ). Since |[vρk]| ≤ 2µ Hn−1-a.e. on Svρ
k

by (7.9), from (7.13)

we obtain also that

|Dsvρk|(Q) ≤ 2µMρ. (7.14)

We now regularise vρk in order to obtain a function wρk ∈W
1,p(Q,Rm) such that∫

Q

fk(x+ ρy,∇wρk(y))dy ≤
∫
Q

fk(x+ ρy,∇vρk(y))dy + ε

for a suitable choice of ρ and k. We follow the procedure introduced in [23, Lemma 2.1], which we now
illustrate in detail for the readers’ convenience.

Step 1: Regularisation of vρk. Let t > 0; we define the sets

Rtk :=
{
y ∈ Q :

|Dvρk|(Br(y))

Ln(Br(y))
≤ t for every r > 0 with Br(y) ⊂ Q

}
,

Stk := Svρ
k
∪
{
y ∈ Q : |∇vρk(y)| ≥ t

2

}
.

For every k, by the Vitali Covering Lemma (see, e.g., [16, Section 1.5.1]), there exists a sequence of disjoint

closed balls Brj(yj) ⊂ Q, with centres yj in Q \Rtk, such that

|Dvρk|(Brj(yj))
Ln(Brj(yj))

> t for every j and Q \Rtk ⊂
∞⋃
j=1

B5rj(yj). (7.15)

Hence

tLn
( ∞⋃
j=1

Brj(yj)
)

= t

∞∑
j=1

Ln(Brj(yj)) <

∞∑
j=1

|Dvρk|
(
Brj(yj)

)
= |Dvρk|

( ∞⋃
j=1

Brj(yj)
)
. (7.16)

On the other hand

|Dvρk|
( ∞⋃
j=1

Brj(yj)
)

= |Dvρk|
(
Stk ∩

∞⋃
j=1

Brj(yj)
)

+ |Dvρk|
(

(Q \ Stk) ∩
∞⋃
j=1

Brj(yj)
)
. (7.17)
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We are going to estimate the two terms in the right-hand side of (7.17) separately. We observe that

|Dvρk|
(

(Q \ Stk) ∩
∞⋃
j=1

Brj(yj)
)

=

∫
(Q\St

k
)∩∪∞j=1Brj(yj)

|∇vρk|dy ≤
t

2
Ln
( ∞⋃
j=1

Brj(yj)
)
. (7.18)

By (7.16) we have, using also (7.17) and (7.18),

tLn
( ∞⋃
j=1

Brj(yj)
)
< |Dvρk|

(
Stk ∩

∞⋃
j=1

Brj(yj)
)

+
t

2
Ln
( ∞⋃
j=1

Brj(yj)
)
.

This implies that

Ln
( ∞⋃
j=1

Brj(yj)
)
≤ 2

t
|Dvρk|

(
Stk ∩

∞⋃
j=1

Brj(yj)
)
. (7.19)

By (7.15) and (7.19) we have

Ln(Q \Rtk) ≤
∞∑
j=1

Ln(B5rj(yj)) = 5n
∞∑
j=1

Ln(Brj(yj)) = 5nLn
( ∞⋃
j=1

Brj(yj)
)

≤ 2·5n

t
|Dvρk|

(
Stk ∩

∞⋃
j=1

Brj(yj)
)
≤ 2·5n

t

(
|Dsvρk|(Q) +

∫
St
k

|∇vρk|dy
)

≤ 2·5n

t

(
|Dsvρk|(Q) +

(∫
St
k

|∇vρk|
pdy
) 1
p

(Ln(Stk))
1− 1

p

)
. (7.20)

Now, by the definition of Stk and by (7.13) we have that

Ln(Stk)
( t

2

)p
≤
∫
St
k

|∇vρk|
pdy ≤Mp

whenever ε ∈ D, 0 < ρ < ρ0(ε), and k ≥ k1(ε, ρ). It then follows that Ln(Stk) ≤ 2pMp/tp, which,
combined with (7.13) and (7.20), gives

Ln(Q \Rtk) ≤ 2·5n

t

(
|Dsvρk|(Q) +

(∫
St
k

|∇vρk|
pdy
) 1
p 2p−1Mp−1

tp−1

)
≤ 2·5n

t
|Dsvρk|(Q) +

2p5nMp

tp
.

Hence we can conclude that

tpLn(Q \Rtk) ≤ 2·5ntp−1|Dsvρk|(Q) + 2p5nMp (7.21)

whenever ε ∈ D, 0 < ρ < ρ0(ε), and k ≥ k1(ε, ρ).

Now we choose tk,ρ > 0 such that tp−1
k,ρ |D

svρk|(Q) = 1. By (7.14) this implies

tp−1
k,ρ =

1

|Dsvρk|(Q)
≥ 1

2µMρ
,

whenever ε ∈ D, 0 < ρ < ρ0(ε), and k ≥ k1(ε, ρ). Then, from (7.21) we obtain

tpk,ρL
n(Q \Rtk,ρk ) ≤ 2·5n + 2p5nMp =: M1,

which gives in particular that

Ln(Q \Rtk,ρk ) ≤ M1

tpk,ρ
≤M2ρ

q, (7.22)

with q := p/(p− 1) and M2 := M1(2µM)q.
By [16, Section 3.1.1 (Theorem 1) and Section 6.6.2 (Claim #2 of Theorem 2)] there exist a constant

cn, depending only on n, and Lipschitz functions zρk on Q, with Lipschitz constant bounded by cntk,ρ,

such that that zρk = vρk L
n-a.e. in R

tk,ρ
k . Note that, since |vρk| ≤ µ Ln-a.e. in Q, it is not restrictive to

assume that |zρk| ≤ µ in Q. By (7.13) and (7.22) we have also∫
Q

|∇zρk|
pdy ≤

∫
R
tk,ρ
k

|∇vρk|
pdy + cpnt

p
k,ρL

n(Q \Rtk,ρk ) ≤Mp + cpnM1.

Therefore the sequence (zρk)k is bounded in W 1,p(Q,Rm).
By (3.9) there exists a decreasing sequence ρj → 0+, with 0 < ρj < ρ0(ε), such that

f ′′(x, ξ) = lim
j→+∞

lim sup
k→+∞

1

ρnj
m1,p
Fk

(`ξ, Qρj (x)). (7.23)
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By applying [18, Lemma 1.2] to the double sequence (z
ρj
k )j,k we find a double sequence (w

ρj
k )j,k in

W 1,p(Q,Rm) such that |∇wρjk |
p is equi-integrable, uniformly with respect to j and k, and

Ln({wρjk 6= z
ρj
k })→ 0 as k + j → +∞.

Note that, since |zρjk | ≤ µ in Q, it is not restrictive to assume that |wρjk | ≤ µ Ln-a.e. in Q. By (7.10)
and (7.22) these properties imply that for every j there exists k2(ε, j) ≥ k1(ε, ρj) such that for every
k ≥ k2(ε, j) we have

Ln({wρjk 6= v
ρj
k }) ≤M2ρ

q
j and ‖wρjk − `ξ‖Lp(Q,Rm) ≤ ρj + 4µM

1/p
2 ρ

q/p
j =: rj . (7.24)

Moreover,∫
Q

fk(x+ ρjy,∇w
ρj
k (y))dy ≤

∫
Q

fk(x+ ρjy,∇v
ρj
k (y))dy +

∫
{w

ρj
k
6=z

ρj
k
}
fk(x+ ρjy,∇w

ρj
k (y))dy.

By the equi-integrability of |∇wρjk |
p, by the upper bound (f4), and by (7.24) we can conclude that for

every ε ∈ D there exists j0(ε), with ρj0(ε) ≤ ρ0(ε), such that∫
{w

ρj
k
6=z

ρj
k
}
fk(x+ ρjy,∇w

ρj
k (y))dy < ε

for every j ≥ j0(ε) and every k, hence∫
Q

fk(x+ ρjy,∇w
ρj
k (y))dy ≤

∫
Q

fk(x+ ρjy,∇v
ρj
k (y))dy + ε, (7.25)

for every j ≥ j0(ε) and every k ≥ k2(ε, j).

Step 2: Attainment of the boundary datum. We now modify w
ρj
k so that it attains the linear boundary

datum `ξ, which appears in the definition of f ′′(x, ξ). To this end, we will apply the Fundamental Estimate
to the functionals F

ρj
k corresponding to the integrands f

ρj
k (y, ·) := fk(x + ρjy, ·). Let Q1−ε := Q1−ε(0).

By [12, Theorem 19.1] there exists a constant Cε > 0 and a finite family of cut-off functions (ϕi)1≤i≤N ⊂
C∞c (Q), with 0 ≤ ϕi ≤ 1 in Q and ϕi = 1 in Q1−ε, such that

F
ρj
k (w̃

ρj
k , Q) ≤ (1 + ε)

(
F
ρj
k (w

ρj
k , Q) + F

ρj
k (`ξ, Q \Q1−ε)

)
+ Cε‖w

ρj
k − `ξ‖

p
Lp(Q) + ε,

where w̃
ρj
k := ϕik,jw

ρj
k + (1− ϕik,j )`ξ for a suitable ik,j ∈ {1, . . . , N}. Clearly w̃

ρj
k attains the boundary

datum `ξ in a neighbourhood of ∂Q. Since Ln(Q \Q1−ε) < nε, by (f4) and (7.24) it follows that

F
ρj
k (w̃

ρj
k , Q) ≤ (1 + ε)F

ρj
k (w

ρj
k , Q) + ε(1 + ε)nc2(1 + |ξ|p) + Cεr

p
j + ε. (7.26)

Combining (7.7), (7.11), (7.25), and (7.26), and setting Bξ := 7 + 2nc2(1 + |ξ|p), we have the bound

lim sup
k→+∞

∫
Q

fk(x+ ρjy,∇w̃
ρj
k (y))dy ≤ (1 + ε)2E

ε,p(`ξ, Qρj (x))

ρjn
+Bξε+ Cεr

p
j + 2c2ρj , (7.27)

whenever ε ∈ D, j ≥ j0(ε), and k ≥ k2(ε, j).
Finally, we perform a change of variables in order to relate the left-hand side of (7.27) with the

minimisation problems on Qρj (x), appearing in (7.23). For y ∈ Qρj (x), define

ṽ
ρj
k (y) := ρj w̃

ρj
k

(y − x
ρj

)
+ `ξ(x).

Clearly ṽ
ρj
k ∈W

1,p(Qρj (x)), ṽ
ρj
k = `ξ in a neighbourhood of ∂Qρj (x), and∫

Q

fk(x+ ρjy,∇w̃
ρj
k (y))dy =

1

ρjn

∫
Qρj (x)

fk
(
y,∇ṽρjk (y)

)
dy ≥ 1

ρjn
m1,p
Fk

(
`ξ, Qρj (x)

)
.

Therefore, from (7.27) we conclude that

lim sup
k→+∞

1

ρjn
m1,p
Fk

(
`ξ, Qρj (x)

)
≤ (1 + ε)2E

ε,p(`ξ, Qρj (x))

ρjn
+Bξε+ Cεr

p
j + 2c2ρj .

Since rj → 0 by (7.24), taking the limit as j → +∞, by (7.4) and (7.23) we obtain the estimate

f ′′(x, ξ) ≤ (1 + ε)2fε,p(x, ξ) +Bξε

for every ε ∈ D. Taking the limit as ε→ 0+, from (5.1) we obtain f ′′(x, ξ) ≤ f0(x, ξ). �
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8. Proof of Theorem 5.2 (c) and (d)

We start by proving the inequality g0 ≤ g′.

Proof of Theorem 5.2 (c). Fix x ∈ Rn, ζ ∈ Rm0 , ν ∈ Sn−1, ρ > 0, and ε ∈ D ∩ (0, 1), where D is as
in Theorem 5.1. By the definition of mpc

Gk
, for every k there exists uk ∈ L0(Rn,Rm), with uk|Qνρ(x) ∈

SBVpc(Qνρ(x),Rm), such that uk = ux,ζ,ν in a neighbourhood of ∂Qνρ(x) and

Gk(uk, Q
ν
ρ(x)) ≤ mpc

Gk
(ux,ζ,ν , Q

ν
ρ(x)) + ε ρn−1. (8.1)

Now fix λ > |ζ| and h, α, ψ1, . . . , ψh, and µ as in Lemma 4.1. Then by (4.13) for every k there exists
ik ∈ {1, . . . , h} such that

Ek(ψik(uk), Qνρ(x)) ≤ (1 + ε)Ek(uk, Q
ν
ρ(x)) + c2Ln(Qνρ(x) ∩ {|uk| ≥ λ}).

By (4.10) and (4.11) we have ψik(uk) = ux,ζ,ν in a neighbourhood of ∂Qνρ(x) and |ψik(uk)| ≤ µ in Rn.
Moreover, the chain rule gives ∇(ψik (uk)) = 0 Ln-a.e. in Qνρ(x). Therefore the functions vk defined as

vk :=

{
ψik(uk) in Qνρ(x)

ux,ζ,ν in Rn \Qνρ(x)
(8.2)

satisfy vk|A ∈ SBVpc(A,Rm) for every A ∈ A .
By definition we also have

|vk| ≤ µ in Rn. (8.3)

Since νvk = νuk and, by (4.5), |[vk]| ≤ |[uk]| Hn−1-a.e. in Svk ∩ Q
ν
ρ(x) ⊂ Suk ∩ Q

ν
ρ(x), by using (g3),

(g5), and (g6) we get

c4Hn−1(Svk ∩Q
ν
ρ(x)) ≤ Gk(vk, Q

ν
ρ(x)) ≤ c3Gk(uk, Q

ν
ρ(x)).

Therefore, appealing to (8.1) we conclude that for every k

Hn−1(Svk ∩Q
ν
ρ(x)) ≤Mζρ

n−1, (8.4)

where Mζ := c3(c5(1 + |ζ|) + 1)/c4.
Since vk ∈ SBVpc(Qνρ(x),Rm), by combining (8.3) and (8.4) we can invoke [3, Theorem 4.8] to deduce

the existence of a function v ∈ SBVpc(Qνρ(x),Rm) ∩ L∞(Qνρ(x),Rm) and a subsequence, not relabelled,

such that vk → v in L0(Qνρ(x),Rm). We extend v to Rn by setting v = ux,ζ,ν in Rn \Qνρ(x) and observe
that v|A ∈ SBVpc(A,Rm) for every A ∈ A . By the definitions of vk and v and by (8.3), the convergence
in L0(Qνρ(x),Rm) also implies that

vk → v in Lploc(Rn,Rm), (8.5)

|v| ≤ µ Ln-a.e. in Rn. (8.6)

Since v|Qν
(1+ε)ρ

(x) ∈ SBVpc(Qν(1+ε)ρ(x),Rm) and v = ux,ζ,ν in Qν(1+ε)ρ(x) \Qνρ(x), we have

mEε,p(ux,ζ,ν , Q
ν
(1+ε)ρ(x)) ≤ Eε,p(v,Qν(1+ε)ρ(x)). (8.7)

Using the Γ-convergence of Eε,pk (·, Qν(1+ε)ρ(x)) to Eε,p(·, Qν(1+ε)ρ(x)) in Lploc(Rn,Rm), we deduce from (8.5)
that

Eε,p(v,Qν(1+ε)ρ(x)) ≤ lim inf
k→+∞

Eε,pk (vk, Q
ν
(1+ε)ρ(x)).

Since vk = ux,ζ,ν in a neighbourhood of ∂Qνρ(x), we have Hn−1(Svk ∩ ∂Q
ν
ρ(x)) = 0. Therefore, from

(8.2) and (8.4) we obtain

Hn−1(Svk ∩Q
ν
(1+ε)ρ(x)) ≤Mζρ

n−1 + ((1 + ε)n−1 − 1)ρn−1 ≤ Nζρn−1,

where Nζ := Mζ + 2n−1. By (4.22) and (8.3), this inequality leads to the estimate

Eε,pk (vk, Q
ν
(1+ε)ρ(x)) ≤ Ek(vk, Q

ν
(1+ε)ρ(x)) + 2εµNζρ

n−1. (8.8)

Gathering (f4), (g6), (8.1)-(8.2), and (8.8) we obtain

Eε,pk (vk, Q
ν
(1+ε)ρ(x)) ≤ Ek(vk, Q

ν
ρ(x)) + Ek(ux,ζ,ν , Q

ν
(1+ε)ρ(x) \Qνρ(x)) + 2εµNζρ

n−1

≤ (1 + ε)Ek(uk, Q
ν
ρ(x)) + (1 + 2n)c2ρ

n +Gk(ux,ζ,ν , Q
ν
(1+ε)ρ(x) \Qνρ(x)) + 2εµNζρ

n−1

≤ (1 + ε)Gk(uk, Q
ν
ρ(x)) + (3 + 2n)c2ρ

n + ε(Cζ + 2µNζ)ρ
n−1

≤ (1 + ε)mpc
Gk

(ux,ζ,ν , Q
ν
ρ(x)) + (3 + 2n)c2ρ

n + ε(2 + Cζ + 2µNζ)ρ
n−1

where Cζ := c5(1 + |ζ|)(n− 1)2n−2. This inequality, together with (8.7)-(8.8), gives

mEε,p(ux,ζ,ν , Q
ν
(1+ε)ρ(x)) ≤ (1 + ε) lim inf

k→+∞
mpc
Gk

(ux,ζ,ν , Q
ν
ρ(x)) + (3 + 2n)c2ρ

n + εKζρ
n−1,
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where Kζ := 2 + Cζ + 2µNζ . Hence dividing by ρn−1, taking the limsup as ρ→ 0+, and recalling (3.10)
and (4.25), we obtain

(1 + ε)n−1gε,p(x, ζ, ν) ≤ (1 + ε)g′(x, ζ, ν) + εKζ .

Eventually, by taking the limit as ε→ 0+ and appealing to (5.2) we get

g0(x, ζ, ν) ≤ g′(x, ζ, ν),

which concludes the proof. �

We are now ready to conclude the proof of Theorem 5.2.

Proof of Theorem 5.2 (d). We divide the proof into several intermediate steps. In the first four steps we
prove the claimed inequality for functions u which belong to SBV p(A,Rm)∩L∞(A,Rm), while the general
case of functions in GSBV p(A,Rm) is treated in Step 5.

We may assume that the set D introduced in Theorem 5.1 is contained in (0, 1). Let A ∈ A , u ∈
SBV p(A,Rm) ∩ L∞(A,Rm), and ε ∈ D be fixed. For every x ∈ Rn and every ρ > 0 we set

Qν,ερ (x) := x+Rν
((
− ρ

2
,
ρ

2

)n−1×
(
− ερ

2
,
ερ

2

))
, (8.9)

where Rν is the orthogonal matrix introduced in (k) Section 2. We fix x ∈ Su such that, by setting
ζ := [u](x) and ν := νu(x), we have

ζ 6= 0, (8.10)

lim
ρ→0+

1

ρn

∫
Q
ν,ε
ρ (x)

|u(y)− ux,ζ,ν(y)|pdy = 0, (8.11)

gε,p(x, ζ, ν) = lim
ρ→0+

Eε,p(u,Qν,ερ (x))

ρn−1
. (8.12)

Note that (8.10) and (8.11) are satisfied for Hn−1-a.e. x ∈ Su (see, e.g., [3, Definition 3.67 and The-
orem 3.78]). The same property holds for (8.12), thanks to a generalized version of the Besicovitch
Differentiation Theorem (see [24] and [17, Sections 1.2.1-1.2.2]).

We extend u to Rn by setting u = 0 on Rn \ A. By the Γ-convergence of Eε,pk (·, A) to Eε,p(·, A) there
exists a sequence (uk) converging to u in Lploc(Rn,Rm) such that

lim
k→+∞

Eε,pk (uk, A) = Eε,p(u,A).

Since Eε,p(u, ·) is a finite Radon measure, we have that Eε,p(u, ∂Qν,ερ (x)) = 0 for all ρ > 0 such that
Qν,ερ (x) ⊂ A, except for a countable set. As a consequence (uk) is a recovery sequence for Eε,p(u, ·) also
in Qν,ερ (x); i.e.,

lim
k→+∞

Eε,pk (uk, Q
ν,ε
ρ (x)) = Eε,p(u,Qν,ερ (x)), (8.13)

for all ρ > 0 except for a countable set.
We now fix λ > max{‖u‖L∞(Rn,Rm), |ζ|} and h, α, ψ1, . . . , ψh, and µ as in Lemma 4.1. We also fix ρ

satisfying (8.13). By (4.13) for every k there exists ik ∈ {1, . . . , h} such that

Eε,pk (ψik(uk), Qν,ερ (x)) ≤ (1 + ε)Eε,pk (uk, Q
ν,ε
ρ (x)) + c2Ln(Qν,ερ (x) ∩ {|uk| ≥ λ}).

Let vk := ψik(uk). By (4.10) and (4.11) we deduce that vk → u in Lploc(Rn,Rm) as well as

|vk| ≤ µ in Rn, lim sup
k→+∞

Eε,pk (vk, Q
ν,ε
ρ (x)) ≤ (1 + ε)Eε,p(u,Qν,ερ (x)).

Hence there exists k0(ρ) > 0 such that whenever k ≥ k0(ρ)

Eε,pk (vk, Q
ν,ε
ρ (x)) ≤ (1 + ε)Eε,p(u,Qν,ερ (x)) + ρn. (8.14)

We now start a multi-step modification of vk in order to obtain a function zk which is an admissible
competitor in the k-th minimisation problem defining g′′(x, ζ, ν).

Step 1. Attainment of the boundary datum for a blow-up of uk. The blow-up function vρk at x is defined
by

vρk(y) := vk(x+ ρy) for y ∈ Qν,ε := Qν,ε1 (0).

We now modify vρk so that it agrees with u0,ζ,ν in a neighbourhood of ∂Qν,ε. To this end, we consider
the class A (Qν,ε) := {A ∈ A : A ⊂ Qν,ε} and apply the Fundamental Estimate to the functionals
Eε,pk,ρ :

(
SBV p(Qν,ε,Rm) ∩ Lp(Qν,ε,Rm)

)
×A (Qν,ε)→ [0,+∞) defined as

Eε,pk,ρ(v,A) :=

∫
A

fk(x+ ρy,∇v(y))dy +

∫
Sv∩A

gεk(x+ ρy, [v](y), νv(y))dHn−1(y), (8.15)
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where gεk is defined in (4.23).
Let Kε ⊂ Qν,ε be a compact set such that

c2Ln(Qν,ε \Kε) + (c5(1 + |ζ|) + ε|ζ|)Hn−1(Πν
0 ∩ (Qν,ε \Kε)) < ε. (8.16)

We can appeal to [8, Proposition 3.1] to deduce the existence of a constant Mε > 0 and a finite family of
cut-off functions φ1, . . . , φN ∈ C∞c (Qν,ε) such that 0 ≤ φi ≤ 1 in Qν,ε, φi = 1 in a neighbourhood of Kε,
and

Eε,pk,ρ(v̂
ρ
k, Q

ν,ε) ≤ (1 + ε)
(
Eε,pk,ρ(v

ρ
k, Q

ν,ε) + Eε,pk,ρ(u0,ζ,ν , Q
ν,ε \Kε)

)
+Mε‖vρk − u0,ζ,ν‖pLp(Qν,ε,Rm) + ε, (8.17)

where v̂ρk := φikv
ρ
k + (1− φik )u0,ζ,ν for a suitable ik ∈ {1, . . . , N}. Clearly

|v̂ρk| ≤ µ in Qν,ε (8.18)

and v̂ρk = u0,ζ,ν in a neighbourhood of ∂Qν,ε. By (f4) and (g6) we have that

Eε,pk,ρ(u0,ζ,ν , Q
ν,ε \Kε) =

∫
Qν,ε\Kε
fk(x+ ρy, 0)dy +

∫
Πν0∩(Qν,ε\Kε)

gεk(x+ ρy, ζ, ν)dHn−1(y)

≤ c2Ln(Qν,ε \Kε) + (c5(1 + |ζ|) + ε|ζ|)Hn−1(Πν
0 ∩ (Qν,ε \Kε)) < ε,

where the last inequality follows from (8.16). Since vk → u in Lp(Qν,ερ (x),Rm), it follows that

vρk(·) = vk(x+ ρ ·)→ u(x+ ρ ·) in Lp(Qν,ε,Rm) as k → +∞. (8.19)

Hence, from (8.17) and (8.19) we have

lim sup
k→+∞

Eε,pk,ρ(v̂
ρ
k, Q

ν,ε) ≤ (1 + ε)
(

lim sup
k→+∞

Eε,pk,ρ(v
ρ
k, Q

ν,ε) + ε
)

+Mε‖u(x+ ρ ·)− u0,ζ,ν(·)‖pLp(Qν,ε,Rm) + ε. (8.20)

Step 2. Estimate for ∇v̂ρk. We now show that ∇v̂ρk is small in Lp-norm for k large and ρ small. By the
definition of v̂ρk we have

‖∇v̂ρk‖Lp(Qν,ε,Rm×n) ≤ ‖∇φik‖L∞(Qν,ε,Rn)‖vρk − u0,ζ,ν‖Lp(Qν,ε,Rm)

+ ‖φik‖L∞(Qν,ε)‖∇vρk‖Lp(Qν,ε,Rm×n) (8.21)

≤ Cε‖vρk − u0,ζ,ν‖Lp(Qν,ε,Rm) + ‖∇vρk‖Lp(Qν,ε,Rm×n),

for a suitable constant Cε > 0. We now estimate separately the two terms in the right-hand side of (8.21).
As for the first term, note that by (8.19) we can find k1(ρ) ≥ k0(ρ) such that

‖vρk(·)− u(x+ ρ ·)‖Lp(Qν,ε,Rm) ≤ ρ for k ≥ k1(ρ).

Hence from (8.11) we deduce that for k ≥ k1(ρ)

‖vρk − u0,ζ,ν‖Lp(Qν,ε,Rm)

≤ ‖vρk(·)− u(x+ ρ ·)‖Lp(Qν,ε,Rm) + ‖u(x+ ρ ·)− u0,ζ,ν(·)‖Lp(Qν,ε,Rm) ≤ ω1(ρ), (8.22)

where ω1(ρ) is independent of k and ω1(ρ)→ 0 as ρ→ 0+.
For the second term in (8.21), by the definition of vρk, (f3), and the positivity of gk, we have that∫

Qν,ε
|∇vρk|

pdy = ρp−n
∫
Q
ν,ε
ρ (x)

|∇vk|pdy ≤
ρp−n

c1

∫
Q
ν,ε
ρ (x)

fk(y,∇vk)dy

≤ ρp−1

c1

( 1

ρn−1
Eε,pk (vk, Q

ν,ε
ρ (x))

)
. (8.23)

By (8.12) there exists ρ0 > 0 such that Eε,p(u,Qν,ερ (x))/ρn−1 < gε,p(x, ζ, ν) + 1 for every 0 < ρ < ρ0.
Therefore, for every 0 < ρ < ρ0 satisfying (8.13) there exits k2(ρ) ≥ k1(ρ) such that

1

ρn−1
Eε,pk (uk, Q

ν,ε
ρ (x)) < gε,p(x, ζ, ν) + 1,

for every k ≥ k2(ρ). This inequality, together with (8.23), gives∫
Qν,ε
|∇vρk|

pdy ≤ ρp−1

c1
(gε,p(x, ζ, ν) + 1), (8.24)

for every k ≥ k2(ρ). Finally, putting together (8.21), (8.22), and (8.24) yields

‖∇v̂ρk‖Lp(Qν,ε,Rm×n) ≤ ω2(ρ) (8.25)
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for every 0 < ρ < ρ0 satisfying (8.13) and every k ≥ k2(ρ), where ω2(ρ) is independent of k and ω2(ρ)→ 0
as ρ→ 0+.

Step 3. Modification of v̂ρk to make it piecewise constant. On account of estimate (8.25), we now further
modify v̂ρk using the same construction as in [8, page 332]. Let ζ1, . . . , ζm be the coordinates of ζ. By
(8.10) for every 0 < ρ < ρ0 satisfying (8.13) there exists an integer Nρ > 0, with 2

√
m/Nρ < µ and

1/Nρ < |ζi| for every i with ζi 6= 0, such that,

Nρ → +∞ and ω2(ρ)Nρ → 0 + as ρ→ 0+. (8.26)

Note that, by (8.18), we have |v̂ρk| < 2µ − (1/Nρ) in Qν,ε. Let v̂ρk,1, . . . , v̂
ρ
k,m be the coordinates of v̂ρk.

Since v̂ρk,i ∈ SBV (Qν,ε) for i = 1, . . . ,m, by the Coarea Formula the set {v̂ρk,i > t} has finite perimeter in

Qν,ε for L1-a.e. t ∈ R and∫
Qν,ε
|∇v̂ρk,i|dy = |Dv̂ρk,i|(Q

ν,ε \ Sv̂ρ
k
) =

∫ 2µ

−2µ

Hn−1((Qν,ε \ Sv̂ρ
k
) ∩ ∂∗{v̂ρk,i > t}

)
dt,

where ∂∗ denotes the reduced boundary in Qν,ε.
To simplify the exposition we assume that µ is an integer. From the Mean Value Theorem, for every

integer `, with −2Nρµ ≤ ` < 2Nρµ, there exists ti` ∈ R, with `/Nρ < ti` < (`+1)/Nρ, such that {v̂ρk,i > ti`}
has finite perimeter in Qν,ε and∫

Qν,ε
|∇v̂ρk,i|dy ≥

1

Nρ

2Nρµ−1∑
`=−2Nρµ

Hn−1((Qν,ε \ Sv̂ρ
k
) ∩ ∂∗{v̂ρk,i > ti`}

)
. (8.27)

We now define

Zi` := {y ∈ Qν,ε : ti` ≤ v̂ρk,i(y) < ti`+1},

and note that Zi` has finite perimeter in Qν,ε. Moreover, since |v̂ρk| < 2µ − (1/Nρ) in Qν,ε, the sets Zi`,
−2Nρµ ≤ ` < 2Nρµ, form a partition of Qν,ε.

We finally define the piecewise constant function wρk,i : Q
ν,ε → R as

wρk,i|Z` =


0 if ti` ≤ 0 < ti`+1,

ζi if ti` ≤ ζi < ti`+1,

ti` otherwise.

Note that wρk,i is well defined, since |ζi| > 1/Nρ when ζi 6= 0, and therefore in this case 0 and ζi cannot

belong to the same interval [ti`, t
i
`+1). Moreover, wρk,i ∈ SBVpc(Qν,ε) since each set Zi` has finite perimeter.

Then the function wρk := (wρk,1, . . . , w
ρ
k,m) belongs to SBVpc(Qν,ε,Rm).

We now claim that for every 0 < ρ < ρ0 satisfying (8.13) and for every k ≥ k2(ρ) the following
properties hold:

wρk = u0,ζ,ν in a neighbourhood of ∂Qν,ε, (8.28)

‖wρk − v̂
ρ
k‖L∞(Qν,ε,Rm) ≤

2
√
m

Nρ
< µ, (8.29)

‖wρk‖L∞(Qν,ε,Rm) ≤ 2µ, (8.30)

Hn−1((Swρ
k
\ Sv̂ρ

k
) ∩Qν,ε) ≤ ω3(ρ), (8.31)

where ω3(ρ) is independent of k and ω3(ρ)→ 0+ as ρ→ 0+.
Property (8.28) follows from the definition of wρk. As for (8.29) we just note that ‖wρk,i−v̂

ρ
k,i‖L∞(Qν,ε) =

max` ‖wρk,i − v̂
ρ
k,i‖L∞(Zi

`
) ≤ 2/Nρ. Inequality (8.30) follows from (8.18) and (8.29). To prove (8.31) we

observe that, up to Hn−1-negligible sets, Swρ
k
⊂ ∪i ∪` ∂∗Zi`, and since Zi` = {v̂ρk,i > ti`} \ {v̂ρk,i > ti`+1}, it

follows that ∂∗Zi` ⊂ ∂∗{v̂ρk,i > ti`} ∪ ∂∗{v̂ρk,i > ti`+1}, and hence

Swρ
k
∩Qν,ε ⊂

m⋃
i=1

2Nρµ−1⋃
`=−2Nρµ

(∂∗{v̂ρk,i > ti`} ∩Qν,ε).
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This inclusion implies that, by (8.25) and (8.27),

Hn−1((Swρ
k
\ Sv̂ρ

k
) ∩Qν,ε) ≤

m∑
i=1

Nρλ−1∑
`=−Nρλ

Hn−1
(

(Qν,ε \ Sv̂ρ
k
) ∩ ∂∗{v̂ρk,i > ti`}

)
≤ mNρ

∫
Qν,ε
|∇v̂ρk|dy ≤ mNρ‖∇v̂

ρ
k‖Lp(Qν,ε,Rm×n) ≤ ω3(ρ)

where ω3(ρ) := mω2(ρ)Nρ → 0+ as ρ→ 0+ by (8.26).

Step 4. Conclusion of the proof for bounded functions. We first note that by (8.15) and (8.20) we have

lim sup
k→+∞

∫
S
v̂
ρ
k
∩Qν,ε

gεk(x+ ρy, [v̂ρk](y), νv̂ρ
k
(y))dHn−1(y)

≤ (1 + ε)
(

lim sup
k→+∞

Eε,pk,ρ(v
ρ
k, Q

ν,ε) + ε
)

+Mε‖u(x+ ρ ·)− u0,ζ,ν(·)‖pLp(Qν,ε,Rm) + ε. (8.32)

Further, by (f4) and (8.24), we can control the volume integral in (8.32) as follows:∫
Qν,ε

fk(x+ ρy,∇vρk(y))dy ≤ c2
∫
Qν,ε

(1 + |∇vρk|
p)dy ≤ c2

(
ε+

ρp−1

c1
(gε,p(x, ζ, ν) + 1)

)
for every 0 < ρ < ρ0 satisfying (8.13) and every k ≥ k2(ρ).

By (8.15), this inequality and (8.32) imply in particular that

lim sup
k→+∞

∫
S
v̂
ρ
k
∩Qν,ε

gεk(x+ ρy, [v̂ρk](y), νv̂ρ
k
(y))dHn−1(y)

≤ (1 + ε) lim sup
k→+∞

∫
S
v
ρ
k
∩Qν,ε

gεk(x+ ρy, [vρk](y), νvρ
k
(y))dHn−1(y)

+ 2c2
(
ε+

ρp−1

c1
(gε,p(x, ζ, ν) + 1)

)
+Mε‖u(x+ ρ ·)− u0,ζ,ν(·)‖pLp(Qν,ε,Rm) + 3ε. (8.33)

Since ∫
S
v
ρ
k
∩Qν,ε
gεk(x+ ρy, [vρk](y), νvρ

k
(y)
)
dHn−1(y) =

1

ρn−1

∫
Svk∩Q

ν,ε
ρ (x)

gεk(y, [vk](y), νvk (y))dHn−1(y),

gathering (8.14) and (8.33) gives

lim sup
k→+∞

∫
S
v̂
ρ
k
∩Qν,ε

gεk(x+ ρy, [v̂ρk](y), νv̂ρ
k
(y))dHn−1(y)

≤ (1 + ε)2 1

ρn−1
Eε,p(u,Qν,ερ (x)) + 2ρ+ 2c2

(
ε+

ρp−1

c1
(gε,p(x, ζ, ν) + 1)

)
(8.34)

+Mε‖u(x+ ρ ·)− u0,ζ,ν(·)‖pLp(Qν,ε,Rm) + 3ε.

We now estimate the left-hand side in (8.34). We have∫
S
v̂
ρ
k
∩Qν,ε

gεk(x+ ρy, [v̂ρk](y), νv̂ρ
k
(y))dHn−1(y)

≥
∫

(S
v̂
ρ
k
∩S

w
ρ
k

)∩Qν,ε
gk(x+ ρy, [v̂ρk](y), νv̂ρ

k
(y))dHn−1(y)

=

∫
S
w
ρ
k
∩Qν,ε

gk(x+ ρy, [wρk](y), νwρ
k
(y))dHn−1(y)

+

∫
(S
v̂
ρ
k
∩S

w
ρ
k

)∩Qν,ε
(gk(x+ ρy, [v̂ρk](y), νv̂ρ

k
(y))− gk(x+ ρy, [wρk](y), νwρ

k
(y))) dHn−1(y)

−
∫

(S
w
ρ
k
\S
v̂
ρ
k

)∩Qν,ε
g(x+ ρy, [wρk](y), νwρ

k
(y))dHn−1(y) =: I1 + I2 − I3. (8.35)

We now claim that

|I2| ≤ ω4(ρ) and |I3| ≤ ω5(ρ) (8.36)

for k ≥ k2(ρ), where ω4(ρ) and ω5(ρ) are independent of k and tend to 0+ as ρ→ 0+.
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Thanks to the symmetry condition (g7), for the term I2 we may choose the orientations of νv̂ρ
k

and νwρ
k

so that νv̂ρ
k

= νwρ
k
Hn−1-a.e. on Sv̂ρ

k
∩ Swρ

k
. Thus, by assumptions (g2) and (g6),

|gk(x+ ρy, [v̂ρk](y), νv̂ρ
k
(y))− gk(x+ ρy, [wρk](y), νwρ

k
(y))|

≤ σ2(|[v̂ρk](y)− [wρk](y)|)
(
gk(x+ ρy, [v̂ρk](y), νv̂ρ

k
(y)) + gk(x+ ρy, [wρk](y), νwρ

k
(y))

)
≤ 2c5σ2(2‖v̂ρk − w

ρ
k‖L∞(Qν,ε,Rm))(1 + ‖v̂ρk‖L∞(Qν,ε,Rm) + ‖wρk‖L∞(Qν,ε,Rm)),

for Hn−1-a.e. y ∈ Sv̂ρ
k
∩ Swρ

k
. Therefore, using (8.18), (8.29), and (8.30) we obtain

|I2| ≤ 2c5(1 + 3µ)σ2(4
√
m/Nρ)Hn−1(Sv̂ρ

k
∩Qν,ε)

for every k ≥ k2(ρ).
Now recall that, by the definition of v̂ρk,

Sv̂ρ
k
∩Qν,ε ⊂

(
Svρ

k
∩Qν,ε

)
∪
(
Πν

0 ∩ (Qν,ε \Kε)
)
,

hence by (8.16),

Hn−1(Sv̂ρ
k
∩Qν,ε) ≤ Hn−1(Svρ

k
∩Qν,ε) +

ε

c5
=

1

ρn−1
Hn−1(Svk ∩Q

ν,ε
ρ (x)) +

ε

c5
.

In terms of the functions vk, by (8.14), this implies that

Hn−1(Sv̂ρ
k
∩Qν,ε) ≤ 1 + ε

c4

1

ρn−1
Eε,p(u,Qν,ερ (x)) +

ρ

c4
+

ε

c5

for every k ≥ k2(ρ). Hence, for the term I2 we have

|I2| ≤ 2c5(1 + 3µ)σ2(4
√
m/Nρ)

( 1 + ε

c4 ρn−1
Eε,p(u,Qν,ερ (x)) +

ρ

c4
+

ε

c5

)
.

Since σ2(t) → 0+ as t → 0+, by (8.12) we obtain that |I2| ≤ ω4(ρ) for every k ≥ k2(ρ), where ω4(ρ) is
independent of k and ω4(ρ)→ 0+ as ρ→ 0+.

As for the term I3, proceeding as above and using (8.30) we get

|I3| ≤ c5(1 + 4µ)Hn−1((Swρ
k
\ Sv̂ρ

k
) ∩Qν,ε

)
,

which, by (8.31), implies that |I3| ≤ ω5(ρ) for every k ≥ k2(ρ), where ω5(ρ) := c5(1 + 4µ)ω3(ρ) → 0+ as
ρ→ 0+. This concludes the proof of (8.36).

By combining (8.34), (8.35), and (8.36) we deduce that

lim sup
k→+∞

∫
S
w
ρ
k
∩Qν,ε

gk(x+ ρy, [wρk](y), νwρ
k
(y))dHn−1(y)

≤ (1 + ε)2 1

ρn−1
Eε,p(u,Qν,ερ (x)) + 2ρ+ ω4(ε, ρ) + ω5(ε, ρ)

+ 2c2
(
ε+

ρp−1

c1
(gε,p(x, ζ, ν) + 1)

)
+Mε‖u(x+ ρ ·)− u0,ζ,ν(·)‖pLp(Qν,ε,Rm) + 3ε.

We now define zρk(y) := wρk((y − x)/ρ) for every y ∈ Qν,ερ (x). Note that zρk ∈ SBVpc(Qν,ερ (x),Rm) and
zρk = ux,ζ,ν in a neighbourhood of ∂Qν,ερ (x). In terms of the functions zρk the previous estimate gives

lim sup
k→+∞

1

ρn−1
mpc
Gk

(ux,ζ,ν , Q
ν
ρ(x)) ≤ lim sup

k→+∞

1

ρn−1
mpc
Gk

(ux,ζ,ν , Q
ν,ε
ρ (x))

≤ lim sup
k→+∞

1

ρn−1

∫
S
z
ρ
k
∩Qν,ερ (x)

gk(y, [zρk](y), νzρ
k
(y))dHn−1(y)

≤ (1 + ε)2 1

ρn−1
Eε,p(u,Qν,ερ (x)) + 2ρ+ ω4(ε, ρ) + ω5(ε, ρ)

+ 2c2
(
ε+

ρp−1

c1
(gε,p(x, ζ, ν) + 1)

)
+Mε‖u(x+ ρ ·)− u0,ζ,ν(·)‖pLp(Qν,ε,Rm) + 3ε.

Finally, taking the limsup as ρ→ 0+ and invoking (3.11), (8.11), and (8.12), we obtain

g′′(x, ζ, ν) ≤ (1 + ε)2gε,p(x, ζ, ν) + Cε,

with C := 2c2 + 3. Recalling the definition of ζ and ν, we obtain that

g′′(x, [u](x), νu(x)) ≤ (1 + ε)2gε,p(x, [u](x), νu(x)) + Cε



29

holds true for Hn−1-a.e. x ∈ Su ∩A. Taking the limit as ε→ 0+ and using (5.2) we get

g′′(x, [u](x), νu(x)) ≤ g0(x, [u](x), νu(x))

for Hn−1-a.e. x ∈ Su ∩A, thus proving (5.15) for u ∈ SBV p(A,Rm) ∩ L∞(A,Rm).

Step 5. Extension to unbounded functions in GSBV p. Let A ∈ A and u ∈ GSBV p(A,Rm). For every
integer k ≥ 1 we define zk := αk(u), where αk ∈ C1

c (Rm,Rm) satisfies αk(ζ) = ζ for every ζ ∈ Rm with
|ζ| ≤ k. By (h) in Section 2 we have that zk ∈ SBV p(A,Rm) ∩ L∞(A,Rm). Let Σk := {x ∈ Su ∩ A :
|u±(x)| < k}. By the definition of u±(x) as approximate limits, it is easy to see that for Hn−1-a.e. x ∈ Σk
we have either z±k (x) = u±(x) and νzk (x) = νu(x) or z±k (x) = u∓(x) and νzk (x) = −νu(x) (see [3, Remark
4.32]). On the other hand, by the previous steps in the proof we have that

g′′(x, [zk](x), νzk (x)) ≤ g0(x, [zk](x), νzk (x))

for Hn−1-a.e. x ∈ Σk. By (g7) this implies that

g′′(x, [u](x), νu(x)) ≤ g0(x, [u](x), νu(x)) (8.37)

for Hn−1-a.e. x ∈ Σk. Since the integer k is arbitrary, (8.37) holds for Hn−1-a.e. x ∈ Su. �

Appendix

In this section we collect some technical results that we have used throughout the paper. We begin with
an example of a family of orthogonal matrices Rν satisfying all assumptions of (k) of Section 2.

Example A.1. Let φ± : Sn−1 \ {±en} → Rn−1 be the stereographic projection from ±en into the plane

xn = 0 and let ψ± : Rn−1 → Sn−1 \ {±en} be its inverse function. For every ν ∈ Ŝn−1
± we consider

the vectors ξi(ν) := ∂iψ∓(φ∓(ν)), i = 1, . . . , n − 1, which are tangent to Sn−1 at ν, and hence satisfy
ξi(ν) · ν = 0. Since ψ∓ are conformal maps, we have ξi(ν) · ξj(ν) = 0 for i 6= j. Let νi(ν) := ξi(ν)/|ξi(ν)|.
Then the vectors ν1(ν), ν2(ν), . . . , νn−1(ν), ν form an orthonormal basis of Rn, therefore they are the
columns of an orthogonal matrix, denoted by Rν . It is clear from the construction that Rνen = ν and

that the restriction of ν 7→ Rν to Ŝn−1
± is continuous. Moreover, since φ+(−ν) = −φ−(ν) for every

ν ∈ Sn−1 \ {en,−en}, we have ψ+(−y) = −ψ−(y) for every y ∈ Rn−1 \ {0}. It follows that ξi(−ν) = ξi(ν),
hence νi(−ν) = νi(ν) for every ν ∈ Sn−1 \ {en,−en}. This property is clearly true also for ν = ±en, since
νi(±en) = ei. It follows that R−νQ(0) = RνQ(0) for every ν ∈ Sn−1.

The following remark will be used in [9].

Remark A.2. From the formulas defining the stereographic projections φ± it follows that ν ∈ (Sn−1 ∩
Qn) \ {en,−en} if and only if φ±(ν) ∈ Qn−1 \ {0}. Therefore Sn−1 ∩Qn is dense in Sn−1. Moreover, the
explicit formulas for ∂iψ± show that νi(ν) ∈ Sn−1 ∩ Qn for every ν ∈ Sn−1 ∩ Qn, hence Rν ∈ Qn×n for
every ν ∈ Sn−1 ∩Qn.

The rest of this section is devoted to some technical lemmas needed to prove some of the properties
satisfied by the functions f ′, f ′′, g′, and g′′ introduced in (3.8)-(3.11) and by the functions fε,p and gε,p

introduced in (4.24) and (4.25).

Lemma A.3 (Upper semicontinuity). Let X be either L0(Rn,Rm) or Lploc(Rn,Rm), and let H : X×A →
[0,+∞] be a functional such that

(h1) (locality) H(u,A) = H(v,A) if u, v ∈ X, A ∈ A , and u = v Ln-a.e. in A,
(h2) (measure) for every u ∈ X ∩ SBVloc(Rn,Rm) the function H(u, ·) is the restriction to A of a

countably additive function defined on the σ-algebra of the Borel subsets of Rn,
(h3) (upper bound) for every u ∈ X ∩ SBVloc(Rn,Rm) and every A ∈ A

H(u,A) ≤ c2
∫
A

(1 + |∇u|p)dx+ c5

∫
Su∩A

(1 + |[u]|) dHn−1.

Let m1,p
H , mpc

H , and mH be as in (3.5)-(3.7), and let ρ > 0. Then

(a) the functions

(x, ξ) 7→ mH(`ξ, Qρ(x)) and (x, ξ) 7→ m1,p
H (`ξ, Qρ(x))

are upper semicontinuous in Rn×Rm×n;
(b) the restrictions of the function

(x, ζ, ν) 7→ mH(ux,ζ,ν , Q
ν
ρ(x))

to the sets Rn×Rm0 ×Ŝn−1
+ and Rn×Rm0 ×Ŝn−1

− are upper semicontinuous;
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(c) for every ζ0 ∈ Rm0 the restrictions of the function

(x, ν) 7→ mpc
H (ux,ζ0,ν , Q

ν
ρ(x))

to the sets Rn×Ŝn−1
+ and Rn×Ŝn−1

− are upper semicontinuous.

Proof. In the proof of (a) we only deal with mH , the proof of the upper semicontinuity of m1,p
H being

similar.
Fix x0 ∈ Rn, ξ0 ∈ Rm×n, and ε > 0. By the definition of mH there exist u0 ∈ X, with u0|Qρ(x0) ∈

SBV p(Qρ(x0),Rm), and δ0 ∈ (0, ρ/3) such that

u0 = `ξ0 Ln-a.e. in Qρ(x0) \Qρ−3δ0(x0), (A.38)

H(u0, Qρ(x0)) < mH(`ξ0 , Qρ(x0)) + ε. (A.39)

Now fix δ ∈ (0, δ0), x ∈ Qδ(x0), ξ ∈ Rm×n with |ξ− ξ0| < δ, and ϕ ∈ C∞c (Rn) with suppϕ ⊂ Qρ(x), ϕ = 1
in Qρ−δ(x), 0 ≤ ϕ ≤ 1 in Rn, and |∇ϕ| ≤ 3/δ in Rn. We define u1 ∈ SBV ploc(Rn,Rm) by

u1 :=

{
u0 in Qρ−δ(x),

ϕ `ξ0 + (1− ϕ) `ξ in Rn \Qρ−2δ(x).

Since x ∈ Qδ(x0), we have Qρ−δ(x) \ Qρ−2δ(x) ⊂⊂ Qρ(x0) \ Qρ−3δ0(x0). Therefore u1 is well defined,
since, by (A.38), both formulas give the same value in the overlapping set Qρ−δ(x) \Qρ−2δ(x). Moreover
u1 = `ξ in a neighbourhood of ∂Qρ(x), hence mH(`ξ, Qρ(x)) ≤ H(u1, Qρ(x)). Therefore, using (h1)-(h3),
we obtain

mH(`ξ, Qρ(x)) ≤ H(u0, Qρ−δ(x)) + c2

∫
Qρ(x)\Qρ−2δ(x)

(1 + |∇u1|p) dy. (A.40)

Since ∇u1 = ϕξ0 + (1 − ϕ)ξ + (`ξ0 − `ξ)⊗∇ϕ in Qρ(x) \ Qρ−2δ(x), by convexity we have |∇u1|p ≤
3p−1(|ξ0|p + |ξ|p + |ξ0 − ξ|pC1|∇ϕ|p), where C1 := sup{|y|p : y ∈ Qρ+δ0(x0)}.

Therefore (A.40), together with the estimates for |ξ0 − ξ| and |∇ϕ|, yields

mH(`ξ, Qρ(x)) ≤ H(u0, Qρ(x)) + C2(ρn − (ρ− 2δ)n),

where C2 := c2
(
1 + 32p−1(|ξ0|p + δp0 + C1)

)
. Combining this inequality with (A.39) we get

mH(`ξ, Qρ(x)) ≤ mH(`ξ0 , Qρ(x0)) + ε+ 2nC2ρ
n−1δ.

Therefore, if 0 < δ < min{δ0, ε/(2nC2ρ
n−1)}, x ∈ Qδ(x0), and |ξ − ξ0| < δ, then

mH(`ξ, Qρ(x)) ≤ mH(`ξ0 , Qρ(x0)) + 2ε.

This proves the upper semicontinuity of (x, ξ) 7→ mH(`ξ, Qρ(x)) at (x, ξ) = (x0, ξ0).

To prove (b), we fix three points x0 ∈ Rn, ζ0 ∈ Rm0 , ν0 ∈ Ŝn−1
+ , three sequences (xj) ⊂ Rn, (ζj) ⊂ Rm0 ,

(νj) ⊂ Ŝn−1
+ , with xj → x0, νj → ν0, ζj → ζ0, and a constant ε > 0. By definition there exist v0 ∈ X,

with v0|Qν0ρ (x0) ∈ SBV
p(Qν0ρ (x0),Rm), and δ0 ∈ (0, ρ/3) such that

v0 = ux0,ζ0,ν0 Ln-a.e. in Qν0ρ (x0) \Qν0ρ−3δ0
(x0), (A.41)

H(v0, Q
ν
ρ(x0)) < mH(ux0,ζ0,ν0 , Q

ν0
ρ (x0)) + ε. (A.42)

Let us fix δ ∈ (0, δ0/2). There exists an integer iδ such that Qν0ρ−δ(xj) ⊂ Q
ν0
ρ (x0), Qν0ρ+δ(xj) ⊂ Q

ν0
ρ+2δ(x0),

and Qν0ρ−3δ0
(x0) ⊂ Qν0ρ−5δ(x0) ⊂ Qν0ρ−4δ(xj) for every j ≥ iδ.

By (k) in Section 2 the function ν 7→ Rν is continuous on Ŝn−1
+ . Consequently there exists an integer

jδ ≥ iδ such that Q
νj
ρ−2δ(x) ⊂ Qν0ρ−δ(x), Q

νj
ρ (x) ⊂ Qν0ρ+δ(x), and Qν0ρ−4δ(x) ⊂ Qνjρ−3δ(x) for every j ≥ jδ and

every x ∈ Rn. Therefore the previous inclusions imply that

Q
νj
ρ−2δ(xj) \Q

νj
ρ−3δ(xj) ⊂ Q

ν0
ρ (x0) \Qν0ρ−5δ(x0) ⊂ Qν0ρ (x0) \Qν0ρ−3δ0

(x0), (A.43)

Q
νj
ρ (xj) \Q

νj
ρ−3δ(xj) ⊂ Q

ν0
ρ+2δ(x0) \Qν0ρ−5δ(x0), (A.44)

for every j ≥ jδ.
Let ψj ∈ C∞c (Rn) be such that suppψj ⊂ Q

νj
ρ (xj), ψj = 1 in Q

νj
ρ−δ(xj), 0 ≤ ψj ≤ 1 in Rn, and

|∇ψj | ≤ 3/δ in Rn. We define vj ∈ SBV ploc(Rn,Rm) by

vj :=

{
v0 in Q

νj
ρ−2δ(xj),

ψjux0,ζ0,ν0 + (1− ψj)uxj ,ζj ,νj in Rn \Qνjρ−3δ(xj).

By (A.41) and (A.43) the function vj is well defined, since both formulas give the same value in the
overlapping set Q

νj
ρ−2δ(xj) \ Q

νj
ρ−3δ(xj). Moreover vj = uxj ,ζj ,νj in a neighbourhood of ∂Q

νj
ρ (xj), hence
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mH(uxj ,ζj ,νj , Q
νj
ρ (xj)) ≤ H(vj , Q

νj
ρ (xj)). So, using (h1)-(h3) and setting Aj := Q

νj
ρ (xj) \Q

νj
ρ−3δ(xj), we

obtain

mH(uxj ,ζj ,νj , Q
νj
ρ (xj)) ≤ H(v0, Q

νj
ρ−2δ(xj))

+ c2

∫
Aj

(1 + |∇vj |p) dy + c5

∫
Svj∩Aj

(1 + |[vj ]|) dHn−1. (A.45)

Since |∇vj | ≤ |∇ψj ||ux0,ζ0,ν0 − uxj ,ζj ,νj | on Aj , we have |∇vj | ≤ (3/δ)|ux0,ζ0,ν0 − uxj ,ζj ,νj | on Aj . It
follows that ∫

Aj

(1 + |∇vj |p) dy ≤ ρn − (ρ− 3δ)n +
3p

δp
ηj ≤ 3nδρn−1 +

3p

δp
ηj ,

where ηj :=
∫
Aj
|ux0,ζ0,ν0 − uxj ,ζj ,νj |

pdy → 0+, as j → +∞.

On the other hand by (A.44) we have Svj ∩ Aj ⊂
(
Πν0
x0 ∩ Q

ν0
ρ+2δ(x0) \ Qν0ρ−5δ(x0)

)
∪
(
Π
νj
xj ∩ Q

νj
ρ (xj) \

Q
νj
ρ−3δ(xj)

)
. Moreover there exists a constant M1 > 0 such that |[vj ]| ≤ M1 Hn−1-a.e. on Svj ∩ Aj for

every j ≥ jδ. Therefore∫
Svj∩Aj

(1 + |[vj ]|) dHn−1 ≤ 2(1 +M1)
(
(ρ+ 2δ)n−1 − (ρ− 5δ)n−1) ≤ 14δ(1 +M1)(n− 1)(2ρ)n−2. (A.46)

From (A.42) and (A.45)-(A.46) it follows that for every j ≥ jδ

mH(uxj ,ζj ,νj , Q
νj
ρ (xj)) ≤ mH(ux0,ζ0,ν0 , Q

ν0
ρ (x0)) + ε+M2δ + c2

3p

δp
ηj ,

where M2 := 3nc2ρ
n−1 + 14c5(1 +M1)(n− 1)(2ρ)n−2. Taking the limit as j → +∞ we get

lim sup
j→+∞

mH(uxj ,ζj ,νj , Q
νj
ρ (xj)) ≤ mH(ux0,ζ0,ν0 , Q

ν0
ρ (x0)) + ε+M2δ.

Since ε > 0 and δ ∈ (0, δ0/2) are arbitrary, we obtain

lim sup
j→+∞

mH(uxj ,ζj ,νj , Q
νj
ρ (xj)) ≤ mH(ux0,ζ0,ν0 , Q

ν0
ρ (x0)),

which proves the upper semicontinuity of the restriction of (x, ζ, ν) 7→ mH(ux,ζ,ν , Q
ν
ρ(x)) to Rn×Rm0 ×Ŝn−1

+ .

The same proof holds for Rn×Rm0 ×Ŝn−1
− .

To prove (c), we fix x0, ζ0, ν0, (xj), (νj), and ε > 0 as in the proof of (b). By definition there exist
w0 ∈ X, with w0|Qν0ρ (x0) ∈ SBVpc(Qν0ρ (x0),Rm), and δ0 ∈ (0, ρ/3) such that

w0 = ux0,ζ0,ν0 Ln-a.e. in Qν0ρ (x0) \Qν0ρ−3δ0
(x0), (A.47)

H(w0, Q
ν
ρ(x0)) < mpc

H (ux0,ζ0,ν0 , Q
ν0
ρ (x0)) + ε. (A.48)

Fix δ ∈ (0, δ0/2) and let jδ be an integer such that (A.43) and (A.44) are satisfied for every j ≥ jδ. We
define wj ∈ SBV ploc(Rn,Rm) by

wj :=

{
w0 in Q

νj
ρ−2δ(xj),

uxj ,ζ0,νj in Rn \Qνjρ−2δ(xj).
(A.49)

Then wj |Qνjρ (xj)
∈ SBVpc(Q

νj
ρ (xj),Rm) and wj = uxj ,ζ0,νj in a neighbourhood of ∂Q

νj
ρ (xj), hence

mpc
H (uxj ,ζ0,νj , Q

νj
ρ (xj)) ≤ H(wj , Q

νj
ρ (xj)). Therefore, using (h1)-(h3) and setting Aj := Q

νj
ρ (xj) \

Q
νj
ρ−3δ(xj), we obtain

mpc
H (uxj ,ζ0,νj , Q

νj
ρ (xj)) ≤ H(w0, Q

νj
ρ−2δ(xj)) + c5

∫
Swj∩Aj

(1 + |[wj ]|) dHn−1. (A.50)

By (A.43) and (A.47) we have wj = ux0,ζ0,ν0 on Q
νj
ρ−2δ(xj) \Q

νj
ρ−3δ(xj) for every j ≥ jδ, while by (A.49)

we have wj = uxj ,ζ0,νj in Q
νj
ρ (xj)\Q

νj
ρ−2δ(xj). Therefore Swj ∩Aj ⊂

(
Πν0
x0 ∩Q

νj
ρ−2δ(xj)\Q

νj
ρ−3δ(xj)

)
∪Σj ∪(

Π
νj
xj ∩Q

νj
ρ (xj) \Q

νj
ρ−2δ(xj)

)
⊂
(
Πν0
x0 ∩Q

ν0
ρ (x0) \Qν0ρ−5δ(x0)

)
∪Σj ∪

(
Π
νj
xj ∩Q

νj
ρ (xj) \Q

νj
ρ−2δ(xj)

)
, where Σj

is the set of points y ∈ ∂Qνjρ−2δ(xj) such that (y − xj) · νj and (y − x0) · ν0 have opposite sign. Moreover

|[wj ]| = |ζ0| Hn−1-a.e. on Swj ∩Aj for every j ≥ jδ and σj := Hn−1(Σj)→ 0 as j → +∞. Therefore∫
Swj∩Aj

(1 + |[wj ]|) dHn−1 ≤ 2
(
1 + |ζ0|)

(
ρn−1 − (ρ− 5δ)n−1 + σj

)
≤ 2(1 + |ζ0|)

(
(n− 1)ρn−2δ + σj

)
. (A.51)

From (A.48), (A.50), and (A.51) it follows that for every j ≥ jδ
mH(uxj ,ζ0,νj , Q

νj
ρ (xj)) ≤ mH(ux0,ζ0,ν0 , Q

ν0
ρ (x0)) + ε+ 2c5(1 + |ζ0|)

(
(n− 1)ρn−2δ + σj

)
.
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Since ε > 0 and δ ∈ (0, δ0/2) are arbitrary and σj → 0, we obtain

lim sup
j→+∞

mH(uxj ,ζ0,νj , Q
νj
ρ (xj)) ≤ mH(ux0,ζ0,ν0 , Q

ν0
ρ (x0)),

which proves the upper semicontinuity of the restriction of (x, ζ, ν) 7→ mpc
H (ux,ζ0,ν , Q

ν
ρ(x)) to Rn×Ŝn−1

+ .

The same proof holds for Rn×Ŝn−1
− . �

Lemma A.4 (Monotonicity in ρ). Let x ∈ Rn, ξ ∈ Rm×n, ζ ∈ Rm0 , and ν ∈ Sn−1. Under the assumptions
of Lemma A.3 the functions

ρ 7→ mH(`ξ, Qρ(x))− c2(1 + |ξ|p)ρn ρ 7→ m1,p
H (`ξ, Qρ(x))− c2(1 + |ξ|p)ρn,

ρ 7→ mH(ux,ζ,ν , Q
ν
ρ(x))− c5(1 + |ζ|)ρn−1 ρ 7→ mpc

H (ux,ζ,ν , Q
ν
ρ(x))− c5(1 + |ζ|)ρn−1

are nonincreasing in (0,+∞).

Proof. Let ρ2 > ρ1 > 0 and ε > 0 be fixed. By the definition of mH there exist u1 ∈ X, with u1|Qρ1(x) ∈
SBV p(Qρ1(x),Rm), and ρ′ ∈ (0, ρ1), such that u1 = `ξ Ln-a.e. in Qρ1(x) \Qρ′(x) and

H(u1, Qρ1(x)) < mH(`ξ, Qρ1(x)) + ε. (A.52)

Let u2 be defined by

u2 :=

{
u1 in Qρ1(x),

`ξ in Rn \Qρ1(x).

Then u2 = `ξ in a neighbourhood of ∂Qρ2(x), hence mH(`ξ, Qρ2(x)) ≤ H(u2, Qρ2(x)). Let us fix ρ′′ ∈
(ρ′, ρ1). Using (h1)-(h3), from the previous inequality we obtain

mH(`ξ, Qρ2(x)) ≤ H(u1, Qρ1(x)) +H(`ξ, Qρ2(x) \Qρ′′(x)) ≤ H(u1, Qρ1(x)) + c2(1 + |ξ|p)(ρn2 − (ρ′′)n)

Taking the limit as ρ′′ → ρ1−, from (A.52) we obtain

mH(`ξ, Qρ2(x)) ≤ mH(`ξ, Qρ1(x)) + ε+ c2(1 + |ξ|p)(ρn2 − ρn1 ).

Taking the limit as ε→ 0+ we obtain

mH(`ξ, Qρ2(x))− c5(1 + |ξ|p)ρn2 ≤ mH(`ξ, Qρ1(x))− c2(1 + |ξ|p)ρn1 ,
which proves the monotonicity of ρ 7→ mH(`ξ, Qρ(x)) − c2(1 + |ξ|p)ρn. The same proof holds for ρ 7→
m1,p
H (`ξ, Qρ(x))− c2(1 + |ξ|p)ρn.
We now consider mpc

H . By definition there exist v1 ∈ X, with v1|Qνρ1(x) ∈ SBVpc(Qνρ1(x),Rm), and

ρ′ ∈ (0, ρ1) such that v1 = ux,ζ,ν Ln-a.e. in Qρ1(x) \Qρ′(x) and

H(v1, Q
ν
ρ1(x)) < mpc

H (ux,ζ,ν , Q
ν
ρ1(x)) + ε. (A.53)

Let v2 be defined by

v2 :=

{
v1 in Qνρ1(x),

ux,ζ,ν in Rn \Qνρ1(x).

Then v2 = ux,ζ,ν in a neighbourhood of ∂Qνρ2(x), hence mpc
H (ux,ζ,ν , Q

ν
ρ2(x)) ≤ H(v2, Q

ν
ρ2(x)). Let us fix

ρ′′ ∈ (ρ′, ρ1). Using (h1)-(h3), from the previous inequality we obtain

mpc
H (ux,ζ,ν , Q

ν
ρ2(x0)) ≤ H(v1, Q

ν
ρ1(x)) +H(ux,ζ,ν , Q

ν
ρ2(x) \Qνρ′′(x))

≤ H(v1, Q
ν
ρ1(x)) + c5(1 + |ζ|)(ρn−1

2 − (ρ′′)n−1).

Taking the limit as ρ′′ → ρ1−, from (A.53) we obtain

mpc
H (ux,ζ,ν , Q

ν
ρ2(x)) ≤ mpc

H (ux,ζ,ν , Q
ν
ρ1(x)) + ε+ c5(1 + |ζ|)(ρn−1

2 − ρn−1
1 ).

Taking the limit as ε→ 0+ we obtain

mpc
H (ux,ζ,ν , Q

ν
ρ2(x0))− c5(1 + |ζ|)ρn−1

2 ≤ mpc
H (ux,ζ,ν , Q

ν
ρ1(x0))− c5(1 + |ζ|)ρn−1

1 ,

which proves the monotonicity of ρ 7→ mpc
H (ux,ζ,ν , Q

ν
ρ(x)) − c5(1 + |ζ|)ρn−1. The same proof holds for

ρ 7→ mH(ux,ζ,ν , Q
ν
ρ(x))− c5(1 + |ζ|)ρn−1. �

Lemma A.5 (Borel measurability). Let (fk) be a sequence in F and let (gk) be a sequence in G. Then
for every ε > 0 the functions f ′, f ′′, fε,p, and gε,p defined in (3.8), (3.9), (4.24), and (4.25) are Borel
measurable. Moreover, for every ζ0 ∈ Rm0 the functions

(x, ν) 7→ g′(x, ζ0, ν) and (x, ν) 7→ g′′(x, ζ0, ν)

defined in (3.10) and (3.11) are Borel measurable in Rn×Sn−1.
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Proof. We prove the result only for f ′, the proof for f ′′, fε,p, gε,p, g′, and g′′ being analogous. For every
x ∈ Rn, ξ ∈ Rm×n, and ρ > 0 we set

ψ(x, ξ, ρ) := lim inf
k→+∞

m1,p
Fk

(`ξ, Qρ(x)).

By Lemma A.4 for every x ∈ Rn and every ξ ∈ Rm×n the function ρ 7→ ψ(x, ξ, ρ) − c2(1 + |ξ|p)ρn is
nonincreasing on (0,+∞). It follows that

lim
ρ′→ρ−

ψ(x, ξ, ρ′) ≥ ψ(x, ξ, ρ) ≥ lim
ρ′→ρ+

ψ(x, ξ, ρ′) for every x ∈ Rn, ξ ∈ Rm×n, and ρ > 0.

Therefore, if D is a countable dense subset of (0,+∞), we have

lim sup
ρ→0+

1

ρn−1
ψ(x, ξ, ρ) = lim sup

ρ→0+, ρ∈D

1

ρn−1
ψ(x, ξ, ρ),

hence

f ′(x, ξ) = lim sup
ρ→0+, ρ∈D

lim inf
k→+∞

1

ρn−1
m1,p
Fk

(`ξ, Qρ(x))

for every x ∈ Rn and ξ ∈ Rm×n. The conclusion follows now from Lemma A.3. �

The next lemma provides all properties of the functions f ′ and f ′′.

Lemma A.6. Let (fk) be a sequence in F and let f ′ and f ′′ be as in (3.8) and (3.9). Then f ′, f ′′ ∈ F .

Proof. Property (f1) for f ′ and f ′′ is proved in Lemma A.5. The proof of (f2) for f ′ and f ′′ can be
easily obtained by adapting the proof of the same property for fε,p established in Theorem 4.3. In fact
it is enough to deduce from (4.37) that (4.38) holds, with mEε,p replaced by m1,p

Fk
. The conclusion then

follows from (3.8) and (3.9), passing to the limit first as k → +∞ and then as ρ→ 0+.
We now prove (f3) for f ′ and f ′′. Let x, ξ ∈ Rm×n be fixed. By (f3) for fk for any ρ > 0 and

u ∈W 1,p(Qρ(x),Rm) with u = `ξ near ∂Qρ(x) we have

1

ρn
Fk(u,Qρ(x)) ≥ c1

ρn

∫
Qρ(x)

|∇u|p dy ≥ c1
∣∣∣ 1

ρn

∫
Qρ(x)

∇u dy
∣∣∣p = c1|ξ|p,

where we used Jensen’s inequality and the boundary conditions for u. By letting k → +∞ and then
ρ→ 0+, the lower bounds for f ′ and f ′′ follow from (3.8) and (3.9).

Since fk satisfies (f4), for any ρ > 0 we also have

1

ρn
m1,p
Fk

(`ξ, Qρ(x)) ≤ 1

ρn
Fk(`ξ, Qρ(x)) ≤ c2(1 + |ξ|p).

By letting k → +∞ and then ρ→ 0+ we obtain the upper bounds for f ′ and f ′′. �

The next lemma provides all properties of the functions g′ and g′′.

Lemma A.7. Let (gk) be a sequence in G, and let g′ and g′′ be as in (3.10) and (3.11). Then g′, g′′ ∈ G.

Proof. We prove (g1)–(g7) only for g′, the proof for g′′ being similar.
We start by proving (g2). To this end fix x ∈ Rn, ζ1, ζ2 ∈ Rm0 , ν ∈ Sn−1, k ∈ N, ρ > 0. There exists

u1 ∈ L0(Rn,Rm), with u1|Qνρ(x) ∈ SBVpc(Qνρ(x),Rm) and u1 = ux,ζ1,ν in a neighbourhood of ∂Qνρ(x),

such that
Gk(u1, Q

ν
ρ(x)) ≤ mpc

Gk
(ux,ζ1,ν , Q

ν
ρ(x)) + ε ρn−1. (A.54)

Let E := {y ∈ Qνρ(x) : u1(y) = ζ1} and let χE be its characteristic function. Then χE ∈ BV (Qνρ(x)) and
SχE ∩Q

ν
ρ(x) ⊂ Su1 ∩Qνρ(x) (see [3, Theorem 4.23]).

Let u2 := u1 +(ζ2−ζ1)χE . Then u2|Qνρ(x) ∈ SBVpc(Qνρ(x),Rm) and u2 = ux,ζ2,ν in a neighbourhood of

∂Qνρ(x). Moreover Su2 ⊂ Su1 and [u2] = [u1] Hn−1-a.e. on Su1 \SχE , while [u2] = [u1] + ζ2− ζ1 Hn−1-a.e.
on SχE ∩ Su2 ∩Qνρ(x). By (g2) we have

Gk(u2, Q
ν
ρ(x)) ≤ Gk(u1, Q

ν
ρ(x)) + σ2(|ζ1 − ζ2|)

(
Gk(u1, Q

ν
ρ(x)) +Gk(u2, Q

ν
ρ(x))

)
hence (

1− σ2(|ζ1 − ζ2|)
)
Gk(u2, Q

ν
ρ(x)) ≤

(
1 + σ2(|ζ1 − ζ2|)

)
Gk(u1, Q

ν
ρ(x)).

Assume that σ2(|ζ1 − ζ2|) < 1. Then the previous inequality together with (A.54) yield(
1− σ2(|ζ1 − ζ2|)

)
mpc
Gk

(ux,ζ2,ν , Q
ν
ρ(x)) ≤

(
1 + σ2(|ζ1 − ζ2|)

)(
mpc
Gk

(ux,ζ1,ν , Q
ν
ρ(x)) + ε ρn−1).

Dividing by ρn−1 and taking the liminf as k → +∞, then the limsup as ρ → 0+, and finally the limit as
ε→ 0+ we obtain (

1− σ2(|ζ1 − ζ2|)
)
g′(x, ζ2, ν) ≤

(
1 + σ2(|ζ1 − ζ2|)

)
g′(x, ζ1, ν)
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hence

g′(x, ζ2, ν) ≤ g′(x, ζ1, ν) + σ2(|ζ1 − ζ2|)
(
g′(x, ζ1, ν) + g′(x, ζ2, ν)

)
. (A.55)

Inequality (A.55) is trivial if σ2(|ζ1 − ζ2|) ≥ 1. Then (g2) can be obtained from (A.55) by interchanging
the roles of ζ1 and ζ2.

We now observe that the Borel measurability of g′ on Rn×Rm0 ×Sn−1 follows from Lemma A.5 and from
the continuity estimate (g2). This concludes the proof of (g1).

To prove (g3) for g′, let us fix x ∈ Rn, ζ1, ζ2 ∈ Rm0 , with |ζ1| ≤ |ζ2|, ν ∈ Sn−1, and a rotation R on Rm
such that aRζ2 = ζ1, where a := |ζ1|/|ζ2| ≤ 1. For every k the functions gk satisfy (g3), thus for every
ρ > 0 and every u ∈ SBVpc(Qνρ(x),Rm) we have∫

Su∩Qνρ(x)

gk(y, aR[u](y), νu(y))dHn−1(y) ≤ c3
∫
Su∩Qνρ(x)

gk(y, [u](y), νu(y))dHn−1

Since aRζ2 = ζ1, this inequaliy implies that

mpc
Gk

(ux,ζ1,ν , Q
ν
ρ(x)) = mpc

Gk
(ux,aRζ2,ν , Q

ν
ρ(x)) ≤ c3mpc

Gk
(ux,ζ2,ν , Q

ν
ρ(x)).

Using (3.10) we obtain g′(x, ζ1, ν) ≤ c3 g′(x, ζ2, ν), which proves (g3).
To prove (g4) for g′, let us fix x ∈ Rn, ζ1, ζ2 ∈ Rm0 , with c3|ζ1| ≤ |ζ2|, ν ∈ Sn−1, and a rotation R on

Rm such that aRζ2 = ζ1, where a := |ζ1|/|ζ2| ≤ 1/c3 ≤ 1. For every k the functions gk satisfy (g4), thus
for every ρ > 0 and every u ∈ SBVpc(Qνρ(x),Rm) we have∫

Su∩Qνρ(x)

gk(y, aR[u](y), νu(y))dHn−1(y) ≤
∫
Su∩Qνρ(x)

gk(y, [u](y), νu(y))dHn−1

Since aRζ2 = ζ1, this inequaliy implies that

mpc
Gk

(ux,ζ1,ν , Q
ν
ρ(x)) = mpc

Gk
(ux,aRζ2,ν , Q

ν
ρ(x)) ≤ mpc

Gk
(ux,ζ2,ν , Q

ν
ρ(x)).

Using (3.10) we obtain g′(x, ζ1, ν) ≤ g′(x, ζ2, ν), which proves (g4).
To prove (g5) for g′, let us fix x ∈ Rn, ζ ∈ Rm0 , ν ∈ Sn−1, k ∈ N, and ρ > 0. Since (g5) holds for

gk, for every u ∈ L0(Rn,Rm), with u|Qνρ(x) ∈ SBVpc(Qνρ(x),Rm) we have Gk(u,Qνρ(x)) ≥ c4Hn−1(Su).

If u agrees with ux,ζ,ν in a neighbourhood of ∂Qνρ(x), each straight line intersecting Qνρ(x) and parallel

to ν meets Su (see [3, Theorem 3.108]). This implies that Hn−1(Su) ≥ ρn−1, which, together with
the previous estimate, gives Gk(u,Qνρ(x)) ≥ c4ρ

n−1. Taking the infimum with respect to u we obtain

mpc
Gk

(ux,ζ,ν , Q
ν
ρ(x)) ≥ c4ρn−1. By (3.10) this implies (g5) for g′.

On the other hand, appealing to (g6) for gk we have

mpc
Gk

(ux,ζ,ν , Q
ν
ρ(x)) ≤ Gk(ux,ζ,ν , Q

ν
ρ(x)) ≤ c5(1 + |ζ|)ρn−1.

Then the latter leads to (g6) for g′ by (3.10).
To prove the symmetry condition (g7), we observe that ux,−ζ,−ν = ux,ζ,ν−ζ for every x ∈ Rn, ζ ∈ Rm0 ,

ν ∈ Sn−1, and t > 0. Therefore u ∈ SBVpc(Qνρ(x),Rm) satisfies u = ux,−ζ,−ν in a neighbourhood of
∂Qνρ(x) if and only if u = v − ζ for some v ∈ SBVpc(Qνρ(x),Rm) satisfying v = ux,ζ,ν in a neighbourhood

of ∂Qνρ(x). Since Q−νρ (x) = Qνρ(x) by (k) and (l) in Section 2, it follows that mpc
Gk

(ux,−ζ,−ν , Q
−ν
ρ (x)) =

mpc
Gk

(ux,ζ,ν , Q
ν
ρ(x)) for every k. By (3.10) this implies that g′(x, ζ, ν) = g′(x,−ζ,−ν), which proves (g7)

for g′. �
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