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ABSTRACT. We study the I'-convergence of sequences of free-discontinuity functionals depending
on vector-valued functions v which can be discontinuous across hypersurfaces whose shape and
location are not known a priori. The main novelty of our result is that we work under very
general assumptions on the integrands which, in particular, are not required to be periodic in
the space variable. Further, we consider the case of surface integrands which are not bounded
from below by the amplitude of the jump of w.

We obtain three main results: compactness with respect to I'-convergence, representation of
the I'-limit in an integral form and identification of its integrands, and homogenisation formulas
without periodicity assumptions. In particular, the classical case of periodic homogenisation
follows as a by-product of our analysis. Moreover, our result covers also the case of stochastic
homogenisation, as we will show in a forthcoming paper.
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1. INTRODUCTION

In this paper we study the I'-convergence, as k — 400, of sequences of free-discontinuity functionals of
the form
Buu, ) = [ e Vu@)do+ [ o, (@) (o) ai @), (1
A SuNA
where A C R" is a bounded open set, u: A — R™ is a generalised special function of bounded variation, Vu
is its approximate gradient, S, is the jump set of w and [u] is its jump on S, while v, is the approximate
normal to S, and H™~! denotes the (n — 1)-dimensional Hausdorff measure.

Functionals of the form (1.1) appear naturally in the study of quasistatic crack growth in nonlinear
elasticity (see [27, 18, 15, 26, 17] and the monograph [8]), and represent the energy associated to a
deformation u of an elastic body with cracks. The parameter k may have different meanings: it may
represent the scale of a regularisation of the energy, the size of a microstructure, or the ratio of the
contrasting values of the mechanical response of the material in different parts of the body. For example,
for a high-contrast medium fj, and gx represent the strength and the toughness of the material, respectively,
and may have a very different behaviour in each component. In this case taking the limit of Ej, in the
sense of ['-convergence, corresponds to computing the effective energy of the material.

1.1. A brief literature review. The classical case of periodic homogenisation, namely where fx(z,§) =
flz/ek, &), gr(z, ¢, v) = g(x/ek, (,v), with f and g periodic in the first variable, and e, — 0+ as k — 400,
is well studied. In this case, the limit behaviour of Fj is also of free-discontinuity type, under mild
assumptions on f and g. Moreover, assuming that

algl’ < f(2,8) < co(1+1€7) and  ca(1+[¢]) < g(=,¢,v) < es(1+[C)), (1.2)

for p > 1 and constants 0 < ¢1 < ¢2,c4 < ¢5 < 400, it was proved in [11] that the I'-limit of Ey with
respect to L-convergence is obtained by the simple superposition of the limit behaviours of its volume and
surface parts. Note that in [11] it is natural to study the T-convergence of Ej in L' since the assumptions
(1.2) on f and g guarantee that sequences (uy) with bounded energy Ej are bounded in BV.

Under coercivity conditions weaker than (1.2) for f and g, however, it is not guaranteed that the volume
and surface terms do “not mix” in the limit. For example, if f and g satisfy “degenerate” coercivity
conditions, the two terms in Ej can stay separate (see [5, 13, 22]), or interact (see [4, 6, 19, 31, 32, 33])
and produce rather complex limit effects.

The case of general functionals Ej as in (1.1) with non-periodic integrands fr and gi is less studied.
In the work [25], the authors consider the case of u scalar (m = 1) and assume that fi and g satisfy
algl” < fr(@,§) < ca(1+[€]°) and  cs < gi(2,v) < o5, (1.3)
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for suitable, k-independent constants 0 < ¢1 < c2,¢4 < ¢5 < +00. Note that gr in (1.3) is independent
of ¢, which, together with the restriction m = 1, introduces lots of simplifications in the analysis. In
particular, these simplifications guarantee that sequences (uy) with bounded energy Ej are bounded in
BV, up to a truncation, and hence also in [25] it is natural to study the I'-convergence of Ej in L.
By using the abstract integral representation result in [7], it is shown in [25] that the I'-limit of E} is a
free-discontinuity functional of the same type, and that also in this case no interaction occurs between the
bulk and the surface part of the functionals in the I'-convergence process.

Therefore, the volume and surface terms decouple in the limit both in the periodic case - for vector-
valued v and with dependence of the surface densities on [u], under strong coercivity assumptions - and in
the non-periodic case - for scalar v and with no dependence on [u]. This raises the question of determining
general assumptions for fi and gr guaranteeing the decoupling.

1.2. The main result: Method of proof and comparison with previous works. In this paper we
study the I'-convergence of (1.1) in the vector-valued case (m > 1) without any periodicity assumptions,
and under the assumption that (fx) C F (see (f1)-(f4) in Definition 3.1) and (gx) C G (see (g1)-(¢g7) in
Definition 3.1). In particular, we assume that fi and g satisfy the more general growth conditions

calg]” < fu(@,8) < c:(1+1€7) and  ca < gi(z,(v) < cs(1+[C]), (1.4)
which include both (1.2) and (1.3).

We prove three main results. The first one, Theorem 3.5, is a compactness result with respect to
I-convergence. Namely, we show that for every sequence (Ey) with (fx) C F and (gx) C G there exists
a subsequence, not relabelled, such that, for every bounded open set A C R"™, Ej(-, A) I'-converges to a
functional Foo (-, A), which can be written in the form (1.1) for suitable functions foo € F and goo € G.
In the proof of Theorem 3.5 we rely on the compactness by I'-convergence in [11] and on the integral
representation in [7]. These results, however, are not applied directly to the functionals Ej, due to the
weak coercivity of g (see (1.4)), but to perturbed functionals Fj(u, A) + EfsumA [[w]|dH™, for € > 0.
Dealing with perturbed functionals introduces some technicalities, which are resolved in Lemma 4.1,
Lemma 4.2 and Theorem 5.1. These technical results are therefore not needed if g satisfies the stronger
lower bound in (1.2).

The second result, Theorem 3.8, identifies the I'-limit Fo (-, A). That is, it provides a connection
between the functions fr and gi, used to define Ej, and the functions fo and g.., which appear in the
integral representation of Fo. More precisely, set

my! (le, Qp()) = inf o ey, Vu(y))dy, (1.5)
P x
where the infimum is taken among the functions u € WP (Q,(x),R™) with u(y) = £ - y near Q,(x), and
Qp(@) ==+ (—p/2,p/2)", and

S (e o @) =0t [ gy fal(0), v (0) R ), (1.6
SuNQY ()
where the cube Q}(x) is a suitable rotation of Q,(x) (see item (1) of Section 2), and the infimum is taken
among all the functions v € SBV(Q}(x),R™) with Vu =0 L"-a.e. in Q}(z) and that near 9Q}(x) agree
with the pure-jump function ug ¢, (see item (n) of Section 2).
Roughly speaking, we show that if

1,p 1,p
mg? (Le, T mg’ (Le, z
limsuplimint TEE P@) o timsup T e Qe(®) (1.7)
p—04 k—+oo P p—0+ k—+oo pr
and
me, (tz.c.os Qp () me;, (Ua,cv, Qp(2))
lim sup lim inf —% = lim sup lim sup —=~ , (1.8)

p—04 k—too prt p—0+ koo pnt
then Ej I'-converges to Eo, the limit volume density foo(z,£) coincides with the common value in (1.7),
and the limit surface energy goo(z, ¢, v) coincides with the common value in (1.8).

This result shows, in particular, that the problems for the volume and surface integrals are decoupled
in the limit; 4.e., foo depends only on the sequence (fi), while goo depends only on the sequence (gi).
Moreover, the equalities (1.7) and (1.8) are not only sufficient for I'-convergence, but also, in some sense,
necessary: Theorem 3.9 states that if F I'-converges to E, then the limit densities can be characterised
by formulas as in (1.7) and (1.8), but where the limits in k are taken along a subsequence.

The third result (Theorem 3.11) deals with the case of (non-periodic) homogenisation, that is fi(z,£) =
f(z/ex, &) and gr(z,(,v) = g(x/ek, ¢, v) for a sequence e, — 0+ as k — +oco. In this case, for given z,



&, ¢, and v, a natural change of variables in (1.5) and (1.6) leads to consider, for every r > 0, the two
rescaled minimisation problems

L inf {/ Fy, Vu(y)dy: u € WHP(Q,(rx), R™), u(y) = £ - y near (9Qr(7‘l’)}, (1.9)
Qr(rz)

rn

and

1o / oy, [u) (), va () dH ™ (3). (1.10)
r SuNQ¥ (ra)

In the last formula, the infimum is taken among all the functions u € SBV(QY (rz),R™) with Vu = 0
L"-a.e. in QY (rz) and that near 0Qy (rz) agree with the pure jump function v = urgz,c,. (see item (n)
of Section 2). Assume that the limits as » — 0+ of the expressions in (1.9) and (1.10) exist and are
independent of z, and denote them by fhom(§) and gnom (¢, v), respectively (see (3.14) and (3.15)). Then,
we prove that for every bounded open set A C R™ the sequence Fi(-, A) with integrands f(z/ex,&) and
g(x/ek, ¢, v) T-converges to the functional Epom(-, A) with integrands fuom(£) and ghom (¢, v).

In particular, we recover the case where f(z,£) and g(x,(,v) are periodic with respect to x, which
was previously studied in [11] assuming (1.2) for g. In the forthcoming paper [12] we shall prove that,
under our more general assumptions (1.3), the existence of these limits and their independence of z can
be proved even in the more general context of stochastic homogenisation. Therefore Theorem 3.11 of
the present paper will be a key ingredient in the proof of the results on stochastic homogenisation for
free-discontinuity problems.

In this paper, unlike in [11] and [25], the natural topology for the T-convergence of FEj is not L'.
Indeed, unlike (1.2), assumption (1.4) does not guarantee a bound in BV (A,R™) for sequences (ux) with
bounded energy Ej(u,A). Moreover, unlike in the scalar case considered in [25], in the vector-valued
case an estimate for ||ug||poo(a,zm) cannot be easily obtained by a standard truncation procedure. For
these reasons, in our setting sequences (uy) with bounded energy Ej(ug, A) are, in general, not relatively
compact in L'(A,R™). Therefore, we study the I'-convergence in the larger space L°(A,R™) of all £L"-
measurable functions u: A — R™, endowed with the metrisable topology of convergence in measure.
This is the natural choice of convergence in our case: using compactness theorems for free-discontinuity
functionals, it is indeed possible to prove that sequences (ur) with equi-bounded energy Ej(ux, A) are
relatively compact in L°(A,R™), under a very weak integral bound on (uy). Therefore, I'-convergence of
(Er(-, A)) in L°(A,R™) implies convergence of the solutions of some associated minimisation problems
obtained, for instance, by adding a lower order term to Ej (see Corollary 6.1).

1.3. Outline of the paper. The paper is organised as follows. In Section 2 we fix the notation and give
the references for the background material used in the paper. In Section 3 we list the general hypotheses
on the integrands f; and g, and state our main results. We also prove that the result on homogenisation
follows, through a change of variables, from the result on the identification of the I'-limit.

In Section 4 we prove a compactness theorem for the perturbed functionals obtained by adding to
Ex(u, A) the regularising term e fSuﬁA |[u]|dH™*, which allows us to use the results of [11]. This section
contains also some technical lemmas on smooth truncations that are used throughout the paper.

In Section 5 we begin the proof of Theorem 3.5, which gives the compactness of sequences of functionals
of the form (1.1) with respect to I'-convergence. The main tool is the analysis of the limit as € — 0+ of the
T-limits of the perturbed functionals of Section 4. The conclusion of the proof is based on Theorem 5.2,
where the integrands of the functional obtained in this way are compared with (1.5) and (1.6). The proof
of this theorem is very technical and is given in Sections 7 and 8.

In Section 6 we prove the identification result for the I'-limit (Theorem 3.8) using Theorem 5.2. More-
over we show that, for some minimisation problems involving an L” (A, R™)-perturbation of the functionals
(1.1), I-convergence in L°(A, R™) implies convergence of the minimum values and, for a subsequence, con-
vergence in LP(A,R™) of the minimum points.

In Sections 7 and 8 we prove the statements of Theorem 5.2 concerning the volume and the surface
integrals, respectively.

The final section is an appendix which collects some technical results used in the paper.

2. PRELIMINARIES AND NOTATION

In this section we give a brief account of the mathematical tools that will be needed in the paper.

For the general notions on BV, SBV, and GSBV functions and their fine properties we refer to [3]
(see also [21, 28]). For u € BV, Du and D’u denote the distributional derivative of u and its singular
part with respect to the Lebesgue measure, respectively, while Vu stands for the density of the absolutely



continuous part of Du with respect to the Lebesgue measure. Vu coincides with the approximate gradient
of u, which makes sense also for u € GSBV. Moreover, S, denotes the set of approximate discontinuity
points of u, and v, the measure theoretic normal to S,. The symbols v denote the one-sided approximate
limits of u at a point of S, from the side of £u,,.

For the general theory of I'-convergence we refer to the monograph [16]. Other results on this subject
can be found in [9] and [10].

We introduce now some notation that will be used throughout the paper.

(a)
(b)

(m)
(n)

(0)

m and n are fixed positive integers, R is the set of real numbers, and Ry := R™ \ {0}.

S i={z=(21,...,2n) ER" :2f + ...+ 22 =1} and /S\i_l ={z €S"": £a,(,) > 0}, where
i(z) is the largest ¢ € {1,...,n} such that z; # 0.

L™ denotes the Lebesgue measure on R” and H" ' the (n — 1)-dimensional Hausdorff measure
on R".

</ denotes the collection of all bounded open subsets of R"; if A, B € &/, by A CC B we mean
that A is relatively compact in B.

For u € GSBV(A,R™), with A € o7, the jump of u across S, is defined by [u] := u™ —u~.

For A € &/ we define

SBVpe(A,R™) := {u € SBV(A,R™) : Vu =0 L a.e., H" ' (S.) < +oo};

it is known (see [3, Theorem 4.23]) that every uw in SBVjc(A,R™) N L*°(A,R™) is piecewise
constant in the sense of [3, Definition 4.21], namely there exists a Caccioppoli partition (E;)
of A such that u is constant £"-a.e. in each set E;. We note that same result holds for u €
SBVpe(A,R™), however this property will never be used in the paper.

For A € &/ and p > 1 we define

SBVP(A,R™) := {u € SBV(A,R™) : Vu € LP(A,R™™), H" (S.) < +00}.
For A € &/ and p > 1 we define
GSBV?(A,R™) := {u € GSBV(A,R™) : Vu € L(A,R™ ™), H"'(5,) < +oo};

it is known that GSBVP(A,R™) is a vector space and that ¢ (u) € SBVP(A,R™) N L*(A,R™)
for every u € GSBVP(A,R™) and for every ¢ € CL(R™,R™) (see, e.g., [17, page 172]).

For every £™-measurable set A C R™ let L°(A,R™) be the space of all £"-measurable functions
u: A — R™, endowed with the topology of convergence in measure on bounded subsets of A; we
observe that this topology is metrisable and separable.

For x € R™ and p > 0 we define

By(z) :={y € R" : |y — x| < p},
Qo(z) ={yeR": |(y—z)-e|<p/2 fori=1,...,n},

where | - | is the Euclidean norm in R”, ey, ..., e, is the canonical basis of R", and - denotes the
Euclidean scalar product; we omit the subscript p when p =1 (| - | denotes the absolute value in
R or the Euclidean norm in R™, R™, or R™*", depending on the context).

For every v € S"! let R, be an orthogonal nxn matrix such that R,e, = v; we assume that
the restrictions of the function v +— R, to the sets §;L:1 defined in (b) are continuous and that
R_,Q(0) = R,Q(0) for every v € S*™!; a map v — R, satisfying these properties is provided in
Example A.1 in the Appendix.

For z € R™, p >0, and v € S" ! we set

Qp(2) := RuQp(0) + =;

we omit the subscript p when p = 1.

For ¢ € R™*™, the linear function from R™ to R™ with gradient ¢ is denoted by l¢; i.e., e (z) := &z,
where x is considered as an nx1 matrix.

For z € R™, ( € RY, and v € S"~! we define the function Ug,c,v AS

_ )¢ ifly—=z)-v=0,
et ) = {0 if (y — ) v <0.

For z € R" and v € S"™!, we set

g :={yeR":y-v=0} and I, :={yeR":(y—z) -v=0}



3. STATEMENT OF THE MAIN RESULTS

Throughout the paper we fix six constants p,ci1,...,c5, with 1 < p < 400, 0 < ¢c1 < c2 < 400, 1 <3 <
400, and 0 < ¢4 < ¢5 < 400, and two nondecreasing continuous functions o1, o2: [0,+00) — [0, +00)
such that 01(0) = 02(0) = 0.

Definition 3.1 (Volume and surface integrands). Let F = F(p, c1,c2,01) be the collection of all functions
f:iR"XR™*™ — [0, +00) satisfying the following conditions:

(f1) (measurability) f is Borel measurable on R™ xR™*™;
(f2) (continuity in &) for every x € R™ we have

If(@,61) — f(z,&)| <o1(|&r — &) (1 + f(z,6) + f(x,&2))

for every &1, £ € R™*™,
(f3) (lower bound) for every z € R™ and every £ € R™*"

alél? < f(z,€);
(f4) (upper bound) for every x € R™ and every £ € R™*"
f(@,8) < ca(L+[€]7).

Let G = G(ca, c4,cs5,02) be the collection of all functions g: R"xRg' xS" ™ — [0, +00) satisfying the
following conditions:

(g1) (measurability) g is Borel measurable on R™xR{*xS™*;
(g2) (continuity in ¢) for every € R™ and every v € S"~! we have

|g($U,C27V) - g(maChy)‘ < UQ(‘Cl - C2‘)(g($,41,7/) +g({E,C2,I/))

for every (1, (2 € RG";
(g3) (estimate for |¢1| < |¢2]) for every @ € R™ and every v € S"~! we have

g(.T,Chl/) <cs g(xyC%V)

for every (1, (2 € RG" with (1] < |¢2;
(g4) (estimate for c3|¢1| < |¢2]) for every € R™ and every v € S™~! we have

g(ZC,ChI/) < g(ffy@:l/)

for every (1, ¢2 € RG* with ¢3]¢i| < |Cal;
(g5) (lower bound) for every z € R”, ¢ € R, and v € S"~!

ca < gz, G, v);
(g6) (upper bound) for every = € R™, ¢ € RJ*, and v € " !
9(z,¢,v) < es (14 [C]);
(¢7) (symmetry) for every = € R™, ¢ € RY*, and v € " !
9(z, ¢, v) = gz, —C, —v).
Remark 3.2 (Assumptions (¢3) and (g4)). Let g: R"xRJ' xS™ ™! — [0, +-00) be a function satisfying the
following “monotonicity” condition: for every z € R™ and every v € S"~*
9(@,¢1,v) < g(x, G2, v)

for every (1, 2 € Ry with [¢1] < |C2]; then it is immediate to verify that g satisfies (¢3) and (g4).
On the other hand (¢3) and (g4) are weaker than monotonicity in |¢|. For instance, the function
9(x, ¢,v) == g([¢]), with § : [0,400) — [0, +00) given by

t if t € [0, 1],
gty =4 e [%1] if te[1,cs,
é ift263,

satisfies (¢g3) and (g4), but its behaviour in [1,¢3] can be chosen quite freely, in particular it can be
nonmonotone.



Remark 3.3. We remark that assumptions (g3) and (g4) on the surface integrand g will be crucial to prove
that the functional E defined in (3.4) decreases by smooth truncations up to an error term (see (4.13)
and the proof of Lemma 4.1). We also notice that (g3) and (g4) could be omitted if assumption (g5) were
replaced by the stronger lower bound

c(L+¢) < gz, ¢,v) for every (z,¢,v) € R* x Ry* x S™! (3.1)

for some ¢ > 0 (see, e.g., the proof of [11, Lemma 3.5]). However, a lower bound as in (3.1) would rule
out, for instance, functionals of Mumford-Shah type, which we would like to cover in our analysis. For
this reason we prefer to work under the weaker growth condition (¢5) on g and under the additional
“monotonicity” assumptions (¢3) and (g4).

Given f € F and g € G, we consider the integral functionals F, G, E: L°(R", R™)x.e/ — [0, +00)
defined as

/ flz,Vu)dz ifula € GSBVP(A,R™),
otherwise in L°(R"™, R™).

F(u,A) := (3.2)

] yu)dHn_l lfulA S GSBVP(AyRm)7
G(u, A) := s mA (3:3)
otherwise in L°(R™,R™),

E(u, A) := F(u, A) + G(u, A). (3.4)
We also consider the integral functional E?: LY (R"™,R™)x.% — [0,+00], defined as the restriction of
E to LP,_(R",R™)x o/

Remark 3.4. Since [u] is reversed when the orientation of v, is reversed, the functional G is well defined
thanks to (g7).

The following compactness theorem, with respect to I'-convergence, is one of the main results of this
paper.

Theorem 3.5 (Compactness for I'-convergence). Let (fi) be a sequence in F, let (gr) be a sequence in
G, let Ey: L°(R™,R™)x.a — [0, +00] be the integral functionals defined by (3.4) corresponding to fi and
gk, and let EY: LT (R",R™)xa/ — [0,+00] be their restrictions to LY (R™ R™)x./. Then there exist a

subsequence, not relabelled, and two functions f € F and g € G such that for every A € of
Ey(-, A) T-converges to E(-, A) in L°(R™,R™),
E} (-, A) I'-converges to E” (-, A) in L} _(R",R™),

loc

where the integral functional E: L°(R™,R™)x.a — [0,400] is given by (3.4) and EP is its restriction to
L2 (R",R™)x.4.

loc

Remark 3.6 (The strongly coercive case). Theorem 3.5 above states that the class of free-discontinuity
functionals Ej, with fr € F and gr € G, is compact by I'-convergence; i.e., up to a subsequence, Ej
I-converge to a free-discontinuity functional E with integrands f and g satisfy f € F and g € G (and
similarly for its restriction to L} ). Note that if the surface integrands g satisfy the stronger coercivity
condition (3.1) uniformly in k, then the domain of the I-limit is SBVP, and the existence of a free-
discontinuity functional EP such that EY I'-converges to EP is an easy consequence of [11, Proposition
3.3] and [7, Theorem 1]. The analysis carried out in [11, 7], however, does not provide immediately the
detailed information on the regularity of the limit integrands f and g, which will be used later. Hence,
even in the coercive case the closure of the class of functionals F defined in (3.4) requires a proof.

Let X be a subspace of L°(R™,R™). For every H: X x.o/ — [0, +00], A € &, and w € L°(R",R™), we
set

my (w, A) := inf {H(u, A) : u € X, ula € WHP(A,R™), u = w near JA}, (3.5)
myy (w, A) :=inf {H(u, A) : u € X, u|la € SBV,c(4,R™), u=w near 9A}, (3.6)
mp(w, A) :=inf {H(u,A) : u € X, ula € SBVP(A,R™), u=w near A}, (3.7

with the standard convention inf @ = +o0. In all the formulas above, by “u = w near JA” we mean that
there exists a neighbourhood U of 0A in R™ such that v = w L£™-a.e. in U N A.



Let (fx) be a sequence in F and let (gx) be a sequence in G. For every k, we consider the integral
functionals Fy, G, Ey: L°(R™,R™)x.o/ — [0, 400] defined by (3.2), (3.3), and (3.4) corresponding to f
and gi. For every z € R™, £ e R™*", ¢ € RY*, and v € S"~! we define

mL? (e, Q)

/ . . .
z, &) := lim sup lim inf , 3.8
F(0.€) = tim sup i inf " (35)
1,p
maP (e, T
" (x,€) := limsup lim sup M, (3.9)
p—0+ k—+oo p"
mb (Ug,c.v, Qh(x
g (z,¢,v) := limsup lim inf G (Urc, IQP( )), (3.10)
p—04 k—+oo pr
my (Uz.c., Q4 (x
g"(z,¢,v) := limsup lim sup G (U6, @5 )) (3.11)

p—0+ k—+oo prt
Remark 3.7. Tt turns out that f', f” € F (see Lemma A.6), and ¢, ¢” € G (see Lemma A.7).
The second main result of this paper is the identification of the I'-limit.

Theorem 3.8 (Identification of the I'-limit). Let (fx), (gr), (Ex), and (EY) be as in Theorem 3.5, let
foo € F and goo € G, let E be defined as in (3.4) with foo and goo, and let EB, be its restriction to
LY (R™,R™)x/. Assume that the following equalities are satisfied:

loc

(al) for L™-a.e. x € R™ we have

fool@,&) = f'(2,8) = f"(2,€) for every € € R™™™;
(a2) for every A € @, for every u € GSBVP(A,R™), and for H" '-a.c. x € S, we have
goo(z, [U](2), vu(2)) = ¢ (2, [u](2), vu(@)) = ¢" (, [u](x), vu(2)).
Then
Ex(-, A) T-converges to Eoo(-, A) in L°(R™,R™), (3.12)
EY (-, A) I'-converges to E5 (-, A) in LY (R",R™), (3.13)

for every A € & .

The next theorem is a sort of ‘vice-versa’ of Theorem 3.8; Theorem 3.8 and Theorem 3.9 together give
an ‘almost equivalence’ between the I'-convergence of Ej and the equalities (al) and (a2). More precisely,
we have the following result.

Theorem 3.9. Let (fr), (gx), and (Ey) be as in Theorem 3.5, let foo € F and goo € G, and let E be
defined as in (3.4) with fo and goo. Assume that

Ey(-, A) D-converges to Eoo(-, A) in L°(R™,R™),

for every A € o. Then there exists a subsequence (k;) such that the following equalities are satisfied:

(al) for L™-a.e. x € R™ we have

foo(w, &) = f'(w,€) = f"(2,€)  for every & € R™™;
(gé) for every A € o, for every u € GSBVP(A,R™), and for H" '-a.c. x € S, we have
goo (, [u](2), vu(2)) = §'(x, [u](2), vu(2)) = §" (2, [u](2), vu (@),
where f', f", §' and §" are defined as in (3.8), (3.9), (3.10) and (3.11) respectively, for the subsequence
(kj)-
Remark 3.10. Theorem 3.9 does not say that f' = f” = fo and ¢’ = ¢ = goo for the original sequence.
We only have
Fef=fo=f"<f" and ¢<§=go=§"<g"

The third main result of the paper concerns the case of homogenisation, where fi(z,§) := f(z/ex,&)

and gi(x,(,v) := g(x/ex, ¢, v) for a sequence g — 0+.



Theorem 3.11 (Homogenisation). Let f € F and g € G, and let F and G be the functionals defined as
in (3.2) and (3.3), respectively. Assume that for every x € R™, £ € R™*", ¢ € RY, and v € S"™! the
limits

1,
i M@ e, (3.14)
i (e Q0D g (¢ ) (3.15)

exist and are independent of x. Then foom € F and ghom € G.
Let (ex) be a sequence of positive real numbers converging to 0, let fi, and g, be defined by

let Ex be defined as in (3.4) with fir and gk, let Enom be defined as in (3.4) with foom and ghom, and let
EY and E} = be their restrictions to LY (R",R™)x.a/. Then

loc

Ep(-, A) D-converges to Enom(-, A) in L°(R™,R™),
E} (-, A) '-converges to EY (-, A) in LY _(R",R™),

loc
for every A € o .

Arguing as in [11] (see also [10] for the volume part) one can prove that (3.14) and (3.15) are always
satisfied when f and g are periodic of period 1 with respect to the space coordinates z1,...,z,. We omit
here the proof of this property, since in [12] we shall prove that (3.14) and (3.15) are satisfied almost
surely under the natural assumptions of stochastic homogenisation, which include, in particular, the case
of deterministic periodic homogenisation.

The complete proofs of Theorems 3.5 and 3.8 require several intermediate results which will be estab-
lished in the next sections. Theorem 3.11 instead follows easily from Remark 3.7 and from Theorem 3.8
by means of a natural change of variables, as we show below.

Proof of Theorem 3.11. By Theorem 3.8 it is enough to show that

f/(‘rvé-) = f/l(:r7§) = fhom(g) and g/(f, C7 V) = g//(il»', C7 l/) = ghOIIl(<7 V) (316)

for every z € R™, £ € R™*"™, ¢ € R, and v € S"~1. Indeed, if these equalities are satisfied, then fuom € F
and ghom € G by Remark 3.7, and the I'-convergence follows from Theorem 3.8 applied with foo = fhom
and Joo = Ghom-

To prove the first equality in (3.16) we fix z € R", £ € R™*", p > 0, and kK € N. Given u €
WhP(Q,(x),R™), let ur € W'P(Q, e, (z/ek),R™) be defined by ux(z) = u(erz)/ex for every z €
Qp/e,(x/er). By the change of variables z = y/er we obtain Fi(u,Q,(x)) = epF(uk, Qp/e, (x/cr)).
Since u = f¢ near 0Q,(x) if and only if up = f¢ near 0Q,/c, (v/ex), we deduce that m}’:(é,g,Qp(x))
= e mpP(le, Qupe, (t/k)) = (0™ /1) mEP (be, Qry (ruw/p)), Where 1y, := p/ek. By applying (3.14) with «
replaced by z/p we obtain

Jim m (e, Q@) = fron(6):
By (3.8) and (3.9) this implies that f/'(z,£) = " (2,€) = faom(£).

To prove the second equality in (3.16) we fix x € R*, ( € RJ*, v € S**, p > 0, and & € N.
Given v € SBVpe(Qp(2),R™), let vy € SBVye(Qy)., (v/€k), R™) be defined by vy (z) = v(exz) for every
z € Qp e, (v/ex). Then Sy, = (1/ex)S, and, thanks to (g7), we may assume that [vk](z) = [v](ex2) for
H" '-a.e. z € Sy,. By the change of variables z = y/e), we obtain G (v, Q% (z)) = e} ' G (v, Qp e, (x/r)).
From the fact that v = g ¢, near 0Qy(z) if and only if vi = ug/c, ¢, near 0Q; ., (v/ex), we deduce
that mg, (ue,c.v, Q(2)) = €f ™ M (a/er o Qp e (@/er) = (0" /1) M (Wrafpuc.vs QY (T /p)),
where 1, := p/er. By applying (3.15) with = replaced by z/p we obtain

. 1
kEToo Fm‘éck (Uz,¢,05 Qp(2)) = Ghom (C, V)

By (3.10) and (3.11) this implies that ¢'(z,{,v) = ¢” (2, (,v) = ghom((, V). 0O



4. COMPACTNESS RESULT FOR PERTURBED FUNCTIONALS

In this section we prove a compactness result, Theorem 4.3, for the perturbed functionals obtained by
adding to Ef (u, A) the regularising term ¢ [, , [[u][dH" !, with € > 0. Theorem 4.3 will then be pivotal
to prove our main compactness result, Theorem 3.5.

In order to prove Theorem 4.3 we need some technical tools.

We start with a result (Lemma 4.1) establishing the existence of smooth truncations of u by which the
functionals F' and E “almost decrease” (see (4.12) and (4.13) below). Similar truncation results can be
found in [14, proof of Proposition 2.6] and [11, Lemma 3.5].

In what follows we use the shorthand {|u| > A} := {x € R™ : |u(z)| > A}, where u € L°(R™,R™) and
A>0.

Smooth truncations. Let ¢ € C*°(R) be fixed and such that ¢(t) = t for every t < 1, p(t) = 0 for
every ¢ > 3, while ¢(t) > 0 and |¢'(t)] < 1 for every t > 0. We define ¢ € C(R™,R™) by

_Jeliehe/Iel it ¢ # 0,
V()= {0 if ¢ =0.

Then 9(¢) = ¢ for every || < 1, ¥(¢) = 0 for every || > 3, and |¢(¢)| < 2 for every ¢ € R™. Moreover
for every n, 7 € R™ we have

Byp(C)-71 = (C-m) (C-11) & (ICN/ICI* + (=) £ (ICN/1C] = (¢ =) (- 7) (IS /IS

Let 17” and ﬁ” be the orthogonal projections of 17 and 7 onto the one-dimensional space generated by (,
and let n and 7 be the orthogonal projections of 1 and 7 onto the space orthogonal to ¢. Then

0y (Q)- 1= (") " (1) + (m-7) (ICD/1C] = (" -771) (1D /I€
= ("7 @' (1E) + (" - 7)< /1€
Since |’ (t)] < 1 and 0 < ¢(t)/t < 1 for every t € R, we obtain that
O < 0"+ I 7| < -

Since 7 is arbitrary, this implies that [9,%({)| < |n| for every n € R™. By the mean value theorem this

inequality gives [1¥(C2) — ¥(C1)] < [C2 — Gu| for every G1, Co € R,
For every A > 0 we set

U (C) = MP(C/N). (4.1)
Then ¢* € C°(R™,R™) and
() = for every ¢ € R™: [¢] < A,
[ (¢)] < 22X\ for every ¢ € R™,
() =0 for every ¢ € R™: [¢[ > 3],
[97(¢2) = ¥ () < |G = Gi| - for every ¢1,¢ € R™
From (4.2) and (4.5) it follows that
[ OI<[C| - for every ¢ € R™. (4.6)
Lemma 4.1. Letn >0 and let h € N, h > 1, be such that
c2/(c1h) <n and 2c3/h <n, (4.7)

where c1,c2, and c3 are as in Definition 3.1. Let moreover o > 3 be such that a« — 1 > c3. Given A > 0,
let A1,..., An+1 € R be such that

A1 > A (4.8)

Aiv1 > aX; fori=1,... h. (4.9)

We set jn:= Any1 and, fori=1,...,h, we define 1; := Y™, where ™ is given by (4.1). Then for every
t=1,...,h we have ¢, € C(R™,R™),

[i(Q)] < p  for every ¢ € R™, (4.10)

P () = ¢ for every ¢ € R™ with || < . (4.11)
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Moreover, the following property holds: if the function f: R"xXR™*™ — [0,400) satisfies (f1), (f3),
(f4), and the function g: R"xRy"'xS™™1 — [0, +00) satisfies (g1), (¢3), (g4), (g7), then for every u €
LY(R™,R™) and every A € of there exist i, j € {1,...,h} (depending also on f, g, u, and A) such that
F(ihi(u), A) < (1+n)F(u, A) + 2L (AN {[u| = A}), (412)
E(;(u), A) < (1 +n)E(u, A) + 2L (AN {|u] = A}), (4.13)
where F and E are as in (3.2) and (3.4), respectively.

Proof. Since a > 3, inequalities (4.10) and (4.11) follow from (4.2), (4.3), (4.8), and (4.9).

Let f, g, u, A, be as in the statement. To prove (4.12) and (4.13) it is enough to consider the case
ula € GSBVP(A,R™). For every i = 1,...,h let v; := v;(u). Then v; = u L™-a.e. in {|Ju| < A\;} by (4.2)
and v; = 0 L™-a.e. in {|u] > Aiy1} by (4.4) and (4.9). Moreover (4.5) gives |Vv;| < |Vu| L™-a.e. in A.
Therefore (f3), (f4), (4.8), and (4.9) yield

F(vi, A) < flz, Vu)dz + oL (AN {Ju| > Xit1}) +62/ |Vul? dz
An{lul<A;} An{r;<|u|<Aiq1}

/ flz,Vu)dz + c2 LM (AN {|u] > A}) + f(z, Vu) dz. (4.14)
An{X;<lul<Xit1}
Since
Z foudx</fa:Vu
AN{\;<Ju|<Xip1}
there exists i € {1,...,h} such that
f(z,Vu)dr < = /fou
An{N;<Jul<Xi41}
By (4.14) this implies
F(os, A) < (14 2 ) F(u, A) + 2L (AN {Jul 2 A}),
c1
which gives (4.12) thanks to (4.7).
To estimate G(vi, A) we use the inclusion Sy, C Sy N ({Jut| < Aiz1} U {|Ju"| < Aiz1}). Moreover,
thanks to (¢g7), we can choose the orientation of v,, so that v,, = v, H" '-a.e. in S,,. This leads to
= ¢i(u®) H" -a.e. in S,,. By (4.5) this implies that
[[vi]] < |[u]] H" '-a.e. on S,,. (4.15)
Therefore we have

G(vi, A) < / g(z, [u],ve) dH" ' + /s g(x, [vi], ) dH™ 1 +/S gz, [vi], vu) dH™ 1

SunAN{|ut <X IN{|u™ <A} J SuNAN{A; <|ut|[<Xip1} wNAN{N <|u=[<Aip1}
+ / g(x, [vi], ) dH™ 1 + / g(x, [vi], ) dH™ . (4.16)
SunAn{lut|ZX; 1 In{lu™ <A} SunAn{lut <X 3n{lu~[2Xi41}

For H" '-a.e. point of {|ut| > Aiy1} N {Ju”| < A} we have [v;] = —u~, hence |[v;]| < \;, while (4.9)
implies that

W]l = Ju® =™ | > | = Ju7| > A1 = X > (@ = DA > eshi,
hence cs|[vi]| < |[u]|- By (g4) this implies

gz, vil,va) < g(, [u],ve) H" '-ae.on  {Jul] > Nipi} N {u| < A}

The same inequality holds H™ *-a.e. on {|u™| < A} N {|u~| > Ait1}. Therefore, from (4.15), (4.16), and
(93) we obtain

G(vi, A) < / gz, [u], vy) dH™ " + 03/ gz, [u], v,) dH" " + 03/ gz, [u], va) dH™ . (4.17)
SuNA SuNAN{A;<|ut|<Xif1} SuNAN{N; <|u=|<Aj11}
Since

i ( f(z,Vu)dz + 03/3 g(z, [u], vu) dH™ T+ 03/3 g(z, [u], vu) d?—["fl)

i—1 AN{X; <|u\<M+1} wNAN{A; <|ut|<Xip1} wNAN{A; <|u™|<Xip1}

<@ / f(z, Vi) dee + 2¢3 / o, [u], v) A,
C1 /A SunA
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there exists j € {1,...,h} such that

Fa, V) de + e / o, [, va) dH* ™ + s / o, [u], ) A
S S.

€1 JAn{n;<|ul<Ajp1} WNAN{A;<|ut|<Xjp1} WNAN{A;<|u=[<Aj41}

< / f(z,Vu)dr + ) g(x, [u], vu) dH" . (4.18)
C1h h SuNA

Inequality (4.13) follows then from (4.7), (4.14), (4.17), and (4.18). O

C2

The estimate in the previous lemma can be extended to the I'-liminf, as the following result shows.

Lemma 4.2. Let fi and gi be as in Theorem 3.5, let Ey be as in (3.4), with integrands fr and g,
and let EY be the restriction of Ey to LY (R™,R™). Finally, let E': L°(R™",R™)x& — [0,+oc] and
E™: LPOC(R" R™)xa/ — [0, +00] be defined as

E'(-,A) = F—lkiﬂxgEk(-,A) and E"(-,A) := r_hmme;;(-,A),

where for E' we use the topology of L°(R™,R™), while for E'* we use the topology of LY. (R™,R™). Under

the assumptions of Lemma 4.1 the following property holds: for every u € L°(R™,R™), v € LY (R™,R™)
and A € o, there exist 7, j € {1,...,h} (depending also on u, v, and A) such that

E'(¢i(u), A) < (L +0)E'(u, A) + c2L™ (AN {Ju] > A}), (4.19)

EP(¢5(u), A) < (1+m)E" (u, A) + c2L™ (AN {Ju] > A}). (4.20)

Proof. Let w € L°(R™,R™) and A € & be fixed. Let (ux) be a sequence in L°(R™,R™) converging to u
in measure on bounded sets and such that

E'(u, A) = liminf Ex (ug, A).

k—+

There exists a subsequence (ux;) such that
E"(’u,7 A) = JHEIOO Ekj (ukj,A). (4.21)

By Lemma 4.1 for every j there exists i; € {1,...,h} such that
Ekj (";Z)l] (ukj )7 A) < (1 + W)Ekj (ukj ) A) + CQL"(A N {‘ukj | > )‘})
Therefore there exist 7 € {1,...,h} and a sequence jp — 400 such that i;, = 7 for every £. This implies
that
j (dji(ukje)? A)<(1+ n)Ekje (uka A+ CQﬁn(A n {Iukje | > )‘})
Since uk;, — u and w (u;C ,) = ¥i(u) in measure on bounded sets, taking the limit as £ — +oo and using
(4.21) we obtam (4.19). The same argument, with obvious changes, also proves (4.20). O

We are now ready to prove the I'-convergence of the perturbed functionals E;*, which are defined on

LY (R",R™)x.a/ — [0,+00] by

loc

/fk x, Vu) dm+/ 2z, [u], v)dH™ ™" ifula € SBVP(A,R™),
somA (4.22)

+00 otherwise in LY (R™,R™),

B (u

where

gx (2, ¢, v) = gr(z, ¢, v) +¢[C]. (4.23)
Theorem 4.3. Under the assumptions of Theorem 3.5, for every € > 0 there exist a subsequence, not
relabelled, and a functional E=P: LY (R",R™)xa — [0,400] such that for every A € o the sequence

loc
EJP(-, A) defined in (4.22) T-converges to ESP(-, A) in LY (R",R™). Let f*P: R*"xR™*"™ — [0, +00] and

loc

g=P: R"XRE* xS™ ™ — [0, +-00] be the functions defined by

£ (a.6) = limsup w (4.24)

g P (z,¢,v) = limsup mEE,p(uI’C’Vl’ Q,,(:U))'
p—0+ P
Then fP € F, g°P satisfies (g1), (¢3), (g4), and (g7), with c3 replaced by é3 := max{ca2/c1,c3}, and

/ 1% (z, Vu) dz +/ g° (x, [u], vy)dH" " if ula € SBVP(A,R™),
SunA
“+oo otherwise in LY (R"™,R™),

(4.25)

E°P(u, A) (4.26)
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for every A € o .

Proof. For fixed € > 0 by (f3), (f4), (4.23), (¢5), and (g6), for every A € &7, we have

q/ \vu|1’dx+/ (ca + el [l ) dH" ! < B (u, A)
A

W

< CQ/ (14 [Vul) do + (cs + a)/ (14 |[u])dH" (4.27)
A SunA
if ula € SBVP(A,R™), while ESP(u, A) = +oo if ula ¢ SBVP(A,R™).

Since the functionals E}? satisfy all assumptions of [11, Proposition 3.3], there exist a subsequence, not
relabelled, and a functional EP: LT (R™,R™)x. — [0,4o00] such that for every A € &/ the sequence
E;*(-, A) T-converges to E*P(-, A) in LP(A,R™).

Let ®°: LY (R™,R™)x % — [0, 400] be defined by

loc

cl/ |vu|de+/ (ca + elfull)dH™™ if ula € SBVP(A,R™),
A SuNA

&7 (u, A) = (4.28)

+00 otherwise.

Since ®°(-, A) is lower semicontinuous in L (R™,R™) (see [1, Theorems 2.2 and 3.7] or [2, Theorem 4.5

and Remark 4.6]), from (4.27) we deduce that for every u € L (R™,R™) and every A € & it holds

loc

cl/ |Vul? d +/ (ca +5|[u]\)d7—[”71 < EP(u, A)
A SunA

< 02/A (1 + |Vul?) dz 4 (cs5 + s)/s ) (1 + |[u]])dH"™ (4.29)

if ula € SBVP(A,R™), while E*P(u, A) = 400 if ula ¢ SBVP(A,R™).
In order to apply the integral representation result [7, Theorem 1] we need a functional defined on
SBVP (R™,R™)x.. Since E*P(u, A) is not defined in SBV_(R™,R™)\ L (R™,R™), we now introduce

loc loc loc

the functional E°: SBV? (R",R™)x.a/ — [0,+00) defined by
E*(u,A) := lim E“P(u,A), (4.30)
A—+oo

where v := ¥*(u) and ¢* is as in (4.1).

Step 1: E° is well defined and E° = E*? on (SBVY (R®,R™) N LY (R",R™)) x &/. We start by
proving that E° is well defined; i.e., that the limit in (4.30) exists. We prove it by contradiction. Namely,
if the limit in (4.30) does not exist we can find v € SBVY _(R",R™), A € &, a < b, \; = +oo, and
p5 — 400 such that

ESP(w,A)>b and E“P(u"i,A) < a. (4.31)
Fix 0, h, o as in Lemma 4.1, with (1 + n)a + n < b. By possibly removing a finite number of terms in
these sequences, it is not restrictive to assume that
LM (AN {Jul > Ai}) <, (4.32)
and that A;11 > aX; for ¢ = 1,...,h. Then by Lemma 4.2 for every j there exists ¢; € {1,...,h} such
that
ESP (i (w7), A) < (L4 n)E7P(u", A) + e L7 (AN {[u" ] = \1}), (4.33)
where, here and below, we use the shorthand 1, for 9**. Therefore there exist i € {1,...,h} and a
sequence j; — +oo such that ij, = i for every £. Since u'J¢ — u in measure on bounded sets we have
that limsup, L™ (AN {Jutie] > A}) < L"(AN{Ju| > A1}). Moreover 9;(u"e) — ;3 (u) in L (R™,R™) as
£ — 4o00. By the lower semicontinuity of the I'-limits, from (4.33) we obtain

E*P(¢i(u), A) < (1 +n) limsup E°P (u*e, A) + co L™ (AN {|u| > M}). (4.34)
L—~+oco

By (4.31) and (4.32) this implies that
b < EZ"($i(u), A) < (1 +n)a+mn,

which contradicts the inequality (1 4+ n)a +n < b and hence yields the existence of the limit in (4.30).
We note that (4.30) and (4.34) imply that, under the assumptions of Lemma 4.1, for every u €
SBVP (R™,R™) and every A € «, there exists 2 € {1,...,h} such that

loc
EZP(¢i(u), A) < (14 n)E°(u, A) + 2L (AN {[u = A1}). (4.35)
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We now show that

E°(u,A) = E¥"(u, A) VY (u,A) € (SBV?

loc

(R™,R™) N LP

PR™,R™)) x . (4.36)
Fix u and 4; since u* — w in L¥, (R",R™) as A — +o0 by (4.2) and (4.6), by the lower semicontinuity of
the I'-limits we have

E®P(u, A) < liminf ESP(u*, A) = E°(u, A).

A—+oco
To prove the opposite inequality we fix 1, h, and « as in Lemma 4.1 and we consider a sequence (A;),
i = 400 as i — +oo, such that \;11 > a); for every i. We now apply Lemma 4.2 to Ait1,..., Ai+n and
obtain that for every i there exists j; € {¢ +1,...,%+ h} such that

B (M, A) < (14 1) B (u, A) + LA N {Ju] > Ai}),
Taking the limit as ¢ — 400, by (4.30) we get
E*(u, A) < (14 n)E~? (u, A),
and taking the limit as n — 04 we obtain
Ef(u, A) < E%P(u, A),
which concludes the proof of (4.36).

Step 2: Lower semicontinuity of E° with respect to the strong convergence in Li .. For fixed A € o we
now prove that E°(-, A) is lower semicontinuous on SBV?_(R™,R™) with respect to the strong convergence
in Lig(R™,R™). Let us fix u € SBV}?_(R™,R™) and a sequence (ux) in SBV}”_(R™,R™) converging to u in
Li . (R™,R™) and such that limy, E°(ux, A) exists. Let n, h, o, and (\;) be as in the previous step. We now
apply (4.35) to Ait1, ..., \itn and obtain that for every i and every k there exists j;x € {i+1,...,i+ h}
such that

B (1, (), A) < (14 m)E* (un, A) + 2L (A 0 {Jun] > Ad}).
For every i there exist N; € {i +1,...,7+ h} and sequence k! — +o00 as £ — +oo E such that ji’k;; =N;

(R™,R™) as ¢ — —+o00, by the lower semicontinuity

for every £. Since ¥n;, (uki) converges to ¥y, (u) in L}

of the I'-limits we obtain
B (i, (u), A) < lim inf B (i, (1), A)
L—+oo } £
<(1+4+mn) lim E*(ugi, A) + c2 L™ (AN {Ju| > \i})
£L—+oco [4
= () lim B (ur, A) + ea£7 (AN {fu] = A},

Taking the limit first as ¢ — +o0o and then as n — 0+, from (4.30) and from the previous inequalities we
obtain
Ef(u,A) < lim Ef(ug, A),
k—4o0

which proves the lower semicontinuity of E(-, A).

Step 8: Integral representation of ESP. By [11, Proposition 3.3] for every u € SBVP (R",R™) N
L} (R™,R™)) the function A — E*?(u, A) is the restriction to &/ of a measure defined on the o-algebra
of all Borel subsets of R". By (4.29) and (4.30), this implies that for every v € SBVP_(R",R™) the
function A — E°(u, A) is the restriction to 2 of a measure defined on the Borel o-algebra of R™ (see,
e.g., [20, Théoreme 5.7]).

It follows from the definition that E*? is local; i.e., if u, v € L (R",R™), A € &/, and u = v L -a.e.
in A, then E€?(u, A) = E*P(v, A). By (4.30), this property immediately extends to E¢; i.e., for every u,
v e SBVP (R",R™), A € o, with u=v L"-a.e. in A, we have E°(u, A) = E*(u, A). Moreover, by (4.5)

we have |[Vut| < |Vu| L™-a.e. in A and |[u*]] < |[u]| H" *-a.e. in S,a N A C S, N A. Taking into account
the lower semicontinuity of ®° defined in (4.28), these inequalities, together with (4.29) and (4.30), yield

cl/ [Vul? der/ (ca +5|[u]\)d7—[”71 < Ef(u, A)
A SunA

<o [ (V) doteore) [ (1 [

wNA

for every u € SBV_(R",R™) and every A € «/.

Therefore E°P satisfies all the assumptions of the integral representation result [7, Theorem 1]. Con-
sequently, using also (4.36), for every u € SBVY_(R",R™) N LY (R™,R™) and every A € &/ we have the

loc

integral representation (4.26) with f©? and ¢g°=? defined by (4.24) and (4.25). Indeed, it is easy to deduce



14

from (3.7), (4.2), (4.30), and (4.36) that for every z € R™, £ € R™*", ( € RJ*, v € S"7*, and p > 0 we
have

mger(le, Qp(z)) = inf {E°(u, Qp(x)) : u € SBVE,

loc

mEs,p(um,(,w QZ(I?)) = inf {Es(u,Q:(:c)) Tu € SBVP

loc

(R™,R™), u = £¢ near 0Q,(x)},
(R™,R™), 4 = Uq,,, near 0Q,(x)},

which coincide with the definitions used in [7]. By locality and inner regularity, formula (4.26) holds also
for every u € LY (R",R™) and every A € &/ such that u|4a € SBVP(A,R™).

loc

The Borel measurability of f©” and ¢ are then proved in Lemma A.5.

Step 4: fSF satisfies (f2), (f3) and (f4). We now show that fP satisfies (f2). Since (f2) holds for
fr, for every A € o7 we have

P (utLe, A) < B (u, A) + o1 ([E) (£7(A) + EpP (u+ le, A) + E P (u, A))

for every £ € R™*™ and for every u € LY _(R",R™). We have

loc
(L= or(|ENE" (u+ Le, A) < (14 o (IE) EL? (u, A) + a1 (IE) L (A), (4.37)
thus if o1 (]€]) < 1 taking the I'-limit gives
(1= o(IEN)E""(u + L, A) < (14 o1(IE))E™" (u, A) + o1 (€))L (A).
This implies that

(1= o1(I&2 = &) me= v (ley, Qp(2)) < (1 + 01(|€2 — &u])) mpewr (Ley, Qp(2)) + 01 (€2 — &a[)p"  (4.38)

for every p >0, z € R", and &, & € R™*™ with 01(|¢2 — &1]) < 1. Dividing by p™ and taking the limsup
as p — 0+ we obtain from (4.24) and (4.38)

(L=o1(l&2 = &D)f7P(@,&2) < (1 + o1(]62 — &) 77 (2, &) + o1 (/82 — &)
which implies
o0, &) < 0@, 60) + o (&2 — &)+ f7P (@, 61) + 7P (2, 62))-
This inequality is trivial if o1(|¢2 — &1]) > 1. Exchanging the roles of & and & we obtain (f2) for 7.
Let us prove that f©? satisfies (f3). By (4.27) for every u € LY (R™,R™) and every A € o/ we have that
EDP(u, A) > ®°(u, A) for every k, where ®° is defined by (4.28). Since ®°(-, A) is lower semicontinuous
in LY (R™ R™), this inequality is preserved in the I'-limit and hence we get

loc
E*P(u, A) > ®°(u, A) (4.39)
for every u € LP (R™,R™) and every A € &.

loc

Let ¢°: R"xR™*"™ — [0, +00] be defined by

¢ (z,€) := limsup M. (4.40)
p—0+ p"
Note that, by translation invariance, ¢°(z,&) = ¢°(0,&) for every x € R™ and every £ € R™*™. We can
now apply the integral representation result [7, Theorem 1] to ®° and, taking u = f¢ and A = Q(0), we
obtain

cIlE” = (b, Q(0)) = /Q WOl = 0.9 =0

for every x € R™ and every £ € R™*". Together with (4.24), (4.39), and (4.40), this gives the lower bound
(f3) for f=P.

To prove the upper bound (f4), we observe that E;(€e, Qp(z)) < ca(l + [€]P)p" for every z € R™,
& € R™™ p >0 and k. This implies that E*P (e, Q,(z)) < c2(1 + [€]P)p™, hence mper (e, Qp(z)) <
c2(1+1€JP)p™. The upper bound (f4) for f=? follows from (4.24).

Step 5: ¢°P satisfies (93), (g4) and (g7). To prove (g3) we fix (1, (2 € Ry, with |¢1| < |¢2], and a
rotation R on R™ such that aR{> = (1, where a := [(1|/|¢2] < 1. Since fi and gi (see (4.23)) satisfy (f3),
(f4), and (g3), for every A € &/ and every u € LY (R",R™), with ula € SBVP(A,R™), we have

loc

E;"(aRu, A) = / fr(z,aRVu) dx +/ gi(x, aR[u), v, )dH" !
A s

wNA

< e2L™(A) + / Vul? dz + ¢ / 65 (@, [u], va) A
A S

wNA

< el (A)+ 2 / file, Vu) de + e / 62 (@, [ul, v )dH" .
C1 Ja SunA
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Passing to the I-limit, we obtain E°?(aRu, A) < c2L"(A) + é3E*P(u, A), with és = max{cz/c1, c3}. This
implies that mpe.r (Us,arcs,v, Q5 () < c2p™ + esmper (Us,cyw, Q4 (7)) for every x € R™, v € S"™', and
p > 0. Since aR(2 = (1, using (4.25) we obtain ¢*?(z, (1,v) < é3 ¢°P(z, (2, v), which proves (g3), with cs
replaced by ¢s.

To prove (g4) we fix (1, (2 € R*, with é3]¢1] < |(2], and a rotation R on R™ such that aR¢> = (1, where
a := |C1|/|¢2| < 1/és < 1. Since fx and gj satisfy (f3), (f4), and (g4), the inequalities cza < éza < 1
imply that for every A € & and every v € LY (R",R™), with u|a € SBV?(A4,R™), we have

loc

E;?(aRu, A) = / fr(z,aRVu) dx +/ gi(x, aR[u), v, )dH" "
A s

wNA

< e L™(A)+ CQap/ |VulP dx +/ gi(x, [u], vy )dH" !
A s

wNA
coa?

< CQ[,”(A) +

/ fiu(z, Vu) dz + / gi(x, [u], v )dH"
C1 A SuNA

Since a < 1 and ésa < 1, we have c2a”/c1 < cza/c1 < ésa < 1. Therefore E;P(aRu, A) < c2L™(A) +
E;P(u, A). Passing to the I'-limit, we obtain E®?(aRu, A) < c2L"(A) + E*P(u, A). This implies that
mper (Us,aRcsws Q5 (T)) < c2p™ + mper (Ve Q(x)) for every z € R”, v € S"7', and p > 0. Since
aR(> = (1, using (4.25) we obtain ¢%"(z, (1,v) < ¢°P(z, (2,v), which proves (g4), with c3 replaced by és.

To prove the symmetry condition (g7) for g>'?, we observe that ug, —¢,—» = Ua,c,» — ¢ for every z € R™,
¢ € Ry, and v € S"'. Therefore u € SBV?(Q4(x),R™) N LP(Q%(z),R™) satisfies u = ua,—¢,—y in
a neighbourhood of 9Q} () if and only if u = v — ¢ for some v € SBV?(Q}(z),R™) N LP(Q}(x),R™)
satisfying v = ug¢,. in a neighbourhood of 0Q}(x). Since Q,"(xz) = Qj(x) by (k) in Section 2, it
follows that mge.r (ue,—¢,—v, Q, " (%)) = mEer (Us, ¢, Qp(x)). By (4.25) this implies that g% (z,(,v) =
g°P(x,—(, —v), which proves (g7) for g=?. O

5. PROOF OF THE COMPACTNESS RESULT

In this section we begin the proof of the compactness result with respect to I'-convergence, Theorem 3.5.
We start with the following perturbation result, which, together with Theorem 4.3, provides a slightly
weaker version of Theorem 3.5. Indeed it does not establish that the surface integrand ¢°, defined in (5.2)
below, satisfies properties (¢92), (¢5), and (g6).

Theorem 5.1 (Perturbation result). Under the hypotheses of Theorem 3.5, let D be a countable subset
of (0, +00) with 0 € D. Assume that for every € € D there exists a functional E?: LY (R™ R™)xo/ —
[0, +00] such that for every A € o the sequence E7(-, A) defined in (4.22) I'-converges to E<P(-, A) in
LP _(R™,R™). Let f=P and g°P be the functions defined by (4.24) and (4.25), and let fO: R™"xR™*™ —

loc

[0, 4+00] and ¢°: R™*xRy*xS™ ™ — [0, +00] be the functions defined by

F(@,€) o= inf f7(2,€) = lim f(,), (5.1)
eeD
9" (@, ¢ v) = inf g"P(x,Cv) = lim g7 (¢, v). (5.2)
eeD

Then f° € F and ¢° satisfies (g1), (g3), (94), and (g7), with c3 replaced by é3 := max{ca/c1,cs}.
Let E° and Ey be as in (3.4), with f and g replaced by f° and ¢° and by fr and g, respectively, and
let E°? and E? be the corresponding restrictions to LY (R™,R™)x /. Then

loc
Ey(-, A) D-converges to E°(-, A) in L°(R™,R™),
EP(-, A) T-converges to E”?(-, A) in LY, (R™,R™),

loc

for every A € o .

Proof. By Theorem 4.3 E*? can be written in integral form as in (4.26), where f©7 and ¢g®? are defined
by (4.24) and (4.25) and satisfy (f1)-(f4) and (g1), (93), (94), (7). It follows from (4.24) and (4.25) that
ferP < fe2P and ¢°tP < ¢g*2P for 0 < g1 < e3.

Properties (f1)-(f4) for f° and properties (g1), (¢3), (94), (¢7) for g° follow from (5.1) and (5.2) and
from the corresponding properties for f*? and g*".

By the Monotone Convergence Theorem we have

0,p 1 £,p
E"P(u,A) = Egr(i+E (u, A) (5.3)
=S

for every A € &7 and every u € LY (R",R™) with ula € SBVP(A,R™).

loc
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Let E', E": L°(R™,R™)x.%7 — [0, +o0] and E’P, E"P: L2, _(R™,R™)x.27 — [0, +00] be defined by

loc

E'(-,A) :=I-liminf Ey(-,A) and E"(-,A) := F-lIiCIEJSruDEk(vA),

k—+o00

E®(-,A) :=T-liminf EY (-, A) and E"?(-,A) :=T-limsup E}(, A),
k—+o0 k—+oco
where for E' and E” we use the topology of L°(R™,R™), while for E’? and E"P we use the topology of
L;foc (Rn? Rm ) :
Then for every u € LY (R",R™) and for every € € D we have E" (u, A) < E"P(u, A) < E*P(u, A), thus
by (5.3)
E"(u, A) < E"(u, A) < E”"(u, A) = E°(u, A) (5.4)
for every A € o and u € L} (R",R™) with ula € SBVP(A,R™).
We claim that
E%(u, A) = E*P(u, A) < E'(u, A) < E'P(u, A) (5.5)
for every A € o and every u € L™(R™,R™). Let us fix A and u. The inequality E'(u, A) < E"?(u, A) is
trivial. By I'-convergence there exists a sequence (ux) converging to u in L°(R™, R™) such that

E'(u, A) = liminf By, (ug, A). (5.6)
k—+oco

Let us fix A > ||lu||poo(rn,rm) and € > 0. By Lemma 4.1 there exist p > A, independent of k, and a
sequence (vy) C L (R™,R™), converging to u in measure on bounded sets, such that for every k we have

[vkllLoo ®n,rm) < 1, (5.7)
vg =ur  L"-ae. in {Jur| < A}, (5.8)
Er(vi, A) < (1 +€)Ex(uk, A) + c2L™ (AN {Juk| > A}). (5.9)
It follows from (5.7) that vy — w also in LY (R™,R™). If Ej(uk, A) < o0, by (f3), (¢5), and (5.9) the

function vy belongs to GSBVP(A,R™) and

H* (S, NA) < (1/ca)(1 4 &) Eg(ug, A) + (c2/ca) L™ (AN {|ur| > A}). (5.10)

By (4.22) and (5.7) this implies that
EpP (vg, A) < Eg(vg, A) + 2epH" ' (S, N A),
which, in its turn, by (5.9) and (5.10), leads to
Ef7 (e, A) < (1+2)(1+ (2ea/ea) B (ur, A) + e2(1 + (2ep/e0) £ (AN {Jur] > A}).
Clearly this inequality holds also when FEj(ur, A) = +oo. Therefore, using (5.6) and the inequality
[lw]| Loo (m, Rm) < A, by I'-convergence we get
B (u, 4) < (14 &)(1 + (22p/ca) E' (u, A)

for every € € D. By (5.3), passing to the limit as ¢ — 0+ we obtain (5.5) whenever v € L*(R",R™).
We now prove that

E"(u,A) < E°(u, A) for every u € L°(R",R™) and every A € .o7. (5.11)
Let us fix v and A. It is enough to prove the inequality when u|a € GSBVP(A,R™). By Lemma 4.1 for
every £ > 0 and for every integer k > 1 there exists ui € L (R",R™), with ug|a € SBVP(A,R™), such
that up = u L"-a.e. in {|u] < k} and
E%ur, A) < (14 ¢)E°(u, A) + c2L™ (AN {|u] > k}).
By (5.4) we have E” (uy, A) < E°(uy, A), hence
E" (ug, A) < (1 + €)E°(u, A) + c2 L™ (AN {|u| > k}).

Since uxr — u in measure on bounded sets, passing to the limit as £k — 400, by the lower semicontinuity
of the I'-limsup we deduce

E"(u,A) < (14 ¢)E°(u, A).
Hence letting & — 0+ we obtain (5.11). The same proof shows that

E'""(u, A) < E”P(u, A) for every u € L”, (R",R™) and every A € /. (5.12)

loc

We now prove that
E°(u,A) < E'(u, A) for every u € L°(R",R™) and every A € <. (5.13)
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Let us fix uw and A. It is enough to prove the inequality when u|a € GSBVP(A,R™), since otherwise
E’(u, A) = 400 due to the lower bounds (f3) and (g5). By Lemma 4.2 for every € > 0 and every integer
k > 1 there exists ur € L (R",R™), with ux|a € SBVP(A,R™), such that up = u L"-a.e. in {|u] < k},
uf =u® H" lae. in S, N {|u| <k}, and

E'(u, A) < (1 +e)E' (u, A) + c2 L™ (AN {|u| > k}).
By (5.5) we have E°(ug, A) < E’(ux, A), hence

@ Vuydo+ [ g v a7 < E i, A) < (14 OB (u, ) + 2L (AN {lu] 2 K.
AN{Jul<k} SunAn{|ut|<k}n{lu-|<k}

As k — +o0o we get

B ) = [ e Vudet [ g ) a7 < (14 9F (w,A),
A SunA
and as ¢ — 0+ we obtain (5.13). Since E'(u, A) < E'P(u, A) for every u € LY (R",R™), from (5.13) we
also get
E%P(u, A) < E"(u, A) for every u € LF, (R",R™) and every A € <. (5.14)

The T-convergence of Ej(-, A) to E°(-, A) in L°(R™,R™) follows from (5.11) and (5.13), while the
I-convergence of E¥(-, A) to E%?(-, A) in LF (R™,R™) follows from (5.12) and (5.14). a

loc

To conclude the proof of Theorem 3.5 and to prepare the proof of Theorem 3.8, we now establish some
relations between the functions f° and ¢° introduced in Theorem 5.1 and the functions f’, f”, ¢, and g"”
defined in (3.8)-(3.11).

Theorem 5.2. Under the assumptions of Theorems 8.5 and 5.1, let f° and g° be defined by (5.1) and
(5.2) and let f', f", g’, and g" be defined by (3.8)-(3.11). Then
a) for every x € R™ and every &€ € R™*™ we have f°(x,&) < f'(x,€);
b) for L™-a.c. x € R™ we have f"(x,£) < fO(x,€) for every € € R™X™;
c) for every x € R™, every ¢ € RY", and every v € S™ " we have ¢°(x,¢,v) < ¢'(x,¢,v);
d) for every A € & and every uw € GSBVP(A,R™) we have
", @), (@) < 6 @), @) (515)
for H" t-a.e. x € S, N A.

(
(
(

The proof of Theorem 5.2 is postponed to Sections 7 and 8.

Remark 5.3. Since by definition f < f” and ¢’ < g”, Theorem 5.2 implies that for £"-a.e. z € R™ we have
f(x,€) = f'(x,6) = Oz, &) for every &€ € R™ ™, and that for every A € & and every u € GSBVF(A,R™)

we have
g' (@, [u](x), vu(x)) = g" (x, [u)(2), vu(x)) = ¢° (=, [u](z), vu(2)),
for H" t-a.e. z € Sy, N A.

Appealing to Theorem 5.2 we can now conclude the proof of the compactness result, Theorem 3.5.

Proof of Theorem 8.5. By combining Theorem 4.3 and a diagonal argument, we obtain a subsequence,
not relabelled, and, for every € € D, a functional E*?: [P (R" R™)x« — [0,+0o], such that for every

loc

A € o the sequence E;” (-, A) I'-converges in L}, (R",R™) to E*?(-, A) for every ¢ € D. By Theorem 5.1

loc

Ey(-, A) D-converges to E°(-, A) in L°(R™,R™) for every A € &7, and E° can be written as

E°(u, A) = / 2z, Vu) dz + / ¢ (x, [u], vu) dH" 1,
A SunA

where f° and ¢° are defined as in (5.1) and (5.2) (note that f° and ¢g° depend on the chosen subsequence).
Note that f° € F, but ¢° only satisfies (g1), (¢93), (g4), and (g7), with cs replaced by ¢é; := max{c2/c1, c3}.
To conclude the proof it remains to show that there exists g € G, possibly different from ¢°, such that E°
can still be represented as in (3.4) using f° and g.

Let now g’ be defined as in (3.10) (note that also this function depends on the chosen subsequence).
We can now apply Theorem 5.2 and Remark 5.3 to obtain

0 = O(z, Vu) dz Oz, [ul], va n—1
E(u,A>—Af<,V>d+/S ¢ (@ [u], vi) dH

WNA
— [ P@vodes [ g )
A SuNA

Since g’ € G by Lemma A.7, the theorem is proved. O
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6. IDENTIFICATION OF THE I'-LIMIT AND RELATED RESULTS

In this section we prove Theorem 3.8 using Theorem 5.2, which will be proved in Sections 7 and 8. We
also prove a result on the convergence of minimisers.

Proof of Theorem 8.8. To prove that (al) and (a2) imply (3.12), we observe that, by the Urysohn property
of T-convergence [16, Proposition 8.3], the sequence Ex(-, A) T-converges to Feo(-, A) in L°(R™,R™) for
every A € & if and only if for every A € & every subsequence of Ej(-, A) has a sub-subsequence I'-
converging to Eo (-, A) in L°(R™,R™).

Let D be a countable subset of (0,+00) with 0 € D. By Theorem 4.3, using a diagonal argument,
for every subsequence of (Ex) we obtain a sub-subsequence (E%;) which satisfies the assumptions of
Theorem 5.1. Let f°, g°, and E° be defined as in Theorem 5.1, corresponding to the subsequence (E; ).
Then Ej (-, A) T-converges to E°(-, A) for every A € &/. Thus, proving (3.12) is equivalent to showing
that

E°(u, A) = Eoo(u, A) for every u € L°(R",R™) and every A € . (6.1)

Let f', f”,§,§" be the functions defined as in (3.8)-(3.11), corresponding to the subsequences F}.; and
Gy » Since

PEP<f/<f and ¢ <5 <g"<g"
equalities (al) give
fool@, &) = f(2,6) = [ (x,€) for L -a.e. z € R™ and every £ € R™*™,
while (a2) implies that for every A € & and every u € GSBVF?(A,R™) we have
goo (@, [u] (), vu(2)) = §'(z, [u)(2), vu(x)) = §" (x, [u](x), vu(2))

for H" l-ae. z €5, N A.
By Theorem 5.2 and Remark 5.3 we have

Oz, 6) = f(x,€) = f'(x,€) for L™a.e. z € R" and every £ € R™*",
[ dae = [ Feunae = [ g )
SunA SunA SunA

for every A € o/ and every u € GSBVFP(A,R™).
Therefore

(2, 8) = foolz, €) for L™-ae. z € R™ and every £ € R™*",
/ G (x, [u], vy)dH" " = / Goo (@, [u], v )dH" "
SuNA SunNA

for every A € o/ and every u € GSBVP(A,R™). By the definition of E. this implies (6.1), and hence
(3.12).
The same arguments also give (3.13). O

The proof of Theorem 3.9 follows by similar arguments.

Proof of Theorem 3.9. Let D be a countable subset of (0, +00) with 0 € D, and for every € € D let (E;7)
be the perturbed functionals defined in (4.22). By Theorem 4.3, using a diagonal argument, we can obtain
a subsequence (Ei;p ) and a functional E*? such that for every € € D and every A € &/ the subsequence

E,i;p(-,A) I-converges to E<P(-, A). Let f©7 and §°? be the functions defined by (4.24) and (4.25) for
E*?_ and let f°, §° be defined as in Theorem 5.1. Then by Theorem 5.2
P8 =Fa.&=71"¢
for L™-a.e. x € R"™ and every £ € R™*", and
3 (@, [u)(2), vu(@)) = §'(x, [u] (), va(2)) = §" (2, [u] (@), vu(2))

for every A € &, for every u € GSBVP(A,R™), and for H" '-a.e. = € S,, where f’, f”, g’, and §”
are defined by (3.8)-(3.11), relative to the subsequence (Ej;). By Theorem 3.8 we then conclude that
Ey; (-, A) T-converge in LY(R™,R™), as j — +o0, to the functional

/ fo(w, Vu)dz + / g’ (z, [u], vu) A"t
A SunA
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for every A € @. Since Ej(-, A) I'-converge to Feo(-, A) by assumption, and hence so does Ej;, we
conclude that for £L"-a.e. x € R" we have

fool(2,€) = f'(2,6) = f'(2,€) for every £ € R™",
and
9oo (2, [u](2), vu(2)) = §' (2, [u](2), vu(2)) = §" (2, [u](2), vu (@),
for every A € o7, for every u € GSBVP(A,R™), and for H" '-a.e. x € S,,. O

We now show that Theorem 3.8 implies the convergence of the solutions to some minimisation problems
involving Ej. Other minimisation problems can be treated in a similar way.

Corollary 6.1 (Convergence of minimisers). Under the hypotheses of Theorem 3.5, assume that conditions
(3.12) and (3.13) of Theorem 3.8 are satisfied for some A € o7, and let h € LP(A,R™). Then

H g p s P p
e (PO 0= ) i (P20 0= 10n) (62

as k — 4o00. Moreover, if (ux) is a sequence in L?(A,R™) such that

B (ur, A) + |lue — hHiIJ(A,Rm) < (Ei(% A)+ flv - h”ZL),P(A,]R"")) + ek (6.3)

inf
vELP(AR™)
for some e, — 0+, then there exists a subsequence of (ux) which converges in LP(A,R™) to a solution of
the minimisation problem
; P P

somin (B )+ o = Bl ) (6.4)
Proof. Let us fix a sequence (ex) of positive numbers, with e, — 0+, and let (ux) be a sequence in
LP(A,R™) satisfying (6.3). By the lower bounds (f3) and (g5) we have that uix € GSBVFP(A,R™) and
we can apply [3, Theorem 4.36] to deduce that there exist a subsequence of (uy), not relabelled, and a
function v € GSBV?(A,R™) such that uy — w in L°(4,R™) and L"-a.e. in A. Hence by the Fatou
Lemma we deduce that

o Bl oy < B s — B2 (6.5)
This inequality, combined with the fact that (6.3) also ensures that supy, ||ux||Lr(a,zm) < +00, immediately
gives u € LP(A,R™).
Let us extend us by setting ux = u on R™ \ A. Since Ej(-, A) T-converge to Ewo (-, A) in L°(R™, R™),
we have
EZ (u,A) = Foo(u, A) < lklglilgof Ei(uk, A) = liminf E} (uk, A).

k—+oo

This inequality, together with (6.3) and (6.5), gives
BB (u, A) + |l = B}y oy < liminf (B (e, A) + [[us = hll g )

I ) o
=mint it (BE0 A+ o= Bl ) (6:)

Let us fix w € LP(A,R™), that we can extend to a function w € L}, (R",R™). By (3.13) we can find
a sequence (wg) in LY (R™,R™) such that

loc
(R",R™) and lim E}(wg,A) = E% (w,A),

k—+oo

wi —w in LY

hence

li inf (Ep A AT m)<
ﬁiﬂfwﬁ&mm) k(v A) + v IZpamm) ) <

< tim (Bp(we, A) + lwe = Bll7pq mom) ) = B, A) + o = BlEy 4 my (67)

T ka4

Gathering (6.6) and (6.7) gives

P P H 3 : P P
B2 (u, A) + [[u = Bl gy < limind inf (BRw, 4) o = Bl p))

. . D D P p
<timsup ot (LA o= W) € P04+ 0= B

Since this holds for every w € LP(A,R™), we deduce that u is a solution of the minimisation problem
(6.4).
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Taking w = w in the previous chain of inequalities gives (6.2) for the subsequence selected at the
beginning of the proof. Since the limit does not depend on the subsequence, (6.2) holds for the whole
sequence (EY). O

7. PROOF OF THEOREM 5.2 (a) AND (b)
We start by proving the inequality f© < f'.

Proof of Theorem 5.2 (a). Fixx € R", £ € R™*" p>0,and e € DN(0,1), where D is as in Theorem 5.1.
By (3.5) for every k there exists vy, € L°(R™,R™), with VklQ,(z) € WhP(Q,(x),R™), such that v, — ¢ €
W5 ?(Qp(x),R™) and

B (vk, Qp(2)) = Fi(vk, Qp(w)) < mgl (L, Qp()) +p". (7.1)

Let k; be a strictly increasing sequence of integers such that
i BE (o, Q@) = im inf BE7 (v, @ (2).
From (f3), (f4), and (7.1) we obtain
IVl g oy gy < (€21 [€17) + )"

By the Poincaré Inequality we deduce that the sequence (vy) is bounded in W7 (Q,(x),R™). Therefore,
up to a subsequence, vy — v weakly in W'?(Q,(z),R™) for some v € W'P(Q,(x),R™) such that
v —Le € WP (Qp(x), R™). Let wy, w € WP (R™,R™) be defined by

loc

wy, = Uk %n QZ(:c), and wi=1" %n QZ(:E)’ (7.2)
Le  in R™\ Qp(z), L in R™\ Qp(x).

By the Rellich Theorem wy, — w in LY. _(R™ R™), hence

loc
52 (1, Qy (@) < im inf F5? (i, @ () = lim nf BE (v, Q ()
by the I'-convergence of E (-, Q,(z)) to ESP(-,Q,(x)). Using this inequality, together with (f4), (7.1),
and (7.2), we get
meer(le, Quie)p(7)) < E7(w, Qp(x)) + c2(1+ [§°)((1 + )" —1)p"
< limint BZ” (0, @p(@)) + en2" " ea(1+ [€7)p"
—r+00

< liminfmp? (e, Qp(x)) + eCep™
k—+oo k

where Cg¢ := 1+ n2" e (14 |€[7). Dividing by p™ and taking the limsup as p — 04, we obtain from (3.8)
and (4.24)

€, ,e e
(14+¢&)"foP(z,€) = limsup M= ( 5’%(1-'- )p(T))
p—0+ p

mi? (b, Qp())

+eCe = f'(x,€) + eCk.

< lim sup lim inf
p—04 k—+oo

Letting &€ — 04, from (5.1) we obtain that f°(z,&) < f'(x,€). O
We now prove (b). Namely, we show that f” < f°.

Proof of Theorem 5.2 (b). In view of Lemma A.6 we have f” € F, while by Theorem 5.1 f° € F, hence
in particular f° and f” are continuous with respect to & by (f2). Therefore it is enough to prove that for
every £ € R™*™ we have f'(x,£) < fO(x, &) for L™-a.e. x € R™.

We may assume that the set D considered in Theorem 5.1 is contained in (0,1). Let us fix £ € R™*".
Since for every € € D

E*P(be, A) = / foP(z,&)dx  for every A € o, (7.3)
A
by the Lebesgue Differentiation Theorem for every € € D and for £"-a.e. x € R" we have

e, M = 157 (2,) < ea(1 + [E7), (74)

where the last inequality follows from the fact that f€? € F by Theorem 4.3.
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Let © € R™ be fixed and such that (7.4) holds for every € € D. It follows that for every e € D there
exists po(e) € (0, 1) such that
E*P(Le,
Q) < o+ 1¢p) (75)
for every 0 < p < po(e).
Let € € D be fixed. Since E;?(-,Q(z)) I'-converge to E“P(-,Q(x)) in LY

loc
(ur) C LY (R™,R™), with ug|g) € SBVP(Q(x), R™) N LP(Q(x),R™), such that

ug — b in LY (R",R™) and khT Ep" (uk, Q(z)) = ESP(Le, Q(x)). (7.6)
—r+00

(R™,R™), there exists

loc

By (7.3) we have B“7(fe, Q(x)) = E*"(fe, Qu()) + E°"(fe, Q(x) \ () for all p € (0,1). By I-
convergence we have also

liminf E{ (uk, Q,(x)) > E¥P (le, Q,(x))

k—4o0
tim nf B (e, Q) \ @, (¢) > B (£, Q) \ @, (x).
From these inequalities and from (7.6) it follows that
Jim B (un, Qp () = BYF (6, Qp(x):
— 400

This yields the existence of ko(g, p) > 0 such that |E®P(le, Qp(z)) — EpP (uk, Qp(xz))| < ep™ whenever
k > ko(g, p), hence
E " (ur, Qp(w) _ E7P(le, Qp(w))
p" p"
In the remaining part of the proof we modify the sequence (ux) to construct a competitor for the
minimisation problem m};:(ﬁg,Qp(a:)), which appears in the definition of f”’. To this end, for every

y € Q := Q(0) we set

+e. (7.7)

up(y) = I (),

L, ) == fu(z + py,-).

Note that uf € SBV?(Q,R™) N LP(Q,R™) and f} € F.
We fix A > [£|v/n/2 and h, «, 91,...,¢n, and u as in Lemma 4.1 with n = . By (4.12) for every k
there exists ir € {1,...,h} such that

F(i(ug), Q) < (1 + ) F (uf, Q) + c2L™(Q N {[ug] = A}), (7.8)
where FY is defined as in (3.2), with f replaced by ff.
We define
vg, = i (ug)- (7.9)

Then vy = uf in Q N{|uf| < A} and |vf] < pin Q. Since ur — f¢ in LP(Q,(z),R™), we have uf — l¢
in LP(Q,R™), and since |[l¢| < |¢{[v/n/2 < A in Q, it follows that v} — {¢ in LP(Q,R™) and that
LM(QN{Jul] > A}) — 0 as k — +oo. Therefore, there exist k1 (e, p) > ko(e, p) such that

lvg — Lellrormy <p and  L™(QN{|uf| > A}) <p for every k > ki(e, p). (7.10)
Using (f3), (g5), (7.8)-(7.10), and a change of variables we obtain the two following estimates
1+e¢
01/ [Vop (y)[Pdy < / fr(@ 4 py, Vop(y)dy < —— [ fily, Vur(y))dy + c2p, (7.11)
Q Q P JQp(@)
n— n— 1 £ n—
(S, 1Q) < SN (S 1 Qo)) < o [ gy, fund v AR (7.12)
P k P P S0, NQp(x)

for every k > ki(e, p), where g, is defined in (4.23).
From (7.5), (7.7), and (7.12), we deduce that there exists M > 0, independent of k, p, and €, such that

IVoRllLo@emxny <M and H" (S, N Q) < Mp, (7.13)

whenever € € D, 0 < p < po(e), and k > ki (e, p). Since |[vf]| < 2p H™ '-a.e. on Sye by (7.9), from (7.13)
we obtain also that
|D*v2|(Q) < 2uMp. (7.14)
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We now regularise v{ in order to obtain a function wf € W?(Q,R™) such that
[ ot o Vs < [ filat p Vof))dy + ¢
Q Q
for a suitable choice of p and k. We follow the procedure introduced in [29, Lemma 2.1], which we now

illustrate in detail for the readers’ convenience.

Step 1: Regularisation of vf. Let t > 0; we define the sets

\Dv |(Br(y))
L(Br(y))

t
Shi= Sy U{yeQ: IVl = 5 ).

For every k, by the Vitali Covering Lemma (see, e.g., [21, Section 1.5.1]), there exists a sequence of disjoint
closed balls B, (y;) C Q, with centres y; in Q \ R}, such that

|Dog|(Bry(y;))
L(Br,(y;))

Rt::{ €Q: <t for every r > 0 with B, (y) CQ}

>t forevery j and Q\ R}, C U Bsr,(y;)- (7.15)
j=1
Hence

e ( G Bii(y)) = tzﬁ" r () < Z | Do |(Br(y;)) = | Dvf| (G B(y)).  (7.16)

j=1 Jj=1

On the other hand

01U Bow)) = 1D1(5E0 U B + IDof1((@\ 86
j=1 Jj=1

8

) (7.17)

We are going to estimate the two terms in the right-hand side of (7.17) separately. We observe that

pul(@\sn | B, _/ votldy < Lo () Botun)- 7.18
| Uk‘( AR U y] ) (Q\S,ﬁ)ﬁu_?ilBrj(yj)‘ vk| V= 2 (]L:Jl ](yj)) ( )
y (7.16) we have, using also (7.17) and (7.18),
1" (U Brwn) < IDefl (880 U Brlon)) + 5.2 (U Brw))-
j=1 j=1 j=1
This implies that
. oo 2 ) . oo
£ (U Bow)) < S10vl (sin U BLw). (7.19)
j=1 Jj=1

By (7.15) and (7.19) we have

Mg
NG

LQ\RY) < 3 L" (B, () = 5" Zc (Bry(w) = 5"£" (U Bry(w))

1

j=1

JBo) < 25 (10°2g1(@) + /Sz Vofdy)

25" 1 i 1
(|D oI(Q) + ( / Vo) (£ (5) ) (7.20)
st
Now, by the definition of Sf and by (7.13) we have that

crsh(3) < /S [Vof [Py < M
k

oo

[\3 .
Il

IN

2l (Sk

| /\

whenever ¢ € D, 0 < p < po(e), and k > ki(e,p). It then follows that £"(Sf) < 2P MP/t*, which,
combined with (7.13) and (7.20), gives

2:5" £ o 5 op— 1Pl 2.5 2”5”M"
£ @\ R < 2 (10°1(@) (/ wuglray) " E M) < 2 pragyg) + ZEAME

tp—1 tp

Hence we can conclude that

tPLM(Q\ Ry) < 2:5™" 71 D*0P|(Q) + 275" M” (7.21)
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whenever € € D, 0 < p < po(e), and k > ki(e, p).

Now we choose tx,, > 0 such that tz;’l\DSvZ\(Q) = 1. By (7.14) this implies

1 1
T > ,
Be T DsoR|(Q) T 2uMp

whenever € € D, 0 < p < po(€), and k > ki(g, p). Then, from (7.21) we obtain
0 L7(Q\ RF) < 25" + 275" MP =: M,

which gives in particular that

t M
LMQ\RS) < tz—l < Msp', (7.22)
v
with ¢ :=p/(p— 1) and Mz := M (2uM)?.
By [21, Section 3.1.1 (Theorem 1) and Section 6.6.2 (Claim #2 of Theorem 2)] there exist a constant
¢n, depending only on n, and Lipschitz functions 2] on @, with Lipschitz constant bounded by cntx,p,

such that that z{ = v) L"-a.e. in RZ"”J. Note that, since |vf| < p L"-a.e. in @, it is not restrictive to
assume that |zf| < p in Q. By (7.13) and (7.22) we have also

AJVﬁV@mséva¢v@+fﬁ@¢%Q\RﬁﬂgAﬂ+th
k

Therefore the sequence (zf)y is bounded in W?(Q,R™).
By (3.9) there exists a decreasing sequence p; — 0+, with 0 < p; < po(e), such that

f'(2,€) = lim_limsup —=mb (6, Q,, (@)). (7.23)

J=+%0 g too P]

By applying [24, Lemma 1.2] to the double sequence (z;?); ) we find a double sequence (w};?); ) in
WP(Q,R™) such that |Vij |? is equi-integrable, uniformly with respect to j and k, and

LM{w)? #27}) =0 ask+j— +oo.

Note that, since |z;?| < p in @, it is not restrictive to assume that |w}’| < pu L"-a.e. in Q. By (7.10)
and (7.22) these properties imply that for every j there exists ka2(e,j) > ki(eg, p;) such that for every
k > ka(e, j) we have

L"({wy # v} < Map?  and lwy — €ellpe@rm) < pj +4uM21/pp§/p =:7rj. (7.24)

Moreover,

/ fr(@ + piy, Vwy’ (y))dy < / fr(@ + piy, Vo2 (y))dy + / fr(@ + pjy, Vwy’ (y))dy.
Q Q {

wyl £z, }
By the equi-integrability of \szj |P, by the upper bound (f4), and by (7.24) we can conclude that for
every € € D there exists jo(e), with p;, ) < po(e), such that
[ et Vul )y <
J J
{wy” #2,7}
for every j > jo(e) and every k, hence

/Q fr(@ + pjy, Vwy? (y))dy < /Q fr(@+ pjy, Vv° (y))dy + <, (7.25)

for every j > jo(e) and every k > ka(e, j).

Step 2: Attainment of the boundary datum. We now modify ij so that it attains the linear boundary
datum /¢, which appears in the definition of f”(z, ). To this end, we will apply the Fundamental Estimate
to the functionals F’ corresponding to the integrands f,’ (y,-) := fi(z + p;y,-). Let Qi—- := Q1—-(0).
By [16, Theorem 19.1] there exists a constant C. > 0 and a finite family of cut-off functions (p;)1<i<n C
C2(Q), with 0 < ¢; <1in @ and ¢; = 1 in Q1—., such that

F]fj (w:j> ) < (1 +€)(F:j (w:J7Q) + Flfj(Z&Q\@l—a)) +05szj - eﬁ“ip(@) + e,

where W}’ := Pig s wy? 4+ (1 — @iy, ; /e for a suitable i ; € {1,..., N}. Clearly W}’ attains the boundary
datum £¢ in a neighbourhood of 9Q). Since L™(Q \ Q1—<) < ne, by (f4) and (7.24) it follows that

FP(@}7,Q) < (1+e)F (wy?, Q) + (1 + e)nca(1+ [¢[7) + Cer? + <. (7.26)
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Combining (7.7), (7.11), (7.25), and (7.26), and setting Be := 7 + 2ncz2(1 + |£|P), we have the bound
2 E7P (b, Qp, (7))

Pj

lim sup/ fe(z + piy, V' (y))dy < (1 +¢) + Bee + Cerl) + 2c2pj, (7.27)
Q

k—+o0o

whenever € € D, j > jo(e), and k > ka(e, j).
Finally, we perform a change of variables in order to relate the left-hand side of (7.27) with the
minimisation problems on Q,; (z), appearing in (7.23). For y € Q,, (z), define

~Pi ~ P — T
5 () = py 0 (L) + te(a).
Py
Clearly @,” € W"?(Q,,(x)), B’ = le in a neighbourhood of 8Q,, (x), and
;i 1 o 1
[ it o Ve @y = o [ @V ) dy > S mi (1, Q@)
Q Pi™ JQp,; (=) Pj
Therefore, from (7.27) we conclude that

1 ESP(le, Q,. (z
lim sup Tm}?’: (¢e, Qp; () <1+ 5)2M + Bee + Cer? + 2c2p;.

k—+oo Pj Pi
Since r; — 0 by (7.24), taking the limit as j — 400, by (7.4) and (7.23) we obtain the estimate

F(@,6) < (142)" [P (2,€) + Bee
for every e € D. Taking the limit as ¢ — 0+, from (5.1) we obtain f”(z,€) < f°(z, €). O

8. PROOF OF THEOREM 5.2 (¢) AND (d)
We start by proving the inequality ¢° < ¢’.

Proof of Theorem 5.2 (c). Fix x € R, ( € R*, v € S" % p > 0, and ¢ € DN (0,1), where D is as
in Theorem 5.1. By the definition of mg; , for every k there exists ux € L°(R™,R™), with uk|Qu(a) €
SBVpe(Q)(x),R™), such that ug = us ¢, in a neighbourhood of 9Q}(z) and

G (ur, Qp () < m, (us,cv, Qp (@) +p" . (8.1)
Now fix A > [¢] and h, «, ¥1,...,%n, and p as in Lemma 4.1. Then by (4.13) for every k there exists
ir € {1,...,h} such that
Ex(iy(ur), Qp(x)) < (1 + &) Bi(ur, Qp(2)) + c2L™(Q (x) N {|ur| = A}).

By (4.10) and (4.11) we have t;,(ux) = ue ¢, in a neighbourhood of 9Q} (x) and [¢;, (ux)| < p in R™.
Moreover, the chain rule gives V(1;, (u)) = 0 L™-a.e. in Q},(z). Therefore the functions vy defined as

= 1/%(%) ?n QE(:C) , (82)
Uz, e in R™\ Qp(x)
satisfy vi|a € SBV,c(A,R™) for every A € 7.
By definition we also have
log] < p in R™. (8.3)
Since vy, = vu, and, by (4.5), |[vr]| < |[ux]| H" '-ae. in Sy, N QY (x) C Su, N Q%(z), by using (g3),
(¢g5), and (g6) we get
caH" (S, NQY(2)) < Grlvk, Q(x)) < 3G (uk, Q) (x)).
Therefore, appealing to (8.1) we conclude that for every k
H' (S N Qp(x)) < Mcp™™, (8.4)
where M := cs(es(1+|C]) +1)/ca.

Since v € SBV,e(Q)(x),R™), by combining (8.3) and (8.4) we can invoke [3, Theorem 4.8] to deduce
the existence of a function v € SBV,(Q(x),R™) N L>(Qy(x),R™) and a subsequence, not relabelled,
such that vy — v in L2(Q%(z),R™). We extend v to R™ by setting v = ua.¢,, in R™\ Q(z) and observe
that v|a € SBVpo(A,R™) for every A € o/. By the definitions of v, and v and by (8.3), the convergence
in L°(Q%(z),R™) also implies that

vy — v in LY (R",R™), (8.5)

loc

[v]| <p L"-ae. in R™. (8.6)
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Since U‘Ql(jl+s)p(z) € SBVuo(Qi4e),(2),R™) and v = ug¢,v in Q140),(2) \ @y (), we have

mEs’p(u%C,W Qzlles)p(x)) < Ea’p(va QzllJra)p(x))' (87)
Using the I'-convergence of ;" (-, Q(11.),(7)) to E=P(-, Q(14.,(z)) in Li, (R™,R™), we deduce from (8.5)

that
E9(0, Q. (+) < limind B (01 Q0 (@),

Since v = ug,¢,, in a neighbourhood of dQ%(z), we have H" ' (S, N IQ4(x)) = 0. Therefore, from
(8.2) and (8.4) we obtain

H" (S, N Qi) (@)

where N¢ := M¢ + 2n~1 By (4.22) and

EE, (U’W Q(1+€)p(z)) < Ek(vkv Q(1+5)p( )) + 2€#ngn—1. (88)

Gathering (f4), (¢6), (8.1)-(8.2), and (8.8

By (ks Qi16)(2)) < Eg(vi, Q) (2)

< (L+e)Be(ur, Qp(@) + (1 +2")c2p™ + Gr(ua g v, Q<1+s)p(fﬂ) \ @, (2)) + 2euNep™™

< (1 +e)Grlur, @y (x)) + (3 +2")e2p™ +e(Ce + 2uNe)p" ™

< (1 ) MBS (s @4(2)) + (3 + 2")eap” + 22+ C + 3uNe)

)< Mp" 4 (L+2)" = 1)p" < Nep™ ™,
(

8. 3) this inequality leads to the estimate

we obtain

+ B (ta.¢.v, Qlr+0)p(2) \ @ (2)) + 2epNep" ™

—

where C¢ := c5(1 + [¢])(n — 1)2"72. This inequality, together with (8.7)-(8.8), gives

mpger (U, ¢w, Qli+e)p(2)) < (1+ e) liminfme; (ue.cv, Qp(2)) + (3 +2%)c2p™ + eKep" ™,

where K¢ := 2+ C¢ + 2uNe¢. Hence dividing by p" ', taking the limsup as p — 04, and recalling (3.10)
and (4.25), we obtain

(L+e)" g™ (x,¢,v) < (L+e)g (2, ¢ v) + eKe.
Eventually, by taking the limit as ¢ — 0+ and appealing to (5.2) we get

9°(x,¢,v) < g'(x,¢,v),
which concludes the proof. O

We are now ready to conclude the proof of Theorem 5.2.

Proof of Theorem 5.2 (d). We divide the proof into several intermediate steps. In the first four steps we
prove the claimed inequality for functions v which belong to SBV?(A,R™)NL>(A,R™), while the general
case of functions in GSBVP(A,R™) is treated in Step 5.

We may assume that the set D introduced in Theorem 5.1 is contained in (0,1). Let A € &7, u €
SBVP(A,R™)NL*(A,R™), and € € D be fixed. For every x € R"™ and every p > 0 we set

v,e P Pyn—1 EpP EP

o= R((- )" (- 505)) (39)
where R, is the orthogonal matrix introduced in (k) Section 2. We fix € S, such that, by setting
¢ := [u](z) and v := vy (x), we have

¢#0, (8.10)
1
lim —/ u(y) — g, (y)|Pdy = 0, 8.11
S e L ) e (.11)
. ETP(u, Qpf (2))
£,p _ ) XPp
g (13, C? V) - ﬂg%l+ pn,1 . (812)

Note that (8.10) and (8.11) are satisfied for H" '-a.e. x € S, (see, e.g., [3, Definition 3.67 and The-
orem 3.78]). The same property holds for (8.12), thanks to a generalized version of the Besicovitch
Differentiation Theorem (see [30] and [23, Sections 1.2.1-1.2.2]).
We extend u to R™ by setting v = 0 on R™ \ A. By the I'-convergence of E;”(-, A) to E°P(-, A) there
exists a sequence (uy) converging to w in L} (R"™,R™) such that
lim E;"(uk, A) = E5"(u, A).

k—+oo
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Since E°F(u,-) is a finite Radon measure, we have that E*%(u,0Q,°(x)) = 0 for all p > 0 such that

v (x) C A, except for a countable set. As a consequence (ug) is a recovery sequence for E<7(u, -) also
in Qy¢(x); i.e.,

lim Ep?(uk,Qy(x)) = EP(u, Q)¢ (x)), (8.13)

k—+oco
for all p > 0 except for a countable set.
We now fix A > max{||u||poc®n gm), ||} and h, a, ¥1,...,%n, and p as in Lemma 4.1. We also fix p
satisfying (8.13). By (4.13) for every k there exists ix, € {1,...,h} such that

ERP (i (un), Qp° () < (1+ ) Ep? (uk, Q% (7)) 4+ c2L™(Qp " () N {|uk| = A}).
Let vy := i, (ux). By (4.10) and (4.11) we deduce that vy — u in L _(R™,R™) as well as

loc

lvg| < p in R™, llichsrup EJP(vr, Q% (2)) < (14 e)E*P(u, Q) ° (x)).
—+00

Hence there exists ko(p) > 0 such that whenever k > ko(p)
ESP ok, Q% (7)) < (1+ )BT (u, Q% (x)) + p". (8.14)

We now start a multi-step modification of vx in order to obtain a function zx which is an admissible
competitor in the k-th minimisation problem defining g”(z, ¢, ).

Step 1. Attainment of the boundary datum for a blow-up of ux. The blow-up function v at = is defined
by

vp(y) == vz +py) fory € Q7 := QY(0).
We now modify vf so that it agrees with ug,¢, in a neighbourhood of 9Q"°. To this end, we consider
the class @7 (Q"°) == {A € & : A C QV°} and apply the Fundamental Estimate to the functionals
Eb: (SBVP(Q™,R™) N LP(QV*,R™)) x.o (Q"°) — [0, +00) defined as

Wﬂwﬂ:Aﬁw+wﬂmmw+L di (@ + oy [0]@), @AM ), (8.15)

wNA
where g is defined in (4.23).
Let K. C Q”° be a compact set such that
e2L™(QV\ Ke) + (es(1+[¢]) +el¢)) H" (g N (Q"°\ K2)) <. (8.16)

We can appeal to [11, Proposition 3.1] to deduce the existence of a constant M. > 0 and a finite family
of cut-off functions ¢1,...,¢n € C°(Q"F) such that 0 < ¢; < 1 in Q°, ¢; = 1 in a neighbourhood of
K., and

Egp (07, Q7%) < (L+ ) (B (v, Q) + Bij(uo.c., Q7 \ Ke))

+ Mc|lvy — uoc.v |Z£P(QVvE,Rm) +e, (8.17)
where 0 1= ¢, v) + (1 — ¢, )uo,c,» for a suitable i, € {1,...,N}. Clearly
gl <p i Qe (3.18)
and 9} = uo,¢,, in a neighbourhood of 9Q"°. By (f4) and (g6) we have that
Byt (o, Q°\Ke) = [ frlz+ py,0)dy + / gi(x + py, ¢, v)dH" " (y)
QYE\K¢ gN(QY=\Ke)

< eLM(QVF\Ke) + (es(L+[C]) +el¢) ™I N (QVF\ Ke)) <,
where the last inequality follows from (8.16). Since vy — u in LP(Qy°(x),R™), it follows that
W) =w@+p) = ulz+p) in LP(Q",R™) as k — +oo. (8.19)
Hence, from (8.17) and (8.19) we have

limsup B (5, Q") < (1+<) (lim sup B3 (0, Q) + <)
—+o0

k—+oco

+ Me|lu(z +p-) = wo,c.o (7o (guie mmy + € (8.20)

Step 2. Estimate for V,. We now show that V9} is small in LP-norm for k large and p small. By the
definition of 94 we have
||v{)£||Lp(Qu,€’Rm><n) S qufhk HLOO(QV’E,R") H’UZ — UO’C’VHLP(QV,SJR"L)
+ i Nl oo (@v o) VORI Lo (@uoe mmxn) (8:21)

S CEHUZ — U’O,C;VHLP(Q”’E,R"L) —|— ||V'U£||Lp(Qu,€’Rm,><n),
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for a suitable constant C. > 0. We now estimate separately the two terms in the right-hand side of (8.21).
As for the first term, note that by (8.19) we can find ki1(p) > ko(p) such that

[vi () —u(@+ p)llLr(@uerm) < p for &k =>Fki(p).
Hence from (8.11) we deduce that for k > k1(p)
g — wo,collr(@ve mm)
< oR() = ul@ + po)llee e mmy + lu@ + p-) = uo.cw()llr@re mm) < wilp), (8:22)

where wi (p) is independent of k and w1 (p) — 0 as p — 0+.
For the second term in (8.21), by the definition of v{, (f3), and the positivity of g, we have that

p—n
[owray=p [ wapa <2 [ g Vo
e QpF (@) @ oyt

p—1
<? ( L per ) (8.23)
c1 p"
By (8.12) there exists po > 0 such that E=P(u, Q4 (x))/p" " < ¢°"(z,(,v) + 1 for every 0 < p < po.

g
Therefore, for every 0 < p < po satisfying (8.13) there exits k2(p) > ki(p) such that
1 € v,e €
F Ek’p(ulﬁ pr (J])) <g »P(x, C? V) + 15

for every k > kz2(p). This inequality, together with (8.23), gives
P!
[ 1wetldy < (g @ 6.v) + ) (8:24)
v,e 1

for every k > ka2(p). Finally, putting together (8.21), (8.22), and (8.24) yields
V0Ll e (@uie rmxny < w2(p) (8.25)

for every 0 < p < po satisfying (8.13) and every k > kz(p), where wz(p) is independent of k and wz(p) — 0
as p — 0+.

Step 3. Modification of v to make it piecewise constant. On account of estimate (8.25), we now further
modify 0 using the same construction as in [11, page 332]. Let (1,...,{m be the coordinates of . By
(8.10) for every 0 < p < po satisfying (8.13) there exists an integer N, > 0, with 2,/m/N, < p and
1/N, < |¢i| for every ¢ with (; # 0, such that,

N, — 400 and w2(p) N, -0+ as p— 0+. (8.26)

Note that, by (8.18), we have |07 < 2u — (1/N,) in Q"°. Let 9y ,...,7;,, be the coordinates of ¥y.
Since oy, ; € SBV(Q"*) for i = 1,...,m, by the Coarea Formula the set {0 ;, >t} has finite perimeter in
QV* for L'-a.e. t € R and

2u

[ Vit day = |Daf @\ Sp) = [ W@\ S 9o, > 1)),
Qv —2u
where 0" denotes the reduced boundary in Q"¢

To simplify the exposition we assume that p is an integer. From the Mean Value Theorem, for every
integer £, with —2N,u < £ < 2N, p, there exists t; € R, with £/N, <t; < ((+1)/N,, such that {07 ; > i}
has finite perimeter in Q"¢ and

2Npp—1
1 n— v,e * (A 7
[itday= g > W@\ Sy oL, > 1), (8.27)
Qve P g=—2N pH

We now define
Zp = {ye@"": ty < 6151(3/) < tfe+1},
and note that Z; has finite perimeter in Q. Moreover, since 07| < 2u — (1/N,) in @, the sets Zj,
—2N,u < £ < 2N, pu, form a partition of Q°.
We finally define the piecewise constant function wg Q" = Ras

0 if ) <0<th,
wZ,¢|Ze =14G if 6, <G < t§+17
ty otherwise.
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Note that wy ; is well defined, since |{;| > 1/N, when (; # 0, and therefore in this case 0 and {; cannot
belong to the same interval [t}, {,,). Moreover, wf ; € SBV,.(Q"°) since each set Z; has finite perimeter.

Then the function wy := (wy ;,...,wy ) belongs to SBV,c(Q",R™).

We now claim that for every 0 < p < po satisfying (8.13) and for every k > k2(p) the following

properties hold:

wy = up,¢,, in a neighbourhood of 9Q"*,

N 2y/m
llwg — UZ”LOO(Q":E,RM) < N < W,
P

”’LUZHLOO(QV,QRm) <2u,
H"*l((swz \ Sﬁz) n QV,E) S w3(p)’

where ws3(p) is independent of k and ws(p) — 0+ as p — 0+.

(8.28)
(8.29)

(8.30)

(8.31)

Property (8.28) follows from the definition of wy. As for (8.29) we just note that |[wy ; =0y ;[|Leo(qv.e) =
maxy |lwy ; — '{),’;iHLOO(Z;) < 2/N,. Inequality (8.30) follows from (8.18) and (8.29). To prove (8.31) we
observe that, up to %"~ !-negligible sets, Sy C Ui U 0*Z¢, and since Z} = {op., > i\ {on,; > thia}, it

follows that 8*Z; C 9* {07, > tiyu o {on, > ty11}, and hence

m 2Npu—1

Sen@ecl) U @, >urn™).

i=14=—2Nyp

This inclusion implies that, by (8.25) and (8.27),

m  Npr—1
H T (Sup \Sep) Q™) <D0 D0 1T ((QU\ Sip) N {af, > 1))
i=10=—Np\

<mN, [ |Vifldy < mN,[Vifllua que,mnen < wi(p)
Qe

where w3 (p) := mwa(p)N, — 0+ as p — 0+ by (8.26).

Step 4. Conclusion of the proof for bounded functions. We first note that by (8.15) and (8.20) we have

k—+oo

lim sup/ gk (@ + py, [0F)(y), vap (4))dH" " (y)
sﬁz nQv:e

<(1+¢) (limsup EP (g, Q7°) + 6) + Mellu(z + p-) = wo,c.o ()T o (guie gmy T €

k—+oco

Further, by (f4) and (8.24), we can control the volume integral in (8.32) as follows:

p—1
fi(@ + py, Vol (y))dy < ez / (U Vo P)dy < e (e + P (6" (@.C,v) + 1)

Qve Qvie

for every 0 < p < po satisfying (8.13) and every k > k2(p).
By (8.15), this inequality and (8.32) imply in particular that

timsup [ giat o o)), v )N )
S{];: nQeY:e

k—+oco

<@setmowp [ gt oy b)) g )R )
S pNQv-e
Yk

k—+o00

p—1

+ 2¢; (s + 2 (@) + 1)) + Melju(z + p-) — w0 (Vo (gue mm) + 3¢

C1

Since

[ g+ o 001 )1 0) = 5 [ i ) ) ),

LpNQYe v, QS ()

(8.32)

(8.33)
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gathering (8.14) and (8.33) gives

twswp [ gi o, o)), v ()R )
SﬁzﬁQ”vE

k—+oo

B9 (a0, Qi () + 20+ 263 (2 + £ (¢"7 (2, ¢,v) + 1) (3:34)

1

n—1

<(1+e¢)?
+ Mellu(@ + p-) — o, (L (gue mmy T 3¢
We now estimate the left-hand side in (8.34). We have

/ gk (@ + py, [0F](y), vap () dH" " (y)

S pNQV-E
Yk

gr(@ + py, [67](y), vap ())dH" ™ (y)

/(Sﬁpﬁswp)ﬁQ”*E
k k
/.

gi (@ + py, [wi) (), vip () dH" ™ (y)

7IJPQQVYE
k
+f (9e(x + oy, [0 (0): vop (1) — 90 @ + py, (W) (), Vg () AH" " (3)
(Sf);k)ﬂswp)ﬁQ”’E
— / g(x + py, [w(y), VipP (y))d’}-l"fl(y) =1L+ I, —Is. (8.35)
(8,0 \S,p)NQ*
k k
We now claim that
[I2] Swa(p) and [Is] < ws(p) (8.36)

for k > ka2(p), where wa(p) and ws(p) are independent of k and tend to 0+ as p — 0+.
Thanks to the symmetry condition (¢7), for the term I> we may choose the orientations of Vor and Vit

so that vye = v,p H" '-a.e. on Sge N Syp. Thus, by assumptions (92) and (g6),
|9k (z + oy, [02] (1), vor () — gr(@ + py, [W](Y), Ve (1))
< a2(I[07)(y) — [l W)) (gk (@ + py, [071(y), vop (1)) + gr (@ + py, (W) (Y), v (y)))
< 2e502(2[|0, — will Lo (@uerm)) (1 4 108 oo (@oerm) + Wil oo (@verm))
for H™ tae. y € Syp N S,p. Therefore, using (8.18), (8.29), and (8.30) we obtain
|T2] < 2¢5(1+ 3p) o2(4v/m/N,p) H" 1 (S50 1 Q)

for every k > ka2(p).
Now recall that, by the definition of 0%,

Sep NQY C (S,p N Q™) U (5 N (Q"\ K)),
hence by (8.16),

n—1 v,e n—1 v,e i _ 1 n—1 v,e i
WS Q) ST S Q) + = = W (S0 N Q@) + 2
In terms of the functions v, by (8.14), this implies that
n—1 v,e 14¢ 1 & v,e P 1>
N €Y < _T e , p | E
' S Q) £ TS B Qi (a)) + £+ =
for every k > k2(p). Hence, for the term I> we have
1+e . e €
12| < 251+ 3) 02 (4v/m/Ny) (=7 B (. Q57 (@) + 2 4 =),
cap ca ¢35

Since o2(t) — 0+ as t — 0+, by (8.12) we obtain that |I2| < wa(p) for every k > ka2(p), where wa(p) is
independent of k and w4(p) — 0+ as p — 0+.
As for the term I3, proceeding as above and using (8.30) we get

|15 < es(1+4p) H"_l((swg \ Sap) NQYF),

which, by (8.31), implies that |I3| < ws(p) for every k > ka2(p), where ws(p) := c5(1 + 4p)ws(p) — 0+ as
p — 0+. This concludes the proof of (8.36).

By combining (8.34), (8.35), and (8.36) we deduce that
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twswp [ gl oy [wf)0). g R )
SwzﬁQWE

k—+oo
1 £ v,e
<(1+ 6)2—pn,1 E¥P(u, QY% (x)) + 2p + wale, p) + ws(e, p)

p—1
20 (e Z (7" (@, C) + 1))+ Mellu(a + p) = w060 () [ gune oy + 35

We now define z{(y) := wi((y — x)/p) for every y € Qp°(x). Note that z{ € SBV,c(Qy°(x),R™) and
2z = Uz,¢,» in a neighbourhood of 0Q}° (). In terms of the functions z the previous estimate gives

. 1 . 1
l;lfgiuP ——mg, (Uz,cw, @p (7)) < 11153 SUp me, (Ua,cv, Qp° (2))
oo oo

. 1 n—
< limsup -2 / 9k, [2R)(®), vap ()dH" ™ (y)
k—+oo P szng;f(z)

1

n—1

< (1+e) == B (u, Q)% (2)) + 2p + wale, p) + ws(e, p)

p—1
202 (e 4+ Lo (67" (@.C.) + 1) + Mellule + ) = w0, Ol e ey + 3¢
Finally, taking the limsup as p — 0+ and invoking (3.11), (8.11), and (8.12), we obtain
g"(@,¢v) < (L+)°g7" (@, ¢v) + Ce,
with C' := 2¢2 + 3. Recalling the definition of { and v, we obtain that
9", [u](2), vu(2)) < (1+€)*g" (, [u](x), vu()) + Ce

holds true for H" *-a.e. x € S, N A. Taking the limit as € — 0+ and using (5.2) we get

9" (z, [u)(x), vu(2)) < ¢°(x, [u](2), vu(z))
for H™ '-a.e. € S, N A, thus proving (5.15) for u € SBVP(A,R™) N L= (A,R™).

Step 5. Extension to unbounded functions in GSBV?. Let A € o/ and u € GSBV?(A,R™). For every
integer k > 1 we define zj, := au(u), where oy, € CHR™,R™) satisfies o (¢) = ¢ for every ¢ € R™ with
[¢| < k. By (h) in Section 2 we have that z € SBVP(A,R™) N L>*(A,R™). Let £y := {x € SuNA:
|u®(x)| < k}. By the definition of u™ (z) as approximate limits, it is easy to see that for H" '-a.e. x € B
we have either 25 (z) = u* () and v., (z) = vu () or 25 (z) = uT(x) and v., (z) = —vu(z) (see [3, Remark
4.32]). On the other hand, by the previous steps in the proof we have that

9" (@, [z] (@), vz, (2)) < ¢° (@, [2](2), vz ()
for H" *-a.e. © € 3y. By (g7) this implies that

9" (@, [u](2), vu(2)) < ¢"(, [u](z), vu()) (8.37)
for H" '-a.e. x € ¥. Since the integer k is arbitrary, (8.37) holds for H" *-a.e. z € S,. O
APPENDIX

In this section we collect some technical results that we have used throughout the paper. We begin with
an example of a family of orthogonal matrices R, satisfying all assumptions of (k) of Section 2.

Example A.1. Let ¢+: S" '\ {£e,} — R™* be the stercographic projection from e, into the plane
zn, = 0 and let t: R — S"7 '\ {+e,} be its inverse function. For every v € gi_l we consider
the vectors & (v) := iz (¢ (v)), 4 = 1,...,n — 1, which are tangent to S™' at v, and hence satisfy
&(v)-v = 0. Since 9+ are conformal maps, we have &(v)-§;(v) =0 for ¢ # j. Let v;(v) := &(v)/|& (V).
Then the vectors vi(v),v2(v),...,vn—1(v),v form an orthonormal basis of R", therefore they are the
columns of an orthogonal matrix, denoted by R,. It is clear from the construction that R,e, = v and
that the restriction of v — R, to gl_l is continuous. Moreover, since ¢4 (—v) = —¢_(v) for every
v € S" 1\ {en, —en}, we have ¢ (—y) = —1p_(y) for every y € R" ™1\ {0}. Tt follows that & (—v) = &(v),
hence v;(—v) = v;(v) for every v € S~ '\ {en, —en}. This property is clearly true also for v = 4e,, since
vi(+en) = e;. Tt follows that R_,Q(0) = R, Q(0) for every v € S"™*.

The following remark will be used in [12].
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Remark A.2. From the formulas defining the stereographic projections ¢+ it follows that v € (S~ N
Q™) \ {en, —en} if and only if ¢+ (v) € Q"' \ {0}. Therefore S*™' N Q™ is dense in S"~*. Moreover, the
explicit formulas for 9;1+ show that v;(v) € S"~' N Q" for every v € S" ' N Q", hence R, € Q"*" for
every v € S"T' N Q™.

The rest of this section is devoted to some technical lemmas needed to prove some of the properties
satisfied by the functions f’, f”, ¢’, and ¢'’ introduced in (3.8)-(3.11) and by the functions f*? and ¢*?
introduced in (4.24) and (4.25).

Lemma A.3 (Upper semicontinuity). Let X be either L°(R™,R™) or LL
[0, +00] be a functional such that
(k1) (locality) H(u, A) = H(v,A) ifu,ve X, A€ &, andu=v L"-a.e. in A,
(h2) (measure) for every u € X N SBVioc(R"™,R™) the function H(u,-) is the restriction to o/ of a
countably additive function defined on the o-algebra of the Borel subsets of R™,
(h3) (upper bound) for every u € X N SBVioc(R™,R™) and every A € o/

H(u, A) Sca/(1+\Vu|p)dx+C5/ (1 + |[u]]) dH" .

A SunA

(R™,R™), and let H: X x.of —

Let my”, mb, and ms be as in (3.5)-(3.7), and let p > 0. Then
(a) the functions
(2,€) = mu(le, Qo)) and  (2,€) = myi” (te, Qp(w))

are upper semicontinuous in R™xR™*™;
(b) the restrictions of the function

(Ia C? V) = mH(uz,(,y, QZ(I))
to the sets R" xRy* Xgi_l and R"™ xR xS™ 1 are upper semicontinuous;
(c) for every (o € RG* the restrictions of the function
(@,v) = ml (ua.co.vr Qp (%))

to the sets R™ ><§171 and R"xS" ! are upper $emicontinuous.

Proof. In the proof of (a) we only deal with mp, the proof of the upper semicontinuity of m}f being
similar.
Fix o € R", & € R™*", and € > 0. By the definition of mpy there exist uo € X, with wuo|q, (o) €

SBVP(Qp(z0),R™), and dg € (0, p/3) such that

up =Vley, L"-ae. in Qp(xo) \ Qp—35,(x0), (A.38)

H(uo, Qp(w0)) < mu(ley, Qp(xo)) +¢. (A.39)
Now fix § € (0,d0), z € Qs(w0), £ € R™*™ with | —&| < 4, and ¢ € CF(R™) with suppp C Q,(z), ¢ =1
in Q,—s(z), 0 <9 <1inR", and |[Vy| < 3/6 in R". We define u; € SBVY_(R",R™) by

Uy = uo in QP—5(x)a
@ley +(1—@)le inR™\ Qp25().

Since = € Qs(z0), we have Q,—s(z) \ Qp—25(x) CC Qp(z0) \ Qp—35,(x0). Therefore u; is well defined,
since, by (A.38), both formulas give the same value in the overlapping set Q,—s(x) \ Qp—2s(z). Moreover

u1 = {¢ in a neighbourhood of 9Q,(x), hence mu (Le, Q,(x)) < H(u1,Qp(x)). Therefore, using (hl)-(h3),
we obtain

mu(le, Qp(x)) < H(uo, Qp—s()) +cQ/Q ((1)\4;?|Vut|’)’)dy. (A.40)

Since Vur = @& + (1 — @) + (Ley — L)@V in Qu(z) \ Qp—25(x), by convexity we have |Vu|P <
3771 ([o]” + €17 + [€o — €7 C1[Vip|"), where C1 = sup{|y|” : y € Qp45,(w0)}-
Therefore (A.40), together with the estimates for |{y — £| and V|, yields

mu (le, Qp(2)) < H(uo, Qp(z)) + C2(p" — (p —20)"),
where Cy := c2(1 + 3?7 "(|&|?” + 6§ + C1)). Combining this inequality with (A.39) we get
mH(Z& Qp(x)) S mH(ggm Qp(fl?o)) + e+ QnCQpnflé.
Therefore, if 0 < § < min{do,e/(2nC2p" "1}, = € Qs(x0), and |€ — &o| < 6, then
mu (be, Qp(x)) < mu(ley, Qp(xo)) + 2.
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This proves the upper semicontinuity of (x,&) — mu(le, Qp(x)) at (z,&) = (zo, o).
To prove (b), we fix three points zo € R™, o € Ry, o € S, three sequences (z;) C R, ((;) C Rg,

(vj) C gi_l, with z; — xo, v; = vo, (; — (o, and a constant € > 0. By definition there exist vg € X,
with ’U0|Q;0(ZO) € SBVP(Q,°(x0),R™), and do € (0, p/3) such that

Vo = Uzq,¢o,v0 E”—a.e. in QZO (l‘o) \ Q;E%O (l‘o), (A41)

H (v0, Q) (20)) < Mt (Uag,co,v0, Q (20)) + €. (A.42)
Let us fix § € (0,00/2). There exists an integer is such that Q,° 5(z;) C Q% (x0), @,%5(%;) C Q75 45(%0),
and @)% 55 (z0) C Q% 55(w0) C Q2 45(x;) for every j > is.

By (k) in Section 2 the function v — R,, is continuous on g’“l Consequently there exists an integer
js > is such that Qp 25() C Q) 5(2), V(x) C Q% 5(z), and Qp 15(x) C Qp 35(x) for every j > js and

every x € R™. Therefore the previous incluswns imply that
Q7 25(2) \ Q)7 35(x5) € Qp° (w0) \ Q% 55(20) C Q% (w0) \ @} 55, (w0), (A.43)
Q7 () \ Q) a5(25) C Qs (z0) \ Q)% s5(x0), (A.44)
for every j > js.
Let 1; € C°(R™) be such that suppv; C Q)7 (z;), ¥; = 1 in Q:ié(mj), 0 <%; <1in R", and
V| <3/6 in R™. We define v; € SBVF_(R™,R™) by

loc

vj = {Uo ?n Q:igg(fj)a
VYjUag,covo T (1 — P5)Uay iy IR\ Q,7 35(25).
y (A.41) and (A.43) the function v; is well defined, since both formulas give the same value in the
overlapping set Q:j_% (z)\ Q:j_%(xj). Moreover v; = w;,¢;,»; in a neighbourhood of Q4 (z;), hence
Zéf:iilrtlz]»,éj,uw@;j (;)) < H(vj,Qp (5)). So, using (h1)-(h3) and setting A; := Q7 (x;) \ Q7 55(x;), we

M (a5, Q' (25)) < H(vo, Q7 55(x5))

+02/ (1+ \ij|p)dy+05/ (1 + |[v;]]) dH™ . (A.45)
Aj Su;N4;
Since |Vv;| < |V;|ucg,covo — Uaj,¢;0;| o0 Aj, we have [Vu;| < (3/6)|uzg o0 — Uaj,¢i0;] o Aj. T
follows that
P n n 317 n—1 3;0
(L +[Vy[")dy < p" = (p = 38)" + oy < 3ndp"™ " + <oy,
j
where 7, := fA]- [ty ,covo = Uaj,¢;m; [Py — 04, as j — +o0.
On the other hand by (A.44) we have S,, N A; C (159 N Q% a5(w0) \ Q72 55(%0) ) U ( N Q17 (z4) \
Q"ﬂ x;)). Moreover there exists a constant M; > 0 such that |[v;]| < M; H"* '-a.e. on SU. N A, for
p—38\Lj j j j
every j > js. Therefore

/ (14 o)) dH™ " < 201+ My)((p+26)"" — (p— 58)"") < 146(1 + M)(n — 1)(20)" 2. (A.46)
S

v NA;

From (A.42) and (A.45)-(A.46) it follows that for every j > js

v Y 37
M (Ua; 655, Qo (25)) < Mt (g o0 @p° (20)) + € + M6 + ca =15,
where Ms := 3ncap™ ' + ldes(1 4+ Mi)(n — 1)(2p)" 2. Taking the limit as j — 400 we get

lim sup m g (z;,¢; 055 Q) (z;)) < M (Uag,co,v0, @p’ (T0)) + € + M2d.

j——+oo

Since € > 0 and § € (0,d0/2) are arbitrary, we obtain

lim sup mp (ua; ¢;v; Qo (25)) < Mt (g o005 Q° (0)),
Jj—+oo

which proves the upper semicontinuity of the restriction of (z, {,v) = mu (uz,¢,v, @y (x)) to R" XRE Xgifl.
The same proof holds for R" xRRg* xSr1,
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To prove (c), we fix o, o, 1o, (x;), (vj), and € > 0 as in the proof of (b). By definition there exist
wo € X, with wO‘QZO(QCO) € SBV,e(Q}°(x0),R™), and do € (0, p/3) such that
Wo = Uzg oy L-ave. in Q% (z0) \ Q)% 55, (%0), (A.47)
H(wo, Qp(x0)) < MYy (Ueg,co,v0, @y (20)) + €. (A.48)
Fix ¢ € (0,90/2) and let js be an integer such that (A.43) and (A.44) are satisfied for every j > js. We
define w; € SBVF _(R"™,R™) by

loc
w; =4 O in Qrgi%(,i”j)’ (A.49)
Usj cowy; DR\ QL o5(z5).
) € SBV,e(Q) (x;),R™) and w; = Uz;,Co,v; I @ neighbourhood of Q7 (), hence
ME7 (Uaj cov;» @y’ (25)) < H(wj, Q) (z;)). Therefore, using (h1)-(h3) and setting A; = Q.7 (z;) \
Q.7 35(z;), we obtain

Then w; \Q:j(

My (e, cowy» Qo () < H(wo, Q7 55(x5)) +c5/ (1 + |[w;])y aH" " (A.50)

Sw;NA;
By (A.43) and (A.47) we have w; = ugg,co,0 OR Q;ﬂ%(xj) \Q:i&;(xj) for every 7 > js, while by (A.49)
we have w; = Uz, ¢y, 0 Qp (xj)\Q:i25($j). Therefore S,,; NA; C (I ﬁQ:i%(xj)\Q:iBé(xj)) UuX;u
(H;]J NQy (z5)\ Q;j_ms(mj)) C (H;% NQ°(zo) \ Q:D_55($0)) uX;u (H;]J NQY (z;)\ Q:j_%(axj))7 where X
is the set of points y € 8Q:'7;26(:rj) such that (y — z;) -v; and (y — o) - vo have opposite sign. Moreover
[fw;]| = [Co| H™ *-a.e. on S, N A; for every j > js and o; := H"'(X;) = 0 as j — +oo. Therefore
w; NA;

k.,

From (A.48), (A.50), and (A.51) it follows that for every j > js

(s oy, @ (€5)) < Mt (tag o, @) (@0)) + &+ 2¢5(1+ o) ((n = 1)p" %6 + o).
Since € > 0 and d € (0,00/2) are arbitrary and o; — 0, we obtain

(1 + [[w;])) dH" < 2(1 416G (0" = (0= 56)" "+ 0y) < 2(1+ Gl ((n — 1)p" %6 + 05). (A51)

lim sup my (uwj’io,l/j ) Q:J (xj)) < mH(uafo?Co’Vo: QZO (?ﬂo)),
Jj—+oo

which proves the upper semicontinuity of the restriction of (z,(,v) — m¥; (ue,co,v, Qp(x)) to R™ Xgifl.

The same proof holds for R™ xSr1, O

Lemma A.4 (Monotonicity in p). Letz € R™, £ € R™*", ¢ € Ry, and v € S"~'. Under the assumptions
of Lemma A.3 the functions

p = mp(le, Qp(x)) — ca(1+ [¢[7)p" p s myt (b, Qp(x)) — ca(1+ [¢7)p",
p = mp (U e, Qp () — cs(14[¢])p" " p = M (U ¢ 0, Qp () — es (14 [¢[)p" "
are nonincreasing in (0, +00).
Proof. Let p2 > p1 > 0 and € > 0 be fixed. By the definition of mp there exist u; € X, with u1|Qp1<x) S
SBV?(Q,(z),R™), and p’ € (0, p1), such that u1 = ¢ L -a.e. in Qp, () \ Q,(z) and
H(u1, Qpy(x)) < mu(le, Qpy(w)) + & (A.52)
Let u2 be defined by
Uy in Qpl(m)7
U2 = . n
le iR\ Qo).

Then uz = ¢ in a neighbourhood of Q,,(x), hence mu (be, Qo)) < H(u2,Qpy(x)). Let us fix p’ €
(o', p1). Using (h1)-(h3), from the previous inequality we obtain

mi (le, Qpo()) < H(ur, Qpy(x)) + H(Le, Qpa(w) \ Qur(w)) < H(ur, Qpy(2)) + c2(1 + [€7) (05 — (p")")
Taking the limit as p” — p1—, from (A.52) we obtain

mu (le, Qpo()) < mm (e, Qpi(x)) + € + ca(L+ [€17)(pz — p1)-
Taking the limit as € — 04+ we obtain

m (be, Qpo(w)) — s (14 1€]7)p2 < mu(be, Qpy(x)) — c2(1 + [€]7)pT
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which proves the monotonicity of p — mpg (e, Qp(x)) — c2(1 + |£|P)p™. The same proof holds for p —

my"(Ce, Qp(x)) — c2(1 + [¢7)p"
We now consider m¥; . By definition there exist v1 € X, with vl\le(z) € SBVpe(Qp,(x),R™), and

p" € (0, p1) such that v1 = ug ¢, L -a.e. in Qp (z) \ Q,(x) and
H(v1, Qp,()) < ml (uac.v, Qpy (7)) + & (A.53)
Let vz be defined by
v1 in Q7,(x),
V2 1= : n v
Uz, ¢ inR™\ Qp ().

Then v = uz,¢, in a neighbourhood of 8Q%. (), hence m¥; (ua,¢,v, Qp(x)) < H(va, Q4 (z)). Let us fix
p" € (p',p1). Using (h1)-(h3), from the previous inequality we obtain

My (ta,¢v, @py(20)) < H (01, Qpy () + H (U ¢v, @py(2) \ Qpr())
< H(v1,Qp, (@) +es(L+ ¢ (ps ™" = (") 7).
Taking the limit as p” — p1—, from (A.53) we obtain
Ml (e ¢, Qo)) < Ml (e ¢, Q@) + 2+ es(L+ [N (o3~ = pi 7).
Taking the limit as ¢ — 0+ we obtain
M (U ¢ @po(0)) = e5(1+ [CN)ps ™" < mif (e, @y (w0)) — es(1+[¢])p7 ™,

which proves the monotonicity of p — m%(uw’C’U,QZ(x)) —es(1+ ‘Cl)pn—1. The same proof holds for
p'_>mH(UI,C,LuQZ(x))_C5(1+|<|)pn71_ 0

Lemma A.5 (Borel measurability). Let (fix) be a sequence in F and let (gr) be a sequence in G. Then
for every € > 0 the functions f', f”, f&P, and g% defined in (3.8), (3.9), (4.24), and (4.25) are Borel
measurable. Moreover, for every (o € Ry the functions

(z,v) = ¢'(2,¢0,v) and (z,v) — g"(x,Co,v)
defined in (3.10) and (3.11) are Borel measurable in R™xS" ™1,

Proof. We prove the result only for f’, the proof for f”, f&? ¢=?, ¢', and g’ being analogous. For every
z€R®, £€R™*™ and p > 0 we set

P(x, &, p) —hminfmF (Le, Qp(x)).

By Lemma A.4 for every z € R" and every £ € R™*" the function p — 9 (z, &, p) — ca(1 + [€]P)p" is
nonincreasing on (0, +00). It follows that

lim (2,6,p) > Y@, & p) > lim (@, p)) for every @ € R”, £ € R™ ™, and p > 0.
p'—p— p'—p+
Therefore, if D is a countable dense subset of (0, +00), we have

1 . 1
hmsup p w(w § p) hmsup ﬁw(x7§ap)v

p—0+ p—0+,peD P
hence .
"(z, limsup liminf ——mp?(fe,
f(z,8) = P pgD s pi— Fk( ¢, Qp(2))
for every x € R™ and £ € R™*™. The conclusion follows now from Lemma A.3. O

The next lemma provides all properties of the functions f’ and f”.
Lemma A.6. Let (fi) be a sequence in F and let f and f" be as in (3.8) and (3.9). Then f’, f" € F.

Proof. Property (f1) for f' and f” is proved in Lemma A.5. The proof of (f2) for f' and f” can be
easily obtained by adapting the proof of the same property for f°? established in Theorem 4.3. In fact
it is enough to deduce from (4.37) that (4.38) holds, with mg=.» replaced by m}’:. The conclusion then
follows from (3.8) and (3.9), passing to the limit first as k — +o0o0 and then as p — 0+.

We now prove (f3) for f' and f”. Let z, £ € R™*" be fixed. By (f3) for fx for any p > 0 and
u € WHP(Q,(x), R™) with u = £¢ near dQ,(z) we have

1 1
— Fi(u,Qp(x)) > 6*1/ [Vul” dy > 01’7/
P Qp(x) 4

P p
: Vudy|" = eilel?,
p Qp ()
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where we used Jensen’s inequality and the boundary conditions for u. By letting k& — +o0o and then
p — 0+, the lower bounds for f’ and f” follow from (3.8) and (3.9).
Since fj satisfies (f4), for any p > 0 we also have

T (6 Q@) TPl Qula) < ea(1 +[€P),
By letting k — 400 and then p — 0+ we obtain the upper bounds for f’ and f”. O
The next lemma provides all properties of the functions ¢’ and g”.
Lemma A.7. Let (gi) be a sequence in G, and let g’ and g"” be as in (3.10) and (3.11). Then ¢’,g" € G.

Proof. We prove (g1)—(g7) only for g’, the proof for g” being similar.

We start by proving (g2). To this end fix z € R™, (1, (2 € Ry, v € S"™*, k € N, p > 0. There exists
uy € LY(R™,R™), with u1]Qy(zy € SBVpe(Qy(x),R™) and u1 = ua¢,,» in a neighbourhood of 9Qj (),
such that

Gi(ur, Q) () < M, (ue gy, Qp(2)) +ep" . (A.54)
Let £ :={y € Q,(x) : u1(y) = 1} and let xg be its characteristic function. Then xr € BV(Q}(x)) and
Sxr NQp(x) C Suy NQ}(x) (see [3, Theorem 4.23]).

Let ug := u1+(C2—C1)xm. Then uz|qy(a) € SBVpe(Q (), R™) and uz = s ¢, in a neighbourhood of
QY (). Moreover Sy, C Su, and [uz] = [u1] H" '-a.e. on Su; \ Sy, while [uz] = [u1] + (o — G H" '-ace.
on Sy, N Su, NQ,(x). By (g2) we have

Gr(u2,Qp(x)) < Gr(u1, Qp () + 02(|C1 — C2|) (Gr(u1, @ (2)) + Gr(u2, Q) (x)))
hence

(1= 02(¢1 = G)) Grluz, Qp(x)) < (14 02(]C1 — C2l)) Gr(ur, Qp (x)).
Assume that o2(|¢1 — (2|) < 1. Then the previous inequality together with (A.54) yield

(1= 02(I¢1 = G))mE (ta,c, Qp (@) < (1 + 02(1C1 = Ca])) (M (Uacy 0, Qp (@) + 20" 71).

n—1

Dividing by p and taking the liminf as k — 400, then the limsup as p — 07, and finally the limit as

€ — 0+ we obtain

(1= o2(]¢ = ¢2D)d (2, C2sv) < (L4 02(C1 — ¢2]) g (2, ¢, v)
hence
g/(l', G2, 7/) < g/(f, ¢, V) + 02(‘41 - CQD (g,(l‘v C1s V) + g,(l‘v G2, V)) (A55)

Inequality (A.55) is trivial if o2(|¢1 — (2|) > 1. Then (g2) can be obtained from (A.55) by interchanging
the roles of ¢; and (».

We now observe that the Borel measurability of g’ on R™ xRS xS" ! follows from Lemma, A.5 and from
the continuity estimate (¢g2). This concludes the proof of (g1).

To prove (g3) for ¢, let us fix € R, (1, (2 € R, with |¢(1] < |¢2|, v € S™7!, and a rotation R on R™
such that aR(> = (1, where a := |(1]/|(2] < 1. For every k the functions gj satisfy (g3), thus for every
p > 0 and every u € SBV,c(Qp(x), R™) we have

/ gr(y, aR[u](y), vu(y))dH" " (y) < 63/ 9i(y, [ul (), v (y))dH"
SunQy(x) SunNQy(x)
Since aR(2 = (1, this inequaliy implies that

mg, (Uaci v, Qp (7)) = Mg, (Ue,arcyw, Qp (7)) < csme, (e cs0, @p(x)).

Using (3.10) we obtain ¢'(z, (1,v) < ¢3¢’ (x, (2, V), which proves (g3).

To prove (g4) for ¢, let us fix z € R™, (1, (2 € RY, with ¢3|¢1| < [¢a], v € S* 71, and a rotation R on
R™ such that aR(> = (1, where a := |(1]/|(2] < 1/ec3 < 1. For every k the functions gy satisfy (g4), thus
for every p > 0 and every u € SBV,c(Q5(x), R™) we have

/ gi(y, aR[u](y), vu(y))dH" " (y) < / 9 (Y, [u](v), va(y))dH" ™!
SunQy (z) SunQY ()
Since aR(2 = (1, this inequaliy implies that

me, (a0, Qp(x)) = mg, (Ua,arcs v, @p(x)) < Mg, (Ua,cy0, Qp(T))-

Using (3.10) we obtain g¢'(z, (1,v) < ¢'(z, (2,v), which proves (g4).
To prove (g5) for ¢, let us fix x € R", ¢ € RY*, v € S" ', k € N, and p > 0. Since (¢g5) holds for
gx, for every v € L°(R™,R™), with ulQy @) € SBVhe(Q(2), R™) we have Gi(u, Qp(x)) = caH™ 1 (Sy).
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If u agrees with g ¢, in a neighbourhood of 0Q}(x), each straight line intersecting @} (x) and parallel
to v meets S, (see [3, Theorem 3.108]). This implies that H™""'(S,) > p"~ ', which, together with
the previous estimate, gives G (u, Qp(x)) > cap™ . Taking the infimum with respect to u we obtain
me; (Ue,cv, Qp(2)) > cap™ . By (3.10) this implies (g5) for g'.

On the other hand, appealing to (g6) for gr we have

me, (ua,c.v, Qp () < Grluac, Qp () < es(14[¢))p"

Then the latter leads to (g6) for g’ by (3.10).

To prove the symmetry condition (g7), we observe that ug —¢,—» = ug,c,, — ¢ for every z € R", ( € Ry,
v € S*', and t > 0. Therefore u € SBV,c(Q)(z),R™) satisfies u = us,—¢,—» in a neighbourhood of
0Q}(x) if and only if u = v — ¢ for some v € SBV,,c(Q},(x),R™) satisfying v = us,¢,, in a neighbourhood
of 0Qj(z). Since Q,"(z) = Q;(x) by (k) and (1) in Section 2, it follows that mg;, (us,—¢,—v, @, " (2)) =
m%ck (Ua ¢, Q (x)) for every k. By (3.10) this implies that ¢'(z,¢,v) = ¢'(x, —¢, —v), which proves (g7)
for ¢'. O
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