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ABSTRACT. We prove the Boxing inequality:

Hd−α∞ (U) ≤ Cα(1− α)

ˆ

U

ˆ

Rd\U

dy dz

|y − z|α+d ,

for every α ∈ (0, 1) and every bounded open subset U ⊂ Rd, where
Hd−α∞ (U) is the Hausdorff content of U of dimension d − α and the con-
stant C > 0 depends only on d. We then show how this estimate im-
plies a trace inequality in the fractional Sobolev space Wα,1(Rd) that in-
cludes Sobolev’s L

d
d−α embedding, its Lorentz-space improvement, and

Hardy’s inequality. All these estimates are thus obtained with the ap-
propriate asymptotics as α tends to 0 and 1, recovering in particular the
classical inequalities of first order. Their counterparts in the full range
α ∈ (0, d) are also investigated.

1. INTRODUCTION AND MAIN RESULTS

Let d ∈ N and write Rd to denote Euclidean space of d dimensions. A
geometric formulation of the classical Boxing inequality of W. Gustin [25]
can be stated as

Theorem 1.1. There exists a constant C = C(d) > 0 such that for every bounded
open set U ⊂ Rd with smooth boundary one can find a covering

U ⊂
∞⋃

i=0

Bri(xi)

by open balls of radii ri for which

∞∑

i=0

rd−1
i ≤ C Per (U).

Here we utilize Per (U) to denote the perimeter of U , i.e. integration of
the (d − 1)-dimensional measure over the topological boundary ∂U , since
this inequality has been shown to hold in the more general class of sets of
finite perimeter; see e.g. [19, Corollary 4.5.4].
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One can think of such an estimate as a (d − 1)-dimensional analogue
of the trivial fact that for every bounded open set U ⊂ Rd one can find a
covering by open balls of radii ri for which

∞∑

i=0

ωdr
d
i ≤ 2|U |,

where ωd denotes the volume of the unit ball B1 ⊂ Rd and |U | is the
Lebesgue measure of the set U . The constant 2 is only for convenience
of display, and can be taken arbitrarily close to 1, as the inequality merely
follows from the definition of the Lebesgue measure.

The principal new result of this paper is the following theorem that in-
terpolates these two estimates, which is

Theorem 1.2. There exists a constant C = C(d) > 0 such that for every bounded
open set U ⊂ Rd one can find a covering

U ⊂
∞⋃

i=0

Bri(xi)

by open balls of radii ri for which
∞∑

i=0

rd−αi ≤ Cα(1− α)Pα(U),

for every α ∈ (0, 1).

Here Pα is defined for bounded open sets and more generally for any
Lebesgue measurable set A ⊂ Rd by

(1.1) Pα(A) := 2

ˆ

A

ˆ

Rd\A

dy dz

|y − z|α+d
.

It has been called the fractional perimeter [15] or non-local α-perimeter
[13] and gives one notion of an intermediate object between the classi-
cal perimeter and the Lebesgue measure. One observes that Pα enjoys an
isoperimetric inequality (see [4, 24] and also [22])

Pα(B1)

|B1|
d−α
d

≤ Pα(A)

|A| d−αd
,

as well as a coarea formula for functions in the fractional Sobolev space
Wα,1(Rd):

[u]Wα,1(Rd) :=

ˆ

Rd

ˆ

Rd

|u(y)− u(z)|
|y − z|α+d

dy dz =

ˆ ∞

−∞
Pα({u > t}) dt;(1.2)

see [40] and also Lemma 4.3 below. Moreover, one has the asymptotics

(1.3) lim
α→0

αPα(U) = C ′|U | and lim
α→1

(1− α)Pα(U) = C ′′ Per (U),

that allows recovery of the endpoints; see [17, 31].
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Our proof of Theorem 1.2 is in two steps. The first one is an elemen-
tary argument that one has such an inequality for some constant indepen-
dent of α. Here we follow the idea in Federer’s proof of Theorem 1.1 (see
[18]) adapted to the fractional perimeter. The second step is to connect the
asymptotics as α tends to 0 and 1. Underlying the limit as α tends to 1 is
a Γ-convergence counterpart of the second limit of (1.3) which bears some
analogy with the Γ-convergence of non-local functionals on BV functions
from [36, Corollary 8]; see also [6].

Theorems 1.1 and 1.2 have powerful implications in the study of Sobolev
functions which can be understood through a functional formulation of the
Boxing inequality. To this end we recall the definition of the Hausdorff
content of dimension d− α, which for any set A ⊂ Rd is given by

Hd−α∞ (A) := inf

{ ∞∑

i=0

ωd−αr
d−α
i : A ⊂

∞⋃

i=0

B(xi, ri)

}
,(1.4)

where ωd−α := π(d−α)/2/Γ
(
d−α

2 + 1
)
. Then integration of a function u :

Rd → R with respect to the Hausdorff content defines the Choquet integral
as

ˆ

Rd
|u| dHd−α∞ :=

ˆ ∞

0
Hd−α∞ ({|u| > t}) dt.

With these tools we are ready to state our

Theorem 1.3. Let α ∈ (0, 1). There exists a constant C = C(d) > 0 such that
ˆ

Rd
|ϕ| dHd−α∞ ≤ Cα(1− α)[ϕ]Wα,1(Rd),

for every ϕ ∈ C∞c (Rd).

Remark 1.4. The estimate in Theorem 1.3 extends to all u ∈ Wα,1(Rd),
though one should rely on the precise representative u∗ in the Choquet
integral; see Section 3 below.

The proof of Theorem 1.3 follows the simple yet beautiful idea of Fed-
erer and Fleming [20] and Maz’ya [28] that the combination of the coarea
formula and the isoperimetric inequality yield Sobolev’s inequality in the
L1 regime. The coarea formula forWα,1(Rd) is given in (1.2), while the Box-
ing inequality provides a replacement of the isoperimetric component via
the estimate

(1.5) Hd−α∞ (U) ≤ ωd−αCα(1− α)Pα(U),

which is an easy consequence of Theorem 1.2.
Theorem 1.3 is a strong form of differential inequality for functions u ∈

Wα,1(Rd) that captures in a precise way the fine properties of u. From it one
can deduce a variety of integral estimates, as well as quantify the size of
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the Lebesgue set of u. For example, it firstly implies the fractional Sobolev
embedding on the scale of Lebesgue Lp spaces, which is

Corollary 1.5. Let α ∈ (0, 1). There exists a constant C = C(d) > 0 such that

‖u‖
L

d
d−α (Rd)

≤ Cα(1− α)[u]Wα,1(Rd)

for every u ∈Wα,1(Rd).

That is, in place of interpolation [27], rearrangements to obtain an isoperi-
metric inequality [4], or various other methods [11, 24, 31], one obtains di-
rectly a Sobolev inequality that is stable in the limit as α tends to 0 and
1. More than this, Theorem 1.3 encodes a trace inequality that enables one
to control the integral of functions u ∈ Wα,1(Rd) along lower dimension
objects. In practice this takes the form of the a priori inequality

ˆ

Rd
|ϕ| dµ ≤ Cα(1− α)[ϕ]Wα,1(Rd)(1.6)

for every ϕ ∈ C∞c (Rd) and every nonnegative Borel measure µ in Rd that
satisfies

(1.7) µ(Br(x)) ≤ ωd−αrd−α

for all balls Br(x) ⊂ Rd. This estimate is a direct consequence of (1.5),
with the same constant, since (1.7) yields the comparison µ ≤ Hd−α∞ , while
again inequality (1.6) extends to functions in Wα,1(Rd) when one utilizes
precise representatives. In this form, one can readily prove a number of
other inequalities for Sobolev functions. For example, one observes that
µ = g dx, with g in the Lorentz space L

d
α
,∞(Rd) of weak L

d
α functions, or

µ = dx/|x|α both satisfy such a ball-growth condition. For the former, one
obtains by duality a result stronger than Corollary 1.5, namely the embed-
ding ofWα,1(Rd) into the Lorentz spaceL

d
d−α ,1(Rd) (see [5]), while the latter

yields Hardy’s inequality. We refer the reader to [32] for further discussions
about trace inequalities.

The analogue to Theorem 1.3 and (1.6) for α = 1 is due to Meyers and
Ziemer in [33] in their paper on Poincaré-Wirtinger inequalities. We can
pursue such inequalities in this framework, which require a modification
of our argument to obtain an estimate similar to (1.5) involving the relative
perimeter Pα(U,Ω). The result of this analysis is the fractional Sobolev-
Poincaré inequality given by our

Theorem 1.6. Let α ∈ (0, 1) and Ω ⊂ Rd be a smooth connected bounded open
set. There exists a constant C = C(d,Ω) > 0 such that

∥∥ϕ−
 

Ω
ϕ
∥∥
L1(Ω,dµ)

≤ C(1− α)

ˆ

Ω

ˆ

Ω

|ϕ(y)− ϕ(z)|
|y − z|α+d

dy dz,

for every ϕ ∈ C∞(Ω) and every nonnegative Borel measure µ ≤ Hd−α∞ in Ω.
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Notice the absence of the factor of α in the preceding estimate. This is due
to the fact that its appearance in Theorem 1.3 comes from the behavior of
the function 1/|x|α+d for |x| large, while now Ω is bounded. In particular, in
this setting the double integral in the right-hand side converges to a finite
limit as α tends to 0.

Further applications of the functional formulation of the Boxing inequal-
ity given in Theorem 1.3 can be found when studying the fine properties
of functions in the Sobolev space Wα,1(Rd). We will explore this in Sec-
tions 2 and 3, where we will additionally be interested in the larger range
α ∈ [0, d]. In this interval we have the following extension of Theorem 1.3,
which is our

Theorem 1.7. Let α ∈ [0, d]. There exists a constant C = C(d, α) > 0 such that
ˆ

Rd
|ϕ|dHd−α∞ ≤ C [∇kϕ]Wα−k,1(Rd),

for every ϕ ∈ C∞c (Rd). Here k = bαc is the integer part of α, with the convention
that [∇kϕ]W 0,1(Rd) := ‖∇kϕ‖L1(Rd). Moreover, for α ∈ (0, d) \ N, the constant
above satisfies

C ≤ C ′(d) dist (α,N).(1.8)

A few comments regarding Theorem 1.7. First, as in the proof of Theo-
rem 1.3, for α ∈ (k, k + 1) we handle the cases α → k+ and α → (k + 1)−

by different arguments. In the case of the former, we rely on the existence
of bounded solutions of the divergence equation

−div Y = ν

for nonnegative measures ν in Rd which satisfy the ball-growth condition
ν(Br(x)) ≤ rd−1. This divergence equation is dual to inequality (1.6) for
α = 1, and so we do not need to invoke any further results on special
solutions to such an equation (see, for example, [9, 12]). The latter case
α → (k + 1)− is a direct consequence of lifting Theorem 1.3 via the map-
ping properties of Riesz potentials (see Lemma 4.6 below) and inherits the
correct scaling from our Theorem 1.3. Therefore the ability to handle de-
creasing limits forHd−α∞ , our estimate, and the asymptotics of the Gagliardo
semi-norms (see [31]) imply by continuity the estimate

ˆ

Rd
|ϕ| dHd−k∞ ≤ C‖∇kϕ‖L1(Rd)(1.9)

for all integer orders k ∈ {1, . . . , d}. This result has been obtained by
Adams [2].

Second, the key point of our estimate is found in (1.8). If one is willing
to accept H1-BMO duality and dispense with this bound, then one can de-
duce such a result from Adams’ capacitary inequalities in [2]; we explore
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this connection in Section 5. Finally, the Sobolev inequality in Theorem 1.7
extends the range of Corollary 1.5, that one has

‖u‖
L

d
d−α (Rd)

≤ C ′(d) dist (α,N) [∇ku]Wα−k,1(Rd),(1.10)

for every α ∈ (0, d) \ N and u ∈Wα,1(Rd), and where again k = bαc.
The plan of the paper is as follows. In Section 2 we explore the relation-

ship of Hausdorff content and a capacity that is intrinsically associated to
Wα,1(Rd). In Section 3 we show the implications of our results on the fine
properties of functions Wα,1(Rd). In Section 4 we prove Theorems 1.2, 1.3,
1.6 and 1.7 and Corollary 1.5 above. Finally, in Section 5 we relate our re-
sults with those obtained by D. Adams in [2]. In particular we show how
H1-BMO duality can be used to deduce Theorem 1.7, however missing the
asymptotics we obtain in our results.

2. THE EQUIVALENCE OF CAPACITY AND CONTENT

For every α ≥ 0, we define the (α, 1)-capacity of a compact set K ⊂ Rd

by

Capα,1(K) := inf
{

[∇kϕ]W θ,1(Rd) : ϕ ∈ C∞c (Rd), ϕ ≥ 0 in Rd, ϕ > 1 on K
}
,

where
k = bαc ∈ N and θ = α− k ∈ [0, 1).

We take the convention that∇0ϕ = ϕ and [∇kϕ]W 0,1(Rd) = ‖∇kϕ‖L1(Rd).
One then extends the capacity by regularity as follows: For an open set

U ⊂ Rd, the capacity of U is the supremum of capacities of compact subsets
K ⊂ U :

Capα,1(U) := sup
K⊂U

Capα,1(K).

Then for a general set A ⊂ Rd the capacity is the infimum of the capacities
of open supersets U ⊃ A,

Capα,1(A) := inf
U⊃A

Capα,1(U).

The only point is to check that the definition on compact sets is consistent,
but this is indeed the case (see, for example, Proposition A.6 in [38]).

Such capacities are outer measures that arise commonly in the study of
partial differential equations when one seeks to quantify the size of the set
for which certain fine properties hold. For instance, for a function u in the
Sobolev space Wα,1(Rd), the set of points x ∈ Rd for which the limit

lim
r→0

 

Br(x)
u(2.1)

fails to exist has (α, 1)-capacity zero; see Section 3 below. When α = 0 this
statement is none other than the classical Lebesgue Differentiation Theo-
rem, which states that for every function u ∈ L1(Rd) the limit (2.1) exists
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except on a subset with Lebesgue measure zero. Indeed, the (0, 1)-capacity
yields an alternative construction of the Lebesgue outer measure.

For α > 0 one expects that the better regularity of a Wα,1-function yield
a smaller exceptional set with regard to the existence of the limit (2.1). For
example, functions in the Sobolev spaceWα,1(Rd) for α ≥ d are continuous,
so that the limit (2.1) holds everywhere. This is confirmed by the quantifi-
cation by capacity, since every nonempty set has positive capacity in this
range of α. However, when α ∈ (0, d) it is not obvious from the definition
of the capacity how small this set is, as it is intrinsically given by a Sobolev
semi-norm. It is therefore desirable to connect these capacities for α ∈ (0, d)

with a geometric description of size of sets in Rd.
Some natural geometric objects for capturing the size of sets in this re-

spect are the Hausdorff measures, which give a way of assigning a notion
of lower-order dimension to sets of Lebesgue measure zero. The first step
in their construction is the definition of certain outer measures defined for
example using coverings with balls, which are measured as if they were
s-dimensional objects: For any set A ⊂ Rd, define

Hsδ(A) := inf

{ ∞∑

n=0

ωsr
s
n : A ⊂

∞⋃

n=0

Brn(xn), rn ≤ δ
}
.(2.2)

From here one can define the s-dimensional Hausdorff measure of A as the
(non-decreasing) limit

Hs(A) = lim
δ→0
Hsδ(A).

The Hausdorff measure Hs provides a geometric object for performing in-
tegration on an embedded surface of dimension s ∈ N. For example, an
application of this construction to the dimension s = d − 1 and restrict-
ing to the surface of the unit sphere ∂B1, one obtains the standard surface
measure on the sphere. More generally, the Hausdorff measures provide
a way of assigning a measure to sets between the integer dimensions, like
the Cantor middle-third set, which has finite but non-zero log(2)/ log(3)-
dimensional Hausdorff measure.

While the Hausdorff measures describe the size of and assign measure
to sets in Rd aptly, the Hs-measure of a non-empty ball in Rd is infinite
for every s ∈ [0, d). Thus they are too large to make setwise comparison
with capacities. A smaller object than the Hausdorff measures, and also
more suitable to comparison with the homogeneous (α, 1)-capacity, is the
Hausdorff content Hd−α∞ as defined by (1.4) (which is (2.2) with δ =∞ and
s = d− α). Indeed,

Theorem 2.1. For every α ∈ (0, d) and every A ⊂ RN ,

Capα,1 (A) ≈ Hd−α∞ (A).
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The case α = 1 was established by Meyers and Ziemer [33] and the cases
α ∈ {2, . . . , d − 1} by Adams [2], based on an induction argument by
Maz’ya [29].

One can define (α, p)-capacities for any p > 1 in analogy with the defini-
tion of Capα,1 by minimization of the Gagliardo energy

[∇kϕ]p
Wα−k,p(Rd)

:=

ˆ

Rd

ˆ

Rd

|∇kϕ(y)−∇kϕ(z)|p
|y − z|(α−k)p+d

dy dz

for α− k ∈ (0, 1). Nevertheless, an equivalence between capacity and con-
tent as in Theorem 2.1 holds exclusively for p = 1; see Chapter 5 in [3]. One
direction of the comparison, which has a true counterpart for p > 1, is an
easy consequence of having the associated scaling, for instance, one has

Capα,1 (Br(x)) = Pα(B1) rd−α

when α ∈ (0, 1), and

Cap1,1 (Br(x)) = Per (B1) rd−1;

see e.g. [41, 42]. A similar estimate in this spirit extends to every α ∈ (0, d),
and allows us to obtain

(2.3) Capα,1(A) ≤ CHd−α∞ (A),

for every A ⊂ Rd, with constant C = Capα,1 (B1). The reverse comparison
is more subtle, and relies strongly on theL1-nature of the Boxing inequality;
see the end of Section 4.

With these ingredients, we can return to the question of the fine prop-
erties of a function in the Sobolev space Wα,1(Rd). In particular one im-
mediately obtains from Theorem 2.1 the ability to quantify the size of the
exceptional set of a Sobolev function in terms of the Hausdorff measure
(and not the content). This follows from the remarkable but easy fact con-
cerning the Hausdorff measureHd−α and the Hausdorff contentHd−α∞ that
they have the same negligible sets. Therefore a result concerning the equiv-
alence of the (α, 1)-capacity and theHd−α∞ -content is sufficient to guarantee
that sets of (α, 1)-capacity zero are Hd−α-negligible. In particular, we have
that

Hd−α(A) = 0 ⇐⇒ Capα,1 (A) = 0,(2.4)

which implies that for any u ∈ Wα,1(Rd) the set of points where the limit
(2.1) does not exist is negligible with respect toHd−α. The equivalence (2.4)
was first observed for the (1, 1)-capacity by Fleming in his pioneer paper
[23].
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3. FINE PROPERTIES OF SOBOLEV FUNCTIONS

We prove in this section that the exceptional set of any function u ∈
Wα,1(Rd) has (α, 1)-capacity zero. This property is then used to state a
counterpart of the estimate in Theorem 1.7, which includes Corollary 1.5
and (1.6), that is valid for every u ∈Wα,1(Rd); see (3.8) below.

We first recall that x ∈ Rd is a Lebesgue point of a function u ∈ L1
loc(Rd)

if there exists a ∈ R such that

(3.1) lim
r→0

 

Br(x)
|u− a| = 0.

We denote by Lu the set of Lebesgue points of u. Assigning the value of a
to x ∈ Lu yields a function u∗ : Lu → R, u∗(x) := a, which is called the
precise representative of u. We thus have

(3.2) lim
r→0

 

Br(x)
|u− u∗(x)| = 0

and then

(3.3) lim
r→0

 

Br(x)
u = u∗(x),

for every x ∈ Lu. An advantage of having (3.2) over (3.3) is that other
averaging processes yield the same value u∗(x). For example, given any
ρ ∈ C∞c (Rd) such that

´

Rd ρ = 1, it follows from (3.2) that

lim
r→0

1

rd

ˆ

Rd
ρ
(x− y

r

)
u(y) dy = u∗(x).

By the Lebesgue Differentiation Theorem, we know that u∗ = u almost
everywhere in Rd and, in particular,

|Rd \ Lu| = Cap0,1 (Rd \ Lu) = 0.

We are interested in estimating the size of the exceptional set Rd \ Lu in
terms of the capacity when u is a Sobolev function:

Proposition 3.1. For every α ∈ (0, d) and every u ∈Wα,1(Rd),

Capα,1 (Rd \ Lu) = 0.

The main ingredient follows from the strong capacitary estimate for the
maximal function:

Lemma 3.2. For every α ∈ (0, d) and every u ∈Wα,1(Rd), one has
ˆ ∞

0
Capα,1({Mu > t}) dt ≤ C[u]Wα,1(Rd),

whereMu : Rd → [0,∞] is the Hardy-Littlewood maximal function defined by

Mu(x) := sup
r>0

 

Br(x)
|u|.
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Being a supremum of a family of continuous functions, the maximal
function is lower semicontinuous, hence all the sets {Mu > t} are open.
A consequence of this lemma is the weak capacitary estimate

(3.4) Capα,1 ({Mu > t}) ≤ C

t
[u]Wα,1(Rd),

for every t > 0 and every u ∈ Wα,1(Rd), which is the one that is actually
used in the proof of Proposition 3.1. Further applications of these estimates
in the study of properties of Wα,1-functions will be investigated in a forth-
coming work.

Proof of Lemma 3.2. By the functional Boxing inequality (Theorem 1.7), we
can write

(3.5)
ˆ

Rd
|ϕ|dHd−α∞ ≤ C1[ϕ]Wα,1(Rd),

for every ϕ ∈ C∞c (Rd). We also rely on Adams’ maximal-function estimate
involving the Choquet integral with respect toHd−α∞ :

(3.6)
ˆ

Rd
MϕdHd−α∞ ≤ C2

ˆ

Rd
|ϕ| dHd−α∞ ;

an elegant proof of this estimate is due to Orobitg and Verdera [34]. Com-
bining (3.5) and (3.6), we have

ˆ ∞

0
Hd−α∞ ({Mϕ > t}) dt ≤ C3[ϕ]Wα,1(Rd).

Given u ∈ Wα,1(Rd), we apply this estimate to a sequence (ϕj)j∈N in
C∞c (Rd) which converges to u in Wα,1(Rd). Some care is needed to justify
the limit in the left-hand side: One can proceed along the lines of the proof
of Lemma 9.8 in [38], but the argument there relies on the strong subaddi-
tivity of Choquet’s capacity. It seems unlikely that the spherical Hausdorff
contentHd−α∞ is strongly subadditive, so instead one uses the dyadic Haus-
dorff content Ĥd−α∞ defined for every A ⊂ Rd by

(3.7) Ĥd−α∞ (A) = inf

{ ∞∑

i=0

`d−αi : A ⊂ int
∞⋃

i=0

Qi

}
,

where the infimum is computed over all sequences of closed dyadic cubes
Qi, and `i denotes the side length of the cubeQi. One observes thatHd−α∞ ≈
Ĥd−α∞ and Ĥd−α∞ is strongly subadditive in the sense that

Ĥd−α∞ (A ∪B) + Ĥd−α∞ (A ∩B) ≤ Ĥd−α∞ (A) + Ĥd−α∞ (B),

for every A,B ⊂ Rd; see [43]. Thus, Ĥd−α∞ satisfies the conclusion of the
Increasing Set Lemma and we have

lim
k→∞

Ĥd−α∞ (Ak) = Ĥd−α∞
( ∞⋃

k=0

Ak

)
,
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for every nondecreasing sequence (Ak)k∈N of subsets of Rd. By the argu-
ment in the proof of Lemma 9.8 in [38] we then deduce that

Ĥd−α∞ ({Mu > t}) ≤ lim inf
j→∞

Ĥd−α∞ ({Mϕj > t}),

for every t > 0. By Fatou’s lemma we get
ˆ ∞

0
Ĥd−α∞ ({Mu > t}) dt ≤ lim inf

j→∞

ˆ ∞

0
Ĥd−α∞ ({Mϕj > t}) dt.

Using the equivalence between the Hausdorff contentsHd−α∞ and Ĥd−α∞ , we
thus have

ˆ ∞

0
Hd−α∞ ({Mu > t}) dt ≤ C4[u]Wα,1(Rd).

We now observe that the estimate Capα,1 ≤ C5Hd−α∞ on every compact
subset of Rd also holds, with the same constant, on every open set U ⊂ Rd.
Indeed, for every compact subset K ⊂ U , by monotonicity of the content
we have

Capα,1 (K) ≤ C5Hd−α∞ (K) ≤ C5Hd−α∞ (U).

Taking the supremum of the left-hand side over K, the claim follows from
the definition of the capacity on open sets. Since the sets {Mu > t} are
open, we deduce that
ˆ ∞

0
Capα,1({Mu > t}) dt ≤ C5

ˆ ∞

0
Hd−α∞ ({Mu > t}) dt ≤ C6[u]Wα,1(Rd).

�

Proof of Proposition 3.1. The existence of the limit in (3.1) at a point x ∈ Rd

is equivalent to the Cauchy condition:

lim
(r,s)→(0,0)

 

Br(x)

 

Bs(x)
|u(y)− u(z)|dy dz = 0;

see [38, Lemma 8.8]. We may then assert that

Rd \ Lu =
⋃

λ>0

Aλ,

where

Aλ =

{
x ∈ Rd : lim sup

(r,s)→(0,0)

 

Br(x)

 

Bs(x)
|u(y)− u(z)|dy dz > λ

}
.

One can now proceed along the lines of the proof of Proposition 8.6 in
[38] using the weak capacitary estimate (3.4) for the maximal function and
the density of C∞c (Rd) in Wα,1(Rd) to deduce that

Capα,1 (Aλ) = 0,

for every λ > 0. The monotonicity of the family (Aλ)λ>0 allows one to write

⋃

λ>0

Aλ =
∞⋃

n=0

Aλn ,
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where (λn)n∈N is any sequence of positive numbers that converges to 0.
The conclusion thus follows from the countable subadditivity of the (α, 1)-
capacity . �

In the course of the proof of Lemma 3.2, we prove using Theorem 1.7
that

ˆ ∞

0
Hd−α∞ ({Mu > t}) dt ≤ C̃ [u]Wα,1(Rd),

for every u ∈Wα,1(Rd). Taking into account that for all x ∈ Lu,

|u∗(x)| ≤ lim inf
r→0

 

Br(x)
|u| ≤ Mu(x),

and that Hd−α∞ (Rd \ Lu) = 0 as a consequence of Proposition 3.1 and Theo-
rem 2.1, we can thus state the counterpart of the inequality in Theorem 1.7
for every u ∈Wα,1(Rd) as

(3.8)
ˆ

Rd
|u∗|dHd−α∞ =

ˆ ∞

0
Hd−α∞ ({|u∗| > t}) dt ≤ C̃ [u]Wα,1(Rd),

where C̃ > 0 also satisfies (1.8) for α ∈ (0, d) \ N.

4. PROOFS OF THE MAIN RESULTS

Before proving Theorem 1.2, we first show that a relative isoperimetric
inequality holds uniformly with respect to α ∈ (0, 1). We begin with the
behavior near α = 1:

Lemma 4.1. Given γ ∈ (0, 1), there exists a constant C ′ = C ′(d, γ) > 0 such
that

ˆ

A

ˆ

Br\A

dy dz

|y − z|α+d
≥ C ′

1− α r
d−α,

for every r > 0, every α ∈ (0, 1), and every Borel setA ⊂ Br such that |A|/|Br| =
γ.

Proof. By a scaling argument, it suffices to consider the case where r = 1.
We begin by observing that for every α ∈ (0, 1),

(4.1)
ˆ

A

ˆ

B1\A

dy dz

|y − z|α+d
≥ |A||B1 \A|

21+d
=

1

21+d
γ(1− γ)|B1|2.

We now investigate the behavior of the infimum over A of the integral in
the left-hand side of (4.1) as α → 1. Assuming by contradiction that the
conclusion of the lemma fails, there exist a sequence (αn)n∈N that converges
to 1 and a sequence of Borel sets (An)n∈N such that |An|/|B1| = γ for every
n ∈ N which satisfy

lim
n→∞

(1− αn)

ˆ

An

ˆ

B1\An

dy dz

|y − z|α+d
= 0.

Equivalently,
lim
n→∞

(1− αn)[χAn ]Wα,1(B1) = 0.



A BOXING INEQUALITY FOR THE FRACTIONAL PERIMETER 13

By compactness of the sequence of characteristic functions (χAn)n∈N in the
Sobolev space W θ,1(B1) for a fixed θ ∈ (0, 1) and restriction to a subse-
quence if necessary, we may assume that (χAn)n∈N converges in L1(B1) to
some function f ; in particular, f is also a characteristic function. Given
ε > 0 and a nonnegative function ρ ∈ C∞c (Bε) such that

´

Rd ρ = 1, by
Fubini’s theorem we have

[ρ ∗ χAn ]Wαn,1(B1−ε) ≤ [χAn ]Wαn,1(B1).

Since the sequence (ρ ∗ χAn)n∈N converges to ρ ∗ f in C2(B1), after multi-
plying both sides of the inequality by 1−αn and letting n→∞we deduce
that

‖∇(ρ ∗ f)‖L1(B1−ε) = 0.

Thus, the function ρ∗f is constant inB1−ε for every ε > 0, hence there exists
c ∈ R such that f = c almost everywhere in B1. Since f is a characteristic
function and

ffl

B1 f = γ with γ ∈ (0, 1), we have a contradiction. �

The use of the mollifier ρ to study the limit case of α has been suggested
by E. Stein in the context of a new characterization of Sobolev spaces by
Bourgain, Brezis and Mironescu [10, 14]. Lemma 4.1 is a special case of the
Poincaré inequality

(4.2)
∥∥u−

 

Br

u
∥∥
L1(Br)

≤ C(1− α)rα[u]Wα,1(Br),

with the correct dependence of the constant on α as α→ 1, which is due to
Bourgain, Brezis and Mironescu [11, p. 80]; see also [37]. A straightforward
adaptation of the argument above yields a proof of (4.2) for every α ∈ (0, 1)

and u ∈ ⋂
α∈(0,1)

Wα,1(Br).

We next focus on the behavior of the relative isoperimetric inequality
near α = 0. The analysis in this case relies on the behavior of the potential
1/|x|α+d for |x| large.

Lemma 4.2. Given γ ∈ (0, 1) and a bounded Borel set E ⊂ Rd, there exists a
constant C ′′ = C ′′(d, γ) > 0 such that

ˆ

Br∩E

ˆ

Rd\E

dy dz

|y − z|α+d
≥ C ′′

α
rd−α,

for every α ∈ (0, 1), where r > 0 is such that

|Br ∩ E|/|Br| = γ and |Bs ∩ E|/|Bs| ≤ γ for every s ≥ r.

Proof. Denoting by I the double integral in the left-hand side, we have

I ≥
ˆ

Br∩E

(
ˆ

(Rd\E)\B2r

dz

|y − z|α+d

)
dy.
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For every y ∈ Br and z ∈ Rd \B2r, by the triangle inequality we have

|y − z| ≤ |y|+ |z| ≤ r + |z| ≤ 3

2
|z|.

Thus, for every α ∈ (0, 1) we have

I ≥
(2

3

)1+d
ˆ

Br∩E

(
ˆ

(Rd\E)\B2r

dz

|z|α+d

)
dy

=
(2

3

)1+d
|Br ∩ E|

ˆ

(Rd\E)\B2r

dz

|z|α+d
= C1γ r

d

ˆ

(Rd\E)\B2r

dz

|z|α+d
.

To conclude the proof, it suffices to show that
ˆ

(Rd\E)\B2r

dz

|z|α+d
≥ C2

α rα
.

For this purpose, using Cavalieri’s principle we first rewrite
ˆ

(Rd\E)\B2r

dz

|z|α+d
= (α+ d)

ˆ ∞

2r

|(Bs \ E) \B2r|
sα+d

ds

s
.

Using the assumption on r, we can then estimate

|(Bs\E)\B2r| ≥ |Bs\E|−|B2r| ≥ (1−γ)|Bs|−|B2r| = ωd

[
(1−γ)−

(2r

s

)d]
sd.

Take a fixed number λ > 2 such that (1 − γ) > (2/λ)d. It thus follows that
for every s ≥ λr we have

|(Bs \ E) \B2r| ≥ C3s
d.

We finally get
ˆ

(Rd\E)\B2r

dz

|z|α+d
≥ d

ˆ ∞

λr

|(Bs \ E) \B2r|
sα+d

ds

s
≥ d

ˆ ∞

λr

C3s
d

sα+d

ds

s
=

C4

α rα
.

This concludes the proof of the lemma. �

Proof of Theorem 1.2. Given x ∈ U , let r = r(x) > 0 be the largest number
such that

|Br(x) ∩ U |
|Br(x)| =

1

2
.

The existence of an r for which the equality holds follows from the Inter-
mediate Value Theorem: the quantity in the left-hand side is continuous
with respect to r > 0, it equals 1 for r small since x ∈ U and U is open, and
converges to 0 as r →∞ since U is bounded. A continuity argument shows
that a largest solution r indeed exists. Observe that such a choice of r does
not depend on α.

Applying Lemma 4.1 on the ball Br(x) to the open set A = Br(x) ∩ U ,
we have

rd−α ≤ C1(1− α)

ˆ

Br(x)∩U

ˆ

Rd\U

dy dz

|y − z|α+d
.
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By Lemma 4.2 with E = U , we also have

rd−α ≤ C2α

ˆ

Br(x)∩U

ˆ

Rd\U

dy dz

|y − z|α+d
.

It thus follows from the first estimate for α ∈ [1/2, 1) and the second esti-
mate for α ∈ (0, 1/2] that

rd−α ≤ C3α(1− α)

ˆ

Br(x)∩U

ˆ

Rd\U

dy dz

|y − z|α+d
,

for every α ∈ (0, 1), where C3 = 2 max {C1, C2}.
By Wiener’s covering lemma, one can extract a countable family of balls(
B5r(xi)(xi)

)
i∈N with xi ∈ U which covers U and is such that the balls(

Br(xi)(xi)
)
i∈N are disjoint. We thus have that

∞∑

i=0

(5r(xi))
d−α ≤ C4α(1− α)

∞∑

i=0

ˆ

Br(xi)(xi)∩U

ˆ

Rd\U

dy dz

|y − z|α+d

≤ C4α(1− α)

ˆ

U

ˆ

Rd\U

dy dz

|y − z|α+d
=
C4

2
α(1− α)Pα(U).

The family
(
B5r(xi)(xi)

)
i∈N thus satisfies the required properties. �

The proof of the coarea formula involving the fractional perimeter Pα is
based on the straightforward observation that

Pα(A) = [χA]Wα,1(Rd),

for every α ∈ (0, 1) and every Borel set A ⊂ Rd.

Lemma 4.3. For every u ∈Wα,1(Rd), we have

[u]Wα,1(Rd) =

ˆ ∞

−∞
Pα({u > t}) dt.

Proof. For every y, z ∈ Rd, we have

|u(y)− u(z)| =
ˆ ∞

−∞
|χ{u>t}(y)− χ{u>t}(z)|dt.

Thus, for y 6= z,

|u(y)− u(z)|
|y − z|α+d

=

ˆ ∞

−∞

|χ{u>t}(y)− χ{u>t}(z)|
|y − z|α+d

dt,

and the conclusion follows integrating with respect to y and z. �

Proof of Theorem 1.3. Given t > 0 and ϕ ∈ C∞c (Rd), we apply the fractional
Boxing inequality with U = {|ϕ| > t}. Since ϕ is continuous and has com-
pact support, U is an open bounded subset of Rd, hence there exists a se-
quence of balls (Bri(xi))i∈N that covers {|ϕ| > t} and satisfies

∞∑

i=0

rd−αi ≤ Cα(1− α)Pα({|ϕ| > t}).
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It thus follows from the definition of the Hausdorff content that

Hd−α∞ ({|ϕ| > t}) ≤ ωd−αCα(1− α)Pα({|ϕ| > t}).

Hence,
ˆ

Rd
|ϕ| dHd−α∞ =

ˆ ∞

0
Hd−α∞ ({|ϕ| > t}) dt

≤ ωd−αCα(1− α)

ˆ ∞

0
Pα({|ϕ| > t}) dt.

By the fractional coarea formula and the Lipschitz continuity of the absolute-
value function,

ˆ ∞

0
Pα({|ϕ| > t}) dt = [|ϕ|]Wα,1(Rd) ≤ [ϕ]Wα,1(Rd).

Combining both inequalities, the conclusion follows. �

To deduce the classical Boxing inequality as the limit of the fractional
one as α → 1, one first takes a covering of an open set U ⊂ Rd of finite
perimeter such that

∞∑

i=0

rd−αi ≤ C(1− α)Pα(U).

Since the sequence of balls does not depend on α, we can take α→ 1 in the
left-hand side. By the second limit in (1.3), the right-hand side converges to
C1 Per (U) for some constant C1 > 0 independent of U , and so one deduces
Theorem 1.1. It thus follows from the definition of the Hausdorff content
that

Hd−1
∞ (U) ≤

∞∑

i=0

ωd−1r
d−1
i ≤ C1 Per (U).

Now, given a function ϕ ∈ C∞c (Rd), by Sard’s lemma the open set {|ϕ| > t}
is bounded and smooth, and so has finite perimeter for almost every t > 0.
The estimate above applied with U = {|ϕ| > t} gives

Hd−1
∞ ({|ϕ| > t}) ≤ C1 Per ({|ϕ| > t}),

for almost every t > 0. Integrating both sides with respect to t and using
the classical coarea formula, one deduces that

ˆ

Rd
|ϕ|dHd−1

∞ ≤ C1

ˆ ∞

0
Per ({|ϕ| > t}) dt

= C1

ˆ

Rd
|∇ϕ| = C1[ϕ]W 1,1(Rd).

(4.3)

Proof of Corollary 1.5 and (1.10). As mentioned to in the Introduction, one
can argue these results by duality, though we here give a direct argument
which relies only upon elementary calculus.
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For every open set U ⊂ Rd, we have
( |U |
ωd

) d−α
d ≤ H

d−α
∞ (U)

ωd−α
,

which follows from a covering argument and the concavity of the function
s ∈ [0,∞) 7→ s

d−α
d . Applying this estimate with U = {|ϕ| > t} and t > 0,

from Theorems 1.3 and 1.7 we then get
ˆ ∞

0
|{|ϕ| > t}| d−αd dt ≤ δ(α, d)

ˆ ∞

0
Hd−α∞ ({|ϕ| > t}) dt

≤ δ(α, d)C ′(d) dist (α,N) [ϕ]Wα,1(Rd),

(4.4)

where δ(α, d) := ω
d−α
d

d /ωd−α is bounded from above independently of α.
Estimate (4.4) yields the continuous embedding of the fractional Sobolev

space Wα,1(Rd) into the Lorentz space L
d

d−α ,1(Rd), which is known to be
stronger than the Sobolev embedding in the Lebesgue space L

d
d−α (Rd). We

recall such an argument for the sake of completeness (see e.g. [30, Lemma 1.3.5/1]):
By Cavalieri’s principle one first writes

ˆ

Rd
|ϕ| d

d−α =
d

d− α

ˆ ∞

0
t

d
d−α−1|{|ϕ| > t}|dt.

Since the function t 7→ |{|ϕ| > t}| is nonincreasing, for almost every t > 0

one has

t
d

d−α−1|{|ϕ| > t}| ≤
(
ˆ t

0
|{|ϕ| > s}| d−αd ds

) d
d−α−1

|{|ϕ| > t}| d−αd

=
d− α
α

d

dt

(
ˆ t

0
|{|ϕ| > s}| d−αd ds

) d
d−α

.

It thus follows from the Fundamental Theorem of Calculus for absolutely
continuous functions that

(4.5)
ˆ

Rd
|ϕ| d

d−α ≤
(
ˆ ∞

0
|{|ϕ| > t}| d−αd dt

) d
d−α

.

Combining (4.4) and (4.5), we deduce the fractional Sobolev inequality. �

Remark 4.4. One shows using basic properties of the Gamma function that

δ(α, d) =
ω
d−α
d

d

ωd−α
≤ 1,

independently of α and d. Indeed, the function x 7→ log (Γ(x+ 1)) is convex
and non-decreasing on the interval [0,∞) (see e.g. Theorem 1.9 in [8]). Since
log (Γ(1)) = 0, we thus have that the map

x ∈ (0,∞) 7−→ log (Γ(x+ 1))

x
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is also non-decreasing. This fact implies that

s ∈ [0, d] 7−→ ω1/s
s =

π1/2

(Γ( s2 + 1))1/s

is a nonincreasing function by computing log (ω
1/s
s ). Hence ω

d−α
d

d ≤ ωd−α
as claimed.

We now move to the case of a smooth connected bounded open subset
Ω ⊂ Rd. Given α ∈ (0, 1) and an open subset U ⊂ Ω, define the relative
perimeter Pα(U,Ω) by

Pα(U,Ω) := 2

ˆ

U

ˆ

Ω\U

dy dz

|y − z|α+d
= [χU ]Wα,1(Ω).

Proposition 4.5. Let Ω ⊂ Rd be a smooth connected bounded open set and γ ∈
(0, 1). There exists a constant C > 0 depending on γ, d, and Ω such that

Hd−α∞ (U) ≤ C(1− α)Pα(U,Ω),

for every open subset U ⊂ Ω with |U |/|Ω| ≤ γ and every α ∈ (0, 1).

Proof. Since (1 + γ)/2 ∈ (|U |/|Ω|, 1), for every x ∈ U by the Intermediate
Value Theorem there exists r = r(x) ∈ (0,diam Ω) such that

(4.6)
|Br(x)(x) ∩ U |
|Br(x)(x) ∩ Ω| =

1 + γ

2
.

Observe that such a choice does not depend on α.

Claim. There exist δ > 0 and a constant C ′ > 0 such that if x ∈ U and r(x) ≤ δ,
then

(r(x))d−α ≤ C ′(1− α)

ˆ

Br(x)(x)∩U

ˆ

(Br(x)(x)∩Ω)\U

dy dz

|y − z|α+d
.

We temporarily take this claim for granted and complete the proof. Us-
ing Wiener’s covering lemma, we coverU with countably many balls (B5r(xi)(xi))i∈N
with xi ∈ U and such that the balls (Br(xi)(xi))i∈N are disjoint. Write
N = I1 ∪ I2 as a disjoint union, where I1 denotes the set of indices i ∈ N
such that r(xi) ≤ δ. Using the Claim and proceeding as in the proof of
Theorem 1.2, we have

(4.7)
∑

i∈I1
(r(xi))

d−α ≤ C1(1− α)

ˆ

U

ˆ

Ω\U

dy dz

|y − z|α+d
.

We now estimate the sum over I2. By smoothness of Ω there exists c > 0

such that

(4.8) |Br(x) ∩ Ω| ≥ c |Br(x)|,
for every x ∈ Ω and every r ≤ diam Ω. Thus,

|Br(x) ∩ U | = 1 + γ

2
|Br(x) ∩ Ω| ≥ c

2
|Br(x)| = c′rd.
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Since r(xi) > δ for every i ∈ I2 and the sets Br(xi)(xi) ∩ U are disjoint, in
this case we have

∑

i∈I2
(r(xi))

d−α ≤ 1

δα

∑

i∈I1
(r(xi))

d ≤ C2

δα

∑

i∈I1
|Br(xi)(xi) ∩ U | ≤

C2

δα
|U |.

Since Ω is smooth and connected, we can apply the fractional Poincaré in-
equality on the connected open set Ω to get

|U ||Ω \ U | ≤ C3(1− α)

ˆ

U

ˆ

Ω\U

dy dz

|y − z|α+d
;

see Corollary 2.5 and Theorem 1.3 in [37]. Since |Ω\U |/|Ω| ≥ 1−γ, we then
get

(4.9)
∑

i∈I2
(r(xi))

d−α ≤ C4(1− α)

ˆ

U

ˆ

Ω\U

dy dz

|y − z|α+d
.

Combining (4.7) and (4.9), we deduce the estimate for Hd−α∞ (U). It now
remains to prove the claim.

Proof of the Claim. We write for simplicity r = r(x). Observe that
ˆ

Br(x)∩U

ˆ

(Br(x)∩Ω)\U

dy dz

|y − z|α+d
≥ 1

(2r)α+d
|Br(x) ∩ U ||(Br(x) ∩ Ω) \ U |.

By the choice of the radius r,

|Br(x)∩U | = 1 + γ

2
|Br(x)∩Ω| and |(Br(x)∩Ω)\U | = 1− γ

2
|Br(x)∩Ω|.

In view of (4.8), we thus have
ˆ

Br(x)∩U

ˆ

(Br(x)∩Ω)\U

dy dz

|y − z|α+d
≥ C1

rα+d

1− γ2

4
c2|Br(x)|2 = C2r

d−α.

This implies that if the claim is false, then there exist a sequence (αn)n∈N
in (0, 1) converging to 1, a sequence (xn)n∈N in U converging to x ∈ Ω and
a sequence of radii (rn)n∈N converging to 0 such that (4.6) is satisfied for
every pair (xn, rn) and

lim
n→∞

(1− αn)
P (Brn(xn) ∩ U,Brn(xn) ∩ Ω)

rd−αnn

= 0.

By Lemma 4.1, the limit point x must belong to ∂Ω.
Consider the rescaled open sets

An := B1 ∩
U − xn
rn

and Vn := B1 ∩
Ω− xn
rn

.

They satisfy in particular |An|/|Vn| = (1 + γ)/2, |Vn|/|B1| ≥ c and

lim
n→∞

(1− αn)P (An, Vn) = 0.

Passing to a subsequence if necessary, the sequence of compact sets (Vn)n∈N
converge with respect to the Hausdorff distance to a compact set K ⊂ B1.
In view of the smoothness of Ω, K is the closed ball itself or the closed ball
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intersected with an affine half-space. In particular, the interior D := intK

is connected and we also have

lim
n→∞

|Vn| = |D|.

Given a connected open subset ω b D, there exists ε > 0 such that
d(ω, ∂Vn) ≥ ε, for every n ∈ N sufficiently large. Since D is connected,
the set ω can be chosen so as to have Lebesgue measure as close as |D| as
we want; the precise choice will be made clear later on. By compactness of
the sequence (χAn)n∈N in L1(ω + Bε), we may also assume that (χAn)n∈N
converges pointwise to a function f in ω + Bε; in particular f is a char-
acteristic function. Given a nonnegative function ρ ∈ C∞c (Bε) such that
´

Rd ρ = 1, we then have

(1− αn)[ρ ∗ χAn ]Wα,1(ω) ≤ (1− αn)[χAn ]Wα,1(Vn) = (1− αn)P (An, Vn).

As n→∞, we then get

‖∇(ρ ∗ f)‖L1(ω) = 0.

Hence, by connectedness of ω we have that ρ ∗ f is constant in ω, and this
fact for every ρ implies that f is constant in ω.

We now choose ω to ensure that f = 1 almost everywhere in ω. For this
purpose, let λ > 0 be such that |An| ≥ λ for every n ∈ N. Since An ⊂ Vn,
we have

|An ∩ ω| = |An| − |An \ ω| ≥ |An| − (|Vn| − |ω|).
Taking ω b D such that |D| − |ω| ≤ λ/3, then for every n large we have

|An ∩ ω| ≥ λ−
2λ

3
=
λ

3
.

In view of the pointwise convergence of (χAn)n∈N in ω we deduce that f is
nontrivial, and thus f = 1 almost everywhere in ω as claimed. Thus,

lim
n→∞

|An ∩ ω| = |ω|.

Therefore,
|ω|
|D| = lim

n→∞
|An ∩ ω|
|Vn|

≤ lim
n→∞

|An|
|Vn|

=
1 + γ

2
.

To get the contradiction, it now suffices to choose ω such that the left-hand
side is greater than (1 + γ)/2. �

The proof of Proposition 4.5 is complete. �

From Proposition 4.5 we deduce the Poincaré trace inequality on do-
mains:

Proof of Theorem 1.6. Let ϕ ∈ C∞(Ω) be such that
´

Ω ϕ = 0. We recall that in
this case there exists a constant C1 > 0 such that

(4.10) ‖ϕ‖L1(Ω, dµ) ≤ C1‖ϕ− a‖L1(Ω,dµ),
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for every a ∈ R. This is well-known and follows from the observation that

|a|µ(Ω) =

∣∣∣∣
ˆ

Ω
(ϕ− a) dµ

∣∣∣∣ ≤
ˆ

Ω
|ϕ− a|dµ.

Thus, |a|µ(Ω) ≤ C2‖ϕ − a‖L1(Ω, dµ) and then apply the triangle inequality
to deduce (4.10).

In view of (4.10), it thus suffices to prove that

‖ϕ− a‖L1(Ω, dµ) ≤ C3(1− α)‖ϕ‖Wα,1(Ω),

for some a ∈ R. For this purpose, we consider two cases:

(i) there exists a ∈ R such that |{ϕ = a}| ≥ 1
3 |Ω|,

(ii) |{ϕ = a}| < 1
3 |Ω|, for every a ∈ R.

Assuming that (i) holds, then for every t > 0 we have |{|ϕ − a| > t}| ≤
2
3 |Ω|. From the assumption µ ≤ Hd−α∞ and the relative Boxing inequality
with U = {|ϕ− a| > t}we have

µ
(
{|ϕ− a| > t}

)
≤ Hd−α∞

(
{|ϕ− a| > t}

)
≤ C4 Pα

(
{|ϕ− a| > t},Ω

)
.

Integrating both sides with respect to t and using the fractional coarea for-
mula with respect to Ω we get

ˆ ∞

0
µ
(
{|ϕ− a| > t}

)
dt ≤ C4[|ϕ− a|]Wα,1(Ω) ≤ C4[ϕ]Wα,1(Ω).

We have the conclusion using Cavalieri’s principle in the left-hand side.
We now assume that (ii) is satisfied. In this case, the function

t ∈ R 7−→ |{ϕ < t}| − |{ϕ > t}|
|Ω|

has jump discontinuities by less that 1/3. In addition, it equals −1 as t →
−∞ and 1 as t→ +∞. Hence, it achieves some value in the interval [0, 1/3]:
There exists a ∈ R such that

0 ≤ |{ϕ < a}| − |{ϕ > a}|
|Ω| ≤ 1

3
.

Since
|{ϕ < a}|+ |{ϕ > a}|

|Ω| ≤ 1,

we thus have that |{ϕ < a}| ≤ 2
3 |Ω| and |{ϕ > a}| ≤ 2

3 |Ω|. It then follows
from the assumption on µ and the relative Boxing inequality that

µ
(
{ϕ− a < −t}

)
≤ Hd−α∞

(
{ϕ− a < −t}

)
≤ C4 Pα

(
{ϕ− a < −t},Ω

)
,

for every t > 0. Similarly,

µ
(
{ϕ− a > t}

)
≤ C4 Pα

(
{ϕ− a > t},Ω

)
,

from which we deduce that

µ
(
{|ϕ− a| > t}

)
≤ C4

(
Pα
(
{(ϕ− a)− > t},Ω

)
+ Pα

(
{(ϕ− a)+ > t},Ω

))
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Integrate both sides with respect to t. Using Cavalieri’s principle and the
relative coarea formula we get

‖ϕ−a‖L1(Ω, dµ) ≤ C4

(
[(ϕ−a)−]Wα,1(Ω)+[(ϕ−a)+]Wα,1(Ω)

)
≤ 2C4[ϕ]Wα,1(Ω),

and the conclusion follows. �

The proof of Theorem 1.7 relies on the following estimate by D. Adams
involving the Riesz potential Iα which is defined as

Iα(z) =
γ(α, d)

|z|d−α ,

where

(4.11) γ(α, d) :=
Γ(d−α2 )

πd/2 2α Γ(α2 )
.

We sketch the proof of the lemma below to keep track of the dependence of
the constant in the inequality.

Lemma 4.6. Let k ∈ {1, . . . , d − 1} and s ∈ (0, d − k). There exists a constant
C = C(d) > 0 such that

ˆ

Rd
Ik ∗ f dHs∞ ≤

C

d− (s+ k)

ˆ

Rd
f dHs+k∞ ,

for every nonnegative function f ∈ C0
c (Rd).

Proof. By Adams’ estimate of the Riesz potential [1, Theorem 6], for every
nonnegative locally finite Borel measure µ in Rd such that µ ≤ Hs∞ and for
every Borel set A ⊂ Rd one has

ˆ

A
I1 ∗ µ ≤ C1Hs+1

∞ (A);

see also [38] where the computation on the bottom of p. 294 shows that
C1 ≤ C ′/(d − (s + 1)). By Fubini’s theorem and Cavalieri’s principle, one
thus gets

ˆ

Rd
I1 ∗ f dµ =

ˆ

Rd
f I1 ∗ µ

=

ˆ ∞

0

(
ˆ

{f>t}
I1 ∗ µ

)
dt

≤ C1

ˆ ∞

0
Hs+1
∞ ({f > t}) dt = C1

ˆ

Rd
f dHs+1

∞ .

(4.12)

To conclude the case k = 1, one takes the supremum of the integral in the
left-hand side with respect to all nonnegative measures µ ≤ Hs∞. For this
purpose, one relies on the sublinearity of the Choquet integral for strongly
subadditive capacities. The Choquet integral with respect to the dyadic
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Hausdorff content Ĥs∞ defined by (3.7) is strongly subadditive, hence by
Choquet’s theorem the map

ϕ ∈ C0
c (Rd) 7−→

ˆ

Rd
ϕ+ dĤs∞,

is sublinear [7, pp. 247–248; 16, Section 54.2]. It thus follows from the Hahn-
Banach theorem that the supremum of the left-hand side of (4.12) over non-
negative measures µ ≤ Ĥs∞ is comparable to

ˆ

Rd
I1 ∗ f dĤs∞,

which yields the conclusion of the lemma when k = 1 since Ĥs∞ ≈ Hs∞.
We now proceed by induction on k using the semi-group property of

the Riesz potential, which gives Ik = Ik−1 ∗ I1. To this end, assume the
conclusion holds with the Riesz potential Ik−1, where k ≥ 2. Using the fact
that Ik ∗ f = Ik−1 ∗ (I1 ∗ f) and an approximation argument on I1 ∗ f by
functions in C0

c (Rd), one gets
ˆ

Rd
Ik ∗ f dHs∞ ≤

C2

d− (s+ k − 1)

ˆ

Rd
I1 ∗ f dHs+k−1

∞ ,

for every s ∈ (0, d − k). Applying now the estimate for the Riesz potential
I1, we obtain

ˆ

Rd
Ik ∗ f dHs∞ ≤

C2

d− (s+ k − 1)
· C3

d− (s+ k)

ˆ

Rd
f dHs+k∞

≤ C2 ·
C3

d− (s+ k)

ˆ

Rd
f dHs+k∞ ,

which is the inequality we wanted to prove. �

We recall that a Borel measure µ in Rd belongs to the Morrey space
Mp(Rd) with p ≥ 1 if

‖µ‖Mp(Rd) := sup
Br(x)⊂Rd

|µ|(Br(x))

rd(p−1)/p
<∞.

Observe for example that Lp(Rd) is included in Mp(Rp) by Hölder’s in-
equality.

The following lemma proved in [35] involves the Morrey space Md(Rd)
and is used in the proof of Theorem 1.7. We sketch the proof to emphasize
its connection with the classical Boxing inequality:

Lemma 4.7. For every ν ∈Md(Rd), there exists Y ∈ L∞(Rd) such that

− div Y = ν in the sense of distributions in Rd,

with ‖Y ‖L∞(Rd) ≤ C‖ν‖Md(Rd).
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Proof. By linearity of the equation, we may focus on the case where the
measure ν is nonnegative. The assumption ν ∈ Md(Rd) is then equivalent
to ν ≤ C1‖ν‖Md(Rd)Hd−1

∞ for some constant C1 > 0 depending on d. It fol-
lows from the functional formulation (4.3) of the classical Boxing inequality
that∣∣∣∣

ˆ

Rd
ϕdν

∣∣∣∣ ≤ C1‖ν‖Md(Rd)

ˆ

Rd
|ϕ|dHd−1

∞ ≤ C2‖ν‖Md(Rd)‖∇ϕ‖L1(Rd),

for every ϕ ∈ C∞c (Rd). By the Hahn-Banach theorem, the map

∇ϕ 7−→
ˆ

Rd
ϕdν

has a continuous extension in L1(Rd,Rd). The conclusion follows from the
Riesz representation theorem. �

Proof of Theorem 1.7. The case α ∈ (0, 1] has already been covered by Corol-
lary 1.5 and (4.3), while the case α = 0 follows from the fact that Hd∞ coin-
cides with Lebesgue’s outer measure in Rd. We are thus left with the case
α ∈ (1, d]. Given k ∈ {1, . . . , d − 1}, we take α ∈ (k, k + 1] and we argue
differently according to whether α is close to k or k + 1:

Case 1. α ∈ [k + 1
2 , k + 1].

For every ϕ ∈ C∞c (Rd), we have |ϕ| ≤ C1 Ik ∗ |∇kϕ|. By monotonicity of
the Choquet integral and Adams’ integral estimate with s = d−α, we have

ˆ

Rd
|ϕ| dHd−α∞ ≤ C1

ˆ

Rd
Ik ∗ |∇kϕ| dHd−α∞ ≤ C2

α− k

ˆ

Rd
|∇kϕ| dHd−α+k

∞ .

Assuming α− k ∈ (0, 1), the fractional Boxing inequality gives
ˆ

Rd
|∇kϕ| dHd−α+k

∞ ≤ C3(α− k)(k + 1− α)[∇kϕ]Wα−k,1(Rd).

Combining both estimates, we get the conclusion since k+1−α = dist (α,N).
When α = k + 1, the classical Boxing inequality implies (4.3). Thus,

ˆ

Rd
|∇kϕ|dHd−1

∞ ≤ C4‖∇(∇kϕ)‖L1(Rd) = C4‖∇k+1ϕ‖L1(Rd),

which combined with Riesz-potential estimate above involving ∇kϕ gives
the inequality with integer order k + 1.

Case 2. α ∈ (k, k + 1
2).

For any nonnegative Borel measure µ in Rd such that µ ≤ Hd−α∞ , by
Adams’ estimate of Riesz potentials in Morrey spaces we have

Iα−1 ∗ µ ≤ C1Hd−1
∞ .

In terms of Morrey spaces, this means that Iα−1 ∗ µ ∈ Md(Rd). We next
observe that for every ϕ ∈ C∞c (Rd) we have ϕ = Iα−k ∗ [(−∆)

α−k
2 ϕ] and

∣∣(−∆)
α−k
2 ϕ

∣∣ ≤ C2 Ik−1 ∗
∣∣∇k−1[(−∆)

α−k
2 ϕ]

∣∣ = C2 Ik−1 ∗
∣∣(−∆)

α−k
2 ∇k−1ϕ

∣∣,
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for some constant C2 > 0 depending on d. By the semi-group property of
the Riesz potential we thus have the pointwise estimate

|ϕ| ≤ C2 Iα−1 ∗
∣∣(−∆)

α−k
2 ∇k−1ϕ

∣∣.
Integrating this estimate with respect to µ and applying Fubini’s theorem
we get

ˆ

Rd
|ϕ| dµ ≤ C2

ˆ

Rd

∣∣(−∆)
α−k
2 ∇k−1ϕ

∣∣ Iα−1 ∗ µ.

Applying Lemma 4.7 with ν = Iα−1 ∗ µ we find Y ∈ L∞(Rd,Rd) such that

−div Y = Iα−1 ∗ µ in Rd

and ‖Y ‖L∞(Rd) ≤ C3, with a constant depending only on d. Therefore,
ˆ

Rd
|ϕ|dµ ≤ C2

ˆ

Rd
∇
∣∣(−∆)

α−k
2 ∇k−1ϕ

∣∣ · Y ≤ C4

ˆ

Rd

∣∣(−∆)
α−k
2 ∇kϕ

∣∣.

Since this estimate holds for every µ ≤ Hd−α∞ , taking the supremum of the
left-hand side with respect to µ and applying Choquet’s theorem as in the
proof of Lemma 4.6, we get

ˆ

Rd
|ϕ|dHd−α∞ ≤ C5

ˆ

Rd

∣∣(−∆)
α−k
2 ∇kϕ

∣∣.

Next, by the integral representation of the operator (−∆)
α−k
2 , we have

ˆ

Rd

∣∣(−∆)
α−k
2 ∇kϕ

∣∣ = cd,α−k

ˆ

Rd

∣∣∣∣
ˆ

Rd

∇kϕ(y)−∇kϕ(z)

|y − z|α−k+d
dy

∣∣∣∣ dz

≤ cd,α−k
[
∇kϕ

]
Wα−k,1(Rd)

,

where

cd,α−k := (α− k)
2α−k−1 Γ(d+α−k

2 )

π
d
2 Γ(1− α−k

2 )
.

The result is thus demonstrated, since cd,α−k = O(α− k) as α→ k+. �

We now establish the equivalence between the homogeneous (α, 1)-capacity
and theHd−α∞ Hausdorff content.

Proof of Theorem 2.1. Given a set A ⊂ Rd and a covering (Bri(xi))i∈N of A,
by the countable subadditivity of the capacity we have

Capα,1 (A) ≤
∞∑

i=0

Capα,1 (Bri(xi)).

Hence,

Capα,1 (A) ≤ Capα,1 (B1)

ωd−α

∞∑

i=0

ωd−αr
d−α
i ,

and the estimate Capα,1 ≤ C1Hd−α∞ then follows by taking the infimum in
the right-hand side.
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To get the reverse estimate, we begin with a compact subset K ⊂ Rd.
Observe that for every nonnegative functionϕ ∈ C∞c (Rd) such thatϕ > 1 in
K, by monotonicity of the Hausdorff content and the Chebyshev inequality
we have

Hd−α∞ (K) ≤ Hd−α∞ ({ϕ > 1}) ≤
ˆ ∞

0
Hd−α∞ ({ϕ > t}) dt.

From Theorem 1.7 we then get

Hd−α∞ (K) ≤ C2[ϕ]Wα,1(Rd).

The conclusion in this case follows by taking the infimum with respect to
ϕ.

The remaining of the proof follows a usual argument based on the inner
and outer regularity of set functions. We next consider an open set U ⊂ Rd.
For every compact subset K ⊂ U , by the previous case applied to K and
the definition of the capacity on open sets we have

Hd−α∞ (K) ≤ C2 Capα,1 (K) ≤ C2 Capα,1 (U).

We now take a non-decreasing sequence of compact subsets (Kn)n∈N such

that
∞⋃
n=0

Kn = U . Since the dyadic Hausdorff content Ĥd−α∞ defined by (3.7)

is strongly subadditive, by the Increasing Set Lemma we have

Ĥd−α∞ (U) = lim
n→∞

Ĥd−α∞ (Kn).

Using the previous estimate with K = Kn and the equivalence Hd−α∞ ≈
Ĥd−α∞ , as n→∞we deduce that

Hd−α∞ (U) ≤ C3 Capα,1 (U).

Finally, given any A ⊂ Rd, by monotonicity of the Hausdorff content and
the previous inequality we have

Hd−α∞ (A) ≤ Hd−α∞ (U) ≤ C3 Capα,1 (U),

for every open superset U ⊃ A. The conclusion follows from the definition
of Capα,1 (A) as the infimum of the capacity in the right-hand side. �

5. THE FRACTIONAL CAPACITY OF D. ADAMS

Setting aside the issue of the continuity of the estimate at the integers,
we now show how our Theorem 1.7 and Theorem 2.1 can be deduced from
the ideas in Adams’ paper [2]. The following theorem has been stated by
Adams in the case of integers, though implicit in his work is the estimate
for α ∈ (0, d):
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Proposition 5.1. Let α ∈ (0, d). There exists a constant A = A(α, d) > 0 such
that

ˆ

Rd
|f | dHd−α∞ ≤ A

∥∥(−∆)
α−k
2 |∇kf |

∥∥
H1(Rd)

.

for every f ∈ S00, where k = bαc.

Here, S00 is the space of Schwartz functions all of whose moments are
zero, and H1(Rd) is the real Hardy space. The constant A given by the
proof of Proposition 5.1 satisfies

A ∼ ‖Iα‖L(M
d
α ,BMO)

,

where the right-hand side denotes the norm of the continuous linear map-
ping µ 7→ Iα ∗µ from the Morrey space of measures M

d
α (Rd) into the space

of functions of bounded mean oscillation BMO(Rd); see [1].

Proof of Proposition 5.1. We begin with the pointwise estimate

|f | ≤ C1 Ik ∗ |∇kf |.

Applying Fubini’s theorem, for any nonnegative Borel measure µ in Rd we
find

ˆ

Rd
|f | dµ ≤ C1

ˆ

Rd
Ik ∗ |∇kf | dµ = C1

ˆ

Rd

[
(−∆)

α−k
2 |∇kf |

]
Iα ∗ µ.

Then by H1-BMO duality (see [21]) we find
ˆ

Rd
|f | dµ ≤ C1‖(−∆)

α−k
2 |∇kf |‖H1(Rd)‖Iα ∗ µ‖BMO(Rd)

≤ C1‖(−∆)
α−k
2 |∇kf |‖H1(Rd)‖Iα‖L(M

d
α ,BMO)

‖µ‖
M

d
α (Rd)

.

Taking the supremum in the left-hand side over all nonnegative measures
µ ∈ M d

α (Rd) such that ‖µ‖
M

d
α (Rd)

≤ 1 and applying Choquet’s theorem as

in the proof of Lemma 4.6 above we deduce that
ˆ

Rd
|f | dHd−α∞ ≤ C2‖(−∆)

α−k
2 |∇kf |‖H1(Rd)‖Iα‖L(Mα/d,BMO),

which gives the conclusion. �

Remark 5.2. A slight variation in the proof which relies on Strichartz char-
acterization of these Hardy-Sobolev spaces (see [39]) shows one has the
inequality

ˆ

Rd
|f |dHd−α∞ ≤ A′ ‖(−∆)

α
2 f‖H1(Rd).(5.1)

for any α ∈ (0, d).
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The fact that there is some constant C = C(α, d) > 0 for which the con-
clusion of Theorem 1.7 holds is then a consequence of Proposition 5.1 and
following the inequality applied to g = |∇kf |:

‖(−∆)
α−k
2 g‖H1(Rd) ≤ B [g]Wα−k,1(Rd),(5.2)

where α− k ∈ (0, 1) and B = B(α, d) > 0 is a constant. The validity of (5.2)
follows from the observation that

‖(−∆)
α−k
2 g‖H1(Rd) = c̃d,α−k

ˆ

Rd

∣∣∣∣
ˆ

Rd

g(y)− g(z)

|y − z|α−k+d
· y − z|y − z| dy

∣∣∣∣ dz

+ cd,α−k

ˆ

Rd

∣∣∣∣
ˆ

Rd

g(y)− g(z)

|y − z|α−k+d
dy

∣∣∣∣ dz ≤ B [g]Wα−k,1(Rd).

In particular, one finds the following version of our estimate:
ˆ

Rd
|ϕ| dHd−α∞ ≤ AB [ϕ]Wα,1(Rd),(5.3)

for every ϕ ∈ C∞c (Rd) and α ∈ (0, d). However, we claim that the constant
AB obtained this fashion cannot tend to 0 at the integers. More precisely,
we now show that the constantA = A(α, d) obtained in Proposition 5.1 and
any constant B = B(α, d) for which inequality (5.2) holds one has

lim
α→n

A(α, d)B(α, d)

|α− n| = +∞

for n ∈ {1, 2, . . . , d}. Thus when one inserts the distance function dist (α,N)

in (5.3), one gets a constant that diverges, in contrast to our result. To see
this, let us first establish

Proposition 5.3. The operator norm of the Riesz potential Iα : M
d
α (Rd) →

BMO(Rd) satisfies

‖Iα‖L(M
d
α ,BMO)

≥ Cα,

for every α ∈ (0, d).

Proof. Observe that for every ball Br(x) ⊂ Rd,
ˆ

Br(x)

1

|z|α dz ≤
ˆ

Br(0)

1

|z|α dz =
Per (B1)

d− α rd−α.

Thus, the measure µα := Id−α dz belongs to the Morrey space M
d
α (Rd) and

‖µα‖
M

d
α (Rd)

= γ(d− α, d)
Per (B1)

d− α .

One also finds

Iα ∗ µα(x) =
Γ(d/2)

2πd/2
log

1

|x| ;
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see e.g. p. 50 in [26]. In particular, the quantity ‖Iα ∗µα‖BMO(Rd) is indepen-
dent of α. Hence,

‖Iα‖L(M
d
α ,BMO)

≥
‖Iα ∗ µα‖BMO(Rd)

‖µα‖
M

d
α (Rd)

= c(d)
d− α

γ(d− α, d)
.

By the explicit formula of γ(d−α, d) given by (4.11) and standard properties
of the Gamma function, we have (d−α)/γ(d−α, d) = O(α) and we validate
our claim. �

Next, we show

Proposition 5.4. For every n ∈ {0, 1, . . . , d} one has

lim
α→n

B(α, d)

|α− n| = +∞.

Proof. Given k ∈ {0, 1, . . . , d−1} and α ∈ (k, k+1), suppose thatB(α, d) > 0

satisfies
‖(−∆)

α−k
2 ϕ‖H1(Rd) ≤ B(α, d) [ϕ]Wα−k,1(Rd)

for every ϕ ∈ C∞c (Rd) (or more generally for Lipschitz functions with com-
pact support). Then inserting the factor of (α− k)(k + 1− α) we have

‖(−∆)
α−k
2 ϕ‖H1(Rd) ≤

B(α, d)

(α− k)(k + 1− α)
(α− k)(k + 1− α)[ϕ]Wα−k,1(Rd).

Now as α→ (k + 1)−, one obtains

‖(−∆)
1
2ϕ‖H1(Rd) ≤

[
lim inf

α→(k+1)−

B(α, d)

k + 1− α

]
‖∇ϕ‖L1(Rd),

and so it is not possible that the limit on the right-hand side stays bounded,
since this would yield a false embedding. Similarly, as α→ k+ one finds

‖ϕ‖H1(Rd) ≤
[
lim inf
α→k+

B(α, d)

α− k

]
‖ϕ‖L1(Rd),

which cannot hold with finite constant. The result is thus demonstrated.
�

Let us now relate this discussion to the capacity Capα,1 introduced in
Section 2. Observe that Remark 5.2 implies

(5.4) Hd−α∞ (K) ≤ CR′α(K),

for every compact set K ⊂ Rd, where

R′α(K) := inf
{
‖(−∆)

α
2 f‖H1(Rd) : f ∈ S00, f ≥ 1 on K

}
.

Adams introduced in [2] the capacity

Rα(K) := inf
{
‖g‖H1(Rd) : g ∈ S00, Iα ∗ g ≥ 1 on K

}
.

In general one cannot restrict the test functions in the computation of this
capacity to be non-negative, and as a result this capacity may fail to be
countably subadditive. However, we observe that
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Proposition 5.5. Let α ∈ (0, d). For every compact set K ⊂ Rd,

Rα(K) = R′α(K).

Proof. First let us remark that the space S00 is closed with respect to the
operator Iα and its inverse (−∆)

α
2 . Therefore, if g ∈ S00 with Iα ∗ g ≥ 1,

the function f = Iα ∗ g ∈ S00 satisfies f ≥ 1 and restricting oneself to the
consideration of such f one finds

inf
{
‖g‖H1(Rd) : Iα ∗ g ≥ 1

}
≤ inf

{
‖(−∆)

α
2 f‖H1(Rd) : f ≥ 1

}
,

and thus Rα(K) ≤ R′α(K). Conversely, for any f ∈ S00 with f ≥ 1, re-
stricting consideration in R′α to functions g = (−∆)

α
2 f ∈ S00 one finds the

reverse inequality. �

Then the lower bound (5.4), the embedding implied by inequality (5.2),
and the straightforward estimate (2.3) yield the chain of inequalities

Hd−α∞ (K) ≤ CRα(K) ≤ C ′Capα,1(K) ≤ C ′′Hd−α∞ (K),

so that these quantities are all equivalent. In this way we obtain a different
approach to Theorem 2.1, and also the following result of Adams:

Proposition 5.6. Let α ∈ (0, d). For every compact set K ⊂ Rd,

Rα(K) ≈ Hd−α∞ (K).
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