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ABSTRACT. We prove that given any 8 < 1/3, a time interval [0, 7], and given any smooth energy
profile e: [0,7] — (0,00), there exists a weak solution v of the three-dimensional Euler equations
such that v € CP([0,T] x T%), with e(t) = Jys lv(z, t)|*dz for all t € [0,T]. Moreover, we show
that a suitable h-principle holds in the regularity class Cg »» for any B < 1/3. The implication of
this is that the dissipative solutions we construct are in a sense typical in the appropriate space of
subsolutions as opposed to just isolated examples.

1. INTRODUCTION

In this paper we consider the incompressible Euler equations
ovw+v-Vo+Vp=0

(1.1)
dive =0,

in the periodic setting z € T3 = R3 \ Z3, where v is a vector field representing the velocity of the
fluid and p is the pressure. We study weak (distributional) solutions v which are Hoélder continuous
in space, i.e. such thatH

lu(z,t) —v(y,t)| < Clz—y|® forall t € [0,T] (1.2)
for some constant C' which is independent of time t.

In his famous 1949 note on statistical hydrodynamics Lars Onsager [Ons49] conjectured that the
threshold regularity for the validity of the energy conservation of weak solutions of is the
exponent 1/3: in particular he asserted that for larger Holder exponents any weak solution would
conserve the energy, whereas for any smaller exponent there are solutions which do not. The first
assertion was fully proved by Constantin, E and Titi in [CET94], after a partial result of Eyink
in [Eyi94] (see also [CCFS08] for a sharper criterion in L3-based spaces). Concerning the second
assertion, the first proof of the existence of a square summable weak solution which does not preserve
the energy is due to Scheffer in his pioneering paper [Sch93]. A different proof has been later given
by Shnirelman in [Shn97]. In [DLS09] the second and third author realized that techniques from the
theory of differential inclusions could be applied very efficiently to produce bounded weak solutions
which violate the energy conservation in several forms (see also [DL10) [Chil4l LXX16], [CFG11],
Shv11l, [Sz¢é12) [CCF16], and [CS14] for related work on the compressible Euler equations, non-
odd active scalar equations, and the stationary Euler equations, respectively). Pushed by the
analogy of these constructions with the famous C' solutions of Nash and Kuiper for the isometric
embedding problem (cf. [Nas54] and [Kuibd]), the second and third authors proposed to approach
the remaining statement of the Onsager’s conjecture in a similar way (cf. [DLS12]). Indeed in
[DLS13] and [DLS14] they were able to give the first examples of, respectively, continuous and
Hélder continuous solutions which dissipate the energy, reaching the threshold exponent 1/10 (see

Date: March 3, 2017.

IThe smallest constant C satisfying (T.2) will be denoted by [v]s, cf. Appendix We will write v € C*(T? x [0, T7)
when v is Holder continuous in the whole space-time.
1



also [IVI5, BSV16] for constructions of Holder continuous weak solutions for other hydrodynamic
models such as the IPM and SQG equations). After a series of important partial results improving
the threshold and the techniques from several points of view, cf. [[sel3al BDLS13| [Buci4, BDLISJ15|
1016l Bucl5, BDLS16], in his recent paper Isett [Isel6] has been able to finally reach the Onsager
exponent 1/3. The proof of Isett combines previous ideas with two new important ingredients,
one developed by Daneri and the third author in [DS17] (the introduction of Mikado flows, see
Section and one introduced by Isett himself the aforementioned paper (the gluing technique,

see Section .

However, the solutions produced in [Isel6] are only shown to be nonconservative and in fact for
those solutions the total kinetic energy fails to be monotonic on any interval of time. Thus Isett’s
theorem left open the question whether it is possible or not to construct solutions which dissipate the
kinetic energy (i.e. with strictly monotonic decreasing energy). In fact the latter is a relevant point
for at least two reasons: dissipative solutions satisfy the weak-strong uniqueness property [Lio96),
BDLS11], and Onsager, in his work, conjectures the existence of dissipative solutions. Indeed, in
[Ons49] Onsager states:

It is of some interest to note that in principle, turbulent dissipation as described could take place
just as readily without the final assistance by viscosity.

In this note we suitably modify the approach of Isett in order to show the following theorem.

Theorem 1.1. Assume e : [0,T] — R is a strictly positive smooth function. Then for any
0 < B < 1/3 there exists a weak solution v € C?(T3 x [0,T]) to (L.1) such that

/ lo(z,t))? do = e(t).
’]I‘S

We are indeed able to prove a stronger statement than Theorem |1.1, namely an h-principle in
the sense of [DS17]. Following [DS17] we introduce smooth strict subsolutions of the Euler equa-
tions.

Definition 1.2. A smooth strict subsolution of (L1) on T? x [0,T] is a smooth triple (v, p, R) with
R a symmetric 2-tensor, such that
v+ div(t ®@0) + Vp = —divR
(1.3)
divy =0,
and R(z,t) is positive definite for all (x,t).

We then can prove that any smooth strict subsolution can be suitably approximated by C? solutions
for any 8 < 1/3. More precisely:

Theorem 1.3. Let (v,p, R) be a smooth strict subsolution of the Euler equations on T3 x [0,T]
and let f < 1/3. Then there exists a sequence (vg,pr) of weak solutions of such that v, €
CA(T3 x [0, 7)),

vp =0 and v QU TR0+ R in L™
uniformly in time, and furthermore for all t € [0, T

/’JI‘3 log|? dx = /1r$ (|9 + tr R) da. (1.4)

Theorem [I.T]can be concluded as a simple corollary of Theorem[I.3] However, we give an alternative,

simpler and self-contained argument for Theorem Indeed the proof of Theorem invokes

some results of [DS17], whereas the argument for Theorem is entirely contained in our note,
2



aside from technical propositions which are classical statements in the literature, all collected in
the Appendix.

The most important differences in our proof compared to that of [Isel6] rely on the estimates for
the “gluing step” of Isett’s proof (we refer to Section for more details) and in a simple remark
concerning the regions where the perturbation is added (see Section . We note that, even
without the extra benefit of imposing the energy profile and achieving the more general h-principle
statement, the proof proposed here is considerably shorter than that of [Isel6].

Acknowledgments. The work of T.B. has been partially supported by the National Science Foun-
dation grant DMS-1600868. The research of C.D.L. has been supported by the grant 200021.159403
of the Swiss National Foundation. L.Sz. gratefully acknowledges the support of the ERC Grant
Agreement No. 277993. V.V. was partially supported by the National Science Foundation grant
DMS-1514771 and by an Alfred P. Sloan Research Fellowship.

2. OUTLINE OF THE PROOF

As already mentioned, although Theorem can be recovered as a corollary of Theorem [1.3] in this
section we outline an independent proof, reducing it to a suitable iterative procedure, summarized
in Proposition below. The same iteration procedure can be used to prove Theorem as
shown in Section [7] at the end of the note, but the corresponding argument will need some results
from [DS17], which we state without proof. In contrast, the proof of Theorem is completely
self-contained.

2.1. Inductive proposition. First of all, we impose for the moment that

sup ‘%e(t)‘ <1 (2.1)
te[0,7

(we will see later that this can be done without loosing generality).

Let then ¢ > 0 be a natural number. At a given step ¢ we assume to have a triple (vq, pg, }Oﬁq) to

the Euler-Reynolds system ({1.3)), namely such that

Orvg + div(vg ® vg) + Vpg = div }O%q
(2.2)
divey =0,

to which we add the constraints that
tr Ry =0 (2.3)
and that
/ pg(z,t)dz =0 (2.4)
T3

(which uniquely determines the pressure).

The size of the approximate solution v, and the error Io%q will be measured by a frequency A, and
an amplitude d,, which are given by

Ay = 2n[a®)] (2.5)
5y =X\ (2.6)

where [z] denotes the smallest integer n > x, a > 1 is a large parameter, b > 1 is close to 1 and
0 < B < 1/3 is the exponent of Theorem The parameters a and b are then related to .
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We proceed by induction, assuming the estimates

HRqHO < Gyt (2.7)
lvglly < MgAq (2.8)
logllg < 1= 6, (2.9)
Sqr1Ag® < e(t) — /TS lvg)? dz < 6441 (2.10)

where 0 < @ < 1 is a small parameter to be chosen suitably (which will depend upon ), and M is
a universal constant (which is fixed throughout the iteration and whose choice depends on certain
geometric properties of the space of symmetric matrices and on the “squiggling” regions of the
perturbation step, cf. Remark Lemma and Definition . We refer to Appendix [A| for the
definitions of the Holder norms used above, where we take into account only space reqularity.

Proposition 2.1. There is a universal constant M with the following property. Assume (0 < < 1/3
and
1-p
2
Then there exists an «ag depending on B and b, such that for any 0 < a < aq there exists an ag
depending on B, b, a and M, such that for any a > ag the following holds: Given a strictly positive

energy function e : [0,T] — R satisfying (2.1)), and a triple (vq,éq,pq) solving (2.2)-(2.4) and

o

satisfying the estimates (2.7)—(2.10)), then there exists a solution (vgy1, Rgt1,pg+1) to (2.2)-(2.4)
satisfying (2.7)—(2.10) with q replaced by q + 1. Moreover, we have

1 1/2
E ||Uq+1 - Uq”l < M5q+1-

1<b< (2.11)

[vg+1 = vqllg + (2.12)

The proof of Proposition [2.1] is summarized in the Sections and but its details
will occupy most of the paper and will be completed in Section [6] below. We show next that this
proposition immediately implies Theorem

2.2. Proof of Theorem First of all, we fix any Holder exponent 5 < 1/3 and also the
parameters b and «, the first satisfying and the second smaller than the threshold given in
Proposition Next we show that, without loss of generality, we may further assume the energy
profile satisfies

irtlfe(t) > 517, supe(t) <4y, and supe'(t) <1, (2.13)
t t

provided the parameter a is chosen sufficiently large.

To see this, we first note that the Euler equations are invariant under the transformation

v(x,t) — To(z,Tt) and p(x,t) — Dp(z,Tt).

1/2
= 571 ,
sup e(t)

then using the scaling invariance, the stated problem reduces to finding a solution with the energy
profile given by

Thus if we choose

é(t) = Te(t),
for which we have

. 3/2
M, sup é(t) < 4y, and supé'(t) < <(51(t)> sup €' (t).

inf é(t) >
t (t) = sup, e(t) ¢ ¢



If a is chosen sufficiently large then we can ensure

3/2 .
supé'(t) < (51@)) supe(t) <1, and inf; elt) >N .

t sup, e ¢ sup;, e(t)

Now we apply Proposition iteratively with (vg, Ro,po) = (0,0,0). Indeed the pair (v, Rp)
trivially satisfies (2.7)—(2.9), whereas the estimate (2.10) and (2.1)) follows as a consequence of
(2.13). Notice that by (2.12)) v, converges uniformly to some continuous v. Moreover, we recall
that the pressure is determined by

Apq = divdiv(—v, ® vy + ]32(1) (2.14)

and (2.4) and thus p, is also converging to some pressure p (for the moment only in L" for every
r < 00). Since Ry — 0 uniformly, the pair (v, p) solves the Euler equations.

Observe that using (2.12) we also infelﬂ

o] o0 o) 1-8 1/ 5/ [e'e] ,

_ A/ /! 2 —
> llvars = vally S D Iegrs = vallg™ vger = vally S 26,2 (050) " S DA
q=0 q=0 q=0 q=0

and hence that v, is uniformly bounded in C?C’f " for all B' < . To recover the time regularity, we
could use the Euler equations and the general result in [Isel3b]. Nevertheless, we believe that the
following short and self-contained proof of the time-regularity may be of independent interest:

Fix a smooth standard mollifier ¢ in space, let ¢ € N, and consider 9, := v * y—q, where ¢y(x) =
0=3¢(x¢~1). From standard mollification estimates we have

174 = vllg S llollg 2797, (2.15)
and thus v, — v — 0 uniformly as ¢ — co. Moreover, 7, obeys the following equation
Org + div (v ® V) * Yg—q + Vp sk 1hy—q = 0.
Next, since
—Ap *1hg—q = divdiv(v ® v) * g—q ,
using Schauder’s estimates, for any fixed € > 0 we get
IV % thaallo < VD * ta-alle S [lv@v]|pr270 750 < o3, 200+=5)
(where the constant in the estimate depends on € but not on ¢). Similarly,
_al 2 _
(0 @) * Pp-ally S o @v]l5 220 7F) < Jofff, 290757
Thus the above estimates yield
~ 2 1+e—p'
10641l < lloll3270 =57 (2.16)
Next, for 8" < ' we conclude from (2.15)) and (2.16|) that
~ ~ - - l_B// - ~ ﬁ//
18 = Bg41ll oo S (18 = vllo + 141 = vllo) " (19eTally + 10:Pg-1lo)
S ol 52 2798 1=5"908" (ke _ || 18" g-al#/ (1))
< llollg ™ 27
2Throughout the manuscript we use the the notation = < y to denote x < Cy, for a sufficiently large constant

C > 0, which is independent of a, b, and ¢, but may change from line to line.
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Here we have chosen ¢ > 0 sufficiently small (in terms of 5 and 3”) so that that ' — (1+¢)8" > «.
Thus, the series

v =7+ Z(ﬁtﬁl — 0g)

q>0

converges in CgCtﬁ " Since we already know v € coch ', we obtain that v € CP"([0,T] x T3) as
desired, with " < 8/ < 8 < 1/3 arbitrary.

Finally, since d441 — 0 as ¢ — oo, from ([2.10) we have
/ v|? dz = e(t),
T3

which completes the proof of the theorem.

2.3. Stages. Except for Section[7] the rest of the paper is devoted to the proof of Proposition [2.1]
It will be useful to make the assumption that « is small enough so to have

5o \7? Ao
A3a§<q> < 2ot 2.17
7 S N (2.17)

which also require that a is large enough to absorb any constant appearing from the ratio A\y/ alth,
for which we have the elementary bounds

o < =L < Ag. (2.18)

The proof consists of three stages, in each of which we modify v,. Roughly speaking, the stages
are as follows:

e Mollification: (vq,f%q) — (v, Ry);

e Gluing: (vg,f%e) — (’quﬁq);

o

e Perturbation: (4, Ry) — (vVg+1, Rg+1)-

2.4. Mollification step. The first stage is mollification: we mollify v, at length scale ¢ in order
to handle the loss of derivative problem, typical of convex integration schemes. To this aim, we fix
a standard mollification kernel v in space and introduce the mollification parameter

05
(= 5;/2/\(11+3a/2 7 (2.19)
and define
Vg =g * Py
Ry =Ry * 1y + (080,) * g — ve@uy
where f®g is the traceless part of the tensor f ® g. These functions obey the equation

Opve + div(vy @ vg) + Vpp = div R,
(2.20)
divey =0,

in view of (2.2)).
Observe, again choosing « sufficiently small and a sufficiently large we can assume

AP <0<t (2.21)
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which will be applied repeatedly in order to simplify the statements of several estimates.
From (2.21)), standard mollification estimates and Proposition we obtain the following boundsﬂ
Proposition 2.2.

1 —«
lve = vglly < 8,517 (2.22)
loelly 1 S 80N YN >0, (2.23)
HEHM S gt N YN >0. (2.24)

< Gyl (2.25)

[l = o o
T

Proof of Proposition[2.3. The bounds (2.22)) and (2.23)) follow from the obvious estimates

1 1 _
loe = vgllo < lvgllil 5200 S 5120

and
[vell v < llogllil™ < 622007

Next, applying Proposition

e SR 4 g N S G A PN 4 g 2N S gy BN
N+a
on the other hand, by (2.21) )\q_?’o‘ < 02« from which (2.24) follows. Similarly, by Proposition
2 2 2 2 2 2 2
[t = o da| =| [ eafye = o aa] 5 |ty = b, < el 2,
T3 T3 0

which implies ([2.25|). O

2.5. Gluing step. In the second stage we encounter the new crucial ingredient introduced by Isett
in [Isel6]: we glue together exact solutions to the Euler equations in order to produce a new g,
close to vq, whose associated Reynolds stress error has support in pairwise disjoint temporal regions

of length 7, in time, where
5204
Tg = —F——. (2.26)
YOV

The parameter 7, should be compared to the parameter 1! used in the paper [BDLISJI15]. Indeed,
Ty ! satisfies precisely the same parameter inequalities that u satisfies in Section 2 of [BDLISJI5].
We note in particular that like in [BDLISJ15] we have the CFL-like condition

(2.23) .
rollvel e S Tl AL S < (2.27)

as long as « is sufficiently large.

More precisely, we aim to construct a new triple (Uq,ﬁq,ﬁq) solving the Euler Reynolds equation
(2.2) such that the temporal support of R, is contained in pairwise disjoint intervals I; of length
~ 7, and such that the gaps between neighbouring intervals is also of length ~ 7,. More precisely,
for any n € Z let

1 2 1 1
tn = nTy, Ly = [tn + 37¢, tn + 574 N[0, 77, Jn = (tn — 374, tn + 374) N[0, T7.
3In the following, when considering higher order norms ||-||x or ||-||x+1, the symbol < will imply that the constant

in the inequality might also depend on N.
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We require
§e) 3
supp R, C U I, x T°. (2.28)
neN

Moreover, (T4, R,;) will satisfy the following estimates for any N > 0

_ 1 o
15g = velly < 8,514 (2.29)
Vgl oy S 5;/2/\q£7N (2.30)
’ Ry ‘NM < gtV (2.31)
Hatﬁq + (W, V)R, ‘NW < Ggu102r N (2.32)

< Oyl (2.33)

[ 1o = o
T3
where the implicit constants depend only on M, «, and N, cf. Propositions and

The gluing procedure will be broken up into two parts: first, we construct a sequence of exact
solutions to the Euler equations with appropriate stability estimates in Section [3] and then we glue
the solutions together in Section E| with a partition of unity in order to construct v, satisfying the
properties mentioned above. This is indeed the key idea of Isett in [Isel6]. The main difference

with [Isel6] is in the construction of the tensor Eq: in this paper we use the usual elliptic operators
introduced in [DLS13]. This has the advantage that our Reynolds stress remains trace free, in
contrast to the one of [Isel6], and in turn this is crucial to control the energy in the perturbation

step below. It should be noticed that in [[sel6] the author resorts to a different definition of R,
because he is not able to find efficient estimates. Our main technical improvement is that this
difficulty can be overcome employing suitable commutator estimates on the advective derivative of
differential operators of negative order, cf. the proof of Proposition and Proposition This
remark allows us not only to keep a better control on the energy and a trace-free Reynolds stress with
the desired estimate, but it also shortens the arguments considerably compared to [Isel6].

2.6. Perturbation and proof of Proposition The gluing procedure can be used to localize

the Reynolds stress error R, to small disjoint temporal regions, but it cannot be used to completely
eliminate the error.

First of all note that as a corollary of (2.10)), (2.25) and (2.33)), by choosing a sufficiently large we
can ensure that

)
Y+l < e(t) — / |@q|2 dx < 25q+1 . (2.34)
2)\8‘ T3

Starting with the solution (Uq,faq,ﬁq) satisfying (12.28) and the estimates ([2.29)-(2.34)), we then
produce a new solution (vg41,Pg+1, éq+1) of the Euler-Reynolds system ([2.2)) with estimates

_ _ _ M
HUQ-H — Uq”O + )\qiluvq-i-l - Uqu < ?5(]121 (2.35)
1/2 1/2/\
> +19% g
||Rq+1Hoc S q)\lﬁ
q+1
12612 1420
0g 07 A
1 atle (2.37)
Ag+1

(2.36)

0,
oft) = [l do = 252 <
T3 2

cf. Corollary [5.8] and Propositions [6.1] and



As in previous papers [DLS14, Isel3al BDLS13| Bucl4, BDLISJ15, Bucl5, BDLS16] the key idea,
introduced in [DLS13], for reducing the size of the error is to add a highly oscillatory perturbation
Wq4+1 to Ty, Previous schemes heavily relied on Beltrami flows, but these seemed insufficient to
push the method beyond Hélder exponent 1/5. A new set of flows, called Mikado flows, with much
better properties were introduced in [DS17] and indeed, a key element in the proof of Isett [Isel6]
is the observation, already used in [DS17], that Mikado flows behave better under advection by a
mean flow.

An important point is that the Mikado flows will not only be used to “cancel” the error R,
but also to “improve the energy” in areas where the error vanishes identically. In particular, the
perturbation will be added in spacetime regions which are disjoint and contained in time-slabs of
thickness 27,, but with the property that their projections on the time axis is a covering of the
interval [0, 7).

Proof of Proposition[2.1. The estimate (2.12)) is a consequence of (2.22)), (2.23)), (2.29), (2.30) and
[2-35):

_ M 1 _
[vg+1 = vglly + )‘q-&l [vg41 —v1lly < 75qf1>‘q+1 + qu{ilga + 05;/2)‘11/\(1-&1 J

where the constant C' depends on «, 5, M, but not on a,b and ¢. In particular, for every fixed b
(2.12) holds if a is large enough. For (2.8)), we use the induction assumption to get

M . 1 o —
legaalln < MO A + 0,581 M1 + OO0 + Co P AN

1/2

and again a sufficiently large choice of a will guarantee |[v|lg+1 < M 5qilx\q+1. Similarly for (2.9)),
which will follow from

1
logs1llo < llvgllo + llvgsr — vgllo < 1 — 8% + M6 /7, .

From ([2.36]) and ([2.37)), the inequalities (2.7) and (2.10)) follow as a consequence of the parameter
inequality
1/2 (12
6‘1/ 6q/+1)‘q 5q+2

— \8«a
)‘II‘H )‘q—i-l

(2.38)

To see this, one divides by the right hand side, takes logarithms and divides by log Ay, to obtain

1
—B—Bb+1—b+ 20’8 +8ba + O <0,
log A\q

where the error term O (ﬁ) is due to the constants in (2.18). From the relation (2.11)), if « is
sufficiently small we obtain

~B—Bb+1—b+2b°8+8ba < 0. (2.39)

Hence fixing b to satisfy (2.11)), choosing subsequently « sufficiently small and then a sufficiently
large, we obtain ([2.38)).

Finally, an entirely analogous argument shows ([2.10) from ([2.37)). U
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3. STABILITY ESTIMATES FOR CLASSICAL EXACT SOLUTIONS

3.1. Classical solutions. For each i, let t; = i7y, and consider smooth solutions of the Euler
equations

Opv; + diV(Uz‘ &® ’UZ') +Vp; =0
dive; =0 (3.1)
vi(+,ti) = ve(+, ) -

defined over their own maximal interval of existence. Next, recall the following

Proposition 3.1. For any a > 0 there exists a constant ¢ = c(a) > 0 with the following property.
Given any initial data ug € C*°, and T < cHuoHl—ia, there exists a unique solution u : R3 x
[~T,T] — R3 to the Euler equation

Ou+diviu®@u) + Vp =10

divu =0,
’LL(‘, 0) = Uo
Moreover, u obeys the bounds
el yya S lluollyia - (3-2)

for all N > 1, where the implicit constant depends on N and o > 0.

Proof of Proposition 3.1 The proof of the existence of a unique solution is standard (see e.g. [MB02,
Chapter 4]), and follows from the restriction 7" < ¢||uol[,,,- The higher-order bounds (3.2)) are
also standard, and can be obtained as follows: For any multi-index 6 with |#| = N we have

9,0% +v - Vv +[8°,v- Vv + Vp = 0.
Using the equation for the pressure —Ap = Vv - Vv and Schauder estimates we obtain

IVplla S IV - Volln-14a S Iollirallollvsa.

Therefore
18 + v - V) 0[lac S [[V]l1-4allv]| N tas
and (3.2 follows by applying (B.3)) and Gronwall’s inequality. O

An immediate consequence is:
Corollary 3.2. If a is sufficiently large, for |t —t;| < 14, we have

Vil y o S 5;/2)\q€1_N_0‘ < Tq_lﬁl_zw'a for any N > 1. (3.3)

Proof of Corollary[3.3 We apply Proposition and use the estimate ([2.27)) to obtain

[vill v +a S llve(ti) | N1a

for any N > 1. From (2.23)) we then deduce the estimate (3.3]). O
10



3.2. Stability and estimates on v; — vy. We will now show that for |t; — t| < 74, v; is close to vy
and by the identity

v; — Vg1 = (v; — vp) — (Vig1 — Vo),

the vector field v; is also close to v;41.

Proposition 3.3. For |t —t;| < 7, and N > 0 we have

i = vell s STedqarl N1, (3.4)
IV (e =PIy ga S grnl ™71, (3.5
I Dee(vi = vo)ll o S gl N, (3.6)
where we write
Dyy=0+v,-V (3.7)

for the transport derivative.

Proof of Proposition[3.5 Let us first consider (3.4) with N = 0. From (2.20) and (3.1]) we have

0s(vg = vi) + (ve - V) (vg = vi) = (vi = v) - Voi — V(pg — pi) + div Ry (3.8)
In particular, using
A(pe — pi) = div(Vug(vg — v5)) + div(Voi(vg — v;)) + divdiv Ry, (3.9)

estimates (2.24) and (3.3), and Proposition (recall that 9;0;(—A)~! is given by 1/36;; + a

Calder6n-Zygmund operator), we conclude

IV (e = p) (- Ol < 852 Agl ™ o = villy, + 8g4a 17

a =Y
Thus, using (2.24) and the definition of 7, we have
1Dt e(ve =0l S Sqrl 77 Jog — i, (3.10)

By applying (B.3]) we obtain
t
1(vr = v) (o)l S 1=t Sgur 7 + / 77 1 (ve = v3) ()|l ds.

Applying Gronwall’s inequality and using the assumption |t —t;| < 7, we obtain
[vi = velly S Tgbg4167 1, (3.11)
i.e. (3.4) for the case N = 0. Then, as a consequence of (3.10) we obtain (3.6]) for the case N = 0.

Next, consider the case N > 1 and let 6 be a multiindex with |#| = N. Commuting the derivative
9? with the material derivative 9; 4+ vy - V we have

12,60 (ve = vi)lla S 118° Dee(ve = vi)lla + [[[ve - V,8%) (v = vi) o

S 118°Dee(ve = vi)lla + llvellv+allve = villiva + veli+allve = villv+a

S 10 Dre(ve = vi)la + loel nr1allve = villa + lvelli+allve — vill v +a
where in the last inequality we used the standard interpolation inequalities on Hélder norms, cf.
. On the other hand differentiating leads to
167 Dye(ve = vi)la S llve = vill vvallvilliva + [[ve = villallvillx+14a + I = pillv+14a + | Rellv+1+a

S 7y ve = villvra + S VT V(e — pi) | Ve (3.12)
11



where we have used . Furthermore, from we also obtain, using Corollary and
IV(pe = pi)lIvta S (lvel N414a + [[vill Nr14a) [ve = villa
+ ([vellta + lvillia) [ve = vill v o + 1Rl v414a
S g N 7 g — il Na - (3.13)
Summarizing, for any multiindex 6 with |#| = N we obtain
1D¢,00” (00 = vi)lla S Sqr &N + 77 Jog — vil| N
Therefore, invoking once more we deduce

t
It = ) Dl S abyeat ™44 [0 = )8 v
t;

and hence, using Gronwall’s inequality and the assumption |t —¢;| < 7, we obtain (3.4). From

(3.13) and (3.12)) we then also conclude (3.5)) and (3.6]). O

3.3. Estimates on vector potentials. Define the vector potentials to the solutions v; as

2 = Bu; := (=A) ! curl v, (3.14)
where B is the Biot-Savart operator, so that
divz; =0 and curl z; = v;. (3.15)

Our aim is to obtain estimates for the differences z; — z;41. The heuristic is as follows: from
Proposition [3.3] we obtain
—N-1
lvi = vit1lNra S Tgdg+1€ e

Since the characteristic length-scale of the vectorfields v; is £ (cf. Corollary , we expect to gain
a factor £ when passing to first order potentials. This is formalized in Proposition [3.4] below.

Proposition 3.4. For |t —t;| < 74, we have that

[|2; — Zi+1HN+a S 7'q‘sq—HgiNﬂ% ) (3.16)
”Dtl(zi - Zi+1)HN+a S 5q+1€_N+a ) (3.17)

where Dy g is as in (3.7).

Proof of Proposition[3.4 Set z; := B(v; —v;) and observ that z; — z;41 = Z; — Z;+1. Hence, it suffices
to estimate Z; in place of z; — z;41.

The estimate on ||VZ||y_,,, for N > 1 follows directly from (3.4) and the fact that VB is a
bounded operator on Holder spaces:

IVZil N1 = VB = o)l y 140 [0 = vell v go S Tadgr N (3.18)
Next, observe that
By (v — vg) + v - V(v — vg) + (vi — vg) - Vg + V(pi — pe) + div Ry = 0. (3.19)

Since v; — vy = curl Z; with div Z; = 0, we haveﬁ
ve - V(v; —vg) = curl((w . V)Ei) + div((%i X V)vg)
((v; —wvp) - V)v; = div((éi X V)viT),
so that we can write as
curl(9;; + (ve - V)5) = — div((Z x V)ve + (5 x V)vl) — V(p; — pe) — div Ry. (3.20)

4Here we use the notation [(z X V)v]¥ = €290’ for vector fields z, v.
12



Taking the curl of (3.20) the pressure term drops out. Using in addition that div Z; = dive; = 0
and the identity curl curl = —A 4+ V div, we then arrive at

—A(8zi + (ve - V)Z) = F,
where
F = -Vdiv((% - V)ve) — curldiv (% x V)ve + (% x V)v!) — curldiv R.
Consequently,
10eZi + (ve - V)ZillNta S ([vill N414a + lvellvt14a) | Zlla
+ (lvilliva + vellira) I Zil v+a + 1 Rell Nva
Stz e + 7y N Z A+ gl N (3.21)

Setting N = 0 and using and Gronwall’s inequality we obtain

||2i||a 5

which together with (3.18) gives (3.16)). Using (3.16)) into (3.21)) we conclude
1005 + (00 - V)Zillv s S Sgral N0

Tq(Squlga y

Finally commuting the derivatives in the N + a-norm with D, as in the proof of Proposition

and using again (3.16]) we achieve (3.17]). O

4. GLUING PROCEDURE

Now we proceed to glue the solutions v; together in order to construct v,. The stability esti-
mates above will be used in order to ensure that 7, remains an approximate solution to the Euler
equations.
4.1. Partition of unity and definition of v,. Let

t; = 17q, I = [t + 37q, ti + 373) N [0, 77, Ji = (ti — 374, ti + 27) N[0, T].

Note that {I;, J;}; is a decomposition of [0, 7] into pairwise disjoint intervals. We define a partition
of unity {x;}; in time with the following properties:

e The cut-offs form a partition of unity

ZXZ- =1 (4.1)

e supp x; Nsupp Xi+2 = @ and moreover

supp X; C (ti — 374, ti + 27y)
xi(t) =1 forte J;

e For any ¢ and N we have
10N xilly S 7 Y- (4.3)

We define
Vg = Z XiVi
Y = xipi

13



Observe that divy, = 0. Furthermore, if ¢t € I;, then x; + x;+1 = 1 and x; = 0 for j # 4,7 + 1,
therefore on I;:
Vg = Xivi + (1 — Xi)vit1
175,1) = xipi + (1 — Xi)pit1
and
01y + div(v, ® 7g) + Vf?gl) = Xi0vi + (1 — x3)Opvig1 + Opxi(vi — vig1)
+ div (xFv; ® v + (1 — Xi)*vit1 @ vig1)
+xi(1 = xi) div(v; ® vig1 + vig1 @ v;))
+xiVpi + (1 = Xxi)Vpit1
= OiXi(vi — vit1) — Xi(1 — x3) div ((vi — vi1) @ (Vi — vit1)) -

On the other hand, if ¢ € J; then x; = 1 and x; = 0 for all j # 4 for all t sufficiently close to ¢
(since J; is open). Then for all ¢t € J; we have

6q = Vg, ﬁ((ll) = Di,
and, from (3.1]),
800, + div(v, ® 1) + VB = 0.
4.2. The new Reynods tensor. In order to define the new Reynolds tensor, we recall the operator
R from [DLS13], which can be thought of as an “inverse divergence” operator for symmetric
tracefree 2-tensors. The operator is defined as
(Rf)T = RIEf
ik 1, ., 1,4 1 . (4.4)
RVF = *iA 618]816 + §A 8k5” - A azéjk - A 8]51k

when acting on vectors f with zero mean on T3. The following statement, taken from [DLS13], can
be proved by direct calculation.

Proposition 4.1. The tensor R defined in (4.4) is symmetric, and we have

div(Rf)=f
for any f with zero mean on T3.
We define
Ry = 0xiR(vi — vis1) — xi(1 = Xi) (Vi — vi1)©(v; — vig1)
P = —xi(1 = xi)|vi — visa |,

for t € I; and ﬁq =0, 17512) =0 for t ¢ |J, I;. Furthermore, we set
By =Dy +5;
It follows from the preceding discussion and Proposition that
° ﬁq is a smooth symmetric and traceless 2-tensor;
e For all (z,t) € T3 x [0, 7]
O + div(v, ® 7g) + Vp, = div ﬁq,

divo, = 0;
14



e supp R, C T x |, L.

4.3. Estimates on v,. Next, we estimate the various Holder norms of 7, and Rq in order to obtain
229)-E32).

Proposition 4.2. The velocity field v, satisfies the following estimates

1 (e}
15g — vell,, S 8.7,¢ (4.5)
Hﬁq - WHJ\H.Q 5 7—qfsq—i-lg 1-Nta (4.6)
(AN 51/2)‘ e (4.7)

for all N > 0.
In particular, this lemma shows that the claimed estimates (2.29)—(2.30) indeed hold.

Proof of Proposition [{.2. By definition
Vg — V¢ = Z Xz

Therefore Proposition [3.3] implies

||ﬁq - UKHN—}-OA 5 7_q(sq+1€_1_N+a- (48)
Note that using the definition of ¢ in (2.19)) and 7, in (2.26]) and the comparison ([2.21)
S Tt = 2N < A <1 (4.9)

Therefore we obtain , and furthermore, for any N > 0
[7g — W|‘1+N+a S 0g+17q (N 5;/2)‘q(£>‘q)3a€_N B 5;/2)‘q€_N
Then it also follows using (2.23]) that
H%HHN Sllvelien + loe = Tllisnra S 520N O
4.4. Estimates on the stress tensor. We are now in a position to estimate the glued stress

tensor Eq:

Proposition 4.3. The stress tensor Rq satisfies the following bounds for any N > 0:
Ry|| S o 4.10
IR, S0 (4.10)

00+ 7, V)ﬁqHN+a < Bg10 AL N0 (4.11)

This shows that the claimed estimates (2.31)—(2.32)) are indeed obeyed by Roq.

Proof of Proposition [{.3 Recall that v; = curl z;, so that we may write for ¢ € I;:

Ry = 0xi(Rewl)(2; — zir1) = Xi(1 = X0) (i — vi1)®(v; — vig1).
Note that R curl is a zero-order operator. Therefore we obtain from Propositions [3.3] and [3.4] for
any N > 0 with t € I;
IRqllnv+a S 75 Mz = zigallvra + v = vietllvtallvi = vigt o
S 6q+1€ N+a+7_252+1£ 2—N+2a < 5 €7N+Ol‘

15



Here we used again . Next, we calculate
Dy /Ry = 07 xi(R ewl) (2 — 2i41)
+ Oixi(Rcurl) Dy o(z; — zip1) + Oxilv - V, Reurl] (2 — ziq1)
— 3y (xi(1 = x0)) (vi — vit1)@(vi — vig1)
—xi(1 = x4)) <(Dt,e(vi —0i41))@(v; — Vig1) — (V; — Vi41)@(Dy (Vi — ’Ui+1))>,

where [v - V, R curl] denotes the commutator. Hence, using Proposition and Propositions
and 3.4l we deduce

HDt,ZﬁqHNJra <1027 = zigallNta + 7y I1Dee(zi — zid1) | N+a
+ 75 Hvellallzi — zir1 v 4a + 75 Hvellvrallzi — zigilla
+ 75 lvi = vigal| v rallvi — vigilla
+ | Dte(vi — vit1)[IN+allvi — vitalla + [lvi — viga | v+al| Dee(vi — vigr) ||a
S 7_15q+1€_N+a + (T35q+1€_2)7}1—15q+1€_N+20‘
< quléqﬂffNJra .
Finally, we deduce using :

|@ -+ 90R)|| <l =7)) VBylvia + DRy x4
S ||U€ - 6q”N—‘:—aHEquJra + ||W - 6qHOzHRqHN—i-l—f—a + ”DME(JHN—W
S Tebqqr 6N TE 7 Gy 07 N T
PRI MRV e Wi
again using (4.9)). O
To finish this section we show that 7, has approximately the same energy as vy:

Proposition 4.4. The difference of the energies of v4 and v, satisfies

L 1o = s
T

Proof of Proposition[{. Observe that for ¢ € I,
Tq ® g = (Xivi + (1 — Xi)vit1) @ (xivi + (1 = Xi)vit1)
= Xi0i @ v + (1 = Xi)vit1 @ viy1 — Xi(1 — xi) (vi — vig1) @ (vi — vig1),
so that, taking the trace:

< Gy l® (4.12)

[Tgl* = [oe* = xi(Joil?® = [oel?) + (1 = xi) (Jviga |* = [0e*) = xa(1 = xa)|vi = via
Next, recall that v; and vy are smooth solutions of (3.1)) and (2.20]) respectively, therefore

d .
dt/ v |? — |ve|? da / Vg : Redx
T3 T3

< IVoellol| Rello

1 -1
S 02 Mg S 7y gL,

where we have used ([2.24]) and (3.3). Moreover, v; = vy for t = t;. Therefore, after integrating in

time we deduce
[ o o
’]1‘3
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Furthermore, using (3.4) and (4.9))

/T3 v = v [P da S [l = vialla S 7505416777 S 0g 102,

q ~Y
] [l = e

which concludes the proof. ]

Therefore

S 5q+1£a7

5. PERTURBATION STEP

In this section, we will outline the construction of the perturbation wg1, where
Ug+1 := Wgt1 + Vg,

As already explained in the outline of the proof, the perturbation w1 is highly oscillatory and will
be based on the Mikado flows introduced in [DS17], which are designed to cancel the low frequency
error R, and are Lie-advected by the mean flow of .

5.1. Mikado flows. We begin by recalling the construction of Mikado flows given in [DS17].
Lemma 5.1. For any compact subset N' CC SiXi)’ there exists a smooth vector field
W N x T3 = R3,

such that, for every R € N
dive(W(R, &) ® W(R,§)) =0

(5.1)
dive W(R,&) =0,
and
W(R,6)de = o, (5.2)
T3
fwrgewree - Rk (5.3)
T3
Using the fact that W (R, ¢) is T3-periodic and has zero mean in ¢, we write
W(RE= )  a(R)Ae™* (54)

kez3\{0}

for some coefficients ay(R) and complex vector A;, € C3, satisfying Ay, - k = 0 and |Ax| = 1. From
the smoothness of W, we further infer
CN,N,m
Sup |Dgak(R)‘ (km)
ReN k|
for some constant C, which depends, as highlighted in the statement, on N/, N and m.

IN

(5.5)

Remark 5.2. Later in the proof the estimates ([5.5)) will be used with a specific choice of the compact
set N and of the integers N and m: this specific choice will then determine the universal constant
M appearing in Proposition |2. 1.

17



Using the Fourier representation we see that from ([5.3))

W(R, &) ®@W(R,§) = R+ ) Cp(R)e™* (56)
k0
where CN
N
Cyk =0 and sup |Dg0k(R)‘ < (,7”1,711) (5.7)
ReN ||
for any m, N € N.
It will also be useful to write the Mikado flows in terms of a potential. We note
ik x A ik x A kx(kxA
curlg <(l Z|2 k) 6k'£> = —1 (Z ‘;2 k> x kel = —><(k|2><k)ek'5 = Apett (5.8)

5.2. Squiggling stripes and the stress tensor Rq,i. Recall that Eq is supported in the set
T3 x |, I;, whereas, from it follows that [0,7]\ U, £; = U; Ji, where the open intervals J;
have length |J;| = %Tq each, except for the first and last one, which might be shortened by the
intersection with [0, 7], more precisely

Ji = (ti - %Tq,ti + %Tq) N [O,T] .

We start by defining smooth non-negative cut-off functions n; = n;(z,t) with the following proper-
ties

(i) m; € C(T2 x [0,T]) with 0 < n;(z,t) < 1 for all (z,t);
(ii) suppn; Nsuppn; = 0 for i # j;
(iii) T3 x I; € {(x,t) : ni(=x, t) = 1};
(iv) suppm; C T x L; U J; U Jipq = T3 x (t; — 374, tisa + 374) N[0, T7;
)

(v) There exists a positive geometric constant ¢op > 0 such that for any ¢ € [0, 7]
Z/ n?(x,t) dx > co.
;I

In view of (iv) we set
I; = (ti — %Tq,ti_;_l + %Tq) N [O,T] .

Lemma 5.3. There exists cut-off functions {n;}; with the properties (i)-(v) above and such that
for any i and n,m >0

10F Dillm < C(n,m)7g ™

where C(n,m) are geometric constants depending only upon m and n.

Proof of Lemma 5.3 First of all we consider the sharp cutoffs 7; defined by
ni = 1g,
Q; = {(x,t): t; + %q(sin(27mc1) + %) <t <ti1+ %(sin(%m:l) — %)}

Next we fix a standard mollifier > in time and the standard mollifier ¢ in space already used so
far. Hence we define 7; by mollifying 7); in space and time as follows:

) = [[isy (222 e (20 dyas,

18
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FiGURE 1. The support of Eq is given by the blue regions. The support of the
cut-off functions 7n; are encapsulated in the red region.

where c; and ¢y are positive geometric constants. One may check that a suitable choice of ¢; and

co yields the desired conclusions (see Figure [1)). O
Define
1 Og+2 _ 2
pq(t) =5 | e(t) — == — [vg|” da
3 2 -
and
n; (2, 1)

Pq.i(T,t) := Pq(t)
o > Jre 2 (y, ) dy"
Define the backward flows ®; for the velocity field v, as the solution of the transport equation

(O +Tg-V)P; =0

D, (z,t;) = .
Define )
Ry := pgild — n?ﬁq
and .
Rq,i _ V@iRi;Z(iV(Pi) ‘ (5.9)

We note that, because of properties (ii)-(iv) of 7;,
e supp Ry; C suppn; and on suppn; we have R, ; = pg4+1,Id — qu;
e supp Rqﬂ‘ C T3 x (t; — %Tq,tiﬂ + %Tq);
e supp R, ; Nsupp Rq,j = () for all 7 # j.

Lemma 5.4. For a > 1 sufficiently large we have

1
IVei —Idflo < 5 fort & supp(n;)- (5.10)
19



Furthermore, for any N >0

Ogt1

S <|pg(t)] < 0g41  forallt, (5.11)
St

1Pg,illg < iT (5.12)

1Pq,ill y S Gg+1 5 (5.13)

10upqllg S 0q116,* A, (5.14)

10tpqill y S Fgirmy (5.15)

Moreover, for all (x,t)
Ryi(x,t) € Bijy(id) € 833,
where Bij,(1d) denotes the metric ball of radius 1/2 around the identity 1d in the space S§3x3,

Proof of Lemmal5.4 Note that (5.11) is a trivial consequence of estimate (2.34) and the inequality
40442 < 0g4+1- Note that by the definition of the cut-off functions #;

co < Z/w m; (y, 1) dy < 2 (5.16)

and hence we obtain (5.12)). Since [V¥n;| < 1, the bound (5.13) also follows.

Next, note that by applying (2.30) and (B.5]) we obtain
IV®; — Id||y S 74042 Ng = £2°.

Furthermore, by definition we have

. R, ;
Ry —1d =V, <q — Id> Vel +ve,ve! —1d
Paq,i
2R
= v, ve! 1+ vo,ve! —1d
Pyq,i
Using (2.31)) we see that
£ < L i<
Pq,i Og+1
Consequently we obtain
| Ry —1d| S €2

so that, choosing a sufficiently large, we ensure that Rq,i(x, t) is contained in the ball of symmetric
matrices B (1d).

Finally, to prove (j5.15)) we first note that

d -
‘dt/|vq(m,t)|2 dr| = ‘2/Vvq-qux

19eqlly S Fa184°Aq
Then, since ||0in;||n S Tq_l and 5;/2Aq < Tq_l, using (5.16)), the estimate (5.15)) follows. O

< 00410470

Thus



5.3. The perturbation and the constant M. The principal term of the perturbation can be
written as

Wo ‘= Z (pq7i(1’, t))1/2 (VCDZ‘)71W(RQ7Z‘, >‘q+1(I>i) = Z Wo,i (517)

i
where Lemma is applied with N = B, 2(Id), namely the closed ball (in the space of symmetric
3 x 3 matrices) of radius 1/2 centered at the identity matrix.

From Lemma it follows that W(qui, Ag+1P;) is well defined. Using the Fourier series represen-
tation of the Mikado flows (5.4) we obtain

W4 i= Z (pq,i(x7 t))1/2 ak(Rqﬂ,)(vq)i)—lAkeiAqulk@)i.
k0

The choice of w, is motivated by the fact that the vector fields

Ui i= (Vi) Apehob®
are Lie-advected by the flow v:

(O +70q - V) Ui = (DU) Uy (5.18)
and thus remain divergence free. For notational convenience we set
bi(2,8) = (pga(e, 1) ar(Ryi(x, 1) Ay

so that we may write

Wo,i i= Z(V(I)i)ilbi’kei)\q+lk'q)i .
k#£0

The following is a crucial point of our construction, which ensures that the constant M of Proposi-
tion [2.1]is geometric and in particular independent of all the parameters of the construction.

Lemma 5.5. There is a geometric constant M such that
M .
bi.xllo < Waq/jl . (5.19)

Proof of Lemmal[5.3. First of all, applying (5.5) with N = 0,m =5 and N = Bi,(Id), we achieve

~ C
lax(Rq)llo < TH
where C' is a geometric constant (cf. Remark . Hence, considering the bound (5.12]), the
constant M is given by C_’ca 2, g

We are finally ready to define the constant M of Proposition from Lemma5.5]it follows trivially
that the constant is indeed geometric and hence independent of all the parameters entering in the
statement of Proposition [2.1

Definition 5.6. The constant M is defined as

M = 64M Z

1
[kt
kEZA {0}

where M is the constant of Lemma .
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In order to ensure wy41 is divergence free, we correct our principal perturbation w, by w., i.e.
Wqt1 = Wo + W, s0 that wy1 is the curl of a vector field. In particular, in view of the identity (5.8))
we define

—i - VoI (k x A) | e ; ey
wem 1 3 Vl(paa) axlRgg)) x LA b § ek,

4+l 2o k| i k0
where .
—1 ~ V(I)Z z,t kx A
i, 1) = 5 (e, ) By, 1)) x o B XA,
q+1 |k

Then from (5.8)) and the identity (see for instance [DSI17])
curl (VOTU(®;)) = cof VO (curl U) (@) = VO (curl U) (@)
one can check that

Wg4+1 = Wo + We =

ik X bri\ ,
curl Z (V(I)Z)T (w) ePrar1k®i | (5.20)

2
Agt i,k£0 K|

Upon letting

R, = Z Ry

5.4. The final Reynolds stress. The new Reynolds stress is thus defined as

Rq—H =R (wq+1 . V@q) +R (8twq+1 + ﬁq . qu+1) + R div (—Eq + (wq+1 & wq+1)) . (521)
Nash error Transpgrt error Oscillaﬁ?)n error

Notice that all three terms in (5.21)) are of the form R f, where f is either a divergence or a curl,
and thus has zero mean. With this definition and Proposition one may verify that

o

8tvq+1 + diV(Uq_H ® Uq—i-l) + qu—i-l = diV(Rq+1) ,

div Vg+1 = 0,

where the new pressure is defined by

DPg+1 = 15(1 + |wq+1|2 - Z Pq,i - (5.22)

2

5.5. Estimates on the perturbation.

Proposition 5.7. Fort e I; and any N >0

[(Ve) ™y + IVeilly S 7, (5.23)
HRW NS (5.24)
bkl < 8,5 [k ~07, (5.25)
les sl < 051 Ag kK| ~0e N1 (5.26)

It is important to notice that the symbol < denotes a dependence of the constants in the estimates
from N, a, 8 and M, but not upon & or a.
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Proof of Proposition[5.7. From (2.30), (B.5]) and (B.6) we obtain
IV®illy S1+7 ||qu|\N <1 +¢q51/2x N

Using the fact that |[V®; —Id||o < 1/2 (see (5.10)), the estimate ) follows (indeed it gives the
slightly better estimate < 14 ¢~N+22 but the other is still enough for our purposes).

Recalling property (iv) of 7; we see that py; is a function of ¢ only on supp Ry, i.e.

(e f) = pq(t)
o) 225 Jrs 77]2'(.%t) dy’

Thus,
Ry > S iy, t) dy =
L =1d - = . Ry, (5.27)
Pq,i Pq(t)
so that by (5.11) and (4.10) we obtain
R .
Hq <140 HR H N <N (5.28)
Pyq,i Og+1

where we have applied the crude estimate < 1+ HRQHNJ’_OC)\géq__,:l S 14 Nraxa < =N,

Therefore, using Lemma and property (v):

| o S IVl IV illg + £
N N
The estimate m ) then follows from (/5.23)).
The estimate ([5.25)) follows as a consequence of ({ -D (5.12) and (5.24)). The estimate ([5.26)) follows

as a consequence of . - and (j5.24 ]

Corollary 5.8. Assuming a is sufficiently large, the perturbations w,, w. and w, satisfy the fol-
lowing estimates

R .
<[Vl [V, + Hp

q?Z

1 M .
lwolly + 5~ llwolly < -8, (5.29)
1
el + 5= el S 88207 A (5:30)
q
1 M .
lwgsallo + 5 lwgsally < 535 (5:31)

where the constant M depends solely on the constant cy in (5.16)). In particular, we obtain (2.35)).

Proof of Corollary[5.8 Taking into account (5.10)), we conclude ||(V®;) || < 2 on supp(n;). Thus,
taking into account that the w,; have disjoint supports from Lemma we conclude

ol < 262 32
[[w,|| < q+1]§0 W S 32 (5.32)

To estimate ||w,||; we observe first that

G

< gt K9l < 2041 K] (5.33)
Compute now

Vwei = Y (V)b V(e F ) 1 N "V ((V;) by g )e ot th P,
k k
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In particular, from (5.33]), Lemma and Proposition (taking into account that the supports
of the w,; are disjoint), we conclude

1 M 1 _ 1 M 1 — 1 _
IVwollo <46, Age1 Y T o8ty e Eéq/quﬂ + o820t (5.34)

k40 k40
where the constant C' depends upon 3, and M, but not upon a. In particular, summing (5.32)
and (5.34) we achieve

_ M . = _
lewollo + Agillwolln < 0,51 + CAga)™" (5.35)

By our definition of the various parameters we get
1/2y143a/2 1—p+43/2
dd " Ag g S clfs pI(1—B43a/)—bitl(1—4)
= <Céd' a
q+17q+1 q+1

where the constant C' depends on (2.18)). Having chosen a small enough so that b > 1 - 68+3a/2/1 _ g,
for a sufficiently large we achieve that the right hand side of ([5.35)) is smaller than M /45;4;.

The estimate ([5.30]) follows as a direct consequence of (5.26)) and ((5.33)).
Combining (5.29) and (5.30) we achieve

(g/\qul)_l =

gl + 5o ol < 8% (T + €0 ) (5.30)
where the constant C' depends upon 3, and M, but not upon a. Hence, arguing as above, if
b>1-5+3a/2/1 — 3 then holds for a sufficiently large (depending on 3, and M). O
Let us define Dy 4 := 0;+74-V to be the material derivative associated with v,. We then have
Proposition 5.9. Fort e I; and N > 0 we have

1D Villy S 6/ Al (5.37)

5 “1)-N
HDt,qRq,i NS T K (5.38)

1/ _1,_-N—1-—
IDsgeinlly S 8.2 e N=1IA ]

1Ta L (5.39)

Proof of Proposition[5.9. Observe that
Dy V&, = -V, Dy,
In particular,
1D Veillv S IV ®illollvgllnir + Vil v [[Tg]l1 -
Thus follows from and . Next, we observe that
Diqpgi = Oipq,i + Vg - Vpg,i

and thus we can estimate

||Dt,qpq7iHN S Hat/)q,iHN + Hpq,i NHH%HO + H@qHNH/’q,iHL

Recall that ||tgllo < [Jvello + ||[ve —vgllo S1 S Tq_l and so from (4.7) we conclude ||74]|n < Tq_lf_N.
Combining the latter estimate with (5.13)) and (5.15]) we achieve

N S Sgar, N (5.40)
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Differentiating (5.27]) we have
: 2y, t)dy | —= : 2(y,t)d =
2y s 150, 1) y) Rq—Z] Uk ' DigRRy. (5.41)

Dw(pq Rys) == <8t Pq(t) Pq(t)

Thus we can estimate, using and ( -
1De.q(pgi Rai) I < 5(}1152/2)\1”“”1% I+ 7715%11)\&”]% v+ 5q+11AaHDt,qRDqIIN
SOARLT N e g PN N L N AN SN (5.42)
Differentiating (5.9) we achieve
Dy gRgi = DigV®i(p, i Rqi) V] + VO Dy g(p, ! Ryi) VO] + V®i(p, | Ryi)(Dy g V)"
Thus we can estimate
1Dt Ry.illv SIDeqVillnll (i Rallo + [1DegVilloll (o Ra)ll v
+ 1DtV ®illoll (g Ra)lolIV®ill v + | Deg (g Ra)llv + 1 Drglpg i Rai) loll Vsl -
Using (5.37)), (5.42]), (]5.28|) and (5.23), we conclude (5.38).
Finally, the estimate ) follows as a consequence of ., Lemma 5.4 . Proposition u -,

and (539,

6. PROOF OF PROPOSITION 2.1

In this section we complete the proof of Proposition by proving the remaining estimates (2.36))

and .

6.1. Estimates of the new Reynolds stress error. In the proposition below we prove the
inductive estimates on Rq41:

Proposition 6.1. The Reynolds stress error Rq+1 defined in (5.21)) satisfies the estimate

1/2 1/2
0, 104 A
> +1 q
HRq+1HO S q)\lﬁ- (6.1)
q+1
In particular, (2.36)) holds.
6.1.1. Nash error. We just write this term as
R (wg1 - VUg) = Z ZR << )b petar ki e eAarihe @ > . Vﬁq) .

i k#0

Using Proposition we bound for t € I
HR (Wq’i)_lbz‘,k@ikq“m" : V@Q)

«

VO b Vgl VB bk VO + [V bk Ty il

~ l1—o N—o
)‘q+1 )‘q+1
R e Y et
S AR Al
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Now, provided « is sufficiently small we claim that we can first fix a suitable N and then choose a

large enough, so that
1 1

N—a a — \l—a’
)\Q-H Nt )\q-ﬁ-(ll
l(]]i;l)f(Nfa),B > )\((Ilfﬁ+3a/2)(N+a)

Such choice is equivalent to A
we need the condition

. Taking the logarithms in base a,

W 1) = (V= ) > ) (154 7).
which would determine the needed N. In order to show that for o sufficiently small we can choose
such an N, we just need to verify the existence of N such that b((N — 1) — Nj5) > N(1 — ).
The latter is equivalent to (b — 1)(N — 1)(1 — 8) > (1 — ) + b which in turn, since § < 1/3 and
b > 1, can certainly be satisfied for N large enough. Finally, having chosen first @ > 0 and then
N according to the above requirement, we can then take a > 1 large enough to beat the eventual
geometric constant due to . Hence we achieve

<,M$@5W

Wzgv@ﬂquéMﬂm@.v@)H,wgig;%;. (6.2)
o )‘q—i-l ’k‘

For the second term in the Nash error we again use Corollary to obtain

HCi,k : V@qHO ||Ci,k: : VﬁqHNJra + ||Ci,k : Vﬁq”g ||(I>i”N+a

HR Ci’kei)\ﬁlk'q)i ’ vgq ’S 1—a N—a
( ) “ )‘q+1 >‘q+1
1 1 1 1 1 1
< 5q/+215q/2)‘q 5q/+215q/2/\q < 5q/+215q/2>‘q (6.3)
S DL T TN T R S AL

where again we assume to have fixed first N and then a large enough. We also implicitly used
that

g1 > 1, (6.4)
which is equivalent to )\;;f > )\;_B 992 The latter inequality follows from (2.11]) and (2.18]), upon
taking logarithms in base a, choosing first a so that (b — 1)(1 — ) > 3, and then a sufficiently
large so that (bl_ol) > log, (4m).

Summing over the frequencies and using that ) keZ3\ {0} |k| =% < oo, we achieve

1 1
5.2 64

- q+174
R (wg+1 - Vg) S W— (6.5)
6.1.2. Transport error. We split the transport error into two parts
(O +vg - V)wgs1 = (9t + Vg - V)wo + (0 + g - V)we.
Applying (5.18) yields
(O +Tq - VIwo = > _ (V)T (VP;) by et 1h s
(6.6)

ik
+ Z(at + g V) (P;{jak(él)> (V@i)_lAkei)‘Hlk'@i )
i,k
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We then apply Corollary to obtain for the first term in
[R ((v00)7 (V) oy o)

< N5 () iklly (V8 (V) ikl (V)T (V) bk 19l 1
~ )\l—a + )\N—a + )\N—oc
g+l q+1 q+1

We use Proposition [5.7] and Proposition [4.2] to estimate
[(VO) T (V) " bk e S IVl Nal (VO) ™ al1bi k]l
+ IVgllall (V) ™ I vtallbiglle + [VTllall (V) ™ bkl v+a

5 5;61£—N—3a 5 5;f15;/2Aq£—N—1—3a ]

. (6.7)

Arguing in a similar fashion for the third summand in (6.7]), we achieve

1/2 1/2 1/2 1/2 1/2 1/2
I (v (v s | 2000 utihol” i
7 o TONGTIRIC AT NS k|8 ATk

where in the last inequality, as in the previous section, we have assumed « sufficiently small and
N appropriately chosen.

For the second term in , let us define
dip(2,) i= Drg ((parra(e, 1) ap(Rilw, 1)) (Vi(2,0) 7 Ay

Using (5.23), (5.13)), (5.15) and (5.38) and again assuming N sufficiently large, arguing as above

we conclude

()| < Wikl Wially s+ 1l 191y
i,k€ a”™ )\1—04 )\N—Oc
q+1 q+1
51/2 51/2 1/2 1/2 1/2
q+1 _ gt174 q£—2a|k’—6 < _gq+174 q|k§|_6
~ T )\l—a‘k‘ﬁ - )\1—04 ~ )\1—40& ’
q7q+1 q+1 q+1

where we have used £72% < A3 < Agﬁ‘rl (see (2.21)).

Now we consider the term involving the material derivative of the correction. Observe

(O +Tg- V)we =Y (Dygcip) €rr1h

i,k
Then applying Corollary and (5.39) yields
iNgr1k-D; ”Dt,qci,k HDtchl'7k||N+ + ||Dt7qci,k”0 ”(I)ZHN+
HR ((Dt,qci,k)ez o ) a S o : : \N-a -
q+1 q+1
1/2 1/2 1/2 1/2
5Q+1 < 5q+1 < 5q+15q )‘q| ‘76
~ 2— ~ 1— ~ 1-3
qu)\q+?|k|6 Tq)‘q+?|]€|6 )‘q+1a

where we used (5.23)), (5.39) and (6.4)).

Again, summing over k # 0 we reach the inequality

q+174
1-3«
)\Q-‘rl

1 1
5.2 64\

IR (Opwg+1 +0g - Vg1) [la S (6.8)
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6.1.3. Oscillation error. Recall the oscillation error may be written as
R div (—Rq + Wgg1 @ wq+1)
= R div (—Eq + w, ® wo) + R div (W ® we + We @ Wy + We @ We) -
=:0q =:09

For the second term we proceed as follows:
1021, S llwo @ we + we @ Wo + we @ well,
1/o 1/o
5.2 8470

)
2 +1 +1%
S el el + ol el + wel2 $ 55 < 21 (69
q+1 q+1
Now consider O7. Due to the supports of the cutoffs ; being mutually disjoint, we have
01 = Rdiv (—Rq + Zwo,i X wo,i> .
i
Using the definition of w,; and (5.6|), the tensor w,; ® w,; may be written as
Wo,i @ Woi = pgiV P, (W @ W)(Ryjiy Ag19:)VE; T
= pgiV®; 'RV T+ paiV P, Ci(Ry) V; TPtk
k40
= Ryi+ Y pgiVP;  Cr(Ry i)V T eharih®i, (6.10)

k40
On the other hand, recalling (5.7))

Vo, 1 Ve TVvelk =0,
consequently

div (Z Wi @ We i — Rqﬂ) = ) div(pgi VO Cp(Ry;) VE; T )eharih s
i i,k=£0

Thus, by Proposition
div(py VO, CrlRai) VO

o1, $ 33 ‘ -

i k#0 q+1

Yy "diV(pq,di);le(Rqﬂ')V(I);T)HN+Q +AUVd_iZ(pq,Nq>i10k(Rq,¢)vq>iT)Ho 193l Nt

i kA0 a+1
1/2 1/2
Og41 0419 Aq
N ZZ E)\l_o‘|k;|6 S Ao (6.11)
i k0 gl 4+l

where we have used (/5.7 and, as in the previous sections, a large choice of N to absorb the estimates

of the second line in that for the first line. Clearly, and (6.11)) give
12 (1/2

041104 Aq

11—«
>‘q+1

|Rdiv (—Rq + wgt1 ® wgs1) la S (6.12)

6.1.4. Conclusion. Clearly (6.1)) follows from (6.5), (6.8), (6.12)) and (5.21].
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6.2. Energy iterate. (2.10) in the following proposition:

Proposition 6.2. The energy of vyy1 satisfies the following estimate:

Og+2
- / g ? da — 22
T3 2

In particular, the estimate (2.37)) holds.

1/9 1
5q/25qfl)\l+2a

Agt1

Proof of Proposition[6.2. By definition we have

/ ‘Uq+1|2 dx :/ |@q|2 dac+2/ Wq+1 -qu:r:+/ |wq($at)|2 dx
T3 T3 T3 T3

We also recall that

Z/ tI‘qu{L‘t x—32/ pqz:z:t :Jc—3pq()_e q+2 /|q‘ dx.

By integrating by parts once and using the identity (5.20) and the estimates (5.23) and (5.25) we

obtain
ik xb
’/ Wgt1 - Vg d (V)T ( 5 k)
T3 |k| 0

Using (5.29)) and (5.30) yields

o, < o
1} ~Y
i Ag+1

=22

i k0

51/2 1/2 )\1—1—2&
/ 2w, - We + |wc\ dr| < Og+1 - L.
T3 g1 Ag+1

Finally, recall from (6.10|) that

|w0 x,t)] dx—Z/ tr Ry i(z,t) dx—i—/ Z PqiV®, trC’k(RqZ)V@ eMPa+1k®i gy
i k0

and thus it remains to bound the second term. Set eg; = pq,ivq);ltr Ck(Ri)VQD;T and use
Proposition and Lemma [5.4] to conclude

Heq,iHN S 5q+1€_N

Next observe that at any given time at most two e, ; are nonvanishing. Hence use (C.1) in Propo-
sition to bound

~ : Sqp1l™N
T _idg+1k-®; q+1
/ g E piVe; ter(Ri)VCI)i e'natt dx NE Vf|N

i k0 k#0 <1+1

As already argued several time, we can choose N such that da+167% /AN, | < 64410;2Xq /X, ;1. Assuming in
addition that N is larger than 4 (so that the series is summable), we obtain the desired estimate. [
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7. AN h-PRINCIPLE

In order to prove Theorem|[L.3] let us first state a variant of Proposition 3.1 from [DS17] that follows
from the estimates in Section 5 used to prove the proposition in [DS17]:

Theorem 7.1. Let (v,p, R) be a smooth strict subsolution of the Euler equations on T3 x [0,T]
and fir 0 < v < 1. Then there exists eg > 0 such that for any ¢ < gg, and for any sufficiently large

A depending on €y and (v, p, R), we have the following: There exists a smooth solution (v,p, R) of
(1.3) satisfying the estimates

lv = vl|g-1 < CA7

lollo + X7 Hlvlls < C
[v@v+R-v®0—R|, , <CA!
IR[lo < CAT

ltr Ry <e,

where C depends solely on (v,p, R), and R is the traceless part of R. Moreover setting
e(t) == 0|* + tr Rdx (7.1)
T3

for any t € [0,T] we have

<e(t) — . lv]?dz < €.

| ™

Proof of Theorem[1.5 Fix k > 1 and let &, < g9. We apply Theorem [7.1] with v = « and X = Ao,
where here (o, \g) are given in the statement of Proposition and where we take a sufficiently

large such that Ao is sufficiently large (in terms of g, and (v,p, R)), so that the hypothesis of
Theorem [7.1] is satisfied. We obtain (v,p, R) satisfying

Jo =Tl <OAG? (7.2)
lvllo + Ag Hllvll <C (7.3)
lv@v+R—-0®0— R, <CA§ (7.4)
|Rllo <CA™! (7.5)
Itr Ry <ek, (7.6)
and the function e(t) as defined by obeys
hcet)y— | [ de<ep. (7.7)

2 T3

Analogous to the proof of Theorem we set

and rescale (v, p, R) to obtain

vo(z,t) :=Tv(x,I't), po(x,t) := T?p(z,Tt) and Ro(z,t) := T?R(x,Tt),



so that (v, po, Ro) also solves ((1.3). Moreover, we have the estimates

cs,?

Bollo + A5 [Toll <=7 (7.8)
€k

2

Cdy
Ek)\é_a ’

Choosing « sufficiently small and choosing a sufficiently large depending on ¢, C, and M, we
obtain

1 Rollo <

1/2
o, < mln(Mé(l)/Q,l —dp) and —a < Ao s

1/ Ek 0

from which we obtain ., and (| .

If in addition we set

é(t) = I'e(Tt)
then from (7.7) we obtain
—<e /|'U()| dr < 01,
and hence we obtain (2.10]) for ¢ = 0. Letting a be sufficiently large, we also obtain ([2.1)).

Applying Proposition [2.1]and arguing as was done in the proof of Theorem [T.1] we obtain a solution
(v, p) to the Euler equations satisfying

/ R dw = &(t). (7.9)
T3
Moreover, by (2.12|) we have the estimate

15— Tolly < 8, (7.10)

Lastly, we define (v, px) by the rescaling
vp =070z, T7 ) and pg :=D"?p(z, T ).

Then (vg,px) is a solution to the Euler equations, satisfying (1.4) as a consequence of rescaling
(7.9). The sequence vy, is uniformly bounded in C? since

loelly < T8l + 117 — ollg) S 67 *(8) + €8, ) S e + C.

Thus (vg ® vi) is also uniformly bounded in C°. By Banach-Alaoglu vj, and vy ® vy, have weak—x
convergent subsequences.

Moreover, by rescaling (7.10|) and using ([7.2]) we have
lor — Bl S ok = vllp + o =Bl or ST+ ON ' S & +CN S &) (7.11)

by choosing a (and thus Ag) sufficiently large in terms of . Moreover, from ((7.4] 7-, (7.8), and
(7.10) we obtain

vk @ vk —v@v =R ;1 Sk @k —v@0]lg+ Ry + |[vev+R-—007—R|,
ST 20T -t ® Tolly+ ]|+l Rl + 025~
Serd; V26 P 4 67) e+ CAGT S O (7.12)

Since the H~! topology uniquely captures the weak—sx limit, the theorem is completed upon passing

ep — 0 in (7.11)—(7.12)). O
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APPENDIX A. HOLDER SPACES

In the following m = 0,1,2,..., a € (0,1), and 0 is a multi-index. We introduce the usual (spatial)
Hélder norms as follows. First of all, the supremum norm is denoted by || f[lo := supgsy 1] [f]. We
define the Holder seminorms as

[l = masx D7l

[f]m+a = max sup D% (1) = D1 (y, )]
m+o —
10]=m gty t |z — y|@

9

where DY are space derivatives only. The Hélder norms are then given by

£l = D [
7=0
I fllmsa = 1flm + [flmra-

Moreover, we will write [f(t)]o and || f(t)||o when the time ¢ is fixed and the norms are computed
for the restriction of f to the t-time slice.

Recall the following elementary inequalities:

[fls < C(e"*[f1r + "I f1l0) (A.1)
forr>s>0,e>0, and

[f9lr < C([f1rllgllo + Il fllolg]r) (A.2)

for r > 0. From (A.1)) withe = || f H(l)/r [f]r '/ we obtain the standard interpolation inequalities

/s < ClIflle~ 11 (A.3)

Next we collect two classical estimates on the Holder norms of compositions. These are also
standard, for instance in applications of the Nash-Moser iteration technique (for a detailed proof
the reader might consult [DLS14, Proposition 4.1]).

Proposition A.1. Let ¥ : Q — R and u : R" — Q be two smooth functions, with Q@ C RN, Then,
for every m € N\ {0} there is a constant C' (depending only on m, N and n) such that

(@ o), < O Dullm—1 + | DYl llullg ™ ]ullm) (A.4)
[Woul, <C(¥h|Dullm-r + [|DY[|m—1[u]f"). (A.5)
We also recall the quadratic commutator estimate of [CET94] (cf. also [CDLS12, Lemma 1)):

Proposition A.2. Let f,g € C®°(T3x T) and ¢ a standard radial smooth and compactly supported
kernel. For any r > 0 we have the estimate

|7 < votg w0 = (F9) x| < I fIlgll

where the constant C depends only on r.
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APPENDIX B. ESTIMATES FOR TRANSPORT EQUATIONS

In this section we recall some well known results regarding smooth solutions of the transport equa-
tion:

atf +v- Vf =9,

(B.1)

f('a 0) = f07
where v = v(t, z) is a given smooth vector field. We will consider solutions on the entire space R? and
treat solutions on the torus simply as periodic solution in R3. The following proposition contains
standard estimates for such solutions (for a detailed proof, the reader might consult [BDLISJ15]
Appendix DJ).

Proposition B.1. Assume |t|||v]|; < 1. Then, any solution f of (B.1) satisfies

£ @)llo < [lfollo +/t lgC> ) o dr, (B-2)

IF ()l < e (Hfolla +/t lgCs)ll dT) ) (B.3)

for all 0 < a <1, and, more generally, for any N > 1 and 0 < a <1

FO)vta S Uolnra + 1t [o]v1alfoli + /0 (l9(Mnsa + (= Dllnralg(li) dr. (BA)

Define ®(t,-) to be the inverse of the flur X of v starting at time to as the identity (i.e. d/atX =
v(X,t) and X (x,tg) = x). Under the same assumptions as above we have:

IVe(t) —1dly < [t [v]1 (B.5)
@)y S It [v]y VN >2. (B.6)

APPENDIX C. POTENTIAL THEORY ESTIMATES

We recall the definition of the standard class of periodic Calderén-Zygmund operators. Let K be
an R? kernel which obeys the properties

o K(z)=0Q (ﬁ) 12]73, for all z € R3\ {0}
e Q€ C™(S?)

* Jis Q(2)dz = 0.

From the R? kernel K, use Poisson summation to define the periodic kernel

Kpa(z2) =K(z)+ > (K(z+0) - K(0).
ez3\{0}
Then the operator

Ticfa) = poo. [ Krolo =) 1 )iy

is a T3-periodic Calderén-Zygmund operator, acting on T3-periodic functions f with zero mean on
T3. The following proposition, proving the boundedness of periodic Calderén-Zygmund operators
on periodic Holder spaces is classical (see e.g. [CZ54)):

Proposition C.1. Fiz o € (0,1). Periodic Calderén-Zygmund operators are bounded on the space
of zero mean T3-periodic C* functions.
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The following is a simple consequence of classical stationary phase techniques. For a detailed proof
the reader might consult [DS17, Lemma 2.2].

Proposition C.2. Let o € (0,1) and N > 1. Let a € C®(T?), ® € C®(T3;R?) be smooth
functions and assume that

Cl<ve|<C
holds on T3. Then

ik-® HGHN+ llallo 12|
dx C1
[ atare AR, (©1)
and for the operator R defined in (4.4), we have
ey o + llallo 19|y
R( zk: <I>)H HaHO +a +a 7
H CL( ~ |k.|1 « + |k‘Nfa

where the implicit constant depends on C’, a and N, but not on k.

APPENDIX D. COMMUTATORS INVOLVING SINGULAR INTEGRALS

The following lemma is a variant of Lemma 1 from [ConI5]:

Proposition D.1. Let a € (0,1) and N > 0. Let Tx be a Calderén-Zygmund operator with kernel
K. Let b€ CN*TL(T3) a vectorfield. Then we have

1Tk b VIflinga S 1blga 1o + 10l x4 1 £1a
for any f € CNT(T3), where the implicit constant depends on o, N and K.

Proof of Proposition[D.1 The case N = 0 is precisely Lemma 1 in [Conl5], except that in the
former paper, the proof is given for Calderén-Zygmund operators defined on R?, and for functions
in C*(R3) N LP(R?). However, note that if f is the 1-periodic extension to all of R? of the function
f on T3, and if x(y) is a smooth cutoff function, which is identically 1 on [~1 — 1/20,1 + 1/20]3,
and vanishes on the complement of [—1 — 1/10,1 + 1/10]3, we then have that

T f () = po. / K(@ — 9)x(0)f()dy + Temootn f @)

where
Tsmooth: CO(T3) — CN(T?))

is a bounded operator, for any N > 0. Thus, modulo using the smoothing property of Timooth, We
may apply directly the proof in [Conl5| to the periodic case of this paper.

Let us now consider the case N > 1, and to this end let § be a multi-index with |§| = N. Then, by
the Leibniz rule

O[T, b-Vf =T (b- V) = 8 (b- VTk f)
_Z (0,>{ (0”0 Vo' f) ~ bV Ty f |

- ; (0> {[TK,a(’/b : V]ae‘(’/f} .

Therefore we obtain from the case N = 0:

|e# Ticss- D111 € 3 1ok svsal s
=0
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Furthermore, by interpolation

1)l +100 S OIS X 101 e and [ fllv—jra S AN ALY,

so that, for any j =0,..., N

[1bll+1+all fllv—j+a S Wbliga Il npa + 10l nyata 1F ]l -

This concludes the proof. O
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