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Abstract
Let V be a separable Hilbert space, possibly infinite dimensional. Let St(p, V ) be the Stiefel

manifold of orthonormal frames of p vectors in V , and let Gr(p, V ) be the Grassmann manifold
of p dimensional subspaces of V . We study the distance and the geodesics in these manifolds, by
reducing the matter to the finite dimensional case. We then prove that any two points in those
manifolds can be connected by a minimal geodesic, and characterize the cut locus.

Résumé. Soit V un espace de Hilbert séparable, éventuellement de dimension infinie. Soient
St(p, V ) l’ensemble des systèmes orthonormés de p vecteurs de V , appelé la variété de Stiefel,
et Gr(p, V ) l’ensemble des sous-espaces vectoriels de V de dimension p, appelé la variété Grass-
mannienne. En réduisant le problème en dimension finie, nous montrons que dans ces espaces il
existe des géodésiques minimales entre chaque paire de points et nous caractérisons le cut-locus.

1 Introduction

1.1 Stiefel and Grassmann manifolds

Let V be a separable Hilbert space, let p be a positive natural number. We assume that
dim(V ) ≥ (2p). We are interested in the Stiefel manifold St(p, V ) and the Grassmann manifold
Gr(p, V ).

St(p, V ) is the set of orthonormal frames of p vectors in V . Equivalently, we consider St(p, V )
to be the set of all linear isometric immersions of Rp into V ,

St(p, V ) = {x ∈ L(Rp, V ) : x> ◦ x = IdRp}.

Here x> ∈ L(V,Rp) is the transpose with respect to the metrics on V and Rp, i.e.〈
x>(v), r

〉
Rp =

〈
v, x(r)

〉
V

for all v ∈ V, r ∈ Rp.

The induced Riemannian metric on St(p, V ) is 〈x, y〉 = tr(x>y). St(p, V ) is a smooth embedded
submanifold in V p, and it is a complete Riemannian manifold with the induced metric.
∗Faculty of Mathematics of the University of Vienna, Austria (philipp.harms@univie.ac.at)
†Scuola Normale Superiore, Pisa, Italy (a.mennucci@sns.it)

1



Gr(p, V ) is the manifold of p-dimensional linear subspaces of V and equals the orbit space
St(p, V )/O(p) with respect to O(p) acting on St(p, V ) by composition from the right.

Our interest in the Stiefel and Grassmann manifolds is due the fact that St(2, V ) with V =
L2([0, 1]) is isometric to the space of planar closed curves up to translation and scaling, endowed
with a Sobolev metric of order one. The O(2)-action on St(2, V ) corresponds to rotations of the
curves. Thus Gr(2, V ) with V = L2([0, 1]) is isometric to the space of planar closed curves up to
translations, scalings and rotations. See [7], [8], [5] and [6]. Any results that are proven about the
Stiefel or Grassmannian immediately carry over to the corresponding space of curves.

When V is finite dimensional, then St(p, V ) is a compact manifold, and by the Hopf–Rinow
theorem any two points in St(p, V ) can be connected by a minimal geodesic. Furthermore, the
diameter of St(p, V ) is finite.

We will prove the same result about St(p, V ) when V is infinite in Thm 3. This is not an
obvious result, as we will recall in the next section. The theorem moreover shows that the geodesic
moves in a finite dimensional subspace; this implies that the minimal geodesic can be numerically
computed using a finite dimensional algorithm; see Sec. 3.3.3 in [6]. A corollary of Thm. 3 is also
that the diameter of St(p, V ) is equal to the diameter of St(p,R2p). We also characterize the cut
locus of of St(p, V ) by the cut loci of St(p,W ), where W is a (2p)-dimensional subspace of V . We
then extend those results to the Grassmaniann Gr(p, V ).

These results imply that in the spaces of curves mentioned above, any two curves can be
connected by a minimizing geodesic. This is important whenever the distance between two curves
is calculated by solving the boundary value problem for geodesics.

1.2 Geodesics in infinite dimensional Riemannian manifolds

Consider a smooth connected Riemannian manifold (M, g), modeled on a separable Hilbert
space (possibly infinite dimensional); let ∇ be the covariant derivative.

Let γ : [0, 1]→ M be a smooth path connecting x to y, where x, y ∈ M . We will say that γ is
a critical geodesic if γ is a solution to the equation

∇∂t γ̇ = 0 ;

note that such γ is indeed a critical point for the action∫ 1

0
g(γ̇, γ̇) dt .

We will say that (M, g) is geodesically complete if the solution of the above equation exists for
all times. This implies that the exponential map expx(v) is defined for all (x, v) ∈ TM .

We denote by d the distance induced by g. d(x, y) is the infimum of the length of all paths
connecting x to y. The infimum is computed in the family of all absolutely continuous paths
connecting x to y. It coincides with the infimum in the family of all smooth paths connecting x
to y 1.

We call γ a minimal geodesic if its length is equal to the distance d(x, y). Up to a time
reparameterization, a minimal geodesic is smooth and is a critical geodesic. We will always silently
assume that minimal geodesics are reparameterized to be critical.

1. Lemma 6.1 in Chap. VIII in [4] can be used to convert any absolutely continuous path to a shorter piecewise
smooth path.
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It is well known that, for any point x ∈ M there exists a neighborhood U of x0 in M and a
neighborhood V of (x0, 0) in TM such that

(x, v) 7→ (x, expx(v))

is a diffeomorphism from V to U2; see Cor. 5.2 and Th. 6.2 in Ch. VIII in [4], where the pair U ,V
is called a normal neighborhood.

It is also trivially proved that, if the metric space (M,d) is metrically complete, then (M, g) is
geodesically complete; see for example Prop. 6.5 in Ch. VIII in [4].

When M is finite dimensional, by the celebrated Hopf–Rinow theorem, metric completeness
of (M,d) is equivalent to geodesic completeness of (M, g), and both imply that any two points
x, y ∈M can be connected by a minimal geodesic.

When M is infinite dimensional, this result does not hold. Indeed, in [1] Atkin provided an
example of an infinite dimensional metrically complete Hilbert smooth manifold M and x, y ∈ M
such that there is no critical geodesic connecting x to y. A simpler example, due to Grossman [3]
(see also sec. VIII.§6 in [4]), is an infinite dimensional ellipsoid where the south and north pole
can be connected by countably many critical geodesics of decreasing length, so that the distance
between the poles is not attained by any minimal geodesic.

2 Paper

2.1 Critical geodesics

When V = Rn, the frames in St(p,Rn) are represented as n× p matrices. Geodesics in Stiefel
manifolds St(p,Rn) are described by a closed–form formula, as demonstrated by Edelman et al. [2]. 2

Proposition 1 (Critical geodesics in St(p, V ) ) Let St(p, V ) be endowed with the induced met-
ric from V p. Let γ : [0, 1] → St(p, V ) be a path. Then the geodesic equation is γ̈ + γ(γ̇>γ̇) = 0.
Solutions to the geodesic equation exist for all time and are given by

(γ(t)eAt, γ̇(t)eAt) = (γ(0), γ̇(0)) exp t
(
A −S
Id A

)
(1)

where Id is the p× p identity matrix and A = γ(0)>γ̇(0), S = γ̇(0)>γ̇(0), that is, A and S are the
p× p matrices of components

Ai,j = 〈γi(0), γ̇j(0)〉V , Si,j = 〈γ̇i(0), γ̇j(0)〉V

and γi are the columns of γ.

The proof and discussion of these results is in Section 2.2.2 in [2].

The solution in (1), while written for St(p,Rn), extends to St(p, V ), for a generic separable
Hilbert space V . So, in analogy to the finite dimensional space, we will call columns the p
orthonormal vectors that compose a frame in St(p, V ).

We note this important fact.

2. [2] credits a personal communication by R. A. Lippert for the final closed form formula (1).
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Proposition 2 Equation (1) shows that the subspace of V spanned by the (2p) columns of γ(t), γ̇(t)
remains in the space spanned by the columns of γ(0), γ̇(0) for all t.

This means that, if W is the subspace of V spanned by the columns of γ(0), γ̇(0), then we can
formulate the geodesic equation as an equation in St(2,W ). Obviously, dim(W ) ≤ 2p.

This also means that, if γ is a critical geodesic connecting x to y, and the space W spanned by
the columns of x, y is (2p) dimensional, then, for any t, the columns of γ(t) and of γ̇(t) must be
contained in W .

2.2 Minimal geodesics

2.2.1 Minimal geodesics in the Stiefel manifold

Theorem 3 Let V be a Hilbert space. Consider a (2p) dimensional Hilbert space W and an iso-
metric linear embedding i : W → V . Then i induces an isometric embedding

i∗ : St(p,W )→ St(p, V ), x 7→ i ◦ x

(here we consider x ∈ St(p,W ) to be a linear isometric immersion of Rp into W ).
1. i∗

(
St(p,W )) is totally geodesic in St(p, V ).

2. Let dW be the distance in St(p,W ) and similarly dV in St(p, V ), then

dW (x, y) = dV

(
i∗(x), i∗(y)

)
. (2)

3. Let x, y ∈ St(p,W ), and a minimal geodesic γ connecting x to y in St(p,W ): then i∗ ◦ γ is
a minimal geodesic connecting i∗(x) to i∗(y) in St(p, V ).

4. The diameter of St(p, V ) is equal to the diameter of St(p,R2p).
5. Any two points x, y ∈ St(p, V ) can be connected by a minimal geodesic γ. Any minimal

geodesic lies in St(p, U), where U is a (2p) dimensional subspace of V (dependent on γ).
6. Let x, y ∈ St(p, V ). Then y is in the cut locus of x if and only if there is a (2p) dimensional

subspace W of V and x̃, ỹ ∈ St(p,W ) such that x = i∗(x̃), y = i∗(ỹ) and i∗(y) is in the cut
locus of i∗(x).

Note that point (5) in the above theorem implies that minimal geodesics can be numerically com-
puted using a finite dimensional algorithm; see Sec. 3.3.4 in [6].

We will need two lemmas.

Lemma 4 Given x ∈ St(p, V ), the set of y ∈ St(p, V ) such that the columns of x, y are linearly
independent is dense in St(p, V ).

Proof. Let U be the linear space spanned by the columns of x, y; if this space is not (2p) dimensional,
then let r1, . . . rk be orthonormal vectors that lie in U⊥, with k = 2p− dim(U). Up to reindexing
the columns of y, we can suppose that the columns x1, . . . , xp, y1, . . . , yp−k are linearly independent.
For ε > 0 small, we then define

ỹi =
{
yi i = 1, . . . p− k
cos(ε)yi + sin(ε)ri i = (p− k + 1), . . . p

.

It is easy to verify that ỹ ∈ St(p, V ) and that the columns of x, ỹ are linearly independent.
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Lemma 5 The theorem holds when V is a Hilbert space of finite dimension n with n > 2p.

Proof. We prove point (1). Let us consider the subgroup G = O
(
i(W )⊥

)
of O(V ) that keeps i(W )

fixed. Then G acts isometrically on St(p, V ) as well, and its fixed point set is i∗
(
St(p,W )

)
. This

proves that i∗
(
St(p,W )

)
is totally geodesic in St(p, V ).

To prove point (2) we first note that since St(p,W ) is isometrically embedded in St(p, V ), we
have

dW (x, y) ≥ dV

(
i∗(x), i∗(y)

)
.

We will show the inverse inequality only for the case when the columns of x and y are linearly
independent. The general case then follows because the set of y such that the columns of x and y
are linearly independent is dense in W by lemma 4 and since distances are Lipschitz continuous.

Since V is finite dimensional, St(p, V ) is compact, so by the Hopf–Rinow Theorem i∗(x) and
i∗(y) can be connected by a minimizing geodesic in St(p, V ). The columns of i∗(x) and i∗(y)
together span the (2p) dimensional space i(W ), so we can apply proposition 2. This allows us to
write γ = i∗ ◦ γ̃ for a path γ̃ in St(p,W ). Then

dW (x, y) ≤ len(γ̃) = len(i∗ ◦ γ̃) = len(γ) = dV

(
i∗(x), i∗(y)

)
.

Point (3) follows from point (2) and the equality

len(i∗ ◦ γ) = len(γ) = dW (x, y) = dV

(
i∗(x), i∗y

)
.

Point (4) follows from point (3). Point (5) follows from the Hopf–Rinow theorem and the
discussion in Prop. 2.

We now prove point (6). By definition, y is in the cut locus of x if and only if there is a geodesic
γ in St(p, V ) with γ(0) = x, γ(1) = y such that

sup
{
t : len(γ|[0,t]) = dV

(
γ(0), γ(t)

)}
= 1.

(Recall that we write dV for the distance in St(p, V ).) Any such geodesic lies in St(p,W ) for some
(2p) dimensional space W . Letting i : W → V denote the isometric embedding, we can write
γ = i∗ ◦ γ̃ for a path γ̃ in St(p,W ). Then one has by point (2) that

sup
{
t : len(γ̃|[0,t]) = dW

(
γ̃(0), γ̃(t)

)}
= 1 .

We now prove Theorem 3.

Proof. The proof of points (1), (3), (4), (6) works as in the finite dimensional case. We will now
prove point (2). We have

dW (x, y) ≥ dV

(
i∗(x), i∗(y)

)
,

since St(p,W ) is isometrically embedded in St(p, V ). It remains to show the inverse inequality.
Consider a smooth path ξ connecting i∗(x) to i∗(y) in St(p, V ). We can find finitely many

points 0 = t0 < t1 < . . . < tk = 1 such that ξ|[ti,ti+1] is contained inside (the manifold part of)
a normal neighborhood. So ξ(ti), ξ(ti+1) can be connected by a minimal geodesic. By joining all
these minimal geodesics we obtain a piecewise smooth path η, with len(η) ≤ len(ξ). Then by
repeated application of proposition 2 there is a finite dimensional subspace W̃ of V that contains
the columns of η(t) for t ∈ [0, 1]. When necessary we enlarge W̃ such that it also contains i(W ).
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Now the finite dimensional version of this Lemma allows us to compare St(p,W ) to St(p, W̃ ), and
we get:

dW (x, y) = dW̃

(
i∗(x), i∗(y)

)
≤ len(η) ≤ len(ξ) .

Since this holds for arbitrary paths ξ connecting i∗(x) to i∗(y) in St(p, V ), we get

dW (x, y) ≤ dV

(
i∗(x), i∗(y)

)
.

Point (5) now follows by choosing any linear subspace W containing the columns of x, y.

2.2.2 Minimal geodesics in the Grassmann manifold

The result on existence of minimal geodesics in the Stiefel manifold carries over to the Grass-
mannian.

Theorem 6 Thm. 3 remains valid when Stiefels are replaced by Grassmannians. Most importantly,
for any two points x, y ∈ Gr(p, V ), there is a minimal geodesic γ connecting x to y. The same
holds for the Grassmannian Gr+(p, V ) of oriented p spaces.

We need a Lemma.

Lemma 7 (Existence of horizontal paths) For any path x : [0, 1] → St(p, V ) there is a path
g : [0, 1] → O(p) such that the path x(t) ◦ g(t) is horizontal, i.e. normal to the O(p)-orbits in
St(p, V ).

Proof. We will look at the Stiefel manifold as

St(p, V ) = {x ∈ L(Rp, V ) : x> ◦ x = IdRp}.

Here x> ∈ L(V,Rp) is the transpose with respect to the metrics on V and Rp, i.e.〈
x>(v), r

〉
Rp =

〈
v, x(r)

〉
V

for all v ∈ V, r ∈ Rp.

Then the tangent space to the Stiefel at a point x is

TxSt(p, V ) =
{
y ∈ L(Rp, V ) : x> ◦ y + y> ◦ x = 0

}
.

O(p) acts on St(p, V ) by composition from the right. The Lie algebra of O(p) is

o(p) =
{
z ∈ L(Rp,Rp) : z> + z = 0.

}
Then the tangent space at x to the O(p)-orbit through x is

Tx
(
x ◦O(p)

)
=
{
x ◦ z : z ∈ o(p)

}
.

The metric on the Stiefel is given by tr(x> ◦ y). Tangent vectors that are orthogonal to the O(p)-
orbits are called horizontal. They form a linear subspace of the tangent space which is given by(

Tx
(
x.O(p)

))⊥
=
{
y ∈ Tx

(
x.O(p)

)
) : ∀z ∈ o(p) : tr(y>xz) = 0

}
= {y ∈ L

(
Rp, range(x)⊥

)
}
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The path x(t) ◦ g(t) is horizontal if and only if

∂t
(
x(t) ◦ g(t)

)
= ẋ(t) ◦ g(t) + x(t) ◦ ġ(t) ∈ L

(
Rp, range(x(t))⊥

)
.

This can be achieved by letting g be the solution to the ODE

∂tg(t) = −x(t)> ◦ ẋ(t) ◦ g(t).

Note that the length of x(t) ◦ g(t) is smaller than or equal to the length of x(t), with equality
if and only if x(t) is already a horizontal path.

We are now able to prove Thm. 6.

Proof. St(p, V ) is a principal fiber bundle with structure groupO(p) over Gr(p, V ) = St(p, V )/O(p).
We prove the existence of minimizing geodesics connecting any two points in Gr(p, V ). Take any
point x̃ ∈ St(p, V ) in the fiber over x. The fiber over y is compact since O(p) is compact. Therefore
d(x, ·) attains a minimum at some point ỹ in the fiber over y. By theorem 3 there is a minimal
geodesic connecting x̃ to ỹ. This geodesic is horizontal since otherwise it could be made shorter by
making it horizontal. (We use lemma 7 here.) By the theory of Riemannian submersions it projects
to a minimal geodesic in Gr(p, V ).

The remaining statements simply follow from Thm. 3 by going to the quotient with respect to
the O(p)-action. For the case of Gr+(p, V ), we use the group SO(p) instead of O(p).
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