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Abstract. We study the convex lift of Mumford-Shah type functionals in the space of rec-
tifiable currents and we prove a generalized coarea formula in dimension one, for finite linear
combinations of SBV graphs. We use this result to prove the equivalence between the minimum
problems for the Mumford-Shah functional and the lifted one and, as a consequence, we obtain
a weak existence result for calibrations in one dimension.

1. Introduction

The Mumford-Shah functional is one of the most important variational model for image seg-
mentation. It was introduced in the late 80’s by Mumford and Shah ([20],[19]) and it can be
defined in its general form as

(1) J(u,K) =

ˆ
Ω\K
|∇u|2 dx+ βHn−1(K) + α

ˆ
Ω\K
|u− g|2 dx,

where Ω ∈ Rn is open, K ⊂ Ω is closed and such that Hn−1(K) < ∞, g ∈ L∞(Ω), u ∈
W 1,2(Ω \K) and β and α are tuning parameters.
The idea of the model is that given g representing the level of gray of an image, it is possible to
get a “smoother” version of it, “close” to the starting one in the L2 norm, by finding a minimizer
of (1). The gain of smoothness for the minimizers comes from penalizing the oscillation of the
competitors (i.e. the Dirichlet energy) and the length of the contour, in order to avoid fractal
behaviour of the boundary of the processed image.
The existence of minimizers for (1) was proved in [15] introducing a weak formulation obtained
considering u ∈ SBV (Ω) and replacing the set K with Su, i.e. the singular set of u:

(2) F (u) =

ˆ
Ω
|∇u|2 dx+ βHn−1(Su) + α

ˆ
Ω
|u− g|2 dx.

It is worth to remark that when α = 0 and β = 1, F is called homogeneous Mumford-Shah
functional.
In the following years there have been a huge effort in understanding the regularity properties
of the functional defined above. We can cite some relevant papers in this direction like [3], [4],
[5], [10]. However, despite all the effort, the main conjecture proposed by Mumford and Shah
in their seminal paper still remains open in its full generality.

Conjecture 1.1 (Mumford, Shah). Let (u,K) be a pair minimizing (2). Then K is locally
union of finitely many C1,1 embedded arcs.

As pointed out for the first time in [5], a blow up limit of appropriate sequences of minimizers
of (2) is a local minimizer of the homogeneous Mumford-Shah functional; for this reason the
characterization of these minimizers is directly related to the solution of the conjecture stated
above. For example it is known that harmonic functions are local minimizers of (2) (for α = 0
and β = 1) in small domains and that the same result holds for step functions and triple
junctions ([1]). Moreover the main achievement in this direction is contained in [6] and it
answers affirmatively to a conjecture proposed by De Giorgi in [14]:

(3) u(ρ, θ) =

√
2ρ

π
sin

(
θ

2

)
ρ > 0, −π < θ < π

1
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is a global minimizer of the homogeneous Mumford-Shah functional. (3) is usually called crack-
Tip.
In [1] Alberti, Bouchitté and Dal Maso introduced the notion of calibration for the Mumford-
Shah functional that resembles closely the classical theory for minimal surfaces by Harvey and
Lawson ([16]). With this technique in [1] they were able to prove the minimality of some
candidates for the homogeneous Mumford-Shah functional like the triple junction or reproving
the minimality of harmonic functions in a very elegant way. However it remains open the problem
of finding a calibration for the crack-tip and for general minimums in higher dimensions. It is
therefore a relevant issue to understand if, given u a minimum for the Mumford-Shah functional,
then there exists a calibration for u.
This is the question we are going to address in this paper. Existence of calibration is a common
issue also in the field of minimal surfaces and also there it is not completely solved. One can
refer to the work of Federer [12] for the classical results in this theory.
As for the Mumford-Shah the main result in this direction was obtained by Chambolle in [8].
He proved the existence of a calibration in dimension one in a weak asymptotic sense using the
following representation formula introduced in [1]:

F (u) = sup
φ∈K

ˆ
Γu

〈φ, νΓu〉 dHn = sup
φ∈K

ˆ
Ω×R
〈φ,D1{u>t}〉,

where K is the set of Borel vector fields φ : Ω× R→ Rn+1 such that

(4)


φt(x, t) ≥ |φ

x(x, t)|2

4
− β(t− g)2 ∀x, t∣∣∣∣ˆ t2

t1

φx(x, s) ds

∣∣∣∣ ≤ α ∀x, t1, t2.

More precisely this representation formula is the particular case of a general one for “local”
functionals in BV presented by Bouchitté in [7].
In particular one can lift F to higher dimension to obtain a convex functional F defined as

F(w) = sup
φ∈K∩C0

ˆ
Ω×R
〈φ,Dw〉

for w ∈ SBV (Ω × R) decreasing in the last variable. If one is able to prove that given u
a minimizer of F , then 1{u>t} is a minimizer of F , then this would imply the existence of
a calibration in a weak asymptotic sense by argument of convex analysis. Moreover another
important consequence is that one can compute the minimum F using the functional F that,
being convex, allows for a efficient gradient descent method ([21]). Chambolle in [8] was able to
prove these facts in dimension one and he pointed out that the same results could be obtained
building up a coarea-type formula for the previous functional generalising the classical coarea
formula for functionals ([9], [22])

F(w) =

ˆ 1

0
F(1{w(x,t)>s}) ds,

that is false for F as the example below shows:

u1(x) =

{
0 if x ≤ 1/2
x if x > 1/2,

u2(x) =

{
x if x ≤ 1/2
1 if x > 1/2

and w(x, t) = (1/2)1{u1(x)>t} + (1/2)1{u2(x)>t}.

In this article we use an alternative representation of the Mumford-Shah functional by rectifiable
currents of the type

G(T ) = sup
φ∈K

ˆ
M
θ〈φ, νT 〉dHn,
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where T = (M, ξ, θ) is a rectifiable current and νT is the normal toM, and we start to exploit the
validity of a general coarea-type formula for the functional G. In Section 3 we study the structure
of the functional and we prove the following decomposition for a finite linear combination of
graphs in dimension one.

Theorem (Coarea-type formula). Let I be open interval. Given T =
∑k

i=1 λiΓui with ui ∈
SBV (I) and λi > 0 such that |

⋃
Sui | < +∞ there exists k′ ∈ N, {µi}i=1...k′ > 0 and

{wi}i=1...k′ ⊂ SBV (I) such that T =
∑k′

i=1 µiΓwi and

G(T ) =
k′∑
i=1

µiG(Γwi).

In the next sections we will often refer to it by the denomination discrete coarea formula, stress-
ing that it holds for finite linear combination of SBV graphs.
The immediate consequence of this result is the following theorem that links the minimizers of
(2) with the minimizers of G

Theorem. Given u ∈ SBV (I) a minimizer of the Mumford-Shah functional, Γu (i.e. the graph
associated to u) is a minimizer of G among all the linear combinations of graphs of the form

T =
∑k

i=1 λiΓui with ∂Γu = ∂T .

In Section 4, we use this theorem to prove the existence of calibration in a weak sense (see
Definition 4.3) as a consequence of the Hahn-Banach theorem. The general idea of this proof
follows closely Federer’s approach to calibrations for minimal surfaces in [12] and it suggests
that, at least in dimension one, it would be possible to produce the analogue result and to
extract an L∞ vector field playing the role of a calibration.
It is worth to notice that the coarea-type formula presented in this paper relies on the one
dimensional structure of the domain. In particular in Proposition 3.21 it is necessary that
the singular points of an SBV function disconnect the domain; this is clearly peculiar of the
dimension one, but it is likely that similar decomposition can be found in higher dimension and
similar results could be obtained.
Moreover, even if all the proof of this paper are carried on for the functional (2) the results
can be extended with minor modifications to more general Mumford-Shah type functionals. We
refer to Remark 3.1 for further details in this direction.

Acknowledgements . The author is warmly grateful to Professor Bernd Kirchheim for the
useful discussions about this problem. The author would also like to thank Professor Giovanni
Alberti for the valuable suggestions.

2. Preliminaries

Let Ω be an open, bounded, regular set of Rn. Given g ∈ L∞(Ω) we consider the Mumford-Shah
functional as stated in the introduction

(5) F(u) =

ˆ
Ω
|∇u|2 dx+Hn−1(Su) +

ˆ
Ω
|u− g|2 dx

and the homogeneous version

(6) F (u) =

ˆ
Ω
|∇u|2 dx+Hn−1(Su),

where u ∈ SBV (Ω) and Su is the singular set of u. We refer to [13] for the basic properties of BV
and SBV functions and to [11] for a comprehensive treatise on the Mumford-Shah functional.

Throughout this paper we consider the following notions of minimizers:

Definition 2.1 (Minimizer of F). Given g ∈ L∞(Ω) we say that u ∈ SBV (Ω) is a minimizer
of F if F(u) ≤ F(v) for all v ∈ SBV (Ω).
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Definition 2.2 (Dirichlet minimizers). We say that u ∈ SBV (Ω) is a Dirichlet minimizer of
F (resp. F) if

F (u) ≤ F (v) ∀v ∈ SBV (Ω) s.t. v∂Ω = u∂Ω.

(resp. F(u) ≤ F(v) ∀v ∈ SBV (Ω) s.t. v∂Ω = u∂Ω),

where we denote by u∂Ω and v∂Ω the trace of u and v on ∂Ω.

We remark that the notion of Dirichlet minimizer of F is classically known as local minimizer
in the literature ([11]).
Proving that a function u ∈ SBV (Ω) is a Dirichlet minimizer is not an easy question (in general);
this is one of the main reasons why a calibration notion resembling the one of minimal surfaces
by Harvey and Lawson ([16]) has turned out to be really useful. It was proposed by Alberti,
Bouchittè and Dal Maso in [1] and developed among the others in [18] and [17]. In this next
section we will give a brief introduction on this topic.

2.1. Calibration for the Mumford-Shah Functional. Given H : L1(Ω) → R let us define
an abstract calibration in the following way:

Definition 2.3 (Abstract calibration). Given u ∈ L1(Ω), an abstract calibration for u is a
functional G : L1(Ω)→ R such that

(7) (i) H(u) = G(u), (ii) H(v) ≥ G(v), (iii) G(u) = G(v)

for all v ∈ L1(Ω) such that {v 6= u} ⊂⊂ Ω.

Remark 2.4. If G is a calibration for u, then u is a Dirichlet minimizer in Ω for H, indeed

H(u)
(i)
= G(u)

(iii)
= G(v)

(ii)

≤ H(v)

for all v ∈ L1(Ω) such that {v 6= u} ⊂⊂ Ω.

In [1] Alberti, Bouchitté and Dal Maso introduced a stronger notion of calibration for the
Mumford-Shah functional. Given v ∈ SBV (Ω), we denote by v−(x) and v+(x) the lower and
the upper traces of v. Moreover let Γv be the extended graph of v defined as

Γv = {(x, t) ∈ Ω× R : v−(x) ≤ t ≤ v+(x)}.
For standard theory on BV functions ([13]) Γv is rectifiable and then it admits a generalized
normal that we are going to denote with νΓv .
The calibration proposed in [1] has the following form:

G(v) =

ˆ
Γv

〈φ, νΓv〉 dHn,

where φ : Ω × R → Rn+1 is a vector field to be determined. The regularity asked on φ is the
least that guarantees the existence of a divergence theorem on Ω × R. To be more precise we
refer to [1] and for reader convenience we propose the definition of approximately regular vector
field:

Definition 2.5 (Approximately regular vector field). Given A ⊂ Rn+1, a vectorfield φ : A →
Rn+1 is approximately regular if it is bounded and for every Lipschitz hypersurface M in Rn+1

there holds

(8) lim
r→0

ˆ
Br(x0)∩A

|(φ(x)− φ(x0)) · νM (x0)| dx = 0

for Hn-a.e. x0 ∈M ∩A.

Comparing the functional G with F , it is possible to find sufficient conditions on φ such that G
satisfies properties (i), (ii) and (iii) with respect to F for a given u ∈ SBV (Ω). Then the vector
field satisfying these properties is called calibration for u.
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Definition 2.6 (Calibration for the Mumford-Shah Functional). Let Ω ⊂ Rn be open and
bounded and u ∈ SBV (Ω). Given φ = (φx, φt) : Ω× R→ Rn+1 an approximately regular vector
field, we say that it is a calibration for u if it is divergence free and

a) φt(x, t) ≥ |φ
x(x, t)|2

4
for L n-a.e. x ∈ Ω and for all t ∈ R,

b)

∣∣∣∣ˆ t2

t1

φx(x, t) dt

∣∣∣∣ ≤ 1 for Hn−1-a.e. x ∈ Ω and for all t1, t2 ∈ R,

c) φx(x, u(x)) = 2∇u(x), φt(x, u(x)) = |∇u(x)|2 for L n-a.e. x ∈ Ω,

d)

ˆ u+(x)

u−(x)
φx(x, t) dt = νu(x) for Hn−1-a.e. x ∈ Su,

where νu is the approximate normal of Su.

As properties (a), (b), (c), (d) imply (i), (ii) and (iii) for G we have the following theorem:

Theorem 2.7. Given u ∈ SBV (Ω), suppose that there exists φ : Ω × R → Rn+1 a calibration
for u. Then u is a Dirichlet minimizer in Ω of the homogeneous Mumford-Shah functional (6)

In an analogous way a similar notion can be introduced in order to study minimizers of F. It is
enough to replace conditions (a) and (c) with

a’) φt(x, t) ≥ |φ
x(x, t)|2

4
− (t− g)2 for L n-a.e. x ∈ Ω and for all t ∈ R,

c’) φx(x, u(x)) = 2∇u(x), φt(x, u(x)) = |∇u(x)|2 − (u− g)2 for L n-a.e. x ∈ Ω.

Theorem 2.8. Given u ∈ SBV (Ω), suppose that there exists φ : Ω × R → Rn+1 a calibration
for u with (a) and (c) replaced with (a′) and (c′). Then u is a Dirichlet minimizer in Ω of the
Mumford-Shah functional (5).

As a consequence, in [1], the authors proposed the following alternative formulation of the
Mumford-Shah functional

(9) F (u) = max
φ∈K

ˆ
Γu

〈φ, νΓu〉 dHn = max
φ∈K

ˆ
Ω×R
〈φ,D1{u>t}〉,

(10) F(u) = max
φ∈K′

ˆ
Γu

〈φ, νΓu〉 dHn = max
φ∈K′

ˆ
Ω×R
〈φ,D1{u>t}〉,

where

(11) K = {φ : Ω× R→ Rn+1, Borel : (a) and (b) hold pointwise}

and

(12) K ′ = {φ : Ω× R→ Rn+1, Borel : (a′) and (b) hold pointwise}.

Remark 2.9. The previous representation formula is the starting point for the proof of existence
of calibration in dimension one, due to Chambolle [8]. In particular one can introduce the
following convex functional also called lift of F

FK(w) = sup
φ∈K∩C0(Ω×R,Rn+1)

ˆ
Ω×R

φ ·Dw,

with w : I × R → [0, 1] decreasing in the second variable and of bounded variation. In [8]
Chambolle proves that if u ∈ SBV (I) is a minimizer of the Mumford-Shah functional then
1{u(x)>t} is a minimizer of FK . Then by Hahn-Banach theorem it is possible to prove the
existence of calibrations in a weak asymptotic sense.
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Remark 2.10. It is interesting to notice that one can prove the same result in higher dimension
if FK satisfies a generalized coarea formula of the form

(13) FK(w) =

ˆ 1

0
FK(1{w(x,t)>s}) ds.

Unfortunately this is false even in dimension one. In fact it is enough to consider

u1(x) =

{
0 if x ≤ 1/2
x if x > 1/2,

u2(x) =

{
x if x ≤ 1/2
1 if x > 1/2

and w(x, t) = (1/2)1{u1(x)>t} + (1/2)1{u2(x)>t} to see that formula (13) does not hold.

2.2. A lifting of the Mumford-Shah functional in the space of rectifiable currents.
In this section we introduce a lifted functional that takes values in Rn(Ω×R) the n-dimensional
rectifiable currents with real multiplicity. We briefly recall the basic theory of currents and we
refer the reader to [13] for a more detailed overview.
Let U be an open subset of RN . A k-dimensional current on U is a linear continuous (see [13])
functional on the space of k-forms Λk(U) with coefficients in C∞c (U).
In particular we define the space Rk(U) of k-dimensional rectifiable currents with real multiplic-
ity as the triple (M, θ, ξ) where M ⊂ U is a k-rectifiable set, θ :M→ R+ is a function called
multiplicity and ξ is the k-vector giving an orientation of M. We define the current (M, θ, ξ)
by its action on a k-diffential form ω ∈ Λk(U) in the following way:

(M, θ, ξ)(ω) =

ˆ
M
〈ω, ξ〉θ dHk

where 〈·, ·〉 denote the duality product between vectors and covectors. Moreover given T =
(M, θ, ξ) we define the total variation measure associate to T as

‖T‖(A) =

ˆ
M∩A

θ dHk

for every A ⊂ U measurable. We call ‖T‖(U) = M(T ) the mass of T .
We define the restriction of a rectifiable current T = (M, θ, ξ) on a measurable set as

T A(ω) =

ˆ
M∩A

〈ω, ξ〉θ dHk

for every A ⊂ U measurable. In addition given α ∈ Λh(U) with h ≤ k, we define the restriction
of T ∈ Rk(U) to α as the (k − h)-dimensional current T α defined as

T α(ω) = T (α ∧ ω)

for every ω ∈ Λk−h(U).
Moreover let Ik(U) be the subset of Rk(U) such that the multiplicity θ is integer valued. Each
element of Ik(U) is called k-dimensional integer rectifiable current.

We introduce the lifting of the Mumford-Shah functional on the space of rectifiable currents for
the functionals F and F .

Definition 2.11 (Lifting to the space of rectifiable current). Given T = (M, θ, ξ) ∈ Rn(Ω×R)
we define

(14) GK(T ) := sup
φ∈K

ˆ
M
〈φ, ?(−ξ)〉d‖T‖ = sup

φ∈K

ˆ
M
θ〈φ, νT 〉dHn

and

(15) GK′(T ) := sup
φ∈K′

ˆ
M
〈φ, ?(−ξ)〉d‖T‖ = sup

φ∈K

ˆ
M
θ〈φ, νT 〉dHn

where νT := −(?ξ), ? is the Hodge star and K and K ′ are defined as in (11) and in (12).
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Proposition 2.12. The functionals GK and GK′ satisfy the following properties:

(i) They are convex on Rn(Ω× R).
(ii) They are lower semicontinous with respect to the mass bounded convergence.

(iii) Given v ∈ SBV (Ω), GK(Γv) = F (v) and GK′(Γv) = F(v).

Proof. Statement (i) follows from the definition and (iii) is a consequence of the representation
formulas (9) and (10). Moreover (ii) can be proved with an easy modification of the argument
in [13] sec. 3.3.1.

�

3. A discrete coarea-type formula for the Mumford-Shah functional in
dimension one

We restrict our analysis to the case n = 1. We can also assume Ω = I an open interval and
consider the Mumford-Shah functional in its general form

(16) F (u) :=

ˆ
I
|u′(x)|2 dx+ β

ˆ
I
|u− g|2 dx+ αH0(Su)

where α > 0, β ≥ 0, g ∈ L∞(I) and u ∈ SBV (I). Notice that when β = 0 and α = 1, F is the
homogeneous version of the Mumford-Shah functional as defined in (6).

Remark 3.1. Even if we restrict our attention to (16) it is important to remark that the results
of this section and of the following one hold for a more general class of functionals with minor
modification of the proofs. Functionals of the form

W (u) =

ˆ
I
f(u′(x), u(x), x) dx+

∑
x∈Su

ψ(x, u+(x), u−(x))

with suitable hypothesis on f and ψ necessary to ensure the lower semicontinuity of W and the
existence of minimizers can be treated by this theory. We refer to [2] for the precise assumptions
and we stress the fact that in our setting f need not to be assumed more regular as in [8]. For
example in the case of the Mumford-Shah functional g can be taken in L∞ without affecting the
proof, while in [8] the function g needs to have a l.s.c. and a u.s.c. representatives in L∞.

If we consider the functional F as defined in (16), its convex lift defined in (14) on R1(I × R)
reads

(17) G(T ) = sup
φ∈K

ˆ
M
θ〈φ, νT 〉dH1

for every T = (M, θ, ξ).
In particular K is the set of φ : I × R→ R2, Borel, such that

I) φt(x, t) ≥ |φ
x(x, t)|2

4
− β(t− g)2 for all x ∈ I and for all t ∈ R,

II)

∣∣∣∣ˆ t2

t1

φx(x, t) dt

∣∣∣∣ ≤ α for all x ∈ I and for all t1, t2 ∈ R.

We are going to consider as the domain of G the cone C ⊂ R1(I × R) made by finite linear
combination of SBV graphs:

(18) C :=

{
T =

k∑
i=1

λiΓui : k ∈ N, λi ∈ R+, ui ∈ SBV (I)

}
.

In order to avoid any confusion we stress that u− is the trace of u from the left and u+ is the
trace of u from the right.
Moreover for every T ∈ C we will assume implicitly that, being a rectifiable current, it is defined
by the triple T = (M, θ, ξ).
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3.1. Simplifying the cone C. From the definition of the cone C in (18) one easily notices that
for every current T ∈ C there exists different combinations of SBV graphs {ui} that represent
it. In particular there are some configurations we would like to avoid and this subsection is
devoted to make this simplifications for C.

Definition 3.2. Given {ui}i=1...k ⊂ SBV (I). We say that the family {ui}i=1...k has cancellation
on the jumps if there exists l1, l2 and x0 ∈ Sul1 ∩ Sul2 such that

u−l1(x0) < u+
l1

(x0), u−l2(x0) > u+
l2

(x0), u+
l1

(x0) > u+
l2

(x0).

We need a lemma that ensures that we can rearrange the graphs in order not to have this
cancellation.

Lemma 3.3. Given T =
∑k

i=1 λiΓui ∈ C there exists l ∈ N, wi ∈ SBV (I) and µi ∈ R+ for

i = 1 . . . l such that T =
∑l

i=1 µiΓwi and there is no cancellation on the jumps.

Proof. Given T =
∑k

i=1 λiΓui let us suppose that we have cancellation between Γu1 and Γu2
in A ⊂ Su1 ∩ Su2 and λ1 ≥ λ2 (without loss of generality). As A is countable we will denote
it by the sequence {x1, x2, . . .} possibly infinite. Given I = (a, b) consider the new sequence
{a = x0, x1, x2, . . .} and define two SBV functions in the following way:

w1(x) =

{
u1(x) for xi−1 < x ≤ xi, i ≥ 1 and odd
u2(x) for xi−1 < x ≤ xi, i ≥ 1 and even

and

w2(x) =

{
u2(x) for xi−1 < x ≤ xi, i ≥ 1 and odd
u1(x) for xi−1 < x ≤ xi, i ≥ 1 and even.

Then we have that λ2Γw1 + λ2Γw2 + (λ1 − λ2)Γu1 = λ1Γu1 + λ2Γu2 . Hence we produce a
decomposition of λ1Γu1 + λ2Γu2 that has no cancellation on the jumps. It is easy to check that
one can repeat this operation for any pair of graphs that has cancellation on jumps and that
this procedure ends in a finite number of steps.

�

From now on we will assume that given T =
∑

i λiΓui ∈ C, the graphs composing T have no
cancellation on jumps.
In what follows we will need for technical reasons to have the graphs ordered. Clearly this is
possible when we have superposition of graphs with the same multiplicity. In particular we need
the following decomposition theorem ([3]) that we state for the reader convenience.

Theorem 3.4 (Ambrosio, Crippa, Le Floch). Let T ∈ I1(R2) be an integer rectifiable current
satisfying the zero boundary condition ∂T = 0, the positivity condition T dx ≥ 0 and the
cylindrical mass condition ‖T‖(B(0, R) × R) < ∞ for every R. Then there exists a unique
family of functions wi ∈ BVloc(R) satisfying w1 ≤ w2 ≤ . . . ≤ wl. Such that

T =

l∑
i=1

Γwi and ‖T‖ =

l∑
i=1

‖Γwi‖.

Proposition 3.5. Given T =
∑k

i=1 Γui ∈ C there exists w1 ≤ . . . ≤ wl ∈ SBV (I) such that

T =
∑l

i=1 Γwi.

Proof. Notice that the current T is integer rectifiable and T dx ≥ 0. As we have assumed
that T does not have cancellation on jumps thanks to Lemma 3.3 we have

(19) ‖T‖ =

k∑
i=1

‖Γui‖.
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Moreover by extending each function ui as a constant outside I we can apply Theorem 3.4 to T
to get the following representation:

T =

l∑
i=1

Γwi

where wi ∈ BV (I) and they are ordered in an increasing way.
It remains to show that wi ∈ SBV (I), ∀i. By Theorem 3.4 and (19) one has that for every
measurable set C ⊂ I with L 1(C) = 0

(20)
k∑
i=1

‖Γui‖(C × R) = ‖T‖(C × R) =
l∑

i=1

‖Γwi‖(C × R).

By standard results on the graph of BV functions (see [13]) one has

(21) ‖Γwi‖(C × R) = |µ(Dwi)|(C)

where µ(Dwi) = (Dwi,−L 1). So from (20) and (21) and the fact the C is negligible it follows
that

l∑
i=1

|Dwi|(C) =
k∑
i=1

|Dui|(C)

and thus
l∑

i=1

(|Djwi|(C) + |Dcwi|(C)) =

k∑
i=1

(|Djui|(C) + |Dcui|(C)).

Choose C =
⋃k
i=1 Sui =

⋃l
i=1 Swi a countable measurable set; as the Cantor part of the derivative

of a BV function is a diffuse measure we have
l∑

i=1

|Djwi| =
k∑
i=1

|Djui|.

Hence
l∑

i=1

|Dcwi| =
k∑
i=1

|Dcui|,

that implies that wi ∈ SBV (I) for every i = 1, . . . , k.

�

3.2. Properties of the regular part of G(T ).

Definition 3.6 (Regular part and singular part of T ). We define the singular part of T ∈ C as

(22) ST :=
⋃
Sui

and the regular part as RT := I \ ST .

Remark 3.7. One can easily notice that if we assume that the graphs do not have cancellation
according to Lemma 3.3, ST is well defined, so it does not depend on the representation of T .

Given a measurable set A ⊂ I we define the localized version of G as

G(T,A) := sup
φ∈K

ˆ
M∩(A×R)

〈φ, νT 〉d‖T‖.

Remark 3.8. It is clear that given A1, A2 disjoint measurable sets we have

G(T,A1 ∪A2) = G(T,A1) +G(T,A2)

so in particular

(23) G(T ) = G(T, ST ) +G(T, SR).
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Moreover when one computes the localized functional, it is possible to restrict the set K accord-
ingly:

G(T,A) = sup
φ∈KA

ˆ
M∩(A×R)

〈φ, νT 〉d‖T‖.

where KA is the set of φ : I × R→ R, Borel, such that

• φt(x, t) ≥ |φ
x(x, t)|2

4
− β(t− g)2 ∀x ∈ A and ∀t ∈ R,

•
∣∣∣∣ˆ t2

t1

φx(x, t) dt

∣∣∣∣ ≤ α for every x ∈ A and for all t1, t2 ∈ R.

We are presenting a proposition that allows us to split G(T,RT ) as the sum of λiG(Γui , RT ).

Proposition 3.9. Given T =
∑k

i=1 λiΓui ∈ C, then

(24) G(T,RT ) =
k∑
i=1

λiG(Γui , RT ) =
k∑
i=1

λi

(
α

ˆ
I
(u′i)

2 dx+ β

ˆ
I
|ui − g|2 dx

)
.

In order to give a proof of this fact we need some preliminary lemmas that simplifies the situation.

Lemma 3.10. Given T =
∑k

i=1 λiΓui ∈ C let A ⊂ I be a measurable set such that A ∩ ST = ∅
and H1(Γui ∩ Γuj ∩ (A× R)) = 0 for every i 6= j. Then

G(T,A) =
∑
i

λiG(Γui , A).

Proof. By induction it is enough to show that given, T1 =
∑k−1

i=1 λiΓui and T2 = λkΓuk one has

G(T1 + T2, A) = G(T1, A) +G(T2, A).

Fix ε > 0. For i = 1, 2 there exist φi ∈ KA such thatˆ
Mi∩(A×R)

〈φi, νTi〉 d‖Ti‖ ≥ G(Ti, A)− ε.

Define the following vector field

φ̃ =

 φ1 (x, t) ∈M1 \M2

φ2 (x, t) ∈M2 \M1

0 otherwise.

Let prove that φ̃ ∈ KA.
For every x ∈ A we have that x /∈ ST by hypothesis, so that (II) is satisfied and (I) is trivial by
definition. Moreover, as H1(M1 ∩M2 ∩ (A× R)) = 0, one hasˆ

(M1∪M2)∩(A×R)
〈φ̃, νT 〉 dH1 =

ˆ
M1∩(A×R)

〈φ1, νT1〉 dH1 +

ˆ
M2∩(A×R)

〈φ2, νT2〉 dH1.

So

G(T1, A)+G(T2, A) ≤
ˆ
M1∩(A×R)

〈φ1, νT1〉 dH1+

ˆ
M2∩(A×R)

〈φ2, νT2〉 dH1+2ε ≤ G(T1+T2, A)+2ε.

Sending ε to zero we obtain the first inequality. The opposite one comes directly from the
convexity of G.

�

Lemma 3.11. Given T =
∑k

i=1 λiΓui ∈ C let A ⊂ I be a measurable set such that A ∩ ST = ∅.
Then

G(T,A) =
∑
i

λiG(Γui , A).



A COAREA FORMULA FOR THE MUMFORD-SHAH FUNCTIONAL 11

x

t

Γu1

Γu2

Su1Su2

u−1

u+
1

u−2

u+
2

x

t

Γu1

Γu2

Γu1 = Γu2

Su1Su2

u−1

u+
1

u−2

u+
2

Figure 1. Configuration in Lemma 3.10 and 3.11

Proof. Given T ∈ C, let J be a set of indexes. Denote by Γ =
⋂
i∈J Γui an intersection of

graphs and let θ =
∑

i∈J λi be the multiplicity on Γ. So

sup
φ∈K

ˆ
Γ∩(A×R)

〈φ, νT 〉 d‖T‖ = sup
φ∈K

ˆ
Γ∩(A×R)

θ〈φ, νT 〉 dH1 = sup
φ∈K

ˆ
Γ∩(A×R)

∑
i∈J

λi〈φ, νT 〉 dH1

=
∑
i∈J

λi sup
φ∈K

ˆ
Γ∩(A×R)

〈φ, νT 〉 dH1.

Clearly this can be repeated for every intersection of an arbitrary number of graphs. Combining
this result with Lemma 3.10 we have the thesis.

�

Proof of Proposition 3.9

Proposition 3.9 is a direct consequence of Lemma 3.11 choosing A = SR and the second equality
in (24) follows from Proposition 2.12.

�

3.3. Properties of the singular part of G(T ). In this section we are going to study the
properties of G(T ) := G(T, ST ).

Given T =
∑k

i=1 λiΓui ∈ C and calling νT = ((νT )x, (νT )t), by (17) we have

G(T ) = sup
φ∈K

ˆ
M∩(ST×R)

θφx(νT )x dH1

and it is easy to see that

(νT )x(x, t) =

{
+1 (x, t) ∈ Sui × (u−i , u

+
i )

−1 (x, t) ∈ Sui × (u+
i , u

−
i ).

Hence

G(T ) = sup
φ∈K

k∑
i=1

ˆ
Sui×(u−i ,u

+
i )
θφx dH1.

From now on we will work with linear combinations of graphs with the same multiplicity. We
will see later the reason why we can reduce to this situation. We want to prove that, given
T =

∑
i Γui , G(T ) can be written as the sum of G(Γui) in all the configurations in which there

is non-adjacency of the jumps of the graphs.

Theorem 3.12. Consider T ∈ C such that T =
∑k

i=1 Γui and ui are ordered in an increasing
way. Suppose that for every i = 1 . . . k

{x ∈ Sui ∩ Sui+1 : u+
i (x) = u−i+1(x) or u−i (x) = u+

i+1(x)} = ∅.
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Then

G

(
k∑
i=1

Γui

)
=

k∑
i=1

G (Γui) .

Remark 3.13. The assumption of the ordering of the graphs is not essential as given T ∈ C
with graphs of the same multiplicity, by Proposition 3.5 is always possible to find an alternative
representation by ordered graphs.

Remark 3.14. Notice that without loss of generality we can prove the previous statement re-
stricting the functional G to every x ∈ ST . So the lemmas needed to prove Theorem 3.12 will be
stated for a fixed point x ∈ ST .

For sake of clarity we propose two lemmas (Lemma 3.15 and 3.16) that deals with a simple
situation that is enough to explain the general strategy (See Figure 2). Then, in Proposition
3.17 and 3.18, we generalize this procedure and finally we prove the Theorem.

Lemma 3.15. Consider T =
∑k

i=1 Γui ∈ C such that ui are ordered in an increasing way. Fix
x ∈ ST and suppose that we have u−i (x) ≤ u+

i (x) for every i = 1 . . . k. Suppose in addition that

u+
i (x) < u−j (x) for every i < j.

Then

G(T, {x}) =

k∑
i=1

G(Γui , {x}) = α|{i : x ∈ Sui}|.

In addition the the maximum is achieved and letting φT be the vector field realizing the maximum
for T

φxT (x, t) = α/(u+
i − u

−
i ) for every t ∈ (u−i , u

+
i )

for every i = 1 . . . k such that x ∈ Sui.

Proof. By induction it is enough to prove that for T = T1 + T2 where T1 =
∑k−1

i=1 Γui and
T2 = Γuk one has

G(T1 + T2, {x}) = G(T1, {x}) + G(T2, {x})
and

φxT (x, t) = α/(u+
k − u

−
k ) for every t ∈ (u−k , u

+
k ).

(We suppose x ∈ Suk because if not, there is nothing to prove).
For the inductive hypothesis we have that for all i = 1 . . . k − 1

φxT1(x, t) = α/(u+
i − u

−
i ) for every t ∈ (u−i , u

+
i ).

For the general theory of calibration we have that, calling φT2 the vector field realizing the
maximum in G(T2, {x}),

φxT2(x, t) = α/(u+
k − u

−
k ) for every t ∈ (u−k , u

+
k ),

because ˆ u+k

u−k

φxT2(x) = α for every x ∈ Suk .

Define the following vector field on {x} × R:

φ̃ =


φT1 (x, t) ∈ {x} × (u−1 , u

+
k−1),

φT2 (x, t) ∈ {x} × (u−k , u
+
k ),

{−α/(u−k − u
+
k−1), (φ̃x)2

4 − β(t− g)2} (x, t) ∈ {x} × (u+
k−1, u

−
k ),

0 otherwise.
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Figure 2. Configuration in Lemma 3.15 and in Lemma 3.16

Let prove that φ̃ ∈ K{x}.

∣∣∣∣ˆ t2

t1

φ̃(x, t) dt

∣∣∣∣ =

∣∣∣∣∣
ˆ u−k−1

t1

φxT1(x, t) dt− α+

ˆ t2

u+k

φxT2(x, t) dt

∣∣∣∣∣
=

∣∣∣∣∣α (u−k−1 − t1)

(u−k−1 − u
−
1 )
− α+ α

(t2 − u+
k )

(u+
k − u

−
k )

∣∣∣∣∣ ≤ α
for every t1 ≤ u−1 , t2 ≥ u+

k . As in all the other cases the computation is similar, then φ̃ ∈ K{x}.
Therefore

G(T1, {x}) + G(T2, {x}) =

ˆ
M∩({x}×R)

〈φ̃, νT 〉θ dH1 ≤ G(T, {x}).

On the other hand by convexity

G(T, {x}) ≤ G(T1, {x}) + G(T2, {x}) =

ˆ
M∩({x}×R)

〈φ̃, νT 〉θ dH1.

So the thesis follows.

�

We can prove the analogue:

Lemma 3.16. Given T =
∑k

i=1 Γui ∈ C such that ui are ordered in an increasing way. Fix
x ∈ ST and suppose that we have u+

i (x) ≤ u−i (x) for every i = 1 . . . k. Suppose in addition that

u+
i (x) > u−j (x) for every i > j.

Then

G(T, {x}) =

k∑
i=1

G(Γui , {x}) = α|{i : x ∈ Sui}|.

In addition the the maximum is achieved and letting φT be the vector field realizing the maximum
for T

φxT (x, t) = α/(u+
i − u

−
i ) for every t ∈ (u−i , u

+
i )

for every i = 1 . . . k such that x ∈ Sui.

Proof. See Lemma 3.15.

�

We are now in position to prove two general statements that are generalizations of Lemmas 3.15
and 3.16.
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Proposition 3.17. Consider T ∈ C such that T =
∑k

i=1 Γui and ui are ordered in an increasing
way. Fix x ∈ ST and suppose that we have u−i (x) ≤ u+

i (x) for every i = 1 . . . k. Moreover assume

that u+
i (x) 6= u−i+1(x) for every i such that x ∈ Sui.

Then

G(T, {x}) =
k∑
i=1

G(Γui , {x}).

Proof. We can assume without loss of generality that x ∈ Sui for every i = 1 . . . k.

It is easy to see that T ({x} × R) =
∑k′

i=1 λi[{x} × (ai, ai+1)] for some λi ∈ N and ai ∈ R. Let
denote by {λMj} the local maxima of the sequence {λi} and let λmj be the minimum multiplicity
in {λMj , λMj+1, . . . , λMj+1−1, λMj+1} for every j.
By the fact that the graphs are ordered, Lemma 3.3 and the current hypothesis we have

(25) |λi+1 − λi| = 1

and

(26) k =
∑
j

λMj −
∑
j

λmj .

Then the proof proceeds similarly to the proof of Lemma 3.15. One can build a vector field φ̃
such that

φ̃x = α/(aMj+1 − aMj ) in {x} × (aMj+1, aMj ) ∀j,

φ̃x = −α/(amj+1 − amj ) in {x} × (amj+1, amj ) ∀j
and zero otherwise to get the thesis.

�

Proposition 3.18. Consider T ∈ C such that T =
∑k

i=1 Γui and ui are ordered in an increasing
way. Fix x ∈ ST and suppose that we have u+

i (x) ≤ u−i (x) for every i = 1 . . . k. Moreover assume

that u−i (x) 6= u+
i+1(x) for every i such that x ∈ Sui.

Then

G(T, {x}) =
k∑
i=1

G(Γui , {x}).

Proof. See Proposition 3.17.

�

Now Theorem 3.12 is an immediate consequence of the previous propositions.

Proof of Theorem 3.12

Fix x ∈ ST and define

I = {i = 1 . . . k : u−i (x) ≤ u+
i (x)} J = {i = 1 . . . k : u−i (x) > u+

i (x)}
and call TI =

∑
i∈I Γui and TJ =

∑
i∈J Γui . Moreover let φI (φJ ) be the vector field realizing

the maximum in G(TI , {x}) (G(TJ ), {x}). From Proposition 3.17 and 3.18 it is easy to see that
φxI ≤ 0 outside the support of TI restricted to {x} × R and φxJ ≥ 0 outside the support of

TI restricted to {x} × R. Therefore defining φ̃ = φI + φJ , as we assumed that there is no

cancellation on the jumps by Lemma 3.3, we have that φ̃ ∈ K{x} and

G(TI , {x}) + G(TJ , {x}) =

ˆ
{x}×R

〈φxI + φxJ , νT 〉 d‖T‖ ≤ G(T, {x}).

So by convexity
G(TI , {x}) + G(TJ , {x}) = G(T, {x}).

Finally we apply Proposition 3.17 and 3.18 to TI and TJ to get the thesis.
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�

We conclude this section with a lemma that shows that we can reduce any combination of graphs
belonging to C to a combination of graphs, all with the same multiplicity. We are going to use
this property in the proof of the coarea formula in the next section.

Lemma 3.19. Consider T1, T2 ∈ C and x ∈ ST1 ∩ ST2. Suppose that T1 ({x} × R) =∑k
i=1 λi[{x} × (ai, ai+1)] with ai ≤ ai+1 and let {Mj}j∈J be the indexes of the maximums of

the multiplicities. Assume in addition that T2 ({x} × R) = ν
∑

j∈J [{x} × (aMj , aMj+1)] for
some ν > 0. Then we have

(27) G(T1 + T2, {x}) = G(T1, {x}) + G(T2, {x}).

Proof. Given φ ∈ K define

Λφ(s) :=

ˆ s

a1

φx(x, t) dt− 1

2

so that

G(T ) = sup
φ∈K

k∑
i=1

λi

ˆ ai+1

ai

φx dt = sup
φ∈K

k∑
i=1

λi(Λφ(ai+1)− Λφ(ai)) =: sup
φ∈K
G̃(Λφ).

Observe that for every φ ∈ K, |Λφ(ai)− Λφ(aj)| ≤ 1. Define then the following set:

H = {Λφ : φ ∈ K, such that |Λφ(ai)| ≤ 1/2 ∀i = 1 . . . k} .

As the value of the functional G̃ depends only on the difference between Λφ(ai) and Λφ(ai−1)
we have that

(28) sup
φ∈K
G̃(Λφ) = sup

Λφ∈H
G̃(Λφ).

Notice now that it is possible to rewrite the functional in the following form

G̃(Λφ) = −λ1Λφ(a1) +
k∑
i=2

(λi−1 − λi)Λφ(ai) + λkΛφ(ak+1).

Hence the supremum in H is a maximum and thanks to (28) the maximum points in H are
characterized by

(29) Λφ(a1) = −1/2, Λφ(ak) = 1/2, Λφ(ai) =
1

2
sgn(λi−1 − λi).

Let us suppose without loss of generality that the maximums of the multiplicity {λMj}j∈J
correspond to intervals that are not adjacent (by changing ai) and let Λφ be one of the maximum

point in H of G̃, then by (29) we get

1 = Λφ(aMj+1)− Λφ(aMj ) =

ˆ aMj+1

aMj

φx(x, t) dt ∀j ∈ J.

As the maximal multiplicities are located in the same interval both in T1 and in T1 + T2, then
the vector field realizing the maximum is the same and thus the thesis (27) follows.

�

Corollary 3.20. Fix 1 ≤ k′ < k and define T1, T2 ∈ C such that T1 =
∑k

i=1 λiΓui with λi ordered

in an increasing way and T2 =
∑k

i=k′+1 νΓui with ν > 0. Then G(T1 + T2) = G(T1) +G(T2).

Proof. Notice that by Lemma 3.11 it is enough to prove the thesis for every x ∈ ST2 ∩ ST1 .
Thanks to Lemma 3.19 one has

G(T1 + T2, {x}) = G(T1, {x}) +G(T2, {x}).
�
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Figure 3. Coarea formula decomposition of two SBV graphs

3.4. Coarea-type decomposition formula. As anticipated in the introduction, this section
is devoted to the proof of a decomposition formula for the Mumford-Shah functional in one
dimension. This formula resembles closely a generalized coarea formula for functionals and it
is performed for a finite combination of graphs with multiplicity. It is interesting to notice
that the counterexample in the end of Remark 2.10 is “solved” by this decomposition, but it is
difficult to generalize it to the continuous case. However it gives a strong indication on how this
decomposition should be performed at least in dimension one. The higher dimensional case is a
completely different issue, as the coarea-type formula we are going to present strongly relies on
the one dimensional structure of the problem and cannot be extended in an easy way.

Proposition 3.21. Given T =
∑k

i=1 Γui ∈ C such that |ST | < +∞ there exists {wi}i=1...k ⊂
SBV (I) such that T =

∑k
i=1 Γwi and

G(T ) =
k∑
i=1

G(Γwi).

Proof. As a consequence of Proposition 3.5 we can suppose the graphs Γui ordered in an

increasing way. Fix x0 ∈ ST such that x0 ∈
⋂l
i=1 Sui with l ≤ k. Thanks to Theorem 3.12

we can suppost wthout loss of generality that u+
i (x0) = u−i+1(x0) for every i = 1 . . . l (the case

u−i (x0) = u+
i+1(x0) is analogous). Define the following functions (See Figure 3):

w1 =

{
u1 for x ≤ x0

ul for x ≥ x0

and

wi =

{
ui for x ≤ x0

ui−1 for x ≥ x0
∀i = 2 . . . l.

Clearly
∑l

i=1 Γwi =
∑l

i=1 Γui and w+
i (x0) 6= w−i+1(x0) for every i = 1 . . . l.

Hence using Theorem 3.12 and repeating this procedure for every x0 ∈ ST one obtains the thesis.

�

Theorem 3.22 (Coarea-type formula). Given T =
∑k

i=1 λiΓui such that |ST | < +∞ there

exists k′ ∈ N, {µi}i=1...k′ ≥ 0 and {wi}i=1...k′ ⊂ SBV (I) such that T =
∑k′

i=1 µiΓwi and

(30) G(T ) =

k′∑
i=1

µiG(Γwi).
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Proof. Consider T =
∑k

i=1 λiΓui ∈ C with ui ordered in an increasing way and suppose without
loss of generality that also λi are ordered and λk is the maximum. Then T can be rewritten as

T = (λk − λk−1)Γuk + λk−1Γuk +
k−1∑
i=1

λiΓui .

Hence by Corollary 3.20

G(T ) = G((λk − λk−1)Γuk) +G

(
λk−1Γuk +

k−1∑
i=1

λiΓui

)
.

Then one can rewrite

λk−1Γuk +

k−1∑
i=1

λiΓui = λk−2(Γuk + Γuk−1
) + (λk−1 − λk−2)(Γuk + Γuk−1

) +

k−2∑
i=1

λiΓui

and applying again Corollary 3.20

G

(
λk−1Γuk +

k−1∑
i=1

λiΓui

)
= G((λk−1 − λk−2)(Γuk + Γuk−1

))

+ G

(
λk−2(Γuk + Γuk−1

) +

k−2∑
i=1

λiΓui

)
.(31)

By Proposition 3.21 there exists u2
k and u2

k−1 SBV functions such that Γu2k
+Γu2k−1

= Γuk +Γuk−1

and

(31) = G((λk−1 − λk−2)Γu2k
) +G((λk−1 − λk−2)Γu2k−1

) +G

(
λk−2(Γuk + Γuk−1

) +
k−2∑
i=1

λiΓui

)
and so on. Repeating this procedure k times one gets to

G(T ) =

k∑
i=2

k∑
j=i

(λi − λi−1)G(Γuk−i+1
j

) +G

(
k∑
i=1

λ1Γui

)
.

Hence, applying again Proposition 3.21 to the last term we obtain the desired decomposition
(30).

�

4. Existence of calibration as a functional defined on currents

We now want to show an application of the coarea-type formula to the existence of calibration
for the Mumford-Shah type functionals. Firstly we set the minimization problem associated to
the previous functional G. Consider S ∈ C and define

ψG(S) = inf{G(T ) : T ∈ C, ∂T = ∂S}.

Proposition 4.1. The functional ψG is convex in C.

Proof. As G is convex and the constraint is linear the proof is straightforward.

�

It is easy to see that by the coarea-type formula in Theorem 3.22 we have the following theorem:

Theorem 4.2. If u ∈ SBV (I) is a Dirichlet minimizer of F , then ψG(Γu) = G(Γu) = F (u).
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Proof. Consider T =
∑k

i=1 λiΓui ∈ C such that ∂T = ∂Γu. Without loss of generality we can
suppose that |ST | < +∞. Then letting I = (a, b) and π : R2 → R the projection on the first
component we have

(32) ∂I = π#(∂Γu) = π#(∂T ) = (∂I)
k∑
i=1

λi.

Hence
∑k

i=1 λi = 1. By Theorem 3.22 there exist k′ and {µi}i=1,...,k′ > 0 such that

G(T ) = G

(
k∑
i=1

λiΓui

)
=

k′∑
i=1

µiG(Γwi) =

k′∑
i=1

µiF (wi).

and
∑k

i=1 λiΓui =
∑k′

i=1 µiΓwi . Moreover applying the push forward as in equation (32) we have

also
∑k′

i=1 µi = 1.
Thus, it remains to prove that wi,∂I = u∂I for every i = 1, . . . , k′, where wi,∂I denotes the trace
of wi on ∂I. This is an easy adaptation of the theory of cartesian currents; we refer to Section
3.2.5 in [13] for a proof in a more general setting.

�

This will imply the existence of a calibration in the following sense: let

Ĉ =

{
T =

k∑
i=1

λiΓui : k ∈ N, λi ∈ R, ui ∈ SBV (I)

}
be the double cone and define the following:

Definition 4.3 (Calibration for minimal graphs). Given u ∈ SBV (I) and Γu its associated

graph, we say that ξ ∈ Hom(Ĉ) is a calibration for Γu with respect to G if

i) ξ(Γu) = G(Γu) = F (u),

ii) ξ(T ) = 0 for every T ∈ Ĉ such that ∂T = 0,

iii) ξ(T ) ≤ G(T ) for every T ∈ Ĉ.

Theorem 4.4. Given u ∈ SBV (I) a Dirichlet minimizer of F there exists a calibration for Γu
with respect to G according to Definition 4.3.

Proof. From Theorem 4.2 follows that

G(Γu) = ψG(Γu).

Consider the functional ψG defined on C and extend it to +∞ for all the elements in Ĉ \ C
(without renaming the extension). Clearly the extension is convex and ψG(Γu) = G(Γu) > 0.
Consider the vector subspace L = {aΓu : a ∈ R} and define ψ : L → R as ψ(aΓu) = aψG(Γu)
clearly linear. As we have that ψ ≤ ψG on L by Hahn-Banach theorem there exists ξ ∈
Hom(Ĉ,R) such that

(33) ξ(Γu) = ψ(Γu) = ψG(Γu) and ξ(T ) ≤ ψG(T ) ∀T ∈ Ĉ.

We want to prove that ξ is a calibration according to Definition 4.3. Let T0 ∈ Ĉ be such that
∂T0 = 0, then

ψG(T0) = inf{G(S) : ∂S = ∂T0 = 0} ≤ G(0) = 0.

In combination with (33) this implies ξ(T ) ≤ 0 for every T0 ∈ Ĉ such that ∂T0 = 0.
So, as ξ is an homeomorphism, one has also that ξ(T0) = 0, so that (ii) holds. Moreover from
(33), ξ(Γu) = ψG(Γu) = F (u) that is (i).

Let us show that also (iii) is satisfied: if T ∈ Ĉ \ C then G(T ) = +∞ and so there is nothing
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to prove. On the other hand given T =
∑k

i=1 λiΓui ∈ C with λi ∈ R+ by (33) and using the
definition of ψG

ξ(T ) ≤ ψG(T ) ≤ G(T ).

Hence ξ is a calibration according to Definition 4.3. �
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[19] D. Mumford and J. Shah. Optimal approximation by piecewise smooth functions and associated variational

problems. Comm. Pure Appl. Math., 42, 1980.
[20] D. Mumford and J. Shah. Boundary detection by minimizing functionals. In IEEE Conference on Computer

Vision an Pattern Recognition, San Francisco, 1985.
[21] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. An algorithm for minimizing the Mumford-Shah func-

tional. In Proc. 12th IEEE Int’l Conf. Computer Vision, 2009.
[22] A. Visintin. Generalized coarea formula and fractal sets. Japan J. Indust. Appl. Math., 8, 1991.

Max Planck Institute for Mathematics in the Science, Inselstrasse 22, 04103 Leipzig, Germany.
E-mail address: carioni@mis.mpg.de


	1. Introduction
	2. Preliminaries
	2.1. Calibration for the Mumford-Shah Functional
	2.2. A lifting of the Mumford-Shah functional in the space of rectifiable currents

	3. A discrete coarea-type formula for the Mumford-Shah functional in dimension one
	3.1. Simplifying the cone C
	3.2. Properties of the regular part of G(T)
	3.3. Properties of the singular part of G(T)
	3.4. Coarea-type decomposition formula

	4. Existence of calibration as a functional defined on currents
	References

