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Abstract

We prove a compactness and integral-representation theorem for families of lat-
tice energies describing atomistic interactions defined on lattices with vanishing lat-
tice spacing. The densities of these energies may depend on interactions between all
points of the corresponding lattice contained in a reference set. We give conditions
that ensure that the limit is an integral defined on a Sobolev space. A homoge-
nization theorem is also proved. The result is applied to multi-body interactions
corresponding to discrete Jacobian determinants and to linearizations of Lennard-
Jones energies with mixtures of convex and concave quadratic pair-potentials.

Keywords: lattice energies, discrete-to-continuum, multi-body interactions, homog-
enization, Lennard-Jones energies

1 Introduction

This paper focuses on the passage from lattice theories to continuum ones in the framework
of variational problems, such as for atomistic systems in Computational Materials Science
(see e.g. [8, 17]). For notational convenience we will state our results for energies defined on
functions u parameterized on a portion of ZN (with values in Rn), but our assumptions
may be immediately extended to more general lattices. For central interactions such
energies may be written as

E(u) =
∑

i,j

ψij(ui − uj), (1)

where i, j are points in the domain under consideration. We are interested in the behaviour
of such an energy when the dimensions of the domain are much larger than the lattice

1



spacing. In the discrete-to-continuum approach this can be done by approximation with a
continuum energy obtained as a limit after a scaling argument. To that end, we introduce
a small parameter ε (which, for the unscaled energy E is the inverse of the linear dimension
of the domain) and scale the energies as

Eε(u) =
∑

i,j

εNψεij

(ui − uj
ε

)
, (2)

where now i, j belong to a domain Ω that is independent of ε, and the domain of u is
Ω ∩ εZN ; accordingly, we set ψεij = ψi/ε j/ε. Both scalings, εN of the energy, and ui/ε
of the function, are important in this process and highlight that in this case we are
regarding the energy as a volume integral (εN being the volume element of a lattice cell)
depending on a gradient ((ui − uj)/ε being interpreted as a scaled difference quotient or
discrete gradient). Other scalings are possible and give rise to different types of energies,
depending on the form of ψεij, highlighting the multiscale nature of the problem. In the
present context we focus on this particular “bulk” scaling (for an account of other scaling
limits see [3, 11, 12]).

The continuum approximation of Eε is obtained by taking a limit as ε → 0. This
has been done in different ways, using a pointwise limit in [7] (where lattice functions
are considered as restrictions of a smooth function to ZN) or a Γ-limit in [2] (in this
case lattice functions are extended as piecewise-constant functions and embedded in some
common Lebesgue space) to obtain an energy of the form

F (u) =

∫

Ω

f(x,∇u)dx (3)

with domain a Sobolev space (for energies in the surface scalings with spin parameters
see [5]). We focus on the result of [2], which relies on the localization methods of Γ-
convergence (see [10] Chapter 12, [22]) envisaged by De Giorgi to deduce the integral
form of the Γ-limit from its behaviour both as a function of u and Ω. Conditions that
allow to apply those methods are

(i) (coerciveness) growth conditions from below that allow to deduce that the limit is
defined on some Sobolev space; e.g. that ψεij(w) ≥ c(|w|p − 1) for nearest-neighbours and
ψεij ≥ 0 for all i, j;

(ii) (finiteness) growth conditions from above that allow to deduce that the limit is
finite on the same Sobolev space; e.g. that ψεij(w) ≤ cεij(|w|p + 1) for all ij, with some
summability conditions on cεij uniformly in ε;

(iii) (vanishing non-locality) conditions that allow to deduce that the Γ-limit is a mea-
sure in its dependence on Ω. This is again obtained from some uniform decay conditions
on the coefficients cεij.

Hypotheses (i)–(iii) are sharp, in the sense that failure of any of these conditions may
result in a Γ-limit that cannot be represented as in (3). The result in [2] has been successful
in many applications, among which the computation of optimal bounds for conducting
networks [16], the derivation of nonlinear elastic energies from atomistic systems [2, 28], of
their linear counterpart [20], and ofQ-tensor theories from spin interactions [14], numerical
homogenization [27], the analysis of the pile-up of dislocations [26], and others. Moreover,
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it has been extended to cover stochastic lattices [4] and dimension-reduction problems [1].
However, its range of applicability is restricted to pairwise interactions, which implies
constraints on the possible energy densities. The main motivation of the present work is
to overcome some of those limitations. More precisely, we focus on two issues:
• the extension to the result to many-body interactions. In principle, a point in the

lattice may interact with all other points in the domain Ω. As a particular case, we may
think of k-body interactions corresponding to the minors of the lattice transformation
(which is affine at the lattice level), such as the discrete determinant in two dimensions,
which can be viewed as a three-point interaction. Some works in this direction are already
present in the literature [4, 21, 30, 31];
• the use of averaged growth conditions on the energy densities. Some lattice energies

are obtained as an approximation of non-convex long-range interactions. As such, even
when considering pair interactions, they may fail to satisfy coerciveness conditions for
some ψij. As an example we can think of the linearization of Lennard-Jones interactions,
which gives concave quadratic energies for distant i and j. The coerciveness of the energy
can nevertheless be recovered using the fast decay of the potential so that short-range
convex interactions dominate long-range concave ones. In general, coerciveness can be
obtained by substituting a growth conditions on each of the interactions with an averaged
growth condition. Another example is the mixture of interactions corresponding to elastic
and brittle materials. See the Example 6.3.

In order to achieve the greatest generality, we assume that energy densities may indeed
depend on all points in Ω ∩ εZN . An energy density φεi will describe the interaction of a
point i ∈ Ω ∩ εZN with all other points in the domain. This standpoint, already used in
[13] for surface energies in a simpler setting (see also [19] in a one-dimensional setting),
brings some notational complications (except for the case Ω = RN) since it is convenient
to regard each such function as defined on a different set (Ω− i)∩εZN . This complication
is anyhow present each time that we consider more-than-two-body interactions. The
energies are then defined as

Fε(u) =
∑

i∈Ω∩εZN
εNφεi ({uj+i}j∈(Ω−i)∩εZN ). (4)

An important remark to make is that there are many ways to define energy densities
giving the same Fε. Note for example that for central interactions as above φεi may be
simply given by

φεi ({zj}) =
∑

j∈(Ω−i)∩εZN
ψεij

(zj − z0

ε

)
=

∑

j∈(Ω−i)∩εZN
ψi/ε j/ε

(zj − z0

ε

)
, (5)

but the interactions may also be regrouped differently and in principle φεi may include
some ψεkj with k 6= i. This is important in order to allow that some ψεij be unbounded
from below, up to satisfying a lower bound when considered together with the other
interactions.

The set of hypotheses we are going to list for φεij will allow to treat a larger class of
energies than those of the form (2), but they must be stated with some care. The precise
statements are given in Section 3. Here we give a simplified description as follows:
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(o) (translational invariance in the codomain) φεi ({zj + w}) = φεi ({zj}) for all i, {zj}
and vector w. This condition is automatically satisfied for interactions depending on
differences zi − zj;

(i) (coerciveness) the energy must be estimated from below by a nearest-neighbour
pair energy and φεi ≥ 0 for all i. This condition is less restrictive than the corresponding
one for pair interactions since it refers to an already averaged energy density;

(ii) (Cauchy-Born hypothesis) we assume a polynomial upper bound for Fε(u) only
when u is linear. For energy densities as in (5) this in general rewritten in terms of ψij as

Ψ(M) :=
∑

j

ψi i+j(Mj) ≤ C(1 + |M |p), (6)

for all i ∈ ZN , and all n×N matrices M . This condition is in principle weaker than the
finiteness property (ii) for pair interactions. The Cauchy-Born rule (see [23, 25]) relates
the macroscopic and the microscopic deformation gradient of monoatomic crystals. It
states that if such a material subjected to a small linear displacement on its boundary,
then all the atoms follow this displacement. Here we only assume that the energy of
equilibrium displacement and the energy of the linear deformation are of the same scale.
Examining this condition separately goes in the direction of analyzing first pointwise
convergence (as in [7]) and then Γ-convergence;

(iii) (vanishing non-locality) we assume that if u = v on a square of centre i and
side-length δ then

φεi ({uj+i}j∈(Ω−i)∩εZN ) ≤ φεi ({vj+i}j∈(Ω−i)∩εZN ) + r(ε, δ, ‖∇u‖p)

(u is identified with a piecewise-affine interpolation), where the rest r is negligible as ε→ 0
for ‖∇u‖p bounded. Note that this condition is automatically satisfied with r = 0 if the
range of the interactions is finite, and can be deduced from the corresponding condition
(iii) for central interactions;

(iv) (controlled non-convexity) a final condition must be added to ensure that the
limit be a measure as a function of Ω. For central interactions, this condition is hidden
in the previous (i) and (ii), which imply a convex growth condition on Ψ; more precisely
a polynomial growth of the form

c(|M |p − 1) ≤ Ψ(M) ≤ C(1 + |M |p).

This double inequality allows to use classical convex-combination arguments with cut-off
functions even though Ψ may not be convex. In our case this compatibility with convex
arguments must be required separately, and is formalized in condition (H5) in Section 3.1.

Under the conditions above we again deduce that Γ-limits of energies Fε are integral
functionals F as in (3) defined on a Sobolev space. The integrand f can be described by
a derivation formula, which is allowed by the study of suitably defined boundary-value
problems. This derivation formula can also be used to prove a periodic-homogenization
result. In the generality of energies possibly depending on the interaction of all points in
Ω some care must be used to define periodicity for the energy densities. In the case of
finite-range interactions we require that in the interior of Ω we have φεi = φε/i, where φk
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is periodic in k. For infinite-range interactions the definition is given by approximation
with periodic energy densities with finite-range interactions.

The paper is organized as follows. After some notation, in Section 3 we rigor-
ously state the hypotheses outlined above and prove the main compactness and integral-
representation theorem. Section 4 is devoted to formalizing and proving the convergence
of Dirichlet boundary-value problems, which is used in the following Section 5 to state
and derive a homogenization formula. Finally, Section 6 is devoted to examples. More
precisely, we show how our hypotheses are satisfied by functions depending on discrete
determinants and by a linearization of Lennard-Jones energies mixing convex and concave
quadratic pair energy densities. Finally, in the same section we recover the result in [2] as
a particular case of our main theorem. As a last example we discuss the mixing of elastic
and brittle interactions as used to described damaged materials.

2 Notation and preliminaries

We denote by Ω an open and bounded subset of RN with Lipschitz boundary. We set Q to
be the unit cube with sides orthogonal to the canonical orthonormal basis {e1, . . . , eN},
Q = {x ∈ RN : |〈x, ei〉| ≤ 1

2
, for all i = 1, . . . , N} and for δ > 0 we define Qδ = δQ.

Moreover, for x ∈ RN we set Q(x) = Q + x and Qδ(x) = Qδ + x. We set A(Ω) = {A ⊂
Ω : A open}, Areg(Ω) = {A ∈ A(Ω) : ∂A Lipschitz}, and for δ > 0 set Aδ = {x ∈ Ω :
dist∞(x,A) < δ} and Aδ = {x ∈ A : dist∞(x,Ac) > δ}. For B ⊂ RN we write |B| for the
N -dimensional Lebesgue measure of B. For a vector x ∈ RN we set

bxc = (bx1c, . . . , bxNc).
We define for u : RN → Rn, ξ ∈ ZN , x ∈ RN and ε > 0

Dξ
εu(x) :=

u(x+ εξ)− u(x)

ε|ξ|
the discrete difference quotient of u at x in direction ξ.

For a function u we set C(u) to be a constant depending on u, the dimension and its
domain of definition and which may vary from line to line.

Slicing. We recall the standard notation for slicing arguments (see [6]). Let ξ ∈ SN−1,
and let Πξ = {y ∈ RN : 〈y, ξ〉 = 0} be the linear hyperplane orthogonal to ξ. If
y ∈ Πξ and E ⊂ RN we define Eξ = {y ∈ Πξ such that ∃t ∈ R : y + tξ ∈ E} and
Eξ
y = {t ∈ R : y + tξ ∈ E}. Moreover, if u : E → Rn we set uξ,y : Eξ

y → Rn to
uξ,y(t) = u(y + tξ).

Γ-convergence. A sequence of functionals Fn : Lp(Ω;Rn) → [0,+∞] is said to Γ-
converge to a functional F : Lp(Ω;Rn) → [0,+∞] at u ∈ Lp(Ω;Rn) as n → ∞ and we
write F (u) = Γ- lim

n→∞
Fn(u) if the following two conditions are satisfied:

(i) For every un converging to u in Lp(Ω;Rn) we have lim inf
n→∞

Fn(un) ≥ F (u).

(ii) There exists a sequence {un}n ⊂ Lp(Ω;Rn) converging to u in Lp(Ω;Rn) such that
lim sup
n→∞

Fn(un) ≤ F (u).
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We say that Fn Γ-converges to F if F (u) = Γ- lim
n→∞

Fn(u) for all u ∈ Lp(Ω;Rn).

If {Fε}ε>0 is a family of functionals indexed by a continuous parameter ε > 0 we say
that Fε Γ-converges to F as ε→ 0+ if for all εn → 0 we have that Fεn Γ-converges to F .
We define the Γ-lim inf F ′ : Lp(Ω;Rn)→ [0,∞] and the Γ-lim sup F ′′ : Lp(Ω;Rn)→ [0,∞]
respectively by

F ′(u) = Γ- lim inf
ε→0

Fε(u) = inf
{

lim inf
ε→0

Fε(uε) : uε → u
}
,

F ′′(u) = Γ- lim sup
ε→0

Fε(u) = inf
{

lim sup
ε→0

Fε(uε) : uε → u
}
.

Note that the functionals F ′,F ′′ are lower semicontinuous and Fε Γ-converges to F as
ε→ 0+ if and only if F = F ′ = F ′′.

Lattice functions. For A ∈ A(Ω), we set Zε(A) = εZN ∩ A. We set Aε(A,Rn) :=
{u : Zε(A)→ Rn}.

Definition 2.1. (Convergence of discrete functions) Functions u ∈ Aε(Ω;Rn) can be
interpreted by functions belonging to the space Lp(Ω;Rn) by setting (with slight abuse of
notation) u(z) = 0 for all z ∈ Zε(Ωc) and

u(x) = u(zεx)

where zεx is the closest point of Zε(RN) to x (which is uniquely defined up to a set of
measure 0). We then say that uε → u in Lp(Ω;Rn) if the interpolations of uε converge to
u in Lp(Ω;Rn).

Integral representation. We will use the following integral representation result (see
[15]).

Theorem 2.2. Let F : W 1,p(Ω;Rn)×A(Ω)→ [0,+∞] satisfy the following properties

i) (measure property) For every u ∈ W 1,p(Ω;Rn) we have that F (u, ·) is the restriction
of a Radon measure to the open sets.

ii) (lower semicontinuity) For every A ∈ A(Ω) we have that F (·, A) is weakly-W 1,1(Ω;Rn)
lower semicontinuous.

iii) (bounds) For every (u,A) ∈ W 1,p(Ω;Rn)×A(Ω) it holds that

0 ≤ F (u,A) ≤ C

(∫

A

|∇u|p dx+ |A|
)

iv) (translational invariance) For every (u,A) ∈ W 1,p(Ω;Rn) × A(Ω) and for every
c ∈ Rn it holds F (u,A) = F (u+ c, A).

v) (locality) For every A ∈ A(Ω) and every u, v ∈ W 1,p(Ω;Rn) such that u = v a.e. in
A, we have that F (u,A) = F (v, A).
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Then there exists a Carathéodory function f : Ω× Rn×N → [0,+∞] such that

F (u,A) =

∫

A

f(x,∇u)dx

for every (u,A) ∈ W 1,p(Ω;Rn)×A(Ω).

vi) (translational invariance in x) if for every M ∈ Rn×N , z, y ∈ Ω and for every ρ > 0
such that Qρ(z) ∪Qρ(y) ⊂ Ω we have that

F (Mx,Qρ(y)) = F (Mx,Qρ(z)),

then f does not depend on x.

3 The main result

For all i ∈ Ω, we denote by Ωi = Ω−i the translation of the set Ω with i at the origin, and
we consider a function φεi : (Rn)Zε(Ωi) → [0,+∞). Let Fε : Aε(Ω,Rn)×A(Ω)→ [0,+∞)
be defined by

Fε(u,A) =
∑

i∈Zε(A)

εNφεi ({uj+i}j∈Zε(Ωi)). (7)

In this section we give hypothesis on the energy densities φεi in order to ensure that the
Γ-limits of the energies defined in (7) be finite only on W 1,p(A,Rn)∩Lp(Ω;Rn) and there
exists a Carathéodory function f : Ω× Rn×N → [0,∞) such that

F (u,A) =

∫

A

f(x,∇u(x))dx (8)

for all (u,A) ∈ W 1,p(A,Rn) ∩ Lp(Ω;Rn) × A(Ω). A corresponding problem on the con-
tinuum is one of the first formalized in the theory of Γ-convergence, when Fε themselves
are integral energies. In that approach integral functionals are interpreted as depending
on a pair (u,A) with u a Sobolev function and A a subset of Ω, when the integration is
performed on A only. The compactness property of Γ-convergence then ensures that a
Γ-converging subsequence exits on a dense family of open sets by a simple diagonal argu-
ment. Showing that the dependence of the limit on the set variable is that of a regular
measure, the convergence is extended to a larger family of sets, and an integral repre-
sentation result can be applied. The type of conditions singled out in that case can be
adapted to the discrete setting, taking into account that discrete energies are “nonlocal”
in nature since they depend on the interactions of points at a finite distance. The locality
of the limit energy F must then be assured by a requirement of “vanishing nonlocality”
as ε→ 0.
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3.1 Hypotheses on the energy densities

A first requirement is that Fε be invariant under addition of constants to u; namely

(H1) (translational invariance) for all w ∈ Rn we have

φεi ({zj + w}j∈Zε(Ωi)) = φεi ({zj}j∈Zε(Ωi)) (9)

for all ε > 0, i ∈ Zε(Ω) and z : Zε(Ω)→ Rn.

A second requirement is that Fε(uε) be finite if ûε are a discretization of a W 1,p

function. In particular this should hold for affine functions.

(H2) (upper bound for the Cauchy-Born deformation) there exists C > 0, such that
for every M ∈ Rn×N and Mx(i) = Mi we have

φεi ({(Mx)j}j∈Zε(Ωi)) ≤ C(|M |p + 1) (10)

for all ε > 0 and all i ∈ Zε(Ω).

We then also require that the limit domain be exactly W 1,p functions, with p > 1. To
that end a coerciveness condition should be imposed.

(H3) (equi-coerciveness) there exists c > 0 such that

c
( N∑

n=1

|Den
ε z(0)|p − 1

)
≤ φεi ({zj}j∈Zε(Ωi)) (11)

for all ε and i such that i+ εen ∈ Zε(Ω) for all n ∈ {1, · · · , N}.
Next, we have to impose that the approximating continuum energy be local. Indeed,

in principle discrete interactions are non-local, in that they take into account nodes of
the lattice at a finite distance. This condition ensures that we can always find recovery
sequences for a set A ∈ A(Ω) that will not oscillate too much a finite distance away
from A. We expect the limit to depend on ∇u if only the interactions for small distances
are relevant, or, in other words, if the decay of interactions is fast enough. This can be
formulated otherwise: we may require that the overall effect of long-range interactions at
a point decay sufficiently fast as follows.

(H4) (decaying non-locality) There exist {Cj,ξ
ε,δ}ε>0,δ>0,j∈εZN ,ξ∈ZN , Cj,ξ

ε,δ ≥ 0 satisfying

lim sup
ε→0

∑

j∈Zε(RN ),ξ∈ZN
Cj,ξ
ε,δ = 0 ∀δ > 0 (12)

such that for all δ > 0, z, w ∈ Aε(Ω,Rn) satisfying z(j) = w(j) for all j ∈ Zε(Qδ(i)) we
have

φεi ({zj}j∈Zε(Ωi)) ≤φεi ({wj}j∈Zε(Ω)) +
∑

j∈Zε(Ωi),ξ∈ZN
j+εξ∈Zε(Ωi)

Cj,ξ
ε,δ

(
|Dξ

εz(j)|p + 1
)
.

The final condition is the most technical and derives from our requirement that the
limit can be expressed in terms of an integral. This is the most restrictive in the vectorial
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case d > 1 where convexity conditions have to be relaxed. A function ψ : Zε(Ω) → R is
called a cut-off function if 0 ≤ ψ ≤ 1.

(H5) (controlled non-convexity) There exist C > 0 and {Cj,ξ
ε }ε>0,j∈εZN ,ξ∈ZN , Cj,ξ

ε ≥ 0
satisfying

lim sup
ε→0

∑

j∈Zε(RN ),ξ∈ZN
Cj,ξ
ε < +∞, ∀ δ > 0 we have lim sup

ε→0

∑

max{ε|ξ|,|j|}>δ
Cj,ξ
ε = 0 (13)

such that for all z, w ∈ Aε(Ω,Rn) and ψ cut-off functions we have

φεi ({ψjzj + (1− ψj)wj}j∈Zε(Ωi)) ≤C
(
φεi ({zj}j∈Zε(Ωi)) + φεi ({wj}j∈Zε(Ωi))

)

+Rε
i (z, w, ψ)

where

Rε
i (z, w, ψ) =

∑

j∈Zε(Ωi),ξ∈ZN
j+εξ∈Zε(Ωi)

Cj,ξ
ε

(
( sup
k∈Zε(Ωi)
n∈{1,...,N}

|Den
ε ψ(k)|p + 1)|z(j + εξ)− w(j + εξ)|p

)

+
∑

j∈Zε(Ωi),ξ∈ZN
j+εξ∈Zε(Ωi)

Cj,ξ
ε

(
|Dξ

εz(j)|p + |Dξ
εw(j)|p + 1

)
.

Remark 3.1. (observations on the assumptions) If condition (H1) fails we expect the
limit not to be translational invariant anymore and if a integral representation exists it is
expected to be of the form

F (u,A) =

∫

A

f(x, u,∇u)dx.

However, integral-representation theorems for non-translation-invariant functionals in gen-
eral require restrictive hypotheses that should be added to (H2)–(H5).

If condition (H2) fails the Γ-limit may not be finite on W 1,p(Ω;Rn). Condition (H3)
allows to estimate nearest-neighbour interactions centered in i in terms of φεi . Note that
this estimate may still be true even if there are no interactions of the type |Den

ε u|p taken
into account by φεi . Indeed if d = 1 we may take c2, c3 > 0

φεi ({zj}j∈Zε(Ωi)) = c2

∣∣∣∣
z3ε − zε

2ε

∣∣∣∣
2

+ c3

∣∣∣∣
z3ε − z0

3ε

∣∣∣∣
2

.

If we assume a finite range R of interactions and assume that the potential φεi is well
behaved in some sense condition (H4) is always satisfied and in the definition of Rε

i the
summation is only taken over QR(i). If condition (H4) fails the Γ-limit may be non-local.
Indeed there are examples (e.g. [9]) where functionals of the form

F (u) =

∫

Ω

|∇u|2dx+

∫

Ω×Ω

k(x, y)|u(x)− u(y)|2dx
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can be obtained as the Γ-limit of energies of the form

Fε(u) =
∑

i∈Zε(Ω)

∑

ξ∈ZN
i+εξ∈Zε(Ω)

εNcεi,ξ|Dξ
εu(i)|2.

Note that (H1) is still satisfied. Condition (H5) mimics the so-called fundamental estimate
in the continuum and ensures that the limit F (u, ·) be subadditive as a set function.
Note that this condition is satisfied for potentials with appropriate growth conditions; in
particular, in Section 6.4 we show how the hypotheses above can be deduced from those
in [2] in the case of pair potentials.

3.2 Compactness and integral representation

The goal of this section is to establish the proof of Theorem 3.2.

Theorem 3.2. (Integral Representation) Let Fε : Lp(Ω;Rn) → [0,+∞] be defined
by (7), where φεi : (Rn)Zε(Ω) → [0,+∞) satisfy (H1)–(H5). Then for every sequence (εj)
of positive numbers converging to 0, there exists a subsequence εjk and a Carathéodory
function f : Ω× Rn×N → [0,+∞), quasiconvex in the second variable satisfying

c(|ξ|p − 1) ≤ f(x, ξ) ≤ C(|ξ|p + 1)

with 0 < c < C, such that Fεjk (·) Γ-converges with respect to the Lp(Ω;Rn)-topology to
the functional F : Lp(Ω;Rn)→ [0,+∞] defined by

F (u) =





∫

Ω

f(x,∇u)dx if u ∈ W 1,p(Ω;Rn)

+∞ otherwise.

Moreover, for any u ∈ W 1,p(Ω;Rn) and any A ∈ A(Ω) we have

Γ- lim
k→+∞

Fεjk (u,A) =

∫

A

f(x,∇u)dx.

We will derive the proof of Theorem 3.2 as a consequence of some propositions and
lemmas, which are fundamental in order to show that our limit functionals satisfy all
the assumptions of Theorem 2.2. In the next two proposition we show with the use of
(H1)–(H5) that assumption (ii) and assumption (iii) of Theorem 2.2 are satisfied. Note
that property (14) below allows to deduce weak lower-semicontinuity in W 1,p even though
we prove the Γ-convergence of the discrete energies with respect to the strong Lp(Ω;Rn)-
topology, so that assumption (ii) is satisfied.

Note that the proof of Proposition 3.3 is the same as the proof of Proposition 3.4 in
[2]. We repeat it here only for completeness and the reader’s convenience.

Proposition 3.3. Let φεi : (Rn)Zε(Ωi) → [0,+∞) satisfy (H3). If u ∈ Lp(Ω,Rn) is such
that F ′(u,A) < +∞, then u ∈ W 1,p(A,Rn) and

F ′(u,A) ≥ c
(
||∇u||p

Lp(A;Rn×N )
− |A|

)
(14)

for some positive constant c independent on u and A.
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Proof. Let εn → 0+ and let un → u in Lp(Ω;Rn) be such that lim inf
n

Fεn(un, A) < +∞.

By (H3) we get

Fεn(un, A) ≥ c
∑

i∈Zε(A)

N∑

k=1

εN |Dek
εnun(i)|p − cN |A|. (15)

For any k ∈ {1, · · · , N}, consider the sequence of piecewise-affine functions (vkn) defined
as follows

vkn(x) = un(i) +Dek
εnun(i)(xk − ik) x ∈ (i+ [0, εn)N) ∩ Ω, i ∈ Zε(A).

Note that vkn is a function of bounded variation and we will denote by ∂vkn
∂xk

the density of the

absolutely continuous part of Dxkv
k
n with respect to the Lebesgue measure. Moreover, for

HN−1-a.e. y ∈ (A)ek the slices (vkn)ek,y belong to W 1,p((A)eky ;Rn). Note that, for any fixed

η > 0, vkn → u in Lp(Aη;Rn) for every k ∈ {1, · · · , N}. Moreover, since ∂vkn
∂xk

(x) = Dek
εnun(i)

for x ∈ i+ [0, εn)N , we get

Fεn(un, A) ≥ c
N∑

k=1

∫

Aη

∣∣∣∣
∂vkn
∂xk

(x)

∣∣∣∣
p

dx− cN |A|.

We now apply a standard slicing argument. By Fubini’s Theorem and Fatou’s Lemma for
any k we get

lim inf
n

∫

Aη

∣∣∣∣
∂vkn
∂xk

(x)

∣∣∣∣
p

dx ≥
∫

(Aη)ek
lim inf

n

∫

(Aη)
ek
y

|(vkn)′ek,y(t)|
pdtdHN−1(y).

Since, up to passing to a subsequence, we may assume that, for HN−1-a.e. y ∈ (Aη)ek

(vkn)ek,y → uek,y in Lp((Aη)eky ;Rn), we deduce that uek,y ∈ W 1,p((Aη)eky ;Rn) for HN−1-
a.e. y ∈ (Aη)ek and

lim inf
n

∫

Aη

∣∣∣∣
∂vkn
∂xk

(x)

∣∣∣∣
p

dx ≥
∫

(Aη)ek

∫

(Aη)
ek
y

|u′ek,y(t)|
pdtdHN−1(y).

Then by (15), we have

lim inf
n

Fεn(un, A) ≥ c

N∑

k=1

∫

(Aη)ek

∫

(Aη)
ek
y

|u′ek,y(t)|
pdtdHN−1(y)− cN |A|.

Since, in particular, the previous inequality implies that

N∑

k=1

∫

(Aη)ek

∫

(Aη)
ek
y

|u′ek,y(t)|
pdtdHN−1(y) < +∞,

thanks to the characterization of W 1,p by slicing we obtain that u ∈ W 1,p(Aη,Rn) and

lim inf
n

Fεn(un, A) ≥ c
N∑

k=1

∫

Aη

∣∣∣∣
∂u

∂xk
(x)

∣∣∣∣
p

dx− cN |A|

≥ c
(
||∇u||p

Lp(Aη ;Rn×N )
− |A|

)

Letting η → 0+, we get the conclusion.
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Proposition 3.4. Let φεi : (Rn)Zε(Ωi) → [0,+∞) satisfy (H2),(H4) and (H5). We then
have

F ′′(u,A) ≤ C
(
||∇u||p

Lp(A;Rn×N )
+ |A|

)
(16)

for some positive constant C independent on u and A.

Proof. We first show that the inequality holds for a special subclass u ∈ W 1,p(Ω;Rn)
piecewise affine and then we recover the inequality for any u ∈ W 1,p(Ω;Rn) by a density
argument. To this end introduce for every K ∈ N, K > 1 the set of functions

PAK(Ω;Rn) =
{
u ∈ C(Ω;Rn) : u piecewise affine and ∃u1, u2 ∈ PAK−1(Ω;Rn)

u = χ
H

+u1 + χH−u2,
}
. (17)

and u1 = u2 on H, where H = {x · ν = c}, ν ∈ SN−1, c ∈ R hyperplane and H± =
{±x · ν > c}. For K = 0 we set

PA0(Ω;Rn) =
{
u = Mx+ b,M ∈ Rn×N , b ∈ Rn

}
.

Note that for a given simplex decomposition T and for a given piecewise affine function
u such that ∇u = const for every T ∈ T we have that u ∈ PAK(Ω;Rn) for some K ∈ N.
It therefore suffices to consider u ∈ PAK(Ω;Rn) and then proceed by density. We now
construct uδ ∈ W 1,p(Ω;Rn) such that uδ → u in W 1,p(Ω;Rn) and in L∞(Ω;Rn) as δ → 0
and

F ′′(uδ, A) ≤ C
(
||∇u||p

Lp(A;Rn×N )
+ |A|

)
+O(δ). (18)

Fix K ∈ N and assume that u ∈ PAK(Ω;Rn), i.e. u = uK is of the form (17) with
H hyperplane, u1

k−1, u
2
k−1 ∈ PAK−1(Ω;Rn). We construct uδ inductively. To this end

assume that u1,δ
k−1, u

2,δ
k−1 have already been constructed, we then define uδk by

uδk = ϕδku
1,δ
k−1 + (1− ϕδk)u2,δ

k−1,

where ϕδk ∈ C∞(Ω;R) is a cut-off function, that is 0 ≤ ϕδk ≤ 1, supp(ϕδk) ⊂ (H
+

)δ, (H
+

)δ ⊂
{ϕδk = 1} and ||∇ϕδk||∞ ≤ C

δ
where we have that (17) holds for uk with u1

k−1, u
2
k−1 and

H and u1,δ
k−1, u

2,δ
k−1 are regularizations of u1

k−1, u
2
k−1 constructed in the previous step. For

k = 0 we set uδk = uk and we set uδ = uδK . We now prove (18). To this end we define

uεδ(i) = uδ(i), i ∈ Zε(Ω).

We have that uεδ → uδ in Lp(Ω;Rn) and therefore

F ′′(uδ, A) ≤ lim sup
ε→0

Fε(u
ε
δ, A).

It thus suffices to prove

lim sup
ε→0

Fε(u
ε
δ, A) ≤ C

(
||∇u||p

Lp(A;Rn×N )
+ |A|

)
+ o(1) as δ → 0.
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Noting that uδ ∈ W 1,∞(Ω;Rn) with ||∇uδ||∞ ≤ C||∇u||∞ and for every x ∈ Zε(Ω \⋃
(H)2δ) we have that u(z) = uδ(z) = Mz + b for all z ∈ Qδ(x), for some M ∈ Rn×N , b ∈

Rn, where the (finite) union is taken over all H that are the half spaces defining u1
k−1, u

2
k−1

for all k. Now by (H2) we have that for i ∈ Zε(Ω \
⋃

(H)2δ) there holds

φεi ({(uεδ)j+i}j∈Zε(Ωi)) ≤ φεi ({(Mx+ b)j+i}j∈Zε(Ωi)) +
∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε,δ (|Dξ

εu
ε
δ(j)|p + 1)

≤ C(|∇u(i)|p + 1) + C(u)
∑

j∈Zε(Ω),ξ∈ZN
Cj−i,ξ
ε,δ .

Summing over all i ∈ Zε(A \
⋃

(H)2δ), taking the lim sup as ε → 0, taking into account
(12) and using the dominated convergence theorem we obtain

lim sup
ε→0

∑

i∈Zε(Ω\
⋃

(H)2δ)

εNφεi ({(uεδ)j+i}j∈Zε(Ωi)) ≤ C
(
||∇u||Lp(A;Rn×N ) + |A|

)
.

It remains to prove that

lim sup
ε→0

∑

i∈Zε(Ω∩(
⋃

(H)2δ))

εNφεi ({(uεδ)j+i}j∈Zε(Ωi)) = o(1) as δ → 0.

To this end we prove that for every i ∈ Zε(Ω ∩ (
⋃

(H)2δ)) there holds

φεi ({(uεδ)j+i}j∈Zε(Ωi)) ≤ C(u) (19)

for some constant C(u) depending only on u. We prove (19) by induction. Assume that
we proved already

φεi ({((uα,δk−1)ε)j+i}j∈Zε(Ωi)) ≤ C(u), α = 1, 2,

where (uα,δk−1)ε is the discretization of uα,δk−1. Note that this claim follows directly from (H2)
for k = 0, thus it suffices to prove only the induction step. Now assume that ϕδk /∈ {0, 1}
for some x ∈ Qδ(i). Using (H5) with u1,δ

k−1, u
2,δ
k−1 and with ϕδk as a cut-off function we

obtain

φεi ({((uδk)ε)j+i}j∈Zε(Ωi)) ≤C
(
φεi ({((u1,δ

k−1)ε)j+i}j∈Zε(Ωi)) + φεi ({((u2,δ
k−1)ε)j+i}j∈Zε(Ωi)) + 1

)

+Rε
i

(
(u1,δ

k−1)ε, (u2,δ
k−1)ε, ϕδk

)

≤ C(u) +Rε
i

(
(u1,δ

k−1)ε, (u2,δ
k−1)ε, ϕδk

)
.

We have

Rε
i

(
(u1,δ

k−1)ε, (u2,δ
k−1)ε, ϕδk

)
=

(
1

δp
+ 1

) ∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε |(u1,δ

k−1)ε(j + εξ)− (u2,δ
k−1)ε(j + εξ)|p

+
∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε

(
|Dξ

ε(u
1,δ
k−1)ε(j)|p + |Dξ

ε(u
2,δ
k−1)ε(j)|p

)
.
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Note that by construction we have that ||∇uα,δk−1||∞ ≤ C||∇u||∞ and therefore, using (13),
we obtain

∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε

(
|Dξ

ε(u
1,δ
k−1)ε(j)|p + |Dξ

ε(u
2,δ
k−1)ε(j)|p

)
≤ C(u).

Now for x ∈ Qδ(i) we have that

|u1,δ
k−1(x)− u2,δ

k−1(x)| ≤ |u1,δ
k−1(x)− u1,δ

k−1(xH)|+ |u1,δ
k−1(xH)− u2,δ

k−1(xH)|+ |u2,δ
k−1(x)− u2,δ

k−1(xH)|,

where xH ∈ Q2δ(x)∩H so that u2,δ
k−1(xH) = u1,δ

k−1(xH) and we therefore have that the third

term on the right hand side is equal to 0. Since ||∇uα,δk−1||∞ ≤ C||∇u||∞ we have that

|uα,δk−1(x)− uα,δk−1(xH)| ≤ C(u)δ

for α = 1, 2. Therefore we obtain

|u1,δ
k−1(x)− u2,δ

k−1(x)| ≤ C(u)δ.

Splitting the sum into the summation over j, ξ such that max{ε|ξ|, |j − i|} > δ and the
complement and using that ||∇uα,δk−1||∞ ≤ C||∇u||∞ for all k ∈ {1, . . . , K}, α ∈ {1, 2}, δ >
0 we obtain

Rε
i

(
(u1,δ

k−1)ε, (u2,δ
k−1)ε, ϕδk

)
≤ C(u)

(
(1 + δp)

∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

max{ε|ξ|,|j−i|}≤δ

Cj−i,ξ
ε

)

+ C(u)
(( 1

δp
+ 1
) ∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

max{ε|ξ|,|j−i|}>δ

Cj−i,ξ
ε + 1

)

≤ C(u)

for ε > 0 small enough. Now if ϕδk /∈ {0, 1}C for all x ∈ Qδ(i) we have without loss of
generality that ϕδk = 1 for all x ∈ Qδ(i). Using (H4) we obtain and the same estimates as
for i ∈ Zε(A \

⋃
(H)2δ), that

φεi ({((uδk)ε)j+i}j∈Zε(Ωi)) ≤ Cφεi ({((u1,δ
k−1)ε)j+i}j∈Zε(Ωi)) +

∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε,δ (|Dξ

εu
ε
δ(j)|p + 1)

≤ C(u)

and (19) follows. Summing over i ∈ Zε(A ∩
⋃

(H)2δ) we obtain

∑

i∈Zε(A∩
⋃

(H)2δ)

εNφεi ({(uεδ)j+i}j∈Zε(Ωi)) ≤ C(u)εN#Zε(A ∩
⋃

(H)2δ) ≤ C(u)
∣∣∣A ∩

⋃
(H)2δ

∣∣∣ .
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Hence it follows that

lim sup
ε→0

∑

i∈Zε(A∩
⋃

(H)2δ)

εNφεi ({(uεδ)j+i}j∈Zε(Ωi)) = o(1) as δ → 0,

since lim
δ→0

∣∣∣A ∩
⋃

(H)2δ

∣∣∣ = 0. and therefore (18) follows. Now by the lower semicontinuity

of F ′′(·, A) we have

F ′′(u,A) ≤ lim inf
δ→0

F ′′(uδ, A) ≤ C
(
||∇u||p

Lp(A;Rn×N )
+ |A|

)
.

Now for general u ∈ W 1,p(Ω;Rn) take {un} ⊂ W 1,p(Ω;Rn) piecewise affine such that
un → u strongly in W 1,p(Ω;Rn) and again by the lower semicontinuity of F ′′(·, A) we
have

F ′′(u,A) ≤ lim inf
n→∞

F ′′(un, A) ≤ lim
n→∞

C(||∇un||pLp(A;Rd×N )
+ |A|) = C(||∇u||p

Lp(A;Rn×N )
+ |A|)

and the statement is proven.

Proposition 3.5. Let φεi : (Rn)Zε(Ω) → [0,+∞) satisfy (H2)–(H5). Let A,B ∈ A(Ω) and
let A′, B′ ∈ A(Ω) be such that A′ ⊂⊂ A and B′ ⊂⊂ B. Then for any u ∈ W 1,p(Ω;Rn) we
have

F ′′(u,A′ ∪B′) ≤ F ′′(u,A) + F ′′(u,B)

Proof. Without loss of generality, we may suppose F ′′(u,A) and F ′′(u,B) finite. Let (uε)ε
and (vε)ε converge to u in Lp(Ω;Rn) and be such that

lim sup
ε→0+

Fε(uε, A) = F ′′(u,A), lim sup
ε→0+

Fε(vε, B) = F ′′(u,B),

and therefore

sup
ε>0

∑

i∈Zε(A)

εNφεi ({(uε)j+i}j∈Zε(Ωi)) <∞, (20)

sup
ε>0

∑

i∈Zε(B)

εNφεi ({(vε)j+i}j∈Zε(Ωi)) <∞. (21)

By (H3) we have that

sup
n∈{1,...,N}

sup
ε>0

∑

i∈Zε(A′′)
εN |Den

ε uε(i)|p < +∞ (22)

sup
n∈{1,...,N}

sup
ε>0

∑

i∈Zε(B′′)
εN |Den

ε vε(i)|p < +∞ (23)

for all A′′ ⊂⊂ A,B′′ ⊂⊂ B. Since uε and vε converge to u in Lp(Ω;Rn), we have that
∑

i∈Zε(Ω)

εN (|uε(i)|p + |vε(i)|p) ≤ ||uε||pLp(Ω;Rn) + ||vε||pLp(Ω;Rn) ≤ C <∞ (24)

∑

i∈Zε(Ω)

εN (|uε(i)− vε(i)|p) ≤ ||uε − vε||Lp(Ω;Rn) → 0. (25)
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Since u ∈ W 1,p(Ω;Rn) there exists ũε, ṽε such that ũε and ṽε converge to u in Lp(Ω;Rn)
and

sup
n∈{1,...,N}

sup
ε>0

∑

i∈Zε(Ω)

εN (|Den
ε ũε(i)|p + |Den

ε ṽε(i)|p) <∞. (26)

Take A′′, A′′′, B′′, B′′′ ∈ A(Ω),ϕA, ϕB ∈ C∞(Ω) such that A′ ⊂⊂ A′′ ⊂⊂ A′′′ ⊂⊂ A,
B′ ⊂⊂ B′′ ⊂⊂ B′′′ ⊂⊂ B, 0 ≤ ϕA, ϕB ≤ 1, A′′′ ⊂ {ϕA = 0}, B′′′ ⊂ {ϕB = 0},
A′′ ⊂ {ϕA = 1}, B′′ ⊂ {ϕB = 1} and ||∇ϕA||∞, ||∇ϕB||∞ ≤ C, and define u′ε = ϕAuε +
(1−ϕA)ũε,v

′
ε = ϕBvε+(1−ϕB)ṽε. Now for j ∈ Zε(Ω), ψ cut-off function z, w ∈ Aε(Ω;Rn)

v = ψz + (1− ψ)w we have

Den
ε v(j) = ψ(j)Den

ε z(j) + (1− ψ(j))Den
ε w(j) +Den

ε ψ(j)(z(j)− w(j)) (27)

Since {ϕA > 0} ⊂⊂ A, by (22), (26) and (27) we have that

sup
n∈{1,...,N}

sup
ε>0

∑

j∈Zε(Ω)

εN |Den
ε u
′
ε(j)|p <∞. (28)

We can perform a similar construction for v′ε and therefore assume that an analogous
bound to (28) holds also for v′ε. Moreover, since u′ε and v′ε converge to u in Lp(Ω;Rn) we
have that (24) and (25) hold with u′ε and v′ε. Now for δ > 0, by (H4), it holds

φεi ({(u′ε)j+i}j∈Zε(Ωi)) ≤ φεi ({(uε)j+i}j∈Zε(Ωi)) +
∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε,δ (|Dξ

εu
′
ε(j)|p + 1) (29)

as well as a similar estimate for v′ε in B′. Set

d := dist∞(A′, Ac) and Ak := (A′) k
3K

d

for any k ∈ {K, . . . , 2K}. Let ϕk be a cut-off function between Ak and Ak+1, with
||∇ϕk||∞ ≤ CK . Then for any k ∈ {K, . . . , 2K} consider the family of functions wkε ∈
Aε(Ω;Rn) converging to u in Lp(Ω;Rn), defined as

wkε (i) = ϕk(i)u
′
ε(i) + (1− ϕk(i))v′ε(i).

Given i ∈ Zε(A′ ∪B′), then either dist∞(i, Ak+1 \Ak) ≥ d
3K

, in which case either wkε (j) =
u′ε(j) for j ∈ Zε(Q d

2K
(i)) and i ∈ Zε(Ak) or wkε (j) = v′ε(j) j ∈ Zε(Q d

2K
(i)) and i ∈

Zε((A
′ ∪B′) \Ak+1) ⊂ Zε(B

′), or dist∞(i, Ak+1 \Ak) < d
6K

. In the first case, using (H4),
we estimate

φεi ({(wkε )j+i}j∈Zε(Ω)) ≤ φεi ({(u′ε)j+i}j∈Zε(Ω)) +
∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε, d

2K

(|Dξ
εw

k
ε (j)|p + 1). (30)

In the second case, using (H4), we estimate

φεi ({(wkε )j+i}j∈Zε(Ω)) ≤ φεi ({(v′ε)j+i}j∈Zε(Ω)) +
∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε, d

2K

(|Dξ
εw

k
ε (j)|p + 1). (31)
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Using (27) and the convexity of | · |p we have for j ∈ Zε(Ω) and ξ ∈ ZN

|Dξ
εw

k
ε (j)|p ≤|Dξ

εu
′
ε(j)|p + |Dξ

εv
′
ε(j)|p + CKp|u′ε(j + εξ)− v′ε(j + εξ)|p. (32)

Now if dist∞(i, Ak+1 \ Ak) < d
3K

we have that i ∈ Zε(Ak+2 \ Ak−1) =: Zε(Sk) where
Sk ⊂⊂ A ∩B. By (H5) we have that for such an i it holds

φεi ({(wkε )j+i}j∈Zε(Ω)) ≤C(φεi ({(v′ε)j+i}j∈Zε(Ω)) + φεi ({(u′ε)j+i}j∈Zε(Ω))) +Rε
i (u
′
ε, v
′
ε, ϕk)

(33)

where

Rε
i (u
′
ε, v
′
ε, ϕk) = (CKp + 1)

∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε |uε(j + εξ)− vε(j + εξ)|p (34)

+
∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε

(
|Dξ

εu
′
ε(j)|p + |Dξ

εv
′
ε(j)|p + 1

)
.

Summing over i ∈ Zε(A′ ∪ B′) and splitting into the two cases as described above, using
(30)–(34), we have

Fε(w
k
ε , A

′ ∪B′) ≤
∑

i∈Zε(A′∪B′)
dist∞(i,Ak+1\Ak)≥ d

3K

εNφεi ({(wkε )j+i}j∈Zε(Ωi)) +
∑

i∈Zε(Sk)

εNφεi ({(wkε )j+i}j∈Zε(Ωi))

≤Fε(uε, A) + Fε(vε, B)

+ CKp
∑

i∈Zε(Sk)

εN
∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε |u′ε(j + εξ)− v′ε(j + εξ)|p

+ CKp
∑

i∈Zε(A′∪B′)
εN

∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε, d

2K

|u′ε(j + εξ)− v′ε(j + εξ)|p

+
∑

i∈Zε(A′∪B′)
εN

∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε, d

2K

(
|Dξ

εu
′
ε(j)|p + |Dξ

εv
′(j)|p + 1

)

+
∑

i∈Zε(Sk)

εN
∑

j∈Zε(Ω),ξ∈ZN
j+εξ∈Zε(Ω)

Cj−i,ξ
ε

(
|Dξ

εu
′
ε(j)|p + |Dξ

εv
′(j)|p + 1

)

+ C
∑

i∈Zε(Sk)

εN
(
φεi ({(v′ε)j+i}j∈Zε(Ωi)) + φεi ({(u′ε)j+i}j∈Zε(Ωi))

)
.

Note that #{j 6= k : Sk ∩ Sj 6= ∅} ≤ 5. Therefore summing over k ∈ {K, . . . , 2K − 1},
averaging and taking into account (20)–(24), (28) and Lemma 3.6 in [2], we get

1

K

2K−1∑

k=K

Fε(w
k
ε , A

′ ∪B′) ≤ Fε(uε, A) + Fε(vε, B) +
C

K
+ (Kp + 1)O(ε). (35)
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For any ε > 0 there exists k(ε) ∈ {K, . . . , 2K − 1} such that

Fε(w
k(ε)
ε , A′ ∪B′) ≤ 1

K

2K−1∑

k=K

Fε(w
k
ε , A

′ ∪B′). (36)

Then, since w
k(ε)
ε still converges to u in Lp(Ω;Rn), by (35) and (36), letting ε→ 0 we get

F ′′(u,A′ ∪B′) ≤ F ′′(u,A) + F (u,B) +
C

K
.

Letting K →∞ we obtain the claim.

Proposition 3.6. Let φεi : (Rn)Zε(Ω) → [0,+∞) satisfy (H2)–(H5). Then for any u ∈
W 1,p(Ω;Rn) and any A ∈ A(Ω) we have

sup
A′⊂⊂A

F ′′(u,A′) = F ′′(u,A).

Proof. Since F ′′(u, ·) is an increasing set function, it suffices to prove

sup
A′⊂⊂A

F ′′(u,A′) ≥ F ′′(u,A).

In order to prove this, we define an extension of the functional Fε to a functional F̃ε
defined on a bounded, smooth, open set Ω̃ ⊃⊃ Ω such that

F̃ε(ũ, A) = Fε(u,A)

for all A ∈ A(Ω) and all ũ ∈ Aε(Ω̃;Rn) such that ũ = u in Zε(Ω) and therefore

F ′′(u,A) = F̃ ′′(ũ, A) (37)

for all A ∈ A(Ω), u ∈ W 1,p(Ω;Rn) and ũ ∈ W 1,p(Ω;Rn) such that ũ = u a.e. in Ω. To
this end we define Fε : Aε(Ω̃)×A(Ω̃)→ [0,+∞) by

F̃ε(u,A) =
∑

i∈Zε(A)

εN φ̃εi ({uj+i}j∈Zε(Ω̃i))

where φ̃εi : (Rn)Zε(Ω̃) → [0,+∞) is defined by

φ̃εi ({zj+i}j∈Zε(Ωi)) :=

{
φεi ({(z

∣∣
Ω

)j+i})j∈Zε(Ω) i ∈ Zε(Ω)

c
∑N

n=1 |Den
ε z(i)|p i ∈ Ω̃ \ Ω

with c > 0 as in (15). Note that φ̃εi satisfies (H2)–(H5). Let u ∈ W 1,p(Ω;Rn), extended to
ũ ∈ W 1,p(Ω̃;Rn). Let A ∈ A(Ω); for δ > 0 find Aδ, Aδ, Bδ such that Aδ ⊃⊃ A ⊃⊃ Aδ ⊃⊃
A′δ ⊃⊃ Bδ ⊃⊃ Bδ and

|Aδ \Bδ|+ ||∇u||LP (Aδ\Bδ;Rn×N ) ≤ δ.
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Applying Proposition 3.5 with U = Aδ \ Bδ, V = Aδ, U
′ = A \ Bδ

and V ′ = A′δ we have
U ′ ∪ V ′ = A and therefore

F̃ ′′(ũ, A) ≤ F̃ ′′(ũ, U ′ ∪ V ′) ≤ F̃ ′′(u, U) + F̃ ′′(u, V ) ≤ F̃ ′′(ũ, Aδ) + F̃ ′′(ũ, Aδ \Bδ)

≤ F̃ ′′(ũ, Aδ) + C
(
|Aδ \Bδ|+ ||∇u||pLP (Aδ\Bδ;Rd×N )

)

≤ F̃ ′′(u,Aδ) + Cδ ≤ sup
A′⊂⊂A

F̃ ′′(ũ, A′) + Cδ

Applying (37) to u, ũ and A,A′ we obtain

F ′′(u,A) ≤ sup
A′⊂⊂A

F ′′(u,A′) + Cδ.

The claim follows as δ → 0+.

Proposition 3.7. Let φεi : (Rn)Zε(Ω) → [0,+∞) satisfy (H2)–(H5). Then for any A ∈
A(Ω) and for any u, v ∈ W 1,p(Ω;Rn), such that u = v a.e. in A we have

F ′′(u,A) = F ′′(v, A)

Proof. Thanks to Proposition 3.6, we may assume that A ⊂⊂ Ω. We first prove

F ′′(u,A) ≥ F ′′(v, A)

Given δ > 0 there exist Aδ ⊂⊂ A such that

|A \ Aδ|+ ||∇u||pLp(Ω;Rn×N )
≤ δ

Let vε : Zε(Ω)→ Rn, uε : Zε(Ω)→ Rn be such that vε → v and uε → u in Lp(Ω;Rn) and

lim sup
ε→0+

Fε(uε, A) = F ′′(u,A)

lim sup
ε→0+

Fε(vε, A \ Aδ) = F ′′(v, A \ Aδ) ≤ C
(
|A \ Aδ|+ ||∇u||pLp(Ω;Rn×N )

)
≤ Cδ

Performing the same cut-off construction as in Proposition 3.5 we obtain a function wε
converging to v in Lp(Ω;Rn) such that for ε > 0 small enough we obtain

Fε(wε, A
′) ≤ Fε(uε, A) + Fε(vε, A \ Aδ) +

Cδ
K

+KpO(ε)

for some A′ ⊂⊂ A. Taking ε→ 0+ we obtain

F ′′(v,A′) ≤ F ′′(u,A) +
Cδ
K

+ Cδ

Letting K → +∞ and δ → 0 we obtain the desired inequality. Exchanging the roles of u
and v we obtain the other inequality.
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Proof of Theorem 3.2. By the compactness property of Γ-convergence there exists a sub-
sequence εjk of εj such that for any (u,A) ∈ W 1,p(Ω;Rn)×A(Ω) there exists

Γ(Lp)- lim
k
Fεjk (u,A) =: F (u,A)

(see [15] Theorem 10.3). Moreover, by Proposition 3.4 we have that

Γ(Lp)- lim
k
Fεjk (u) = +∞

for any u ∈ Lp(Ω;Rn) \ W 1,p(Ω;Rn). So it suffices to check that for every (u,A) ∈
W 1,p(Ω;Rn)×A(Ω), F (u,A) satisfies all the hypothesis of Theorem 2.2 in [2]. In fact the
superaditivity property of Fε(u, ·) is conserved in the limit. Thus, as an consequence of
Propositions (3.4)–(3.7) and thanks to De Giorgi-Letta Criterion (see [15]), hypotheses
(i), (ii), (iii) hold true. Moreover, since Fε(u,A) is translationally invariant, hypothesis
(iv) is satisfied and finally, by the lower semicontinuity property of Γ-limit, also hypothesis
(v) is fulfilled.

4 Treatment of Dirichlet boundary data

In order to recover the limiting energy density we will establish the next lemma which
asserts that our energies still converge if we suitably assign affine boundary conditions.
From this, one is able to recover the value of f in Theorem 3.2 by a blow-up argument.
Given M ∈ Rn×N ,m ∈ N, ε > 0 and A ∈ Areg(Ω) set

AM,m
ε (A;Rn) =

{
u ∈ Aε(Ω;Rn) : u(i) = Mi if (i+ [−mε,mε)N) ∩ Ac 6= ∅

}
(38)

For M ∈ Rd×N ,m ∈ N we define FM,m
ε : Lp(Ω;Rn)×Areg(Ω)→ [0,+∞] by

FM,m
ε (u,A) =

{
F (u,A) if u ∈ AM,m

ε (A;Rn)

+∞ otherwise.

Proposition 4.1. Let φεi : (Rn)Zε(Ω) → [0,+∞) satisfy (H1)–(H5). Let εjk and f be as in
Theorem 3.2. For any M ∈ Rd×N and A ∈ Areg(Ω) we set FM : Lp(Ω;Rn)×Areg(Ω) →
[0,+∞] by

FM(u,A) =





∫

A

f(x,∇u)dx if u−Mx ∈ W 1,p
0 (A;Rn)

+∞ otherwise.

Then for any M ∈ Rd×N ,m ∈ N and any A ∈ Areg we have that FM,m
εjk

(·, A) Γ-converges

with respect to the strong Lp(Ω;Rn)-topology to the functional FM(·, A).

Proof. We only prove the statement for m = 1, the other cases being done analogously.
We first prove the Γ-lim inf inequality. Let {uk}k ⊂ Aεjk (Ω;Rn) converge to u in the

Lp(Ω;Rn)-topology and be such that

lim inf
k→∞

FM,1
εjk

(uk, A) = lim
k→∞

FM
εjk

(uk, A) < +∞.
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Since uk ∈ AM,m
εjk

(A;Rn) for all k ∈ N, and by (H3), we have that uk →Mx in Lp(A\Ω;Rn)

and

sup
ε>0

N∑

n=1

∑

i∈Zε(Ω)

εN |Den
ε uk(i)|p < +∞.

By the same reasoning as in Proposition 3.4 u ∈ W 1,p(Ω;Rn) and u−Mx ∈ W 1,p
0 (A;Rn).

By Theorem 3.2 we therefore have

lim inf
k→∞

FM,m
εjk

(uk, A) ≥ lim inf
k→∞

Fεjk (uk, A) = FM(u,A).

To prove the Γ-lim sup inequality we may first suppose that supp(u −Mx) ⊂⊂ A. Let
{uk}k ⊂ Aεjk (Ω;Rn) converge to u in Lp(Ω;Rn) and be such that

lim sup
k→∞

Fεjk (uk, A) = F (u,A).

Then by reasoning as in the proof of Proposition 3.6 given δ > 0 we can find Aδ ⊂ A and
suitable cut-off functions ϕk with supp(u −Mx) ⊂⊂ suppϕk ⊂⊂ Aδ and |A \ Aδ| < δ
such that for

wk(i) := ϕk(i)uk(i) + (1− ϕk(i))Mi

we have that wk converges to u in Lp(Ω;Rn) and

lim sup
k→∞

Fεjk (wk, A) ≤ lim sup
k→∞

Fεjk (uk, A) + lim sup
k→∞

Fεjk (Mx,A \ Aδ) + δ.

Using (H2) we have that for every k ∈ N it holds

Fεjk (Mx,A \ Aδ) ≤ C(|M |p + 1)|(A \ Aδ)ε| ≤ C(|M |p + 1)|δ.

By the definition of the Γ-lim sup we have that

Γ- lim sup
k→∞

FM,m
εjk

(u,A) ≤ FM(u,A) + Cδ.

Letting δ → 0 we obtain the desired inequality. The general case follows by a density
argument, approximating every function u ∈ W 1,p(Ω;Rn) such that u−Mx ∈ W 1,p

0 (A;Rn)
strongly in W 1,p(Ω;Rn) by functions un such that supp(un −Mx) ⊂⊂ A and using the
lower semicontinuity of the Γ-lim sup as well as the continuity of F (·, A) with respect to
the strong convergence in W 1,p(Ω;Rn).

Remark 4.2. Let φεi : (Rn)Zε(Ω) → [0,+∞) satisfy (H1)–(H5), and let εjk be as in
Theorem 3.2. For any M ∈ Rd×N ,m ∈ N and A ∈ Areg(Ω) we have that

lim
k→∞

inf
{
Fεjk (u,A) : u ∈ AM,m

εjk
(A;Rn)

}
= inf

{
F (u,A) : u−Mx ∈ W 1,p

0 (A;Rn)
}
,

since the functionals FM
ε are coercive with respect to the strong Lp(Ω;Rn)-topology.

21



Note first that by extending the functional as in the proof of Proposition 3.6 we can
assume that A ⊂⊂ Ω. Moreover, by the boundary conditions and by (H3) any sequence
{uk}k satisfying

sup
k
FM,m
εjk

(uk, A) < +∞

satisfies

sup
k∈N

N∑

n=1

∑

i∈Zεjk (Ω)

εN |Den
εjk
uk(i)|p < +∞.

Then by the boundary conditions, Lemma 3.6 in [2] and the Riesz-Frechét-Kolmogorov
Theorem there exists a function u ∈ Lp(Ω;Rn) and a subsequence (not relabelled) that
converges to u. By Proposition 3.4 we have that u ∈ W 1,p(Ω;Rn). Moreover, uk → Mx
in Lp(Ω \ A;Rn) and therefore u−Mx ∈ W 1,p

0 (A;Rn). This implies the coercivity.

5 Homogenization

We now consider the case where i 7→ φεi is periodic, though we have to explain what
that means in our case, since the interaction energy at every point of the lattice may
depend on the whole configuration of the state {zj+i}j∈Zε(Ωi). This will be done by using

a function φi : (Rn)Z
N → [0,+∞), i ∈ ZN defined on the entire lattice. In order to define

the energy density inside Ω we assume that φi is approximated by finite-range interaction.
More precisely, we suppose that there exist φki : (Rn)Z

N → [0,+∞), i ∈ ZN T -periodic,
satisfying (H1)–(H3) uniformly in k and

(Hp4) (locality) For all k ∈ N and for all z, w ∈ A1(RN ,Rn) satisfying z(j) = w(j) for
all j ∈ ZN ∩Qk(i) we have

φki ({zj}j∈ZN ) = φki ({wj}j∈ZN ).

(Hp5) (controlled non-convexity) There exist C > 0 and {Cj,ξ}j∈ZN ,ξ∈ZN , Cj,ξ ≥ 0
satisfying

∑

j,ξ∈ZN
Cj,ξ < +∞ and we have lim sup

k→∞

∑

max{|ξ|,|j|}>k
Cj,ξ = 0 (39)

such that for all k ∈ N, z, w ∈ A1(RN ,Rn) and ψ cut-off functions we have

φki ({ψjzj + (1− ψj)wj}j∈ZN ) ≤C
(
φki ({zj}j∈ZN ) + φki ({wj}j∈ZN )

)

+Rk
i (z, w, ψ),

where

Rk
i (z, w, ψ) =

∑

j,ξ∈ZN
j+ξ∈ZN∩Qk(0)

Cj,ξ
(

( sup
k∈ZN∩Qk(0)

n∈{1,...,N}

|Den
1 ψ(k)|p + 1)|z(j + ξ)− w(j + ξ)|p

)

+
∑

j,ξ∈ZN
j+ξ∈ZN∩Qk(0)

Cj,ξ
(
|Dξ

1z(j)|p + |Dξ
1w(j)|p + 1

)
.
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(Hp6) (closeness) There exist {Cj,ξ
k }k∈N,j∈ZN ,ξ∈ZN , Cj,ξ

k ≥ Cj,ξ
k+1 ≥ 0 satisfying

lim sup
k→∞

∑

j,ξ∈ZN
Cj,ξ
k = 0 (40)

such that for all z ∈ A1(RN ;Rn) and k1 ≤ k2 we have that

|φk1i ({zj}j∈ZN )− φk2i ({zj}j∈ZN )| ≤
∑

j,ξ∈ZN∩Qk2 (0)

j+ξ∈ZN∩Qk2 (0)

Cj,ξ
k1

(
|Dξ

1z(j)|p + 1
)
.

(Hp7) (monotonicity) For every k ∈ N, for every i ∈ ZN and for every z ∈ A1(RN ;Rn)
we have

φki ({zj}j∈ZN ) ≤ φk+1
i ({zj}j∈ZN ), φki ({zj}j∈ZN )→ φi({zj}j∈ZN ) as k →∞. (41)

The monotonicity property (Hp7) may seem restrictive at a first sight, but it is not
since by the positivity of φk and φ respectively we may reorder the interactions in a way
that we keep only adding positive interactions with increasing k.

For every i ∈ Zε(Ω) we define φεi : (Rn)Zε(Ω) → [0,+∞) by

φεi ({zj}j∈Zε(Ωi)) = φ
b di
ε
c

i
ε

({zεj}j∈ZN ), (42)

where dist∞(Ωc, i) = di and

zε(j) =

{
z(εj)
ε

j ∈ Qb di
ε
c(i) ∩ ZN

0 otherwise.

Note that (42) is well defined due to the locality property (Hp4) and moreover, φεi satisfies
(H1)–(H5). Those assumptions are made to avoid the dependence of φεi on Ω and still
include infinite-range interactions.

Theorem 5.1. Let φki : (Rn)Z
N → [0,+∞) satisfy (H1)–(H3) and (Hp4)–(Hp7) and φεi :

(Rn)Zε(Ω) → [0,+∞) be defined by (42). Then, Fε : Lp(Ω;Rn) → [0,+∞] Γ-converges
with respect to the strong Lp(Ω;Rn)-topology to the functional F : Lp(Ω;Rn) → [0,+∞]
defined by

F (u) =





∫

Ω

fhom(∇u)dx if u ∈ W 1,p(Ω;Rn)

+∞ otherwise,

where fhom : Rd×N → [0,∞) is given by

fhom(M) = lim
L→∞

1

LN
inf
{ ∑

i∈ZN∩QL

φi({zj+i}j∈ZN ) : z ∈ AM,b
√
Lc

1 (QL;Rn)
}
, (43)

where

AM,m
ε (QL;Rn) =

{
u ∈ Aε(RN ;Rn) : u(i) = Mi if (i+ [−mε,mε)N) ∩Qc

L 6= ∅
}
.
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Remark 5.2. Note that in Theorem 5.1 we have that the whole sequence Fε Γ-converges
to the limit functional F . We fix the boundary conditions of the admissible test functions
on a boundary layer of width b

√
Lc in order to have the boundary effects negligible while

still being able to use a subadditivity argument in order to prove the existence of the limit
in (43). Arguing as in the proof of Proposition 5.3 to show that the error goes to 0 when
substituting φki with φi, and using the fact that the limit energy density is quasi-convex,
we also have

fhom(M) = lim
L→∞

1

LN
inf
{ ∑

i∈ZN∩QL

φi({zj+i}j∈ZN ) : z ∈ AM,m
1 (QL;Rn)

}

for all m ∈ N and all M ∈ Rd×N .

Proof. By Theorem (3.2) for every sequence εj there exists a subsequence εjk such that
Fεjk Γ-converges to a functional F such that for any u ∈ W 1,p(Ω;Rn) and every A ∈ A(Ω)
we have

Γ- lim
k→∞

Fεjk (u,A) =

∫

A

f(x,∇u)dx.

By the Urysohn property of Γ-convergence the theorem is proved if we show that f does
not depend on x and f = fhom. To prove the first claim it suffices to show that

F (Mx,Qρ(z)) = F (Mx,Qρ(y))

for all M ∈ Rd×N , z, y ∈ Ω and ρ > 0 such that Qρ(z) ∪ Qρ(y) ⊂ Ω. By symmetry it
suffices to prove

F (Mx,Qρ(z)) ≤ F (Mx,Qρ(y)).

By the inner-regularity property it suffices to prove for any ρ′ < ρ

F (Mx,Qρ′(z)) ≤ F (Mx,Qρ(y)).

Let vk ∈ Aεjk (Ω;Rn) be such that vk →Mx in Lp(Ω;Rn) and such that

lim
k→∞

Fεjk (vk, Qρ(y)) = F (Mx,Qρ(y)).

Let ϕ ∈ C∞(Ω) be a cut-off function such that 0 ≤ ϕ ≤ 1

supp(ϕ) ⊂⊂ Qρ(z), Qρ′(z) ⊂⊂ {ϕ = 1} and ||∇ϕ||∞ ≤
C

ρ− ρ′ .

For k ∈ N define uk ∈ Aεjk (Ω;Rn) by

uk(i) = ϕ(i)

(
vk

(
i+ εjkT b

y − z
Tεjk

c
)

+M(z − y)

)
+ (1− ϕ(i))Mi.
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Thus by the periodicity assumption and the locality property we have that
∑

i∈Zεjk (Qρ′ (z))

εNjkφ
εjk
i ({(uk)j+i}j∈Zεjk (Ωi)) ≤

∑

i∈Zεjk (Qρ(y))

εNjkφ
εjk
i ({(vk)j+i}j∈Zεjk (Ωi)) +O(εjk).

Therefore, we obtain

F (Mx,Qρ′(z)) ≤ lim inf
k→∞

Fεjk (uk, Qρ′(z)) ≤ lim inf
k→∞

Fεjk (uk, Qρ(y)) = F (Mx,Qρ(y)).

In order to obtain that f = fhom we note that by the lower semicontinuity with respect
to the strong Lp(Ω;Rn)-topology and the coercivity of F we obtain that F is lower semi-
continuous with respect to the weak W 1,p(Ω;Rn)-topology and hence f is quasiconvex.
By the growth properties of f and Remark 4.2 we obtain for Q = Qρ(x0) ⊂⊂ Ω

f(M) =
1

ρN
inf
{∫

Q

f(∇u)dx : u−Mx ∈ W 1,p
0 (Q;Rn)

}

=
1

ρN
inf
{
F (u,Q) : u−Mx ∈ W 1,p

0 (Q;Rn)
}

= lim
m→∞

lim
k→∞

1

ρN
inf
{
Fεjk (u,Q) : u ∈ AM,m

εjk
(Q;Rn)

}

= fhom(M).

Where the last inequality follows from the next proposition.

Proposition 5.3. Let φki : (Rn)Z
N → [0,+∞) satisfy (H1)–(H3) and (Hp4)–(Hp7), and

φεi : (Rn)Zε(Ω) → [0,+∞) be defined by (42). Then

fhom(M) = lim
m→∞

lim
k→∞

1

ρN
inf
{
Fεjk (u,Q) : u ∈ AM,m

εjk
(Q;Rn)

}

for all M ∈ Rn×N .

Proof. Without loss of generality, assume x0 = 0. We perform a change of variables

i′ =
i

εjk
, ũ(i′) =

1

εjk
u(εjki

′), Lk =
ρ

εjk
.

Set dki′ = dist( 1
εjk

Ωc, i′). We obtain

lim
m→∞

lim
k→∞

1

ρN
inf
{
Fεjk (u,Q) : u ∈ AM,m

εjk
(Q;Rn)

}

= lim
m→∞

lim
k→∞

1

LNk
inf
{ ∑

i′∈ZN∩QL

φ
bdk
i′c

i′ ({ũj+i′}j∈ZN ) : ũ ∈ AM,m
1 (QLk ;R

n)
}
.

By the monotonicity property and (H2) we have that

C(|M |p + 1) ≥ lim
m→∞

lim
k→∞

1

LNk
inf
{ ∑

i′∈ZN∩QL

φi′({ũj+i′}j∈ZN ) : ũ ∈ AM,m
1 (QL;Rn)

}

≥ lim
m→∞

lim
k→∞

1

LNk
inf
{ ∑

i′∈ZN∩QL

φ
bdk
i′c

i′ ({ũj+i′}j∈ZN ) : ũ ∈ AM,m
1 (QL;Rn)

}
.
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On the other hand, let uk ∈ AM,m
1 (QL;Rn) be such that

∑

i′∈ZN∩QLk

φ
bdk
i′c

i′ ({(uk)j+i′}j∈ZN ) ≤ inf
{ ∑

i′∈ZN∩QLk

φ
bdk
i′c

i′ ({ũj+i′}j∈ZN ) : ũ ∈ AM,m
1 (QLk ;R

n)
}

+
1

k

Now by (Hp6) and setting dk = bdist(Q,Ωc)

εjk
c we obtain dk →∞, since Q ⊂⊂ Ω, and

∑

i′∈ZN∩QLk

φi′({(uk)j+i′}j∈ZN ) ≤
∑

i′∈ZN∩QLk

(
φ
bdk
i′c

i′ ({(uk)j+i′}j∈ZN ) +
∑

j,ξ∈ZN
Cj−i′,ξ
dk

(|Dξ
1uk(j)|p + 1)

)
.

We have that either j, j + ξ ∈ ZN \ QLk(0) in which case |Dξ
1uk|p ≤ |M |p or {j, j + ξ} ∩

QLk(0) 6= ∅. Now if j, j + ξ ∈ QLk(0), by [[2],Lemma 3.6] and (H2), we have that

∑

j∈ZN
j,j+ξ∈QLk (0)

|Dξ
1uk(j)|p ≤ C

N∑

n=1

∑

j∈ZN∩QLk (0)

|Den
1 uk(j)|p

≤ C
∑

j∈ZN∩QLk (0)

φdkj ({(uk)j′+j}j′∈ZN ) ≤ C(|M |p + 1)LNk . (44)

Now either j ∈ QLk(0), j + ξ /∈ QLk(0) or j /∈ QLk(0), j + ξ ∈ QLk(0). We only deal with
the first case, the second one being done analogously. Now if |ξ|∞ ≤ Lk, by (H2) and
using the boundary conditions, we have that

∑

j∈ZN
|Dξ

1uk(j)|p ≤
∑

j∈ZN
j,j+ξ∈Q2Lk

(0)

|Dξ
1uk(j)|p ≤ C

N∑

n=1

∑

j∈ZN∩Q2Lk
(0)

|Den
1 uk(j)|p

≤ C
∑

j∈ZN∩QLk (0)

φdkj ({(uk)j′+j}j′∈ZN ) +
∑

j∈ZN∩Q2Lk
(0)\QLk (0)

|Den
1 uk(j)|p

≤ C
∑

j∈ZN∩QLk (0)

φdkj ({(uk)j′+j}j′∈ZN ) + CLNk |M |p

≤ C(|M |p + 1)LNk . (45)

If |ξ|∞ > Lk for every j we choose a path γjξ = (jh)
||ξ||1+1
h=1 ⊂ ZN by defining

j||ξ||1+1 = j + ξ, j1 = j, jh+1 = jh + en(h), en(h) = sign(ξk)ek if 1 +
k−1∑

n=1

|ξn| ≤ h ≤
k∑

n=1

|ξn|.

For this path it holds

|Dξ
1u(j)|p ≤ C(p,N)

||ξ||1

||ξ||1∑

h=1

|Den(h)
1 u(jh)|p.

26



Now for every i ∈ ZN and for every n ∈ {1, . . . , N} we set

N ξ,k
i,n =

{
j ∈ QLk(0) :∃h ∈ {1, . . . , |ξ1|}, n ∈ {1, . . . , N}

such that i = jh ∈ γξj and en(h) = sign(ξn)en}.

We have that #N ξ,k
i,n ≤ Lk for i ∈ ZN ∩ QLk(0), using |Den

1 uk(i)| ≤ |M | for every i ∈
ZN \QLk(0) and using Fubini’s Theorem we obtain

∑

j∈ZN∩QLk (0)

|Dξ
1uk(j)|p ≤

C

||ξ||1
∑

j∈ZN∩QLk (0)

||ξ||1∑

h=1

|Den(h)
1 uk(jh)|p

≤ C

||ξ||1

N∑

n=1

∑

i∈ZN∩QLk (0)

#N ξ,k
i,n |Den

1 uk(i)|p + |M |pLNk

≤ C
N∑

n=1

∑

i∈ZN∩QLk (0)

|Den
1 uk(i)|p + |M |pLNk

≤ C
∑

j∈ZN∩QLk (0)

φdki ({(uk)j+i}j∈ZN ) + |M |pLNk

≤ C(|M |p + 1)LNk . (46)

Now if j, j + ξ ∈ QLk(0), using Fubini’s Theorem and (44), we obtain
∑

i′∈ZN∩QLk (0)

∑

j,ξ∈ZN
j,j+ξ∈QLk (0)

Cj−i′,ξ
dk
|Dξ

1uk(j)|p ≤
∑

i′,ξ∈ZN
Cj−i′,ξ
dk

∑

j∈ZN∩QLk (0)

j+ξ∈QLk (0)

|Dξ
1uk(j)|p

≤ CLNk
∑

i′,ξ∈ZN
Cj−i′,ξ
dk

(|M |p + 1). (47)

Now if j ∈ QLk(0) |ξ|∞ ≤ Lk, using Fubini’s Theorem and (45), we obtain
∑

i′∈ZN∩QLk (0)

∑

j,ξ∈ZN
j∈QLk (0)

|ξ|∞≤Lk

Cj−i′,ξ
dk
|Dξ

1uk(j)|p ≤
∑

i′,ξ∈ZN
|ξ|∞≤Lk

Cj−i′,ξ
dk

∑

j∈ZN∩QLk (0)

|Dξ
1uk(j)|p

≤ CLNk
∑

i′,ξ∈ZN
Cj−i′,ξ
dk

(|M |p + 1). (48)

If j ∈ QLk(0) |ξ|∞ > Lk, using Fubini’s Theorem and (46), we obtain
∑

i′∈ZN∩QLk (0)

∑

j,ξ∈ZN
j∈QLk (0)

|ξ|∞>Lk

Cj−i′,ξ
dk
|Dξ

1uk(j)|p ≤
∑

i′,ξ∈ZN
|ξ|∞>Lk

Cj−i′,ξ
dk

∑

j∈ZN∩QLk (0)

|Dξ
1uk(j)|p

≤ CLNk
∑

i′,ξ∈ZN
Cj−i′,ξ
dk

(|M |p + 1). (49)
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Now, dividing by LNk , using (40),(47)–(49) and taking the limit as k →∞ , we obtain

lim
k→∞

1

LNk

∑

i′∈ZN∩QLk

∑

j,ξ∈ZN
Cj−i′,ξ
dk

(|Dξ
1uk(j)|p + 1) = 0

It remains to show that the limit (43) exists and

fhom(M) = lim
m→∞

lim
L→∞

1

LN
inf
{ ∑

i∈ZN∩QL(0)

φi({zj+i}j∈ZN ) : z ∈ AM,m
1 (QL;Rn)

}
. (50)

Since AM,b
√
Lc

1 (QL;Rn) ⊂ AM,m
1 (QL;Rn) we have that

fhom(M) ≥ lim
m→∞

lim
L→∞

1

LN
inf
{ ∑

i∈ZN∩QL(0)

φi({zj+i}j∈ZN ) : z ∈ AM,m
1 (QL;Rn)

}
.

On the other hand, for every uL ∈ AM,m
1 (QL;Rn), also uL ∈ AM,b

√
L+
√
Lc

1 (QL+b
√
Lc;Rn),

so that for L̃ = L+ b
√
Lc we have

∑

i∈ZN∩QL̃(0)

φi({(uL)j+i}j∈ZN ) =
∑

i∈ZN∩QL(0)

φi({(uL)j+i}j∈ZN )

+
∑

i∈ZN∩(QL̃(0)\QL(0))

φi({(uL)j+i}j∈ZN ).

Note that limL→∞
L̃
L

= 1 and therefore we are done if we can show that

1

LN

∑

i∈ZN∩(QL̃(0)\QL(0))

φi({(uL)j+i}j∈ZN )→ 0

as L→∞ and then m→∞. By the locality property (Hp4) and the boundary conditions
we have for all i ∈ ZN ∩ (QL̃(0) \QL(0))

φi({(uL)j+i}j∈ZN ) ≤ φi({Mxj+i}j∈ZN ) +
∑

j,ξ∈ZN
Cj−i,ξ
m (|Dξ

1uL(j)|p + 1)

≤ C(|M |p + 1) +
∑

j,ξ∈ZN
Cj−i,ξ
m (|Dξ

1uL(j)|p + 1).

Using similar arguments as for (47)–(49) we obtain

1

LN

∑

i∈ZN∩(QL̃(0)\QL(0))

∑

j,ξ∈ZN
Cj−i,ξ
m (|Dξ

1uL(j)|p + 1)→ 0 (51)

as L → ∞ and then m → ∞ and hence (50). We are done if we show that the limit in
the definition of (43) exists. To this end set

FL(M) =
1

LN
inf
{ ∑

i∈ZN∩QL

φi({zj+i}j∈ZN ) : z ∈ AM,
√
L

1 (QL;Rn)
}
.
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Let L ∈ N and let k ∈ N be such that kT ≤ L ≤ (k + 1)T . For any u ∈ AM,b
√
Lc

1 (QL;Rn)

we have that u ∈ AM,b
√

(k+1)T c
1 (Q(k+1)T ;Rn) and

1

LN

∑

i∈ZN∩Q(k+1)T (0)

φi({uj+i}j∈ZN ) ≤ 1

LN

∑

i∈ZN∩QL(0)

φi({uj+i}j∈ZN )

+
1

LN

∑

i∈ZN∩(Q(k+1)T (0)\QL(0)

φi({uj+i}j∈ZN ),

where the last term tends to 0 as L→∞, again using similar arguments as to prove (51).

Noting that for every k ∈ N the function u ∈ AM,b
√
kT c

1 (QkT ;Rn) can also be used as a

test function u ∈ AM,b
√
Lc

1 (QL;Rn) in the minimum on QL we obtain that

lim
k→∞

FkT (M) = lim
L→∞

FL(M).

Hence, we can assume that L, S ∈ TN, 1 << L << S and uL ∈ AM,b
√
Lc

1 (QL;Rn) be such
that

1

LN

∑

i∈ZN∩QL(0)

φi({(uL)j+i}j∈ZN ) ≤ FL(M) +
1

L
.

We define vS ∈ AM,b
√
Sc

1 (QS;Rn) by

vS(i) =

{
uL(i− Lk) + LMk if i ∈ Lk +QL(0), k ∈ {−1

2
bS−

√
S

L
c, . . . , 1

2
bS−

√
S

L
c}N

Mi otherwise.

By the periodicity assumption and (H4) we have that

FS(M) ≤ 1

SN

∑

i∈ZN∩QS(0)

φi({(vS)j+i}j∈ZN )

=
LN

SN

∑

k∈{− 1
2
bS−

√
S

L
c,..., 1

2
bS−

√
S

L
c}N

1

LN

∑

i∈ZN∩QL(0)

φi+kL({(uL)j+i−kL}j∈ZN )

≤ LN

SN

⌊S −
√
S

L

⌋N 1

LN

∑

i∈ZN∩QL(0)

φi({(uL)j+i}j∈ZN )

+
1

SN

∑

i∈QS(0)

∑

j,ξ∈ZN
Cj−i√

L
(|Dξ

1vS(j)|p + 1)

≤ LN

SN

⌊S −
√
S

L

⌋N 1

LN
FL(M) +

1

SN

∑

i∈QS(0)

∑

j,ξ∈ZN
Cj−i√

L
(|Dξ

1vS(j)|p + 1).

Now, again using the same arguments as for (47)–(49), we obtain

lim sup
L→∞

lim sup
S→∞

1

SN

∑

i∈QS(0)

∑

j,ξ∈ZN
Cj−i√

L
(|Dξ

1vS(j)|p + 1) = 0
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and therefore, noting that lim
L→∞

lim
S→∞

LN

SN

⌊
S−
√
S

L

⌋N
= 1, we get lim sup

S→∞
FS(M) ≤ lim inf

L→∞
FL(M)

and the claim follows.

6 Examples

6.1 The discrete determinant

An example of interactions that can be taken into account with our type of energies are
discrete determinants. For z ∈ Aε(Ω;Rn) we define

φεi ({zj}j∈Zε(Ωi)) =
∑

ξ1,...,ξn∈ZN
gεξ1,...,ξn(det(Dξ1

ε z(0), . . . , Dξn
ε z(0))) +

N∑

n=1

|Den
ε z(0)|p,

where gεξ1,...,ξn : R→ [0,∞) satisfy

gεξ1,...,ξn(z) ≤ Cξ1,...,ξn(|z| pn + 1)

and Cξ1,...,ξn > 0 satisfy

∑

ξ1,...,ξn∈ZN
Cξ1,...,ξn < +∞.

(H1) follows, since φεi does only depend on its difference quotients. Note that by Hadamard’s
Inequality, the Geometric-Arithmetic mean Inequality and convexity we have

| det(Dξ1
ε z(0), . . . , Dξn

ε z(0))| pn ≤
∣∣∣
n∏

j=1

|Dξj
ε z(0)| 1n

∣∣∣
p

≤
∣∣∣ 1
n

n∑

j=1

|Dξj
ε z(0)|

∣∣∣
p

≤ 1

n

n∑

j=1

|Dξj
ε z(0)|p.

Recall

∣∣∣∣
M(i+ εξ)−Mi

ε|ξ|

∣∣∣∣ ≤ |M | and therefore

| det(Dξ1
ε z(0), . . . , Dξn

ε z(0))| pn ≤ |M |p

and by summing over ξ1, . . . , ξn ∈ ZN (H2) follows. (H3) follows since we have exactly
the coercivity term in the definition of φεi and the first term is positive. For δ > 0 and
z(j) = w(j) in Zε(Qδ(i)) we have that

φεi ({zj}j∈Zε(Ωi)) ≤ φεi ({wj}j∈Zε(Ωi)) +
∑

ξ1,...,ξn∈ZN
ε|ξi|∞>δ

Cξ1,...,ξn
1

n

n∑

j=1

|Dξj
ε z(0)|p.

Hence, by choosing

C0,ξ
ε,δ =

∑

ξ∈{ξ1,...,ξn}⊂(ZN )n

ε|ξi|∞>δ for some i

1

n
Cξ,...,ξn , Cj,ξ

ε,δ = 0, j 6= 0
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(H4) follows. Setting

C0,ξ
ε =

∑

ξ∈{ξ1,...,ξn}⊂(ZN )n

1

d
Cξ,...,ξn , Cj,ξ

ε = 0, j 6= 0

we have that Cj,ξ
ε satisfies (13) and we have

φεi ({zj}j∈Zε(Ωi)) ≤
∑

ξ∈ZN
C0,ξ
ε (|Dξ

εz(0)|p + 1).

Note that for all cut-off functions ψ and for all z, w ∈ Aε(Ω;Rn) we have

Dξ
ε(ψz + (1− ψ)w) = ψ(i)Dξ

εz(i) + (1− ψ(i))Dξ
εw(i) +Dξ

εψ(i)(z(i+ εξ)− w(i+ εξ))
(52)

and hence (H5) follows by using the convexity of | · |p, 0 ≤ ψ ≤ 1 and noting that

|Dξ
εψ(i)| ≤ max

n∈{1,...,N}
sup

k∈Zε(Ω)

|Den
ε ψ(k)|. (53)

A particular example could be gεe1,e2(z) = |z| and gεξ1,ξ2(z) = 0 otherwise. More in
general our Theorems also apply to the case where we take functions g of minors of(
Dξ1
ε z(0), . . . , Dξnz(0)

)
as long as g satisfies appropriate bounds.

6.2 The linearization of the Lennard-Jones potential

We assume N = d = 3. Our result is applicable to show an integral representation if the
potential φεi is the linearization of the Lennard-Jones potential, where the Lennard-Jones
potential, pictured in Fig. 1, is defined by (up to renormalization)

V (r) =
1

r12
− 2

r6
.

For Ω ⊂ R3 open and smooth we define Eε : L2(Ω;R3)→ [0,+∞] by

Eε(u) =

{∑
i,j∈Zε(Ω) ε

3V ′′
( ∣∣ i−j

ε

∣∣
) ∣∣ui−uj

ε

∣∣2 if u ∈ Aε(Ω;R3)

+∞ otherwise.

In fact heuristically Eε can be obtained by linearizing the Lennard-Jones Energy defined
by

ELJ
ε (u) =

{∑
i,j∈Zε(Ω) ε

3V
( ∣∣ui−uj

ε

∣∣
)

if u ∈ Aε(Ω;R3)

+∞ otherwise,

where the set of admissible deformations u should be close to the identity (neglecting the
linear term in the expansion by the assumption that u(i) = i is an equilibrium point).
The term

φ̃εi ({uj+i}j∈Zε(Ωi)) =
∑

j∈Zε(Ω)

V ′′
( ∣∣∣∣
i− j
ε

∣∣∣∣
) ∣∣∣∣
ui − uj
ε

∣∣∣∣
2
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In fact heuristically E" can be obtained by linearizing the Lennard-Jones Energy defined
by

ELJ
" (u) =

(P
i,j2Z"(⌦) "

3V
⇣ ��ui�uj

"

��
⌘

if u 2 A"(⌦; R3)

+1 otherwise,

where the set of admissible deformations u should be close to the identity (neglecting the
linear term in the expansion by the assumption that u(i) = i is an equilibrium point).
The term

�̃"
i ({uj+i}j2Z"(⌦i)) =

X

j2Z"(⌦)

V 00
⇣ ����

i � j

"

����
⌘ ����

ui � uj

"

����
2

may not be positive in general, due to the long-range part of the potential. We may re-

r

V (r)

Figure 1: The Lennard-Jones Potential

group the interactions of �̃"
i such that we have a positive potential satisfying the assump-

tions of our main theorem. For every ⇠ 2 Z3, i 2 ZN we choose a path �i
⇠ = (ik)

||⇠||1+1
h=1 ⇢ Z3

by defining

i⇠||⇠||1+1 = i + ⇠, i⇠1 = i, i⇠h+1 = i⇠h + en(h), en(h) = sign(⇠k)ek if 1 +
k�1X

n=1

|⇠n|  h 
kX

n=1

|⇠n|.

For this path it holds

|D⇠
1u(i)|2  3

||⇠||1

||⇠||1X

h=1

|Den(h)
1 u(ih)|2.

For ⇠ 2 Z3 \ {±e1, ±e2, ±e3} we define f ⇠
i : A1(R3; R3) ! [0,1) by

f ⇠
i ({uj}j2Z3) = V 00(|⇠|)

⇣
� |D⇠

1u(i)|2 +
3

||⇠||1

||⇠||1X

h=1

|Den(h)

1 u(ih)|2
⌘
.

and for v 2 {±e1, ±e2, ±e3} we define f v
i : A1(R3; R3) ! R

f v
i ({uj}j2Z3) =

⇣
V 00(1) �

X

j2Z3

X

⇠2Z3

i=ih2�⇠
j ,en(h)=v

3V 00(|⇠|)
||⇠||1

⌘
|Dv

1u(i)|2.
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may not be positive in general, due to the long-range part of the potential. We may re-
group the interactions of φ̃εi such that we have a positive potential satisfying the assump-

tions of our main theorem. For every ξ ∈ Z3, i ∈ ZN we choose a path γiξ = (ih)
||ξ||1+1
h=1 ⊂ Z3

by defining

iξ||ξ||1+1 = i+ ξ, iξ1 = i, iξh+1 = iξh + en(h), en(h) = sign(ξk)ek if 1 +
k−1∑

n=1

|ξn| ≤ h ≤
k∑

n=1

|ξn|.

For this path it holds

|Dξ
1u(i)|2 ≤ 3

||ξ||1

||ξ||1∑

h=1

|Den(h)
1 u(ih)|2.

For ξ ∈ Z3 \ {±e1,±e2,±e3} we define f ξi : A1(R3;R3)→ [0,∞) by

f ξi ({uj}j∈Z3) = V ′′(|ξ|)
(
− |Dξ

1u(i)|2 +
3

||ξ||1

||ξ||1∑

h=1

|Den(h)
1 u(ih)|2

)
,

and for v ∈ {±e1,±e2,±e3} we define f vi : A1(R3;R3)→ R

f vi ({uj}j∈Z3) =
(
V ′′(1)−

∑

j∈Z3

∑

ξ∈Z3

i=ih∈γξj ,en(h)=v

3V ′′(|ξ|)
||ξ||1

)
|Dv

1u(i)|2.

Moreover, we define φki : A1(R3;R3)→ R by

φki ({uj}j∈Z3) =
∑

|ξ|∞≤k
f ξi ({uj}j∈Z3)

and φi : A1(R3;R3)→ R by

φi({uj}j∈Z3) =
∑

ξ∈Z3

f ξi ({uj}j∈Z3).

We need to check that

f vi ({uj}j∈ZN ) ≥ c|Dv
1u(i)|2 (54)
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for some constant c > 0, v ∈ {±e1,±e2,±e3} and that φki , φi satisfy (H1)–(H3) and

(Hp4)–(Hp7). Note that for uε(j) = u(εj)
ε

it holds

∑

i∈Zε(R3)

φ i
ε
({uεj}j∈Z3) =

∑

i∈Zε(R3)

φ̃εi ({uj}j∈Zε(R3)).

By the definition of φki , φi it is clear, that (H1), (H2) holds. To prove (H3) we have that
φξi ≥ 0 for all ξ ∈ Z3 \ {±e1,±e2,±e3} and by Fubini’s Theorem we have that

∑

j∈Z3

∑

ξ∈Z3,|ξ|>1

i=ih∈γjξ ,en(h)=v

3V ′′(|ξ|)
||ξ||1

=
∑

ξ∈Z3,|ξ|>1

#N ξ
i,v

3V ′′(|ξ|)
||ξ||1

, (55)

where N ξ
i,v =

{
j ∈ Z3 : ∃h ∈ {1, . . . , |ξ1|} such that i = jh ∈ γξj and en(h) = v

}
. Note

that for ξ ∈ Z3 such that 〈ξ, v〉 > 0 we have #N ξ
i,v ≤ ||ξ||1 and #N ξ

i,v = 0 otherwise.

Hence, using the monotonicity of V ′′(r) for r ≥
√

2 and the fact that ||ξ||∞ ≤ ||ξ||2 and
using the fact that #{ξ ∈ Z3 : ||ξ||∞ = k} = 3k2 − 3k + 1 , we obtain

−
∑

ξ∈Z3

|ξ|>1

#N ξ
i,v

3V ′′(|ξ|)
||ξ||1

≤ −
∑

ξ∈Z3,|ξ|>1

〈ξ,v〉>0

3V ′′(|ξ|) = −12V ′′(
√

2)− 3
∞∑

k=2

∑

||ξ|∞=k

V ′′(|ξ|)(3k2 − 3k + 1)

≤ −12V ′′(
√

2)− 3
∞∑

k=2

V ′′(k)(3k2 − 3k + 1) < V ′′(1). (56)

Hence, we obtain (54) and with that (H3). (Hp4) and (Hp7) follow from the definition of
φki and φi. Setting

Cj,en =





V ′′(1) if j = 0
∑

ξ∈Z3,|ξ|>1

j=ih,en(h)=en

3V ′′(|ξ|)
||ξ||1

otherwise, (57)

and Cj,ξ = 0 if |ξ| > 1. Using (55) and (56) we obtain (40) and

φki ({ψjzj + (1− ψj)wj}j∈ZN ) ≤ Rk
i (z, w, ψ),

with Rk
i defined in (Hp5) with Cj,ξ defined by (57). By the non-negativity of φki it follows

(Hp5). Setting

Cj,en
k = 2

∑

ξ∈Z3,||ξ||∞>k
j=ih,en(h)=en

3V ′′(|ξ|)
||ξ||1

(58)
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and Cj,ξ
k = 0 if |ξ| > 1, using (55) and (56) we obtain (39). We have that

|φk1i ({zj}j∈ZN )− φk2i ({zj}j∈ZN )| =
∑

ξ∈Z3∩(Qk2\Qk1 )

f ξi ({zj}j∈Z3)

≤
∑

ξ∈Z3∩(Qk2\Qk1 )

V ′′(|ξ|) 3

||ξ||1

||ξ||1∑

h=1

|Den(h)
1 z(iξh)|2

≤
3∑

n=1

∑

j∈Z3∩Qk2

∑

ξ∈Z3,||ξ||∞>k1
j=ih,en(h)∈{±en}

3V ′′(|ξ|)
||ξ||1

|Den
1 z(j)|2

≤
∑

j,ξ∈Z3∩Qk2
j+ξ∈Z3∩Qk2

Cj,ξ
k1
|Dξ

1z(j)|2

and hence we obtain (Hp6). Applying Theorem 5.1 we obtain the Γ-convergence of Eε to
a functional E : Lp(Ω;R3)×A(Ω)→ [0,+∞] given by

E(u,A) =

∫

A

fhom(∇u)dx,

where fhom : R3×3 → [0,+∞) is given by

fhom(M) = lim
L→∞

1

LN
inf
{ ∑

i∈ZN∩QL

φi({zj+i}j∈ZN ) : z ∈ AM,m
1 (QL;Rn)

}
.

6.3 “Damage energies” from microscopic oscillations

To conclude this section we give an example, where it is possible to compute the energy
density explicitly highlighting microscopic oscillations due to non-convexity of the energy
density. The resulting homogenized energies are similar to those used in the variational
theory of damage (see e.g. [24, 29]). We consider the case d = 1 and Ω = (0, 1) and
u : Zε(Ω)→ R. The energies we consider can be written as

Fε(u) =
Nε−1∑

i=0

εW1

(
ui+1 − ui

ε

)
+

Nε−2∑

i=0

εW2

(
ui+2 − ui

ε

)
,

where ui = u(εi) and Nε = b1
ε
c. In our case we have W1(z) = |z|2 and W2(z) = |z|2 ∧ 1.

One can check that

φεi ({zj}j∈Zε(Ωi)) = W1

(
z1 − z0

ε

)
+W2

(
z2 − z0

ε

)

satisfies the hypothesis of Theorem 5.1 and we can therefore represent the Γ-limit with
respect to the strong L2(Ω)-topology as a functional F : L2(Ω)→ [0,+∞] given by

F (u) =

∫

Ω

fhom(u′)dx,
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W1(z)

z

W2(z)

z

Figure 2: The potentials W1(z) and W2(z) in our explicit example

with fhom : R→ R given by (43). Moreover by [18], Theorem 3.2, we have that

fhom(z) = W ∗∗
eff (z),

where f ∗∗ denotes the convex envelope of a function f , that is

f ∗∗(z) = sup {g(z) : g ≤ f, g convex}

and Weff : R→ R is given by

Weff(z) = min

{
1

2
W1(z1) +

1

2
W1(z2) :

z1 + z2

2
= z

}
+W2(z).

Since W1 is convex we have that

z

Figure 3: Weff and W ∗∗
eff

Weff(z) = W1(z) +W2(z) = 2|z|2 ∧ (|z|2 + 1).
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Note that Weff is not convex and therefore one obtains after convexification

W ∗∗
eff (z) =





2|z|2 |z| ≤
√

2
2

1 +
√

2(|z| −
√

2
2

)
√

2
2
< |z| ≤

√
2

|z|2 + 1
√

2 < |z|.

This is illustrated in Fig. 3. Weff is given by as the minimum of the two parabola. One
can see, that the function is not convex and so it has to be convexified in order for the
integral functional to be lower semicontinuous. The graph of W ∗∗

eff is given by the two
parabolas in the two regions where the two functions agree and by the dashed line where
W ∗∗

eff < Weff .

Remark 6.1 (The relaxation formula). Note that in this example the relaxation takes
place on two different scales. The first relaxation is given by Weff which captures the
relaxation on a microscopic scale, a scale which is comparable to the typical length scale
of the lattice (In this case at scale 2ε to be precise). Since the function obtained by this
formula is not convex one has to relax another time in order to capture oscillations on
a much larger scale, a so called mesoscopic scale. In fact the authors of [18] show with
some interesting examples that both those relaxations are needed in order to capture the
right asymptotic behaviour.

6.4 Pair interactions: the Alicandro-Cicalese theorem

The compactness theorem can be applied to the special case of pair potentials where
φεi takes only into account the pair interactions of that point with every other point
j ∈ Zε(Ω), that means it is of the form

φεi ({zj+i}j∈Zε(Ωi)) =
∑

ξ∈ZN
i+εξ∈Zε(Ω)

f ξε (i,Dξ
εz(i))

with f ξε ≥ 0 satisfying

(i) f enε (i, z) ≥ c(|z|p − 1) for all i ∈ Zε(Ω), z ∈ Rn, ε > 0 and n ∈ {1, . . . , N}.

(ii) f ξε (i, z) ≤ cξε(|z|p + 1) for all i ∈ Zε(Ω), z ∈ Rn, ε > 0 and ξ ∈ RN , where

lim sup
ε→0

∑

ξ∈ZN
cξε < +∞ (59)

∀ δ > 0∃Mδ > 0 such that lim sup
ε→0

∑

|ξ|>Mδ

cξε < δ. (60)

(H1) follows since for each ξ ∈ RN , i ∈ Zε(Ω) the interaction depend only on Dξ
εz. (H2)

follows from (59) and (ii). (H3) follows from (i). (H4) follows if we choose

Ci,ξ
ε,δ =

{
cξε ε|ξ|∞ ≥ δ, i = 0

0 i 6= 0.
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Let z, w ∈ Aε(Ω;Rn) such that z(j) = w(j) in Zε(Qδ(i)). Then, using the positivity of
f ξε and (ii), we obtain

φεi ({zj}j∈Zε(Ωi)) =
∑

ξ∈ZN
i+εξ∈Zε(Ωi)

f ξε (0, Dξ
εz(0)) =

∑

ε|ξ|∞≤δ
εξ∈Zε(Ωi)

f ξε (0, Dξ
εz(0)) +

∑

ε|ξ|∞>δ
εξ∈Zε(Ωi)

f ξε (0, Dξ
εz(0))

≤
∑

ε|ξ|∞≤δ
εξ∈Zε(Ωi)

f ξε (0, Dξ
εw(0)) +

∑

ε|ξ|∞>δ
εξ∈Zε(Ωi)

cξε(|Dξ
εz(0)|p + 1)

≤ φεi ({wj}j∈Zε(Ωi)) +
∑

j∈Zε(Ωi),ξ∈ZN
Cj,ξ
ε,δ(|Dξ

εz(j)|p + 1)

and therefore (H4) follows. Setting

Ci,ξ
ε =

{
cξε if i = 0

0 otherwise.

we have that

φεi ({zj}j∈Zε(Ωi)) ≤
∑

j∈Zε(Ωi),ξ∈ZN
j+εξ∈Zε(Ωi)

Cj,ξ
ε |Dξ

εz(j)|p.

and again for a cut-off function ψ and z, w ∈ Aε(Ω;Rn) (H5) follows by using (52), the
convexity of | · |p and (53).
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