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Abstract

We consider a phase-field system of Caginalp type perturbed by the presence of
an additional maximal monotone nonlinearity. Such a system arises from a recent
study of a sliding mode control problem. We prove existence of strong solutions.
Moreover, under further assumptions, we show the continuous dependence on the
initial data and the uniqueness of the solution.
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1 Introduction

In the present contribution we consider the phase-field system

∂t(ϑ+ `ϕ)− k∆ϑ+ ζ = f a.e. in Q := (0, T )× Ω, (1.1)

∂tϕ− ν∆ϕ+ ξ + π(ϕ) = γϑ a.e. in Q, (1.2)

ζ(t) ∈ A(ϑ(t) + αϕ(t)− η∗) for a.e. t ∈ (0, T ), (1.3)

ξ ∈ β(ϕ) a.e. in Q, (1.4)

where Ω is the domain in which the evolution takes place, T is some final time, ϑ denotes
the relative temperature around some critical value that is taken to be 0 without loss
of generality, and ϕ is the order parameter. Moreover, `, k, ν, γ and α are positive
constants, η∗ is a function in H2(Ω) with null outward normal derivative on the boundary
of Ω and f is a source term. The above system is complemented by homogeneous Neumann
boundary conditions for both ϑ and ϕ, that is,

∂Nϑ = 0, ∂Nϕ = 0 on Σ := (0, T )× Γ, (1.5)

where Γ is the boundary of Ω and ∂N is the outward normal derivative, and by the initial
conditions

ϑ(0) = ϑ0, ϕ(0) = ϕ0 in Ω. (1.6)
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The term ξ+π(ϕ), appearing in (1.2), represents the derivative of a double-well potential
F defined as the sum

F = β̂ + π̂, (1.7)

where
β̂ : R −→ [0,+∞] is proper, l.s.c. and convex with β̂(0) = 0, (1.8)

π̂ : R→ R, π̂ ∈ C1(R) with π := π̂′ Lipschitz continuous. (1.9)

Since β̂ is proper, l.s.c. and convex, the subdifferential ∂β̂ =: β is well defined and is
a maximal monotone graph. For a comprehensive discussion of the theory of maximal
monotone operators, we refer, e.g., to [1,3,20]. In our problem we also consider a maximal
monotone operator

A : H := L2(Ω) −→ 2H (1.10)

such that 0 ∈ A(0) and

‖v‖H ≤ C(1 + ‖x‖H) for all x ∈ H, v ∈ Ax, (1.11)

for some constant C > 0.

The problem (1.1)–(1.6) under study is an interesting development of the following
simple version of the phase-field system of Caginalp type (see [5]):

∂t(ϑ+ `ϕ)− k∆ϑ = f in Q, (1.12)

∂tϕ− ν∆ϕ+ F ′(ϕ) = γϑ in Q. (1.13)

As already noticed, F ′ ∼= ξ + π is related to a double-well potential F . Typical examples
for F are

Freg(r) =
1

4
(r2 − 1)2, r ∈ R, (1.14)

Flog(r) = ((1 + r) ln (1 + r) + (1− r) ln (1− r))− c0r
2, r ∈ (−1, 1), (1.15)

Fobs(r) = I(r)− c0r
2, r ∈ R, (1.16)

where c0 > 1 in (1.15) in order to produce a double well, while c0 is an arbitrary positive
number in (1.16), and the function I in (1.16) is the indicator function of [−1, 1], i.e., it
takes the values 0 or +∞ according to whether or not r belongs to [−1, 1]. The potentials
(1.14) and (1.15) are the usual classical regular potential and the so-called logarithmic
potential, respectively.

The well-posedness, the long-time behavior of solutions, and also the related optimal
control problems concerning Caginalp-type systems have been widely studied in the liter-
ature. We refer, without any sake of completeness, e.g., to [4,12,14,18,19] and references
therein for the well-posedness and long time behavior results and to [6–8, 15, 16] for the
treatment of optimal control problems.

The paper [2] is related to control problems, but it goes in the direction of designing
sliding mode controls (SMC) for a particular phase-field system. The main objective of
the authors is to find some state-feedback control laws (ϑ, ϕ) 7→ u(ϑ, ϕ) that can be that,
once inserted into the equations, force the solution to reach some submanifold of the phase
space, in finite time, then slide along it. The first analytical difficulty consists in deriving
the equations governing the sliding modes and the conditions for this motion to exist.
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The problem needs the development of special methods, since the conventional theorems
regarding existence and uniqueness of solutions are not directly applicable. Moreover,
the authors need to manipulate the system through the control in order to constrain the
evolution on the desired sliding manifold.

In particular, in the paper [2] the authors consider the operator Sign : H −→ 2H

defined as Sign(v) = v
‖v‖ , if v 6= 0 and Sign(0) = B1(0), if v = 0, where B1(0) is the closed

unit ball of H. Sign is a maximal monotone operator on H and is a nonlocal counterpart
of the operator sign : R −→ 2R defined as sign(r) = r

|r| , if r 6= 0 and sign(0) = [−1, 1], if

r = 0. Then the authors of [2] deal with the system

∂t(ϑ+ `ϕ)− k∆ϑ = f − ρσ a.e. in Q, (1.17)

∂tϕ− ν∆ϕ+ ξ + π(ϕ) = γϑ a.e. in Q, (1.18)

σ(t) ∈ Sign(ϑ(t) + αϕ(t)− η∗) for a.e. t ∈ (0, T ), (1.19)

ξ ∈ β(ϕ) a.e. in Q, (1.20)

∂Nϑ = 0, ∂Nϕ = 0 on Σ, (1.21)

ϑ(0) = ϑ0, ϕ(0) = ϕ0 in Ω, (1.22)

which turns out to be a particular case of (1.1)–(1.6) with A = ρ Sign. The paper [2] is
mostly concerned with the sliding mode property for (1.17)–(1.22). In this contribution
we deal with (1.1)–(1.6), which turns out to be a particular generalization of the problem
(1.17)–(1.22) since we only require (1.10)–(1.11) for the maximal monotone operator A.
We prove existence and regularity of the solutions for the problem (1.1)–(1.6), as well as
the uniqueness and the continuous dependence on the initial data in case α = `. In order
to obtain our results, we first make a change of variable. We set:

η = ϑ+ αϕ− η∗. (1.23)

Consequently, the previous system (1.1)–(1.6) becomes

∂t(η + (`− α)ϕ)− k∆η + kα∆ϕ+ ζ = f − k∆η∗ a.e. in Q, (1.24)

∂tϕ− ν∆ϕ+ ξ + π(ϕ) = γ(η − αϕ+ η∗) a.e. in Q, (1.25)

ζ(t) ∈ A(η(t)) for a.e. t ∈ (0, T ), (1.26)

ξ ∈ β(ϕ) a.e. in Q. (1.27)

∂Nη = 0, ∂Nϕ = 0 on Σ, (1.28)

η(0) = η0, ϕ(0) = ϕ0 in Ω. (1.29)

From now on, we refer to the initial and boundary value problem (1.24)–(1.29) as Problem
(P ). In order to prove the existence of solutions, we first consider the approximating
problem (Pε), obtained from problem (P ) by approximating A and β by their Yosida
regularizations. Then we construct a further approximating problem (Pε,n), obtained
from (Pε) by a Faedo-Galerkin scheme based on a system of eigenfunctions {vn} ⊆ W ,
where

W = {u ∈ H2(Ω) : ∂Nu = 0 on ∂Ω}. (1.30)
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Then, we prove the existence of a local solution for (Pε,n) and, passing to the limit as
n → +∞, we infer that the limit of some subsequence of solutions for (Pε,n) yields a
solution of (Pε). Finally, we pass to the limit as ε ↘ 0 and show that some limit of a
subsequence yields a solution of (P ).

Next, we let α = ` and write problem (P ) for two different sets of initial data fi,
η∗i , η0i and ϕ0i , i = 1, 2. By performing suitable contracting estimates for the difference
of the corresponding solutions, we deduce the continuous dependence result whence the
uniqueness property is also achieved.

2 Main results

2.1 Preliminary assumptions

We assume Ω ⊆ R3 to be a bounded domain of class C1 and we write |Ω| for its Lebesgue
measure. Moreover, Γ and ∂N still stand for the boundary of Ω and the outward normal
derivative, respectively. Given a finite final time T > 0, for every t ∈ (0, T ] we set

Qt = (0, t)× Ω, Q = QT , (2.1)

Σt = (0, t)× Γ, Σ = ΣT . (2.2)

In the following, we set for brevity:

H = L2(Ω), V = H1(Ω), V0 = H1
0 (Ω), (2.3)

W = {u ∈ H2(Ω) : ∂Nu = 0 on ∂Ω}, (2.4)

with usual norms ‖ · ‖H , ‖ · ‖V and inner products (·, ·)H , (·, ·)V , respectively. Now we
describe the problem under consideration. We assume that

`, α, k, ν, γ ∈ (0,+∞), (2.5)

f ∈ L2(Q), (2.6)

η∗ ∈ W, (2.7)

η0, ϕ0 ∈ V, (2.8)

β̂(ϕ0) ∈ L1(Ω). (2.9)

We introduce the double-well potential F as the sum

F = β̂ + π̂, (2.10)

where
β̂ : R −→ [0,+∞] is proper, l.s.c. and convex with β̂(0) = 0, (2.11)

π̂ : R→ R, π̂ ∈ C1(R) with π := π̂′ Lipschitz continuous. (2.12)

Since β̂ is proper, lower semicontinuous and convex, the subdifferential ∂β̂ =: β is well
defined. We denote by D(β) and D(β̂) the effective domains of β and β̂, respectively.

Thanks to these assumptions, β is a maximal monotone graph. Moreover, as β̂ takes on
its minimum in 0, we have that 0 ∈ β(0).
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Remark 2.1 We introduce the operator B induced by β on L2(Q) in the following way:

B : L2(Q) −→ L2(Q) (2.13)

ξ ∈ B(ϕ)⇐⇒ ξ(x, t) ∈ β(ϕ(x, t)) for a.e. (x, t) ∈ Q. (2.14)

We notice that

β = ∂β̂, B = ∂Φ, (2.15)

where

Φ : L2(Q) −→ (−∞,+∞] (2.16)

Φ(u) =

{ ∫
Q
β̂(u) if u ∈ L2(Q) and β̂(u) ∈ L1(Q),

+∞ elsewhere, with u ∈ L2(Q).
(2.17)

The maximal monotone operator A. In our problem a maximal monotone operator

A : H −→ H (2.18)

also appears. We assume that

0 ∈ A(0) (2.19)

and that there exists a constant C > 0 such that

‖v‖H ≤ C(1 + ‖η‖H) for all η ∈ H, v ∈ Aη. (2.20)

Remark 2.2 We introduce the operator A induced by A on L2(0, T ;H) in the following
way

A : L2(0, T ;H) −→ L2(0, T ;H) (2.21)

ζ ∈ A(η)⇐⇒ ζ(t) ∈ A(η(t)) for a.e. t ∈ (0, T ). (2.22)

We notice that A is a maximal monotone operator.

2.2 Examples of operators A

Now, we provide some examples of maximal monotone operators fulfilling our assump-
tions.

Example 1. We consider the operator

sign : R −→ 2R (2.23)

sign(r) =

{ r
|r| if r 6= 0,

[−1, 1] if r = 0.
(2.24)

Notice that sign induces a maximal monotone operator on H.
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Example 2. We define the operator Sign as the nonlocal counterpart of the operator
sign (see (2.23)–(2.24)):

Sign : H −→ 2H (2.25)

Sign(v) =

{ v
‖v‖ if v 6= 0,

B1(0) if v = 0,
(2.26)

where B1(0) is the closed unit ball of H. Sign is the subdifferential of the map ‖·‖ : H → R
and is a maximal monotone operator on H which satisfies (2.19)–(2.20).

Example 3. We consider the operator

A1 : R −→ R (2.27)

A1(r) =


α1r if r < 0,
0 if 0 ≤ r ≤ 1,
α2r if r > 1,

(2.28)

where α1 and α2 are positive coefficients. We observe that A1 is a maximal monotone
operator on R, whose graph consists of an horizontal line segment and two rays of slope
α1, α2. Moreover, 0 ∈ A1(0) and

|v| ≤ C(1 + |r|) for all r ∈ R, v ∈ A1(r), (2.29)

with C = max (α1, α2). Then A1 satisfies (2.19)–(2.20). We notice that A1 corresponds
to the graph which correlates the enthalpy to the temperature in the Stefan problem (see,
e.g., [9, 11,13]).

Example 4. We consider the operator

A2 : H −→ H (2.30)

A2(v) = α|v|q−1v, (2.31)

where 0 < q < 1 and α is a function in L∞(Ω) with α(x) ≥ 0 for a.e. x ∈ Ω. We
observe that A2 induces a (nonlocal) multivalued maximal monotone operator on H, with
0 ∈ A2(0). Moreover, A2 can be considered a weighted perturbation of the operator
appearing in the porous media equation and in the fast diffusion equation (see, e.g.,
[10, 17,22]).

2.3 Setting of the problem and results

Now, we state the problem under consideration. We look for a pair (η, ϕ) satisfying at
least the regularity requirements

η, ϕ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (2.32)

and solving the problem (P ):

∂t(η + (`− α)ϕ)− k∆η + kα∆ϕ+ ζ = f − k∆η∗ a.e. in Q, (2.33)
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∂tϕ− ν∆ϕ+ ξ + π(ϕ) = γ(η − αϕ+ η∗) a.e. in Q, (2.34)

ζ(t) ∈ A(η(t)) for a.e. t ∈ (0, T ), (2.35)

ξ ∈ β(ϕ) a.e. in Q, (2.36)

∂Nϑ = 0, ∂Nϕ = 0 on Σ, (2.37)

η(0) = η0, ϕ(0) = ϕ0 in Ω. (2.38)

We notice that the homogeneous Neumann boundary conditions for both η and ϕ required
by (2.37) follow from (2.32), due to the definition of W (see (2.4)).

Theorem - (Existence) 2.3 Assume (2.5)–(2.9), (2.11)–(2.12) and (2.18)–(2.20). Then
problem (P ) (see (2.33)–(2.38)) has at least a solution (η, ϕ) satisfying the regularity re-
quirements (2.32).

Theorem - (Uniqueness and continuous dependence) 2.4 Assume (2.5)–(2.9),
(2.11)–(2.12) and (2.18)–(2.20). If α = `, the solution (ϕ, η) of problem (P ) (see (2.33)–
(2.38)) is unique. Moreover, if fi, η

∗
i , η0i, ϕ0i, i = 1, 2, are given as in (2.6)–(2.8) and

(ϕi, ηi), i = 1, 2, are the corresponding solutions, then the estimate

‖η1 − η2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ1 − ϕ2‖L∞(0,T ;H)∩L2(0,T ;V )

≤ C(‖f1 − f2‖L2(Q) + ‖η∗1 − η∗2‖W + ‖η01 − η02‖H + ‖ϕ01 − ϕ02‖H) (2.39)

holds true for some constant C that depends only on Ω, T and the parameters `, α, k, ν,
γ.

3 Proof of the existence theorem

This section is devoted to the proof of Theorem 2.3.

3.1 The approximating problem (Pε)

Yosida regularization of A. We introduce the Yosida regularization of A. For ε > 0
we define

Aε : H −→ H, Aε =
I − (I + εA)−1

ε
, (3.1)

where I denotes the identity operator. Note that Aε is is Lipschitz-continuous (with
Lipschitz constant 1

ε
), maximal monotone, and satisfies the following properties. Denoting

by Jε = (I + εA)−1 the resolvent operator, for all δ > 0 we have that

Aεη ∈ A(Jεη), (3.2)

(Aε)δ = Aε+δ, (3.3)

‖Aεη‖H ≤ ‖A0η‖H , (3.4)

lim
ε→0
‖Aεη‖H = ‖A0η‖H , (3.5)

where A0η is the element of the image of A having minimal norm.
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Remark 3.1 We point out a key property of Aε, which is a consequence of (2.20). There
exists a positive constant C, independent of ε, such that

‖Aεη‖H ≤ C(1 + ‖η‖H) for all η ∈ H, v ∈ Aη. (3.6)

Indeed, notice that 0 ∈ A(0) and 0 ∈ I(0): consequently, for every ε > 0, 0 ∈ (I+εA)(0).
This fact implies that Jε(0) = 0. Moreover, since A is maximal monotone, Jε is a
contraction. Then, from (2.20) and (3.2), it follows that

‖Aεη‖H ≤ C(‖Jεη‖H + 1)
≤ C(‖Jεη − Jε0‖H + ‖Jε0‖H + 1)
≤ C(‖η‖H + 1).

Yosida regularization of β. We introduce the Yosida regularization of β. For ε > 0
we define

βε : R −→ R, βε =
I − (I + εβ)−1

ε
. (3.7)

We remark that βε is Lipschitz continuous (with Lipschitz constant 1
ε
) and satisfies the

following properties. Denoting by Rε = (I + εβ)−1 the resolvent operator, for all δ > 0
and for every ϕ ∈ D(β) we have that

βε(ϕ) ∈ β(Rεϕ), (3.8)

(βε)δ = βε+δ, (3.9)

|βε(ϕ)| ≤ |β0(ϕ)|, (3.10)

lim
ε→0

βε(ϕ) = β0(ϕ), (3.11)

where β0(ϕ) is the element of the image of β having minimal modulus.

Regularization of β̂. We introduce the Moreau-Yosida regularization of β̂. For ε > 0
we define

β̂ε : R −→ [0,+∞], β̂ε =
I − (I + εβ̂)−1

ε
. (3.12)

We recall that

β̂ε(ϕ) ≤ β̂(ϕ) for every ϕ ∈ D(β̂). (3.13)

We also observe that βε is the Fréchet derivative of β̂ε. Then, for every ϕ1, ϕ2 ∈ D(β̂),
we have that

β̂ε(ϕ2) = β̂ε(ϕ1) +

∫ ϕ2

ϕ1

βε(s) ds. (3.14)

Approximating problem (Pε). We denote by fε a regularization of f constructed in
such a way that

fε ∈ C1([0, T ];H) for all ε > 0, lim
ε→0
‖fε − f‖L2(0,T ;H) = 0. (3.15)
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Then, we look for a pair (ηε, ϕε) satisfying at least the regularity requirements

ηε, ϕε ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (3.16)

and solving the approximating problem (Pε):

∂t(ηε + (`− α)ϕε)− k∆ηε + kα∆ϕε + ζε = fε − k∆η∗ a.e. in Q, (3.17)

∂tϕε − ν∆ϕε + ξε + π(ϕε) = γ(ηε − αϕε + η∗) a.e. in Q, (3.18)

ζε(t) = Aεηε(t) for a.e. t ∈ (0, T ), (3.19)

ξε = βε(ϕε) a.e. in Q, (3.20)

∂Nηε = 0, ∂Nϕε = 0 on Σ, (3.21)

ηε(0) = η0, ϕε(0) = ϕ0 in Ω, (3.22)

where Aε and βε are the Yosida regularizations of A and β defined in (3.1) and (3.7),
respectively. We notice that the homogeneous Neumann boundary conditions for both ηε
and ϕε required by (3.21) follow from (3.16) due to the definition of W (see (2.4)).

Remark 3.2 We can define fε as the regularization of f obtained solving{
−εf ′′ε (t) + fε(t) = f(t), t ∈ (0, T ),
fε(0) = fε(T ) = 0.

(3.23)

Thanks to Sobolev immersions and elliptic regularity, we obtain that

fε ∈ C1([0, T ];H) and lim
ε→0
‖fε − f‖L2(0,T ;H) = 0. (3.24)

3.2 The approximating problem (Pε,n)

Now, we apply the Faedo-Galerkin method to the approximating problem (Pε). We
consider the orthonormal basis {vi}{i≥1} of V formed by the normalized eigenfunctions of
the Laplace operator with homogeneous Neumann boundary condition, that is{

−∆vi = λivi in Ω,
∂Nvi = 0 on ∂Ω.

(3.25)

Note that, owing to the regularity of Ω, vi ∈ W for all i ≥ 1. Then, for any integer n ≥ 1,
we denote by Vn the n-dimentional subspace of V spanned by {v1, · · · , vn}. Hence, {Vn}
is a sequence of finite dimensional subspaces such that

⋃+∞
n=1 Vn is dense in V and Vk ⊆ Vn

for all k ≤ n.
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Definition of the approximating problem (Pε,n). We first approximate the initial
data η0 and ϕ0. We set

η0,n = PVnη0, ϕ0,n = PVnϕ0. (3.26)

We notice that

lim
n→+∞

‖η0,n − η0‖V = 0 and lim
n→+∞

‖ϕ0,n − ϕ0‖V = 0. (3.27)

Note that the convergence provided by (3.27) assures that η0,n and ϕ0,n are bounded in
V . Now, we introduce the new approximating problem (Pε,n). We look for tn ∈]0, T ] and
a pair (ηε,n, ϕε,n) (in the following we will write (ηn, ϕn) instead of (ηε,n, ϕε,n)) such that

ηn ∈ C1([0, tn];Vn), ϕn ∈ C1([0, tn];Vn), (3.28)

and, for every v ∈ Vn and for every t ∈ [0, tn], solving the approximating problem (Pε,n):

(∂t[ηn(t) + (`− α)ϕn(t)]− k∆ηn(t) + kα∆ϕn(t) + Aεηn(t), v)H

= (fε(t)− k∆η∗, v)H , (3.29)

(∂tϕn(t)− ν∆ϕn(t) + βε(ϕn(t)) + π(ϕn(t)), v)H

= (γ[ηn(t)− αϕn(t) + η∗], v)H , (3.30)

∂Nηn = 0, ∂Nϕn = 0 on Σ, (3.31)

ηn(0) = η0,n, ϕn(0) = ϕ0,n in Ω. (3.32)

This is a Cauchy problem for a system of nonlinear ordinary differential equations. In the
next section we will show by a change of variable that this system admits a local solution
(ηn, ϕn), which is of the form

ϕn(t) =
n∑
i=1

ain(t)vi, (3.33)

ηn(t) =
n∑
i=1

bin(t)vi, (3.34)

for some ain ∈ C1([0, tn]) and bin ∈ C1([0, tn]).

Remark 3.2 We point out that∫
Ω

β̂ε(ϕ0,n) ≤ C +
1

2ε
‖ϕ0 − ϕ0,n‖H(‖ϕ0‖H + ‖ϕ0,n‖H), (3.35)

where

C = ‖β̂(ϕ0)‖L1(Ω). (3.36)

Indeed, for every ε ∈ (0, 1], thanks to the property (3.13) of β̂ε, we have that

0 ≤ β̂ε(ϕ0) ≤ β̂(ϕ0). (3.37)
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Since β̂(ϕ0) ∈ L1(Ω) (see (2.9)), we obtain that∫
Ω

β̂ε(ϕ0) ≤ C, (3.38)

where C = ‖β̂(ϕ0)‖L1(Ω). From (3.14), using the Lipschitz continuity of βε, we have

β̂ε(ϕ0,n) ≤ β̂ε(ϕ0) +
∣∣∣ ∫ ϕ0,n

ϕ0

βε(s) ds
∣∣∣

≤ β̂ε(ϕ0) +
1

ε

∫ ϕ0,n

ϕ0

|s| ds

≤ β̂ε(ϕ0) +
1

2ε
|ϕ0 − ϕ0,n|(|ϕ0|+ |ϕ0,n|). (3.39)

By integrating (3.39) over Ω, we obtain that∫
Ω

β̂ε(ϕ0,n) ≤ Qε(n), (3.40)

where

Qε(n) = C +
1

2ε
‖ϕ0 − ϕ0,n‖H(‖ϕ0‖H + ‖ϕ0,n‖H).

Remark 3.3 Thanks to (3.34) and the Lipschitz continuity of Aε, we obtain that

Aε(ηn) ∈ C0,1([0, tn];H). (3.41)

Indeed, ‖vi‖H ≤ ‖vi‖V = 1, for all i ∈ N. Then we choose t, t′ ∈ [0, tn] and we have the
following inequality:

‖Aε(ηn(t))− Aε(ηn(t′))‖H = ‖Aε(
∑n

i=1 bin(t)vi)− Aε(
∑n

i=1 bin(t′)vi)‖H
≤ 1

ε
‖
∑n

i=1(bin(t)− bin(t′))vi‖H
≤ 1

ε

∑n
i=1 |bin(t)− bin(t′)| ‖vi‖H

= 1
ε

∑n
i=1 |bin(t)− bin(t′)|.

Since bin are continuous, we obtain (3.41).

Existence of a local solution for (Pε,n). In order to prove the existence of a local
solution (ηn, ϕn) for the approximating problem (Pε,n), we make a change of variable. We
set

ϑn = ηn + (`− α)ϕn, ϑ0,n = η0,n + (`− α)ϕ0,n, (3.42)

and we prove that there exists a local solution (ϑn, ϕn) of the problem

(∂tϑn − k∆ϑn + k`∆ϕn + Aε(ϑn − (`− α)ϕn), v)H = (fε − k∆η∗, v)H ,
(∂tϕn − ν∆ϕn + βε(ϕn) + π(ϕn), v)H = (γ[ϑn − `ϕn + η∗], v)H ,
ϕn(0) = ϕ0,n, ϑn(0) = ϑ0,n,

(3.43)

whenever v ∈ Vn. Re-arranging the above system in explicit form, we have

(∂tϑn, v)H = (k∆ϑn − k`∆ϕn − Aε(ϑn − (`− α)ϕn) + fε − k∆η∗, v)H ,
(∂tϕn, v)H = (ν∆ϕn − βε(ϕn)− π(ϕn) + γ[ϑn − `ϕn + η∗], v)H ,
ϕn(0) = ϕ0,n, ϑn(0) = ϑ0,n,

(3.44)
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whenever v ∈ Vn. Thanks to the initial hypotheses (2.5)–(2.8), (2.11)–(2.12) and to the
regularity of Aε shown in (3.41), the right-hand side of (3.44) is a Lipschitz continuous
function from [0, tn] to Rn. Consequently, there exists a local solution for the approxi-
mating problem (Pε,n).

3.3 Global a priori estimates

In this section we obtain four a priori estimates inferred from the main equations of the
approximating problem (Pε,n) (see (3.29)–(3.32)).

In the remainder of the paper we often use the Hölder inequality and to the elementary
Young inequalities in performing our a priori estimates. In particular, let us recall that,
for every a, b > 0, α ∈ (0, 1) and δ > 0, we have that

ab ≤ αa
1
α + (1− α)b

1
1−α , (3.45)

ab ≤ δa2 +
1

4δ
b2. (3.46)

In the following the small-case symbol c stands for different constants which depend only
on Ω, on the final time T , on the shape of the nonlinearities and on the constants and the
norms of the functions involved in the assumptions of our statements.

First a priori estimate. We add νϕn to both sides of (3.30) and we test (3.29) by ηn
and (3.30) by ∂tϕn, respectively. Then we sum up and integrate over Qt, t ∈ (0, T ]. We
obtain that

1
2

∫
Ω
|ηn(t)|2 + (`− α)

∫
Qt
∂tϕnηn + k

∫
Qt
|∇ηn|2 − kα

∫
Qt
∇ϕn · ∇ηn +

∫
Qt
Aεηnηn

+
∫
Qt
|∂tϕn|2 + ν

2

∫
Ω
|ϕn(t)|2 + ν

2

∫
Ω
|∇ϕn(t)|2 +

∫
Qt
∂tβ̂ε(ϕn)

= 1
2

∫
Ω
|η0,n|2 + ν

2

∫
Ω
|ϕ0,n|2 + ν

2

∫
Ω
|∇ϕ0,n|2 +

∫
Qt

(fε − k∆η∗)ηn
+
∫
Qt

[γηn + (ν − αγ)ϕn + γη∗]∂tϕn −
∫
Qt
π(ϕn)∂tϕn.

(3.47)
To estimate the last integral on the right-hand side of (3.47), we observe that π is a
Lipschitz continuous function with Lipschitz constant Cπ. Consequently we have that

|π(ϕn)| ≤ |π(ϕn)− π(0)|+ |π(0)|
≤ Cπ|ϕn|+ |π(0)|
≤ C1(|ϕn|+ 1),

(3.48)

where C1 = max {Cπ; |π(0)|}. Due to (3.46) and (3.48), we obtain that

−
∫
Qt
π(ϕn)∂tϕn ≤

∫
Qt
|π(ϕn)∂tϕn|

≤
∫
Qt
C1(|ϕn|+ 1)|∂tϕn|

≤ 1
8

∫
Qt
|∂tϕn|2 + 2C2

1

∫
Qt

(|ϕn|+ 1)2

= 1
8

∫
Qt
|∂tϕn|2 + 4C2

1

∫
Qt
|ϕn|2 + c.

(3.49)

Now, we recall that Aε is a maximal monotone operator and Aε(0) = 0. Hence we have
that ∫

Qt

Aεηnηn ≥ 0. (3.50)
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Using (3.49)–(3.50), from (3.47) we obtain that

1

2

∫
Ω

|ηn(t)|2 + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
ν

2

∫
Ω

|ϕn(t)|2 +
ν

2

∫
Ω

|∇ϕn(t)|2 +

∫
Ω

β̂ε(ϕn(t))

≤ c+
1

2

∫
Ω

|η0,n|2 +
ν

2

∫
Ω

|ϕ0,n|2 +
ν

2

∫
Ω

|∇ϕ0,n|2 +

∫
Ω

β̂ε(ϕ0,n)

−(`− α)

∫
Qt

∂tϕnηn + kα

∫
Qt

∇ϕn · ∇ηn +
1

8

∫
Qt

|∂tϕn|2 + 4C2
1

∫
Qt

|ϕn|2

+

∫
Qt

(fε − k∆η∗)ηn +

∫
Qt

[γηn + (ν − αγ)ϕn + γη∗]∂tϕn. (3.51)

We notice that the convergence provided by (3.27) assures that η0,n and ϕ0,n are bounded
in V . Consequently, thanks to (3.40), the first four integrals on the right-hand side of
(3.51) are estimated as follows:

1

2

∫
Ω

|η0,n|2 +
ν

2

∫
Ω

|ϕ0,n|2 +
ν

2

∫
Ω

|∇ϕ0,n|2 +

∫
Ω

β̂ε(ϕ0,n) ≤ c+Qε(n). (3.52)

We also notice that

kα

∫
Qt

∇ϕn · ∇ηn =
k

2

(
2α

∫
Qt

∇ϕn · ∇ηn
)

≤ k

2

∫
Qt

|∇ηn|2 +
kα2

2

∫
Qt

|∇ϕn|2

=
k

2

∫
Qt

|∇ηn|2 +
kα2

ν

∫
Qt

ν

2
|∇ϕn|2. (3.53)

We re-arrange the right-hand side of (3.51) using (3.46), (3.52) and (3.53). Then we have
that

1

2
‖ηn(t)‖2

H + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
ν

2
‖ϕn(t)‖2

V +

∫
Ω

β̂ε(ϕn(t))

≤ c+Qε(n) + 2(`− α)2

∫
Qt

|ηn|2 +
1

8

∫
Qt

|∂tϕn|2 +
k

2

∫
Qt

|∇ηn|2 +
kα2

ν

∫
Qt

ν

2
|∇ϕn|2

+
1

8

∫
Qt

|∂tϕn|2 + 4C2
1

∫
Qt

|ϕn|2 + 2

∫
Qt

|fε − k∆η∗|2 +
1

8

∫
Qt

|ηn|2

+2

∫
Qt

|γηn + (ν − αγ)ϕn + γη∗|2 +
1

8

∫
Qt

|∂tϕn|2. (3.54)

According to (3.15), fε is bounded in L2(0, T ;H) uniformly with respect to ε. Conse-
quently, due to (2.6)–(2.7), the seventh integral on the right-hand side of (3.54) is under
control and similarly the third addendum in the ninth integral on the right-hand side.
Then we infer that

1

2
‖ηn(t)‖2

H + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
ν

2
‖ϕn(t)‖2

V +

∫
Ω

β̂ε(ϕn(t))

≤ c+Qε(n) +
[
2(`− α)2 +

1

8

] ∫
Qt

|ηn|2 +
1

2

∫
Qt

|∂tϕn|2 +
kα2

ν

∫
Qt

ν

2
|∇ϕn|2



14 Solvability of a phase field system related to a SMC problem

+4C2
1

∫
Qt

|ϕn|2 + 8γ2

∫
Qt

|ηn|2 + 8(ν − αγ)2

∫
Qt

|ϕn|2. (3.55)

Now, we recollect the constants in (3.55) and obtain that

1

2
‖ηn(t)‖2

H + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
ν

2
‖ϕn(t)‖2

V +

∫
Ω

β̂ε(ϕn(t))

≤ c+Qε(n)+C2
1

2

∫ t

0

‖ηn(s)‖2
H ds+C3

ν

2

∫ t

0

‖∇ϕn(s)‖2
H ds+C4

ν

2

∫ t

0

‖ϕn(s)‖2
H ds, (3.56)

where

C2 = 2[2(`− α)2 +
1

8
+ 8γ2], C3 =

kα2

ν
, C4 =

2[4C2
1 + 8(ν − αγ)2]

ν
.

Consequently, from (3.56) we have that

1

2
‖ηn(t)‖2

H + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
ν

2
‖ϕn(t)‖2

V +

∫
Ω

β̂ε(ϕn(t))

≤ c+Qε(n) + C5

(
1

2

∫ t

0

‖ηn(s)‖2
H ds+

ν

2

∫ t

0

‖ϕn(s)‖2
V ds

)
, (3.57)

where

C5 = max (C2, C3, C4).

Then, from (3.57) we conclude that

1

2
‖ηn(t)‖2

H + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
ν

2
‖ϕn(t)‖2

V +

∫
Ω

β̂ε(ϕn(t))

≤ cε

(
1 +

1

2

∫ t

0

‖ηn(s)‖2
H ds+

ν

2

∫ t

0

‖ϕn(s)‖2
V ds

)
. (3.58)

Now, we apply the Gronwall lemma to (3.58) and infer that

1

2
‖ηn(t)‖2

H + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
ν

2
‖ϕn(t)‖2

V +

∫
Ω

β̂ε(ϕn(t)) ≤ cε. (3.59)

As (3.59) holds true for any t ∈ [0, tn), we conclude that

‖ϕn‖H1(0,tn;H)∩L∞(0,tn;V ) ≤ cε, (3.60)

‖ηn‖L∞(0,tn;H)∩L2(0,tn;V ) ≤ cε, (3.61)

‖β̂ε(ϕn)‖L∞(0,tn;L1(Ω)) ≤ cε. (3.62)
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Second a priori estimate. First of all, we notice that π(ϕn) is bounded in L2(0, tn;H)
owing to (2.12) and (3.60). Thanks to (3.60)–(3.62), we can rewrite (3.30) as

(−ν∆ϕn + βε(ϕn), v)H = (g1, v)H , for all v ∈ Vn, (3.63)

with ‖g1‖L2(0,tn;H) ≤ cε. The choice of the basis vi as in (3.25) allows us to test (3.63) by
−∆ϕn. Integrating over (0, t), we obtain that

ν

∫
Qt

|∆ϕn|2 +

∫
Qt

∇ϕn · ∇βε(ϕn) = −
∫
Qt

g1∆ϕn. (3.64)

Using inequalities (3.45)–(3.46), from (3.64) we have that

ν

2

∫
Qt

|∆ϕn|2 +

∫
Qt

β′ε(ϕn)|∇ϕn|2 ≤
1

2ν

∫
Qt

|g1|2. (3.65)

Due to (3.60) and the monotonicity of βε, from (3.65) we obtain that

‖∆ϕn‖L2(0,t;H) ≤ cε. (3.66)

We observe that (3.66) holds true for any t ∈ [0, tn). Then, using elliptic regularity, from
(3.60) and (3.66) we infer that

‖ϕn‖L2(0,tn;W ) ≤ cε. (3.67)

Third a priori estimate. Thanks to the previous a priori estimates, from (3.29) it
follows that

(∂tηn − k∆ηn + Aεηn, v)H = (g2, v)H for all v ∈ Vn, (3.68)

with ‖g2‖L2(0,tn;H) ≤ cε. We test (3.68) by ∂tηn and integrate over (0, t); we obtain that∫
Qt

|∂tηn|2 +
k

2

∫
Ω

|∇ηn(t)|2 +

∫
Qt

Aεηn∂tηn =
k

2

∫
Ω

|∇η0,n|2 +

∫
Qt

g2∂tηn. (3.69)

Then, using the property (3.6) of Aε and inequalities (3.45)–(3.46), from (3.69) we infer
that ∫

Qt

|∂tηn|2 +
k

2

∫
Ω

|∇ηn(t)|

≤ k

2

∫
Ω

|∇η0,n|2 +

∫
Qt

|Aεηn∂tηn|+ 2

∫
Qt

|g2|2 +
1

8

∫
Qt

|∂tηn|2

≤ k

2

∫
Ω

|∇η0,n|2 + 2

∫
Qt

|Aεηn|2 +
1

8

∫
Qt

|∂tηn|2 + 2

∫
Qt

|g2|2 +
1

8

∫
Qt

|∂tηn|2

=
k

2

∫
Ω

|∇η0,n|2 + 2

∫ t

0

‖Aεηn(s)‖2
H ds+

1

4

∫
Qt

|∂tηn|2 + 2

∫
Qt

|g2|2

≤ k

2

∫
Ω

|∇η0,n|2 + 2

∫ t

0

[C(‖ηn(s)‖H + 1)]2 ds+
1

4

∫
Qt

|∂tηn|2 + 2

∫
Qt

|g2|2

≤ c+
k

2

∫
Ω

|∇η0,n|2 + 4C2

∫ t

0

‖ηn(s)‖2
H ds+

1

2

∫
Qt

|∂tηn|2 + 2

∫
Qt

|g2|2. (3.70)
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Due to (2.8), the first integral on the right-hand side of (3.70) is under control. Then,
from (3.70) we infer that

1

2

∫
Qt

|∂tηn|2 +
k

2

∫
Ω

|∇ηn(t)| ≤ c+ 4C2

∫ t

0

‖ηn(s)‖2
H ds+ 2

∫
Qt

|g2|2. (3.71)

We observe that (3.71) holds true for any t ∈ [0, tn), Then, due to the previous estimates
(3.60)–(3.61), we conclude that

‖ηn‖H1(0,tn;H)∩L∞(0,tn;V ) ≤ cε. (3.72)

Fourth a priori estimate. Due to the previous estimates (3.60)–(3.62), (3.67) and
(3.72), by comparison in (3.68), we infer that

‖∆ηn‖L2(0,tn;H) ≤ cε. (3.73)

Consequently, we conclude that

‖ηn‖L2(0,tn;W ) ≤ cε. (3.74)

Summary of the a priori estimates. Since the constants appearing in the a priori
estimates are all independent of tn, the local solution can be extended to a solution
defined on the whole interval [0, T ], i.e., we can assume tn = T for any n. Hence, due to
(3.60)–(3.62), (3.67), (3.72) and (3.74), we conclude that

‖ϕn‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ cε, (3.75)

‖ηn‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ cε. (3.76)

3.4 Passage to the limit as n→ +∞

Now, we let n→ +∞ and show that the limit of some subsequences of solutions for (Pε,n)
(see (3.29)–(3.32)) yields a solution of (Pε) (see (3.17)–(3.22)). Estimates (3.75)–(3.76)
for ϕn and ηn and the well-known weak or weak* compactness results ensure the existence
of a pair (ϕε, ηε) such that, at least for a subsequence,

ϕn ⇀ ϕε in H1(0, T ;H) ∩ L2(0, T ;W ), (3.77)

ϕn ⇀
∗ ϕε in L∞(0, T ;V ), (3.78)

ηn ⇀ ηε in H1(0, T ;H) ∩ L2(0, T ;W ), (3.79)

ηn ⇀
∗ ηε in L∞(0, T ;V ), (3.80)

as n → +∞. We notice that W , V , H are Banach spaces and W ⊂ V ⊂ H with dense
and compact embeddings. Then, we are under the assumptions of [21, Prop. 4, Sec. 8]
and this fact implies the following strong convergences:

ϕn → ϕε in C0([0, T ];H) ∩ L2(0, T ;V ), (3.81)

ηn → ηε in C0([0, T ];H) ∩ L2(0, T ;V ), (3.82)
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as n→ +∞. Since π, Aε and βε are Lipschitz continuous, we infer that

|π(ϕn)− π(ϕε)| ≤ Cπ|ϕn − ϕε| a.e. in Q,
‖Aεηn − Aεηε‖H ≤ 1

ε
‖ηn − ηε‖H a.e. in [0, T ],

|βε(ϕn)− βε(ϕε)| ≤ 1
ε
|ϕn − ϕε| a.e. in Q.

(3.83)

Due to (3.83), we conclude that

π(ϕn)→ π(ϕε) in C0([0, T ];H), (3.84)

Aεηn → Aεηε in C0([0, T ];H), (3.85)

βε(ϕn)→ βε(ϕε) in C0([0, T ];H), (3.86)

as n → +∞. Now, we fix k ≤ n and we observe that, for every v ∈ Vk and for every
t ∈ [0, T ], the solution (ηn, ϕn) of problem (Pε,n) satisfies

(∂t[ηn(t) + (`− α)ϕn(t)]− k∆ηn(t) + kα∆ϕn(t) + Aεηn(t), v)H

= (fε(t)− k∆η∗, v)H , (3.87)

(∂tϕn(t)− ν∆ϕn(t) + βε(ϕn(t)) + π(ϕn(t)), v)H

= (γ[ηn(t)− αϕn(t) + η∗], v)H . (3.88)

If k is fixed and n→ +∞, we have the convergence of every term of (3.87)–(3.88) to the
corresponding one with ηε, ϕε whenever v ∈ Vk, i.e.,

(∂t[ηε(t) + (`− α)ϕε(t)]− k∆ηε(t) + kα∆ϕε(t) + Aεηε(t), v)H

= (fε(t)− k∆η∗, v)H , (3.89)

(∂tϕε(t)− ν∆ϕε(t) + βε(ϕε(t)) + π(ϕε(t)), v)H

= (γ[ηε(t)− αϕε(t) + η∗], v)H . (3.90)

As k is arbitrary, the limit equalities hold true for every v ∈
⋃∞
k=1 Vk, which is dense in

V . Then the limit equalities actually hold for every v ∈ V , i.e.,

∂t(ηε + (`− α)ϕε)− k∆ηε + kα∆ϕε + Aεηε = fε − k∆η∗ a.e. in Q, (3.91)

∂tϕε − ν∆ϕε + βε(ϕε) + π(ϕε) = γ(ηε − αϕε + η∗) a.e. in Q. (3.92)

Now, we prove the convergence of the initial data. We recall that

η0,n = PVnη0, ϕ0,n = PVnϕ0. (3.93)

If ε is fixed, then
lim

n→+∞
η0,n = η0 in V , (3.94)

lim
n→+∞

ϕ0,n = ϕ0 in V , (3.95)

and then also in H. These observations and (3.81)–(3.82) show that the weak limit of
some subsequences of solutions for (Pε,n) (see (3.29)–(3.32)) yields a solution for (Pε) (see
(3.17)–(3.22)). We also notice that taking the limit as n → +∞ in (3.40) entails that
Qε(n)→ C, with ∫

Ω

β̂ε(ϕ0) ≤ C. (3.96)

Then, after the first passage to the limit, we conclude that estimates (3.75)–(3.76) still
hold for the limiting functions with constants independent of ε, i.e.,

‖ϕε‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c, (3.97)

‖ηε‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c. (3.98)
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3.5 Passage to the limit as ε↘ 0

Now, we let ε↘ 0 and show that the limit of some subsequences of solutions for (Pε) (see
(3.17)–(3.22)) tends to a solution of the initial problem (P ) (see (2.33)–(2.38)). First of
all, due to (3.77)–(3.82), (3.86) and (3.96), we have that the constants in (3.97)–(3.98)
do not depend on ε. Moreover, thanks to (3.97)–(3.98), by comparison in (3.92), we infer
that

‖βε(ϕε)‖L2(Q) ≤ c. (3.99)

The well-known weak or weak∗ compactness results and the useful theorem [21, Prop. 4,
Sec. 8] ensure the existence of a pair (ϕ, η) such that, at least for a subsequence,

ϕε ⇀
∗ ϕ in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (3.100)

ηε ⇀
∗ η in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (3.101)

ϕε → ϕ in C0([0, T ];H) ∩ L2(0, T ;V ), (3.102)

ηε → η in C0([0, T ];H) ∩ L2(0, T ;V ), (3.103)

as ε↘ 0. Now, we observe that (3.102) implies that

ϕε → ϕ in L2(0, T ;H) ≡ L2(Q) (3.104)

as ε↘ 0. We set ξε = βε(ϕε) and remark that

‖ξε‖L2(Q) = ‖βε(ϕε)‖L2(Q) ≤ c. (3.105)

Thus, we may suppose that, as ε↘ 0, at least for a subsequence,

ξε ⇀ ξ in L2(Q), (3.106)

for some ξ ∈ L2(Q). Now, we introduce the operator Bε induced by βε on L2(Q) in the
following way:

Bε : L2(Q) −→ L2(Q) (3.107)

ξε ∈ Bε(ϕε)⇐⇒ ξε(x, t) ∈ βε(ϕε(x, t)) for a.e. (x, t) ∈ Q. (3.108)

Due to (3.104) and (3.106), we have that{
Bε(ϕε) ⇀ ξ in L2(Q),
ϕε → ϕ in L2(Q),

(3.109)

lim sup
ε↘0

∫
Q

ξεϕε =

∫
Q

ξϕ. (3.110)

Thanks to (3.109)–(3.110) and to the useful results proved in [1, Prop. 2.2, p. 38], we
conclude that

ξ ∈ B(ϕ) in L2(Q), (3.111)

where B is defined by (2.13)–(2.14). This is equivalent to say that

ξ ∈ β(ϕ) a.e. in Q. (3.112)

Moreover, we pass to the limit in Aε by repeating the previous arguments and conclude
that

ζ ∈ A(η) in L2(0, T ;H), (3.113)

with obvious definition for A (see (2.21)–(2.22)), and this is equivalent to say that

ζ ∈ A(η) a.e. in [0, T ]. (3.114)
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Conclusion of the proof. Thanks to the previous steps, we conclude that, as ε↘ 0,
the limit of some subsequences of solutions (ηε, ϕε) to (Pε) (see (3.17)–(3.22)) yields a
solution (η, ϕ) of the initial boundary value problem (P ), i.e.,

∂t(η + (`− α)ϕ)− k∆η + kα∆ϕ+ ζ = f − k∆η∗ a.e. in Q, (3.115)

∂tϕ− ν∆ϕ+ ξ + π(ϕ) = γ(η − αϕ+ η∗) a.e. in Q, (3.116)

ζ(t) ∈ A(η(t)) for a.e. t ∈ (0, T ), (3.117)

ξ ∈ β(ϕ) a.e. in Q, (3.118)

∂Nη = 0, ∂Nϕ = 0 on Σ, (3.119)

η(0) = η0, ϕ(0) = ϕ0 in Ω. (3.120)

We notice that the homogeneous Neumann boundary conditions for both η and ϕ follow
from (2.32), due to the definition of W (see (2.4)).

4 Proof of the continuous dependence theorem

This section is devoted to the proof of Theorem 2.4.

Assume α = `. If fi, η
∗
i , η0i , ϕ0i , i = 1, 2, are given as in (2.6)–(2.8) and (ϕi, ηi),

i = 1, 2, are the corresponding solutions, we can write problem (2.33)–(2.38) for both
(ϕi, ηi), i = 1, 2, obtaining

∂tηi − k∆ηi + k`∆ϕi + ζi = fi − k∆η∗i a.e. in Q, (4.1)

∂tϕi − ν∆ϕi + ξi + π(ϕi) = γ(ηi − `ϕi + η∗i ) a.e. in Q, (4.2)

ζi(t) ∈ A(ηi(t)) for a.e. t ∈ (0, T ), (4.3)

ξi ∈ β(ϕi) a.e. in Q, (4.4)

∂Nηi = 0, ∂Nϕi = 0 on Σ, (4.5)

ηi(0) = η0i , ϕi(0) = ϕ0i . (4.6)

First of all, we set

ϕ = ϕ1 − ϕ2, η = η1 − η2, (4.7)

f = f1 − f2, η∗ = η∗1 − η∗2, (4.8)

ϕ0 = ϕ01 − ϕ02 , η0 = η01 − η02 . (4.9)

We write (4.1) for both (ϕ1, η1) and (ϕ2, η2) and we take the difference. We obtain that

∂tη − k∆η + k`∆ϕ+ ζ1 − ζ2 = f − k∆η∗. (4.10)

We write (4.2) for both (ϕ1, η1) and (ϕ2, η2) and we take the difference. We obtain that

∂tϕ− ν∆ϕ+ ξ1 − ξ2 + π(ϕ1)− π(ϕ2) = γ(η − `ϕ+ η∗). (4.11)
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We multiply (4.10) by η and (4.11) by kl2

ν
ϕ. Then we sum up and integrate over Qt,

t ∈ (0, T ]. We have that

1

2

∫
Ω

|η(t)|2 +
k`2

2ν

∫
Ω

|ϕ(t)|2 + k

∫
Qt

(|∇η|2 − `∇ϕ∇η + `2|∇ϕ|2)

+

∫
Qt

(ζ1 − ζ2)(η1 − η2) +
k`2

ν

∫
Qt

(ξ1 − ξ2)(ϕ1 − ϕ2)

=
1

2
‖η0‖2

H +
k`2

2ν
‖ϕ0‖2

H −
k`2

ν

∫
Qt

[π(ϕ1)− π(ϕ2)](ϕ1 − ϕ2)

+

∫
Qt

(f − k∆η∗)η +
γk`2

ν

∫
Qt

ηϕ− γk`3

ν

∫
Qt

|ϕ|2 +
γk`2

ν

∫
Qt

η∗ϕ. (4.12)

Since A and β are maximal monotone, we have that∫
Qt

(ζ1 − ζ2)(η1 − η2) ≥ 0, (4.13)

∫
Qt

(ξ1 − ξ2)(ϕ1 − ϕ2) ≥ 0. (4.14)

Moreover, thanks to the Lipschitz continuity of π, we infer that

−k`
2

ν

∫
Qt

[π(ϕ1)− π(ϕ2)](ϕ1 − ϕ2) ≤ k`2

ν

∫
Qt

|π(ϕ1)− π(ϕ2)||ϕ1 − ϕ2|

≤ k`2Cπ
ν

∫
Qt

|ϕ|2. (4.15)

We notice that the integral involving the gradients in (4.12) is estimated from below in
this way: ∫

Qt

(|∇η|2 − `∇ϕ∇η + `2|∇ϕ|2) ≥ 1

2

∫
Qt

(|∇η|2 + `2|∇ϕ|2). (4.16)

We also observe that

−γk`
3

ν

∫
Qt

|ϕ|2 ≤ 0. (4.17)

Then, due to (4.13)–(4.17), from (4.12) we infer that

1

2

∫
Ω

|η(t)|2 +
k`2

2ν

∫
Ω

|ϕ(t)|2 +
1

2

∫
Qt

(|∇η|2 + `2|∇ϕ|2)

≤ 1

2
‖η0‖2

H +
k`2Cπ
ν

∫
Qt

|ϕ|2 +
k`2

2ν
‖ϕ0‖2

H +

∫
Qt

(f − k∆η∗)η +
γk`2

ν

∫
Qt

ηϕ+
γk`2

ν

∫
Qt

η∗ϕ.

By applying the inequality (3.45) to the last three terms of the right-hand side of the
previous equation, we obtain that

1

2
‖η(t)‖2

H +
k`2

2ν
‖ϕ(t)‖2

H +
1

2

∫
Qt

(|∇η|2 + `2|∇ϕ|2)
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≤ 1

2
‖η0‖2

H +
k`2

2ν
‖ϕ0‖2

H +
1

8

∫
Qt

|η|2 + 2

∫
Qt

|f − k∆η∗|2 +
1

8

∫
Qt

|η|2

+2
(γk`2

ν

)2
∫
Qt

|ϕ|2 +
1

8

∫
Qt

|η∗|2 + 2
(γk`2

ν

)2
∫
Qt

|ϕ|2 +
k`2Cπ
ν

∫
Qt

|ϕ|2. (4.18)

From (4.18) we infer that

1

2
‖η(t)‖2

H +
k`2

2ν
‖ϕ(t)‖2

H +
1

2

∫
Qt

(|∇η|2 + `2|∇ϕ|2)

≤ 1

2
‖η0‖2

H +
k`2

2ν
‖ϕ0‖2

H + 4‖f‖2
L2(Q) + 4k2T‖η∗‖2

W +
1

8
T‖η∗‖2

H

+M

∫ t

0

(
1

2
‖η(s)‖2

H +
k`2

2ν
‖ϕ(s)‖2

H +
1

2

∫
Qs

(|∇η|2 + `2|∇ϕ|2)

)
ds, (4.19)

where

M = max

(
4γ2k`2 + 2νCπ

ν
;
1

2

)
.

From (4.19), by applying the Gronwall lemma, we conclude that

1

2
‖η(t)‖2

H +
k`2

2ν
‖ϕ(t)‖2

H +
1

2
‖∇η‖2

L2(0,t;H) +
`2

2
‖∇ϕ‖2

L2(0,t;H)

≤ C1

[
4‖f‖2

L2(Q) + 4k2T‖η∗‖2
W +

1

8
T‖η∗‖2

W + C0

(
‖η0‖2

H + ‖ϕ0‖2
H

)]
, (4.20)

where

C0 = max

(
1

2
;
k`2

2ν

)
, C1 = eTM .

From (4.20), we infer that

C3

(
‖η(t)‖2

H + ‖ϕ(t)‖2
H + ‖∇η‖2

L2(0,t;H) + ‖∇ϕ‖2
L2(0,t;H)

)
≤ 1

2
‖η(t)‖2

H +
k`2

2ν
‖ϕ(t)‖2

H +
1

2
‖∇η‖2

L2(0,t;H) +
`2

2
‖∇ϕ‖2

L2(0,t;H)

≤ C2

(
‖f‖2

L2(Q) + ‖η∗‖2
W + ‖η0‖2

H + ‖ϕ0‖2
H

)
≤ C2

(
‖f‖L2(Q) + ‖η∗‖W + ‖η0‖H + ‖ϕ0‖H

)2

, (4.21)

where

C2 = max

(
4C1; 4k2TC1;

1

8
TC1; C1C0

)
, C3 = min

(
1

2
;
k`2

2ν
;
`2

2

)
.

From (4.21) we obtain that

‖η(t)‖2
H + ‖ϕ(t)‖2

H + ‖∇η‖2
L2(0,t;H) + ‖∇ϕ‖2

L2(0,t;H)
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≤ C4

(
‖f‖L2(Q) + ‖η∗‖W + ‖η0‖H + ‖ϕ0‖H

)2

, (4.22)

where C4 = C2

C3
. From (4.22) we conclude that there exists a constant C > 0 which

depends only on Ω, T depends only on Ω, T and the parameters `, α, k, ν, γ of the
system, such that

‖η1 − η2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ1 − ϕ2‖L∞(0,T ;H)∩L2(0,T ;V )

≤ C
(
‖f1 − f2‖L2(Q) + ‖η∗1 − η∗2‖W + ‖η01 − η02‖H + ‖ϕ01 − ϕ02‖H

)
. (4.23)

To infer the uniqueness of the solution, we choose f1 = f2, η∗1 = η∗2, ϕ01 = ϕ02 , η01 = η02 .
Then, replacing the corresponding values in (4.23), we obtain that

‖η1 − η2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ1 − ϕ2‖L∞(0,T ;H)∩L2(0,T ;V ) = 0. (4.24)

Hence η1 = η2 and ϕ1 = ϕ2. Then the solution of problem (P ) (see (4.1)–(4.6)) is unique.
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