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Abstract. The paper is concerned with the minimization of the k-th eigenvalue of the Laplace

operator with Robin boundary conditions, among all open sets of RN satisfying a volume con-

straint. We prove the existence of a solution in a relaxed framework and find some qualitative
properties of the optimal sets. The main idea is to see these spectral shape optimization ques-

tions as free discontinuity problems in the framework of special functions of bounded variation.

One of the key difficulties (for k ≥ 3) comes from the fact that the eigenvalues are critical points.
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1. Introduction

Given Ω ⊆ RN open, bounded and with a Lipschitz boundary, a number λ ∈ R is said to be an
eigenvalue of the Laplace operator under Robin (or Fourier) boundary conditions with constant
β > 0 if there exists a nontrivial u ∈W 1,2(Ω) such that{

−∆u = λu in Ω
∂u
∂ν + βu = 0 on ∂Ω,

which in the weak sense means

∀ϕ ∈W 1,2(Ω) :

∫
Ω

∇u · ∇ϕdx+ β

∫
∂Ω

uϕdHN−1 = λ

∫
Ω

uϕdx.

A.G. is also member of the Gruppo Nazionale per L’Analisi Matematica, la Probabilità e loro Applicazioni
(GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).
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2 D. BUCUR AND A. GIACOMINI

Here ν denotes the outer normal to ∂Ω, while HN−1 stands for the Hausdorff (N −1)-dimensional
measure on RN , which coincides with the usual area measure on regular hypersurfaces.

It is known that Ω admits an infinite diverging sequence of eigenvalues

λ1,β(Ω) < λ2,β(Ω) ≤ λ3,β(Ω) ≤ · · · ≤ λk,β(Ω) ≤ · · · → +∞,

which are given (counting multiplicity) by the min-max formula

λk,β(Ω) = min
V ∈Sk

max
v∈V,v 6=0

∫
Ω
|∇v|2 dx+ β

∫
∂Ω

v2 dHN−1∫
Ω
v2 dx

,

where Sk denotes the family of vectorial subspaces of W 1,2(Ω) with dimension k.
In the present paper we are interested in the shape optimization problem

(1.1) inf
|Ω|=m

λk,β(Ω),

where m > 0, and |Ω| stands for the volume of Ω.
The case k = 1 is connected to the Faber-Krahn inequality for the Robin-Laplacian, which states

that

(1.2) λ1,β(Ω) ≥ λ1,β(B),

where B is a ball such that |Ω| = |B|, with equality if and only if Ω is itself a ball. The
Faber-Krahn inequality was conjectured by Pólya in 1951, but it has been established only quite
recently by Bossel in 1986 for two dimensional smooth domains [3], and by Daners in 2006 for
N -dimensional Lipschitz regular domains [15] (equality in (1.2) has been studied in [16], see also
[8]). In terms of the shape optimization problem (1.1), the inequality entails that optimal shapes
are balls of volume m.

The case k = 2 has been treated by Kennedy in [21], where he proved that optimal shapes are
given by the union of two disjoint balls of volume m/2.

Existence of optimal shapes is an open problem as soon as k ≥ 3. In reference [21], it is shown
that, in contrast with the cases k = 1, 2, there cannot exist a “universal” optimal shape, that is
independent of the value of β. We refer the reader to reference [2] for a numerical analysis of
the optimal shapes, as function of the parameter β. The numerical evidence leads to conjecture
that the minimizing set for (1.1) is the union of k equal disjoint balls provided that β is smaller
than a critical value depending on k, m and the dimension of the space. On the other hand,
when β is large, it is expected that the optimal shape will be close to the set minimizing the
Dirichlet-Laplacian eigenvalue, under the same volume constraint.

In order to study (1.1), a natural step in the Calculus of Variations is to find a relaxation of
the problem, that is to extend the problem on a larger class of domains in such a way to prove
existence of solutions using the direct method.

The relaxation of spectral shape optimization problems is usually a difficult task. The only gen-
eral result available in the literature is due to Buttazzo and Dal Maso [11], and deals with spectral
problems associated to monotone increasing functions of the Dirichlet-Laplacian eigenvalues. The
larger class of domains involved in the relaxation is that of quasi-open sets. The solution of the
original problem on Lipschitz domains becomes then an issue of regularity. In this direction, the
problem is still unsolved even in the simplest case of the minimization of k-th eigenvalue under a
volume constraint for k ≥ 3: it is known [7] that quasi-open optimal shapes are bounded and have
finite perimeter, but it is not known even if they are topologically open. Although the Dirichlet
boundary conditions are much more studied in the literature (in the framework of free boundary
problems), the fact that the k-th eigenvalue is itself a critical point, leads to those technical diffi-
culties, not yet overcome. Another difficulty is also related to the kind of constraint we require on
the competing domains: if for example the volume constraint is replaced by a perimeter constraint,
the situation is completely different, as optimal shapes turn out to be open with fairly smooth
boundaries [17].

The optimization of the k-th eigenvalue of the Robin-Laplacian (1.1) cannot be relaxed using
the Buttazzo-Dal Maso result, basically because the Robin eigenvalues do not enjoy monotonicity
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properties under inclusion of the domains (see e.g. [20]). By the way, neither the second funda-
mental requirement in the Buttazzo-Dal Maso theory, namely a good behavior of the spectrum to
the so called γ-convergence, does not occur. In this paper we propose a different kind of relaxation,
i.e., we “embed” the shape optimization problem into a free discontinuity problem on a suitable
class of functions of bounded variation.

This kind of relaxation has been carried out in the case of the first eigenvalue in [6], where the
problem has been dealt with by studying the free discontinuity functional

(1.3) R1,β(u) :=

∫
RN |∇u|

2 dx+ β
∫
Ju

[γ1(u)2 + γ2(u)2] dHN−1∫
RN u

2 dx
,

where u belongs to a suitable space of functions of bounded variation, namely

SBV
1
2 (RN ) := {u ∈ L2(RN ) : u ≥ 0, u2 ∈ SBV (RN )}

(see Section 2 for a precise definition of the space SBV ). In (1.3), Ju stands as usual for the jump
set of u, while γ1(u) and γ2(u) denote the two traces of u from both sides of Ju. The connection of
R1,β with the first eigenvalue is readily obtained by noticing that if ψΩ is the first eigenfunction of
Ω, then its extension by zero outside the domain, denoted by uΩ := ψΩ1Ω , is such that (JuΩ = ∂Ω
and γ2(uΩ) = 0)

(1.4) λ1,β(Ω) = R1,β(uΩ).

In [6] it is shown that minimizers of R1,β on functions whose support has volume m are given by
functions of the form

u = ψB1B ,

where B is a ball of volume m. In view of (1.4) this entails immediately the Faber-Krahn inequality
for the Robin-Laplacian, showing indeed a stronger optimality of the ball, for example among
domains with irregular boundary (with suitably defined associated first eigenvalue).

While the analysis of [6] was based on the Bossel-Daners approach (adapted to the free dis-
continuity setting), the arguments employed in [9] are completely variational, and based on the
regularity properties of minimizers of R1,β . It is shown that the support of minimizers are open
bounded set whose topological boundary is rectifiable and with finite area. By means of reflection
arguments, it is then proved that they are indeed balls, yielding the Faber-Krahn inequality. Such
an analysis is not restricted to the first eigenvalue, but works as well for some semilinear variants
such as for example the torsional rigidity (not covered by the Bossel-Daners approach). Moreover
it can be employed to find a relaxed class of domains for shape optimization problems involving
energies with Robin conditions on the free boundary, as shown in [10]. In this direction, we refer
the reader also to [12, 23], where, in the context of insulation problems, the regularity of the free
boundary of optimal domains has been investigated.

The difficulty to adapt the analysis of [6, 9] to problem (1.1) consists in the fact that it is an
optimization problem of min-max type. Trying to preserve this structure, we concentrate on the
free discontinuity problem

(1.5) inf
|supp(u)|≤m

Rk,β(u)

with

Rk,β(u) := max
v∈V (u)

∫
RN |∇v|

2 dx+ β
∫
Ju

[γ1(v)2 + γ2(v)2] dHN−1∫
RN v

2 dx
,

where u = (u1, . . . , uk) and V (u) denotes the vectorial space generated by the components of u.
The function u is now vector valued and belongs to the space (suggested by the case k = 1)

SBV
1
2
± (RN ;Rk) :=

{
u = (u1, . . . , uk) : u±i ∈ SBV

1
2 (RN ),∫

RN
|∇u|2 dx+

∫
Ju

[|γ1(u)|2 + |γ2(u)|2] dHN−1 < +∞
}
,
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and with dim(V (u)) = k. The connection between Rk,β and the k-th eigenvalue of a domain Ω
is pretty close to what was pointed out for k = 1: if {ψ1

Ω , . . . , ψ
k
Ω} is the family of the first k

eigenfunctions, then

(1.6) uΩ := (ψ1
Ω1Ω , . . . , ψ

k
Ω1Ω) ∈ SBV

1
2
± (RN ;Rk) and Rk,β(uΩ) = λk,β(Ω).

It is apparent that the vector valued functions u play for the free discontinuity problem the same
role of the vector spaces involved in the min-max formulation of the Robin eigenvalues.

The main results of the paper can be summarized as follows (Theorem 4.1).

(a) The free discontinuity problem (1.5) admits minimizers, which turn out to have a bounded
support.

(b) The free discontinuity problem can be considered as a relaxation of the original shape
optimization problem thanks to the equality (1.6) and to the relation

(1.7) inf
|supp(u)|≤m

Rk,β(u) = inf
|Ω|≤m

λk,β(Ω).

Equality (1.7) is proved (Theorem 4.3) by approximating elements in SBV
1
2
± (RN ;Rk) by means

of more regular functions (in particular with more regular jump sets), following the result of [13].
Existence of minimizers follow by direct minimization of the functional Rk,β , thanks to its

coercivity and lower semicontinuity properties (see Proposition 3.6 and Proposition 3.12), but it
requires a concentration-compactness analysis of inductive type. Fundamental in each step is to
prove that the functional admits minimizers with bounded support. This information, trivial for
k = 1 since the support is a ball, follows in general by the analysis of minimizers which arise
as limits of a packet of eigenfunctions of a minimizing sequence of domains (see Lemma 4.5 and
Theorem 4.6).

Given a minimizer of the free discontinuity problem (1.5), we expect its support to provide
an optimal shape for the original problem. To recover a classical solution however, we need a
regularity analysis which seems very difficult.

The paper is organized as follows. After some preliminaries concerning the basic properties
of Robin eigenvalues and of functions of bounded variation, in Section 3 we introduce the free
discontinuity functional Rk,β , and study its coercivity and lower semicontinuity properties in
detail. Section 4 contains the main relaxation result (Theorem 4.1), and is entirely devoted
to its proof. Subsection 4.1 contains the approximation argument which yields equality (1.7),
while in Subsection 4.2 we collect some technical lemmas which are pivotal for the concentration-
compactness argument in the proof of the main result: in particular we treat here the issue of the
boundedness of the support of suitable “distinguished” minimizers. The proof of Theorem 4.1 is
finally addressed in Subsection 4.3.

2. Notation and preliminaries

In this section we fix the basic notation employed throughout the paper, and recall some notions
concerning the eigenvalues of the Robin-Laplacian operator and the space BV of functions of
bounded variation. Moreover we recall a density result for free discontinuity functionals which
will be fundamental for our analysis.

2.1. Basic notation. Given E ⊆ RN , we will denote by |E| its Lebesgue measure, by 1E its
characteristic function, and we set tE := {tx : x ∈ E} for every t ∈ R. HN−1(E) will stand for
the Hausdorff (N − 1)-dimensional measure of E (see [18, Chapter 2]), which coincides with the
usual area measure if E is a piecewise regular hypersurface. Two measurable sets E1, E2 ⊆ RN are
said to be “well separated” if there exist two open sets A1, A2 with |E1 \A1| = 0 and |E2 \A2| = 0,
and dist(A1, A2) > 0.

For x ∈ RN and r > 0, Br(x) stands for the ball of center x and radius r, while Qr(x) denotes
the cube centered at x, with sides parallel to the axis of length r.
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If µ is a Borel measure on RN and A ⊆ RN is Borel regular, we will denote by µbA the restriction
of µ to A, and by |µ| its total variation.

Given a function u, we will denote its positive and negative parts with u±. If Ω ⊆ RN is open
and 1 ≤ p ≤ +∞, Lp(Ω;Rk) will stand for the usual space of (classes of) p-summable Rk-valued
functions on Ω, while W k,p(Ω) will denote the Sobolev space of p-summable functions whose
derivatives up to order k in the sense of distributions is also p-summable.

2.2. Eigenvalues of the Robin-Laplacian. Let Ω ⊆ RN be an open bounded set with Lipschitz
boundary. Given β > 0, it is known that there exists an infinite sequence

0 < λ1,β(Ω) < λ2,β(Ω) ≤ λ3,β(Ω) ≤ · · · ≤ λk,β(Ω) ≤ · · · → +∞
of values such that for every k there exists uk ∈W 1,2(Ω) with uk 6= 0 and{

−∆uk = λk,β(Ω)uk in Ω
∂uk
∂ν + βuk = 0 on ∂Ω,

where ν denotes the outer normal. The value λk,β(Ω) is said the k-th eigenvalue of the Laplace
operator under Robin (or Fourier) boundary conditions with coefficient β.

The eigenvalues can be recovered through the usual Courant-Fisher min-max formula: we have

(2.1) λk,β(Ω) = min
V ∈Sk

max
v∈V,v 6=0

∫
Ω
|∇v|2 dx+ β

∫
∂Ω

v2 dHN−1∫
Ω
v2 dx

,

where Sk denotes the family of vectorial subspaces of W 1,2(Ω) with dimension k.
The following properties of the Robin eigenvalues will be used frequently throughout the paper.

(a) Scaling: If t > 0 we have

(2.2) λk,β(tΩ) =
1

t2
λk,tβ(Ω).

(b) Faber-Krahn inequality (see [15, 4]): We have

λ1,β(Ω) ≥ λ1,β(B),

where B ⊆ RN is a ball such that |B| = |Ω|.
(c) Global estimate for the first eigenvalue of a ball (see e.g. [22, Theorem 4.5]): There exists

CN > 0 such that for every r > 0

(2.3)
β

4r(1 + βr)
≤ λ1,β(Br) ≤

CNβ

r(1 + βr)
.

Remark 2.1 (Monotonicity under dilations). The rescaling property (2.2) entails for t > 1

(2.4) λk,β(tΩ) ≤ 1

t
λk,β(Ω) < λk,β(Ω),

i.e., we get a monotonicity property under dilation. Notice that in general the eigenvalues of the
Robin-Laplacian do not enjoy monotonicity properties under a inclusion of the domains (see e.g.
[20]).

2.3. Functions of bounded variation. Let A ⊆ RN be an open set. We say that u ∈ BV (A) if
u ∈ L1(A) and its derivative in the sense of distributions is a finite Radon measure on A. BV (A)
is called the space of functions of bounded variation on A. BV (A) is a Banach space under the
norm ‖u‖BV (A) := ‖u‖L1(A) + |Du|(A). We refer the reader to [1] for an exhaustive treatment of
the space BV .

Concerning fine properties, a function u ∈ BV (A) (or better every representative of u) is a.e.
approximately differentiable on A, with approximate gradient ∇u ∈ L1(A;RN ). Moreover, the
jump set Ju is a HN−1-countably rectifiable set, i.e., Ju ⊆ ∪i∈NMi up to a HN−1-negligible set,
with Mi a C1-hypersurface in RN . The measure Du admits the following representation for every
Borel set B ⊆ A:

Du(B) =

∫
B

∇u dx+

∫
Ju∩B

(γ2(u)− γ1(u))νu dHN−1 +Dcu(B),
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where νu(x) is the normal to Ju at x, γ1(u), γ2(u) are the two traces of u on Ju (from the directions
∓νu(x)), and Dcu is singular with respect to the Lebesgue measure and concentrated outside Ju.
Dcu is usually referred to as the Cantor part of Du. The normal νu coincides HN−1-a.e. on Ju
with the normal to the hypersurfaces Mi. Moreover, γ1(u), γ2(u) are characterized HN−1-almost
everywhere on Ju by following Lebesgue-type limit quotient relation

lim
r→0

1

rN

∫
B±r (x)

|u(x)− γ2/1(u)(x)| dx = 0

where B±r (x) := {y ∈ Br(x) : νu(x) · (y − x) ≷ 0} (see [1, Remark 3.79]).
If A is bounded and with a Lipschitz boundary, then BV (A) ↪→ LN/N−1(A). Moreover, the

following compactness result holds: if (un)n∈N is bounded in BV (A), there exist u ∈ BV (A) and
a subsequence (unk)k∈N such that

unk → u strongly in L1(A)

and

Dunk
∗
⇀ Du weakly* in the sense of measures.

We say that u ∈ SBV (A) if u ∈ BV (A) and Dcu = 0. SBV (A) is called the space of special
functions of bounded variation on A. This space is very useful to deal with free discontinuity
problems in view of the following compactness and lower-semicontinuity result due to L. Ambrosio
(see [1, Theorems 4.7-4.8]).

Theorem 2.2. Let A ⊂ RN be open and bounded, p ∈]1,+∞[, and let (un)n∈N be a sequence in
SBV (A) such that ∫

A

|∇un|p dx+HN−1(Jun) + ‖un‖∞ ≤ C

for some C independent of n.
Then there exist u ∈ SBV (A) with ∇u ∈ Lp(A;RN ) and a subsequence (unk)k∈N such that

unk → u strongly in L1(A),

∇unk ⇀ ∇u weakly in Lp(A;RN )

and

HN−1(Ju) ≤ lim inf
n→+∞

HN−1(Jun).

Remark 2.3. Ambrosio’s theorem is still valid if the L∞-bound is replaced by a bound on the
total variation (see [5, Theorem 2.3]).

2.4. A density result for free discontinuity functionals. We will make use of a density result
in SBV due to Cortesani and Toader [13]. In order to formulate the statement, we will say that
u ∈ SBV (Ω) with Ω open set in RN has polyhedral jumps if Ju ∩Ω is the intersection with Ω of
the union of a finite number of (N − 1)-dimensional simplexes. The density result is the following
(see [13, Theorem 3.1]).

Theorem 2.4. Let Ω ⊆ RN be open and with Lipschitz boundary, and let p > 1. Let u ∈
SBV (Ω) ∩ L∞(Ω) be such that ∇u ∈ Lp(Ω;RN ) and HN−1(Ju) < +∞.

There exists (un)n∈N such that the following items hold true for every n ∈ N.

(a) HN−1
(
(Jun \ Jun) ∩Ω

)
= 0.

(b) Jun is polyhedral in Ω.
(c) un ∈W k,∞(Ω \ Jun) for every k ≥ 1.

Moreover

un → u strongly in L1(Ω),

∇un → ∇u strongly in Lp(Ω;RN ),

and

(2.5) lim sup
n→+∞

∫
Jun∩A

ϕ(x, γ1(un), γ2(un), νun) dHN−1 ≤
∫
Ju∩A

ϕ(x, γ1(u), γ2(u), νu) dHN−1



MINIMIZATION OF THE ROBIN-LAPLACIAN EIGENVALUES 7

for every open set A ⊂⊂ Ω and every upper semicontinuous function ϕ : Ω × R × R × SN−1 →
[0,+∞[ such that ϕ(x, a, b, ν) = ϕ(x, b, a,−ν) for every x ∈ Ω, a, b ∈ R and ν ∈ SN−1 := {v ∈
RN : |v| = 1}.

3. The free discontinuity problem

In this section we define a free discontinuity functional connected to the min/max formulation
of the Robin eigenvalues (2.1), following the ideas developed in [6], where the case of the the
first eigenvalue was considered. The functional will be defined in Subsection 3.3, after some
preliminaries needed to settle the precise functional framework.

3.1. The functional space SBV
1
2 (RN ). We recall here the results contained in [6], where a

variational approach to the Faber-Krahn inequality for the Robin-Laplacian, i.e., the optimization
of the first eigenvalue, is presented.

We consider the space

(3.1) SBV 1/2(RN ) := {u ∈ L2(RN ) : u ≥ 0 a.e. in RN and u2 ∈ SBV (RN )}.

Fine properties of functions in SBV 1/2(RN ) are detailed below (see [6, Lemma 1]).

Lemma 3.1. Let u ∈ SBV 1
2 (RN ). Then the following facts hold true.

(a) u is a.e. approximately differentiable (see [1, Definition 3.70]) with approximate gradient
∇u such that

∇(u2) = 2u∇u a.e. in RN .

(b) The jump set Ju is HN−1-countably rectifiable with normal νu such that the jump part of
the derivative is given by

Dj(u2) = [γ2(u)2 − γ1(u)2] νu dHN−1 Ju.

(c) For every ε > 0 we have (u− ε)+ ∈ SBV (RN ).

The main compactness and lower semicontinuity properties of SBV
1
2 are contained in the

following result (see [6, Theorem 2]).

Theorem 3.2. Let (un)n∈N be a sequence in SBV
1
2 (RN ) such that

(3.2)

∫
RN
|∇un|2 dx+

∫
Jun

[γ1(un)2 + γ2(un)2] dHN−1 +

∫
RN

u2n dx ≤ C

for some C > 0. Then there exist u ∈ SBV
1
2 (RN ) and a subsequence (unk)k∈N such that the

following items hold true.

(a) Compactness: unk → u strongly in L2
loc(RN ) and

(3.3) ∇unk ⇀ Φ weakly in L2(RN ;RN )

with

(3.4) Φ1supp(u) = ∇u.

(b) Lower semicontinuity: for every open set A ⊆ RN we have

(3.5)

∫
A

|∇u|2 dx ≤ lim inf
k→+∞

∫
A

|∇unk |2 dx

and

(3.6)

∫
Ju∩A

[γ1(u)2 + γ2(u)2] dHN−1 ≤ lim inf
k→+∞

∫
Junk

∩A
[γ1(unk)2 + γ2(unk)2] dHN−1.
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Proof. For the sake of the reader, we briefly recall the steps in the proof of this result, as the
arguments will be used frequently in the rest of the section.

A direct calculation shows that

‖u2n‖BV (RN ) ≤ C̃

for some C̃ > 0. Then there exist a subsequence (unk)k∈N, u ∈ L2(RN ) with u2 ∈ BV (RN ) and
Φ ∈ L2(RN ;RN ) such that

unk → u strongly in L2
loc(RN )

and

∇unk ⇀ Φ weakly in L2(RN ;RN ).

Let us fix ε > 0. Then we have

(unk − ε)+ ∈ SBV (RN ),

with

(unk − ε)+ → (u− ε)+ strongly in L2
loc(RN ).

Moreover ∫
RN
|∇(unk − ε)+|2 dx ≤

∫
RN
|∇unk |2 dx

and

HN−1(J(unk−ε)+) ≤ 1

ε2

∫
Junk

[γ1(unk)2 + γ2(unk)2] dHN−1.

Finally, (unk − ε)+ has a uniformly bounded total variation.
By Ambrosio’s Theorem 2.2, taking into account Remark 2.3, we deduce that (u − ε)+ ∈

SBV (RN ). Moreover

∇(unk − ε)+ ⇀ ∇(u− ε)+ weakly in L2(RN ;RN )

and for every A ⊆ RN open, by lower semicontinuity in SBV (see for example [5, Theorem 2.12])∫
J(u−ε)+∩A

[γ1((u− ε)+)2 + γ2((u− ε)+)2] dHN−1

≤ lim inf
k→+∞

∫
J(unk−ε)

+∩A
[γ1((unk − ε)+)2 + γ2((unk − ε)+)2] dHN−1

≤ lim inf
k→+∞

∫
Junk

∩A
[γ1(unk)2 + γ2(unk)2] dHN−1.

Letting ε→ 0, we get u2 ∈ SBV (RN ), and recover inequality (3.6). Since

∇(unk − ε)+ = ∇unk1{unk≥ε},

we get

∇u1{u≥ε} = Φ1{u≥ε}

so that we recover relation (3.4) and the lower semicontinuity inequality (3.5). �

The main result contained in [6] is the following weak form of the Faber-Krahn inequality for
the Robin-Laplacian.

Theorem 3.3 (Faber-Krahn inequality in SBV
1
2 (RN )). For every u ∈ SBV 1

2 (RN ) we have∫
RN |∇u|

2 dx+ β
∫
Ju

[γ1(u)2 + γ2(u)2] dHN−1∫
RN u

2 dx
≥ λ1,β(Bu),

where Bu ⊆ RN is a ball such that |Bu| = |supp(u)|, and λ1,β(Bu) is the associated first eigenvalue
of the Robin-Laplacian.
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3.2. The functional space SBV
1
2
± (RN ;Rk). In order to handle the case of higher eigenvalues,

and thus in particular to admit functions which change sign, we consider the following space.

Definition 3.4. We say that

u := (u1, . . . , uk) ∈ SBV
1
2
± (RN ;Rk)

if

(ui)
± ∈ SBV 1

2 (RN ) i = 1, . . . , k

and

(3.7)

∫
RN
|∇u|2 dx+

∫
Ju

[|γ1(u)|2 + |γ2(u)|2] dHN−1 < +∞.

In the case k = 1, we will denote the space simply by SBV
1
2
± (RN ).

Remark 3.5. Notice that if u = (u1, . . . , uk) ∈ SBV
1
2
± (RN ;Rk), then in view of Lemma 3.1, for

every i = 1, . . . , k we have that ui is a.e. approximately differentiable with

∇ui = ∇u+i −∇u
−
i .

Moreover we have that

Jui = Ju+
i
∪ Ju−i

is countably HN−1-rectifiable. Since

∇u = (∇u1, . . . ,∇uk)

and

Ju = Ju1 ∪ · · · ∪ Juk with γi(u) = (γi(u
+
1 )− γi(u−1 ), . . . , γi(u

+
k )− γi(u−k )),

all terms in (3.7) are well defined.

The following compactness and lower semicontinuity result holds true.

Proposition 3.6 (Compactness and lower-semicontinuity in SBV
1
2
± (RN ;Rk)). Let (un)n∈N

be a sequence in SBV
1
2
± (RN ;Rk) such that

(3.8)

∫
RN
|∇un|2 dx+

∫
Jun

[|γ1(un)|2 + |γ2(un)|2] dHN−1 +

∫
RN
|un|2 dx ≤ C

for some C > 0. Then there exist u ∈ SBV
1
2
± (RN ;Rk), Φ ∈ L2(RN ;RkN ), and a subsequence

(unh)h∈N such that

unh → u strongly in L2
loc(RN ;Rk),

and

(3.9) ∇unh ⇀ Φ weakly in L2(RN ;RkN )

with

Φ1supp(u) = ∇u.

Moreover, for every open set A ⊆ RN we have

(3.10)

∫
A

|∇u|2 dx ≤ lim inf
h→+∞

∫
A

|∇unh |2 dx

and

(3.11)

∫
Ju∩A

[|γ1(u)|2 + |γ2(u)|2] dHN−1 ≤ lim inf
h→+∞

∫
Junh

∩A
[|γ1(unh)|2 + |γ2(unh)|2] dHN−1.
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Proof. If
un := (un1 , . . . , u

n
k ),

we can apply Theorem 3.2 to the functions (uni )± ∈ SBV 1
2 (RN ) for every i = 1, . . . , k.

We deduce that we can find a subsequence (unh)h∈N such that for every i = 1, . . . , k

unhi → ui strongly in L2
loc(RN ),

∇unhi → Φi weakly in L2(RN ;RN )

with u±i ∈ SBV
1
2 (RN ) and Φi1supp(ui) = ∇ui. We deduce that (3.9) holds true with Φ :=

(Φ1, . . . ,Φk). Clearly also (3.10) holds true.
In order to prove (3.11), let us fix ε > 0 and consider

uεnh := ((uεnh)1, . . . , (u
ε
nh

)k)

where
(uεnh)i := ((unh)+i − ε)

+ − ((unh)−i − ε)
+.

Let us denote by uε the corresponding function for u. By Lemma 3.1 we get uεnh ∈ SBV (RN ;Rk),
with

uεnh → uε strongly in L2
loc(RN ;Rk).

Moreover by construction we have∫
RN
|∇uεnh |

2 dx ≤
∫
RN
|∇unh |2 dx

and ∫
Juεnh

[|γ1(uεnh)|2 + |γ2(uεnh)|2] dHN−1 ≤
∫
Junh

[|γ1(unh)|2 + |γ2(unh)|2] dHN−1.

Finally

HN−1(Juεnh
) ≤ 1

ε2

∫
Junh

[|γ1(unh)|2 + |γ2(unh)|2] dHN−1 ≤ C.

As a consequence, by lower semicontinuity in SBV (see for example [5, Theorem 2.12]) we deduce
that for every open set A ⊆ RN∫

Juε∩A
[|γ1(uε)|2 + |γ2(uε)|2] dHN−1 ≤ lim inf

h→+∞

∫
Juεnh

∩A
[|γ1(uεnh)|2 + |γ2(uεnh)|2] dHN−1

≤ lim inf
h→+∞

∫
Junh

∩A
[|γ1(unh)|2 + |γ2(unh)|2] dHN−1.

Property (3.11) is recovered by sending ε to 0.
Notice finally that ∫

RN
|∇u|2 dx+

∫
Ju

[|γ1(u)|2 + |γ2(u)|2] dHN−1 < +∞,

so that u ∈ SBV
1
2
± (RN ;Rk), and the proof is concluded. �

Remark 3.7. We will make use of the following strengthened version of the lower semicontinuity
inequality (3.11): for every ϕ ∈ C∞c (RN ) with ϕ ≥ 0

(3.12)

∫
RN

ϕ · [|γ1(u)|2 + |γ2(u)|2] dHN−1 ≤ lim inf
h→+∞

∫
RN

ϕ · [|γ1(unh)|2 + |γ2(unh)|2] dHN−1.

This improvement follows by using again [5, Theorem 2.12] to infer∫
Juε∩A

ϕ · [|γ1(uε)|2 + |γ2(uε)|2] dHN−1 ≤ lim inf
h→+∞

∫
Juεnh

∩A
ϕ · [|γ1(uεnh)|2 + |γ2(uεnh)|2] dHN−1

≤ lim inf
h→+∞

∫
Junh

∩A
ϕ · [|γ1(unh)|2 + |γ2(unh)|2] dHN−1,
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and letting ε→ 0.

When dealing with the free discontinuity functional introduced in the next section, we need to

consider linear combinations of the components of functions in SBV
1
2
± (RN ;Rk).

Lemma 3.8. Let u = (u1, . . . , uk) ∈ SBV
1
2
± (RN ;Rk). Then for every a = (a1, . . . , ak) ∈ Rk we

have

a1u1 + · · ·+ akuk ∈ SBV
1
2
± (RN ).

Proof. It suffices to check the result for k = 2 and a = (1, 1). Given u = (u1, u2), let us check that
setting

v := u1 + u2

we have

(3.13) v± ∈ SBV 1
2 (RN )

and

(3.14)

∫
RN
|∇v|2 dx+

∫
Jv

[γ1(v)2 + γ2(v)2] dHN−1 < +∞.

Let us start with (3.13), dealing for example with the positive part. Let εn ↘ 0. Since u1, u2 ∈
SBV

1
2
± (RN ), we get that

vn :=
(
u+1 − εn

)+ − (u−1 − εn)+ +
(
u+2 − εn

)+ − (u−2 − εn)+ ∈ SBV (RN ).

As a consequence v+n ∈ SBV (RN ) with

(3.15) v+n → v+ strongly in L2(RN ).

Notice that

(3.16) |∇v+n | ≤ |∇u1|+ |∇u2|, |v+n | ≤ |u1|+ |u2| a.e. on RN

and that

(3.17) Jv+n ⊆ Ju1
∪ Ju2

= Ju.

Moreover, on Jv+n we obtain readily the inequality

γ1(v+n )2 + γ2(v+n )2 ≤ 2
[
γ1(u1)2 + γ2(u1)2 + γ1(u2)2 + γ2(u2)2

]
.

Since u ∈ SBV
1
2
± (RN ;R2) entails

(3.18)

∫
RN
|∇u1|2 + |∇u2|2 dx+

∫
Ju

[γ1(u1)2 + γ1(u2)2 + γ2(u1)2 + γ2(u2)2] dHN−1 < +∞,

in view of (3.16), (3.17) and of the chain rule in BV (see [1, Theorem 3.96]), we get that (v+n )2 ∈
SBV (RN ), with ∫

RN
|∇v+n |2 dx+

∫
J
v
+
n

[γ1(v+n )2 + γ2(v+n )2] dHN−1 ≤ C

for some C > 0 independent of n. From (3.15) and Theorem 3.2 we thus deduce v+ ∈ SBV 1
2 (RN ).

Inequality (3.14) is then a consequence of (3.18), so that the proof is complete. �
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3.3. The free discontinuity functional. In order to mimic the min/max representation of the
Robin-Laplacian eigenvalues (2.1), we consider the following free discontinuity functional.

Definition 3.9 (The space Fk(RN ) and the functional Rk,β). We say that u ∈ Fk(RN ) if

u ∈ SBV
1
2
± (RN ;Rk) and dim(V (u)) = k,

where V (u) := span{u1, . . . , uk}.
Given β > 0 and u ∈ Fk(RN ) we set

Rk,β(u) := max
v∈V (u),v 6=0

∫
RN |∇v|

2 dx+
∫
Ju

[γ1(v)2 + γ2(v)2] dHN−1∫
RN v

2 dx
.

Remark 3.10. Some comments are in order.

(a) Thanks to Lemma 3.8, for u ∈ Fk(RN ), we have that

V (u) ⊆ SBV
1
2
± (RN ).

As a consequence the functional Rk,β(u) is well defined and finite (the jump term is finite
thanks to the bound (3.7)).

(b) Notice that the integration of the surface term in Rk,β(u) takes place on the entire jump
set Ju, so that it may happen that on some of its parts the function v does not admit
discontinuities.

Remark 3.11 (Link with the Robin eigenvalue). Let Ω ⊆ RN be an open bounded set with
Lipschitz boundary, and let {u1, . . . , uk} denote the first k-eigenfunctions of the Robin-Laplacian
with constant β. After an extension by zero outside the domain (still denoted by the same symbol),
we get easily

u := (u1, . . . , uk) ∈ Fk(RN )

with Ju = ∂Ω and

Rk,β(u) = λk,β(Ω).

We will need the following lower semicontinuity result.

Proposition 3.12 (Lower semicontinuity of Rk,β). Let (un)n∈N be a sequence in Fk(RN )
such that

un → u strongly in L2(RN ;Rk)

for some u ∈ Fk(RN ). Then

(3.19) Rk,β(u) ≤ lim inf
n→+∞

Rk,β(un).

Proof. It is not restrictive to assume that (Rk,β(un))n∈N is bounded. Since every component of
un belongs to V (un), we infer immediately that

(3.20)

∫
RN
|∇un|2 dx+

∫
Jun

[|γ1(un)|2 + |γ2(un)|2] dHN−1 ≤ C

for some C > 0.
Let u = (u1, . . . , uk) and let us consider

v := a1u1 + · · ·+ akuk ∈ V (u)

with a = (a1, . . . , ak) ∈ Rk \ {0}, so that v 6= 0.
Writing un := (un1 , . . . , u

n
k ) we get

(3.21) vn := a1u
n
1 + · · ·+ aku

n
k → v strongly in L2(RN ).

By Lemma 3.8 we deduce that vn ∈ SBV
1
2
± (RN ): moreover, thanks to (3.20), we have∫

RN
|∇vn|2 dx+

∫
Jvn

[γ1(vn)2 + γ2(vn)2] dHN−1 ≤ C̃
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for some constant C̃ independent of n. In view of Proposition 3.6 we get that∫
RN
|∇v|2 dx+

∫
Jv

[γ1(v)2 + γ2(v)2] dHN−1

≤ lim inf
n→+∞

[∫
RN
|∇vn|2 dx+

∫
Jvn

[γ1(vn)2 + γ2(vn)2] dHN−1
]
.

Since vn ∈ V (un) with vn 6= 0 if n is large enough, taking into account (3.21) we deduce

(3.22)

∫
RN |∇v|

2 dx+
∫
Jv

[γ1(v)2 + γ2(v)2] dHN−1∫
RN v

2 dx

≤ lim inf
n→+∞

∫
RN |∇vn|

2 dx+
∫
Jvn

[γ1(vn)2 + γ2(vn)2] dHN−1∫
RN v

2
n dx

≤ lim inf
n→+∞

Rk,β(un).

Recall that the set D of vectors a := (a1, . . . , ak) ∈ Rk for which

Jv = Ja1u1+···+akuk = Ju1 ∪ Ju2 · · · ∪ Juk = Ju up to HN−1-negligible sets

is dense in Rk (see Remark 3.13 below). Then for such functions v we can replace Jv with Ju in
(3.22) so that by density we infer

(3.23)

∫
RN |∇w|

2 dx+
∫
Ju

[γ1(w)2 + γ2(w)2] dHN−1∫
RN w

2 dx
≤ lim inf

n→+∞
Rk,β(un)

for every w ∈ V (u). The desired lower semicontinuity result now follows passing to the max on
w. �

Remark 3.13. In the previous proof we used the following property: the set of parameters
a := (a1, . . . , ak) ∈ Rk for which

Ja1u1+···+akuk = Ju1
∪ Ju2

· · · ∪ Juk = Ju up to HN−1-negligible sets

is dense in Rk. The proof that follows employees arguments similar to those of [19, Lemma 3.1]
and [14, Lemma 4.5].

Let us consider firstly the case k = 2. Let N be the set of vectors b = (b1, b2) ∈ R2 such that
Jb1u1+b2u2

is strictly contained in Ju, that is

HN−1 (Ju \ Jb1u1+b2u2
) > 0.

This means that if we set

Cb := {x ∈ Ju : b1γ1(u1)(x) + b2γ1(u2)(x) = b1γ2(u1)(x) + b2γ2(u2)(x)}
we have HN−1(Cb) > 0. If b′ ∈ N is not a multiple of b, then we have immediately

HN−1(Cb′ ∩ Cb) = 0,

since otherwise on Cb′ ∩ Cb ⊆ Ju we would get γ1(u1) = γ2(u1) and γ1(u2) = γ2(u2). Since Ju is
σ-finite with respect to HN−1, we deduce that the set N is composed, up to a scaling factor, by
at most countably many vectors, so that R2 \N is dense in R2. This proves our density property.

The case k > 2 can be treated easily by induction. Given b ∈ Rk, we can find (b′1, . . . , b
′
k−1)

arbitrarily closed to (b1, . . . , bk−1) in such a way that

Jb′1u1+···+b′k−1uk−1
= Ju1

∪ · · · ∪ Juk−1
up to HN−1-negligible sets.

Setting v := b′1u1 + · · · + b′k−1uk−1, by the previous step we can find (α, b′k) arbitrarily close to
(1, bk) and such that

Jαv+b′kuk = Jv ∪ Juk = Ju1 ∪ · · · ∪ Juk = Ju up to HN−1-negligible sets.

Since
αv + αkuk = αb′1u1 + · · ·+ αb′k−1uk−1 + b′kuk,

we see that (αb′1, . . . , αb
′
k−1, b

′
k) can be chosen arbitrarily closed to (b1, . . . , bk), so that the con-

clusion follows.
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4. The main result

As mentioned in the Introduction, we are interested in the minimization of the k-th eigenvalue
of the Robin-Laplace operator with coefficient β > 0 among bounded Lipschitz domains with
volume m > 0. Using the monotonicity of the eigenvalues under dilation, this is equivalent to the
shape optimization problem

(4.1) inf
Ω∈Am(RN )

λk,β(Ω),

where

(4.2) Am(RN ) := {Ω ⊂ RN open, bounded, with Lipschitz boundary and |Ω| ≤ m}.

Following the considerations of the previous section, in particular in view of Remark 3.11, we
are led to consider the free discontinuity problem

(4.3) inf
u∈Fmk (RN )

Rk,β(u),

where

(4.4) Fmk (RN ) := {u ∈ Fk(RN ) : |supp(u)| ≤ m}.

Here Fk(RN ) and Rk,β are given in Definition 3.9.
The main result of the paper is the following.

Theorem 4.1 (The main result). For every k ≥ 1 the free discontinuity problem (4.3) admits
a solution with bounded support. Moreover

(4.5) min
u∈Fmk (RN )

Rk,β(u) = inf
Ω∈Am(RN )

λk,β(Ω) =: λmk,β .

Remark 4.2. In view of the previous theorem, we can consider the well posed free discontinuity
problem (4.3) as a sort of relaxation of the original shape optimization problem (4.1). Intuitively
speaking, the optimal shape should be given by the support of a minimizer u ∈ Fk(RN ): to put
this intuition on a solid ground, a regularity analysis for the support of minimizers is required.
In this direction, we are able at the moment to treat only the case k = 1 (and some semilinear
variants), in which we can show that the support is a ball (see [9]).

The rest of the section is devoted to the proof of Theorem 4.1: in Subsection 4.1 we prove an
approximation result which yields the relaxation equality (4.5). In Subsection 4.2 we collect some
technical lemmas which are essential to prove the existence of minimizers for problem (4.3), which
is addressed in Subsection 4.3 by means of a combination of a concentration-compactness principle
and an induction argument, as done in [7].

4.1. A density issue. In Remark 3.11 we pointed out a connection between the free discontinuity
functional Rk,β on the space Fk(RN ) and the k-th eigenvalue of the Robin-Laplacian of a bounded
Lipschitz domain. We improve the connection with the following result.

Theorem 4.3 (Density). For every u ∈ Fk(RN ) with |supp(u)| ≤ m, there exists a sequence
(Ωn)n∈N of bounded Lipschitz domains in RN with |Ωn| ≤ m and

lim sup
n→+∞

λk,β(Ωn) ≤ Rk,β(u).

Proof. The idea is to approximate u using the Cortesani-Toader regularization given in Theorem
2.4. We divide the proof in several steps.

Step 1. It is not restrictive to assume u = (u1, . . . , uk) ∈ (SBV ∩L∞)(RN ;Rk) with HN−1(Ju) <
+∞, and with support contained in a compact set.

Indeed it is sufficient to consider for every i = 1, . . . , k and εn ↘ 0 the functions

(u+i − εn)+ − (u−i − εn)+
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truncated at levels ±n and multiplied by smooth cut-off functions between Bn(0) and Bn+1(0).
Let us denote these functions by uni , and let us set

un := (un1 , . . . , u
n
k ).

Clearly |supp(un)| ≤ m. By Lemma 3.1 we get un ∈ (SBV ∩ L∞)(RN ;Rk), and dim(V (un)) = k
for n large enough, i.e. un ∈ Fk(RN ). In addition

HN−1(Jun) ≤ 1

ε2n

∫
Ju

[|γ1(u)|2 + |γ2(u)|2] dHN−1 < +∞.

The claim follows if we prove that

(4.6) lim
n→+∞

Rk,β(un) = Rk,β(u).

Notice that
un → u strongly in L2(RN ;Rk)

with ∫
RN
|∇un|2 dx+

∫
Jun

[|γ1(un)|2 + |γ2(un)|2] dHN−1 ≤ C

for some C > 0 independent of n. By Proposition 3.12 we get

(4.7) Rk,β(u) ≤ lim inf
n→+∞

Rk,β(un).

For every n, let
vn := an1u

n
1 + . . . anku

n
k ∈ V (un)

be a function which realizes Rk,β(un). We may assume that up to a subsequence

an := (an1 , . . . , a
n
k )→ a := (a1, . . . , ak)

with |a| = 1. Then

vn → v := a1u1 + · · ·+ akuk strongly in L2(RN )

with
∇vn → ∇v strongly in L2(RN ;RN )

and

lim
n→+∞

∫
Jun

[γ1(vn)2 + γ2(vn)2] dHN−1 =

∫
Ju

[γ1(v)2 + γ2(v)2] dHN−1,

the last relation coming by dominated convergence (recall that Jun ⊆ Ju and that |γi(un)| ≤
|γi(u)|). We infer

(4.8) lim sup
n→+∞

Rk,β(un) = lim sup
n→+∞

∫
RN |∇vn|

2 dx+
∫
Jun

[γ1(vn)2 + γ2(vn)2] dHN−1∫
RN v

2
n dx

=

∫
RN |∇v|

2 dx+
∫
Ju

[γ1(v)2 + γ2(v)2] dHN−1∫
RN v

2 dx
≤ Rk,β(u).

Equation (4.6) follows gathering (4.7) and (4.8), so that the claim of the step follows.

Step 2. Let us consider u ∈ (SBV ∩ L∞)(RN ;Rk) with HN−1(Ju) < +∞, supp(u) compactly
contained in BR(0) for some R > 0, and such that |supp(u)| ≤ m.

We claim that we can find wn ∈ SBV (RN ;Rk) with Jwn polyhedral, HN−1(Jwn \ Jwn) = 0,
wn ∈ (W 1,2 ∩ C0)(RN \ Jwn ;Rk),

(4.9) supp(wn) ⊂⊂ BR(0), |supp(wn) \ supp(wn)| = 0, lim sup
n→+∞

|supp(wn)| ≤ m,

such that
∇wn → ∇u strongly in L2(RN ;RkN ),

wn → u strongly in L2(RN ;Rk),

lim sup
n→+∞

HN−1(Jwn) ≤ HN−1(Ju),
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(4.10) lim sup
n→+∞

∫
Jwn

[|γ1(wn)|2 + |γ2(wn)|2] dHN−1 ≤
∫
Ju

[|γ1(u)|2 + |γ2(u)|2] dHN−1,

and

(4.11) lim sup
n→+∞

∫
Jwn

[γ1(a1(wn)1 + · · ·+ ak(wn)k)2 + γ2(a1(wn)1 + · · ·+ ak(wn)k)2] dHN−1

≤
∫
Ju

[γ1(a1u1 + · · ·+ akuk)2 + γ2(a1u1 + · · ·+ akuk)2] dHN−1

for every a = (a1, . . . , ak) ∈ Rk with |a| = 1.
Indeed, let (vh)h∈N be the approximation of u given by Theorem 2.4 in BR(0). If η > 0, let us

denote by uη the function obtained by replacing each component ui with the function

(u+i − η)+ − (u−i − η)+,

and let vηh denote the function obtained operating in the same way on vh. Clearly we have

∇vηh → ∇u
η strongly in L2(RN ;RkN ),

vηh → uη strongly in L2(RN ;Rk),

and

lim sup
h→+∞

∫
Jvη
h

[|γ1(vηh)|2 + |γ2(vηh)|2] dHN−1 ≤
∫
Ju

[|γ1(u)|2 + |γ2(u)|2] dHN−1.

The last inequality follow by the corresponding one for vh in view of the choice ϕ(a, b, ν) = |a|2+|b|2
in Theorem 2.4. Moreover, since the choice ϕ(a, b, ν) ≡ 1 yields

lim sup
h→+∞

HN−1(Jvh) ≤ HN−1(Ju),

we deduce that for every a = (a1, . . . , ak) ∈ Rk (choose ϕ(c, d, ν) := (a · c)2 + (a · d)2)

lim sup
h→+∞

∫
Jvη
h

[γ1(a1(vηh)1 + · · ·+ ak(vηh)k)2 + γ2(a1(vηh)1 + · · ·+ ak(vηh)k)2] dHN−1

≤ lim sup
h→+∞

∫
Jvh

[γ1(a1(vh)1 + · · ·+ ak(vh)k)2 + γ2(a1(vh)1 + · · ·+ ak(vh)k)2] dHN−1 + eη(a)

≤
∫
Ju

[γ1(a1u1 + · · ·+ akuk)2 + γ2(a1u1 + · · ·+ akuk)2] dHN−1 + eη(a),

where eη(a)→ 0 as η → 0 uniformly for a varying in compact sets of RN .
Finally notice that

lim sup
h→+∞

|supp(vηh)| ≤ m,

and that it is not restrictive, multiplying by a suitable cut-off function, to assume that supp(vηh)
is compactly contained in BR(0).

Finally for a.e. η > 0 and for every h ∈ N, i = 1, . . . , k we have

(4.12) |{x ∈ RN \ Jvh : |(vh)i(x)| = η}| = 0.

The required approximation is then obtained in the form wn := vηnhn , by considering ηn → 0

satisfying (4.12), and using a diagonal argument to define hn.

Step 3. Let (wn)n∈N be given by Step 2. Let us choose An ⊂⊂ BR(0) open with smooth boundary,

containing supp(wn), and such that

lim sup
n→+∞

|An| ≤ m.
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This is possible in view of the properties of supp(wn) given in (4.9). Let us infinitesimally enlarge
the polyhedral sets Jwn remaining in An, and remove these sets from An: we end up with a
Lipschitz domain Ωn with

(4.13) lim sup
n→+∞

|Ωn| ≤ m.

Let un be the restriction of wn to Ωn. We have un ∈ W 1,2(Ωn), and un = 0 on ∂An. The
enlargement of Jwn can be chosen so small that, after an extension by zero outside Ωn (still
denoted by the same symbol)

∇un → ∇u strongly in L2(RN ;RkN ),

un → u strongly in L2(RN ;Rk),

and, in view of (4.10) and (4.11), also such that

(4.14) lim sup
n→+∞

∫
∂Ωn

|un|2 dHN−1 ≤
∫
Ju

[|γ1(u)|2 + |γ2(u)|2] dHN−1

and

(4.15) lim sup
n→+∞

∫
∂Ωn

(a1(un)1 + · · ·+ ak(un)k)2 dHN−1

≤
∫
Ju

[γ1(a1u1 + · · ·+ akuk)2 + γ2(a1u1 + · · ·+ akuk)2] dHN−1

for every a ∈ Rk with |a| = 1.
Notice that for n large enough, {(un)1, . . . , (un)k} are linearly independent. Let an := (an1 , . . . , a

n
k )

with |an| = 1 be such that

max
v∈span{(un)1,...,(un)k}

∫
Ωn
|∇v|2 dx+ β

∫
∂Ωn

v2 dHN−1∫
Ωn

v2 dx

is achieved on

vn := an1 (un)1 + · · ·+ ank (un)k ∈W 1,2(Ωn).

We may assume up to a subsequence that

an → a := (a1, . . . , ak).

Then we have, by considering ṽn := a1(un)1 + · · · + ak(un)k and taking into account (4.14) and
(4.15)

lim sup
n→+∞

λk,β(Ωn) ≤ lim sup
n→+∞

∫
Ωn
|∇vn|2 dx+ β

∫
∂Ωn

v2n dHN−1∫
Ωn

v2n dx

= lim sup
n→+∞

∫
Ωn
|∇ṽn|2 dx+ β

∫
∂Ωn

ṽ2n dHN−1∫
Ωn

ṽ2n dx
≤ Rk,β(u).

Thanks to (4.13), the conclusion follows up to a small dilation (see (2.2)), if necessary, to match
the constraint |Ωn| ≤ m. �

Remark 4.4. The approximation result of Theorem 4.3 entails immediately the validity of equality
(4.5). In view of the rescaling property (2.2), we get also that for every t > 0

(4.16) inf
u∈FtNmk (RN )

Rk,β(u) =
1

t2
inf

u∈Fmk (RN )
Rk,tβ(u).

Finally, using the monotonicity property (2.4), we deduce that

(4.17) λmtk,β < λmk,β

for every t > 1.
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4.2. Some technical lemmas. In this subsection we collect some technical lemmas which will
be pivotal in the proof of the existence of minimizers of the free discontinuity problem (4.3), based
on a concentration compactness principle. Lemma 4.5 and Theorem 4.6 will be used to deal with
the so called “compact” case, while Lemma 4.7 will be employed in the “dichotomy” case.

Lemma 4.5 (Distinguished minimizers). Let (Ωn)n∈N be a sequence of Lipschitz domains
with |Ωn| = m and

(4.18) λk,β(Ωn)→ λmk,β = inf
u∈Fmk (RN )

Rk,β(u).

Let {un1 , . . . , unk} denote the first k eigenfunctions of the Robin-Laplacian for Ωn, which we assume,
as usual, to form an orthonormal system in L2(Ωn).

After an extension by zero outside Ωn, still denoted by the same symbol, we have

un := (un1 , . . . , u
n
k ) ∈ Fmk (RN ),

and the following items hold true.

(a) (un)n∈N is a minimizing sequence for problem (4.3).
(b) Assume that

un → u := (u1, . . . , uk) strongly in L2(RN ;Rk).

Then {u1, . . . , uk} forms an orthonormal system in L2(RN ), and u is a minimizer of
problem (4.3) such that for every i = 1, . . . , k and ϕ ∈ C∞c (RN ) with ϕ ≥ 0

(4.19)

∫
RN
∇ui · ∇(ϕui) dx+ β

∫
Jui

ϕ · [γ1(ui)
2 + γ2(ui)

2] dHN−1 ≤ λmk,β
∫
RN

ϕu2i dx.

Proof. The fact that un ∈ Fmk (RN ) together with point (a) follow from Remark 3.11 in view of
equation (4.18). In particular we have for every n ∈ N

(4.20)

∫
RN
|∇un|2 dx+ β

∫
Jun

[|γ1(un)|2 + |γ2(un)|2] dHN−1 ≤ kλk,β(Ωn).

Let us come to point (b). Thanks to (4.20), by Proposition 3.6 we infer

u ∈ SBV
1
2
± (RN ;Rk).

Moreover |supp(u)| ≤ m, and dim(V (u)) = k, as {u1, . . . , uk} is an orthonormal system in L2(RN ).
We thus conclude that u ∈ Fmk (RN ). Moreover u is a minimizer of problem (4.3) thanks to the
lower semicontinuity property of Rk,β given in Proposition 3.12.

Let us prove inequality (4.19). Let ϕ ∈ C∞c (RN ) with ϕ ≥ 0. Since uni is an eigenfunction for
Ωn we may write∫

Ωn

∇uni · ∇(ϕ · uni ) dx+ β

∫
∂Ωn

ϕ · (uni )2 dHN−1 = λi,β(Ωn)

∫
Ωn

ϕ · (uni )2 dx.

After the extension to zero outside Ωn we get

(4.21)

∫
RN
∇uni ·∇(ϕ ·uni ) dx+β

∫
Jun
i

ϕ · [γ1(uni )2 + γ2(uni )2] dHN−1 = λi,β(Ωn)

∫
RN

ϕ · (uni )2 dx.

We know that, up to a subsequence,

∇uni ⇀ Φi weakly in L2(RN ;RN )

with Φi1supp(ui) = ∇ui. By expanding the first term in (4.21) as∫
RN
∇uni · ∇(ϕ · uni ) dx =

∫
RN

uni ∇uni · ∇ϕdx+

∫
RN

ϕ · |∇uni |2 dx,
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in view of the strong convergence of un and since ϕ ≥ 0, we obtain

(4.22) lim inf
n→+∞

∫
RN
∇uni · ∇(ϕuni ) dx ≥

∫
RN

uiΦ
i · ∇ϕdx+

∫
RN

ϕ · |Φi|2 dx

≥
∫
RN

ui∇ui · ∇ϕdx+

∫
RN

ϕ · |∇ui|2 dx =

∫
RN
∇ui · ∇(ϕui) dx.

Moreover by Remark 3.7 we get also

(4.23) lim inf
n→+∞

∫
Jun
i

ϕ · [γ1(uni )2 + γ2(uni )2] dHN−1 ≥
∫
Jui

ϕ · [γ1(ui)
2 + γ2(ui)

2] dHN−1.

Finally since

λi,β(Ωn) ≤ λk,β(Ωn) = Rk,β(un)→ λmk,β ,

we infer

(4.24) lim sup
n→+∞

λi,β(Ωn)

∫
RN

ϕ · (uni )2 dx ≤ λmk,β
∫
RN

ϕ · u2i dx.

Collecting (4.22), (4.23) and (4.24), we deduce that inequality (4.19) holds true, so that point (b)
follows, and the proof is concluded. �

Theorem 4.6 (Boundedness of the support of distinguished minimizers). Let u ∈
Fmk (RN ) be a minimizer of problem (4.3) satisfying point (b) of Lemma 4.5. Then supp(u) is
bounded.

Proof. Assume by contradiction that supp(u) is unbounded. It is not restrictive to assume that

supp(u) ∩ {x1 > t}

has positive volume for every t ∈ R. We divide the proof in several steps.

Step 1. For a.e. t ∈ R large enough we have u1{x1<t} ∈ Fmk (RN ). We claim that for a.e. t ∈ R
large enough

(4.25) Rk,β(u1{x1<t}) ≤ Rk,β(u) +
2βδ(t)

c2(t)
,

where

(4.26) δ(t) :=

∫
{x1=t}

|∇u|2 dHN−1 + β

k∑
i=1

∫
Jui∩{x1=t}

[γ1(ui)
2 + γ2(ui)

2] dHN−2

and

(4.27) c2(t) = λ1,β(B′(t)),

where B′(t) ⊆ RN−1 is a ball such that

|B′(t)| = HN−1(supp(u) ∩ {x1 = t}).

In order to prove the claim, let us write the quantity Rk,β(u1{x1<t}) as∫
{x1<t} |∇U(t)|2 dx+ β

∫
Ju∩{x1<t}[γ1(U(t))2 + γ2(U(t))2] dHN−1 + β

∫
{x1=t} U(t)2 dHN−1∫

{x1<t} U
2(t) dx

,

where

U(t) :=

k∑
i=1

ai(t)ui ∈ SBV
1
2
± (RN ) with

k∑
i=1

ai(t)
2 = 1

is such that U(t)1{x1<t} realizes Rk,β(u1{x1<t}). Since {u1, . . . , uk} forms an orthonormal system

in L2(RN ) we have ∫
{x1<t}

U(t)2 dx = 1−
∫
{x1>t}

U(t)2 dx,
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so that

Rk,β(u1{x1<t}) ≤
1

1−
∫
{x1>t} U

2(t) dx

[
Rk,β(u) + β

∫
{x1=t}

U2(t) dHN−1

−
∫
{x1>t}

|∇U(t)|2 dx− β
∫
Ju∩{x1>t}

[γ1(U(t))2 + γ2(U(t))2] dHN−1
]
.

Since for t large enough we have∫
{x1>t}

U2(t) dx ≤
k∑
i=1

∫
{x1>t}

u2i dx→ 0,

we can write

Rk,β(u1{x1<t}) ≤

(
Rk,β(u) + β

∫
{x1=t}

U2(t) dHN−1 −
∫
{x1>t}

|∇U(t)|2 dx

−β
∫
Ju∩{x1>t}

[γ1(U(t))2 + γ2(U(t))2] dHN−1
)
·

(
1 + 2

∫
{x1>t}

U(t)2 dx

)
,

so that we obtain

Rk,β(u1{x1<t}) ≤ Rk,β(u) + 2Rk,β(u)

∫
{x1>t}

U(t)2 dx+ 2β

∫
{x1=t}

U(t)2 dHN−1

−
∫
{x1>t}

|∇U(t)|2 dx− β
∫
Ju∩{x1>t}

[γ1(U(t))2 + γ2(U(t))2] dHN−1.

If we reflect the function U(t)1{x1>t} across the hyperplane {x1 = t}, we obtain a new function

v(t) ∈ SBV
1
2
± (RN ). We can thus use the Faber-Krahn inequality of Theorem 3.3 for the positive

and negative parts of U(t) and obtain∫
{x1>t}

|∇U(t)|2 dx+ β

∫
Ju∩{x1>t}

[γ1(U(t))2 + γ2(U(t))2] dHN−1 ≥ c1(t)

∫
{x1>t}

U(t)2 dx

with

(4.28) c1(t) = λ1,β(B(t)),

where B(t) ⊆ RN is a ball such that

|B(t)| = 2|supp(U(t)) ∩ {x1 > t}| ≤ 2|supp(u) ∩ {x1 > t}|

Notice that c1(t)→ +∞ as t→ +∞ since |B(t)| → 0. We conclude that for t large enough

(4.29) Rk,β(u1{x1<t}) ≤ Rk,β(u)+2β

∫
{x1=t}

U(t)2 dHN−1 ≤ Rk,β(u)+2β

k∑
i=1

∫
{x1=t}

u2i dHN−1.

In view of the theory of sections for BV functions (see [1, Section 3.11]), we have that for a.e.

t ∈ R the section of ui on the hyperplane {x1 = t} belongs to SBV
1
2
± (RN−1), with associated

jump set given by Jui ∩ {x1 = t}, and pair of traces given again by (γ1(ui), γ2(ui)). Using the
Faber-Krahn inequality in dimension N − 1 we obtain

(4.30)

∫
{x1=t}

u2i dHN−1

≤ 1

c2(t)

(∫
{x1=t}

|∇′ui|2 dHN−1 + β

∫
J(ui)∩{x1=t}

[γ1(ui)
2 + γ2(ui)

2] dHN−2
)
,

where ∇′ stands for gradient with respect to x2, . . . , xN , and c2(t) is given in (4.27). Claim (4.25)
follows by combining (4.29) and (4.30).
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Step 2. We claim that for a.e. t ∈ R large enough

(4.31)

∫
{x1>t}

|∇u|2 dx+ β

k∑
i=1

∫
Jui∩{x1>t}

[γ1(ui)
2 + γ2(ui)

2] dHN−1 ≤ 2δ(t)√
c2(t)

,

where δ(t) and c2(t) are given in (4.26) and (4.27) respectively.
In order to prove the claim, let us make use of inequality (4.19). By letting ϕ approach the

function

ϕε(x) :=
(x1 − t)+

ε
∧ 1,

we obtain for every i = 1, . . . , k∫
RN

ϕε|∇ui|2 dx+
1

ε

∫
{t<x1<t+ε}

ui∇ui · e1 dx+ β

∫
Jui

ϕε · [γ1(ui)
2 + γ2(ui)

2] dHN−1

≤ λmk,β
∫
RN

ϕε · u2i dx,

where e1 is the horizontal vector (1, 0, . . . , 0). Letting ε→ 0+, we obtain for a.e. t ∈ R∫
{x1>t}

|∇ui|2 dx+ β

∫
Jui∩{x1>t}

[γ1(ui)
2 + γ2(ui)

2] dHN−1

≤ λmk,β
∫
{x1>t}

u2i dx+

∫
{x1=t}

|ui||∇ui| dHN−1

≤ λmk,β
∫
{x1>t}

u2i dx+

(∫
{x1=t}

|ui|2 dHN−1
∫
{x1=t}

|∇ui|2 dHN−1
)1/2

.

We estimate the last term using the Faber-Krahn inequality on the section of ui on {x1 = t} as
in the previous step: recalling (4.30), and replacing the tangential gradient with the full one we
may write

(4.32)

∫
{x1>t}

|∇ui|2 dx+ β

∫
Jui∩{x1>t}

[γ1(ui)
2 + γ2(ui)

2] dHN−1 ≤ λmk,β
∫
{x1>t}

u2i dx

+
1√
c2(t)

[∫
{x1=t}

|∇ui|2 dHN−1 + β

∫
Jui∩{x1=t}

[γ1(ui)
2 + γ2(ui)

2] dHN−2
]
.

By employing a reflection with respect to {x1 = t}, and using the Faber-Krahn inequality of
Theorem 3.3 for the positive and negative parts of ui we have∫

{x1>t}
u2i dx ≤

1

c1(t)

[∫
{x1>t}

|∇ui|2 dx+ β

∫
Jui∩{x1>t}

[γ1(ui)
2 + γ2(ui)

2] dHN−1
]
,

where c1(t) is given in (4.28). Since c1(t) → +∞ as t → +∞, we deduce that the first term
on the right hand side of (4.32) is negligible with respect to the left hand side. Summing over
i = 1, . . . , k, we obtain claim (4.31).

Step 3. Let

(4.33) σ(t) := |supp(u) ∩ {x1 = t}|.
We claim that there exist C > 0 and t0 ∈ R such that for a.e. t ≥ t0

(4.34)

∫ +∞

t

σ(τ) dτ ≤ C|σ(t)|
1

N−1 (1 + |σ(t)|
1

N−1 )δ(t)

and

(4.35)

∫ +∞

t

δ(τ) dτ ≤ C|σ(t)|
1

2N−2 (1 + |σ(t)|
1

2N−2 )δ(t),

where δ(t) is defined in (4.26).
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In order to prove inequality (4.34), recall that

m(t) := |supp(u) ∩ {x1 > t}| =
∫ +∞

t

σ(τ) dτ.

Using the optimality of u together with the rescaling formula (4.16) we obtain that for a.e.
t ∈ R

Rk,β(u) ≤ 1

η2(t)
Rk,η(t)β(u1{x1<t})

with

η(t)N :=
|supp(u)|

|supp(u)| −m(t)
.

Since η(t) > 1 we have

Rk,β(u) ≤ 1

η(t)
Rk,β(u1{x1<t}).

Using inequality (4.25) we obtain for a.e. t ∈ R large enough

η(t)Rk,β(u) ≤ Rk,β(u) +
2βδ(t)

c2(t)
,

which yields for t large enough

m(t) ≤ C1δ(t)

c2(t)

for some C1 > 0. By the very definition on c2(t) given in (4.27) and estimate (2.3) for the first
Robin eigenvalue we have

(4.36) c2(t) ≥ β

4|σ(t)|
1

N−1 (1 + β|σ(t)|
1

N−1 )
,

so that inequality (4.34) follows.
Inequality (4.35) is a consequence of (4.31), in view of Fubini’s theorem and of the coarea

formula on the HN−1-countably rectifiable sets Jui (see [1, Theorem 2.93]), and using again (4.36).

Step 4: Conclusion. Let us consider

e(t) := σ(t) + δ(t)

and the absolutely continuous decreasing function E : [t0,+∞[→]0,+∞[

E(t) :=

∫ +∞

t

e(τ) dτ,

where σ(t) and δ(t) are given in (4.33) and (4.26) respectively.
Summing inequalities (4.34) and (4.35), we deduce that for a.e. t ≥ t0

(4.37)
E′(t)

Φ−1(E(t))
≤ −1,

where Φ : [0,+∞[→ [0,+∞[ is the increasing function

Φ(s) := C1s
1+ 1

2(N−1) [1 + C2s
3

2(N−1) ]

for suitable C1, C2 > 0. This inequality leads immediately to a contradiction. Indeed on one hand
we have ∫ +∞

t0

E′(τ)

Φ−1(E(τ))
dτ = −

∫ E(t0)

0

ds

Φ−1(s)
∈ ]−∞, 0[

as for s near zero we have

Φ−1(s) ≥ C3s
(1+ 1

2(N−1) )
−1

for some C3 > 0. On the other, (4.37) entails∫ +∞

t0

E′(τ)

Φ−1(E(τ))
dτ = −∞,
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a contradiction. �

Lemma 4.7 (Splitting geometry). Let u ∈ Fk(RN ) be such that

u = u1 + u2

with supp(u1) and supp(u2) well separated (see subsection 2). The following items hold true.

(a) If u1 = (v1, 0) and u2 = (0, v2) with v1 ∈ Fk1(RN ) and v2 ∈ Fk2(RN ), we have

Rk,β(u) = max{Rk1,β(v1), Rk2,β(v2)}.

(b) If mi := |supp(ui)| > 0, then

Rk,β(u) ≥ min
j=0,...,k

max{λm1

j,β , λ
m2

k−j,β},

with the convention λm0,β := 0.

Proof. Let us start with point (b), proving that

(4.38) Rk,β(u) ≥ max{λm1

h1,β
, λm2

h2,β
}

for some h1 + h2 = k.
Let us consider the finite dimensional spaces V (u1) and V (u2) and their direct sum

V := V (u1)⊕ V (u2).

If we denote the associated dimensions by k1 and k2, we have clearly

k ≤ k1 + k2 ≤ 2k.

Let us proceed by computing some kind of “discrete” eigenvalues on V using the standard
Rayleigh minimization process. More precisely, let w1 be a minimizer of the quadratic energy

Q(v) :=

∫
RN
|∇v|2 dx+ β

∫
Ju

[γ1(v)2 + γ2(v)2] dHN−1

on those functions v ∈ V with ‖v‖L2(RN ) = 1, and let wj be a minimizer of Q on those functions

in V , with unit L2-norm, and L2-orthogonal to {w1, . . . , wj−1}. Let µj denote the associated
“eigenvalues”.

Using the inequality
a+ b

c+ d
≥ min

{
a

c
,
b

d

}
,

we see that w1, and recursively each wj , belongs either to V (u1) or to V (u2). As a consequence

{µ1, . . . , µk1+k2} = {η1, . . . , ηk1 , ζ1, . . . , ζk2},

where ηi and ζj are the “discrete” eigenvalues associated to V (u1) and V (u2), obtained by the
same variational procedure.

Assume

{µ1, . . . , µk} = {η1, . . . , ηh1
, ζ1, . . . , ζh2

},
with h1 + h2 = k. Since we can find in V (u) an element which is L2-orthogonal to w1, . . . , wk−1
(since the orthogonality requires k − 1 linear relations), we get that

(4.39) Rk,β(u) ≥ µk = max{ηh1 , ζh2}.

Since ηh1
≥ λm1

h1,β
and ζh2

≥ λm2

h2,β
, inequality (4.38) follows, and point (b) is proved.

Let us come back to point (a). Notice that by assumption

V (u) = Vk1(u1)⊕ Vk2(u2).

Then we get that in the preceding argument h1 = k1 and h2 = k2, with ηh1
= Rk1,β(u1),

ζh2
= Rk2,β(u2), and Rk,β(u) = µk. From (4.39) we deduce that point (a) holds true, and the

proof is concluded. �
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4.3. Proof of Theorem 4.1. We are now ready to prove Theorem 4.1. Equality (4.5) is a
consequence of Theorem 4.3 and of Remark 3.11. We can thus concentrate on the existence of
minimizers with bounded support: this is obtained through a vanishing/dichotomy/compactness
alternative together with an induction argument.

The result is known for k = 1, being essentially the Faber-Krahn inequality of Theorem 3.3:
minimizers are given by the first eigenfunctions of the ball, extended by zero to the entire space.
We now proceed by induction, assuming that the result holds true for k− 1, and proving it for k.

Let (Ωn)n∈N be a “minimizing” sequence of Lipschitz domains, i.e., such that |Ωn| ≤ m and

λk,β(Ωn)→ λmk,β = inf
u∈Fmk (RN )

Rk,β(u).

Its existence is secured by relation (4.5). By Lemma 4.5, we know that

un := (un1 , . . . , u
n
k ) ∈ SBV

1
2
± (RN ;Rk)

is a minimizing sequence for problem (4.3), where {uni }i=1,... is the orthonormal family of the first
k eigenfunctions, extended to zero outside Ωn. Notice that

(4.40)

∫
RN
|∇un|2 dx+ β

∫
Jun

[|γ1(un)|2 + |γ2(un)|2] dHN−1 ≤ kλk,β(Ωn) ≤ C,

where C is independent of n.
Let us perform a concentration compactness alternative by considering the function

1

k
|un|2 =

1

k

[
(un1 )2 + · · ·+ (unk )2

]
∈ L1(RN ).

For every r > 0 let us consider the monotone increasing functions αn : [0,+∞[→ [0,+∞[

αn(r) := sup
y∈RN

∫
Qr(y)

1

k
|un|2 dx.

Up to a subsequence, in view of Helly’s theorem, we may assume that

αn → α pointwise on [0,+∞[

for a suitable monotone increasing function α : [0,+∞[→ [0,+∞[.
The following situations may occur.

(a) Vanishing: limr→+∞ α(r) = 0;
(b) Dichotomy: limr→+∞ α(r) = ᾱ ∈]0, 1[;
(c) Compactness: limr→+∞ α(r) = 1.

Let us deal with the three cases separately.

Step 1: Vanishing cannot occur. Let us see that the vanishing case cannot occur. Thanks to
(4.40), by [6, Lemma 4] applied to the positive and negative parts of the components of un, we
can find yn ∈ RN such that

(4.41) |supp(un) ∩Q1(yn)| ≥ c > 0,

with c independent of n. Since

lim
n→+∞

∫
Q1(yn)

|un|2 dx = 0,

up to reducing the side of the cube, we may assume that for every n ∈ N

HN−1 (Jun ∩ ∂Q1(yn)) = 0

and

lim
n→+∞

∫
∂Q1(yn)

|un|2 dHN−1 = 0,

still preserving (4.41). Let us consider

wn := un1RN\Q1(yn) ∈ SBV
1
2
± (RN ;Rk).
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Assume for a moment that wn ∈ Fmk (RN ), that is that the associated vectorial space V (wn) has
dimension k. A direct calculation shows that

lim inf
n→+∞

Rk,β(wn) ≤ lim inf
n→+∞

Rk,β(un),

so that
λm−ck,β ≤ λ

m
k,β .

This is against the monotonicity property (4.17).
Notice that if V (wn) has not dimension k, we can perturb the components by adding vanishing

perturbations in C∞c (Q1(yn)) without affecting the previous considerations. We conclude that the
vanishing case cannot occur.

Step 2: Existence in the dichotomy case. Let us assume that

lim
r→+∞

Q(r) = ᾱ

with 0 < ᾱ < 1. Following [24], for every 0 < ε < 1 there exist R > 0 and (xn)n∈N such that, up
to a subsequence, we can find Rn → +∞ with

(4.42)

∣∣∣∣∣
∫
BR(xn)

1

k
|un|2 dx− ᾱ

∣∣∣∣∣ < ε and

∣∣∣∣∣
∫
RN\BRn (xn)

1

k
|un|2 dx− (1− ᾱ)

∣∣∣∣∣ < ε.

We can thus construct a cut-off function ϕn ∈ C∞c (RN ) with ‖∇ϕn‖∞ < ε, ϕn = 1 on BR(xn)
and on RN \BRn , and such that supp(ϕn) = An ∪Bn with BR(xn) ⊆ An, (RN \BRn) ⊆ Bn and
dist(An, Bn)→ +∞.

Let us concentrate on the function ϕnun which we may see as

ϕnun = vn + wn

with supp(vn) ⊆ An and supp(wn) ⊆ Bn. We have

(4.43) ‖un − vn − wn‖2L2(RN ) < 2kε.

Moreover, taking into account (4.40) and the properties of ϕn, we have

(4.44)

∫
RN
|∇vn|2 dx+

∫
Jvn

[|γ1(vn)|2 + |γ2(vn)|2] dHN−1 ≤ C1

and

(4.45)

∫
RN
|∇wn|2 dx+

∫
Jwn

[|γ1(wn)|2 + |γ2(wn)|2] dHN−1 ≤ C2

for some C1, C2 > 0 independent of ε.
Let

|supp(vn)| = mn,1 and |supp(wn)| = mn,2.

We may assume up to a subsequence

mn,1 → mε
1 and mn,2 → mε

2

with mε
1+mε

2 ≤ m. In view of (4.44), (4.45), (4.42) and of the Faber-Krahn inequality of Theorem
3.3 (applied to positive and negative parts of vn and wn), we deduce that mε

1 > η and mε
2 > η for

some η > 0 independent of ε.
It is not restrictive to assume ϕnun ∈ Fk(RN ): indeed, the associated vectorial space V (ϕnun)

can be made k-dimensional up to adding vanishing smooth functions with small compact support,
without affecting the asymptotic behaviour outlined above.

Taking into account (4.40) and (4.43) we get

e(ε) +Rk,β(un) ≥ Rk,β(vn + wn),

where e(ε)→ 0 as ε→ 0+.
Up to a subsequence we obtain thanks to Lemma 4.7

e(ε) +Rk,β(un) ≥ min
h=0,...,k

max{λmn,1h,β , λ
mn,2
k−h,β},
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with the convention λm0,β := 0. Passing to the limit for n→ +∞ and ε→ 0+, and using a rescaling
argument, we find m1 > 0, m2 > 0 with m1 +m2 = m and such that

(4.46) λmk,β ≥ min
h=0,...,k

max{λm1

h,β , λ
m2

k−h,β} = max{λm1

j,β , λ
m2

k−j,β}

for some 0 ≤ j ≤ k. We can exclude the cases j = 0 and j = k: indeed we would get λmk,β ≥ λm1

k,β

or λmk,β ≥ λ
m2

k,β against the monotonicity property (4.17).

Using the inductive hypothesis, let v ∈ Fm1
j (RN ) and w ∈ Fm2

k−j(RN ) be minimizers for λm1

j,β

and λm2

k−j,β with bounded support, which up to a translation, we may assume to be well separated.
Let us consider the function

u := (v, 0) + (0, w) ∈ Fmk (RN ).

By Lemma 4.7 we deduce

Rk,β(u) = max{Rj,β(v), Rk−j,β(w)} = max{λm1

j,β , λ
m2

k−j,β}.

Thanks to (4.46) we deduce that u is a minimizer of problem (4.3) with bounded support, and
the step is concluded.

Step 3: Existence in the compact case. Let us assume that limr→+∞ α(r) = 1. There exists
(xn)n∈N such that for every ε > 0 there exist R > 0 with

(4.47)

∣∣∣∣∣
∫
BR(xn)

1

k
|un|2 dx− 1

∣∣∣∣∣ < ε.

We may assume xn = 0. Up to a subsequence, thanks to (4.40) and to Theorem 3.6 we have

un → u strongly in L2
loc(RN ;Rk)

for some u ∈ L2(RN ;Rk). Since by (4.47) we get ‖u‖L2 = 1, we deduce

un → u strongly in L2(RN ;Rk).

We can now apply Lemma 4.5 and Theorem 4.6: we deduce that u ∈ Fmk (RN ) is a minimizer of
problem (4.3) with bounded support. The proof is now concluded.

5. Further remarks and open questions

More regularity of optimal geometries. Obtaining more qualitative results on the optimal
solution is a challenging problem. In particular, just to prove that the optimal solution corresponds
to an open set, with a topological boundary of finite HN−1-measure, would be a very interesting
result. Some techniques have already been developed in [10, 12] to handle energy type problems,
as for instance corresponding to the first eigenvalue. A nontrivial such a problem is to replace the
full space RN (where the minimum for λ1,β is the ball) by a bounded, Lipschitz, open set D, i.e.
to solve

min{λ1,β(Ω) : Ω ⊂ D, |Ω| = m}.
If D does not contain a ball of volume m, one could prove that an optimal set exists, it is open
and has a topological boundary of finite HN−1-measure. Moreover, it is likely that the regularity
techniques developed in [12] could be extended to this problem.

Nevertheless, in order to get qualitative information for higher order eigenvalues, the crucial
difficulty comes from the fact that λk is itself a critical point. In the case of Dirichlet boundary
conditions, some properties of the corresponding optimal sets have been obtained in [7] using the
tool of shape subsolutions. The key idea was to transform optimality of the critical point λk, in
some suboptimality of the torsion energy. This was a consequence of the possibility to control the
variation of the k-th eigenvalue by the variation of the torsion energy for inner perturbations of
a domain. In the case of Robin boundary conditions, this strategy seems to fail. In fact, if such
a control would be available, it would also give an ordering of the shape derivatives of the k-th
eigenvalue, and the torsion energy, respectively. Looking to the both shape gradients, this seems
to be false, as their expression contains both curvature terms multiplied by the state functions
and tangential parts of their gradients. These terms are difficult, if not impossible, to compare.
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About simplicity of eigenvalues at optimal sets. For Dirichlet boundary conditions, it is a
longstanding conjecture to prove that the k-th eigenvalue on an optimal set is multiple, precisely
equal to λk−1. For Robin boundary conditions, the same property is expected to occur. We can
even justify it, at least for solutions Ω of (1.1) which are open sets with smooth enough boundary.

Assume for contradiction, that Ω is such a a solution for (1.1), and that λk,β(Ω) > λk−1,β(Ω).
One can moreover assume that Ω is connected, otherwise we contradict the statement for some
1 < k′ < k. Necessarily, the k-th eigenfunction uk has a nontrivial nodal line Nk = {uk = 0} ∩Ω.
There exists a point x0 ∈ Nk such that Nk is an analytic surface around x0. We remove a set S
from this neigbourhood which is analytic surface of dimension (N − 1) and has a small capacity.
The size in terms of capacity can be chosen such that the (k− 1) eigenvalue of the mixed problem
with Robin boundary conditions on ∂Ω and Dirichlet boundary conditions on S is still lower than
λk,β(Ω). For this mixed problem, we notice

λmixedk−1 < λk,β(Ω) = λmixedk .

The last equality is true, since uk is already vanishing on S, hence is an eigenfunction of the mixed
problem.

On the other hand, by monotonicity of spaces {u ∈ H1(Ω \S) : u = 0 on S} ⊂ H1(Ω \S) , one
can order

λk,β(Ω \ S) ≤ λmixedk = λk,β(Ω).

Since the inequality above can not be strict, as Ω is an optimal set, we have to have equality, and
in this case the eigenfunction uk of Ω is also an eigenfunction for λk,β(Ω \ S). From the Robin
boundary condition on S, this means that ∇uk has to vanish on S. This is in contradiction with
the Hopf principle.
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