On the existence of heteroclinic connections

Giorgio Fusco, ${ }^{*}$ Giovanni F. Gronchi, ${ }^{\dagger}$ Matteo Novaga ${ }^{\ddagger}$

Abstract

Assume that $W: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a nonnegative potential that vanishes only on a finite set A with at least two elements. By direct minimization of the action functional on a suitable set of maps we give a new elementary proof of the existence of a heteroclinic orbit that connects any given $a_{-} \in A$ to some $a_{+} \in A \backslash\left\{a_{-}\right\}$.

1 Introduction

Let $W: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a smooth nonnegative function that vanishes on a finite set A, with $\# A \geq 2$, Given two distinct points $a_{-}, a_{+} \in A$ we can ask about the existence of a solution $u^{*}: \mathbb{R} \rightarrow \mathbb{R}^{m}$ of the equation

$$
\begin{equation*}
\ddot{u}=W_{u}(u), x \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

with the conditions

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} u(x)=a_{ \pm} \tag{1.2}
\end{equation*}
$$

If a solution u^{*} of (1.1), (1.2) does exist we say that there is a heteroclinic connection between a_{-}and a_{+}.

A first motivation for studying connections comes from the mathematical theory of phase transitions where a widely used model is the Allen-Cahn equation

$$
\left\{\begin{array}{l}
u_{t}=\epsilon^{2} \Delta u-W_{u}(u), \quad x \in \Omega \tag{1.3}\\
\partial_{\nu} u=0, \quad x \in \partial \Omega
\end{array}\right.
$$

where u is an order parameter, ν the unit exterior normal and $\epsilon>0$ a small parameter. Equation (1.3) describes the evolution of a substance which may appear in two or more preferred phases and is contained in a region $\Omega \subset \mathbb{R}^{n}$. In this context a_{-}and a_{+}represent different phases in which the specific substance may exist. For small $\epsilon>0$ typical solutions u^{ϵ} of (1.3) divide Ω as $\Omega=\Omega_{-} \cup \Gamma \cup \Omega_{+}$ with $\Omega_{ \pm}=\left\{u^{\epsilon} \approx a_{ \pm}\right\}$and Γ an interface of thickness $\mathrm{O}(\epsilon)$ that separates the regions Ω_{-}and Ω_{+} where the substance is in phase a_{-}or in phase a_{+}. Heteroclinic connections describe the behavior of u^{ϵ} across the interface. Indeed it results

$$
u^{\epsilon}(x) \approx u^{*}\left(\frac{d(x)}{\epsilon}\right)
$$

where $d(x)$ is the signed distance from the interface and $u^{*}: \mathbb{R} \rightarrow \mathbb{R}^{m}$ is a connection between a_{-}and a_{+}. For multi-phase systems, the description of u^{ϵ} in a neighborhood of multiple points where three

[^0]or more regions $\left\{u^{\epsilon} \approx a_{j}\right\}$ meet, requires the consideration of connections between three or more of the $a_{j} \in A$, see [3], [7].

If x is interpreted as time, equation (1.1) can be seen as the Newton equation of a particle of unit mass moving in m - dimensional space under a conservative field of force of potential W. Then problem (1.1), (1.2) is the same as to show that one can choose position and velocity of the particle at time 0 in such a way that the asymptotic fate of the particle in the future and in the past are a_{+}and a_{-}respectively. From the mechanical point of view the understanding of the connections that exist between elements of A is a significant step toward a description of the global dynamics of equation (1.1).

In the scalar case $(m=1)$ existence of connections between neighboring zeros of W can be established via the method of phase plane analysis. In the vector case ($m>1$) this approach is not available and, since solutions of (1.1) are, in each bounded interval (x_{1}, x_{2}), stationary points of the action functional

$$
\begin{equation*}
J(u)=\int_{x_{1}}^{x_{2}}\left(\frac{1}{2}\left|u_{x}\right|^{2}+W(u)\right) d x \tag{1.4}
\end{equation*}
$$

a variational approach is generally used. Existence of vector-valued heteroclinic connections as minimizers of J on suitable sets of maps and under different assumption on W has been established by various authors either by direct minimization of $J[1],[11],[4]$ or by minimizing the associate Jacobi functional

$$
\begin{equation*}
L(u)=\int_{x_{1}}^{x_{2}} \sqrt{2 W(u)} d x \tag{1.5}
\end{equation*}
$$

as in [10], [5], [12]. In [1] W was assumed to satisfy a mild monotonicity condition at $a_{ \pm}$. This condition was later removed in [11]. The minimization of (1.5) for proving the existence of connections was first used in [10] under restrictive assumptions on the behavior of W in a neighborhood of $a_{ \pm}$. In [5] and [12] the idea is to show that, in spite of the fact that W vanishes at $a_{ \pm}$, the connection problem can be seen as the problem of the existence of a geodesic connecting a_{-}to a_{+}for the metric induced by (1.5). Aside from different requirements on the smoothness and on the behaviour of W at infinity, the only assumption in [11], [4], [5] and [12] is that W is nonnegative and vanishes in a finite set. For connections and related questions see also [2], [8], [9].

The scope of the present paper is to present a new elementary proof of the existence of heteroclinic connections under minimal assumption on W and by direct minimization of the functional (1.4). Our proof is a by product of the analysis developed in [6].

While for a classical solution of equation (1.1) we need W to be a C^{1} function, the variational problem can be formulated under the assumption that W is merely continuous. As we shall see, with W continuous it is not guaranteed that the time interval required to a minimizer to travel from a_{-} to a_{+}be infinite and therefore the function space where we minimize J has to include maps defined on bounded or semi-bounded intervals. We shall show that each $a_{-} \in A$ is connected to some other $a_{+} \in A$ by minimizing J on the set of maps $u:\left(l_{-}^{u}, l_{+}^{u}\right) \rightarrow \mathbb{R}^{m}$ defined by

$$
\begin{align*}
& \mathcal{A}=\left\{u \in W_{\mathrm{loc}}^{1,2}\left(\left(l_{-}^{u}, l_{+}^{u}\right) ; \mathbb{R}^{m}\right):-\infty \leq l_{-}^{u}<l_{+}^{u} \leq+\infty\right. \tag{1.6}\\
& \left.\lim _{x \rightarrow l_{-}^{u}} u(x)=a_{-}, \lim _{x \rightarrow l_{+}^{u}} u(x) \in A \backslash\left\{a_{-}\right\}, u\left(\left(l_{-}^{u}, l_{+}^{u}\right)\right) \subset \mathbb{R}^{m} \backslash A\right\} \tag{1.7}
\end{align*}
$$

Note that in (1.7) the interval $\left(l_{-}^{u}, l_{+}^{u}\right)$ associated to u is not fixed but is free to change with u.
Without some condition on the behavior of W at infinity a minimizer of J on \mathcal{A} may not exist. The problem is that J may be not coercive on \mathcal{A} in the sense that there exist minimizing sequences $\left\{u_{j}\right\} \subset \mathcal{A}$ such that $\left\|u_{j}\right\|_{W^{1,2}} \rightarrow+\infty$ as $j \rightarrow+\infty$ while $J\left(u_{j}\right)$ remains bounded. A sufficient condition for coerciveness is

$$
\limsup _{|u| \rightarrow+\infty} W(u)>0
$$

but it is possible to allow potentials W that decay to 0 at infinity provided the decaying is not too fast. As observed in [5] it suffices to assume

$$
\begin{equation*}
\sqrt{W(u)} \geq \rho(|u|), \quad|u| \geq r_{0} \tag{H}
\end{equation*}
$$

for some $r_{0}>0$ and a nonnegative function $\rho:\left[r_{0},+\infty\right) \rightarrow \mathbb{R}$ such that $\int_{r_{0}}^{+\infty} \rho(r) d r=+\infty$.
We have
Theorem 1.1. Assume that $W: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a continuous function that satisfies (H). Then, given $a_{-} \in A$, there exist $a_{+} \in A \backslash\left\{a_{-}\right\}$and a Lipschitz-continuous map $u:\left(l_{-}, l_{+}\right) \rightarrow \mathbb{R}^{m}$, with $-\infty \leq$ $l_{-}<0<l_{+} \leq+\infty$, which minimizes $J: \mathcal{A} \rightarrow \mathbb{R} \cup\{+\infty\}$ and satisfies

$$
\begin{equation*}
\frac{1}{2}|\dot{u}|^{2}-W(u)=0, \text { a.e. in }\left(l_{-}, l_{+}\right) \tag{1.8}
\end{equation*}
$$

In particular
(i)

$$
\begin{equation*}
\lim _{x \rightarrow l_{ \pm}} u(x)=a_{ \pm} \tag{1.9}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
W(u(x))>0 \quad x \in\left(l_{-}, l_{+}\right) \tag{1.10}
\end{equation*}
$$

If W is continuously differentiable in $\mathbb{R}^{m} \backslash A$, then u is a classical solution of (1.1).
Before giving the proof of Theorem 1.1 we make some observations and present some related results.

2 Observations and related results

From Theorem 1.1 we have that, under the assumption that $W \in C^{1}\left(\mathbb{R}^{m} \backslash A ; \mathbb{R}\right)$, for each $a_{-} \in A$ there is an orbit of (1.1) that starts in a_{-}and ends up in some $a_{+} \in A \backslash\left\{a_{-}\right\}$without any other intersection with A. It follows that there are at least $\frac{\# A}{2}$ such orbits if $\# A$ is even and $\frac{\# A+1}{2}$ if $\# A$ is odd.

Given $a_{i} \neq a_{j} \in A$, a sufficient condition for the existence of an orbit that connects a_{i} to a_{j} and satisfies (1.10) is

$$
\sigma_{i j}<\sigma_{i h}+\sigma_{h j}, \quad \text { for } a_{h} \in A \backslash\left\{a_{i}, a_{j}\right\},
$$

where

$$
\begin{aligned}
& \sigma_{i j}=\inf _{u \in \mathcal{A}_{i j}} J(u) \\
& \mathcal{A}_{i j}=\left\{u \in W_{\operatorname{loc}}^{1,2}\left(\left(l_{-}^{u}, l_{+}^{u}\right) ; \mathbb{R}^{m}\right):-\infty \leq l_{-}^{u}<l_{+}^{u} \leq+\infty\right. \\
& \left.\lim _{x \rightarrow l_{-}^{u}} u(x)=a_{i}, \lim _{x \rightarrow l_{+}^{u}} u(x)=a_{j}\right\}
\end{aligned}
$$

In the scalar case $m=1$ from (1.8) and (1.10) it follows that the minimizer u given by Theorem 1.1 is a solution of

$$
\begin{equation*}
\dot{u}=\sqrt{2 W(u)}>0, \quad x \in\left(l_{-}, l_{+}\right) . \tag{2.1}
\end{equation*}
$$

If a_{-}and a_{+}are two neighboring zeros of $W \in C^{1}(\mathbb{R} \backslash A ; \mathbb{R})$ this equation has a unique solution u that satisfies (1.9) and $u(0)=\frac{a_{-}+a_{+}}{2}$, therefore u is the minimizer in Theorem 1.1. For instance if $W(u)=\frac{1}{2}\left(1-u^{2}\right)^{2}$ this solution is given by $u(x)=\tanh x, x \in \mathbb{R}$ and satisfies $\lim _{x \rightarrow \pm \infty} u(x)= \pm 1$. Note that, if W vanishes at a point a between a_{-}and a_{+}, there is no minimizer. Indeed any continuous function u that travels from a_{-}to a_{+}has to assume the value a violating (1.10).

We give a simple criterion to have $l_{ \pm}= \pm \infty$.

Proposition 2.1. Assume there exist $c>0$ and $r_{0}>0$ such that

$$
W(u) \leq c\left|u-a_{+}\right|^{2}, \quad \text { for }\left|u-a_{+}\right| \leq r_{0} .
$$

Then $l_{+}=+\infty$ and an analogous statement applies to l_{-}.
Proof. From (i) there is $x_{0} \in\left(l_{-}, l_{+}\right)$such that $\left|u-a_{+}\right| \leq r_{0}$ for $x \in\left[x_{0}, l_{+}\right)$. This and the assumption on W imply

$$
\frac{d}{d x}\left|u-a_{+}\right| \geq-|\dot{u}|=-\sqrt{2 W(u)} \geq-\sqrt{2 c}\left|u-a_{+}\right|, \quad \text { for } x \in\left[x_{0}, l_{+}\right)
$$

which yields

$$
\left|u(x)-a_{+}\right| \geq\left|u\left(x_{0}\right)-a_{+}\right| e^{-\sqrt{2 c}\left(x-x_{0}\right)}, \quad \text { for } x \in\left[x_{0}, l_{+}\right)
$$

This is compatible with (1.9) only if $l_{+}=+\infty$.
Proposition 2.2. Assume that $W \in C^{2}\left(\mathbb{R}^{m} ; \mathbb{R}\right)$ and that the Jacobian matrix $j(a)$ is positive definite for $a \in A$. Let u be as in Theorem 1.1. Then $l_{ \pm}= \pm \infty$ and there are positive constants k, K such that

$$
\begin{equation*}
\left|u(x)-a_{+}\right| \leq K e^{-k x} \quad \text { and }\left|u(x)-a_{-}\right| \leq K e^{k x}, \forall x \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

Proof. $l_{ \pm}= \pm \infty$ follows from Proposition 2.1. To prove the exponential estimates (2.2) note that from $W_{u}(u)=j(a)(u-a)+\mathrm{o}(|u-a|)$ and the assumption on $j(a)$ it follows

$$
\begin{equation*}
W_{u}(u) \cdot(u-a) \geq c^{2}|u-a|^{2}, \quad \text { for } \quad|u-a| \leq r_{0}, a \in A \tag{2.3}
\end{equation*}
$$

for some positive constants r_{0} and c. Set $\phi(x):=\left|u-a_{+}\right|^{2}$. From (1.9) there is $x_{0}>0$ such that $x \geq x_{0}$ implies $\phi(x) \leq r_{0}^{2}$. This inequality, (1.1) and (2.3) yield

$$
\begin{align*}
\ddot{\phi}(x) & =2|\dot{u}(x)|^{2}+2\left(u(x)-a_{+}\right) \cdot W_{u}(u(x)) \\
& \geq 2 c^{2} \phi(x), \text { for } x \geq x_{0} . \tag{2.4}
\end{align*}
$$

Since we have $\phi(x) \leq r_{0}^{2}$ for $x \geq x_{0}$, from (2.4) and the maximum principle we get, for every $l>0$

$$
\begin{equation*}
\phi(x) \leq \varphi_{l}(x), \quad x \in\left[x_{0}, x_{0}+2 l\right] \tag{2.5}
\end{equation*}
$$

where

$$
\varphi_{l}(x):=r_{0}^{2} \frac{\cosh \sqrt{2} c\left(l-\left(x-x_{0}\right)\right)}{\cosh \sqrt{2} c l}, x \in\left(x_{0}, x_{0}+2 l\right)
$$

is the solution of

$$
\left\{\begin{array}{l}
\ddot{\varphi}=2 c^{2} \varphi, \quad x \in\left(x_{0}, x_{0}+2 l\right) \\
\varphi\left(x_{0}\right)=\varphi\left(x_{0}+2 l\right)=r_{0}^{2}
\end{array}\right.
$$

From (2.5) and $\varphi_{l}(x) \leq 2 r_{0}^{2} e^{-\sqrt{2} c\left(x-x_{0}\right)}, \quad x \in\left[x_{0}, x_{0}+l\right]$ which holds for all $l>0$, it follows

$$
\left|u(x)-a_{+}\right| \leq \sqrt{2} r_{0} e^{-\frac{c}{\sqrt{2}}\left(x-x_{0}\right)}, \quad \text { for } x \geq x_{0}
$$

The first estimate in (2.2), with $k=\frac{c}{\sqrt{2}}$ follows from this and from the fact that u is bounded. The estimate for $\left|u(x)-a_{-}\right|$can be obtained in a similar way.

In Mechanics the functional (1.4) is called the Action and Theorem 1.1 corresponds to the Hamilton principle of least action. This is equivalent to the Jacobi principle that concerns the minimization of the Jacobi functional $L: \mathcal{A} \rightarrow \mathbb{R} \cup\{+\infty\}$

$$
L(u)=\int_{l_{-}^{u}}^{l_{+}^{u}} \sqrt{2 W(u(x))}|\dot{u}(x)| d x
$$

We have indeed

Proposition 2.3.

$$
\tilde{\sigma}_{0}=\inf _{u \in \mathcal{A}} L(u)=\inf _{u \in \mathcal{A}} J(u)=\sigma_{0}
$$

Proof. The elementary inequality $a^{2}+b^{2} \geq 2 a b$ implies

$$
L(u) \leq J(u), \quad u \in \mathcal{A}
$$

with equality if and only if (1.8) holds

$$
\begin{equation*}
\frac{1}{2}|\dot{u}|^{2}=W(u), \text { a.e. on }\left(l_{-}^{u}, l_{+}^{u}\right) \tag{2.6}
\end{equation*}
$$

This proves

$$
\tilde{\sigma}_{0} \leq \sigma_{0}
$$

To prove $\sigma_{0} \leq \tilde{\sigma}_{0}$ we use the fact that $L(u)$ does not depend on the parametrization. Assume that $u:\left(l_{-}^{u}, l_{+}^{u}\right) \rightarrow \mathbb{R}^{m}$ is C^{1} smooth and let $\phi:\left(l_{-}^{v}, l_{+}^{v}\right) \rightarrow\left(l_{-}^{u}, l_{+}^{u}\right)$ be a C^{1} bijection with $\dot{\phi}>0$ and inverse ψ. For the map $v:\left(l_{-}^{v}, l_{+}^{v}\right) \rightarrow \mathbb{R}^{m}$ defined by $v(s)=u(\phi(s))$ we have

$$
L(v)=\int_{l_{-}^{v}}^{l_{+}^{v}} \sqrt{2 W(u(\phi(s))}|\dot{u}(\phi(s))| \dot{\phi}(s) d s=L(u)
$$

where we have made the substitution $s=\psi(x)$ to derive the last equality.
The idea is to show that each $u \in \mathcal{A}$ can be reparametrized into a $v \in \mathcal{A}$ that satisfies (2.6). This implies $\sigma_{0} \leq \tilde{\sigma}_{0}$ via

$$
\sigma_{0} \leq J(v)=L(v)=L(u)
$$

This program can not be realized in this simple way since we need to take care of the fact that $u \in \mathcal{A}$ may be not smooth and may have the set $\{\dot{u}=0\}$ of positive measure.

We first show that we can assume $-\infty<l_{-}^{u}<l_{+}^{u}<+\infty$. If $l_{+}^{u}=\infty$, given $\delta>0$ small, there are x_{δ} and $a \in A$ such that $0<|u-a| \leq \delta$ for $x \geq x_{\delta}$. Set $u_{\delta}=\mathbb{1}_{\left(l_{-}^{u}, x_{\delta}\right]} u+\mathbb{1}_{\left(x_{\delta}, x_{\delta}+1\right)} \tilde{u}$ where $\tilde{u}=\left(1-x+x_{\delta}\right) u\left(x_{\delta}\right)+\left(x-x_{\delta}\right) a$, for $x \in\left(x_{\delta}, x_{\delta}+1\right)$. We have that $L\left(\tilde{u},\left(x_{\delta}, x_{\delta}+1\right)\right) \leq \eta_{\delta}:=$ $\delta \sqrt{2 \max _{|u-a| \leq \delta} W(u)} \rightarrow 0$ as $\delta \rightarrow 0$. Since we can proceed in a similar way if $l_{-}^{u}=-\infty$ we conclude that, given $u \in \mathcal{A}$, for each $\epsilon>0$ small there is $u_{\epsilon}=u_{\delta_{\epsilon}}, u_{\epsilon} \in \mathcal{A}$ with $-\infty<l_{-}^{u_{\epsilon}}<l_{+}^{u_{\epsilon}}<+\infty$ that satisfies

$$
L\left(u_{\epsilon}\right) \leq L(u)-\epsilon
$$

This proves the claim. If $\left[l_{-}^{u}, l_{+}^{u}\right]$ is bounded, $C^{\infty}\left(\left[l_{-}^{u}, l_{+}^{u}\right], \mathbb{R}^{m}\right)$ is dense in $W^{1,2}\left(\left[l_{-}^{u}, l_{+}^{u}\right], \mathbb{R}^{m}\right)$. This and the fact that L is continuous in $W^{1,2}\left(\left[l_{-}^{u}, l_{+}^{u}\right], \mathbb{R}^{m}\right)$ imply that we can assume that u is smooth. Therefore in the remaining part of the proof we suppose that u is smooth and defined in a bounded set $\left(l_{-}^{u}, l_{+}^{u}\right)$.

By arguing as before we choose l_{-}, l_{+}with $l_{-}^{u}<l_{-}<l_{+}<l_{+}^{u}$ and construct a map $u_{\epsilon} \in \mathcal{A}$ of the form

$$
\begin{equation*}
u_{\epsilon}=\mathbb{1}_{\left[l_{-}, l_{+}\right]} u+\mathbb{1}_{\left(l_{--}, l_{-}\right) \cup\left(l_{+}, l_{+}+1\right)} \tilde{u} \tag{2.7}
\end{equation*}
$$

and such that

$$
\begin{equation*}
J\left(\tilde{u},\left(l_{-}-1, l_{-}\right) \cup\left(l_{+}, l_{+}+1\right)\right) \leq \epsilon \tag{2.8}
\end{equation*}
$$

Consider the reparametrized map $v:\left(\lambda_{-}, \lambda_{+}\right) \rightarrow \mathbb{R}^{m}$ of $u:\left(l_{-}, l_{+}\right) \rightarrow \mathbb{R}^{m}$ defined by $x=\phi(s)$ where $\phi:\left(\lambda_{-}, \lambda_{+}\right) \rightarrow\left(l_{-}, l_{+}\right)$is the inverse of the map $s=\psi(x)$ defined by

$$
\begin{equation*}
\psi(x)=\int_{\frac{l_{-}^{u}+l_{+}^{u}}{u}}^{x} \frac{\max \{|\dot{u}(t)|, \delta\}}{\sqrt{2 W(u(t))}} d t, \quad x \in\left(l_{-}, l_{+}\right) \tag{2.9}
\end{equation*}
$$

Note that ϕ satisfies $\phi(0)=\frac{l_{-}^{u}+l_{+}^{u}}{2}$ and the equation

$$
\begin{equation*}
\dot{\phi}=\frac{\sqrt{2 W(u(\phi))}}{\max \{|\dot{u}(\phi)|, \delta\}}, \quad s \in\left(\lambda_{-}, \lambda_{+}\right), \lambda_{ \pm}=\psi\left(l_{ \pm}\right) \tag{2.10}
\end{equation*}
$$

which is approximately the condition one must impose to ϕ in order that v satisfies (2.6). In (2.9) and (2.10) we use the approximate expression $\max \{|\dot{u}|, \delta\}$ instead $|\dot{u}|$ to have well defined strictly increasing maps ψ and ϕ even when \dot{u} vanishes in a set of positive measure. From (2.10) we obtain

$$
\begin{equation*}
\frac{1}{2}|\dot{u}(\phi)|^{2} \dot{\phi}^{2}+W(u(\phi))-\sqrt{2 W(\phi)}|\dot{u}(\phi)| \dot{\phi}=\gamma_{\delta}, \quad s \in\left(\lambda_{-}, \lambda_{+}\right) \tag{2.11}
\end{equation*}
$$

where

$$
\gamma_{\delta}=\left\{\begin{array}{l}
0, \text { if }|\dot{u}|>\delta, \tag{2.12}\\
\frac{W}{\delta^{2}}(|\dot{u}|-\delta)^{2}, \quad \text { if }|\dot{u}| \leq \delta
\end{array}\right.
$$

From (2.9) and (2.10) we obtain

$$
\begin{equation*}
\left|\left\{s \in\left(\lambda_{-}, \lambda_{+}\right):|\dot{u}(\phi(s))| \leq \delta\right\}\right|=\int_{\left\{x \in\left(l_{-}, l_{+}\right):|\dot{u}(x)| \leq \delta\right\}} \frac{\max \{|\dot{u}(x)|, \delta\}}{\sqrt{2 W(u(x))}} d x \leq C \delta \tag{2.13}
\end{equation*}
$$

where $|S|$ denotes the measure of S and $C=\frac{l_{+}-l_{-}}{\min _{x \in\left[l_{-}, l_{+}\right]} \sqrt{2 W(u(x))}}$. Therefore, integrating (2.11) in $\left(\lambda_{-}, \lambda_{+}\right)$and using that $\gamma_{\delta} \leq 2 \max _{x \in\left[l_{-}, l_{+}\right]} W(u(x))$ yields

$$
\begin{equation*}
J\left(v,\left(\lambda_{-}, \lambda_{+}\right)\right)-L\left(v,\left(\lambda_{-}, \lambda_{+}\right)\right)=J\left(v,\left(\lambda_{-}, \lambda_{+}\right)\right)-L\left(u,\left(l_{-}, l_{+}\right)\right) \leq C \delta \tag{2.14}
\end{equation*}
$$

with $C>0$ independent of δ. Now extend $v=u \circ \phi$ from $\left(\lambda_{-}, \lambda_{+}\right)$to $\left(\lambda_{-}-1, \lambda_{+}+1\right)$ by setting

$$
v= \begin{cases}\tilde{u}\left(l_{-}+s-\lambda_{-}\right), & \text {for } s \in\left(\lambda_{-}-1, \lambda_{-}\right] \\ \tilde{u}\left(l_{+}+s-\lambda_{-}\right), & \text {for } s \in\left[\lambda_{+}, \lambda_{+}+1\right)\end{cases}
$$

where \tilde{u} is as in (2.7). The map v so extended belongs to \mathcal{A}. This and (2.8) imply

$$
\sigma_{0} \leq J\left(v,\left(\lambda_{-}, \lambda_{+}\right)\right)+\epsilon
$$

Therefore from (2.14) it follows, for $\delta>0$ small,

$$
\sigma_{0}-2 \epsilon \leq L\left(u,\left(l_{-}, l_{+}\right)\right) \leq L\left(u,\left(l_{-}^{u}, l_{+}^{u}\right)\right)
$$

The proof is complete.

3 The proof of Theorem 1.1

The first observation is that J is translation invariant on \mathcal{A} in the sense that

$$
J\left(u^{\lambda}\right)=J(u), \quad \text { for } \quad u \in \mathcal{A}, \lambda \in \mathbb{R}
$$

where $u^{\lambda}=u(\cdot-\lambda) \in \mathcal{A}$. This generates a loss of compactness that manifests itself in the existence of minimizing sequences $\left\{u_{j}\right\} \in \mathcal{A}$ that converges in $C_{\text {loc }}^{1}$ to a map u that fails to satisfy (1.9) in Theorem 1.1. For example this happens for $m=1$ and $W=\frac{1}{2}\left(1-u^{2}\right)^{2}$. In this case $u=\tanh x$ is a minimizer and $\{\tanh (\cdot-j)\}$ a minimizing sequence that converges to -1 . We remove this pathology by an elementary observation. Since a_{-}is an isolated zero of W, for small fixed $r_{0}>0$, we have

$$
\min _{a \in A,|u-a|=r_{0}} W(u)=W_{0}>0
$$

and any map $u \in \mathcal{A}$ has to satisfies $W\left(u\left(x_{0}\right)\right)=W_{0}$ for some $x_{0} \in\left(l_{-}^{u}, l_{+}^{u}\right)$. Taking $x_{0}=0$ restricts the possible translations to a compact set and removes the obstruction of noncompactness. It follows that we can assume

$$
\begin{equation*}
W(u(0))=W_{0} \tag{3.1}
\end{equation*}
$$

and restrict J to the subset of \mathcal{A} where (3.1) holds.
Given $a_{-} \in A$ let $\bar{a} \in A$ be such that

$$
\left|a_{-}-\bar{a}\right|=\min _{a \in A \backslash\left\{a_{-}\right\}}\left|a_{-}-a\right|,
$$

and set

$$
\tilde{u}(x)=\left(1-\left(x+x_{0}\right)\right) a_{-}+\left(x+x_{0}\right) \bar{a}, \quad x \in\left(-x_{0}, 1-x_{0}\right),
$$

where $x_{0} \in(0,1)$ is chosen so that $W(\tilde{u}(0))=W_{0}$. Then $\tilde{u} \in \mathcal{A}, l_{-}^{\tilde{u}}=-x_{0}, l_{+}^{\tilde{u}}=1-x_{0}$ and

$$
J(\tilde{u})=\sigma<+\infty
$$

In the following, when we wish to specify that the action functional is relative to some interval $\left(x_{1}, x_{2}\right)$, we write $J\left(u,\left(x_{1}, x_{2}\right)\right)$.

Next we show that there are constants $M>0$ and $l_{0}>0$ such that each $u \in \mathcal{A}$ with

$$
\begin{equation*}
J(u) \leq \sigma \tag{3.2}
\end{equation*}
$$

satisfies

$$
\begin{align*}
& \|u\|_{L^{\infty}\left(\left(l_{-}^{u}, l_{+}^{u}\right) ; \mathbb{R}^{n}\right)} \leq M \tag{3.3}\\
& l_{-}^{u} \leq-l_{0}<l_{0} \leq l_{+}^{u}
\end{align*}
$$

The L^{∞} bound on u follows from (H). Indeed, if $|u(\bar{x})|=M$ for some $\bar{x} \in\left(l_{-}^{u}, l_{+}^{u}\right)$, we have

$$
\sigma \geq J\left(u,\left(l_{-}^{u}, \bar{x}\right)\right) \geq \int_{l_{-}^{u}}^{\bar{x}} \sqrt{2 W(u(x))}|\dot{u}(x)| d x \geq \sqrt{2} \int_{r_{0}}^{M} \rho(s) d s
$$

If $l_{-}^{u}=-\infty, l_{+}^{u}=+\infty$ the existence of l_{0} is obvious, if $l_{-}^{u}>-\infty$ and/or $l_{+}^{u}<+\infty$ it follows from

$$
\frac{d_{0}^{2}}{\left|l_{-}^{u}\right|} \leq \int_{l_{-}^{u}}^{0}|\dot{u}(x)|^{2} d x \leq 2 \sigma, \quad \frac{d_{0}^{2}}{l_{+}^{u}} \leq \int_{0}^{l_{+}^{u}}|\dot{u}(x)|^{2} d x \leq 2 \sigma,
$$

where $d_{0}=d\left(A,\left\{u: W(u)>W_{0}\right\}\right)$.
Let $\left\{u_{j}\right\} \subset \mathcal{A}$ be a minimizing sequence

$$
\begin{equation*}
\lim _{j \rightarrow+\infty} J\left(u_{j}\right)=\inf _{u \in \mathcal{A}} J(u,):=\sigma_{0} \leq \sigma \tag{3.4}
\end{equation*}
$$

We can assume that each u_{j} satisfies (3.2) and (3.3). By considering a subsequence, that we still denote by $\left\{u_{j}\right\}$, we can also assume that there exist $l_{-}^{\infty}, l_{+}^{\infty}$ with $-\infty \leq l_{-}^{\infty} \leq-l_{0}<l_{0} \leq l_{+}^{\infty} \leq+\infty$ and a continuous map $u^{*}:\left(l_{-}^{\infty}, l_{+}^{\infty}\right) \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{align*}
& \lim _{j \rightarrow+\infty} l_{ \pm}^{u_{j}}=l_{ \pm}^{\infty} \\
& \lim _{j \rightarrow+\infty} u_{j}(x)=u^{*}(x), x \in\left(l_{-}^{\infty}, l_{+}^{\infty}\right) \tag{3.5}
\end{align*}
$$

and in the last limit the convergence is uniform on bounded intervals. This follows from (3.3) which implies that the sequence $\left\{u_{j}\right\}$ is equi-bounded and from (3.2) which implies

$$
\begin{equation*}
\left|u_{j}\left(x_{1}\right)-u_{j}\left(x_{2}\right)\right| \leq\left|\int_{x_{1}}^{x_{2}}\right| \dot{u}_{j}(x)|d x| \leq \sqrt{\sigma}\left|x_{1}-x_{2}\right|^{\frac{1}{2}} \tag{3.6}
\end{equation*}
$$

so that the sequence is also equi-continuous.
By passing to a further subsequence we can also assume that $u_{j} \rightharpoonup u^{*}$ in $W^{1,2}\left(\left(l_{1}, l_{2}\right) ; \mathbb{R}^{n}\right)$ for each l_{1}, l_{2} with $l_{-}^{\infty}<l_{1}<l_{2}<l_{+}^{\infty}$. This follows from (3.2), which implies

$$
\frac{1}{2} \int_{l_{-}^{u_{j}}}^{l_{+}^{u_{j}}}\left|\dot{u}_{j}\right|^{2} d x \leq J\left(u_{j}\right) \leq \sigma,
$$

and from the fact that each u_{j} satisfies (3.3) and therefore is bounded in $L^{2}\left(\left(l_{1}, l_{2}\right) ; \mathbb{R}^{n}\right)$.
We also have

$$
\begin{equation*}
J\left(u^{*},\left(l_{-}^{\infty}, l_{+}^{\infty}\right)\right) \leq \sigma_{0} \tag{3.7}
\end{equation*}
$$

Indeed, from the lower semicontinuity of the norm, for each l_{1}, l_{2} with $l_{-}^{\infty}<l_{1}<l_{2}<l_{+}^{\infty}$ we have

$$
\int_{l_{1}}^{l_{2}}\left|\dot{u}^{*}\right|^{2} d x \leq \liminf _{j \rightarrow+\infty} \int_{l_{1}}^{l_{2}}\left|\dot{u}_{j}\right|^{2} d x
$$

This and the fact that u_{j} converges to u^{*} uniformly in $\left[l_{1}, l_{2}\right]$ imply

$$
J\left(u^{*},\left(l_{1}, l_{2}\right)\right) \leq \liminf _{j \rightarrow+\infty} J\left(u_{j},\left(l_{1}, l_{2}\right)\right) \leq \liminf _{j \rightarrow+\infty} J\left(u_{j},\left(l_{-}^{u_{j}}, l_{+}^{u_{j}}\right)\right)=\sigma_{0}
$$

Since this is valid for each $l_{-}^{\infty}<l_{1}<l_{2}<l_{+}^{\infty}$ the claim (3.7) follows.
Lemma 3.1. Define $l_{-}^{\infty} \leq l_{-} \leq-l_{0}<l_{0} \leq l_{+} \leq l_{+}^{\infty}$ by setting

$$
\begin{aligned}
l_{-} & =\inf \left\{x \in\left(l_{-}^{\infty}, 0\right]: u^{*}((x, 0]) \subset \mathbb{R}^{m} \backslash A\right\} \\
l_{+} & =\sup \left\{t \in\left(0, l_{+}^{\infty}\right): u^{*}([0, x)) \subset \mathbb{R}^{m} \backslash A\right\}
\end{aligned}
$$

Then u^{*} with $l_{ \pm}^{u^{*}}=l_{ \pm}$belongs to \mathcal{A} and is a minimizer. That is

$$
\begin{equation*}
J\left(u^{*}\right)=\sigma_{0} . \tag{3.8}
\end{equation*}
$$

Proof. If $l_{+}<+\infty$ the existence of

$$
\begin{equation*}
a_{+}=\lim _{x \rightarrow l_{+}} u^{*}(x) \tag{3.9}
\end{equation*}
$$

follows from (3.6) which implies that u^{*} is a $C^{0, \frac{1}{2}}$ map. The limit a_{+}belongs to A. Indeed, $a_{+} \notin A$ would imply the existence of $\lambda>0$ such that, for j large enough,

$$
d\left(u_{j}\left(\left[l_{+}, l_{+}+\lambda\right], A\right) \geq \frac{1}{2} d\left(a_{+}, A\right)\right.
$$

in contradiction with the definition of l_{+}. If $l_{+}=+\infty$ and (3.9) does not hold there is $\delta>0$ and a diverging sequence $\left\{x_{j}\right\}$ such that

$$
d\left(u^{*}\left(x_{j}\right), A\right) \geq \delta
$$

Set $W_{\delta}=\min _{d(u, A)=\delta} W(u)>0$. From the uniform continuity of W in $\{|u| \leq M\}(M$ as in (3.3)) it follows that there is $\lambda>0$ such that

$$
\left|W\left(u_{1}\right)-W\left(u_{2}\right)\right| \leq \frac{1}{2} W_{\delta}, \quad \text { for } \quad\left|u_{1}-u_{2}\right| \leq \lambda, u_{1}, u_{2} \in\{|u| \leq M\}
$$

This and $u^{*} \in C^{0, \frac{1}{2}}$ imply

$$
W\left(u^{*}(x)\right) \geq \frac{1}{2} W_{\delta}, \quad x \in I_{j}=\left(x_{j}-\frac{l^{2}}{\sigma}, x_{j}+\frac{\lambda^{2}}{\sigma}\right)
$$

and, by passing to a subsequence, we can assume that the intervals I_{j} are disjoint. Therefore for each $L>0$ we have

$$
\sum_{x_{j} \leq L} \frac{\lambda^{2} W_{\delta}}{\sigma} \leq \int_{0}^{L} W\left(u^{*}(x)\right) d x \leq \sigma_{0}
$$

which is impossible for L large. This proves that, also when $l_{+}=+\infty$ there is $A \ni a_{+}=\lim _{x \rightarrow+\infty} u^{*}(x)$. To show that $a_{+} \neq a_{-}$we observe that $a_{+}=a_{-}$implies the existence of a sequence $\left\{x_{j}\right\} \subset\left[l_{0}, l_{+}\right]$ that satisfies

$$
\begin{align*}
& \lim _{j \rightarrow+\infty} x_{j}=l_{+} \\
& \lim _{j \rightarrow+\infty} u_{j}\left(x_{j}\right)=a_{-} \tag{3.10}
\end{align*}
$$

Since $W\left(u_{j}(0)\right)=W_{0}$ from the uniform continuity of W in $\{|u| \leq M\}$ and (3.6) it follows

$$
W\left(u_{j}(x)\right) \geq \frac{1}{2} W_{0}, \quad \text { for } \quad x \in(-\delta, \delta)
$$

for some $\delta>0$. Therefore, for j large, we have

$$
J\left(u_{j},\left(l_{-}^{u_{j}}, x_{j}\right) \geq \delta W_{0}\right.
$$

On the other hand from $(3.10)_{2}$ we have

$$
J\left(u_{j},\left(x_{j}, l_{+}^{u_{j}}\right)\right) \geq \sigma_{0}-\epsilon_{j}
$$

where $\epsilon_{j} \rightarrow 0$ as $j \rightarrow+\infty$. These inequalities contradict the minimizing character of the sequence $\left\{u_{j}\right\}$ and prove $a_{+} \neq a_{-}$. We have seen that u^{*} with $l_{ \pm}^{u^{*}}=l_{ \pm}$satisfies all the properties required for membership in \mathcal{A}. Therefore we have $J\left(u^{*}\right) \geq \sigma_{0}$ that together with (3.7) show that $u^{*} \in \mathcal{A}$ is indeed a minimizer. The proof of the lemma is complete.

Remark. It is actually possible that $l_{+}<l_{+}^{\infty}$ and/or $l_{-}>l_{-}^{\infty}$. Assume $W=\frac{\pi^{2}}{8}\left(1-u^{2}\right)$ for $u \in(-1,1)$. Then the solution of (2.1) that satifies $u(0)=0$ is $u=\sin \left(\frac{\pi}{2} x\right), x \in(-1,1)$ and $J(u)=\frac{\pi^{2}}{4}$. Consider the sequence $\left\{u_{j}\right\}$ defined by

$$
u_{j}(x)=\left\{\begin{array}{l}
\sin \left(\frac{\pi}{2} x\right), x \in\left(-1,1-\epsilon_{j}\right) \\
\sin \left(\frac{\pi}{2}\left(1-\epsilon_{j}\right)\right), x \in\left(1-\epsilon_{j}, x_{j}\right) \\
\sin \left(\frac{\pi}{2}\left(1-\epsilon_{j}+x-x_{j}\right)\right), \quad x \in\left(x_{j}, x_{j}+\epsilon_{j}\right)
\end{array}\right.
$$

where $\epsilon_{j} \rightarrow 0^{+}$and $x_{j} \rightarrow+\infty$. We have $J\left(u_{j}\right)=\frac{\pi^{2}}{4}+\frac{\pi^{2}}{8}\left(x_{j}-1+\epsilon_{j}\right) \cos ^{2}\left(\frac{\pi}{2}\left(1-\epsilon_{j}\right)\right)$ and we can choose the sequence $\left\{x_{j}\right\}$ in such a way that $J\left(u_{j}\right) \rightarrow \frac{\pi^{2}}{4}$. Then $\left\{u_{j}\right\}$ is a minimizing sequence and it results $1=l_{+}<l_{+}^{\infty}=+\infty$.

Lemma 3.2. The map u^{*} satisfies (1.8) in $\left(l_{-}, l_{+}\right)$.
Proof. Given x_{0}, x_{1} with $l_{-}<x_{0}<x_{1}<l_{+}$, let $\phi:\left[x_{0}, x_{1}+\xi\right] \rightarrow\left[x_{0}, x_{1}\right]$ be linear, with $|\xi|$ small, and with $\phi\left(x_{0}\right)=x_{0}, \phi\left(x_{0}+\xi\right)=x_{1}$. Let $\psi:\left[x_{0}, x_{1}\right] \rightarrow\left[x_{0}, x_{1}+\xi\right]$ be the inverse of ϕ. Define $u_{\xi}:\left[l_{-}, l_{+}+\xi\right] \rightarrow \mathbb{R}^{n}$ by setting

$$
u_{\xi}(x)=\left\{\begin{array}{l}
u^{*}(x), \quad x \in\left[l_{-}, x_{0}\right] \tag{3.11}\\
u^{*}(\phi(x)), \quad x \in\left[x_{0}, x_{1}+\xi\right] \\
\left.u^{*}(x-\xi), \quad x \in\left(x_{1}+\xi, l_{+}+\xi\right)\right]
\end{array}\right.
$$

Note that $u_{\xi} \in \mathcal{A}$ with $l_{-}^{u_{\xi}}=l_{-}$and $l_{+}^{u_{\xi}}=l_{+}$if $l_{+}=+\infty$ and $l_{+}^{u_{\xi}}=l_{+}+\xi$ if $l_{+}<+\infty$. Since u^{*} is a minimizer we have

$$
\begin{equation*}
\left.\frac{d}{d \xi} J\left(u_{\xi},\left(l_{-}^{u_{\xi}}, l_{+}^{u_{\xi}}\right)\right)\right|_{\xi=0}=0 \tag{3.12}
\end{equation*}
$$

From (3.11), using also the change of variables $x=\psi(s)$, it follows

$$
\begin{aligned}
& J\left(u_{\xi},\left(l_{-}^{u_{\xi}}, l_{+}^{u_{\xi}}\right)\right)-J\left(u^{*},\left(l_{-}, l_{+}\right)\right) \\
& =\int_{x_{0}}^{x_{1}+\xi}\left(\frac{\dot{\phi}^{2}(x)}{2}\left|\dot{u}^{*}(\phi(x))\right|^{2}+W\left(u^{*}(\phi(x))\right)\right) d x-\int_{x_{0}}^{x_{1}}\left(\frac{1}{2}\left|\dot{u}^{*}(x)\right|^{2}+W\left(u^{*}(x)\right)\right) d x \\
& =\int_{x_{0}}^{x_{1}}\left(\frac{1-\dot{\psi}(x)}{2 \dot{\psi}(x)}\left|\dot{u}^{*}(x)\right|^{2}+(\dot{\psi}(x)-1) W\left(u^{*}(x)\right)\right) d x \\
& =\int_{x_{0}}^{x_{1}}\left(\frac{-\frac{\xi}{x_{1}-x_{0}}}{2\left(1+\frac{\xi}{x_{1}-x_{0}}\right)}\left|\dot{u}^{*}(x)\right|^{2}+\frac{\xi}{x_{1}-x_{0}} W\left(u^{*}(x)\right)\right) d x \\
& =-\frac{\xi}{x_{1}-x_{0}} \int_{x_{0}}^{x_{1}}\left(\frac{\left|\dot{u}^{*}(x)\right|^{2}}{2\left(1+\frac{\xi}{x_{1}-x_{0}}\right)}-W\left(u^{*}(x)\right)\right) d x .
\end{aligned}
$$

This and (3.12) imply

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}}\left(\frac{1}{2}\left|\dot{u}^{*}(x)\right|^{2}-W\left(u^{*}(x)\right)\right) d x=0 \tag{3.13}
\end{equation*}
$$

Since this holds for all x_{0}, x_{1}, with $l_{-}<x_{0}<x_{1}<l_{+}$, then (1.8) follows.
On the basis of Lemmas 3.1 and $3.2 u^{*}:\left(l_{-}, l_{+}\right) \rightarrow \mathbb{R}^{m}$ can be identified with the map u in Theorem 1.1. To complete the proof of Theorem 1.1 it remain to show that if W is of class C^{1} in $\mathbb{R}^{m} \backslash A$, then u^{*} is a classical solution of (1.1). Since u^{*} is a minimizer, if $w:\left(l_{1}, l_{2}\right) \rightarrow \mathbb{R}^{m}$ is a smooth map that satisfies $w\left(l_{i}\right)=0, i=1,2$ we have

$$
\begin{equation*}
0=\left.\frac{d}{d \lambda} J\left(u^{*}+\lambda w\right)\right|_{\lambda=0}=\int_{l_{1}}^{l_{2}}\left(\dot{u}^{*} \cdot \dot{w}+W_{u}\left(u^{*}\right) \cdot w\right) d x=\int_{l_{1}}^{l_{2}}\left(\dot{u}^{*}-\int_{l_{1}}^{x} W_{u}\left(u^{*}(s)\right) d s\right) \cdot \dot{w} d x \tag{3.14}
\end{equation*}
$$

Since this is valid for all $l_{-}<l_{1}<l_{2}<l_{+}$and $\dot{w}:\left(l_{1}, l_{2}\right) \rightarrow \mathbb{R}^{m}$ is an arbitrary smooth map with zero average (3.14) implies

$$
\dot{u}^{*}=\int_{l_{1}}^{x} W_{u}\left(u^{*}(s)\right) d s+\text { const } .
$$

The continuity of u^{*} and of W_{u} implies that the right hand side of this equation is a map of class C^{1}. It follows that we can differentiate and obtain

$$
\ddot{u}^{*}=W_{u}\left(u^{*}\right), \quad x \in\left(l_{-}, l_{+}\right) .
$$

The proof of Theorem 1.1 is complete.

References

[1] N. Alikakos and G. Fusco. On the connection problem for potentials with several global minima. Indiana Univ. Math. Journ. 57 No. 4, 1871-1906 (2008)
[2] A. Braides. Approximation of Free-Discontinuity Problems. Lectures Notes in Mathematics 1694, Springer-Verlag, Heidelberg (1998)
[3] L. Bronsard, C. Gui, and M. Schatzman. A three-layered minimizer in \mathbb{R}^{2} for a variational problem with a symmetric three-well potential. Comm. Pure. Appl. Math. 49 No. 7 (1996), pp. 677-715.
[4] P. Antonopoulos and P. Smyrnelis. On minimizers of the Hamiltonian system $u^{\prime \prime}=\nabla W(u)$, and on the existence of heteroclinic, homoclinic and periodic connections. Indiana Univ. Math. Journ. 65 no. 5, 15031524 (2016)
[5] A. Monteil and F. Santambrogio. Metric methods for heteroclinic connections. Preprint (2016)
[6] G. Fusco, G.F. Gronchi and M. Novaga On the existence of connecting orbits for critical values of the energy. Preprint (2017)
[7] C. Gui and M. Schatzman. Symmetric quadruple phase transitions. Ind. Univ. Math. J. 57 No. 2 (2008), pp. 781-836.
[8] P. Rabinowitz. Homoclinic and heteroclinic orbits for a class of Hamiltonian systems. Calc. of Var. P.D.E. Calc. Var. P.D.E. No. 1, (1993), pp. 1-36.
[9] M. Schatzman. Asymmetric heteroclinic double layers. ESAIM Control Optim. Calc. Var. 8 (2002), pp. 965-1005.
[10] P. Sternberg Vector-Valued Local Minimizers of Nonconvex Variational Problems. Rocky Mountain J. Math. 21 No. 2, 799-807 (1991)
[11] C. Sourdis. The heteroclinic connection problem for general double-well potentials. Mediterranean Journ. of Math. 13 n. 6, 4693-4710 (2016)
[12] A. Zuniga and P. Sternberg. On the heteroclinic connection problem for multi-well gradient systems. Preprint (2016)

[^0]: *Università dell'Aquila, ; e-mail: fusco@univaq.it
 ${ }^{\dagger}$ Dipartimento di Matematica, Università degli Studi di Pisa, Largo B. Pontecorvo 5, Pisa, Italy; e-mail: giovanni.federico.gronchi@unipi.it
 \ddagger Dipartimento di Matematica, Università degli Studi di Pisa, Largo B. Pontecorvo 5, Pisa, Italy; e-mail: matteo.novaga@unipi.it

