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Abstract

Assume that W : Rm → R is a nonnegative potential that vanishes only on a finite set A with
at least two elements. By direct minimization of the action functional on a suitable set of maps
we give a new elementary proof of the existence of a heteroclinic orbit that connects any given
a− ∈ A to some a+ ∈ A \ {a−}.

1 Introduction

Let W : Rm → R be a smooth nonnegative function that vanishes on a finite set A, with #A ≥ 2,
Given two distinct points a−, a+ ∈ A we can ask about the existence of a solution u∗ : R→ Rm of the
equation

ü = Wu(u), x ∈ R, (1.1)

with the conditions
lim

x→±∞
u(x) = a±. (1.2)

If a solution u∗ of (1.1), (1.2) does exist we say that there is a heteroclinic connection between a− and
a+.

A first motivation for studying connections comes from the mathematical theory of phase transitions
where a widely used model is the Allen-Cahn equation{

ut = ε2∆u−Wu(u), x ∈ Ω,
∂νu = 0, x ∈ ∂Ω,

(1.3)

where u is an order parameter, ν the unit exterior normal and ε > 0 a small parameter. Equation
(1.3) describes the evolution of a substance which may appear in two or more preferred phases and
is contained in a region Ω ⊂ Rn. In this context a− and a+ represent different phases in which the
specific substance may exist. For small ε > 0 typical solutions uε of (1.3) divide Ω as Ω = Ω−∪Γ∪Ω+

with Ω± = {uε ≈ a±} and Γ an interface of thickness O(ε) that separates the regions Ω− and Ω+

where the substance is in phase a− or in phase a+. Heteroclinic connections describe the behavior of
uε across the interface. Indeed it results

uε(x) ≈ u∗(d(x)

ε
),

where d(x) is the signed distance from the interface and u∗ : R→ Rm is a connection between a− and
a+. For multi-phase systems, the description of uε in a neighborhood of multiple points where three
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†Dipartimento di Matematica, Università degli Studi di Pisa, Largo B. Pontecorvo 5, Pisa, Italy; e-mail:

giovanni.federico.gronchi@unipi.it
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or more regions {uε ≈ aj} meet, requires the consideration of connections between three or more of
the aj ∈ A, see [3], [7].

If x is interpreted as time, equation (1.1) can be seen as the Newton equation of a particle of
unit mass moving in m− dimensional space under a conservative field of force of potential W . Then
problem (1.1), (1.2) is the same as to show that one can choose position and velocity of the particle at
time 0 in such a way that the asymptotic fate of the particle in the future and in the past are a+ and
a− respectively. From the mechanical point of view the understanding of the connections that exist
between elements of A is a significant step toward a description of the global dynamics of equation
(1.1).

In the scalar case (m = 1) existence of connections between neighboring zeros of W can be es-
tablished via the method of phase plane analysis. In the vector case (m > 1) this approach is not
available and, since solutions of (1.1) are, in each bounded interval (x1, x2), stationary points of the
action functional

J(u) =

∫ x2

x1

(1

2
|ux|2 +W (u)

)
dx, (1.4)

a variational approach is generally used. Existence of vector-valued heteroclinic connections as min-
imizers of J on suitable sets of maps and under different assumption on W has been established by
various authors either by direct minimization of J [1], [11], [4] or by minimizing the associate Jacobi
functional

L(u) =

∫ x2

x1

√
2W (u)dx, (1.5)

as in [10], [5], [12]. In [1] W was assumed to satisfy a mild monotonicity condition at a±. This
condition was later removed in [11]. The minimization of (1.5) for proving the existence of connections
was first used in [10] under restrictive assumptions on the behavior of W in a neighborhood of a±. In
[5] and [12] the idea is to show that, in spite of the fact that W vanishes at a±, the connection problem
can be seen as the problem of the existence of a geodesic connecting a− to a+ for the metric induced
by (1.5). Aside from different requirements on the smoothness and on the behaviour of W at infinity,
the only assumption in [11], [4], [5] and [12] is that W is nonnegative and vanishes in a finite set. For
connections and related questions see also [2], [8], [9].

The scope of the present paper is to present a new elementary proof of the existence of heteroclinic
connections under minimal assumption on W and by direct minimization of the functional (1.4). Our
proof is a by product of the analysis developed in [6].

While for a classical solution of equation (1.1) we need W to be a C1 function, the variational
problem can be formulated under the assumption that W is merely continuous. As we shall see, with
W continuous it is not guaranteed that the time interval required to a minimizer to travel from a−
to a+ be infinite and therefore the function space where we minimize J has to include maps defined
on bounded or semi-bounded intervals. We shall show that each a− ∈ A is connected to some other
a+ ∈ A by minimizing J on the set of maps u : (lu−, l

u
+)→ Rm defined by

(1.6)

A = {u ∈W 1,2
loc ((lu−, l

u
+);Rm) : −∞ ≤ lu− < lu+ ≤ +∞,

lim
x→lu−

u(x) = a−, lim
x→lu+

u(x) ∈ A \ {a−}, u((lu−, l
u
+)) ⊂ Rm \A}. (1.7)

Note that in (1.7) the interval (lu−, l
u
+) associated to u is not fixed but is free to change with u.

Without some condition on the behavior of W at infinity a minimizer of J on A may not exist.
The problem is that J may be not coercive on A in the sense that there exist minimizing sequences
{uj} ⊂ A such that ‖uj‖W 1,2 → +∞ as j → +∞ while J(uj) remains bounded. A sufficient condition
for coerciveness is

lim sup
|u|→+∞

W (u) > 0,

2



but it is possible to allow potentials W that decay to 0 at infinity provided the decaying is not too
fast. As observed in [5] it suffices to assume

(H) √
W (u) ≥ ρ(|u|), |u| ≥ r0

for some r0 > 0 and a nonnegative function ρ : [r0,+∞)→ R such that
∫ +∞
r0

ρ(r)dr = +∞.

We have

Theorem 1.1. Assume that W : Rm → R is a continuous function that satisfies (H). Then, given
a− ∈ A, there exist a+ ∈ A \ {a−} and a Lipschitz-continuous map u : (l−, l+) → Rm, with −∞ ≤
l− < 0 < l+ ≤ +∞, which minimizes J : A → R ∪ {+∞} and satisfies

1

2
|u̇|2 −W (u) = 0, a.e. in (l−, l+). (1.8)

In particular

(i)
lim
x→l±

u(x) = a±, (1.9)

(ii)
W (u(x)) > 0 x ∈ (l−, l+). (1.10)

If W is continuously differentiable in Rm \A, then u is a classical solution of (1.1).

Before giving the proof of Theorem 1.1 we make some observations and present some related results.

2 Observations and related results

From Theorem 1.1 we have that, under the assumption that W ∈ C1(Rm \ A;R), for each a− ∈ A
there is an orbit of (1.1) that starts in a− and ends up in some a+ ∈ A \ {a−} without any other
intersection with A. It follows that there are at least #A

2 such orbits if #A is even and #A+1
2 if #A

is odd.
Given ai 6= aj ∈ A, a sufficient condition for the existence of an orbit that connects ai to aj and

satisfies (1.10) is
σij < σih + σhj , for ah ∈ A \ {ai, aj},

where

σij = inf
u∈Aij

J(u),

Aij = {u ∈W 1,2
loc ((lu−, l

u
+);Rm) : −∞ ≤ lu− < lu+ ≤ +∞,

lim
x→lu−

u(x) = ai, lim
x→lu+

u(x) = aj}.

In the scalar case m = 1 from (1.8) and (1.10) it follows that the minimizer u given by Theorem 1.1
is a solution of

u̇ =
√

2W (u) > 0, x ∈ (l−, l+). (2.1)

If a− and a+ are two neighboring zeros of W ∈ C1(R \ A;R) this equation has a unique solution u
that satisfies (1.9) and u(0) = a−+a+

2 , therefore u is the minimizer in Theorem 1.1. For instance if
W (u) = 1

2 (1 − u2)2 this solution is given by u(x) = tanhx, x ∈ R and satisfies limx→±∞ u(x) = ±1.
Note that, if W vanishes at a point a between a− and a+, there is no minimizer. Indeed any continuous
function u that travels from a− to a+ has to assume the value a violating (1.10).

We give a simple criterion to have l± = ±∞.
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Proposition 2.1. Assume there exist c > 0 and r0 > 0 such that

W (u) ≤ c|u− a+|2, for |u− a+| ≤ r0.

Then l+ = +∞ and an analogous statement applies to l−.

Proof. From (i) there is x0 ∈ (l−, l+) such that |u−a+| ≤ r0 for x ∈ [x0, l+). This and the assumption
on W imply

d

dx
|u− a+| ≥ −|u̇| = −

√
2W (u) ≥ −

√
2c|u− a+|, for x ∈ [x0, l+)

which yields

|u(x)− a+| ≥ |u(x0)− a+|e−
√

2c(x−x0), for x ∈ [x0, l+).

This is compatible with (1.9) only if l+ = +∞.

Proposition 2.2. Assume that W ∈ C2(Rm;R) and that the Jacobian matrix j(a) is positive definite
for a ∈ A. Let u be as in Theorem 1.1. Then l± = ±∞ and there are positive constants k,K such that

|u(x)− a+| ≤ Ke−kx and |u(x)− a−| ≤ Kekx, ∀x ∈ R. (2.2)

Proof. l± = ±∞ follows from Proposition 2.1. To prove the exponential estimates (2.2) note that from
Wu(u) = j(a)(u− a) + o(|u− a|) and the assumption on j(a) it follows

Wu(u) · (u− a) ≥ c2|u− a|2, for |u− a| ≤ r0, a ∈ A, (2.3)

for some positive constants r0 and c. Set φ(x) := |u − a+|2. From (1.9) there is x0 > 0 such that
x ≥ x0 implies φ(x) ≤ r2

0. This inequality, (1.1) and (2.3) yield

φ̈(x) = 2|u̇(x)|2 + 2(u(x)− a+) ·Wu(u(x))

≥ 2c2φ(x), for x ≥ x0. (2.4)

Since we have φ(x) ≤ r2
0 for x ≥ x0, from (2.4) and the maximum principle we get, for every l > 0

φ(x) ≤ ϕl(x), x ∈ [x0, x0 + 2l], (2.5)

where

ϕl(x) := r2
0

cosh
√

2c(l − (x− x0))

cosh
√

2cl
, x ∈ (x0, x0 + 2l),

is the solution of  ϕ̈ = 2c2ϕ, x ∈ (x0, x0 + 2l),

ϕ(x0) = ϕ(x0 + 2l) = r2
0.

From (2.5) and ϕl(x) ≤ 2r2
0e
−
√

2c(x−x0), x ∈ [x0, x0 + l] which holds for all l > 0, it follows

|u(x)− a+| ≤
√

2r0e
− c√

2
(x−x0)

, for x ≥ x0.

The first estimate in (2.2), with k = c√
2

follows from this and from the fact that u is bounded. The

estimate for |u(x)− a−| can be obtained in a similar way.

In Mechanics the functional (1.4) is called the Action and Theorem 1.1 corresponds to the Hamilton
principle of least action. This is equivalent to the Jacobi principle that concerns the minimization of
the Jacobi functional L : A → R ∪ {+∞}

L(u) =

∫ lu+

lu−

√
2W (u(x))|u̇(x)|dx.

We have indeed
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Proposition 2.3.
σ̃0 = inf

u∈A
L(u) = inf

u∈A
J(u) = σ0.

Proof. The elementary inequality a2 + b2 ≥ 2ab implies

L(u) ≤ J(u), u ∈ A,

with equality if and only if (1.8) holds

1

2
|u̇|2 = W (u), a.e. on (lu−, l

u
+). (2.6)

This proves
σ̃0 ≤ σ0.

To prove σ0 ≤ σ̃0 we use the fact that L(u) does not depend on the parametrization. Assume that
u : (lu−, l

u
+)→ Rm is C1 smooth and let φ : (lv−, l

v
+)→ (lu−, l

u
+) be a C1 bijection with φ̇ > 0 and inverse

ψ. For the map v : (lv−, l
v
+)→ Rm defined by v(s) = u(φ(s)) we have

L(v) =

∫ lv+

lv−

√
2W (u(φ(s))|u̇(φ(s))|φ̇(s)ds = L(u),

where we have made the substitution s = ψ(x) to derive the last equality.
The idea is to show that each u ∈ A can be reparametrized into a v ∈ A that satisfies (2.6). This

implies σ0 ≤ σ̃0 via
σ0 ≤ J(v) = L(v) = L(u).

This program can not be realized in this simple way since we need to take care of the fact that u ∈ A
may be not smooth and may have the set {u̇ = 0} of positive measure.

We first show that we can assume −∞ < lu− < lu+ < +∞. If lu+ = ∞, given δ > 0 small, there
are xδ and a ∈ A such that 0 < |u − a| ≤ δ for x ≥ xδ. Set uδ = 1(lu−,xδ]

u + 1(xδ,xδ+1)ũ where

ũ = (1 − x + xδ)u(xδ) + (x − xδ)a, for x ∈ (xδ, xδ + 1). We have that L(ũ, (xδ, xδ + 1)) ≤ ηδ :=
δ
√

2 max|u−a|≤δW (u)→ 0 as δ → 0. Since we can proceed in a similar way if lu− = −∞ we conclude
that, given u ∈ A, for each ε > 0 small there is uε = uδε , uε ∈ A with −∞ < luε− < luε+ < +∞ that
satisfies

L(uε) ≤ L(u)− ε.

This proves the claim. If [lu−, l
u
+] is bounded, C∞([lu−, l

u
+],Rm) is dense in W 1,2([lu−, l

u
+],Rm). This

and the fact that L is continuous in W 1,2([lu−, l
u
+],Rm) imply that we can assume that u is smooth.

Therefore in the remaining part of the proof we suppose that u is smooth and defined in a bounded
set (lu−, l

u
+).

By arguing as before we choose l−, l+ with lu− < l− < l+ < lu+ and construct a map uε ∈ A of the
form

uε = 1[l−,l+]u+ 1(l−−1,l−)∪(l+,l++1)ũ (2.7)

and such that
J(ũ, (l− − 1, l−) ∪ (l+, l+ + 1)) ≤ ε. (2.8)

Consider the reparametrized map v : (λ−, λ+)→ Rm of u : (l−, l+)→ Rm defined by x = φ(s) where
φ : (λ−, λ+)→ (l−, l+) is the inverse of the map s = ψ(x) defined by

ψ(x) =

∫ x

lu−+lu
+

2

max{|u̇(t)|, δ}√
2W (u(t))

dt, x ∈ (l−, l+). (2.9)
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Note that φ satisfies φ(0) =
lu−+lu+

2 and the equation

φ̇ =

√
2W (u(φ))

max{|u̇(φ)|, δ}
, s ∈ (λ−, λ+), λ± = ψ(l±), (2.10)

which is approximately the condition one must impose to φ in order that v satisfies (2.6). In (2.9) and
(2.10) we use the approximate expression max{|u̇|, δ} instead |u̇| to have well defined strictly increasing
maps ψ and φ even when u̇ vanishes in a set of positive measure. From (2.10) we obtain

1

2
|u̇(φ)|2φ̇2 +W (u(φ))−

√
2W (φ)|u̇(φ)|φ̇ = γδ, s ∈ (λ−, λ+), (2.11)

where

γδ =

{
0, if |u̇| > δ,
W
δ2 (|u̇| − δ)2, if |u̇| ≤ δ. (2.12)

From (2.9) and (2.10) we obtain

|{s ∈ (λ−, λ+) : |u̇(φ(s))| ≤ δ}| =
∫
{x∈(l−,l+):|u̇(x)|≤δ}

max{|u̇(x)|, δ}√
2W (u(x))

dx ≤ Cδ, (2.13)

where |S| denotes the measure of S and C = l+−l−
minx∈[l−,l+]

√
2W (u(x))

. Therefore, integrating (2.11) in

(λ−, λ+) and using that γδ ≤ 2 maxx∈[l−,l+]W (u(x)) yields

J(v, (λ−, λ+))− L(v, (λ−, λ+)) = J(v, (λ−, λ+))− L(u, (l−, l+)) ≤ Cδ, (2.14)

with C > 0 independent of δ. Now extend v = u ◦ φ from (λ−, λ+) to (λ− − 1, λ+ + 1) by setting

v =

{
ũ(l− + s− λ−), for s ∈ (λ− − 1, λ−],
ũ(l+ + s− λ−), for s ∈ [λ+, λ+ + 1),

where ũ is as in (2.7). The map v so extended belongs to A. This and (2.8) imply

σ0 ≤ J(v, (λ−, λ+)) + ε.

Therefore from (2.14) it follows, for δ > 0 small,

σ0 − 2ε ≤ L(u, (l−, l+)) ≤ L(u, (lu−, l
u
+)).

The proof is complete.

3 The proof of Theorem 1.1

The first observation is that J is translation invariant on A in the sense that

J(uλ) = J(u), for u ∈ A, λ ∈ R,

where uλ = u(· − λ) ∈ A. This generates a loss of compactness that manifests itself in the existence
of minimizing sequences {uj} ∈ A that converges in C1

loc to a map u that fails to satisfy (1.9) in
Theorem 1.1. For example this happens for m = 1 and W = 1

2 (1− u2)2. In this case u = tanhx is a
minimizer and {tanh (· − j)} a minimizing sequence that converges to −1. We remove this pathology
by an elementary observation. Since a− is an isolated zero of W , for small fixed r0 > 0, we have

min
a∈A,|u−a|=r0

W (u) = W0 > 0,
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and any map u ∈ A has to satisfies W (u(x0)) = W0 for some x0 ∈ (lu−, l
u
+). Taking x0 = 0 restricts

the possible translations to a compact set and removes the obstruction of noncompactness. It follows
that we can assume

W (u(0)) = W0, (3.1)

and restrict J to the subset of A where (3.1) holds.
Given a− ∈ A let ā ∈ A be such that

|a− − ā| = min
a∈A\{a−}

|a− − a|,

and set
ũ(x) = (1− (x+ x0))a− + (x+ x0)ā, x ∈ (−x0, 1− x0),

where x0 ∈ (0, 1) is chosen so that W (ũ(0)) = W0. Then ũ ∈ A, lũ− = −x0, lũ+ = 1− x0 and

J(ũ) = σ < +∞.

In the following, when we wish to specify that the action functional is relative to some interval (x1, x2),
we write J(u, (x1, x2)).

Next we show that there are constants M > 0 and l0 > 0 such that each u ∈ A with

J(u) ≤ σ, (3.2)

satisfies

‖u‖L∞((lu−,l
u
+);Rn) ≤M,

lu− ≤ −l0 < l0 ≤ lu+.
(3.3)

The L∞ bound on u follows from (H). Indeed, if |u(x̄)| = M for some x̄ ∈ (lu−, l
u
+), we have

σ ≥ J(u, (lu−, x̄)) ≥
∫ x̄

lu−

√
2W (u(x))|u̇(x)|dx ≥

√
2

∫ M

r0

ρ(s)ds.

If lu− = −∞, lu+ = +∞ the existence of l0 is obvious, if lu− > −∞ and/or lu+ < +∞ it follows from

d2
0

|lu−|
≤
∫ 0

lu−

|u̇(x)|2dx ≤ 2σ,
d2

0

lu+
≤
∫ lu+

0

|u̇(x)|2dx ≤ 2σ,

where d0 = d(A, {u : W (u) > W0}).
Let {uj} ⊂ A be a minimizing sequence

lim
j→+∞

J(uj) = inf
u∈A

J(u, ) := σ0 ≤ σ. (3.4)

We can assume that each uj satisfies (3.2) and (3.3). By considering a subsequence, that we still
denote by {uj}, we can also assume that there exist l∞− , l∞+ with −∞ ≤ l∞− ≤ −l0 < l0 ≤ l∞+ ≤ +∞
and a continuous map u∗ : (l∞− , l

∞
+ )→ Rn such that

lim
j→+∞

l
uj
± = l∞± ,

lim
j→+∞

uj(x) = u∗(x), x ∈ (l∞− , l
∞
+ ),

(3.5)

and in the last limit the convergence is uniform on bounded intervals. This follows from (3.3) which
implies that the sequence {uj} is equi-bounded and from (3.2) which implies

|uj(x1)− uj(x2)| ≤
∣∣∣∣∫ x2

x1

|u̇j(x)|dx
∣∣∣∣ ≤ √σ|x1 − x2|

1
2 , (3.6)
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so that the sequence is also equi-continuous.
By passing to a further subsequence we can also assume that uj ⇀ u∗ in W 1,2((l1, l2);Rn) for each

l1, l2 with l∞− < l1 < l2 < l∞+ . This follows from (3.2), which implies

1

2

∫ l
uj
+

l
uj
−

|u̇j |2dx ≤ J(uj) ≤ σ,

and from the fact that each uj satisfies (3.3) and therefore is bounded in L2((l1, l2);Rn).
We also have

J(u∗, (l∞− , l
∞
+ )) ≤ σ0. (3.7)

Indeed, from the lower semicontinuity of the norm, for each l1, l2 with l∞− < l1 < l2 < l∞+ we have∫ l2

l1

|u̇∗|2dx ≤ lim inf
j→+∞

∫ l2

l1

|u̇j |2dx.

This and the fact that uj converges to u∗ uniformly in [l1, l2] imply

J(u∗, (l1, l2)) ≤ lim inf
j→+∞

J(uj , (l1, l2)) ≤ lim inf
j→+∞

J(uj , (l
uj
− , l

uj
+ )) = σ0.

Since this is valid for each l∞− < l1 < l2 < l∞+ the claim (3.7) follows.

Lemma 3.1. Define l∞− ≤ l− ≤ −l0 < l0 ≤ l+ ≤ l∞+ by setting

l− = inf{x ∈ (l∞− , 0] : u∗((x, 0]) ⊂ Rm \A}
l+ = sup{t ∈ (0, l∞+ ) : u∗([0, x)) ⊂ Rm \A}.

Then u∗ with lu
∗

± = l± belongs to A and is a minimizer. That is

J(u∗) = σ0. (3.8)

Proof. If l+ < +∞ the existence of
a+ = lim

x→l+
u∗(x) (3.9)

follows from (3.6) which implies that u∗ is a C0, 12 map. The limit a+ belongs to A. Indeed, a+ 6∈ A
would imply the existence of λ > 0 such that, for j large enough,

d(uj([l+, l+ + λ], A) ≥ 1

2
d(a+, A),

in contradiction with the definition of l+. If l+ = +∞ and (3.9) does not hold there is δ > 0 and a
diverging sequence {xj} such that

d(u∗(xj), A) ≥ δ.

Set Wδ = mind(u,A)=δW (u) > 0. From the uniform continuity of W in {|u| ≤ M} (M as in (3.3)) it
follows that there is λ > 0 such that

|W (u1)−W (u2)| ≤ 1

2
Wδ, for |u1 − u2| ≤ λ, u1, u2 ∈ {|u| ≤M}.

This and u∗ ∈ C0, 12 imply

W (u∗(x)) ≥ 1

2
Wδ, x ∈ Ij =

(
xj −

l2

σ
, xj +

λ2

σ

)
,
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and, by passing to a subsequence, we can assume that the intervals Ij are disjoint. Therefore for each
L > 0 we have ∑

xj≤L

λ2Wδ

σ
≤
∫ L

0

W (u∗(x))dx ≤ σ0,

which is impossible for L large. This proves that, also when l+ = +∞ there isA 3 a+ = limx→+∞ u∗(x).
To show that a+ 6= a− we observe that a+ = a− implies the existence of a sequence {xj} ⊂ [l0, l+]
that satisfies

lim
j→+∞

xj = l+,

lim
j→+∞

uj(xj) = a−.
(3.10)

Since W (uj(0)) = W0 from the uniform continuity of W in {|u| ≤M} and (3.6) it follows

W (uj(x)) ≥ 1

2
W0, for x ∈ (−δ, δ),

for some δ > 0. Therefore, for j large, we have

J(uj , (l
uj
− , xj) ≥ δW0.

On the other hand from (3.10)2 we have

J(uj , (xj , l
uj
+ )) ≥ σ0 − εj ,

where εj → 0 as j → +∞. These inequalities contradict the minimizing character of the sequence
{uj} and prove a+ 6= a−. We have seen that u∗ with lu

∗

± = l± satisfies all the properties required for
membership in A. Therefore we have J(u∗) ≥ σ0 that together with (3.7) show that u∗ ∈ A is indeed
a minimizer. The proof of the lemma is complete.

Remark. It is actually possible that l+ < l∞+ and/or l− > l∞− . Assume W = π2

8 (1−u2) for u ∈ (−1, 1).

Then the solution of (2.1) that satifies u(0) = 0 is u = sin(π2x), x ∈ (−1, 1) and J(u) = π2

4 . Consider
the sequence {uj} defined by

uj(x) =

 sin(π2x), x ∈ (−1, 1− εj),
sin(π2 (1− εj)), x ∈ (1− εj , xj),
sin(π2 (1− εj + x− xj)), x ∈ (xj , xj + εj),

where εj → 0+ and xj → +∞. We have J(uj) = π2

4 + π2

8 (xj − 1 + εj) cos2(π2 (1 − εj)) and we can

choose the sequence {xj} in such a way that J(uj)→ π2

4 . Then {uj} is a minimizing sequence and it
results 1 = l+ < l∞+ = +∞.

Lemma 3.2. The map u∗ satisfies (1.8) in (l−, l+).

Proof. Given x0, x1 with l− < x0 < x1 < l+, let φ : [x0, x1 + ξ] → [x0, x1] be linear, with |ξ| small,
and with φ(x0) = x0, φ(x0 + ξ) = x1. Let ψ : [x0, x1] → [x0, x1 + ξ] be the inverse of φ. Define
uξ : [l−, l+ + ξ]→ Rn by setting

uξ(x) =

 u∗(x), x ∈ [l−, x0],
u∗(φ(x)), x ∈ [x0, x1 + ξ],
u∗(x− ξ), x ∈ (x1 + ξ, l+ + ξ)]

(3.11)
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Note that uξ ∈ A with l
uξ
− = l− and l

uξ
+ = l+ if l+ = +∞ and l

uξ
+ = l+ + ξ if l+ < +∞. Since u∗ is a

minimizer we have
d

dξ
J(uξ, (l

uξ
− , l

uξ
+ ))|ξ=0 = 0. (3.12)

From (3.11), using also the change of variables x = ψ(s), it follows

J(uξ, (l
uξ
− , l

uξ
+ ))− J(u∗, (l−, l+))

=

∫ x1+ξ

x0

( φ̇2(x)

2
|u̇∗(φ(x))|2 +W (u∗(φ(x)))

)
dx−

∫ x1

x0

(1

2
|u̇∗(x)|2 +W (u∗(x))

)
dx

=

∫ x1

x0

(1− ψ̇(x)

2ψ̇(x)
|u̇∗(x)|2 + (ψ̇(x)− 1)W (u∗(x))

)
dx

=

∫ x1

x0

( − ξ
x1−x0

2(1 + ξ
x1−x0

)
|u̇∗(x)|2 +

ξ

x1 − x0
W (u∗(x))

)
dx

= − ξ

x1 − x0

∫ x1

x0

( |u̇∗(x)|2

2(1 + ξ
x1−x0

)
−W (u∗(x))

)
dx.

This and (3.12) imply ∫ x1

x0

(1

2
|u̇∗(x)|2 −W (u∗(x))

)
dx = 0. (3.13)

Since this holds for all x0, x1, with l− < x0 < x1 < l+, then (1.8) follows.

On the basis of Lemmas 3.1 and 3.2 u∗ : (l−, l+)→ Rm can be identified with the map u in Theorem
1.1. To complete the proof of Theorem 1.1 it remain to show that if W is of class C1 in Rm \A, then
u∗ is a classical solution of (1.1). Since u∗ is a minimizer, if w : (l1, l2) → Rm is a smooth map that
satisfies w(li) = 0, i = 1, 2 we have

0 =
d

dλ
J(u∗ + λw)|λ=0 =

∫ l2

l1

(u̇∗ · ẇ +Wu(u∗) · w)dx =

∫ l2

l1

(u̇∗ −
∫ x

l1

Wu(u∗(s))ds) · ẇdx. (3.14)

Since this is valid for all l− < l1 < l2 < l+ and ẇ : (l1, l2)→ Rm is an arbitrary smooth map with zero
average (3.14) implies

u̇∗ =

∫ x

l1

Wu(u∗(s))ds+ const.

The continuity of u∗ and of Wu implies that the right hand side of this equation is a map of class C1.
It follows that we can differentiate and obtain

ü∗ = Wu(u∗), x ∈ (l−, l+).

The proof of Theorem 1.1 is complete.
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