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Abstract

We strengthen the classical inequality of C. B. Morrey concerning the optimal Hölder continuity
of functions in W 1,p when p > n, by replacing the Lp-modulus of the gradient with the sharp Hardy
difference involving distance to the boundary. When p = n we do the same strengthening in the inte-
gral form of a well known inequality due to F. John and L. Nirenberg.
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1 Introduction and main results

Let Ω (Rn, n≥ 1, be a domain and denote the distance function to its boundary ∂Ω by

d(x) := inf
y∈∂Ω

|x− y|, whenever x ∈ Ω̄.

It is proved in [BFT] that if Ω satisfies the following condition:

−∆d≥ 0 in the sense of distributions in Ω, (C )

then Hardy’s inequality holds true with the best possible constant, that is∫
Ω

|∇u|pdx≥
( p−1

p

)p ∫
Ω

|u|p

dp dx for all u ∈C∞
c (Ω), (1.1)

where p > 1 is arbitrary. Examples of domains satisfying condition (C ) are convex domains
since then d is superharmonic in Ω (see [ArmK]). Moreover, if the boundary ∂Ω is smooth
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enough, say uniformly of class C2 (see Definition 2.3), then (C ) is known to be equivalent
to the domain being mean convex, i.e. having nonnegative mean curvature everywhere on its
boundary (see [Ps1] and also [Gr], [LLL] and [GP]). In view of this, we call weakly mean
convex domain any domain satisfying condition (C ).

For p = 2 and Ω being the half-space, i.e. Ω = Rn
+ where

Rn
+ := {(x′,xn) | x′ = (x1, ...,xn−1) ∈ Rn−1, xn > 0}, n≥ 2,

the critical Sobolev norm can be added on the right hand side of (1.1). More precisely, Maz’ya
in his treatise [Mz] proved that for n≥ 3 there exists a positive constant C such that(∫

Rn
+

|∇u|2dx− 1
4

∫
Rn
+

u2

x2
n

dx

)1/2

≥C

(∫
Rn
+

|u|2∗dx

)1/2∗

for all u ∈C∞
c (Rn

+), (1.2)

where 2∗ := 2n/(n− 2). This inequality has been extended to domains in [FMT]. It is proved
there that if Ω is a uniformly C2 mean convex domain with finite inner radius, that is

DΩ := sup
x∈Ω

d(x)< ∞,

then there exists a positive constant C such that(∫
Ω

|∇u|2dx− 1
4

∫
Ω

|u|2

d2 dx

)1/2

≥C

(∫
Ω

|u|2∗dx

)1/2∗

for all u ∈C∞
c (Ω), (1.3)

It is also known (see [FrL]) that if one strengthens assumption (C ) to convexity, then (1.3) holds
true with a constant C independent of the domain Ω and without any regularity assumption on
Ω.

At this point we want to compare the above result with the corresponding result for Hardy’s
inequality with the distance taken from a point in Ω. It is known (see [FT, Theorem A] and also
[AFT]) that if Ω is a bounded domain containing the origin, then there exists a positive constant
C such that for any u ∈C∞

c (Ω) the following estimate holds true(∫
Ω

|∇u|2dx−
(n−2

2

)2 ∫
Ω

|u|2

|x|2
dx

)2

≥C

(∫
Ω

|u|2∗X1+2∗/2
(
|x|
RΩ

)
dx

)1/2∗

. (1.4)

Here RΩ := supx∈Ω |x| and X(t) := (1− log t)−1, t ∈ (0,1]. The nonnegativity of the left hand
side is the Hardy inequality involving distance to the origin with the best possible constant(
(n−2)/2

)2 (see for instance [Mz]). We stress that the exponent on the logarithmic correction
in (1.4) is the optimal one, i.e. it cannot be decreased.

Coming back to the case where the distance is taken from the boundary, inequalities (1.2) and
(1.3) have p-versions for any 2 < p < n, obtained in [FMT] (see also [FrL] for convex domains,
the case of the half-space being common in these two essentially different approaches).
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Our main goal in this paper is to obtain the corresponding to [Mz] and [FMT] results for the
case p > n≥ 1.

Our first result is the L∞-Hardy-Sobolev inequality. Let us first recall Sobolev’s inequality
for p > n (see for example [GTr, Theorem 7.10]): If Ω has finite volume H n(Ω) < ∞ and
p > n≥ 1, then there exists a positive constant C =C(n, p) depending only on n, p, such that:

sup
x∈Ω

|u(x)| ≤C[H n(Ω)]1/n−1/p

(∫
Ω

|∇u|pdx

)1/p

for all u ∈C∞
c (Ω). (1.5)

It turns out that in a weakly mean convex domain one can replace the Lp-norm of the right hand
side by the sharp Hardy difference. More precisely we have

Theorem A Let Ω ⊂ Rn be a weakly mean convex domain of finite volume H n(Ω) < ∞. For
p > n≥ 1, there exists a positive constant C =C(n, p), depending only on n and p, such that

sup
x∈Ω

|u(x)| ≤C[H n(Ω)]1/n−1/p

(∫
Ω

|∇u|pdx−
( p−1

p

)p ∫
Ω

|u|p

dp dx

)1/p

for all u ∈C∞
c (Ω).

(1.6)

Remark The corresponding inequality in the case where the distance is taken from the origin is
true as well (see [Ps2, Theorem A]).

Next we present the following extension of the Hardy-Sobolev inequality obtained in [FMT].

Theorem B Let Ω ⊂ Rn, n ≥ 2, be a uniformly C2 mean convex domain of finite inner radius.
For

−1 < b≤ 0, 2≤ p <
n

b+1
, and q :=

np
n− p(b+1)

,

there exists a positive constant K such that(∫
Ω

|∇u|pdx−
( p−1

p

)p ∫
Ω

|u|p

dp dx

)1/p

≥ K

(∫
Ω

(
db|u|

)qdx

)1/q

for all u ∈C∞
c (Ω). (1.7)

The inequality (1.7) remains true when Ω is the half space, that is Ω = Rn
+.

Remark For b< 0 the exponent p is allowed to exceed the dimension n. This fact is not captured
in Theorem 5.3 of [FMT] and will play a crucial role in the present work.

Our central result is presented next. Recall first Morrey’s inequality in Rn (see for example
[EvG, §4.5.3-Theorem 3(ii)]): If p > n≥ 1 then

[u]C0,1−n/p := sup
x,y∈Rn

x 6=y

|u(x)−u(y)|
|x− y|1−n/p ≤C

(∫
Rn
|∇u|pdx

)1/p

for all u ∈C∞
c (Rn). (1.8)
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Note that from (1.8) we can derive (1.5). Also that the seminorm [·]C0,1−n/p and the norm ‖|∇ · |‖Lp

involved in (1.8) are dimensionally balanced. We prove:

Theorem C [Hardy-Morrey inequality] Let Ω ⊂ Rn, n ≥ 2, be a uniformly C2 mean convex
domain of finite inner radius. For p > n there exists a positive constant C such that

sup
x,y∈Ω

x 6=y

|u(x)−u(y)|
|x− y|1−n/p ≤C

(∫
Ω

|∇u|pdx−
( p−1

p

)p ∫
Ω

|u|p

dp dx

)1/p

for all u ∈C∞
c (Ω). (1.9)

The inequality (1.9) remains true when Ω is the half space, that is Ω = Rn
+. In the one dimen-

sional case, for p> 1 there exist constants C =C(p)> 0, λ = λ (p)≥ 1, such that for any α < β

and all u ∈C∞
c (α,β )

sup
x,y∈(α,β )

x 6=y

|u(x)−u(y)|
|x− y|1−1/p X1/p

( |x− y|
λD

)
≤C

(∫
β

α

|u′|pdx−
( p−1

p

)p ∫ β

α

|u|p

dp dx

)1/p

, (1.10)

where X(t) := (1− log t)−1, t ∈ (0,1], and D = (β −α)/2. Moreover, the exponent 1/p on X
cannot be decreased.

Remark 1 The corresponding to (1.9) inequality in the case of Hardy difference with the distance
taken from the origin is not true unless a logarithmic correction in the Holder seminorm is
introduced. In particular we have for any u ∈C∞

c (Ω\{0}) that

sup
x,y∈Ω

x 6=y

|u(x)−u(y)|
|x− y|1−1/p X1/p

( |x− y|
λRΩ

)
≤C

(∫
Ω

|∇u|pdx−
( p−n

p

)p ∫
Ω

|u|p

|x|p
dx

)1/p

,

for some constants C =C(n, p) > 0, λ = λ (n, p) ≥ 1 and RΩ = supx∈Ω |x| < ∞ (see [Ps2, The-
orem B]). Here, the exponent 1/p in the logarithmic correction X1/p cannot be decreased. The
fact that in the one dimensional case of Theorem C a logarithmic correction of the Hölder semi-
norm is needed is not surprising, since in this case the problem behaves the same way as when
the distance is taken from a point.

Remark 2 The requirement on Ω to be uniformly of class C2 in Theorem C, is inherited from
the corresponding regularity assumption in Theorem B.

Remark 3 In our proof of Theorem C, the constant C of inequality (1.9) depends in general on
the domain Ω. To prove inequality (1.9) under the assumption of mean convexity with a constant
independent of the domain, remains an open question. The same remark applies for the constant
K of inequality (1.7) in Theorem B and also for the constant C in Theorem D below, as well as
the constant C1 in Corollary E.
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Remark 4 Since in Theorem C the domain has finite inner radius DΩ, it follows from (1.9) that

sup
x∈Ω

|u(x)| ≤CD1−n/p
Ω

(∫
Ω

|∇u|pdx−
( p−1

p

)p ∫
Ω

|u|p

dp dx

)1/p

for all u ∈C∞
c (Ω).

If the domain has finite volume, then by the fact that DΩ ≤
(
H n(Ω)/ωn

)1/n, where ωn is the
volume of the unit ball in Rn, we readily deduce (1.6) for uniformly C2 domains with some
positive constant C. However, in Theorem A the constant C depends only on n, p and moreover
no regularity assumption on Ω is needed.

To introduce our final result we first recall that a function u ∈ L1
loc(Rn) has bounded mean

oscillation and we write u ∈ BMO if

‖u‖BMO := sup
B

1
H n(B)

∫
B
|u−uB|dx < ∞,

where the supremum is taken over all balls B in Rn. Here uB is the average of u in the ball B,
that is

uB =
1

H n(B)

∫
B

u dx.

For example if u ∈W 1,n
0 (Ω) is extended to be zero outside Ω, then we know that u ∈ BMO (see

[Ev, §5.8.1]). The John-Nirenberg inequality (see [JN]) in its integral form states that there exist
positive constants C1(n) and C2(n) such that

sup
B⊂Rn

1
|B|

∫
B

exp
{

C1(n)
|u−uB|
‖u‖BMO

}
dx≤C2(n) for all u ∈ BMO. (1.11)

In the following we have extended functions in C∞
c (Ω) to be 0 in Rn \Ω.

Theorem D Let Ω ⊂ Rn, n ≥ 2, be a uniformly C2 mean convex domain of finite inner radius.
Then there exists a positive constant C such that(∫

Ω

|∇u|ndx−
(n−1

n

)n ∫
Ω

|u|n

dn dx

)1/n

≥C‖u‖BMO for all u ∈C∞
c (Ω).

The above inequality remains true when Ω is the half space, that is Ω = Rn
+.

A direct consequence of Theorem D and the John-Nirenberg inequality (1.11), is

Corollary E [Hardy-John-Nirenberg inequality] Let Ω⊂ Rn, n≥ 2, be a uniformly C2 mean
convex domain of finite inner radius. There exist a positive constant C1 and a positive constant
C2 =C2(n) such that

sup
B⊂Rn

1
H n(B)

∫
B

exp

{
C1

|u−uB|(∫
Ω
|∇u|ndx− (n−1

n )n
∫

Ω

|u|n
dn dx

)1/n

}
dx≤C2 for all u ∈C∞

c (Ω).
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The above inequality remains true when Ω is the half space, that is Ω = Rn
+.

The paper is organized as follows: In §2 we gather all definitions that appear throughout,
and also several known results on the Hardy inequality that we are going to use. In §3 and §4
we prove Theorem A and Theorem B, respectively. §5 is interesting on its own and comprises
of several calculus results focused on estimating the local integral of the distance function to the
boundary raised on small negative powers. We gradually build the proof of Theorem C in §6.1
and §6.2. The proof of Theorem D is given in §6.3. Finally, in §7 we prove the one dimensional
version of Theorem C.

2 Preliminaries

2.1 Notation, regular boundaries and some properties of the distance function

Throughout the paper, the boundary and inner radius of a domain (open and connected set)
Ω (Rn, n≥ 1, are denoted by ∂Ω and DΩ respectively. We write H n for the Lebesgue measure
in Rn, and H n−1 for the n− 1 Hausdorff measure in Rn. Br(y) stands for an open ball in Rn,
n≥ 2, having center at y ∈ Rn and radius r > 0. When the center, or both the center and radius
are of no importance, we simply write Br, or B respectively. For convenience we will write ωn

in place of H n(B1), and so H n−1(∂B1) = nωn. Also, Bn−1
r (y) is the n− 1-dimensional ball

having center at y ∈ Rn−1 and radius r > 0, and we write ωn−1 for H n−1(Bn−1
1 ).

By C(α,β , ...) or c(α,β , ...) we mean a positive constant that is allowed to change value
from line to line but depends only on the arguments α,β , ... . Sometimes we use the notation q′

for the dual index of q ∈ (1,∞), i.e. q′ := q/(q−1).

Definition 2.1. Let n ≥ 2. By a locally Lipschitz domain Ω ( Rn (respectively locally C2

domain Ω ( Rn), we mean that for any x ∈ ∂Ω there exist a neighborhood Ux of x, a system of
coordinates y1, ...,yn, such that the point x is characterized by y1 = ...= yn = 0 in this system, a
Lipschitz (resp. C2) mapping φx : Rn−1→ R, and rx > 0 such that

Ux∩Ω =Ux∩{(y′,yn) ∈ Bn−1
rx

(0)×R : yn > φx(y′)}.

Remark 2.2. If for some r > 0, the set Br ∩Ω can be written as

Br ∩Ω = Br ∩
{
(y′,yn) ∈ A×R | yn > f (y′)

}
,

and f is Lipschitz in the set A⊆ Rn−1, then

H n−1(Br ∩∂Ω) =
∫

A

√
1+ |∇ f (y′)|2dy′.

Definition 2.3. Let n ≥ 2. We say that Ω ( Rn is a uniformly Lipschitz domain (respectively
uniformly C2 domain) if there exist ε > 0, L > 0, and M ∈N and a locally finite countable cover
{Ui} of ∂Ω with the following properties:
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(i) If x ∈ ∂Ω then Bε(x)⊂Ui for some i.

(ii) Every point of Rn is contained in at most M Ui’s.

(iii) For each i there exist local coordinates y = (y′,yn) ∈ Rn−1×R and a Lipschitz (resp. C2)
function f : Rn−1→ R, with Lip f ≤ L (resp. ‖ f‖C2 < L) such that

Ui∩Ω =Ui∩
{
(y′,yn) ∈ Rn−1×R | yn > f (y′)

}
.

Stein [St, §IV, 3.3] calls uniformly Lipschitz domains minimally smooth.

Remark 2.4. If ∂Ω is bounded then every locally Lipschitz (resp. locally C2) domain is uni-
formly Lipschitz (resp. uniformly C2).

We refer to the generalized Gauss-Green theorem whenever we use Theorem 5.2 (or it’s con-
sequence, Theorem 5.3) from [ChTZ] (see also [S]), and to the Gauss-Green theorem whenever
we use Theorem 1 from [EvG, §5.8].

Recall next that the gradient of d is a bounded vector field:

|∇d|= 1 a.e. in Ω. (2.1)

Condition (C ) (or weak mean convexity of Ω) implies in particular that −∆d is a nonnegative
Radon measure µ in Ω (see [LL, Theorem 6.22]). By abuse of notation we write (−∆d)dx
instead of dµ . From [ChTZ, Definition 2.18] we have that ∇d is a bounded divergence-measure
field (that is ∇d ∈DM ∞(Ω)) and so the generalized Gauss-Green theorem holds true.

Recall also that since any uniformly C2 domain satisfies a uniform interior sphere condi-
tion, a uniformly C2 domain is weakly mean convex if and only if it is mean convex (see [Ps1,
Corollary 3.6].

2.2 On the Hardy inequality

Let p > 1 and assume that Ω is a domain in Rn, n≥ 1, such that Ω 6= Rn. In [BFT] the authors
obtained various auxiliary lower bounds for the Hardy difference:

Ip[u;Ω] :=
∫

Ω

|∇u|pdx−
( p−1

p

)p ∫
Ω

|u|p

dp dx; u ∈C∞
c (Ω).

In particular, the substitution
u = d1−1/pv, (2.2)

together with standard vectorial inequalities, gives the following lower estimates on Ip[u] (see
[BFT, Lemma 3.3])

Ip[u;Ω]≥ c(p)
∫

Ω

dp−1|∇v|pdx+
( p−1

p

)p−1 ∫
Ω

|v|p(−∆d)dx, if p≥ 2, (2.3)
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Ip[u;Ω]≥ c(p)
∫

Ω

d|v|p−2|∇v|2dx+
( p−1

p

)p−1 ∫
Ω

|v|p(−∆d)dx, if p≥ 2, (2.4)

and

Ip[u;Ω]≥ c(p)
∫

Ω

dp−1|∇v|2(
|∇v|+ p−1

p
|v|
d

)2−p dx+
( p−1

p

)p−1 ∫
Ω

|v|p(−∆d)dx, if 1 < p < 2. (2.5)

The above estimates imply that if Ω is weakly mean convex, then Hardy’s inequality (1.1) (that
is Ip[·;Ω] ≥ 0 in the notation introduced above) holds true. The constant

(
(p− 1)/p

)p in (1.1)
was known to be the best one for the case n = 1 (see for example [HLP]). It was proved first
in [MMP] for convex domains and then in [BFT] for weakly mean convex domains, that this is
also the case when n > 1.

Remark 2.5. When n = 1 and Ω = (α,β ) for some −∞ < α < β < ∞ then −∆d = 2δ
(
(α +

β )/2
)
, where δ (x0) denotes Dirac’s delta measure concentrated at x0 ∈R. In particular, ignoring

the first term on the right hand side of (2.3) and (2.5), we get∣∣∣v(α +β

2

)∣∣∣≤ c(p)
(
Ip[u;(α,β )]

)1/p
, if p > 1. (2.6)

We will use this estimate in §3 and §7 when arguing for the one dimensional case of Theorems
A and C respectively.

Also, in proving Theorem A for the case n = 1, we make use of the following result taken from
[BFT]

Proposition 2.6. [BFT, Proposition 3.4] Let 1 < p < 2. For any u ∈ C∞
c (α,β ) the following

inequality is valid

Ip[u;(α,β )]≥ c(p)
∫

β

α

(
d(t)

)p−1|v′(t)|pX2−p(d(t)/D)dt +2
( p−1

p

)p−1∣∣∣v(α +β

2

)∣∣∣p,
where X(t) := (1− log t)−1, t ∈ (0,1], D = (β −α)/2 and v given by (2.2).

For domains with finite inner radius, one can add remainder terms of the form
∫

Ω
|u|pWdx, in

Hardy’s inequality (1.1). Clearly, W has to be of lower order than d−p (see [BrM] for p = 2 and
[BFT] for the general case). In particular we will need the following case of the central theorem
of [BFT]

Theorem 2.7. [BFT, Theorem A] If p > 1 and Ω⊂Rn, n≥ 1, is a weakly mean convex domain
of finite inner radius, then

Ip[u;Ω]≥ c(p)
∫

Ω

|v|p

d
X2(d/DΩ)dx for all u ∈C∞

c (Ω),

where X(t) := (1− log t)−1, t ∈ (0,1], and v given by (2.2). Moreover, the exponent 2 on X
cannot be decreased.
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A direct consequence of the above theorem and estimate (2.4) is

Proposition 2.8. If p ≥ 2 and Ω ⊂ Rn, n ≥ 1, is a weakly mean convex domain of finite inner
radius, then

Ip[u;Ω]≥ c(p)
∫

Ω

|v|p−1|∇v|X(d/DΩ)dx for all u ∈C∞
c (Ω),

where X(t) := (1− log t)−1, t ∈ (0,1], and v given by (2.2).

Proof. We write∫
Ω

|v|p−1|∇v|X(d/DΩ)dx =
∫

Ω

{
d−1/2|v|p/2X(d/DΩ)

}{
d1/2|v|p/2−1|∇v|

}
dx,

and use the Cauchy-Schwartz inequality.

We will also need the following lemma

Lemma 2.9. Let Ω ( Rn, n≥ 1, be a domain and V be a locally Lipschitz domain in Rn, such
that Ω∩V 6= /0. Denote by ν(x) the exterior unit normal vector defined at almost every x ∈ ∂V .
For all q≥ 1, all s 6= 1 and any v ∈C∞

c (Ω), there holds∫
V

|∇v|q

ds−q dx− s−1
q

∣∣∣s−1
q

∣∣∣q−2(∫
V

|v|q

ds−1 (−∆d)dx+
∫

∂V

|v|q

ds−1 ∇d ·νdH n−1(x)
)

≥
∣∣∣s−1

q

∣∣∣q ∫
V

|v|q

ds dx. (2.7)

Proof. The generalized Gauss-Green theorem gives∫
V

∇|v| · ∇d
ds−1 dx =−

∫
V
|v|div

(
∇d

ds−1

)
dx+

∫
∂V
|v| ∇d

ds−1 ·νdH n−1(x),

and since div(∇d/ds−1) = (1− s)/ds− (−∆d)/ds−1 for a.e. x ∈Ω, we get∫
V

|∇v|
ds−1 dx−

∫
V

|v|
ds−1 (−∆d)dx−

∫
∂V

|v|
ds−1 ∇d ·νdH n−1(x)≥ (s−1)

∫
V

|v|
ds dx, if s > 1,

∫
V

|∇v|
ds−1 dx+

∫
V

|v|
ds−1 (−∆d)dx+

∫
∂V

|v|
ds−1 ∇d ·νdH n−1(x)≥ (1− s)

∫
V

|v|
ds dx, if s < 1,

where we have also used the fact that |∇|v(x)|| = |∇v(x)| for a.e. x ∈ V . We may write both
inequalities in one as follows∫

V

|∇v|
ds−1 dx− s−1

|s−1|

(∫
V

|v|
ds−1 (−∆d)dx+

∫
∂V

|v|
ds−1 ∇d ·νdH n−1(x)

)
≥ |s−1|

∫
V

|v|
ds dx.

This is inequality (2.7) for q = 1. Substituting v by |v|q with q > 1, we arrive at

q
|s−1|

∫
V

|∇v||v|q−1

ds−1 dx− s−1
|s−1|2

(∫
V

|v|q

ds−1 (−∆d)dx+
∫

∂V

|v|q

ds−1 ∇d ·νdH n−1(x)
)

≥
∫

V

|v|q

ds dx. (2.8)
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The first term on the left of (2.8) can be written as follows

q
|s−1|

∫
V

|∇v||v|q−1

ds−1 dx =
∫

V

{ q
|s−1|

|∇v|
ds/q−1

}{ |v|q−1

ds−s/q

}
dx

≤ 1
q

∣∣∣ q
s−1

∣∣∣q ∫
V

|∇v|q

ds−q dx+
q−1

q

∫
V

|v|q

ds dx,

by Young’s inequality with conjugate exponents q and q/(q−1). Thus (2.8) becomes

1
q

∣∣∣ q
s−1

∣∣∣q ∫
V

|∇v|q

ds−q dx− s−1
|s−1|2

(∫
V

|v|q

ds−1 (−∆d)dx+
∫

∂V

|v|q

ds−1 ∇d ·νdH n−1(x)
)

≥ 1
q

∫
V

|v|q

ds dx.

Rearranging the constants we arrive at the inequality we sought for.

Remark 2.10. The choice V = Ω is acceptable since v ∈C∞
c (Ω), and taking also q = s = p > 1

in the above lemma, leads to inequalities (2.3)-(2.5) without the first terms on their right hand
side (terms involving |∇v|). In particular we have obtained another proof of the Hardy inequality
(1.1).

3 Proof of Theorem A

We will first reformulate Theorem A in the notation introduced above

Theorem 3.1. Let Ω be a weakly mean convex domain of finite volume H n(Ω) < ∞. Then for
p > n≥ 1 there exists a positive constant C(n, p) such that

sup
x∈Ω

|u(x)| ≤C(n, p)[H n(Ω)]1/n−1/p(Ip[u;Ω]
)1/p for all u ∈C∞

c (Ω).

For the proof we will need the following lemma

Lemma 3.2. Let Ω be a weakly mean convex domain in Rn with H n(Ω)< ∞. Denote by µ the
nonnegative Radon measure in Ω defined by the nonnegative distribution −∆d. Then∫

U
d dµ ≤H n(Ω) for any U b Ω.

Proof. It is easy to see that d ∈W 1,1
0 (Ω) (see for example [HKM, Lemma 1.26]). There exists

thus a sequence of nonnegative functions {φk}k∈N ⊂C∞
c (Ω) such that∫

Ω

|φk−d|dx+
∫

Ω

|∇φk−∇d|dx→ 0, as k→ ∞.

10



Since the limit function d is continuous in Ω, we may assume that φk→ d uniformly on compact
subsets of Ω. Thus ∣∣∣∫

U
(φk−d)dµ

∣∣∣≤ sup
U
|φk−d|µ(U)→ 0, as k→ ∞,

therefore ∫
U

ddµ = lim
k→∞

∫
U

φkdµ. (3.1)

Since both µ and φk are nonnegative we have∫
U

φkdµ ≤
∫

Ω

φkdµ. (3.2)

Using the fact that |∇d|= 1 a.e. in Ω we also have∣∣∣∫
Ω

(∇φk−∇d) ·∇ddx
∣∣∣≤ ∫

Ω

|∇φk−∇d|dx→ 0, as k→ ∞,

and consequently ∫
Ω

∇φk ·∇d dx →H n(Ω), as k→ ∞.

We now note that ∫
Ω

φkdµ =
∫

Ω

φk(−∆d)dx =
∫

Ω

∇φk ·∇ddx,

from which we get

lim
k→∞

∫
Ω

φkdµ = H n(Ω). (3.3)

The result now follows from (3.1), (3.2) and (3.3).

Proof of Theorem 3.1. Assume first that n ≥ 2. From Lemma 7.14 in [GTr], we have for all
x ∈Ω

|u(x)| ≤ 1
nωn

∫
Ω

|∇u(z)|
|x− z|n−1 dz.

Setting u = d1−1/pv we arrive at

nωn|u(x)| ≤
∫

Ω

(
d(z)

)1−1/p|∇v(z)|
|x− z|n−1 dz︸ ︷︷ ︸
=:K(x)

+
p−1

p

∫
Ω

|v(z)|(
d(z)

)1/p|x− z|n−1
dz︸ ︷︷ ︸

=:L(x)

. (3.4)

Using Hölder’s inequality we get

K(x)≤

(∫
Ω

|x− z|−(n−1)p′dz

)1/p′(∫
Ω

dp−1|∇v|pdz

)1/p

. (3.5)

11



By an elementary symmetrization argument (see [GTr, §7.8-eq. (7.31)]) we have

sup
x∈E

∫
E
|x− z|−(n−1)sdz≤ ω

s/n′
n

1− s/n′
[H n(E)]1−s/n′ for all 0≤ s < n′, E ⊂ Rn. (3.6)

Applying this for E = Ω and s = p′ < n′ (since p > n), we get

K(x)≤C(n, p)[H n(Ω)]1/n−1/p

(∫
Ω

dp−1|∇v|pdz

)1/p

. (3.7)

From (3.7) and (2.3) we conclude that

K(x)≤C(n, p)[H n(Ω)]1/n−1/p(Ip[u;Ω]
)1/p

. (3.8)

We next estimate L(x). Using Hölder’s inequality with conjugate exponents p/(p− 1− ε)
and p/(1+ ε), where 0 < ε < (p−n)/p is fixed and depending only on n, p, we get

L(x)≤

(∫
Ω

|x− z|−(n−1)p/(p−1−ε)dz

)1−(1+ε)/p(∫
Ω

|v|p/(1+ε)

d1/(1+ε)
dz

)(1+ε)/p

.

Using (3.6) with s = p/(p− 1− ε), E = Ω for the first factor and Lemma 2.9 with V = Ω,
s = 1/(1+ ε), q = p/(1+ ε) for the second, we obtain

L(x) ≤ C(n, p)[H n(Ω)]1/n−1/p−ε/p

[( p
ε

)p/(1+ε)
∫

Ω

d(p−1)/(1+ε)|∇v|p/(1+ε)dz

+
p
ε

∫
Ω

dε/(1+ε)|v|p/(1+ε)(−∆d)dz

](1+ε)/p

.

Using once more Hölder’s inequality with conjugate exponents (1+ε)/ε and 1+ε in both terms
inside brackets we get

L(x) ≤ C(n, p)[H n(Ω)]1/n−1/p−ε/p

[
[H n(Ω)]ε/(1+ε)

(∫
Ω

dp−1|∇v|pdz
)1/(1+ε)

+
(∫

sprt{v}
d dµ

)ε/(1+ε)(∫
Ω

|v|p(−∆d)dz
)1/(1+ε)

](1+ε)/p

≤C(n, p)[H n(Ω)]1/n−1/p−ε/p(Ip[u;Ω]
)1/p

[
[H n(Ω)]ε/(1+ε)+

(∫
sprt{v}

d dµ

)ε/(1+ε)
](1+ε)/p

,

by (2.3). Using Lemma 3.2 we easily conclude

L(x)≤C(n, p)[H n(Ω)]1/n−1/p(Ip[u;Ω]
)1/p

. (3.9)
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The proof follows inserting (3.9) and (3.8) in (3.4).

For n = 1 it suffices to assume Ω = (−1,1). The result for an arbitrary finite interval follows
then by a translation and a dilation. For any x ∈ (−1,1) we have

|u(x)| ≤ 1
2

∫ 1

−1
|u′|dt,

and setting u = d1−1/pv we arrive at

|u(x)| ≤ 1
2

∫ 1

−1
d1−1/p|v′|dt +

p−1
2p

∫ 1

−1
d−1/p|v|dt.

Applying Lemma 2.9 for s = 1/p and q = 1 on the second term of the right hand side (recalling
Remark 2.5) we obtain

|u(x)| ≤ 1
2

∫ 1

−1
d1−1/p|v′|dt +

1
2

(∫ 1

−1
d1−1/p|v′|dt +2d(0)1−1/p|v(0)|

)
,

=
∫ 1

−1
d1−1/p|v′|dt + |v(0)|.

Because of (2.6), we only need to estimate the first term. For this we use Hölder’s inequality
and then (2.3) if p≥ 2, or Proposition 2.6 if 1 < p < 2. We omit the details.

4 Proof of Theorem B

The proof of Theorem B follows by coupling estimates (2.3) and the one provided in the fol-
lowing proposition which is an extension of [FMT, Theorem 2.5] and [FMT, Theorem 4.5 with
k = 1].

Proposition 4.1. Let either Ω ⊂ Rn, n ≥ 2, be a uniformly C2 mean convex domain of finite
inner radius, or Ω = Rn

+; n≥ 2. For

−1 < b≤ 0, 1≤ p <
n

b+1
, and q :=

np
n− p(b+1)

, (4.1)

there exists a positive constant C such that

C

(∫
Ω

(
db+1/p′ |v|

)q
dx

)p/q

≤
∫

Ω

dp−1|∇v|pdx+
∫

Ω

|v|p(−∆d)dx for all u ∈C∞
c (Ω). (4.2)

Proof. The proof is a variation of the proof of Theorem 4.5 in [FMT] (with k = 1) to which
we refer for more details. The only difference between [FMT] and here is in the range of the
parameter p.
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We start with the case where Ω is a uniformly C2 mean convex domain of finite inner radius.
We recall that we first work near the boundary

Ωδ := {x ∈Ω such that d(x)< δ},

for δ > 0 sufficiently small but fixed, to obtain an L1 interpolation estimate. More precisely,
under the assumptions

ā 6= 0, ā−1 < b̄≤ ā, q̄ :=
n

n− (b̄− ā+1)
, (4.3)

we get (see [FMT, Lemma 4.3])

C‖db̄v‖Lq̄(Ωδ ) ≤
∫

Ωδ

dā|∇v|dx for all v ∈C∞
c (Ωδ ). (4.4)

Working similarly in Ω\Ωδ/2 and noting that δ/2 < d < DΩ there, we get

C‖db̄v‖Lq̄(Ω\Ωδ/2) ≤
∫

Ω\Ωδ/2

dā|∇v|dx for all v ∈C∞
c (Ω\Ωδ/2). (4.5)

Putting estimates (4.4) and (4.5) together we obtain the existence of a constant C =C(ā, b̄,n,δ/DΩ)>
0 such that (cf (2.21) of [FMT]),

C‖db̄v‖Lq̄(Ω) ≤
∫

Ω

dā|∇v|dx+
∫

Ωδ \Ωδ/2

dā−1|v|dx for all v ∈C∞
c (Ω). (4.6)

We next derive the corresponding Lp−Lq estimates, with b, p and q as in (4.1). To this end
we replace v by |v|s in (4.6) with

s = q
p−1

p
+1 =

p
(
n− (b+1)

)
n− p(b+1)

> 1,

to obtain:

C

(∫
Ω

db̄q̄|v|q̄sdx

)1/q̄

≤ s
∫

Ω

dā|v|s−1|∇v|dx+
∫

Ωδ \Ωδ/2

dā−1|v|sdx. (4.7)

We choose ā such that

ā =
p−1

p

[(
b+

p−1
p

)
q+1

]
=

(p−1)(b+1)(n−1)
n− p(b+1)

> 0,

and b̄ such that
b̄q̄ =

(
b+

p−1
p

)
q.
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Straightforward calculations show that

b̄ =

(
p(b+1)−1

)(
n− (b+1)

)
n− p(b+1)

.

It is easy to check that ā− b̄ = −b and therefore the conditions on b̄ imposed by (4.3) are
satisfied. Moreover one easily verifies that q̄s = q.

In view of the above choices we rewrite (4.7) as

C‖db+1/p′v‖1+q/p′

Lq(Ω) ≤ s
∫

Ω

dā|v|s−1|∇v|dx+
∫

Ωδ \Ωδ/2

dā−1|v|sdx. (4.8)

We next apply Holder inequality in both terms of the right hand side to get∫
Ω

dā|v|s−1|∇v|dx =
∫

Ω

{
d1/p′ |∇v|

}{
d(b+1/p′)q/p′ |v|q/p′

}
dx

≤ ‖d1−1/p|∇v|‖Lp(Ω)‖db+1/p′v‖q/p′

Lq(Ω),

and ∫
Ωδ \Ωδ/2

dā−1|v|sdx =
∫

Ωδ \Ωδ/2

{
d−1/p|v|

}{
d(b+1/p′)q/p′ |v|q/p′

}
dx

≤ ‖d−1/pv‖Lp(Ωδ \Ωδ/2)‖d
b+1/p′v‖q/p′

Lq(Ω).

Substituting into (4.8) we get after simplifying,

C‖db+1/p′v‖p
Lq(Ω) ≤

∫
Ω

dp−1|∇v|pdx+
∫

Ωδ \Ωδ/2

d−1|v|pdx. (4.9)

To conclude the proof we need to estimate the last term in (4.9). This is done exactly as in [FMT]
(cf (4.39) of [FMT]) to finally obtain:

C
∫

Ωδ \Ωδ/2

d−1|v|pdx≤
∫

Ω

dp−1|∇v|pdx+
∫

Ω

|v|p(−∆d)dx. (4.10)

Combining (4.9) and (4.10) the result follows.

Next we discuss the case where Ω = Rn
+. In this case the proof is easier due to the fact that

it is enough to work in Ωδ only, since the easy geometry (note that −∆d(x) = 0 for all x ∈ Rn
+)

allows us to take δ arbitrarily large. Thus one first obtains the L1 estimate

C(ā, b̄,n)‖db̄v‖Lq̄(Rn
+)
≤
∫
Rn
+

dā|∇v|dx for all v ∈C∞
c (Rn

+). (4.11)

We then conclude as before. Estimate (4.10) in not needed in this case.
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Remark 4.2. When Ω = Rn
+ we have −∆d(x) = 0 for all x ∈ Rn

+ and Proposition 4.1 reads:

Let b, p,q be as in (4.1). There exists a positive constant C such that

C

(∫
Rn
+

(
xb+1/p′

n |v|
)q

dx

)p/q

≤
∫
Rn
+

xp−1
n |∇v|pdx for all v ∈C∞

c (Rn
+). (4.12)

This is to be compared with the case where the monomial weight in [CR-O, Theorem 1.3] (see
also [Ng]), degenerates to the distance from the boundary of the half-space. In particular, by
the choice Ai = 0 for all i = 1, ...,n− 1 and An = p− 1 in [CR-O], one deduces the following
weighted Sobolev inequality

C

(∫
Rn
+

xp−1
n |v|p(p+n−1)/(n−1)dx

)(n−1)/(p+n−1)

≤
∫
Rn
+

xp−1
n |∇v|pdx for all u ∈C∞

c (Rn),

which for u ∈C∞
c (Rn

+) is a special case of (4.12), as one can easily check by taking b =−(p−
1)/(p+ n− 1). Let us mention that the best constant C in the above inequality is obtained in
[CR-O].

5 Some calculus lemmas

Here we prove several calculus estimates which under our assumptions on the domain Ω show
that we have the correct growth of the local integral of the distance function to the boundary on
small negative powers. We start with:

Lemma 5.1. Let Ω⊂ Rn, n≥ 2, be a uniformly Lipschitz domain and set

Qr :=
H n−1(Br ∩∂Ω)

nωnrn−1 .

(i) There exist positive constants ρ0, A0 such that

Qr ≤ A0, for all r ≤ ρ0. (5.1)

(ii) If Ω is bounded, then (5.1) holds true for any r > 0.

Proof. Let ε be as in Definition 2.3 and suppose r ≤ ε/3. Let Br(z) be a ball such that Br(z)∩
∂Ω 6= /0. Then taking any point x ∈ Br(z)∩∂Ω we have

Br(z)⊂ B2r(x)⊂ Bε(x)⊂Ui,

for some Ui as in the definition of the uniformly Lipschitz domain. Then by the monotonicity of
H n−1 and Remark 2.2 we obtain

H n−1(Br(z)∩∂Ω
)
≤ H n−1(B2r(x)∩∂Ω

)
≤

∫
|y′|<2r

√
1+ |∇ f (y′)|2dy′

=
√

1+L2ωn−1(2r)n−1.
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This shows (i) with ρ0 = ε/3 and A0 =
√

1+L2ωn−12n−1.
Suppose now that r > ε/3 and Ω is bounded. We may consider that {Bε/3(xi)}N0

i=1 covers Ω,
for suitable {xi}N0

i=1 ∈ Rn, and N0 ∈ N. For any z ∈ Rn such that Br(z)∩∂Ω 6= /0, we have

H n−1(Br(z)∩∂Ω
)
≤

N0

∑
i=1

H n−1(Bε/3(xi)∩∂Ω
)

≤ N0

√
1+L2ωn−12n−1(ε/3)n−1

≤ N0

√
1+L2ωn−12n−1rn−1,

and the proof of (ii) is complete with A0 = N0
√

1+L2ωn−12n−1.

The next lemma shows that there are also unbounded domains for which (5.1) is true for any
r > 0.

Lemma 5.2. If Ω (Rn, n≥ 2, is convex then (5.1) holds true for any r > 0.

Proof. Denote first the distance function to Ω̄ by

dc(x) := inf
y∈Ω̄

|x− y|, whenever x ∈Ω
c,

where the exponent c means complement in Rn. It is well known (see [ArmK]) that Ω being
convex is equivalent to dc being convex. Thus ∆dc(x) is a nonnegative Radon measure in Ω

c. In
particular ∇dc ∈DM ∞(Ω

c
) and the generalized Gauss-Green theorem gives

0 ≥ −
∫

Br∩Ω̄c
∆dc dx

= −
∫

Br∩∂Ω

∇dc ·ν dH n−1(x)−
∫

∂BR∩Ω̄c
∇dc ·ν dH n−1(x).

Since ∇dc ·ν =−1 on Br ∩∂Ω we deduce

H n−1(Br ∩∂Ω) ≤
∫

∂Br∩Ω̄c
∇dc ·ν dH n−1(x)

≤ H n−1(∂Br ∩ Ω̄
c)

≤ nωnrn−1,

where we have used the fact that |∇dc · ν | ≤ 1 a.e. on ∂Br ∩ Ω̄c and also the monotonicity of
H n−1.

Proposition 5.3. Let Ω ⊂ Rn, n ≥ 2, be a locally Lipschitz, weakly mean convex domain. For
any θ < 1 and any r > 0 set

Mr(θ) :=
∫

Br∩Ω

d−θ dx.
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Then if θ ∈ (0,1) we have the relation

Mr(θ)≤
ωn

1−θ

(
n+1−θ +nQr

)
rn−θ .

Proof. Writing {d < r} for the set {x ∈Ω : d(x)< r} and {d ≥ r} for its complement in Ω, we
have

Mr(θ) =
∫

Br∩{d≥r}
d−θ dx+

∫
Br∩{d<r}

d−θ dx. (5.2)

For the first integral we have by the monotonicity of H n∫
Br∩{d≥r}

d−θ dx ≤ r−θ H n(Br ∩{d ≥ r}
)

≤ ωnrn−θ . (5.3)

For the second integral we note first that since 1−θ > 0, the generalized Gauss-Green theorem
gives1

(1−θ)
∫

Br∩{d<r}
d−θ dx =

∫
Br∩{d<r}

d1−θ (−∆d)dx+
∫

∂ (Br∩{d<r})
d1−θ

∇d ·ν dH n−1(x). (5.4)

Because of condition (C ), the first term on the right is estimated as follows∫
Br∩{d<r}

d1−θ (−∆d)dx ≤ r1−θ

∫
Br∩{d<r}

(−∆d)dx

= −r1−θ

∫
∂ (Br∩{d<r})

∇d ·ν dH n−1(x),

where we have used the generalized Gauss-Green theorem once more. Inserting this in (5.4) we
arrive at

(1−θ)
∫

Br∩{d<r}
d−θ dx≤

∫
∂ (Br∩{d<r})

(
d1−θ − r1−θ

)
∇d ·ν dH n−1(x).

Since ∇d ·ν =−1 a.e. on ∂Ω we obtain

(1−θ)
∫

Br∩{d<r}
d−θ dx

≤
∫

∂Br∩{d<r}

(
r1−θ −d1−θ

)
|∇d ·ν |dH n−1(x)+ r1−θ H n−1(Br ∩∂Ω)

≤ r1−θ H n−1(
∂Br ∩{d < r}

)
+ r1−θ H n−1(Br ∩∂Ω)

≤ nωnrn−θ + r1−θ H n−1(Br ∩∂Ω), (5.5)

where in the last estimate we have used the monotonicity of H n−1. We conclude by coupling
(5.3) and (5.5) with (5.2).

A direct consequence of Lemma 5.1, Lemma 5.2 and Proposition 5.3 is
1Since d ∈ BV(Ω), its level sets {d < r} are of finite perimeter for a.e. r ∈ (0,∞) (see [EvG, Theorem 1-§5.5])
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Corollary 5.4. Let Ω⊂ Rn, n≥ 2, be a uniformly Lipschitz, weakly mean convex domain.
(i) There exist positive constants ρ0, A0 such that

Mr(θ)≤ A0rn−θ for all θ ∈ (0,1) and all r ≤ ρ0. (5.6)

(ii) If in addition Ω is bounded or convex, then (5.6) holds true for all θ ∈ (0,1) and all r > 0
(for bounded domains this is to be compared with [HK, Lemma 6]).

6 The Hardy-Morrey inequality for n≥ 2 & proof of Theorem D

In the first subsection, by imposing an extra assumption (see (6.1) below), we give a considerably
shorter proof of the Hardy-Morrey inequality of Theorem C. From the results of the previous
section, this extra assumption is satisfied when the domain is weakly mean convex and bounded,
or just convex. In the second subsection we give the proof of Theorem C as stated in the intro-
duction. As a byproduct, in the third subsection we obtain the Hardy-John-Nirenberg estimate
(Corollary E).

6.1 A weaker version of the Hardy-Morrey inequality

We prove the following version of Theorem C:

Theorem 6.1. Let Ω⊂Rn, n≥ 2, be a uniformly C2 mean convex domain of finite inner radius.
Suppose in addition that Ω is such that for some θ0 ∈ (0,1) there exists a positive constant A0
so that

Mr(θ0) =
∫

Br∩Ω

d−θ0dx≤ A0rn−θ0 for all r > 0. (6.1)

Then for p > n, there exists a positive constant C, such that

sup
x,y∈Ω

x 6=y

|u(x)−u(y)|
|x− y|1−n/p ≤C

(
I[u;Ω]

)1/p for all u ∈C∞
c (Ω). (6.2)

Remark 6.2. Because of Corollary 5.4-(ii), the above theorem directly implies Theorem C for
convex or, bounded mean convex domains. To obtain it for domains with finite inner radius the
proof is more delicate and we present it in the next subsection. The reason is that only Corollary
5.4-(i) is available when the domain has finite inner radius, and so in the next subsection we will
present a different argument to handle balls with arbitrary large radius.

Remark 6.3. Assumption (6.1) in Theorem 6.1 easily implies that

Mr(θ)≤ 2A0rn−θ for all θ ∈ (0,θ0) and all r > 0.

To prove Theorem 6.1 we need to recall the well known Morrey’s “Dirichlet growth” theo-
rem (see [Mr, Theorem 3.5.2] or [GTr, Theorem 7.19]).
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Theorem 6.4. Let Ω be a domain in Rn, n≥ 1. Let u∈C∞
c (Ω) and suppose that for some M > 0

and α ∈ (0,1] the following estimate is true for all Br ⊂ Rn∫
Br

|∇u|dx≤Mrn−1+α . (6.3)

Then there exists c(n,α)> 0 such that for all Br ⊂ Rn

sup
x,y∈Br

|u(x)−u(y)| ≤ cMrα ,

or, equivalently (since u is compactly supported)

sup
x,y∈Ω

x 6=y

|u(x)−u(y)|
|x− y|α

≤ cM.

Proof of Theorem 6.1: In view of the above theorem it is enough to establish the following
estimate ∫

Br

|∇u|dx≤ c
(
I[u;Ω]

)1/prn(1−1/p),

for all r > 0 and for some positive constant c not depending on r. To this end, let Br ⊂ Rn such
that Br ∩Ω 6= /0. Setting u = d1−1/pv we have∫

Br

|∇u|dx≤
∫

Br

d1−1/p|∇v|dx︸ ︷︷ ︸
=:Kr

+
p−1

p

∫
Br

d−1/p|v|dx︸ ︷︷ ︸
=:Lr

.

Using first Hölder’s inequality and then (2.3) we get

Kr ≤

(∫
Br

dp−1|∇v|pdx

)1/p

(ωnrn)1−1/p

≤ C(n, p)
(
Ip[u;Ω]

)1/prn(1−1/p). (6.4)

We will next estimate Lr. To this end, we return first in the original function u, and for some
b ∈ (−1,0) that we will chose later, and q := np/

(
n− p(b+1)

)
, we get by Holder’s inequality

Lr =
∫

Br

db|u|d−b−1dx

≤

(∫
Br

(
db|u|

)q
dx

)1/q(
Mr(θ)

)1/q′ ; θ := (b+1)q′.

Taking b sufficiently close to −1, we may assume θ ∈ (0,θ0), so that Mr(θ) is bounded by
2A0rn−θ (see Remark 6.3). Using also the Hardy-Sobolev inequality of Theorem B, we arrive at

Lr ≤C(n, p,b,A0,K)
(
Ip[u;Ω]

)1/pr(n−θ)/q′ .

This is the desired estimate since
n−θ

q′
= n
(

1− 1
p

)
.
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6.2 Proof of Theorem C

Now we prove Theorem C for domains with finite inner radius.

Theorem 6.5. Let Ω⊂Rn, n≥ 2, be a uniformly C2 mean convex domain of finite inner radius.
For p > n, there exists a positive constant C such that

sup
x,y∈Ω

x 6=y

|u(x)−u(y)|
|x− y|1−n/p ≤C

(
Ip[u;Ω]

)1/p for all u ∈C∞
c (Ω).

Proof. We will use again Dirichlet’s growth Theorem 6.4, that is, we will prove∫
Br

|∇u|dx≤ c
(
Ip[u;Ω]

)1/prn(1−1/p) for all r > 0. (6.5)

By Corollary 5.4-(i) we have that the inequality

Mr(θ)≤ A0rn−θ for all θ ∈ (0,1) and all r ≤ ρ0,

holds true for some positive constants ρ0, A0. Arguing exactly as in the proof of Theorem 6.1,
we see that (6.5) is true for all r≤ ρ0. In the sequel we will prove (6.5) for balls of radius r > ρ0.

Setting u = d1−1/pv we have∫
Br

|∇u|dx≤
∫

Br

d1−1/p|∇v|dx︸ ︷︷ ︸
=:Kr

+
p−1

p

∫
Br

d−1/p|v|dx︸ ︷︷ ︸
=:Lr

.

Using first Hölder’s inequality and then (2.3) we get

Kr ≤

(∫
Br

dp−1|∇v|pdx

)1/p

(ωnrn)1−1/p

≤ C(n, p)
(
Ip[u;Ω]

)1/prn(1−1/p). (6.6)

We will next estimate Lr. Using Lemma 2.9 for V = Br, s = 1/p and q = 1, we obtain

p−1
p

Lr ≤ Kr +
∫

Br

d1−1/p|v|(−∆d)dx︸ ︷︷ ︸
=:Nr

+
∫

∂Br

d1−1/p|v|∇d ·ν dH n−1(x).︸ ︷︷ ︸
=:Pr

(6.7)

Kr was estimated in (6.6) so we only need to estimate Nr and Pr. For Nr, since condition (C )
holds we may apply Hölder’s inequality as follows

Nr ≤

(∫
Br∩Ω

d(−∆d)dx

)1−1/p(∫
Ω

|v|p(−∆d)dx

)1/p

.
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Using the generalized Gauss-Green theorem in the first integral, and applying (2.3) in the second,
we obtain

Nr ≤ c(p)

(∫
Br∩Ω

∇d ·∇d dx−
∫

∂ (Br∩Ω)
d∇d ·ν dH n−1(x)

)1−1/p(
Ip[u;Ω]

)1/p

≤ c(p)

(
H n(Br ∩Ω)+

∫
∂Br∩Ω

d dH n−1(x)

)1−1/p(
Ip[u;Ω]

)1/p

≤ c(p)
(
H n(Br)+

DΩ

ρ0
rH n−1(

∂Br ∩Ω
))1−1/p(

Ip[u;Ω]
)1/p

≤ c
(
n, p,DΩ/ρ0

)
rn(1−1/p)(Ip[u;Ω]

)1/p
, (6.8)

where in the last two inequalities we have used first the fact that

d(x)≤ DΩ

ρ0
r for all x ∈Ω, (6.9)

and then the monotonicity of H n−1. We finally estimate Pr. By elementary considerations and
Hölder’s inequality

Pr ≤
∫

∂Br

d1−1/p|v|dH n−1(x)

≤

(∫
∂Br∩Ω

dX−1/(p−1)(d/DΩ)dH n−1(x)

)1−1/p(∫
∂Br

|v|pX(d/DΩ)dH n−1(x)

)1/p

,(6.10)

where X(t) = (1− log t)−1; t ∈ (0,1]. The function tX−1/(p−1)(t/DΩ) is increasing in [0,r], for
any r ∈ (0,DΩ]. We may thus estimate the first factor by

r1−1/pX−1/p(r/DΩ

)[
H n−1(∂Br ∩Ω)

]1−1/p ≤C
(
n, p,DΩ/ρ0

)
rn(1−1/p),

where we have used the monotonicity of H n−1, the fact that X−1/p
(
r/DΩ

)
≤X−1/p

(
ρ0/DΩ

)
for

r≥ ρ0 (note that X−1/p(t) is decreasing in (0,1]), and also the elementary inequality X−1/p
(
ρ0/DΩ

)
≤(

ρ0/DΩ

)−1/p. To estimate the second factor we notice first that the function

x−ξx

r
; x ∈ B̄r,

when restricted to ∂Br gives the unit outer normal ν∂Br to ∂Br. So we use the Gauss-Green
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theorem as follows∫
∂Br

|v|pX(d/DΩ)dH n−1(x)

=
∫

∂Br

|v|pX(d/DΩ)ν∂Br ·ν∂Br dH n−1(x)

=
∫

Br

div
{
|v|pX(d/DΩ)

x−ξx

r

}
dx

≤ p
∫

Ω

|v|p−1|∇v|X(d/DΩ)dx+
∫

Ω

|v|p

d
X2(d/DΩ)dx+

n
r

∫
Br

|v|pX(d/DΩ)dx,

where we have used the fact that |(x−ξx)/r| ≤ 1 for all x ∈ Br. By Proposition 2.8 and Theorem
2.7, the first two summands are bounded by c(p)Ip[u;Ω]. To estimate the last summand, again
by the elementary inequality X(t)≥ t for all t ∈ (0,1], we get dX−1(d/DΩ)≤ DΩ for all x ∈Ω.
Since r > ρ0 we deduce

n
r

∫
Br

|v|pX(d/DΩ)dx ≤ n
DΩ

ρ0

∫
Br

|v|p

d
X2(d/DΩ)dx

≤ C
(
n, p,DΩ/ρ0

)
Ip[u;Ω],

by Theorem 2.7. The above estimates when inserted to (6.10) give

Pr ≤C
(
n, p,DΩ/ρ0

)
rn(1−1/p)(Ip[u;Ω]

)1/p
. (6.11)

In turn, estimates (6.6), (6.8) and (6.11), give

Lr ≤C
(
n, p,DΩ/ρ0

)
rn(1−1/p)(Ip[u;Ω]

)1/p
,

for r > ρ0. This together with (6.6) implies (6.5) for balls of radius r > ρ0. This completes the
proof of the theorem.

6.3 A Hardy-John-Nirenberg inequality

We now proceed in the proof of Theorem D. Recall the seminorm

‖u‖BMO = sup
B

1
H n(B)

∫
B
|u−uB|dx,

where the supremum is taken over all balls B in Rn and uB is the average of u in the ball B, that
is

uB =
1

H n(B)

∫
B

u dx.

Theorem 6.6. Let Ω⊂Rn, n≥ 2, be a uniformly C2 mean convex domain of finite inner radius.
There exists a positive constant C such that

‖u‖BMO ≤C
(
In[u;Ω]

)1/n for all u ∈C∞
c (Ω).
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Proof: Using first the L1-Poincaré inequality (see [EvG, Theorem 2-§4.5]) and then the substi-
tution u = d1−1/nv, we have that∫

Br

|u−uBr |dy ≤ C(n)r
∫

Br

|∇u|dy

≤ C(n)r
∫

Br

d1−1/n|∇v|dy︸ ︷︷ ︸
=:Kr

+C(n)r
∫

Br

d−1/n|v|dy.︸ ︷︷ ︸
=:Lr

The result will follow once we establish the following estimates

Kr, Lr ≤ c
(
In[u;Ω]

)1/nrn−1 for all r > 0.

These estimates are proved in exactly the same way as in estimating Kr and Lr in the proof of
Theorem 6.1 for r ≤ ρ0 and in the proof of Theorem 6.5 for r > ρ0. We note that one can take
p = n in the proofs of these theorems without any change. We omit further details.

As a consequence the above Theorem and (1.11) we obtain Corollary E of the introduction.

7 The Hardy-Morrey inequality for n = 1

As mentioned in the introduction, the one dimensional case of Theorem C is close to the case
where the distance in the Hardy inequality is taken from a point. In this case a logarithmic cor-
rection is needed, see [Ps2]. Following the ideas there, we prove the following sharp substitute
of Theorem C when n = 1.

Theorem 7.1. There exist constants λ = λ (p) ≥ 1 and c = c(p) > 0 such that for all u ∈
C∞

c (α,β )

sup
x,y∈(α,β )

x 6=y

{ |u(x)−u(y)|
|x− y|1−1/p X1/p

( |x− y|
λD

)}
≤ c(p)

(
Ip[u;(α,β )]

)1/p
, (7.1)

where X(t) := (1− log t)−1, t ∈ (0,1] and D = (β −α)/2. The exponent 1/p on X cannot be
decreased.

For the proof it suffices to restrict ourselves to the case α = −1 and β = 1 (note then that
D = 1).

Lemma 7.2. Let q > 1, β > 1− q. There exists a constant c = c(q,β ) > 0, such that for any
absolutely continuous function v in (−1,1), and any λ ≥ 1

sup
x∈(−1,1)

{
|v(x)|X (β+q−1)/q(d(x)/λ

)}
≤ c

(∫ 1

−1
dq−1|v′|qXβ

(
d/λ

)
dt + |v(0)|q

)1/q

.
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Proof. Letting λ ≥ 1, we have for any x ∈ (−1,1)

v(x) =
∫ x

0
v′dt + v(0)

≤

∣∣∣∣∣
∫ x

0
d−1X−β/(q−1)(d/λ

)
dt

∣∣∣∣∣
1/q′(∫ 1

−1
dq−1|v′|qXβ

(
d/λ

)
dt

)1/q

+ |v(0)|, (7.2)

by Hölder’s inequality. For any x ∈ (−1,1) we compute∣∣∣∣∣
∫ x

0
d−1X−β/(q−1)(d/λ

)
dt

∣∣∣∣∣= 1
θ

[
X−θ

(
d(x)/λ

)
−X−θ

(
1/λ

)]
; θ :=

β +q−1
q−1

> 0.

Inserting this in (7.2) we arrive at

|v(x)|Xθ/q′(d(x)/λ
)
≤ c

[
1−
(X(d(x)/λ )

X(1/λ )

)θ]1/q′
(∫ 1

−1
dq−1|v′|qXβ

(
d/λ

)
dt

)1/q

+ |v(0)|

≤ c

(∫ 1

−1
dq−1|v′|qXβ

(
d/λ

)
dt

)1/q

+ |v(0)|,

where c = c(q,β ) = θ−1/q′ , and we have used twice the fact that 0 < X(t)≤ 1 for all t ∈ (0,1].
The desired inequality follows using a1/q + b1/q ≤ 21−1/q(a+ b)1/q, for all q > 1 and a,b ≥
0.

Proposition 7.3. Let p > 1. There exists a constant c = c(p)> 0, such that for any λ ≥ 1

sup
x∈(−1,1)

{ |u(x)|
(d(x))1−1/p X1/p(d(x)/λ

)}
≤ c
(
Ip[u;(−1,1)]

)1/p for all u ∈C∞
c (−1,1). (7.3)

Proof. Let u ∈C∞
c (−1,1) and define v by u(x) =

(
d(x)

)1−1/pv(x). If 1 < p < 2, by Lemma 7.2
for q = p and β = 2− p, we have that for any λ ≥ 1

|v(x)|X1/p(d(x)/λ
)
≤ c

(∫ 1

−1
dp−1|v′|pX2−p(d/λ

)
dt + |v(0)|p

)1/p

.

The result follows by Proposition 2.6. If p≥ 2, by Lemma 7.2 for q = 2 and β = 0 we have

|w(x)|X1/2(d(x)/λ
)
≤ c

(∫ 1

−1
d|w′|2dt + |w(0)|2

)1/2

,
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for an absolutely continuous function w in (−1,1) and any λ ≥ 1. For w(x) = |v(x)|p/2 we obtain

|v(x)|X1/p(d(x)/λ
)
≤ c

(∫ 1

−1
d|v|p−2|v′|2dt + |v(0)|p

)1/p

.

The result follows by (2.4).

Proof of Theorem 7.1. For −1 < y < x < 1 we have

|u(x)−u(y)| =
∣∣∣∫ x

y
u′dt
∣∣∣

(setting u(t) = (d(t))1−1/pv(t)) ≤
∫ x

y
d1−1/p|v′|dt︸ ︷︷ ︸
=:K(x,y)

+
p−1

p

∫ x

y
d−1/p|v|dt︸ ︷︷ ︸
=:Λ(x,y)

. (7.4)

To estimate K(x,y) we use Hölder’s inequality to get

K(x,y) ≤ (x− y)1−1/p

(∫ 1

−1
dp−1|v′|pdt

)1/p

(by (2.3)) ≤ c(p)(x− y)1−1/p(Ip[u;(−1,1)]
)1/p

. (7.5)

To estimate Λ(x,y) we return to the original variable by v(t) =
(
d(t)

)1/p−1u(t). Thus

Λ(x,y) =
∫ x

y

|u|
d

dt.

Inserting (7.3) in Λ(x,y) we obtain

Λ(x,y) ≤ c(p)
(
Ip[u;(−1,1)]

)1/p
∫ x

y
d−1/pX−1/p(d/λ

)
dt

≤ c(p)(x− y)1−1/pX−1/p((x− y)/λ )
(
Ip[u;(−1,1)]

)1/p
, (7.6)

for some λ ≥ 1, by virtue of Lemma 2.5 of [Ps2]. Coupling (7.5) and (7.6) with (7.4) we obtain
the desired estimate.

To prove that the exponent 1/p cannot be decreased, we will follow the argument introduced
in [PsSp]: Assuming that the exponent can be decreased we will violate the optimal homoge-
neously improved Hardy inequality (obtained in [BrM, Lemma A.2] for the case p = 2 and in
[BFT] in the general case). To this end, let ε ∈ (0,1], c > 0 and λ ≥ 1, be such that

sup
x,y∈(−1,1)

x 6=y

{ |u(x)−u(y)|
|x− y|1−1/p X (1−ε)/p

( |x− y|
λ

)}
≤ c
(
Ip[u;(−1,1)]

)1/p for all u ∈C∞
c (−1,1).

26



Restricting on functions u ∈C∞
c (0,1) and taking y = 0, we obtain

sup
x∈(0,1)

|u(x)|
x1−1/p X (1−ε)/p

( x
λ

)
≤ c
(
Jp[u;(0,1)]

)1/p for all u ∈C∞
c (0,1),

where Jp[u;(0,1)] :=
∫ 1

0 |u′|pdt− (1−1/p)p ∫ 1
0 |u|p/t pdt. This readily implies that

∫ 1

0

|u(t)|p

t p X2−ε/2
( t

λ

)
dt ≤ cJp[u;(0,1)]

∫ 1

0
t−1X1+ε/2

( t
λ

)
dt for all u ∈C∞

c (0,1). (7.7)

Clearly, since ε > 0 the integral on the right is a finite constant depending only on ε and λ . Thus
we have violated the optimality of the exponent 2 on the remainder term of the one dimensional
case of the improved Hardy inequality of [BFT, Theorem A] (for k = n = 1 there).
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