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Abstract. This paper focuses on weak solvability concepts for rate-independent systems in a metric setting.

Visco-Energetic solutions have been recently obtained by passing to the time-continuous limit in a time-

incremental scheme, akin to that for Energetic solutions, but perturbed by a ‘viscous’ correction term, as

in the case of Balanced Viscosity solutions. However, for Visco-Energetic solutions this viscous correction is

tuned by a fixed parameter µ. The resulting solution notion is characterized by a stability condition and an

energy balance analogous to those for Energetic solutions, but, in addition, it provides a fine description of the

system behavior at jumps as Balanced Viscosity solutions do. Visco-Energetic evolution can be thus thought

as ‘in-between’ Energetic and Balanced Viscosity evolution.

Here we aim to formalize this intermediate character of Visco-Energetic solutions by studying their singular

limits as µ ↓ 0 and µ ↑ ∞. We shall prove convergence to Energetic solutions in the former case, and to

Balanced Viscosity solutions in the latter situation.

Dedicated to Gianni Gilardi on the occasion of his 70th birthday

1. Introduction

A large class of rate-independent systems are driven by

- a time-dependent energy functional E : [0, T ]×X → (−∞,∞], with [0, T ] the time span during which

the system is observed, and X the space of the states of the system,

- a (positive) dissipation functional D : X ×X → [0,∞), keeping track of the energy dissipated by the

curve u : [0, T ]→ X describing the evolution of the system, that satisfies suitable structural properties

peculiar of rate-independence.

When X is a (separable) Banach space, a natural class of dissipations is provided by translation invariant

functionals of the form D(u1, u2) := Ψ(u2−u1), where Ψ : X → [0,∞) is a (convex, lower semicontinuous)

dissipation potential, positively homogeneous of degree 1, namely Ψ(λv) = λΨ(v) for all λ ≥ 0 and v ∈ X.

The evolution of the rate-independent system is governed by the doubly nonlinear differential inclusion

∂Ψ(u′(t)) + ∂uE(t, u(t)) 3 0 in X∗ for a.a. t ∈ (0, T ), (1.1)

where ∂Ψ : X ⇒ X∗ is the subdifferential in the sense of convex analysis, while ∂uE : [0, T ] × X ⇒ X∗ is

a suitable notion of subdifferential of E w.r.t. the variable u. As it will be apparent from the forthcoming

discussion, in general (1.1) is only formally written.

More generally, throughout this paper we shall assume that the dissipation D is induced by a distance d on

the space X, such that

(X, d) is a complete metric space. (X)

We will henceforth denote a (metric) rate-independent system by (X,E, d).
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Rate-independent evolution occurs in manifold problems in physics and engineering, cf. [Mie05, MR15] for a

survey. In addition to its wide range of applicability, over the last two decades the analysis of rate-independent

systems has attracted considerable interest due to its intrinsic mathematical challenges: first and foremost,

the quest of a proper solvability concept for the system (X,E, d). In fact, since the dissipation potential has

linear growth at infinity, one can in general expect only BV-time regularity for the curve u (unless the energy

functional is uniformly convex). Thus u may have jumps as a function of time. Therefore, the pointwise

derivative u′ in the subdifferential inclusion (1.1) in the Banach setting, and the metric derivative |u′| in the

general metric setup (X), need not be defined. This calls for a suitable weak formulation of rate-independent

evolution, also able to satisfactorily capture the behavior of the system in the jump regime.

In what follows we illustrate the three solution concepts this paper is concerned with, referring to Sections

2 and 3 for more details and precise statements.

1.1. Energetic, Balanced Viscosity, and Visco-Energetic solutions. The pioneering papers [MT99,

MT04] advanced the by now classical concept of (Global) Energetic solution to the rate-independent sys-

tem (X,E, d) (cf. also the notion of ‘quasistatic evolution’ in the realm of crack propagation, dating back to

[DMT02b]), which can be in fact given in a more general topological setting [MM05]. It is a curve u : [0, T ]→ X

with bounded variation, complying for every t ∈ [0, T ] with

- the global stability condition

E(t, u(t)) ≤ E(t, v) + d(u(t), v) for every v ∈ X, (Sd)

- the energy balance

E(t, u(t)) + Vard(u, [0, t]) = E(0, u(0)) +

∫ t

0

∂tE(s, u(s))ds . (Ed)

Here, Vard(u, [0, t]) denotes the (pointwise) total variation of the curve u induced by the metric d, which is

related to ‘energy dissipation’: in fact, (Ed) balances the stored energy at the process time t and the energy

dissipated up to t with the initial energy and the work of the external loadings, encoded in the second integral on

the right-hand side. Existence results for Energetic solutions may be proved by resorting to a well understood

time discretization procedure. Indeed, for every fixed partition Tτ := {t0τ = 0 < t1τ < . . . < tN−1
τ < tNτ = T}

of the interval [0, T ], with fineness τ := maxi=1,...,N (tiτ−ti−1
τ ), discrete solutions (Uτn)Nn=1 are constructed as

solutions of the time-incremental minimization scheme

min
U∈X

(
E(tnτ , U) + d(Un−1

τ , U)
)
. (IMτ )

Under suitable conditions it can be shown that, for every null sequence (τk)k, up to a subsequence the piecewise

constant interpolants (Uτk)k of the discrete solutions converge to an Energetic solution. While widely applied,

the Energetic concept has also been criticized on the grounds that the global stability condition (Sd) is too

strong a requirement, when dealing with nonconvex energies. To avoid violating it, the system may in fact

have to change instantaneously in a very drastic way, jumping into very far-apart energetic configurations,

possibly ‘too early’. In this connection, we refer to the discussions from [KMZ08, Ex. 6.3], [MRS09, Ex. 6.1],

as well as to [RS13], providing a characterization of Energetic solutions to one-dimensional rate-independent

systems (i.e., with X = R), driven by a fairly broad class of nonconvex energies. In [RS13], the input-output

relation associated with the Energetic concept is shown to be related to the so-called Maxwell rule for hysteresis

processes [Vis94]. These features are also reflected in the jump conditions satisfied by an Energetic solution u

at every jump point t ∈ Ju (u(t−), u(t+) denoting the left/right limits of u at t and Ju its jump set), namely

d(u(t−), u(t)) = E(t, u(t−))− E(t, u(t)), d(u(t), u(t+)) = E(t, u(t))− E(t, u(t+)), (1.2)

which show the influence of the global energy landscape of E.

The global stability condition (Sd) in fact stems from the global minimization problem (IMτ ), whereas a

scheme based on local minimization would be preferable, cf. [DMT02a] for a first discussion of this in the realm
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of crack propagation, and [EM06] in the frame of abstract (finite-dimensional) rate-independent systems. This

localization can be achieved by perturbing the variational scheme (IMτ ) with a term, modulated by a viscosity

parameter ε, which penalizes the squared distance from the previous step Un−1
τ . One is thus led to consider

the time-incremental minimization

min
U∈X

(
E(tnτ , U) + d(Un−1

τ , U) +
ε

2τ
d2(Un−1

τ , U)
)
, (IMε,τ )

which may be considered as a viscous approximation of (IMτ ). For fixed ε > 0, the limit passage as τ ↓ 0 in

(IMε,τ ) leads to solutions (of the metric formulation) of the Generalized Gradient System (X,E, d, ψε), where

the dissipation function ψε : [0,∞)→ [0,∞) is given by

ψε(r) = r +
ε

2
r2 =

1

ε
ψ(εr) with ψ(r) = r +

1

2
r2 . (1.3)

We refer to [RMS08] for existence results for gradient systems in metric spaces, driven by dissipation potentials

with superlinear growth at infinity like ψε. In turn, it has been shown in [MRS09] (cf. also [MRS12b]) that,

under suitable conditions on the energy functional, time-continuous solutions (to the metric formulation) of

(X,E, d, ψε) converge as ε ↓ 0, up to reparamerization, to a Balanced Viscosity (BV) solution of the rate-

independent system (X,E, d). The latter is a curve u ∈ BV([0, T ];X) satisfying

- the local stability condition

|DE|(t, u(t)) ≤ 1 for every t ∈ [0, T ] \ Ju, (Sd,loc)

- the energy balance

E(t, u(t)) + Vard,v(u, [0, t]) = E(0, u(0)) +

∫ t

0

∂tE(s, u(s))ds for all t ∈ [0, T ] . (Ed,v)

Here, |DE| : [0, T ]×X → [0,∞] is the metric slope of the energy functional E, namely

|DE|(t, u) := lim sup
v→u

(E(t, u)−E(t, v))+

d(u, v)
, (1.4)

and Vard,v is a suitably augmented notion of total variation, fulfilling Vard,v(u, [a, b]) ≥ Vard(u, [a, b]) for all

[a, b] ⊂ [0, T ], which measures the energy dissipated along the jump, at a point t ∈ Ju, by means of the cost

v(t, u(t−), u(t+)) := inf
{∫ r1

r0

|ϑ′|(r) (|DE|(t, ϑ(r)) ∨ 1) dr :

ϑ ∈ AC([r0, r1];X), ϑ(r0) = u(t−), ϑ(r1) = u(t+)
} (1.5)

that is reminiscent of the viscous approximation (IMε,τ ). Indeed, it is possible to show (cf. (1.6) ahead) that

every BV solution to (X,E, d) complies with the jump conditions

E(t, u(t−))− E(t, u(t+)) = v(t, u(t−), u(t+)) =

∫ r1

r0

|ϑ′|(r) (|DE|(t, ϑ(r)) ∨ 1) dr (1.6)

at every jump point t ∈ Ju, with ϑ an optimal jump transition between u(t−) and u(t+). Any optimal

transition can be decomposed into an (at most) countable collection of sliding transitions, evolving in the

rate-independent mode, and viscous transitions, i.e. (metric) solutions of the Generalized Gradient System

(X,E, d, ψ) with the superlinear ψ from (1.3), and where the time variable in the energy functional is frozen

at the jump time t. Therefore, BV solutions account for the onset of viscous behavior at jumps of the system,

which can be in fact interpreted as fast transitions (possibly) governed by viscosity. The characterization in

the one-dimensional case, with a nonconvex driving energy, from [RS13] reveals that the input-output relation

underlying BV solutions follows the delay rule [Vis94], as they tend to jump ‘as late as possible’.
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A notable feature of BV solutions is that they can be directly obtained as limits of the discrete solutions

arising from the perturbed scheme (IMε,τ ), when the parameters ε and τ jointly tend to zero with convergence

rates such that

lim
ε,τ↓0

ε

τ
= +∞ ; (1.7)

the argument developed in [MRS12a, MRS16] in the Banach setting can be in fact easily extended to the

metric framework, cf. the discussion in Sec. 3.1. This remarkable property has somehow inspired the approach

in [MS16]. There, a new notion of rate-independent evolution has been obtained in the time-continuous limit,

as τ ↓ 0, of the perturbed time-incremental minimization scheme

min
U∈X

(
E(tnτ , U) + d(Un−1

τ , U) +
µ

2
d2(Un−1

τ , U)
)

with µ > 0 a fixed parameter. (IMµ)

The analysis carried out in [MS16] in fact covers a more general, topological setting, akin to that of [MM05],

with a general viscous correction δ : X × X → [0,∞) compatible, in a suitable sense, with the metric d:

a particular case is in fact δ(u, v) = µ
2 d

2(u, v) as in (IMµ). In the simplified metric setting of (X), under

the same conditions ensuring the existence of Energetic solutions it is possible to show that the (piecewise

constant interpolants of the) discrete solutions arising from (IMµ) converge, as τ ↓ 0 and µ > 0 is fixed, to a

(µ-)Visco-Energetic solution to the rate-independent system (X,E, d). In what follows, we will simply speak

of Visco-Energetic (VE) solutions, and often highlight their dependence on the parameter µ in the acronym

VEµ. A VEµ solution is a curve u ∈ BV([0, T ];X) complying with the

- ‘perturbed’, still global, stability condition

E(t, u(t)) ≤ E(t, v) + d(u(t), v) +
µ

2
d2(u(t), v) for every v ∈ X and for every t ∈ [0, T ] \ Ju, (SD)

- the energy balance

E(t, u(t)) + Vard,c(u, [0, t]) = E(0, u(0)) +

∫ t

0

∂tE(s, u(s))ds for all t ∈ [0, T ] . (Ed,c)

Here, Vard,c is an alternative augmented total variation functional, again estimating the total variation induced

by d, but featuring a different notion of jump dissipation cost. In analogy with (1.5), the visco-energetic cost

c (we shall often write cµ to highlight its dependence on the parameter µ, and accordingly write (Ed,cµ)), is

still obtained by minimizing a suitable transition cost TrcVE over a class of continuous, but not necessarily

absolutely continuous, curves ϑ : E → X, with E an arbitrary compact subset of R having a possibly more

complicated structure than that of an interval. The transition cost TrcVE evaluates (1) the d-total variation

Vard(ϑ,E) of ϑ over E; (2) a quantity related to the “gaps” of the set E; (3) a quantity measuring the violation

of the (global) stability condition (SD) along the jump transition ϑ, cf. [MS16] and Sec. 2.2 ahead for all details

and precise formulae. In this context as well, it can be proved (cf. [MS16, Prop. 3.8]) that any VE solution u

satisfies at its jump points t ∈ Ju the jump conditions

E(t, u(t−))− E(t, u(t+)) = c(t, u(t−), u(t+)) = TrcVE(t, ϑ, E) (1.8)

with ϑ : E → X an optimal transition curve between u(t−) and u(t+). Furthermore, any optimal transition

can be decomposed into an (at most countable) collection of sliding transitions, parameterized by a continuous

variable and fulfilling the stability condition (SD), and pure jump transitions, defined on discrete subsets of E,

along which the stability (SD) may be violated. A notable property of VE solutions is that, if an optimal jump

transition ϑ : E → X at a jump point t does not comply with the stability condition (SD) at some s ∈ E, then

s is isolated and, denoting by s− := max(E ∩ (−∞, s)), there holds

ϑ(s) ∈ Argminy∈X

{
E(t, y) + d(ϑ(s−), y) +

µ

2
d2(ϑ(s−), y)

}
.

A complete characterization of VE solutions to one-dimensional rate-independent systems has been recently

provided in [Min16], showing that their behavior strongly depends on the parameter µ. When µ = 0, VE

solutions coincide with Energetic solutions and therefore they satisfy the Maxwell rule. For a sufficiently
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‘strong’ viscous correction, i.e. with µ above a certain threshold depending on the (nonconvex) driving energy,

VE solutions exhibit a behavior akin to that of BV solutions, and follow the delay rule. With a ‘weak’ correction,

VE solutions have an intermediate character between Energetic and BV solutions.

1.2. Main results. In this paper, we aim to gain further insight into this in-between quality of VE solutions

and into the role of the tuning parameter µ, revealed by the analysis in [Min16], in a more general context. To

this end, we shall study the singular limits of VEµ solutions to the (metric) rate-independent system (X,E, d)

as µ ↓ 0 and µ ↑ ∞.

With Theorem 1 we will show that, any sequence (un)n of VEµn solutions corresponding to a null sequence

µn ↓ 0 converges, up to a subsequence, to an Energetic solution of (X,E, d). Theorem 2 will address the

behavior of a sequence (un)n of VEµn solutions with parameters µn ↑ ∞. In this case, in accordance with

condition (1.7), we expect to obtain BV solutions. We will prove indeed that, up to a subsequence, as µn ↑ ∞
VEµn solutions converge to a BV solution of (X,E, d).

While referring to Sections 4 and 5 for further comments and all details, let us mention here that the proof of

Thm. 2 is quite challenging. In fact, it involves passing from the transitions that describe the jump behavior of

a sequence of VEµn solutions, and that are given by a collection of ‘sliding pieces’ and discrete trajectories, to

the jump transitions for BV solutions, that are instead absolutely continuous curves. This can be achieved by

means of a careful reparameterization technique, combined with a delicate compactness argument for transition

curves in varying domains.

Plan of the paper. In Section 2 we collect some preliminary results, set up the basic assumptions on the

energy functional E, and give the precise definitions of Energetic, Balanced Viscosity, and Visco-Energetic

solutions to the rate-independent system (X,E, d). In Section 3 we recapitulate the existence results for the

three solution concepts, and state our own Theorems 1 and 2, whose proof is developed throughout Sections 4

and 5, also resorting to some auxiliary results stated and proved in the Appendix.

2. Preliminary results and overview of the solution concepts for rate-independent systems

We start by fixing some notation: Given an arbitrary subset E ⊂ R, we shall denote by

Pf (E) the collection of all finite subsets of E, E− := inf E, E+ := supE . (2.1)

Kuratowski convergence of sets. In view of the compactness argument developed in Section 5 ahead, here

we provide a minimal aside on the notion of Kuratowski convergence of sets, confining the discussion to closed

sets, and referring to [AT04] for all details. We say that a sequence (Cn)n of closed subsets of X converge in

the sense of Kuratowski to a closed set C, if

Lin→∞Cn = Lsn→∞Cn = C, (2.2)

where

Lin→∞Cn := {x ∈ X : ∃xn ∈ Cn such that xn → x}, (2.3a)

Lsn→∞Cn := {x ∈ X : ∃ j 7→ nj increasing and xnj ∈ Cnj such that xnj → x}. (2.3b)

If all the closed sets Cn are contained in a compact set K, then Kuratowski convergence coincides with the

convergence induced by the Hausdorff distance [AT04, Prop. 4.4.14]. That is why, the Blaschke Theorem (cf.,

e.g., [AT04, Thm. 4.4.15]) is applicable, ensuring that, if K ⊂ X is a fixed compact set, then every sequence

of closed sets (Cn)n ⊂ K admits a subsequence converging in the Kuratowski sense to a closed set C ⊂ K. If

the sets Cn are connected, then C is also connected.
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2.1. Preliminaries on functions of bounded variation and absolutely continuous functions. Let us

first recall some preliminary definitions and properties related to functions of bounded variation with values in

the metric space (X, d). The pointwise total variation Vard(u,E) of a function u : E → X is defined by

Vard(u,E) := sup


M∑
j=1

d(u(tj−1), u(tj)) : t0 < t1 < . . . < tM , {tj}Mj=0 ∈ Pf (E)

 , (2.4)

with Vard(u,Ø) := 0. We define the space of functions with bounded variation via

BVd(E;X) := {u : E → X : Vard(u,E) <∞} .

For every u ∈ BVd(E;X) we may introduce the function

Vu : [E−, E+]→ [0,∞) given by Vu(t) := Vard(u,E ∩ [E−, t]) . (2.5)

Observe that Vu is monotone nondecreasing and satisfies

d(u(t0), u(t1)) ≤ Vard(u, [t0, t1]) = Vu(t1)− Vu(t0) for all t0, t1 ∈ E with t0 ≤ t1 .

Since the metric space (X, d) is complete, every function u ∈ BVd(E;X) is regulated, i.e. at every t ∈ E the

left and right limits u(t−) and u(t+) exist (with obvious adjustments at E− and E+). We recall that u only

has jump discontinuities, and that its (at most) countable jump set Ju coincides with the jump set of Vu.

We will also consider the distributional derivative νu of the function Vu and recall that the Borel measure

νu can be decomposed into the sum

νu = νd
u + νJ

u (2.6)

with νd
u the diffuse part of νu (i.e. the sum of its absolutely continuous and Cantor parts), fulfilling νd

u({t}) = 0

for every t ∈ [E−, E+], and νJ
u its jump part, concentrated on the set Ju, so that

νJ
u({t}) = d(u(t−), u(t)) + d(u(t)), u(t+)) for every t ∈ Ju.

Therefore we have

Vard(u, [t0, t1]) = νd
u([t0, t1]) + Jmpd(u; [t0, t1]) (2.7)

for every interval [t0, t1] ⊂ E, with the jump contribution

Jmpd(u; [t0, t1]) := d(u(t0)), u(t0+)) + d(u(t1−)), u(t1)) +
∑

t∈Ju∩(t0,t1)

(d(u(t−), u(t)) + d(u(t), u(t+))) . (2.8)

In the definition of Balanced Viscosity and Visco-Energetic solutions, there will come into play an alter-

native notion of total variation for a curve u ∈ BV([0, T ];X), which will reflect the energetic behavior of

the (Balanced Viscosity/Visco-Energetic) solution at jump points. It will be obtained by suitably modifying

the jump contribution to the total variation induced by d, cf. (2.7), in terms of a (general) cost function

e : [0, T ]×X×X → [0,∞], with e ≥ d, that shall measure the energy dissipated along a jump. Thus, hereafter

we will refer to e as jump dissipation cost. As particular cases of e, we will consider

- the viscous (jump dissipation) cost v, cf. (2.21) ahead, in the case of Balanced Viscosity solutions;

- the visco-energetic (jump dissipation) cost c, cf. (2.28) ahead, in the case of Visco-Energetic solutions.

With the jump dissipation cost e we associate the incremental cost

∆e : [0, T ]×X ×X → [0,∞], ∆e(t, u−, u+) := e(t, u−, u+)− d(u−, u+) for all t ∈ [0, T ], u−, u+ ∈ X, (2.9)

where the notation u−, u+ is suggestive of the fact that, in the definition of the total variation functional

induced by e, the incremental cost will be evaluated at the left and right limits u(t−) and u(t+) at a jump

point of a curve u. We will also use the notation

∆e(t, u−, u, u+) := ∆e(t, u−, u) + ∆e(t, u, u+) .

We are now in a position to introduce the augmented total variation functional induced by e.
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Definition 2.1. Given a (jump dissipation) cost function e and the associated incremental cost ∆e, and given

a curve u ∈ BV([0, T ];X), we define the incremental jump variation of u on a sub-interval [t0, t1] ⊂ [0, T ] by

Jmp∆e
(u; [t0, t1]) := ∆e(t0, u(t0)), u(t0+))+∆e(t1, u(t1−)), u(t1))+

∑
t∈Ju∩(t0,t1)

∆e(t, u(t−), u(t), u(t+)) . (2.10)

This induces the augmented total variation functional

Vard,e(u, [t0, t1]) := Vard(u, [t0, t1]) + Jmp∆e
(u; [t0, t1]) along any sub-interval [t0, t1] ⊂ [0, T ]. (2.11)

Since we have subtracted from the e-jump contribution the d-distance of the jump end-points, cf. (2.9), the

d-jump contribution (2.8) to Vard cancels out, and in fact only the diffuse contribution νd
u([t0, t1]) remains. In

fact, one could rewrite Vard,e(u, [t0, t1]) as

Vard,e(u, [t0, t1]) = νd
u([t0, t1]) + Jmpe(u; [t0, t1]), (2.12)

with Jmpe(u; [t0, t1]) defined by (2.10) with the “whole” cost e in place of its incremental version ∆e, i.e.

Jmpe(u; [t0, t1]) := e(t0, u(t0), u(t0+)) + e(t1, u(t1−), u(t1))

+
∑

t∈Ju∩(t0,t1)

(e(t, u(t−), u(t)) + e(t, u(t), u(t+))) . (2.13)

Clearly, Vard,e(u, [t0, t1]) ≥ Vard(u, [t0, t1]), and they coincide if e = d, or when Ju = Ø. Moreover, as

observed in [MS16], although it need not be induced by a distance on X, Vard,e still enjoys the additivity

property

Vard,e(u, [a, c]) = Vard,e(u, [a, b]) + Vard,e(u, [b, c]) for all 0 ≤ a ≤ b ≤ c ≤ T.

Finally, we recall that a curve u : [0, T ]→ X is absolutely continuous (and write u ∈ AC([0, T ];X)) if there

exists m ∈ L1(0, T ) such that

d(u(s), u(t)) ≤
∫ t

s

m(r)dr for all 0 ≤ s ≤ t ≤ T. (2.14)

For every u ∈ AC([0, T ];X), the limit

|u′|(t) = lim
s→t

d(u(s), u(t))

|t− s|
exists for a.a. t ∈ (0, T ), (2.15)

cf. [AGS08, Sec. 1.1]. We will refer to it as the metric derivative of u at t. The map t 7→ |u′|(t) belongs to

L1(0, T ) and it is minimal within the class of functions m ∈ L1(0, T ) fulfilling (2.14).

2.2. Energetic, Balanced Viscosity, and Visco-Energetic solutions at a glance. We now give a quick

overview of the notions of rate-independent evolution this paper is concerned with. We aim to somehow

motivate the various solution concepts and in addition highlight both the common points, and the differences,

in their structure.

Underlying the upcoming definitions, there will be the following basic conditions on the energy functional

E. Let us mention in advance that we in fact allow for a possibly nonsmooth time-dependence t 7→ E(t, u).

However, in what follows for simplicity we will confine our analysis to the case in which the domain of E(t, ·)
in fact coincides with X for every t ∈ [0, T ], referring to [MS16, Rmk. 2.7] for a discussion of the more general

case in which dom(E(t, ·)) is a proper subset of X (still independent of the time variable).
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Basic assumptions on the energy. Throughout the paper, we will require that E complies with two basic

properties, involving the perturbed energy functional

F : [0, T ]×X → R F(t, u) := E(t, u) + d(xo, u) with xo a given reference point in X (2.16)

and its sublevel sets SC := {(t, u) ∈ [0, T ]×X : F(t, u) ≤ C}. Namely,

Lower semicontinuity and compactness: for all C ∈ R

E is lower semicontinuous on SC and the sets SC are compact in [0, T ]×X; (E1)

Power control: there exists a map P : [0, T ]×X → R fufilling

lim inf
s↑t

E(t, u)− E(s, u)

t− s
≥ P(t, u) ≥ lim sup

s↓t

E(s, u)− E(t, u)

s− t
for all (t, u) ∈ [0, T ]×X,

∃CP > 0 ∀ (t, u) ∈ [0, T ]×X : |P(t, u)| ≤ CPF(t, u) .

(E2)

We may understand the power functional P as a sort of “time superdifferential” of the energy functional,

surrogating its partial time derivative in the case where the functional t 7→ E(t, u) is not differentiable at every

point of [0, T ] ×X. This for instance occurs for reduced energies having the form E(t, u) = minϕ∈Φ I(t, ϕ, u)

and such that the set of minimizers does not reduce to a singleton, as considered, e.g., in [KZM10, MRS13,

MRS12b, MS16]. By repeating the very same arguments as in [MS16], we may deduce from (E1) & (E2) that

the function t 7→ E(t, u) is Lipschitz continuous for every u ∈ X, with

P(t, u) = ∂tE(t, u) for almost all t ∈ [0, T ] and for all u ∈ X.
(2.17)

Therefore,

E(t, u) = E(s, u) +

∫ t

s

P(r, u)dr for every [s, t] ⊂ [0, T ]. (2.18)

Combining this with the power control estimate in (E2) and exploiting the Gronwall Lemma, we conclude that

F(t, u) ≤ F(s, u) exp (CP |t− s|) for all s, t ∈ [0, T ]. (2.19)

That is why, it is significant (and notationally convenient) to work with the functional F0(u) := F(0, u), which

controls F(t, u), and thus the power functional P(t, u), at all t ∈ [0, T ].

We are now in a position to give the concept of Energetic solution, dating back to [MT99, MT04], cf. also

[Mie05].

Definition 2.2 (Energetic solution). A curve u ∈ BV([0, T ];X) is an Energetic solution of the rate-independent

system (X,E, d) if it satisfies for every t ∈ [0, T ]

- the global stability condition

E(t, u(t)) ≤ E(t, v) + d(u(t), v) for every v ∈ X, (Sd)

- the energy balance

E(t, u(t)) + Vard(u, [0, t]) = E(0, u(0)) +

∫ t

0

P(s, u(s))ds . (Ed)

For later use, we introduce the d-stable set

Sd := {(t, u) ∈ [0, T ]×X : E(t, u) ≤ E(t, v) + d(u, v) for all v ∈ X},

with its time-dependent sections Sd(t) := {u ∈ X : (t, u) ∈ Sd} . We postpone to Section 3.1 a discussion on

the existence of Energetic solutions.

As already mentioned in the Introduction, Balanced Viscosity solutions arise in the time-continuous limit

of the time-incremental scheme (IMε,τ ), when the parameters ε and τ both tend to zero with ε
τ ↑ ∞ cf. (1.7).

They fulfill the local version of the stability condition (Sd), involving the metric slope of the energy functional

E, cf. (1.4). The “viscous” character of the approximation that underlies condition (1.7), is also reflected in the
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viscous jump dissipation cost. Indeed, at fixed process time t ∈ [0, T ], v(t, u−, u+) is obtained by minimizing

the transition cost

TrcBV(t, ϑ, [r0, r1]) :=

∫ r1

r0

|ϑ′|(r) (|DE|(t, ϑ(r)) ∨ 1) dr (2.20)

over all absolutely continuous curves ϑ on an interval [r0, r1], connecting the two points u− and u+, where we

recall that |ϑ′| is the (almost everywhere defined) metric derivative of the curve ϑ. Namely,

v(t, u−, u+) := inf {TrcBV(t, ϑ, [r0, r1]) : ϑ ∈ AC([r0, r1];X), ϑ(r0) = u−, ϑ(r1) = u+} . (2.21)

We can then introduce the incremental cost ∆v (2.9) and the jump variation Jmp∆v
(2.10) associated with v,

and thus arrive at the induced augmented total variation Vard,v (2.11), which enters into the energy balance

involved in the Balanced Viscosity concept.

Definition 2.3 (Balanced Viscosity solution). A curve u ∈ BV([0, T ];X) is a Balanced Viscosity (BV) solution

of the rate-independent system (X,E, d) if it satisfies

- the local stability condition

|DE|(t, u(t)) ≤ 1 for every t ∈ [0, T ] \ Ju, (Sd,loc)

- the energy balance

E(t, u(t)) + Vard,v(u, [0, t]) = E(0, u(0)) +

∫ t

0

P(s, u(s))ds for all t ∈ [0, T ] . (Ed,v)

The notion of Visco-Energetic solution features a modified concept of stability which also involves the

viscous correction δ(u, v) = µ
2 d

2(u, v). We then define the functional

D(u, v) := d(u, v) + δ(u, v) = d(u, v) +
µ

2
d2(u, v) (2.22)

and we say that a point (t, x) ∈ [0, T ]×X is D-stable if

E(t, x) ≤ E(t, y) + D(x, y) = E(t, y) + d(x, y) +
µ

2
d2(x, y) for all y ∈ X . (2.23)

We denote by SD the collection of all D-stable points, and by SD(t) its section at time t ∈ [0, T ]. We also

introduce the residual stability function R : [0, T ]×X → R given by

R(t, x) := sup
y∈X
{E(t, x)− E(t, y)− D(x, y)} = E(t, x)− inf

y∈X
{E(t, y) + D(x, y)} (2.24)

(for simplicity, we choose to neglect the µ-dependence of the functionals D and R in their notation). Observe

that

R(t, x) ≥ 0 for all (t, x) ∈ [0, T ]×X with R(t, x) = 0 if and only if (t, x) ∈ SD , (2.25)

so that R may be interpreted as “measuring the failure” of the stability condition at a given point (t, x) ∈
[0, T ]×X. It can be straightforwardly checked that, under the basic lower semicontinuity assumption (E1) on

E, the functional R is lower semicontinuous on [0, T ]×X.

We now have all the ingredients to define the jump-dissipation cost for Visco-Energetic solutions. In the

same way as for Balanced Viscosity solutions, such a cost is obtained by minimizing a suitable transition cost

over a class of curves connecting the two end-points of the jump. However, such curves, while still continuous,

need not be absolutely continuous. Further, they are in general defined on a compact subset E ⊂ R that may

have a more complicated structure than that of an interval. To describe it, we introduce

the collection h(E) of the connected components of the set [E−, E+] \ E, (2.26)

where we recall that E− = inf E and E+ = supE. Since [E−, E+] \E is an open set, h(E) consists of at most

countably many open intervals, which we will often refer to as the “holes” of E. Hence, the transition cost at

the basis of the concept of Visco-Energetic solution evaluates (1) the d-total variation of a continuous curve



10 RICCARDA ROSSI AND GIUSEPPE SAVARÉ

defined on a set E, (2) the sum, over all the holes of E, of a quantity related to the gaps (3) the measure of

“how much” the curve ϑ fails to comply with the D-stability condition (2.23) at the points in E \ {E+}.

Definition 2.4. Let E be a compact subset of R and ϑ ∈ C(E;X). For every t ∈ [0, T ] we define the transition

cost function

TrcVE(t, ϑ, E) := Vard(ϑ,E) + GapVard(ϑ,E) +
∑

s∈E\E+

R(t, ϑ(s)) , (2.27)

with

(1) Vard(ϑ,E) from (2.4);

(2) GapVard(ϑ,E) :=
∑
I∈h(E)

µ
2 d

2(ϑ(I−), ϑ(I+));

(3) the (possibly infinite) sum

∑
s∈E\E+

R(t, ϑ(s)) :=

{
sup{

∑
s∈P R(t, ϑ(s)) : P ∈ Pf (E)} if E\E+ 6= Ø,

0 otherwise

(recall that Pf (E) denotes the collection of all finite subsets of E).

Along with [MS16], we observe that, for every fixed t ∈ [0, T ] and ϑ ∈ C(E;X), the transition cost fulfills

the additivity property

TrcVE(t, ϑ, E ∩ [a, c]) = TrcVE(t, ϑ, E ∩ [a, b]) + TrcVE(t, ϑ, E ∩ [b, c]) for all a < b < c .

We are now in a position to define the associated visco-energetic jump dissipation cost c : [0, T ]×X×X → [0,∞]

via

c(t, u−, u+) := inf{TrcVE(t, ϑ, E) : E b R, ϑ ∈ C(E;X), ϑ(E−) = u−, ϑ(E+) = u+}, (2.28)

whence the incremental dissipation cost ∆c according to (2.9), the jump variation Jmp∆c
as in (2.10), and the

augmented total variation Vard,c as in (2.11).

We can now give the following

Definition 2.5 (Visco-Energetic solution). A curve u ∈ BV([0, T ];X) is a Visco-Energetic (VE) solution of

the rate-independent system (X,E, d) if it satisfies

- the D-stability condition

E(t, u(t)) ≤ E(t, v) + d(u(t), v) +
µ

2
d2(u(t), v) for every v ∈ X and for every t ∈ [0, T ] \ Ju, (SD)

- the energy balance

E(t, u(t)) + Vard,c(u, [0, t]) = E(0, u(0)) +

∫ t

0

P(s, u(s))ds for all t ∈ [0, T ] . (Ed,c)

3. Main results

Prior to stating our own results on the singular limits of VE solutions in Section 3.2, in Sec. 3.1 below we

recall the known existence results for Energetic, BV, and VE solutions. Under the same conditions ensuring

the existence for the two former solution concepts, we will prove our convergence statements for VEµ solutions

in the limits µ ↓ 0 and µ ↑ ∞, respectively.

3.1. A survey on existence results. In what follows, in addition to the basic conditions (E1) and (E2), we

will introduce further assumptions on the energy functional E that will be at the core of the upcoming existence

results for Energetic (Thm. 3.1), BV (Thm. 3.2), and VE (Thm. 3.3) solutions. We will also illustrate the main

ideas underlying their proofs.
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Energetic solutions. For the existence of Energetic solutions in the metric setting of (X) we refer to [MM05,

Thm. 4.5], cf. also [Mie05] and [MR15, Sec. 2.1]. In accordance with these results, in addition to the coercivity

(E1) and the power control (E2), we require that

Upper semicontinuity of the power: P : [0, T ] × X → R satisfies the conditional upper semicontinuity

condition

((tn, un)→ (t, u) in [0, T ]×X, E(tn, un)→ E(t, u)) =⇒ lim sup
n→∞

P(tn, un) ≤ P(t, u) . (E3)

We thus have

Theorem 3.1. Let E : [0, T ] × X → R comply with (E1), (E2) and (E3). Then, for every initial datum u0

stable at t = 0, i.e. u0 ∈ Sd(0), there exists at least one Energetic solution to the rate-independent system

(X,E, d) with u(0) = u0.

The proof is based on a (by now standard in the frame of rate-independent systems) time-discretization

procedure, with the discrete solutions constructed by recursively solving the time-incremental minimization

scheme (IMτ ). Their (piecewise constant) interpolants are shown to comply with the discrete versions of the

stability condition (Sd) and of the upper energy estimate in (Ed), whence all a priori estimates stem, also based

on the power control (E2). With a Helly-type compactness result, crucially relying on (E1), we thus infer that

the approximate solutions pointwise converge to a curve u ∈ BV([0, T ];X). The continuity (cf. (2.17)) and

lower semicontinuity properties

tn → t ⇒ E(tn, y)→ E(t, y) for all y ∈ X, (tn → t, un → u) ⇒ lim inf
n→∞

E(tn, un) ≥ E(t, u) (3.1)

ensure the closedness of the stable set Sd, which allows us to pass to the limit in the discrete stability condition

and conclude that u complies with (Sd). Lower semicontinuity arguments, joint with (E3), lead to the limit

passage in the discrete upper energy estimate, so that u complies with the upper energy estimate ≤ of (Ed).

The lower energy estimate ≥ can be then deduced from the stability condition either via a Riemann-sum

argument, formalized in, e.g., [MR15, Prop, 2.1.23], or by applying [MS16, Lemma 6.2].

Balanced Viscosity solutions. Along the footsteps of [MRS12b, Thm. 4.2], for the existence of Balanced

Viscosity solutions, in addition to (E1) and (E2), we again need to impose the (conditional) upper semicontinuity

of the power functional and, in addition, the lower semicontinuity of the slope along sequences with bounded

energy and slope. These requirements are subsumed by the following condition:

Upper semicontinuity of the power, lower semicontinuity of the slope: E : [0, T ] × X → R and P :

[0, T ]×X → R satisfy(
(tn, un)→ (t, u) in [0, T ]×X, sup

n∈N
F0(un) <∞, sup

n∈N
|DE|(tn, un) <∞

)

=⇒

{
lim infn→∞ |DE|(tn, un) ≥ |DE|(t, u),

lim supn→∞ P(tn, un) ≤ P(t, u) .

(E′3)

The last, key condition underlying the existence of Balanced Viscosity solutions is that E complies with the

Chain-rule inequality: for every curve u ∈ AC([0, T ];X) the function t 7→ E(t, u(t)) is absolutely continuous

on [0, T ], and there holds

− d

dt
E(t, u(t)) + P(t, u(t)) ≤ |u′|(t)|DE|(t, u(t)) for a.a. t ∈ (0, T ) . (E4)

Under these conditions, the following existence result was proved in [MRS12b].

Theorem 3.2. Let E : [0, T ]×X → R comply with (E1), (E2), (E′3), and (E4). Then, for every u0 ∈ X there

exists at least one Balanced Viscosity solution to the rate-independent system (X,E, d) with u(0) = u0.
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As mentioned in the Introduction, in the proof of [MRS12b, Thm. 4.2] (cf. also [MRS09]), BV solutions

arise by taking the vanishing-viscosity limit, as ε ↓ 0, of the time-continuous solutions of the Gradient Systems

(X,E, d, ψε) with ψε from (1.3). Nonetheless, exploiting the arguments from [MRS12a, MRS16] in the Banach

setting, the vanishing-viscosity analysis developed in [MRS12b] could be easily adapted to the direct limit

passage in the time-discretization scheme (IMε,τ ). In fact, the lower semicontinuity of the slope from (E′3)

serves to the purpose of passing to the limit in the dissipation term in the discrete energy-dissipation inequality

arising from the scheme (IMε,τ ). This leads to the total variation term Vard,v(u, [0, t]) in the energy balance

(Ed,v). Instead, the upper semicontinuity of the power allows us to take the limit in the power term of the

discrete energy inequality. In this way, it is possible to conclude that any limit curve u ∈ BV([0, T ];X) of the

discrete solutions complies with the local stability condition (Sd,loc) and with the upper energy estimate

E(t, u(t)) + Vard,v(u, [0, t]) ≤ E(0, u(0)) +

∫ t

0

P(s, u(s))ds . (Eineq
d,v )

Unlike the case of Energetic solutions, where the validity of global stability condition (Sd) was sufficient to

conclude the lower energy estimate for (Ed), (Sd,loc) is not strong enough to lead to the converse inequality of

(Eineq
d,v ). This is instead ensured by a chain-rule argument based on (E4), cf. [MRS12a, Prop. 4.2, Thm. 4.3].

Finally, let us mention that, under the very assumptions for the existence Thm. 3.2, trivially adapting the

argument for [MRS16, Thm. 3.15] it can be shown that a curve u ∈ BV([0, T ];X) is a BV solution to the

rate-independent system (X,E, d) if and only if it satisfies (Sd,loc), the localized energy inequality

E(t, u(t)) + Vard(u, [s, t]) ≤ E(s, u(s)) +

∫ t

s

P(r, u(r))dr for all 0 ≤ s ≤ t ≤ T, (3.2)

and the jump conditions
E(t, u(t−))− E(t, u(t)) = v(t, u(t−), u(t)),

E(t, u(t))− E(t, u(t+)) = v(t, u(t), u(t+)),

E(t, u(t−))− E(t, u(t+)) = v(t, u(t−), u(t+)) .

(3.3)

Visco-Energetic solutions. As already hinted, Visco-Energetic solutions were introduced in [MS16] within a

more complex topological setting, featuring an asymmetric distance and a topology σ, involved in the coercivity

condition on the energy functional. It turns out that, in the present metric setting where σ is the topology

induced by d, (E1), (E2) and (E′3) coincide with the conditions required on the energy functional E within

[MS16, Assumption < A >, Sec. 2.2]. Furthermore, the particular choice δ(u, v) = µ
2 d

2(u, v) for the viscous

correction ensures the validity of [MS16, Assumption< B >, Sec. 3.1]. In particular, condition [MS16, < B.3 >,

Sec. 3.1] is fulfilled, namely D-stability implies local d-stability, as it can be straightforwardly checked. Finally,

thanks to the lower semicontinuity of the residual functional R from (2.24), also [MS16, Assumption < C >,

Sec. 3.3] is fulfilled. Therefore, [MS16, Thm. 3.9] applies, ensuring the convergence of the time-incremental

scheme (IMµ), with µ > 0 fixed, to a Visco-Energetic solution. In particular, we have the following existence

result, under the same conditions on the energy functional as in the existence Thm. 3.1 for Energetic solutions.

Theorem 3.3. Let E : [0, T ] × X → R comply with (E1), (E2) and (E3). Then, for every µ > 0 and every

initial datum u0 ∈ X there exists at least one VEµ solution to the rate-independent system (X,E, d) with

u(0) = u0.

The outline of the existence argument is the same as for Energetic solutions, though the technical difficulties

attached to the single steps are peculiar of the Visco-Energetic case. The D-stability condition (SD) and the

upper energy estimate in (Ed,c) are derived by passing to the limit in their discrete versions, valid for the

discrete solutions to the time-incremental scheme (IMµ). As shown in [MS16, Thm. 6.5], the lower energy

estimate can then be derived from (SD) by applying [MS16, Lemma 6.2].

Under the same conditions as for the existence Thm. 3.3, we have the following ‘stability’ result for VE

solutions with respect to convergence of the parameters µn to some strictly positive µ.



FROM VISCO-ENERGETIC TO ENERGETIC AND BV SOLUTIONS 13

Proposition 3.4. Let E : [0, T ]×X → R comply with (E1), (E2) and (E3). Let (µn) ⊂ fulfill

µn → µ > 0 as n→∞.

Let (u0
n)n, u0 ⊂ X fulfill

u0
n → u0 and E(0, u0

n)→ E(0, u0) as n→∞. (3.4)

Then, there exist a subsequence (unk)k and a curve u ∈ BV([0, T ];X) such that u(0) = u0,

unk(t)→ u(t) and E(t, unk(t))→ E(t, u(t)) for every t ∈ [0, T ], (3.5)

and u is a VEµ solution to the rate-independent system (X,E, d).

We will outline the proof of Proposition 3.4 at the end of Sec. 5.1.

We conclude this section by recalling that, VE solutions as well can be characterized in terms of suitable

jump conditions. Namely, it was proved in [MS16, Prop. 3.8] that a curve u ∈ BV([0, T ];X) is a VE solution

to the rate-independent system (X,E, d) if and only if it satisfies (SD), the energy-dissipation inequality (3.2),

and the jump conditions

E(t, u(t−))− E(t, u(t)) = c(t, u(t−), u(t)),

E(t, u(t))− E(t, u(t+)) = c(t, u(t), u(t+)),

E(t, u(t−))− E(t, u(t+)) = c(t, u(t−), u(t+)) .

(3.6)

3.2. Main results: Singular limits of Visco-Energetic solutions. We now consider a sequence (µn)n ⊂
(0,∞), either converging to 0, or diverging to ∞. Accordingly, let (u0

n)n ⊂ X be a sequence of initial data

for the rate-independent system (X,E, d). Under conditions (E1), (E2) and (E3), there exists a corresponding

sequence of Visco-Energetic solutions (un)n ⊂ BV([0, T ];X) to the rate-independent system (X,E, d), arising

from the viscous corrections δn(u, v) = µn
2 d2(u, v) and satisfying the initial condition un(0) = u0

n.

Our first result addresses the behavior of the sequence (un)n in the case µn ↓ 0, under the sole conditions

(E1), (E2) and (E3) guaranteeing the existence of Visco-Energetic and Energetic solutions, cf. Theorems 3.1

and 3.3.

Theorem 1 (Convergence to Energetic solutions as µ ↓ 0). Let E : [0, T ] × X → R comply with (E1), (E2)

and (E3). Let (u0
n)n, u0 ⊂ X fulfill (3.4) and suppose that u0 ∈ Sd(0). Let (µn)n ⊂ (0,∞) be a null sequence,

and, correspondingly, let (un)n ⊂ BV([0, T ];X) be a sequence of VEµn solutions to the rate-independent system

(X,E, d) fulfilling un(0) = u0
n.

Then, there exist a subsequence (unk)k and a curve u ∈ BV([0, T ];X) such that u(0) = u0, convergences

(3.5) hold, and and u is an Energetic solution to (X,E, d).

We will prove the convergence (along a subsequence) of a sequence of VEµn solutions, as µn ↑ ∞, to a

Balanced Viscosity solution, under the same conditions as in the existence Theorem 3.2 for Balanced Viscosity

solutions. Hence we need to strengthen (E3) with (E′3), and require the chain-rule inequality (E4) as well.

Theorem 2 (Convergence to Balanced Viscosity solutions as µ ↑ ∞). Let E : [0, T ] × X → R comply with

(E1), (E2), (E′3), and (E4). Let (u0
n)n, u0 ⊂ X fulfill (3.4). Let (µn)n ⊂ (0,∞) be a diverging sequence, and,

correspondingly, let (un)n ⊂ BV([0, T ];X) be a sequence of VEµn solutions to the rate-independent system

(X,E, d) fulfilling un(0) = u0
n.

Then, there exist a subsequence (unk)k and a curve u ∈ BV([0, T ];X) such that u(0) = u0, convergences

(3.5) hold, and u is an Balanced Viscosity solution to (X,E, d).

Both proofs will be carried out throughout Sections 4 and 5.
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4. Proofs of Theorems 1 and 2

A preliminary compactness result. We start with a Helly-type compactness result for a sequence of VEµn
solutions, associated with parameters (µn)n, which applies both to the limit µn ↓ 0, and to the limit µn ↑ ∞,

under the basic conditions (E1) and (E2) on E. The key starting observation is that, since

Vard,cµ(u, [0, t]) ≥ Vard(u, [0, t]) for every u ∈ BV([0, T ];X) and every µ > 0, (4.1)

every VE solution complies with the upper energy estimate of the energy balance (Ed), cf. (4.2) below, where

the (either vanishing or blowing up) parameters µn no longer feature. From this energy estimate there stem

all the a priori estimates and compactness properties common to the two singular limits µn ↓ 0 and µn ↑ ∞.

Proposition 4.1 (A priori estimates and compactness). Let E : [0, T ] ×X → R comply with (E1) and (E2).

Consider a sequence (un)n ⊂ BV([0, T ];X) of curves starting from initial data (un0 )n ⊂ X converging to some

u0 ∈ X as in (3.4). Suppose that the curves un fulfill for every n ∈ N the upper energy estimate

E(t, un(t)) + Vard(un, [0, t]) ≤ E(0, un0 ) +

∫ t

0

P(s, un(s))ds for all t ∈ [0, T ] . (4.2)

Set Vn := Vun (cf. (2.5)).

Then,

∃C > 0 ∀n ∈ N : sup
t∈[0,T ]

F0(un(t)) + Vn(T ) ≤ C . (4.3)

Furthermore, there exist a subsequence k 7→ nk and functions u ∈ BV([0, T ];X), E, V ∈ BV([0, T ]), and

P ∈ L∞(0, T ), such that

unk(t)→ u(t) for all t ∈ [0, T ], (4.4a)

E(t, unk(t))→ E(t) for all t ∈ (0, T ], (4.4b)

Vnk(t)→ V(t) for all t ∈ (0, T ], (4.4c)

P(t, unk(t)) ⇀∗ P in L∞(0, T ), (4.4d)

so that u(0) = u0 and there hold

d(u(s), u(t)) ≤ V(t)− V(s) for all 0 ≤ s ≤ t ≤ T, (4.5a)

E(t) ≥ E(t, u(t)) for all t ∈ (0, T ], with E(0) = E(0, u0). (4.5b)

Furthermore, for every t ∈ Ju there exist two sequences αk ↑ t and βk ↓ t such that

unk(αk)→ u(t−) and unk(βk)→ u(t+) . (4.6)

Finally, the functions (u,E,V,P) comply with

E(t) + V(t) = E(s) + V(s) +

∫ t

s

P(r)dr for all 0 ≤ s ≤ t ≤ T . (4.7)

The proof follows by trivially adapting the argument for [MS16, Thm. 7.2]. Let us only mention that

estimate (4.3) derives from (4.2), where the integral term on the right-hand side involving the power functional

is estimated by resorting to the power control (E2). As for (4.6), it can be shown by suitably adapting the

Helly-type compactness argument yielding (4.4a).

In the next Secs. 4.1 and 4.2, we will carry out the proof of Theorem 1 and, respectively, outline the argument

for Theorem 2. In fact, in Section 5 we will develop the proof of the main technical lower semicontinuity result

underlying the limit passage as µn ↑ ∞ in the Visco-Energetic energy balance (Ed,cµn ) and leading to the upper

energy estimate (Eineq
d,v ).
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4.1. Proof Theorem 1. We apply Proposition 4.1 and deduce that there exist a subsequence (unk)k of VEµnk
solutions, and a curve u ∈ BV([0, T ];X), such that (4.4), (4.5), and (4.7) hold. In what follows, for simplicity

we shall denote the sequence of curves (unk)k by (uk)k and accordingly write µk in place of µnk . We split the

argument for proving that the limiting curve u is an Energetic solution in some steps.

Claim 1: there holds{
E(t) = E(t, u(t)),

lim supk→∞ P(t, uk(t)) ≤ P(t, u(t))
for all t ∈ [0, T ] \ J̃ with J̃ := ∩m∈N ∪k≥m Juk , (4.8)

i.e., the countable set J̃ is the lim sup of the sets (Juk)k. As a result,

P(t) ≤ P(t, u(t)) for a.a. t ∈ (0, T ). (4.9)

To prove (4.8) at a fixed t ∈ [0, T ] \ J̃, we observe that, since t ∈ [0, T ] \Juk for every k ≥ m and m ∈ N a given

index (only) depending on t, the stability condition

E(t, uk(t)) ≤ E(t, y) + d(uk(t), y) +
µk
2
d2(uk(t), y) for all y ∈ X and for all k ≥ m (4.10)

holds. We choose y = u(t) in (4.10) and thus deduce that lim supk→∞ E(t, uk(t)) ≤ E(t, u(t)). Hence, we

conclude the energy convergence

E(t, uk(t))→ E(t, u(t)) for all t ∈ [0, T ] \ J̃, (4.11)

whence the first of (4.8). The lim sup inequality for the power term in (4.8) follows from (E3). Then, since the

set J̃ is negligible, we have for every t ∈ (0, T ) and r ∈ (0, (T−t) ∧ t)∫ t+r

t−r
P(s)ds ≤ lim sup

k→∞

∫ t+r

t−r
P(s, uk(s))ds ≤

∫ t+r

t−r
P(s, u(s))ds, (4.12)

where the second inequality follows from the second of (4.8) and the Fatou Lemma, taking into account that

supt∈[0,T ] P(t, uk(t)) ≤ CP supt∈[0,T ] F(t, uk(t)) ≤ C by virtue of (E2), (2.19), and estimate (4.3). Therefore,

(4.9) ensues upon dividing (4.12) by r and taking the limit as r ↓ 0.

Claim 2: the curve u complies with

E(t, u(t)) + Vard(u, [s, t]) ≤ E(s, u(s)) +

∫ t

s

P(r, u(r))dr for all t ∈ (0, T ], s ∈ (0, t) \ J̃, and s = 0. (4.13)

The upper energy estimate (4.13) ensues from (4.7), taking into account (4.5), (4.8), and (4.9).

Claim 3:

u(t) ∈ Sd(t) for every t ∈ [0, T ] \ J̃. (4.14)

It follows from passing to the limit as k →∞ in the stability condition (4.10).

Claim 4:

u(t−), u(t+) ∈ Sd(t) for every t ∈ (0, T ), u(0+) ∈ Sd(0), u(T−) ∈ Sd(T ). (4.15)

Let us only prove the assertion at t ∈ (0, T ) and for u(t+): since the latter right limit exists, we have that

u(t+) = lims↓t, s∈(t,T )\J̃ u(s). Therefore, u(t+) ∈ Sd(t) follows from the previously obtained (4.14), combined

with the closedness of the stable set Sd, cf. (3.1).

Claim 5:

u(t) ∈ Sd(t) for every t ∈ (0, T ] ∩ J̃. (4.16)

Therefore, u complies with the stability condition (Sd).

We consider the upper energy estimate (4.13) written on the interval [s, t], for every s ∈ (0, t) \ J̃, and then

take the limit of the right-hand side as s ↑ t. We use that u(t−) = lims↑t, s∈(0,t)\J̃ u(s), and that

lim sup
s↑t, s∈(0,t)\J̃

E(s, u(s)) ≤ E(t, u(t−)). (4.17)
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This follows from applying the stability condition u(s) ∈ Sd(s), which holds at all s ∈ (0, t)\ J̃, with competitor

y = u(t−). Therefore E(s, u(s)) ≤ E(s, u(t−)) + d(u(s), u(t−)), which yields

lim sup
s↑t, s∈(0,t)\J̃

E(s, u(s)) ≤ lim sup
s↑t, s∈(0,t)\J̃

E(s, u(t−)). (4.18)

In turn,

lim sup
s↑t, s∈(0,t)\J̃

(E(s, u(t−))− E(t, u(t−))) dt
(1)

≤ lim sup
s↑t

∫ t

s

|P(r, u(t−))|dr
(2)

≤ C lim sup
s↑t

(t− s) = 0 (4.19)

with (1) due to (2.18) and (2) to the power-control estimate

|P(r, u(t−))| ≤ CF0(u(t−)) ≤ C . (4.20)

In (4.20) the first inequality ensues from (E2) and (2.19), while the second one from the lower semicontinuity of

u 7→ F0(u), which gives F0(u(t−)) ≤ lim infs↑t F0(u(s)) ≤ C thanks to the energy bound supt∈[0,T ] F0(u(t)) ≤
C, deriving from estimate (4.3) by the lower semicontinuity of F0. Combining (4.18) with (4.19) we thus

conclude (4.17). We also observe that

lim inf
s↑t

Vard(u, [s, t]) ≥ d(u(t−), u(t)) . (4.21)

On account of (4.17) and (4.21), from (4.13) we deduce the jump estimate

E(t, u(t)) + d(u(t−), u(t)) ≤ E(t, u(t−)) for every t ∈ (0, T ] ∩ J̃. (4.22)

We combine this with the previously obtained stability condition (4.15) to conclude (4.16).

Claim 6: the curve u complies with the lower energy estimate

E(t, u(t)) + Vard(u, [0, t]) ≥ E(0, u(0)) +

∫ t

0

P(r, u(r))dr for all t ∈ [0, T ], (4.23)

and thus with the energy balance (Ed).

We either apply [MR15, Prop. 2.1.23] or [MS16, Lemma 6.2, Thm. 6.5], to conclude (4.23) from the previously

obtained (Sd).

Claim 7: the convergence of the energies E(t, uk(t))→ E(t, u(t)) holds at every t ∈ [0, T ].

It follows from (4.4b) and (4.5b) that lim infk→∞ E(t, uk(t)) ≥ E(t, u(t)) for every t ∈ [0, T ]. To prove the

converse inequality for the lim sup, we resort to a by now classical argument based on the comparison of the

energy balances (Ed) and (Ed,c). Indeed, we have

lim sup
k→∞

E(t, uk(t))
(1)

≤ lim sup
k→∞

E(0, u0
k) + lim sup

k→∞

∫ t

0

P(r, uk(r))dr − lim inf
k→∞

Vard,cµk (uk, [0, t])

(2)

≤ E(0, u0) +

∫ t

0

P(r, u(r))dr −Vard(u, [0, t])
(3)
= E(t, u(t)) ,

with (1) due to (Ed,c), (2) following from the assumed convergence of the initial data (3.4), from (4.4d) combined

with (4.9), and from (4.1) and, finally, (3) due to the just obtained energy balance (Ed).

This concludes the proof of Theorem 1.

4.2. Proof Theorem 2. Proposition 4.1 ensures that any sequence (un)n of VE solutions, corresponding to

parameters µn → ∞, admits a subsequence (unk)k converging to a curve u ∈ BV([0, T ];X) in the sense of

(4.4) and (4.5); as in the proof of Thm. 1, hereafter we will write uk, µk, and ck in place of unk , µnk , and

cµk , respectively. Thanks to the chain rule from condition (E4), in order to prove that u is a BV solution it

is sufficient to verify the local stability (Sd,loc) and the upper energy estimate (Eineq
d,v ), cf. [MRS12a, Prop. 4.2,

Thm. 4.3]. The convergence of the energies E(t, uk(t)) → E(t, u(t)) holds at every t ∈ [0, T ] will then follow

from comparing the energy balances (Ed,c) and (Ed,v), similarly as in Claim 7 of the proof of Thm. 1.



FROM VISCO-ENERGETIC TO ENERGETIC AND BV SOLUTIONS 17

B The local stability condition (Sd,loc). As in the proof of Theorem 1, we introduce the set J̃ := ∩m∈N∪k≥m
Juk . Since D-stability implies local stability, we have that for every t ∈ [0, T ] \ J̃ there holds

|DE|(t, uk(t)) ≤ 1 for all k ≥ m, (4.24)

with m ∈ N depending on t. Taking into account the energy bound (4.3) as well, we are in a position to exploit

the lower semicontinuity property ensured by (E′3). Taking the lim infk→∞ of (4.24), we thus deduce that

|DE|(t, u(t)) ≤ 1 for all t ∈ [0, T ] \ J̃. (4.25)

We also conclude that

|DE|(t, u(t−)), |DE|(t, u(t+)) ≤ 1 for all t ∈ (0, T ), (4.26)

and analogously for |DE|(0, u(0+)) and |DE|(T, u(T−)), by arguing in the very same way as for Claim 4 in

the proof of Theorem 2. Clearly, we then have the local stability condition at all points in [0, T ] \ Ju.

B The upper energy estimate (Eineq
d,v ). Combining the energy bound (4.3) and the slope estimate (4.24)

with convergence (4.4a) and resorting to (E′3), we conclude that lim supk→∞ P(t, uk(t)) ≤ P(t, u(t)) for all

t ∈ [0, T ] \ J̃. Therefore, the very same argument as for Claim 1 in the proof of Theorem 2 yields that

P(t) ≤ P(t, u(t)) for almost all t ∈ (0, T ). All in all, taking the lim infk→∞ in (Ed,cµk
) and exploiting the initial

data convergence (3.4), the previously obtained (4.5b), and the above estimate for P, we infer that

E(T, u(T )) + lim inf
k→∞

Vard,cµk (uk, [0, T ]) ≤ E(0, u(0)) +

∫ T

0

P(r, u(r))dr .

In order to conclude (Eineq
d,v ), it thus remains to show that

lim inf
k→∞

Vard,cµk (uk, [0, T ]) ≥ Vard,v(u, [0, T ]) .

This will be guaranteed by the upcoming result, whose proof will be developed throughout Section 5.

Theorem 4.2. Let E : [0, T ] × X → R comply with (E1), (E2), and (E′3). Let µk ↑ ∞ and (uk)k, u ∈
BV([0, T ];X) fulfill

∃CF > 0 ∀ k ∈ N : sup
t∈[0,T ]

F0(uk(t)) ≤ CF , (4.27a)

uk(t)→ u(t) for every t ∈ [0, T ], (4.27b)

∀ t ∈ Ju ∃ (αk)k, (βk)k ⊂ [0, T ] with αk ↑ t, βk ↓ t and uk(αk)→ u(t−), uk(βk)→ u(t+). (4.27c)

Then,

lim inf
k→∞

Vard,ck(uk, [a, b]) ≥ Vard,v(u, [a, b]) for all [a, b] ⊂ [0, T ]. (4.28)

5. Proof of Theorem 4.2

Let us mention in advance the argument for proving the lower semicontinuity inequality (4.28) follows the

same steps, outlined below, as those for the lower semicontinuity result [MRS16, Prop. 7.3] in the context of

the limit passage from ‘viscous’ gradient systems to BV solutions. Nevertheless, we have to cope with the

(nontrivial) technical issues peculiar of the fact that the kind of transitions describing the system behavior

at jumps changes upon passing from VE to BV solutions. This problem will be addressed in the proof of

Proposition 5.1 ahead.
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Outline of the proof of Theorem 4.2. Up to the extraction of a (not relabeled) subsequence and modifying

the constant CF from (4.27a), we may suppose that

sup
k

Vard,ck(uk, [a, b]) ≤ CF , (5.1)

too. We introduce a sequence of non-negative and bounded Borel measures ηk by defining them on intervals

via

ηk([a, b]) := Vard,ck(uk, [a, b]) for all [a, b] ⊂ [0, T ].

In view of (5.1), we have that, up to a further extraction, there exists a Borel measure η such that ηk ⇀
∗ η in

duality with C([0, T ]). Observe that, by (4.1), we have

η([a, b]) ≥ lim sup
k→∞

ηk([a, b]) ≥ lim sup
k→∞

Vard(uk, [a, b]) ≥ Vard(u, [a, b]) ≥ νd
u([a, b]),

with νd
u the diffuse measure associated with u via (2.6). Therefore we obtain

η ≥ νd
u . (5.2)

We now exploit Proposition 5.1 ahead to conclude that, for every t ∈ Ju and any two sequences αk ↑ t and

βk ↓ t fulfilling (4.27c), there holds

η({t}) ≥ lim sup
k→∞

ηk([αk, βk]) ≥ lim inf
k→∞

ηk([αk, βk]) ≥ v(t, u(t−), u(t+)) . (5.3)

Analogously, we can prove that

lim sup
k→∞

ηk([αk, t]) ≥ v(t, u(t−), u(t)), lim sup
k→∞

ηk([t, βk]) ≥ v(t, u(t), u(t+)) . (5.4)

Arguing in the very same way as in the proof of [MRS16, Prop. 7.3], we combine (5.2), (5.3), and (5.4) with

the representation

Vard,v(u, [a, b])

= νd
u([a, b]) + Jmpv(u; [a, b])

= νd
u([a, b]) + v(a, u(a), u(a+)) + v(b, u(b−), u(b)) +

∑
t∈Ju∩(a,b)

(v(t, u(t−), u(t))+v(t, u(t), u(t+))) ,

cf. (2.12), to conclude the desired lower semicontinuity inequality (4.28).

The proof of the upcoming result is developed throughout Section 5.1.

Proposition 5.1. Let E : [0, T ] × X → R comply with (E1), (E2), and (E′3). Let µk ↑ ∞ and (uk)k, u ∈
BV([0, T ];X) fulfill (4.27) and (5.1). For every t ∈ Ju, pick two sequences (αk)k, (βk)k converging to t and

fulfilling (4.27c). Then,

lim inf
k→∞

Vard,ck(uk, [αk, βk]) ≥ v(t, u(t−), u(t+)) . (5.5)

5.1. Proof of Proposition 5.1. We split the argument in some steps, some of which in turn rely on some

technical results proved in the Appendix.

Step 1: reparameterization. The curve uk has at most countably many jump points (tkm)m∈Mk
between the

points αk and βk. We now suitably reparameterize both the continuous pieces of the trajectory uk, as well as

the optimal transitions ϑkj connecting the left and right limits uk(tkj−) and uk(tkj+) at a jump point tkj . We

will then glue all of them together to obtain a sequence of curves (uk)k, defined on compact sets (Ck)k, which

shall enjoy suitable estimates (cf. Step 2), allowing for a refined compactness argument both for the curves uk
and for the sets Ck.

We set

mk := βk − αk + Vard,ck(uk, [αk, βk]) +
∑
m∈Mk

2−m
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and define the rescaling function sk : [αk, βk]→ [0,mk] by

sk(t) := t− αk + Vard,ck(uk, [αk, t]) +
∑

{m∈Mk: tkm≤t}

2−m .

Observe that sk is strictly increasing, with jump set Jsk = (tkm)m∈Mk
. We introduce the notation

Ikm := (sk(tkm−), sk(tkm+)), Ik := ∪m∈Mk
Ikm, Λk := [sk(αk), sk(βk)].

On Λk \ Ik the inverse tk : Λk \ Ik → [αk, βk] of sk is well defined and Lipschitz continuous. We set

uk(s) := (uk ◦ tk)(s) for all s ∈ Λk \ Ik . (5.6)

The curve uk is also Lipschitz, and satisfies

Vard,ck(uk, [s0, s1]) ≤ (s1−s0) for all [s0, s1] ⊂ Λk \ Ik . (5.7)

We check (5.7) in the case in which s0 = sk(t0) and s1 = sk(t1), with t0 < t1 belonging to the same connected

component of [αk, βk] \ (tkm)m∈Mk
(the other case is completely analogous). Then, we observe that

s1 − s0 = sk(t1)− sk(t0) = t1 − t0 + Vard,ck(uk, [t0, t1]) ≥ Vard,ck(uk, [s0, s1]) .

We now recall [MS16, Thm. 3.14], ensuring that at every jump point tkm there exists an optimal transition

ϑkm that is continuous on a compact set Ekm, tight (i.e. it fulfills ϑkm(J−) 6= ϑkm(J+) for every “hole” J ∈ h(Ekm)),

and such that

u(tkm−) = ϑkm((Ekm)−), u(tkm+) = ϑkm((Ekm)+), u(tkm) ∈ ϑkm(Ekm),

E(tkm, u(tkm−))− E(tkm, u(tkm+)) = c(tkm, u(tkm−), u(tkm+)) = TrcVE(tkm, ϑ
k
m, E

k
m)

= Vard(ϑ
k
m, E

k
m) + GapVard(ϑ

k
m, E

k
m) +

∑
r∈Ekm\(Ekm)+

R(tkm, ϑ
k
m(r)) .

(5.8)

We adapt the calculations from [MS16, Lemma 5.1] and define the rescaling function σkm on Ekm by

σkm(t) :=
1

2m
t− (Ekm)−

(Ekm)+ − (Ekm)−
+ Vard(ϑ

k
m, E

k
m ∩ [(Ekm)−, t])

+ GapVard(ϑ
k
m, E

k
m ∩ [(Ekm)−, t]) +

∑
r∈[(Ekm)−,t]\(Ekm)+

R(tkm, ϑ
k
m(r)) + sk(tkm−)

for all t ∈ Ekm. It can be checked that σkm is continuous and strictly increasing, with image a compact set

Skm ⊂ Ikm such that

(Skm)− = σkm((Ekm)−) = sk(tkm−) and

(Skm)+ = σkm((Ekm)+) =
1

2m
+ Vard(ϑ

k
m, E

k
m) + GapVard(ϑ

k
m, E

k
m) +

∑
r∈Ekm\(Ekm)+

R(tkm, ϑ
k
m(r)) + sk(tkm−)

= sk(tkm+) .

The inverse function τkm : Skm → Ekm is Lipschitz continuous.

We then introduce the set

Ck := (Λk\Ik) ∪ (∪m∈Mk
Skm) .

It is not difficult to check that Ck is a closed subset of Λk. We extend the functions tk and uk, so far defined

on Λk \ Ik, only, to the set Ck by setting

tk(s) ≡ tkm and uk(s) := ϑkm(τkm(s)) whenever s ∈ Skm for some m ∈Mk.
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Since u(tkm−) = ϑkm((Ekm)−) and u(tkm+) = ϑkm((Ekm)+), we have that the extended curve uk ∈ C(Ck;X).

Furthermore, uk ∈ BV(Ck;X): indeed,

Vard(uk, S
k
m) = Vard(ϑ

k
m, E

k
m), GapVard(uk, S

k
m) = GapVard(ϑ

k
m, E

k
m),∑

s∈Skm\{(Skm)+}

R(tkm, uk(s)) =
∑

r∈Ekm\{(Ekm)+}

R(tkm, ϑ
k
m(r)), (5.9a)

as well as

Vard(uk, S
k
m ∩ [s0, s1]) ≤ (s1 − s0) for all s0, s1 ∈ Skm with s0 < s1. (5.9b)

Step 2: a priori estimates. It follows from (5.1) and from the fact that (βk−αk) ↓ 0, that

C+
k = mk ≤ βk − αk + Vard,c(uk, [αk, βk]) + 2 ≤ 2CF (5.10)

(up to modifying the constant CF ). Moreover, in view of (5.1), (5.7), and (5.9b) we have

sup
k∈N

Vard(uk, Ck) ≤ C, (5.11a)

Vard(uk, Ck ∩ [s0, s1]) ≤ (s1−s0) for all s0, s1 ∈ Ck with s0 < s1 and all k ∈ N. (5.11b)

Finally, we remark that

sup
k∈N

sup
s∈Ck

F0(uk(s)) ≤ CF . (5.11c)

Indeed, we have that

sup
s∈Λk\Ik

F0(uk(s)) = sup
t∈[αk,βk]\(tkm)m∈Mk

F0(uk(t)) ≤ CF

in view of (4.27). Furthermore, it follows from [MS16, Thm. 3.16] that for all r ∈ Ekm there holds

E(tkm, ϑ
k
m(r)) + d(ϑkm(r), ϑkm((Ekm)−)) ≤ E(tkm, ϑ

k
m(r)) + Vard(ϑ

k
m, E

k
m ∩ [(Ekm)−, r]) ≤ E(tkm, ϑ

k
m((Ekm)−))

= E(tkm, uk(tkm−)) .

Therefore,

sup
s∈Skm

F0(uk(s)) = sup
r∈Ekm

F0(ϑkm(r)) ≤ F0(uk(tkm−)) ≤ CF .

All in all, we conclude (5.11c).

Step 3: compactness. By virtue of estimates (5.11), we are in a position to apply the compactness result

[MS16, Thm. 5.4] and conclude that there exist a (not relabeled) subsequence, a compact set C ⊂ [0, 2CF ],

and a function u ∈ BV(C;X) such that, as k →∞, there hold

(1) Ck → C à la Kuratowski;

(2) graph(u) ⊂ Lik→∞graph(uk);

(3) whenever (sk)k ∈ Ck converge to s ∈ C, then uk(sk)→ u(s);

(4) uk((Ck)±)→ u(C±).

Therefore, u(C−) = u(t−), and u(C+) = u(t+). Furthermore, it follows from (5.11b) that the curve u is

Lipschitz on C. Finally, for later use let us point out that, since the functions tk take values in the intervals

[αk, βk] shrinking to the singleton {t}, there holds

lim
k→∞

sup
s∈Ck

|tk(s)− t| = 0. (5.12)
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Step 4: connectedness of C. Observe that, since the sets Ck are not, in general, connected, we cannot

immediately deduce that C is connected. We will however show that,

∀ I ∈ h(C) there holds u(I−) = u(I+) =: uI . (5.13)

In view of this, we may extend u to the whole interval [0, C+] by defining

u(s) := uI for all s ∈ I for all I ∈ h(C).

Hereafter, we will replace C by [0, C+]. We will split the proof of (5.13) in two claims.

Claim 1: for every I ∈ h(C) there exist Jk such that

Jk ∈ h(Ck) and lim
k→∞

J−k = I−, lim
k→∞

J+
k = I+. (5.14)

This follows by repeating the very same arguments as in the proof of [MS16, Thm. 5.3].

Claim 2: there holds u(I−) = u(I+). In view of the compactness property (3) from Step 3, there holds

uk(J±k )→ u(I±). Therefore,

d(u(I−), u(I+)) = lim
k→∞

d(uk(J−k ), uk(J+
k )) ≤ lim sup

k→∞

1

2µ
1/2
k

(
µkd

2(uk(J−k ), uk(J+
k )) + 1

)
≤ lim sup

k→∞

1

µ
1/2
k

(Vard,ck(uk, [αk, βk]) + 1) = 0,

where we have used Young’s equality and estimate (5.1).

Step 5: estimate of the transition cost and conclusion of the proof. With Steps 3 and 4 we have

shown that the Lipschitz continuous curve u is defined on the interval [0, C+] and connects the left and right

limits u(t−) and u(t+). We now aim to prove that

lim inf
k→∞

Vard,ck(uk, [αk, βk]) ≥ TrcBV(t, u, [0, C+]) ≥ v(t, u(t−), u(t+)), (5.15)

which will lead to (5.5).

Indeed, it follows from Lemma A.1 that

TrcBV(t, u, [0, C+]) =

∫ C+

0

|u′|(s) (|DE|(t, u(s)) ∨ 1) ds

= sup

{
N∑
i=1

d(u(σi−1), u(σi)) inf
σ∈[σi−1,σi]

(|DE|(t, u(σ)) ∨ 1) : (σi)
N
i=1 ∈ Pf ([0, C+])

}
.

(5.16)

Therefore, in what follows we will prove that

lim inf
k→∞

Vard,ck(uk, [αk, βk]) ≥
N∑
i=1

d(u(σi−1), u(σi)) inf
σ∈[σi−1,σi]

(|DE|(t, u(σ)) ∨ 1) (5.17)

for every (σi)
N
i=1 ∈ Pf ([0, C+]).

Let us consider a given partition (σi)
N
i=1 ∈ Pf ([0, C+]) and fix an index j ∈ {1, . . . , N}. Preliminarily, we

observe that, by the compactness property (1) in Step 3, there exist sequences (σkj−1)k, (σkj )k ⊂ Ck such that

σkj−1 → σj−1, σ
k
j → σj and uk(σkj−1)→ u(σj−1), uk(σkj )→ u(σj) as k →∞, (5.18)

where the second convergence follows from the compactness property (3). We now distinguish two cases

(1) infσ∈[σj−1,σj ] (|DE|(t, u(σ)) ∨ 1) = 1;

(2) infσ∈[σj−1,σj ] |DE|(t, u(σ)) > 1.
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Clearly, the second case is equivalent to infσ∈[σj−1,σj ] (|DE|(t, u(σ)) ∨ 1) > 1.

Case (1): In view of (5.18), we have

d(u(σj−1), u(σj)) inf
σ∈[σj−1,σj ]

(|DE|(t, u(σ)) ∨ 1) = lim
k→∞

d(uk(σkj−1), uk(σkj )) . (5.19)

Case (2): We have that |DE|(t, u(σ)) > δ > 1 for all σ ∈ [σj−1, σj ]. First of all, we observe that

∃ δ̄ ∈ (1, δ) ∃ k̄ ∈ N inf
k≥k̄

inf
σ∈[σkj−1,σ

k
j ]∩Ck

|DE|(tk(σ), uk(σ)) ≥ δ̄ . (5.20)

To show this, we argue by contradiction and suppose that there exists a (not relabeled) subsequence along

which infσ∈[σkj−1,σ
k
j ]∩Ck |DE|(tk(σ), uk(σ)) ≤ 1. Since for every k ∈ N the inf on the compact set [σkj−1, σ

k
j ] ∩

Ck is attained by lower semicontinuity of the map σ 7→ |DE|(tk(σ), uk(σ)), we deduce that there exists a

sequence (σ̃k)k with |DE|(tk(σ̃k), uk(σ̃k)) ≤ 1, converging up to a subsequence to some σ̃ ∈ [σj−1, σj ]. Now,

tk(σ̃k) → t by (5.12) and uk(σ̃k) → u(σ̃) by the compactness property (3) from Step 3. Hence, using the

lower semicontinuity of |DE| granted by (E′3) we conclude that |DE|(t, u(σ̃)) ≤ 1, in contradiction with the

assumption that infσ∈[σj−1,σj ] |DE|(t, u(σ)) > 1.

Observe that (5.20) implies that R(tk(σ), uk(σ)) > 0 for all σ ∈ [σkj−1, σ
k
j ]∩Ck and all k ≥ k̄. We now deduce

the uniform positivity property

∃ r > 0 inf
k≥k̄

inf
σ∈[σkj−1,σ

k
j ]∩Ck

R(tk(σ), uk(σ)) ≥ r . (5.21)

Indeed, as for (5.20) we proceed by contradiction: if (5.21) did not hold, there would exist a sequence (σ̃k)k
with R(tk(σ̃k), uk(σ̃k)) → 0, converging to some σ̃ ∈ [σj−1, σj ] that would fulfill R(t, u(σ̃)) = 0 by the lower

semicontinuity of R. Now, by property (2.25), R(t, u(σ̃)) = 0 would imply that (t, u(σ̃)) belongs to the stable

set SD. In turn, the D-stability condition (2.23) would imply that |DE|(t, u(σ̃)) ≤ 1, against the standing

assumption that infσ∈[σj−1,σj ] |DE|(t, u(σ)) > 1.

Now, (5.21) entails that tk(σ) ∈ (tkm)m∈Mk
for all σ ∈ [σkj−1, σ

k
j ] ∩ Ck =: Lk. But then, it is not difficult to

realize that the function tk must be constant on Lk. Namely, there exists mk ∈Mk such that tk(σ) ≡ tkmk for

all σ ∈ Lk. It was observed in [MS16, Rmk. 3.15] that the set CR
k := {s ∈ Skmk \{(S

k
mk

)+} : R(tkmk , uk(s)) > 0}
is discrete. Trivially adapting the argument from [MS16, Rmk. 3.15], from (5.21) we in fact conclude that for

all k ≥ k̄ the set Lk ⊂ CR
k consists of finitely many points (rk` )Lk`=1, and that the cardinality Lk of the sets Lk

is uniformly bounded with respect to k, i.e.

sup
k≥k̄

Lk ≤ C <∞. (5.22)

Furthermore, notice that rk` is the extremum of a hole of Ck for every ` = 1, . . . , Lk.

The compactness statement from Step 3 (cf. again [MS16, Thm. 5.4]) applies, yielding that, up to a subsequence,

(1) the sets (Lk)k converge in the sense of Kuratowski to a finite, thanks to (5.22), set L = (rl)
L
l=1 ⊂

[σj−1, σj ], such that σj−1, σj ∈ L .

(2) for every rl ∈ L there exists a sequence (rk`k(l))k, with rk`k(l) ∈ Lk for every k ∈ N, such that

uk(rk`k(l))→ u(rl). From now on, we will use the simplified notation rk(l) in place of rk`k(l);

(3) whenever rkn`n ∈ L kn converge to some rl ∈ L as n→∞, then ukn(rkn`n )→ u(rl).
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We now estimate d(u(σj−1), u(σj)) infσ∈[σj−1,σj ] (|DE|(t, u(σ)) ∨ 1) by interpolating between the points σj−1

and σj the points L = (rl)
L
l=1. Thus we have

d(u(σj−1), u(σj)) inf
σ∈[σj−1,σj ]

(|DE|(t, u(σ)) ∨ 1)

≤ d(u(σj−1), u(σj)) + d(u(σj−1), u(σj)) inf
σ∈[σj−1,σj ]

(|DE|(t, u(σ))−1)

≤ d(u(σj−1), u(σj)) +

L∑
l=1

d(u(rl−1), u(rl)) (|DE|(t, u(rl))−1)

(1)

≤ lim inf
k→∞

d(uk(σkj−1), uk(σkj )) +

L∑
l=1

lim inf
k→∞

d(uk(rk(l−1)), uk(rk(l)))
√

2µkR(tkmk , uk(rk(l)))

(2)

≤ lim inf
k→∞

d(uk(σkj−1), uk(σkj )) + lim inf
k→∞

L∑
l=1

µk
2
d2(uk(rk(l−1)), uk(rk(l)))

+ lim inf
k→∞

L∑
l=1

R(tkmk , uk(rk(l))) .

(5.23)

For (1), we have used that for every l = 1, . . . , L there exists a sequence (rk(l))k fulfilling the aforementioned

convergence property (2), and applied the forthcoming Lemma A.3 with the choice ψ(r) = r + 1
2r

2 (cf. (1.3)),

so that ψ∗(S) = 1
2 ((S−1)+)2, with τk := µ−1

k , with tk := tkmk → t as k →∞, and with uk := uk(rk(l))→ u(rl).

We then conclude that (cf. (A.5) ahead for the definition of the generalized Moreau-Yosida approximation

Y
ψ

µ−1
k

(E))

(|DE|(t, u(rl))−1) = (|DE|(t, u(rl))−1)+ ≤ lim inf
k→∞

√
2µk

(
E(tkmk , uk(rk(l)))− Y

ψ

µ−1
k

(E)(tkmk , uk(rk(l)))
)

= lim inf
k→∞

√
2µkR(t, uk(rk(l))) for all l = 1, . . . , L.

(5.24)

Finally, for (2) in (5.23) we have applied Young’s inequality.

Observe that the term multiplied by µk featuring on the right-hand side of (5.23) involves points that are

extrema of holes in Ck. Therefore, it is estimated by GapVard(uk, Ck), whereas the third term is bounded by∑
s∈Skmk\{(S

k
mk

)+}R(tkmk , uk(s)). Combining (5.19), and (5.23), and summing over all the points of (σi)
N
i=1 ∈

Pf ([0, C+]), we conclude the desired (5.17). This finishes the proof of Theorem 4.2.

We conclude this section by giving the

Outline of the proof of Proposition 3.4. The argument borrows some ideas both from the proof of Theorem

1, and of Theorem 2. Let us briefly sketch its steps.

B Compactness: We again apply Prop. 4.1 and deduce the existence of a subsequence (unk)k converging to

some u ∈ BV([0, T ];X) in the sense of (4.4) and (4.5); hereafter we will again use the short-hands uk, µk, and

ck in place of unk , µnk , and cµk , respectively. We will use the notation

Dµk(u, v) := d(u, v) + µk
2 d2(u, v), Dµ(u, v) := d(u, v) + µ

2 d
2(u, v) ,

and write GapVarµkd , GapVarµd , Rµk , Rµ.

B The Dµ-stability condition: As in Claim 1 within the proof of Thm. 1, we introduce the set J̃ =

∩m∈N∪k≥m Juk . First, we prove that the limit curve u fulfills the stability condition (SDµ) at every t ∈ [0, T ]\ J̃
by passing to the limit as k → ∞ in the Dµk -stability condition for the curves uk, holding on [0, T ] \ Juk .

Secondly, we deduce the validity of the Dµ-stability condition at every t ∈ [0, T ] \ Ju by density argument,

similarly as in the proof of Thm. 1, Claim 4. Here we exploit the closedness of the Dµ-stable set SDµ , which

is in turn ensured by the lower semicontinuity of Rµ.
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B The upper energy estimate ≤ in (Ed,cµ): We show that

E(t, u(t)) + Vard,cµ(u, [0, t]) ≤ E(0, u(0)) +

∫ t

0

P(s, u(s))ds for all t ∈ [0, T ] (5.25)

by taking the lim infk→∞ in the analogous upper energy estimate for the curves (uk)k. Let us only comment

on the proof of the key lower semicontinuity inequality

lim inf
k→∞

Vard,ck(uk, [a, b]) ≥ Vard,cµ(u, [a, b]) for all [a, b] ⊂ [0, T ], (5.26)

since for dealing with the other terms in (5.25) we repeat the very same arguments as in the proofs of Thms.

1 and 2.

First of all, we may suppose that the sequence (uk)k complies with the conditions (4.27) of Thm. 4.2.

Along the footsteps of the proof of Thm. 4.2, we introduce the Borel measures ηk([a, b]) := Vard,ck(uk, [a, b])

and show that, up to a subsequence, they converge to a measure η ≥ νd
u. It then remains to deduce that

η({t}) ≥ c(t, u(t−), u(t+)) for all t ∈ Ju, as well as the analogue of (5.4), to conclude (5.26). With this

aim we adapt the proof of Proposition 5.1 to show that

lim inf
k→∞

Vard,ck(uk, [αk, βk]) ≥ c(t, u(t−), u(t+))

at every point t ∈ Ju, and for every pair of sequences (αk)k, (βk)k converging to t and fulfilling (4.27c). Hence,

we reparameterize the curves uk in the very same way as in Step 1 of the proof of Prop. 5.1. By virtue of the a

priori estimates from Step 2, the compactness arguments in Step 3 yield the existence of a Lipschitz continuous

limit curve u : C → X, with C b [0,∞) and u(C−) = u(t−), u(C+) = u(t+). Here, we can no longer replace C

with the interval [0, C+] as in the proof of Prop. 5.1, but we can still observe property (5.14), based on [MS16,

Thm. 5.3]. We now show that

lim inf
k→∞

Vard,ck(uk, [αk, βk]) ≥ TrcVE(t, u, C) ≥ c(t, u(t−), u(t+)) . (5.27)

The lim inf-inequality for the Vard contribution to Vard,ck easily follows from the aforementioned compactness

arguments. For the GapVarµkd -contribution (which depends on the parameter µk via the viscous correction
µk
2 d2), it is essential to use property (5.14). For the Rµk contribution, we can adapt the arguments from the

discussion of Case (2) in Step 5 of the proof of Prop. 5.1, also exploiting the lim inf-estimate

(tk → t, xk → x) ⇒ lim inf
k→∞

Rµk(tk, xk) ≥ Rµ(t, x).

This concludes the proof of (5.26).

B The lower energy estimate ≥ in (Ed,cµ): It follows from [MS16, Thm. 6.5]. Again, the energy convergence

E(t, uk(t))→ E(t, u(t)) for every t ∈ [0, T ] follows from the limit passage in the energy balance.

Appendix A. Auxiliary results

We start by fixing the representation formula (5.16) for the transition cost TrcBV(t, u, [0, C+]). In the upcoming

statement, we replace the functional u 7→ |DE|(t, u) ∨ 1 by a general

g : X → R positive and lower semicontinuous.

Lemma A.1. Let v ∈ AC([a, b];X). Then, there holds∫ b

a

|v′|(s)g(v(s))ds = sup

{
N∑
i=1

d(v(σi−1), v(σi)) inf
σ∈[σi−1,σi]

g(v(σ)) : (σi)
N
i=1 ∈ Pf ([a, b])

}
=: S . (A.1)

In particular, the map s 7→ |v′|(s)g(v(s)) is integrable on [a, b] if and only if S <∞.
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Proof. Let us fix (σi)
N
i=1 ∈ Pf ([a, b]). Observe that

d(v(σi−1), v(σi)) inf
σ̃∈[σi−1,σi]

g(v(σ̃))
(1)

≤
∫ σi

σi−1

|v′|(σ) inf
σ̃∈[σi−1,σi]

g(v(σ̃))dσ ≤
∫ σi

σi−1

|v′|(σ)g(v(σ))dσ

with (1) due to (2.14). Therefore, upon summing up over the index i = 1, . . . , N and using that (σi)
N
i=1 is

arbitrary, we conclude ∫ b

a

|v′|(s)g(v(s))ds ≥ S .

As for the converse inequality, we now consider a partition a = σ1 < . . . < σi < . . . = σN = b with fineness

τ := maxi=1,...,N (σi − σi−1) and introduce the functions

στ , στ : [a, b]→ [a, b] defined by

{
στ (s) := σi if s ∈ (σi−1, σi],

στ (s) := σi−1 if s ∈ [σi−1, σi),

with στ (b) := b and στ (a) := a. Taking into account the definition (2.15) of the metric derivative |v′|, it is a

standard matter to check that, on the one hand,

lim
τ↓0

1

(στ (s)−στ (s))
d(v(στ (s)), v(στ (s)))→ |v′|(s) for almost all s ∈ (a, b) . (A.2)

On the other hand, exploiting the lower semicontinuity of g, we observe that for every s ∈ [a, b] there exists

σmin,τ (s) ∈ [στ (s), στ (s)] such that

inf
σ∈[στ (s),στ (s)]

g(v(σ)) = g(v(σmin,τ (s))).

Since σmin,τ (s)→ s as τ ↓ 0, by the continuity of v and the lower semicontinuity of g we then have

lim inf
τ↓0

g(v(σmin,τ (s))) ≥ g(v(s)) for all s ∈ [a, b].

Therefore, by the Fatou Lemma we have

S ≥ lim inf
τ↓0

N∑
i=1

d(v(σi−1), v(σi)) inf
σ∈[σi−1,σi]

g(v(σ))

= lim inf
τ↓0

∫ b

a

1

(στ (s)−στ (s))
d(v(στ (s), v(στ (s))) g(v(σmin,τ (s)))ds ≥

∫ b

a

|v′|(s)g(v(s))ds .

and we then conclude (A.1). �

We conclude this Appendix by extending the duality formula from [AGS08, Lemma 3.1.5] for the (squared)

metric slope |DE|2(t, ·), t ∈ [0, T ] fixed, namely

1

2
|DE|2(t, u) = lim sup

τ↓0

E(t, u)− Eτ (t, u)

τ
with

Eτ (t, u) := inf
v∈X

{
1

2τ
d2(u, v) + E(t, v)

}
the Moreau-Yosida approximation of E(t, ·)

(A.3)

(with slight abuse of notation). We consider the case in which the dissipation potential underlying the definition

of Moreau-Yosida approximation is no longer the quadratic ψ(r) := 1
2r

2, but a general function

ψ : [0,∞)→ [0,∞) convex, l.s.c., with ψ(0) = 0 and lim
r↑∞

ψ(r)

r
=∞. (A.4)

With ψ we may associate the generalized Moreau-Yosida approximation of the functional E(t, ·) : X → R, via

the formula (again, with slight abuse of notation, we write Yψτ (E)(t, u) in place of Yψτ (E(t, ·))(u))

Yψτ (E)(t, u) := inf
v∈X

(
τψ

(
d(u, v)

τ

)
+ E(t, v)

)
for (t, u) ∈ [0, T ]×X, τ > 0. (A.5)
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Combining the coercivity condition (E1) with the superlinear growth of ψ, it is straightforward to check that

Mψ
τ (E)(t, u) := Argminv∈X

(
τψ

(
d(u, v)

τ

)
+ E(t, v)

)
6= Ø for all (t, u) ∈ [0, T ]×X, τ > 0.

We have the following counterpart to [AGS08, Lemma 3.1.5].

Lemma A.2. There holds

ψ∗ (|DE|(t, u)) = lim sup
τ→0

E(t, u)− Yψτ (E)(t, u)

τ
for all (t, u) ∈ [0, T ]×X. (A.6)

The proof follows by trivially adapting the argument for [AGS08, Lemma 3.1.5]. We conclude this Appendix

with the following lower semicontinuity result, which is crucially used in the proof of Proposition 5.1.

Lemma A.3. Assume (E1), (E′3), and (A.4). Let (τk)k ⊂ (0,∞), (tk)k ⊂ [0, T ], and (uk)k ⊂ X fulfill τk ↓ 0,

tk → t, and uk → u for some (t, u) ∈ [0, T ]×X, with supk∈N E(tk, uk) ≤ C. Then,

lim inf
k→∞

E(tk, uk)− Yψτk(E)(tk, uk)

τk
≥ ψ∗ (|DE|(t, u)) . (A.7)

Proof. For every k ∈ N, let ukτk ∈M
ψ
τk

(E)(tk, uk). We have that

E(t, uk)− Yψτk(E)(tk, uk)

τk
=

E(tk, uk)− E(tk, u
k
τk

)− τkψ
(
d(uk, u

k
τk

)
τk

)
τk

≥ 1

τk

∫ τk

0

ψ∗
(
|DE|(tk, ukr )

)
dr,

where the latter estimate follows from [RMS08, Lemma 4.5], with ukr is a (measurable) selection inMψ
r (E)(tk, uk)

for r ∈ (0, τk). Observe that lim infk→∞ ψ∗
(
|DE|(tk, ukr )

)
≥ ψ∗ (|DE|(t, u)) taking into account that ukr → u as

k →∞ for every r ∈ (0, τk), cf. the proof of [RMS08, Lemma 4.5], and using the lower semicontinuity of |DE|
granted by (E′3). Then, by Fatou’s lemma we have

lim inf
k→∞

1

τk

∫ τk

0

ψ∗
(
|DE|(tk, ukr )

)
dr ≥ ψ∗ (|DE|(t, u)) ,

which concludes the proof of (A.7). �
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