On the existence of connecting orbits for critical values of the energy

Giorgio Fusco, ${ }^{*}$ Giovanni F. Gronchi, ${ }^{\dagger}$ Matteo Novaga ${ }^{\ddagger}$

January 26, 2017

Abstract

We consider an open connected set Ω and a smooth potential U which is positive in Ω and vanishes on $\partial \Omega$. We study the existence of orbits of the mechanical system $$
\ddot{u}=U_{x}(u),
$$ that connect different components of $\partial \Omega$ and lie on the zero level of the energy. We allow that $\partial \Omega$ contains a finite number of critical points of U. The case of symmetric potential is also considered.

1 Introduction

Let $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function of class C^{2}. We assume that $\Omega \subset \mathbb{R}^{n}$ is a connected component of the set $\left\{x \in \mathbb{R}^{n}: U(x)>0\right\}$ and that $\partial \Omega$ is compact and is the union of $N \geq 1$ distinct nonempty connected components $\Gamma_{1}, \ldots, \Gamma_{N}$. We consider the following situations
$\mathbf{H} N \geq 2$ and, if Ω is unbounded, there is $r_{0}>0$ and a non-negative function $\sigma:\left[r_{0},+\infty\right) \rightarrow \mathbb{R}$ such that $\int_{r_{0}}^{+\infty} \sigma(r) d r=+\infty$ and

$$
\begin{equation*}
\sqrt{U(x)} \geq \sigma(|x|), \quad x \in \Omega, \quad|x| \geq r_{0} \tag{1.1}
\end{equation*}
$$

$\mathbf{H}_{s} \Omega$ is bounded, the origin $0 \in \mathbb{R}^{n}$ belongs to Ω and U is invariant under the antipodal map

$$
U(-x)=U(x), \quad x \in \Omega
$$

Condition (1.1) was first introduced in [7]. A sufficient condition for (1.1) is that $\liminf _{|x| \rightarrow \infty} U(x)>0$.
We study non constant solutions $u:\left(T_{-}, T_{+}\right) \rightarrow \Omega$, of the equation

$$
\begin{equation*}
\ddot{u}=U_{x}(u), \quad U_{x}=\left(\frac{\partial U}{\partial x}\right)^{T} \tag{1.2}
\end{equation*}
$$

that satisfy

$$
\begin{equation*}
\lim _{t \rightarrow T_{ \pm}} d(u(t), \partial \Omega)=0 \tag{1.3}
\end{equation*}
$$

with d the Euclidean distance, and lie on the energy surface

$$
\begin{equation*}
\frac{1}{2}|\dot{u}|^{2}-U(u)=0 \tag{1.4}
\end{equation*}
$$

We allow that the boundary $\partial \Omega$ of Ω contains a finite set P of critical points of U and assume

[^0]\mathbf{H}_{1} If $\Gamma \in\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\}$ has positive diameter and $p \in P \cap \Gamma$ then p is a hyperbolic critical point of U.
If Γ has positive diameter, then hyperbolic critical points $p \in \Gamma$ correspond to saddle-center equilibrium points in the zero energy level of the Hamiltonian system associated to (1.2). These points are organizing centers of complex dynamics, see [6].
Note that \mathbf{H}_{1} does not exclude that some of the Γ_{j} reduce to a singleton, say $\{p\}$, for some $p \in P$. In this case nothing is required on the behavior of U in a neighborhood of p aside from being C^{2}.
A comment on \mathbf{H} and \mathbf{H}_{s} is in order. If P is nonempty $u \equiv p$ for $p \in P$ is a constant solution of (1.2) that satisfies (1.3) and (1.4). To avoid trivial solutions of this kind we require $N \geq 2 \mathrm{in} \mathbf{H}$, and look for solutions that connect different components of $\partial \Omega$. In \mathbf{H}_{s} we do not exclude that $\partial \Omega$ is connected $(N=1)$ and avoid trivial solutions by restricting to a symmetric context and to solutions that pass through 0 .

We prove the following results.
Theorem 1.1. Assume that \mathbf{H} and \mathbf{H}_{1} hold. Then for each $\Gamma_{-} \in\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\}$ there exist $\Gamma_{+} \in$ $\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\} \backslash\left\{\Gamma_{-}\right\}$and a map $u^{*}:\left(T_{-}, T_{+}\right) \rightarrow \Omega$, with $-\infty \leq T_{-}<T_{+} \leq+\infty$, that satisfies (1.2), (1.4) and

$$
\begin{equation*}
\lim _{t \rightarrow T_{ \pm}} d\left(u^{*}(t), \Gamma_{ \pm}\right)=0 \tag{1.5}
\end{equation*}
$$

Moreover, $T_{-}>-\infty$ (resp. $T_{+}<+\infty$) if and only if Γ_{-}(resp. Γ_{+}) has positive diameter. If $T_{-}>-\infty$ it results

$$
\begin{align*}
& \lim _{t \rightarrow T_{-}} u^{*}(t)=x_{-}, \\
& \lim _{t \rightarrow T_{-}} \dot{u}^{*}(t)=0, \tag{1.6}
\end{align*}
$$

for some $x_{-} \in \Gamma_{-} \backslash P$. An analogous statement holds if $T_{+}<+\infty$.
Theorem 1.2. Assume that \mathbf{H}_{s} and \mathbf{H}_{1} hold. Then there exist $\Gamma_{+} \in\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\}$ and a map $u^{*}:\left(0, T_{+}\right) \rightarrow \Omega$, with $0<T_{+} \leq+\infty$, that satisfies (1.2), (1.4) and

$$
\lim _{t \rightarrow T_{+}} d\left(u^{*}(t), \Gamma_{+}\right)=0
$$

Moreover, $T_{+}<+\infty$ if and only if Γ_{+}has positive diameter. If $T_{+}<+\infty$ it results

$$
\begin{aligned}
\lim _{t \rightarrow T_{+}} u^{*}(t) & =x_{+}, \\
\lim _{t \rightarrow T_{+}} \dot{u}^{*}(t) & =0,
\end{aligned}
$$

for some $x_{+} \in \Gamma_{+} \backslash P$.
We list a few straightforward consequences of Theorems 1.1 and 1.2.
Corollary 1.3. Theorem 1.1 implies that, if $\partial \Omega=P$, given $p_{-} \in P$ there is $p_{+} \in P \backslash\left\{p_{-}\right\}$and a heteroclinic connection between p_{-}and p_{+}, that is a solution $u^{*}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ of (1.2) and (1.4) that satisfies

$$
\lim _{t \rightarrow \pm \infty} u^{*}(t)=p_{ \pm}
$$

The problem of the existence of heteroclinic connections between two isolated zeros $p_{ \pm}$of a nonnegative potential has been recently reconsidered by several authors. In [1] existence was established under a mild monotonicity condition on U near $p_{ \pm}$. This condition was removed in [8], see also [2]. The most general results, equivalent to the consequence of Theorem 1.1 discussed in Section 2.1, were recently obtained in [7] and in [11], see also [3]. All these papers establish existence by a variational approach. In [1], [8] and [2] by minimizing the action functional, and in [7] and [11] by minimizing the Jacobi functional.

Corollary 1.4. Theorem 1.1 implies that, if $\Gamma_{-}=\{p\}$ for some $p \in P$ and the elements of $\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\} \backslash$ $\left\{\Gamma_{-}\right\}$have all positive diameter, there exists a nontrivial orbit homoclinic to p that satisfies (1.2), (1.4).

Proof. Let $v^{*}: \mathbb{R} \rightarrow \Omega \cup\left\{x_{+}\right\}$be the extension defined by

$$
v^{*}\left(T_{+}+t\right)=u^{*}\left(T_{+}-t\right), \quad t \in(0,+\infty), \quad v^{*}\left(T_{+}\right)=x_{+},
$$

of the solution $u^{*}:\left(-\infty, T_{+}\right) \rightarrow \Omega$ given by Theorem 1.1. The map v^{*} so defined is a smooth non-constant solution of (1.2) that satisfies

$$
\lim _{t \rightarrow \pm \infty} v^{*}(t)=p
$$

Corollary 1.5. Theorem 1.1 implies that, if all the sets $\Gamma_{1}, \ldots, \Gamma_{N}$ have positive diameter, given $\Gamma_{-} \in\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\}$, there exist $\Gamma_{+} \in\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\} \backslash\left\{\Gamma_{-}\right\}$and a periodic solution $v^{*}: \mathbb{R} \rightarrow \Omega$ of (1.2) and (1.4) that oscillates between Γ_{-}and Γ_{+}. This solution has period $T=2\left(T_{+}-T_{-}\right)$.
Proof. The solution v^{*} is the T-periodic extension of the map $w^{*}:\left[T_{-}, 2 T_{+}-T_{-}\right] \rightarrow \Omega$ defined by $w^{*}(t)=u^{*}(t)$ for $t \in\left(T_{-}, T_{+}\right)$, where u^{*} is given by Theorem 1.1, and

$$
\begin{aligned}
& w^{*}\left(T_{ \pm}\right)=x_{ \pm} \\
& w^{*}\left(T_{+}+t\right)=u^{*}\left(T_{+}-t\right), \quad t \in\left(0, T_{+}-T_{-}\right]
\end{aligned}
$$

The problem of existence of heteroclinic, homoclinic and periodic solutions of (1.2), in a context similar to the one considered here, was already discussed in [2] where $\partial \Omega$ is allowed to include continua of critical points. Our result concerning periodic solutions extends a corresponding result in [2] where existence was established under the assumption that $P=\emptyset$.

The following result is a direct consequence of Theorem 1.2.
Corollary 1.6. Theorem 1.2 implies that, if all the sets $\Gamma_{1}, \ldots, \Gamma_{N}$ have positive diameter, there exists $\Gamma_{+} \in\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\}$ and a periodic solution $v^{*}: \mathbb{R} \rightarrow \Omega$ of (1.2) and (1.4) that satisfies

$$
v^{*}(-t)=-v^{*}(t), \quad t \in \mathbb{R}
$$

This solution has period $T=4 T_{+}$, with T_{+}.
Proof. The solution v^{*} is the T-periodic extension of the map $w^{*}:\left[-2 T_{+}, 2 T_{+}\right] \rightarrow \Omega$ defined by $w^{*}(t)=u^{*}(t)$ for $t \in\left(0, T_{+}\right)$, where u^{*} is given by Theorem 1.2 , and by

$$
\begin{aligned}
& w^{*}(t)=-w^{*}(-t), \quad t \in\left(-T_{+}, 0\right) \\
& w^{*}(0)=0, \quad w^{*}\left(\pm T_{+}\right)= \pm x_{+}, \\
& w^{*}\left(T_{+}+t\right)=w^{*}\left(T_{+}-t\right), \quad t \in\left(0, T_{+}\right] \\
& w^{*}\left(-T_{+}+t\right)=w^{*}\left(-T_{+}-t\right), \quad t \in\left[-T_{+}, 0\right)
\end{aligned}
$$

In particular the solution oscillates between x_{+}and $-x_{+}$and this is true also when $\partial \Omega$ is connected ($N=1$).

2 Proof of Theorems 1.1 and 1.2

We recall a classical result.
Lemma 2.1. Let $G: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth bounded and non-negative potential, $I=(a, b)$ a bounded interval. Define the Jacobi functional

$$
\mathcal{J}_{G}(q, I)=\sqrt{2} \int_{I} \sqrt{G(q(t))}|\dot{q}(t)| d t
$$

and the action functional

$$
\mathcal{A}_{G}(q, I)=\int_{I}\left(\frac{1}{2}|\dot{q}(t)|^{2}+G(q(t))\right) d t
$$

Then
(i)

$$
\mathcal{J}_{G}(q, I) \leq \mathcal{A}_{G}(q, I), \quad q \in W^{1,2}\left(I ; \mathbb{R}^{n}\right)
$$

with equality sign if and only if

$$
\frac{1}{2}|\dot{q}(t)|^{2}-G(q(t))=0, t \in I
$$

(ii)

$$
\min _{q \in \mathcal{Q}} \mathcal{J}_{G}(q, I)=\min _{q \in \mathcal{Q}} \mathcal{A}_{G}(q, I)
$$

where

$$
\mathcal{Q}=\left\{q \in W^{1,2}\left(I ; \mathbb{R}^{n}\right): q(a)=q_{a}, q(b)=q_{b}\right\}
$$

When $G=U$ we shall simply write \mathcal{J}, \mathcal{A} for $\mathcal{J}_{U}, \mathcal{A}_{U}$.
We now start the proof of Theorem 1.1. Choose $\Gamma_{-} \in\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\}$ and set

$$
d=\min \left\{|x-y|: x \in \Gamma_{-}, y \in \partial \Omega \backslash \Gamma_{-}\right\}
$$

For small $\delta \in(0, d)$ let $O_{\delta}=\left\{x \in \Omega: d\left(x, \Gamma_{-}\right)<\delta\right\}$ and let $U_{0}=\frac{1}{2} \min _{x \in \partial O_{\delta} \cap \Omega} U(x)$. We note that $U_{0}>0$ and define the admissible set

$$
\begin{align*}
\mathcal{U}= & \left\{u \in W^{1,2}\left(\left(T_{-}^{u}, T_{+}^{u}\right) ; \mathbb{R}^{n}\right):-\infty<T_{-}^{u}<T_{+}^{u}<+\infty\right. \\
& \left.u\left(\left(T_{-}^{u}, T_{+}^{u}\right)\right) \subset \Omega, U(u(0))=U_{0}, u\left(T_{-}^{u}\right) \in \Gamma_{-}, u\left(T_{+}^{u}\right) \in \partial \Omega \backslash \Gamma_{-}\right\} \tag{2.1}
\end{align*}
$$

We determine the map u^{*} in Theorem 1.1 as the limit of a minimizing sequence $\left\{u_{j}\right\} \subset \mathcal{U}$ of the action functional

$$
\mathcal{A}\left(u,\left(T_{-}^{u}, T_{+}^{u}\right)\right)=\int_{T_{-}^{u}}^{T_{+}^{u}}\left(\frac{1}{2}|\dot{u}(t)|^{2}+U(u(t))\right) d t
$$

Note that in the definition of \mathcal{U} the times T_{-}^{u} and T_{+}^{u} are not fixed but, in general, change with u. Note also that the condition $U(u(0))=U_{0}$ in (2.1) is a normalization which can always be imposed by a translation of time and has the scope of eliminating the loss of compactness due to translation invariance. Let $\bar{x}_{-} \in \Gamma_{-}$and $\bar{x}_{+} \in \partial \Omega \backslash \Gamma_{-}$be such that $\left|\bar{x}_{+}-\bar{x}_{-}\right|=d$ and set

$$
\tilde{u}(t)=(1-(t+\tau)) \bar{x}_{-}+(t+\tau) \bar{x}_{+}, \quad t \in[-\tau, 1-\tau]
$$

where $\tau \in(0,1)$ is chosen so that $U(\tilde{u}(0))=U_{0}$. Then $\tilde{u} \in \mathcal{U}, T_{-}^{\tilde{u}}=-\tau, T_{+}^{\tilde{u}}=1-\tau$ and

$$
\mathcal{A}(\tilde{u},(-\tau, 1-\tau))=a<+\infty
$$

Next we show that there are constants $M>0$ and $T_{0}>0$ such that each $u \in \mathcal{U}$ with

$$
\begin{equation*}
\mathcal{A}\left(u,\left(T_{-}^{u}, T_{+}^{u}\right)\right) \leq a \tag{2.2}
\end{equation*}
$$

satisfies

$$
\begin{align*}
& \|u\|_{L^{\infty}\left(\left(T_{-}^{u}, T_{+}^{u}\right) ; \mathbb{R}^{n}\right)} \leq M \tag{2.3}\\
& T_{-}^{u} \leq-T_{0}<T_{0} \leq T_{+}^{u}
\end{align*}
$$

The L^{∞} bound on u follows from \mathbf{H} and from Lemma 2.1, in fact, if Ω is unbounded, $|u(\bar{t})|=M$ for some $\bar{t} \in\left(T_{-}^{u}, T_{+}^{u}\right)$ implies

$$
a \geq \mathcal{A}\left(u,\left(T_{-}^{u}, \bar{t}\right)\right) \geq \int_{T_{-}^{u}}^{\bar{t}} \sqrt{2 U(u(t))}|\dot{u}(t)| d t \geq \sqrt{2} \int_{r_{0}}^{M} \sigma(s) d s
$$

The existence of T_{0} follows from

$$
\frac{d_{1}^{2}}{\left|T_{-}^{u}\right|} \leq \int_{T_{-}^{u}}^{0}|\dot{u}(t)|^{2} d t \leq 2 a, \quad \frac{d_{1}^{2}}{T_{+}^{u}} \leq \int_{0}^{T_{+}^{u}}|\dot{u}(t)|^{2} d t \leq 2 a
$$

where $d_{1}=d\left(\partial \Omega,\left\{x: U(x)>U_{0}\right\}\right)$.
Let $\left\{u_{j}\right\} \subset \mathcal{U}$ be a minimizing sequence

$$
\begin{equation*}
\lim _{j \rightarrow+\infty} \mathcal{A}\left(u_{j},\left(T_{-}^{u_{j}}, T_{+}^{u_{j}}\right)\right)=\inf _{u \in \mathcal{U}} \mathcal{A}\left(u,\left(T_{-}^{u}, T_{+}^{u}\right)\right):=a_{0} \leq a \tag{2.4}
\end{equation*}
$$

We can assume that each u_{j} satisfies (2.2) and (2.3). By considering a subsequence, that we still denote by $\left\{u_{j}\right\}$, we can also assume that there exist $T_{-}^{\infty}, T_{+}^{\infty}$ with $-\infty \leq T_{-}^{\infty} \leq-T_{0}<T_{0} \leq T_{+}^{\infty} \leq+\infty$ and a continuous map $u^{*}:\left(T_{-}^{\infty}, T_{+}^{\infty}\right) \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{align*}
& \lim _{j \rightarrow+\infty} T_{ \pm}^{u_{j}}=T_{ \pm}^{\infty} \\
& \lim _{j \rightarrow+\infty} u_{j}(t)=u^{*}(t), \quad t \in\left(T_{-}^{\infty}, T_{+}^{\infty}\right) \tag{2.5}
\end{align*}
$$

and in the last limit the convergence is uniform on bounded intervals. This follows from (2.3) which implies that the sequence $\left\{u_{j}\right\}$ is equi-bounded and from (2.2) which implies

$$
\begin{equation*}
\left|u_{j}\left(t_{1}\right)-u_{j}\left(t_{2}\right)\right| \leq\left|\int_{t_{1}}^{t_{2}}\right| \dot{u}_{j}(t)|d t| \leq \sqrt{a}\left|t_{1}-t_{2}\right|^{\frac{1}{2}} \tag{2.6}
\end{equation*}
$$

so that the sequence is also equi-continuous.
By passing to a further subsequence we can also assume that $u_{j} \rightharpoonup u^{*}$ in $W^{1,2}\left(\left(T_{1}, T_{2}\right) ; \mathbb{R}^{n}\right)$ for each T_{1}, T_{2} with $T_{-}^{\infty}<T_{1}<T_{2}<T_{+}^{\infty}$. This follows from (2.2), which implies

$$
\frac{1}{2} \int_{T_{-}^{u_{j}}}^{T_{+}^{u_{j}}}\left|\dot{u}_{j}\right|^{2} d t \leq \mathcal{A}\left(u_{j},\left(T_{-}^{u_{j}}, T_{+}^{u_{j}}\right)\right) \leq a
$$

and from the fact that each map u_{j} satisfies (2.3) and therefore is bounded in $L^{2}\left(\left(T_{-}^{u_{j}}, T_{+}^{u_{j}}\right) ; \mathbb{R}^{n}\right)$.
We also have

$$
\begin{equation*}
\mathcal{A}\left(u^{*},\left(T_{-}^{\infty}, T_{+}^{\infty}\right)\right) \leq a_{0} \tag{2.7}
\end{equation*}
$$

Indeed, from the lower semicontinuity of the norm, for each T_{1}, T_{2} with $T_{-}^{\infty}<T_{1}<T_{2}<T_{+}^{\infty}$ we have

$$
\int_{T_{1}}^{T_{2}}\left|\dot{u}^{*}\right|^{2} d t \leq \liminf _{j \rightarrow+\infty} \int_{T_{1}}^{T_{2}}\left|\dot{u}_{j}\right|^{2} d t
$$

This and the fact that u_{j} converges to u^{*} uniformly in $\left[T_{1}, T_{2}\right]$ imply

$$
\mathcal{A}\left(u^{*},\left(T_{1}, T_{2}\right)\right) \leq \liminf _{j \rightarrow+\infty} \mathcal{A}\left(u_{j},\left(T_{1}, T_{2}\right)\right) \leq \liminf _{j \rightarrow+\infty} \mathcal{A}\left(u_{j},\left(T_{-}^{u_{j}}, T_{+}^{u_{j}}\right)\right)=a_{0}
$$

Since this is valid for each $T_{-}^{\infty}<T_{1}<T_{2}<T_{+}^{\infty}$ the claim (2.7) follows.
Lemma 2.2. Define $T_{-}^{\infty} \leq T_{-} \leq-T_{0}<T_{0} \leq T_{+} \leq T_{+}^{\infty}$ by setting

$$
\begin{aligned}
& T_{-}=\inf \left\{t \in\left(T_{-}^{\infty}, 0\right]: u^{*}((t, 0]) \subset \Omega\right\} \\
& T_{+}=\sup \left\{t \in\left(0, T_{+}^{\infty}\right): u^{*}([0, t)) \subset \Omega\right\}
\end{aligned}
$$

Then

$$
\begin{equation*}
\mathcal{A}\left(u^{*},\left(T_{-}, T_{+}\right)\right)=a_{0} \tag{i}
\end{equation*}
$$

(ii) $T_{+}<+\infty$ implies $\lim _{t \rightarrow T_{+}} u^{*}(t)=x_{+}$for some $x_{+} \in \Gamma_{+}$and $\Gamma_{+} \in\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\} \backslash\left\{\Gamma_{-}\right\}$.
(iii) $T_{+}=+\infty$ implies

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} d\left(u^{*}(t), \Gamma_{+}\right)=0 \tag{2.9}
\end{equation*}
$$

for some $\Gamma_{+} \in\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\} \backslash\left\{\Gamma_{-}\right\}$.
Corresponding statements apply to T_{-}.
Proof. We first prove (ii), (iii). If $T_{+}<+\infty$ the existence of $\lim _{t \rightarrow T_{+}} u^{*}(t)$ follows from (2.6) which implies that u^{*} is a $C^{0, \frac{1}{2}}$ map. The limit x_{+}belongs to $\partial \Omega$ and therefore to Γ_{+}for some $\Gamma_{+} \in$ $\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\}$. Indeed, $x_{+} \notin \partial \Omega$ would imply the existence of $\tau>0$ such that, for j large enough,

$$
d\left(u_{j}\left(\left[T_{+}, T_{+}+\tau\right]\right), \partial \Omega\right) \geq \frac{1}{2} d\left(x_{+}, \partial \Omega\right)
$$

in contradiction with the definition of T_{+}. If $T_{+}=+\infty$ and (iii) does not hold there is $\delta>0$ and a diverging sequence $\left\{t_{j}\right\}$ such that

$$
d\left(u^{*}\left(t_{j}\right), \partial \Omega\right) \geq \delta
$$

Set $U_{m}=\min _{d(x, \partial \Omega)=\delta} U(x)>0$. From the uniform continuity of U in $\{|x| \leq M\}$ (M as in (2.3)) it follows that there is $l>0$ such that

$$
\left|U\left(x_{1}\right)-U\left(x_{2}\right)\right| \leq \frac{1}{2} U_{m}, \quad \text { for } \quad\left|x_{1}-x_{2}\right| \leq l, x_{1}, x_{2} \in\{|x| \leq M\}
$$

This and $u^{*} \in C^{0, \frac{1}{2}}$ imply

$$
U\left(u^{*}(t)\right) \geq \frac{1}{2} U_{m}, \quad t \in I_{j}=\left(t_{j}-\frac{l^{2}}{a}, t_{j}+\frac{l^{2}}{a}\right)
$$

and, by passing to a subsequence, we can assume that the intervals I_{j} are disjoint. Therefore for each $T>0$ we have

$$
\sum_{t_{j} \leq T} \frac{l^{2} U_{m}}{a} \leq \int_{0}^{T} U\left(u^{*}(t)\right) d t \leq a_{0}
$$

which is impossible for T large. This establishes (2.9) for some $\Gamma_{+} \in\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\}$. It remains to show that $\Gamma_{+} \neq \Gamma_{-}$. This is a consequence of the minimizing character of $\left\{u_{j}\right\}$. Indeed, $\Gamma_{+}=\Gamma_{-}$would imply the existence of a constant $c>0$ such that $\lim _{j \rightarrow \infty} \mathcal{A}\left(u_{j},\left(T_{-}^{u_{j}}, T_{+}^{u_{j}}\right)\right) \geq a_{0}+c$.

Now we prove $(i) . T_{+}-T_{-}<+\infty$, implies that u^{*} is an element of \mathcal{U} with $T_{ \pm}^{u^{*}}=T_{ \pm}$. It follows that $\mathcal{A}\left(u^{*},\left(T_{-}, T_{+}\right)\right) \geq a_{0}$, which together with (2.7) imply (2.8). Assume now $T_{+}-T_{-}=+\infty$. If $T_{+}=+\infty,(2.9)$ implies that, given a small number $\epsilon>0$, there are t_{ϵ} and $\bar{x}_{\epsilon} \in \partial \Omega$ such that $\left|u^{*}\left(t_{\epsilon}\right)-\bar{x}_{\epsilon}\right|=\epsilon$ and the segment joining $u^{*}\left(t_{\epsilon}\right)$ to \bar{x}_{ϵ} belongs to $\bar{\Omega}$. Set

$$
v_{\epsilon}(t)=\left(1-\left(t-t_{\epsilon}\right)\right) u^{*}\left(t_{\epsilon}\right)+\left(t-t_{\epsilon}\right) \bar{x}_{\epsilon}, \quad t \in\left(t_{\epsilon}, t_{\epsilon}+1\right] .
$$

From the uniform continuity of U there is $\eta_{\epsilon}>0, \lim _{\epsilon \rightarrow 0} \eta_{\epsilon}=0$, such that $U\left(v_{\epsilon}(t)\right) \leq \eta_{\epsilon}$, for $t \in\left[t_{\epsilon}, t_{\epsilon}+1\right]$. Therefore we have

$$
\mathcal{A}\left(v_{\epsilon},\left(t_{\epsilon}, t_{\epsilon}+1\right)\right) \leq \frac{1}{2} \epsilon^{2}+\eta_{\epsilon}
$$

If $T_{-}>-\infty$ the map $u_{\epsilon}=\mathbb{1}_{\left[T_{-}, t_{\epsilon}\right]} u^{*}+\mathbb{1}_{\left(t_{\epsilon}, t_{\epsilon}+1\right]} v_{\epsilon}$ belongs to \mathcal{U} and it results

$$
a_{0} \leq \mathcal{A}\left(u_{\epsilon},\left(T_{-}, t_{\epsilon}+1\right)\right)=\mathcal{A}\left(u^{*},\left(T_{-}, t_{\epsilon}\right)\right)+\mathcal{A}\left(v_{\epsilon},\left(t_{\epsilon}, t_{\epsilon}+1\right)\right) \leq \mathcal{A}\left(u^{*},\left(T_{-}, T_{+}\right)\right)+\frac{1}{2} \epsilon^{2}+\eta_{\epsilon}
$$

Since this is valid for all small $\epsilon>0$ we get

$$
a_{0} \leq \mathcal{A}\left(u^{*},\left(T_{-}, T_{+}\right)\right)
$$

that together with (2.7) establishes (2.8) if $T_{-}>-\infty$ and $T_{+}=+\infty$. The discussion of the other cases where $T_{+}-T_{-}=+\infty$ is similar.

We observe that there are cases with $T_{+}<T_{+}^{\infty}$ and/or $T_{-}>T_{-}^{\infty}$, see Remark 2.
Lemma 2.3. The map u^{*} satisfies (1.2) and (1.4) in $\left(T_{-}, T_{+}\right)$.
Proof. 1. We first show that for each T_{1}, T_{2} with $T_{-}<T_{1}<T_{2}<T_{+}$we have

$$
\begin{equation*}
\mathcal{A}\left(u^{*},\left(T_{1}, T_{2}\right)\right)=\inf _{v \in \mathcal{V}} \mathcal{A}\left(v,\left(T_{1}, T_{2}\right)\right) \tag{2.10}
\end{equation*}
$$

where

$$
\mathcal{V}=\left\{v \in W^{1,2}\left(\left(T_{1}, T_{2}\right) ; \mathbb{R}^{n}\right): v\left(T_{i}\right)=u^{*}\left(T_{i}\right), i=1,2 ; v\left(\left[T_{1}, T_{2}\right]\right) \subset \Omega\right\}
$$

Suppose instead that there are $\eta>0$ and $v \in \mathcal{V}$ such that

$$
\mathcal{A}\left(v,\left(T_{1}, T_{2}\right)\right)=\mathcal{A}\left(u^{*},\left(T_{1}, T_{2}\right)\right)-\eta
$$

Set $w_{j}:\left(T_{-}^{u_{j}}, T_{+}^{u_{j}}\right) \rightarrow \Omega$ defined by

$$
w_{j}(t)=\left\{\begin{array}{l}
u_{j}(t), \quad t \in\left(T_{-}^{u_{j}}, T_{1}\right] \cup\left[T_{2}, T_{+}^{u_{j}}\right) \\
v(t)+\frac{T_{2}-t}{T_{2}-T_{1}} \delta_{1 j}+\frac{t-T_{1}}{T_{2}-T_{1}} \delta_{2 j}, \quad t \in\left(T_{1}, T_{2}\right)
\end{array}\right.
$$

where $\delta_{i j}=u_{j}\left(T_{i}\right)-u^{*}\left(T_{i}\right), i=1,2$, with u_{j} as in (2.4). Define $v_{j}:\left[T_{-}^{v_{j}}, T_{+}^{v_{j}}\right] \rightarrow \mathbb{R}^{n}$ by

$$
v_{j}(t)=w_{j}\left(t-\tau_{j}\right)
$$

where τ_{j} is such that $U\left(v_{j}(0)\right)=U_{0}$, as in (2.1). Note that

$$
\begin{equation*}
\mathcal{A}\left(v_{j},\left(T_{-}^{v_{j}}, T_{+}^{v_{j}}\right)\right)=\mathcal{A}\left(w_{j},\left(T_{-}^{u_{j}}, T_{+}^{u_{j}}\right)\right) \tag{2.11}
\end{equation*}
$$

From (2.5) we have $\lim _{j \rightarrow \infty} \delta_{i j}=0, i=1,2$, so that

$$
\lim _{j \rightarrow+\infty} \mathcal{A}\left(w_{j},\left(T_{1}, T_{2}\right)\right)=\mathcal{A}\left(v,\left(T_{1}, T_{2}\right)\right)=\mathcal{A}\left(u^{*},\left(T_{1}, T_{2}\right)\right)-\eta \leq \liminf _{j \rightarrow+\infty} \mathcal{A}\left(u_{j},\left(T_{1}, T_{2}\right)\right)-\eta
$$

Therefore we have

$$
\begin{aligned}
& \liminf _{j \rightarrow+\infty} \mathcal{A}\left(w_{j},\left(T_{-}^{u_{j}}, T_{+}^{u_{j}}\right)\right)=\lim _{j \rightarrow+\infty} \mathcal{A}\left(w_{j},\left(T_{1}, T_{2}\right)\right)+\liminf _{j \rightarrow+\infty} \mathcal{A}\left(u_{j},\left(T_{+}^{u_{j}}, T_{1}\right) \cup\left(T_{2}, T_{+}^{u_{j}}\right)\right) \\
& \leq \liminf _{j \rightarrow+\infty} \mathcal{A}\left(u_{j},\left(T_{1}, T_{2}\right)\right)-\eta+\liminf _{j \rightarrow+\infty} \mathcal{A}\left(u_{j},\left(T_{+}^{u_{j}}, T_{1}\right) \cup\left(T_{2}, T_{+}^{u_{j}}\right)\right) \leq a_{0}-\eta
\end{aligned}
$$

that, given (2.11), is in contradiction with the minimizing character of the sequence $\left\{u_{j}\right\}$.
The fact that u^{*} satisfies (1.2) follows from (2.10) and regularity theory, see [5]. To show that u^{*} satisfies (1.4) we distinguish the case $T_{+}-T_{-}<+\infty$ from the case $T_{+}-T_{-}=+\infty$.
2. $T_{+}-T_{-}<+\infty$. Given t_{0}, t_{1} with $T_{-}<t_{0}<t_{1}<T_{+}$, let $\phi:\left[t_{0}, t_{1}+\tau\right] \rightarrow\left[t_{0}, t_{1}\right]$ be linear, with $|\tau|$ small, and let $\psi:\left[t_{0}, t_{1}\right] \rightarrow\left[t_{0}, t_{1}+\tau\right]$ be the inverse of ϕ. Define $u_{\tau}:\left[T_{-}, T_{+}+\tau\right] \rightarrow \mathbb{R}^{n}$ by setting

$$
u_{\tau}(t)=\left\{\begin{array}{l}
u^{*}(t), \quad t \in\left[T_{-}, t_{0}\right] \tag{2.12}\\
u^{*}(\phi(t)), \quad t \in\left[t_{0}, t_{1}+\tau\right] \\
\left.u^{*}(t-\tau), \quad t \in\left(t_{1}+\tau, T_{+}+\tau\right)\right]
\end{array}\right.
$$

Note that $u_{\tau} \in \mathcal{U}$ with $T_{-}^{u_{\tau}}=T_{-}$and $T_{+}^{u_{\tau}}=T_{+}+\tau$. Since u^{*} is a minimizer we have

$$
\begin{equation*}
\left.\frac{d}{d \tau} \mathcal{A}\left(u_{\tau},\left(T_{-}^{u_{\tau}}, T_{+}^{u_{\tau}}\right)\right)\right|_{\tau=0}=0 \tag{2.13}
\end{equation*}
$$

From (2.12), using also the change of variables $t=\psi(s)$, it follows

$$
\begin{aligned}
& \mathcal{A}\left(u_{\tau},\left(T_{-}^{u_{\tau}}, T_{+}^{u_{\tau}}\right)\right)-\mathcal{A}\left(u^{*},\left(T_{-}, T_{+}\right)\right) \\
& =\int_{t_{0}}^{t_{1}+\tau}\left(\frac{\dot{\phi}^{2}(t)}{2}\left|\dot{u}^{*}(\phi(t))\right|^{2}+U\left(u^{*}(\phi(t))\right)\right) d t-\int_{t_{0}}^{t_{1}}\left(\frac{1}{2}\left|\dot{u}^{*}(t)\right|^{2}+U\left(u^{*}(t)\right)\right) d t \\
& =\int_{t_{0}}^{t_{1}}\left(\frac{1-\dot{\psi}(t)}{2 \dot{\psi}(t)}\left|\dot{u}^{*}(t)\right|^{2}+(\dot{\psi}(t)-1) U\left(u^{*}(t)\right)\right) d t \\
& =\int_{t_{0}}^{t_{1}}\left(\frac{-\frac{\tau}{t_{1}-t_{0}}}{2\left(1+\frac{\tau}{t_{1}-t_{0}}\right)}\left|\dot{u}^{*}(t)\right|^{2}+\frac{\tau}{t_{1}-t_{0}} U\left(u^{*}(t)\right)\right) d t \\
& =-\frac{\tau}{t_{1}-t_{0}} \int_{t_{0}}^{t_{1}}\left(\frac{\left|\dot{u}^{*}(t)\right|^{2}}{2\left(1+\frac{\tau}{t_{1}-t_{0}}\right)}-U\left(u^{*}(t)\right)\right) d t
\end{aligned}
$$

This and (2.13) imply

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}}\left(\frac{1}{2}\left|\dot{u}^{*}(t)\right|^{2}-U\left(u^{*}(t)\right)\right) d t=0 \tag{2.14}
\end{equation*}
$$

Since this holds for all t_{0}, t_{1}, with $T_{-}<t_{0}<t_{1}<T_{+}$, then (1.4) follows.
3. $T_{+}-T_{-}=+\infty$. We only consider the case $T_{+}=+\infty$. The discussion of the other cases is similar. Let $T \in\left(T_{-},+\infty\right)$, let $T_{-}<t_{0}<t_{1}<T$ and let $\phi:\left[t_{0}, T\right] \rightarrow\left[t_{0}, T\right]$ be linear in the intervals $\left[t_{0}, t_{1}+\tau\right]$, $\left[t_{1}+\tau, T\right]$, with $|\tau|$ small, and such that $\phi\left(\left[t_{0}, t_{1}+\tau\right]\right)=\left[t_{0}, t_{1}\right]$. Define $u_{\tau}:\left(T_{-},+\infty\right) \rightarrow \mathbb{R}^{n}$ by setting

$$
u_{\tau}(t)=\left\{\begin{array}{l}
u^{*}(t), \quad t \in\left(T_{-}, t_{0}\right] \cup[T,+\infty) \\
u^{*}(\phi(t)), \quad t \in\left[t_{0}, T\right]
\end{array}\right.
$$

We have

$$
\begin{aligned}
& \mathcal{A}\left(u_{\tau},\left(T_{-}, T\right)\right)-\mathcal{A}\left(u^{*},\left(T_{-}, T\right)\right) \\
& =\int_{t_{0}}^{t_{1}}\left(\frac{-\frac{\tau}{t_{1}-t_{0}}}{2\left(1+\frac{\tau}{t_{1}-t_{0}}\right)}\left|\dot{u}^{*}(t)\right|^{2}+\frac{\tau}{t_{1}-t_{0}} U\left(u^{*}(t)\right)\right) d t+\int_{t_{1}}^{T}\left(\frac{\frac{\tau}{T-t_{1}}}{2\left(1+\frac{\tau}{T-t_{1}}\right)}\left|\dot{u}^{*}(t)\right|^{2}-\frac{\tau}{T-t_{1}} U\left(u^{*}(t)\right)\right) d t .
\end{aligned}
$$

Since u^{*} restricted to the interval $\left[t_{0}, T\right]$ is a minimizer of (2.10), by differentiating with respect to τ and setting $\tau=0$ we obtain

$$
-\frac{1}{t_{1}-t_{0}} \int_{t_{0}}^{t_{1}}\left(\frac{1}{2}\left|\dot{u}^{*}(t)\right|^{2}-U\left(u^{*}(t)\right)\right) d t+\frac{1}{T-t_{1}} \int_{t_{1}}^{T}\left(\frac{1}{2}\left|\dot{u}^{*}(t)\right|^{2}-U\left(u^{*}(t)\right)\right) d t=0 .
$$

From (2.7) it follows that the second term in this expression converges to zero when $T \rightarrow+\infty$. Therefore, after taking the limit for $T \rightarrow+\infty$, we get back to (2.14) and, as before, we conclude that (1.4) holds.

Lemma 2.4. Assume that $\lim _{t \rightarrow T_{+}} u^{*}(t)=p \in P$. Then

$$
T_{+}=+\infty
$$

Proof. Since U is of class C^{2} and p is a critical point of U there are constants $c>0$ and $\rho>0$ such that

$$
U(x) \leq c|x-p|^{2}, \quad x \in B_{\rho}(p) \cap \Omega .
$$

Fix t_{ρ} so that $u^{*}(t) \in B_{\rho}(p) \cap \Omega$ for $t \geq t_{\rho}$. Then $T_{+}=+\infty$ follows from (1.4) and

$$
\frac{d}{d t}\left|u^{*}-p\right| \geq-\left|\dot{u}^{*}\right|=-\sqrt{2 U\left(u^{*}\right)} \geq-\sqrt{2 c}\left|u^{*}-p\right|, \quad t \geq t_{\rho}
$$

We now show that if Γ_{+}has positive diameter then $T_{+}<+\infty$. To prove this we first show that $T_{+}=+\infty$ implies $u^{*}(t) \rightarrow p \in P$ as $t \rightarrow+\infty$, then we conclude that this is in contrast with (2.8).
Lemma 2.5. If $T_{+}=+\infty$, then there is $p \in P$ such that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} u^{*}(t)=p \tag{2.15}
\end{equation*}
$$

An analogous statement applies to T_{-}.
Proof. If $\Gamma_{+}=\{p\}$ for some $p \in P$, then (2.15) follows by (2.9). Therefore we assume that Γ_{+}has positive diameter. The idea of the proof is to show that if $u^{*}(t)$ gets too close to $\partial \Gamma_{+} \backslash P$ it is forced to end up on $\Gamma_{+} \backslash P$ in a finite time in contradiction with $T^{*}=+\infty$.

If (2.15) does not hold there is $q>0$ and a sequence $\left\{\tau_{j}\right\}$, with $\lim _{j \rightarrow \infty} \tau_{j}=+\infty$, such that $d\left(u^{*}\left(\tau_{j}\right), P\right) \geq q$, for all $j \in \mathbb{N}$. Since, by (2.3) u^{*} is bounded, using also (2.9), we can assume that

$$
\begin{equation*}
\lim _{j \rightarrow+\infty} u^{*}\left(\tau_{j}\right)=\bar{x}, \text { for some } \bar{x} \in \Gamma_{+} \backslash \cup_{p \in P} B_{q}(p) \tag{2.16}
\end{equation*}
$$

The smoothness of U implies that there are positive constants \bar{r}, r, c and C such that
(i) the orthogonal projection on $\pi: B_{\bar{r}}(\bar{x}) \rightarrow \partial \Omega$ is well defined and $\pi\left(B_{\bar{r}}(\bar{x})\right) \subset \partial \Omega \backslash P$;
(ii) we have

$$
B_{r}\left(x_{0}\right) \subset B_{\bar{r}}(\bar{x}), \text { for all } x_{0} \in \partial \Omega \cap B_{\frac{\bar{r}}{2}}(\bar{x}) ;
$$

(iii) if $(\xi, s) \in \mathbb{R}^{n-1} \times \mathbb{R}$ are local coordinates with respect to a basis $\left\{e_{1}, \ldots, e_{n}\right\}, e_{j}=e_{j}\left(x_{0}\right)$, with $e_{n}\left(x_{0}\right)$ the unit interior normal to $\partial \Omega$ at $x_{0} \in \partial \Omega \cap B_{\frac{\bar{i}}{2}}(\bar{x})$ it results

$$
\begin{equation*}
\frac{1}{2} c s \leq U\left(x\left(x_{0},(\xi, s)\right)\right) \leq 2 c s, \quad|\xi|^{2}+s^{2} \leq r^{2}, s \geq h\left(x_{0}, \xi\right) \tag{2.17}
\end{equation*}
$$

where

$$
x=x\left(x_{0},(\xi, s)\right)=x_{0}+\sum_{j=1}^{n} \xi_{j} e_{j}\left(x_{0}\right)+s e_{n}\left(x_{0}\right)
$$

and $h: \partial \Omega \cap B_{\frac{\bar{r}}{2}}(\bar{x}) \times\{|\xi| \leq r\} \rightarrow \mathbb{R},\left|h\left(x_{0}, \xi\right)\right| \leq C|\xi|^{2}$, for $|\xi| \leq r$, is a local representation of $\partial \Omega$ in a neighborhood of x_{0}, that is $U\left(x\left(x_{0},\left(\xi, h\left(x_{0}, \xi\right)\right)\right)\right)=0$ for $|\xi| \leq r$.

Figure 1: The coordinates (ξ, s) and the domain Q_{0} in Lemma 2.5.

Fix a value j_{0} of j and set $t_{0}=\tau_{j_{0}}$. If j_{0} is sufficiently large, setting $t_{0}=\tau_{j_{0}}$ we have that $x_{0}=\pi\left(u^{*}\left(t_{0}\right)\right)$ is well defined. Moreover $x_{0} \in \partial \Omega \cap B_{\frac{\bar{r}}{2}}(\bar{x})$ and

$$
u^{*}\left(t_{0}\right)=x_{0}+\delta e_{n}\left(x_{0}\right), \quad \delta=\left|u^{*}\left(t_{0}\right)-x_{0}\right|
$$

For $k=\frac{8}{3} \sqrt{2}$ let Q_{0} be the set

$$
Q_{0}=\left\{x\left(x_{0},(\xi, s)\right):|\xi|^{2}+(s-\delta)^{2}<k^{2} \delta^{2}, s>\delta / 2\right\}
$$

Since $\delta \rightarrow 0$ as $j_{0} \rightarrow+\infty$ we can assume that $\delta>0$ is so small $\left(\delta<\min \left\{\frac{1}{2 C k^{2}}, \frac{r}{1+k}\right\}\right.$ suffices $)$ that $\bar{Q}_{0} \subset \Omega \cap B_{r}\left(x_{0}\right)$.
Claim 1. $u^{*}(t)$ leaves \bar{Q}_{0} through the disc $D_{0}=\partial Q_{0} \backslash \partial B_{k \delta}\left(u^{*}\left(t_{0}\right)\right)$.
From (2.4) we have $a_{0} \leq \mathcal{A}\left(v,\left(T_{-}, T_{+}^{v}\right)\right)$ for each $W^{1,2} \operatorname{map} v:\left(T_{-}, T_{+}^{v}\right] \rightarrow \mathbb{R}^{n}$ that coincides with u^{*} for $t \leq t_{0}$, and satisfies $v\left(\left(t_{0}, T_{+}^{v}\right)\right) \subset \Omega, v\left(T_{+}^{v}\right) \in \partial \Omega$ and (1.4). Therefore if we set

$$
w(s)=x_{0}+s e_{n}\left(x_{0}\right)
$$

$s \in[0, \delta]$, we have

$$
\begin{equation*}
a_{0} \leq \mathcal{A}\left(u^{*},\left(T_{-}, t_{0}\right)\right)+\mathcal{J}(w,(0, \delta)) \tag{2.18}
\end{equation*}
$$

On the other hand, if $u^{*}\left(t_{0}^{\prime}\right) \in \partial Q_{0}\left(x_{0}\right) \cap \partial B_{k \delta}\left(u^{*}\left(t_{0}\right)\right)$, where

$$
t_{0}^{\prime}=\sup \left\{t>t_{0}: u^{*}\left(\left[t_{0}, t\right)\right) \subset \bar{Q}_{0} \backslash \partial B_{k \delta}\left(u^{*}\left(t_{0}\right)\right)\right\}
$$

from (2.7) it follows

$$
\begin{equation*}
\mathcal{A}\left(u^{*},\left(T_{-}, t_{0}\right)\right)+\mathcal{J}\left(u^{*},\left(t_{0}, t_{0}^{\prime}\right)\right) \leq a_{0} \tag{2.19}
\end{equation*}
$$

Using (2.17) we obtain

$$
\begin{equation*}
\mathcal{J}(w,(0, \delta)) \leq \frac{4}{3} c^{\frac{1}{2}} \delta^{\frac{3}{2}} \tag{2.20}
\end{equation*}
$$

and, since

$$
c \frac{\delta}{4} \leq U\left(x\left(x_{0},(\xi, s)\right)\right), \quad(\xi, s) \in \bar{Q}_{0}\left(x_{0}\right)
$$

we also have, with k defined above,

$$
\begin{equation*}
\frac{8}{3} c^{\frac{1}{2}} \delta^{\frac{3}{2}}=\frac{k}{\sqrt{2}} c^{\frac{1}{2}} \delta^{\frac{3}{2}} \leq \frac{c^{\frac{1}{2}} \delta^{\frac{1}{2}}}{\sqrt{2}} \int_{t_{0}}^{t_{0}^{\prime}}\left|\dot{u}^{*}(t)\right| d t \leq \sqrt{2} \int_{t_{0}}^{t_{0}^{\prime}} \sqrt{U\left(u^{*}(t)\right)}\left|\dot{u}^{*}(t)\right| d t \tag{2.21}
\end{equation*}
$$

From (2.20) and (2.21) it follows

$$
\mathcal{J}(w,(0, \delta)) \leq \frac{1}{2} \mathcal{J}\left(u^{*},\left(t_{0}, t_{0}^{\prime}\right)\right)
$$

and therefore (2.18) and (2.19) imply the absurd inequality $a_{0}<a_{0}$. This contradiction proves the claim.

From Claim 1 it follows that there is $t_{1} \in\left(t_{0},+\infty\right)$ with the following properties:

$$
\begin{aligned}
& u^{*}\left(\left[t_{0}, t_{1}\right)\right) \subset Q_{0}\left(x_{0}\right) \\
& u\left(t_{1}\right) \in D_{0}
\end{aligned}
$$

Set $x_{0,1}=\pi\left(u^{*}\left(t_{1}\right)\right)$ and $\delta_{1}=\left|u^{*}\left(t_{1}\right)-x_{0,1}\right|$. Since $h\left(x_{0}, 0\right)=h_{\xi}\left(x_{0}, 0\right)=0$ and the radius $\rho_{\delta}=$ $\left(k^{2}-\frac{1}{4}\right)^{\frac{1}{2}} \delta$ of D_{0} is proportional to δ, we can assume that δ is so small that the ratio $\frac{2 \delta_{1}}{\delta}$ and $\frac{\left|x_{0,1}-x_{0}\right|}{\left|u^{*}\left(t_{1}\right)-x\left(x_{0},\left(0, \frac{\delta}{2}\right)\right)\right|}$ are near 1 so that we have

$$
\begin{aligned}
& \delta_{1} \leq \rho \delta, \text { for some } \rho<1, \\
& \left|x_{0,1}-x_{0}\right| \leq k \delta
\end{aligned}
$$

We also have

$$
t_{1}-t_{0} \leq k^{\prime} \delta^{\frac{1}{2}}, \quad k^{\prime}=\frac{8 k}{c^{\frac{1}{2}}}
$$

This follows from

$$
\begin{aligned}
& \left(t_{1}-t_{0}\right) \frac{c}{4} \delta \leq \mathcal{A}\left(u^{*},\left(t_{0}, t_{1}\right)\right)=\mathcal{J}\left(u^{*},\left(t_{0}, t_{1}\right)\right) \\
& =\sqrt{2} \int_{t_{0}}^{t_{1}} \sqrt{U\left(u^{*}(t)\right)}\left|u^{*}(t)\right| d t \leq 2 \sqrt{c \delta}\left|u^{*}\left(t_{1}\right)-u^{*}\left(t_{0}\right)\right| \leq 2 c^{\frac{1}{2}} k \delta^{\frac{3}{2}}
\end{aligned}
$$

where we used (2.17) to estimate \mathcal{J} on the segment joining $u^{*}\left(t_{0}\right)$ with $u^{*}\left(t_{1}\right)$.
We have $u^{*}\left(t_{1}\right)=x_{0,1}+\delta_{1} e_{n}\left(x_{0,1}\right)$ and we can apply Claim 1 to deduce that there exists $t_{2}>t_{1}$ such that

$$
\begin{aligned}
& u^{*}\left(\left[t_{1}, t_{2}\right)\right) \subset Q_{1}\left(x_{0,1}\right), \\
& u^{*}\left(t_{2}\right) \in D_{1}
\end{aligned}
$$

where Q_{1} and D_{1} are defined as Q_{0} and D_{0} with δ_{1} and $x\left(x_{0,1},(\xi, s)\right)$ instead of δ and $x\left(x_{0},(\xi, s)\right)$. Therefore an induction argument yields sequences $\left\{t_{j}\right\},\left\{x_{0, j}\right\},\left\{\delta_{j}\right\}$ and $\left\{Q_{j}\left(x_{0, j}\right)\right\}$ such that

$$
\begin{align*}
& u^{*}\left(\left[t_{j}, t_{j+1}\right)\right) \subset Q_{j}\left(x_{0, j}\right), \quad x_{0, j}=\pi\left(u^{*}\left(t_{j}\right)\right) \\
& \delta_{j+1} \leq \rho \delta_{j} \leq \rho^{j+1} \delta \\
& \left|x_{0, j+1}-x_{0, j}\right| \leq k \delta_{j} \leq k \rho^{j} \delta \tag{2.22}\\
& \left(t_{j+1}-t_{j}\right) \leq k^{\prime} \delta_{j}^{1 / 2} \leq k^{\prime} \rho^{j / 2} \delta^{1 / 2} \\
& u^{*}\left(t_{j}\right)=x_{0, j}+\delta_{j} e_{n}\left(x_{0, j}\right) \in D_{j}
\end{align*}
$$

We can also assume that $Q_{j}\left(x_{0, j}\right) \subset \Omega \cap B_{r}\left(x_{0}\right)$, for all $j \in \mathbb{N}$. This follows from $\left|u^{*}\left(t_{j+1}\right)-u^{*}\left(t_{j}\right)\right| \leq$ $k \delta_{j} \leq k \rho^{j} \delta$.

From (2.22) we obtain that there exists T with $t_{0}<T \leq \frac{k^{\prime} \delta^{\frac{1}{2}}}{1-\rho^{\frac{1}{2}}}$ such that

$$
\begin{aligned}
& u^{*}(T)=\lim _{t \rightarrow T} u^{*}(t)=\lim _{j \rightarrow+\infty} x_{0, j} \in \partial \Omega \backslash P \\
& \left|u^{*}(T)-x_{0}\right| \leq \frac{k \delta}{1-\rho}
\end{aligned}
$$

This contradicts the existence of the sequence $\left\{\tau_{j}\right\}$, with $\lim _{j \rightarrow \infty} \tau_{j}=+\infty$, appearing in (2.16) and establishes (2.15). The proof of the lemma is complete.

We continue by showing (2.15) contradicts (2.8).
Lemma 2.6. Assume that Γ_{+}has positive diameter. Then

$$
T_{+}<+\infty
$$

An analogous statement applies to Γ_{-}and T_{-}.
Proof. From Lemma 2.5, if $T_{+}=+\infty$ there exists $p \in P$ such that $\lim _{t \rightarrow+\infty} u^{*}(t)=p$. We use a local argument to show that this is impossible if Γ_{+}has positive diameter. By a suitable change of variable we can assume that $p=0$ and that, in a neighborhood of $0 \in \mathbb{R}^{n}, U$ reads

$$
U(u)=V(u)+W(u)
$$

where V is the quadratic part of U :

$$
\begin{equation*}
V(u)=\frac{1}{2}\left(-\sum_{i=1}^{m} \lambda_{i}^{2} u_{i}^{2}+\sum_{i=m+1}^{n} \lambda_{i}^{2} u_{i}^{2}\right), \quad \lambda_{i}>0 \tag{2.23}
\end{equation*}
$$

and W satisfies,

$$
\begin{equation*}
|W(u)| \leq C|u|^{3}, \quad\left|W_{x}(u)\right| \leq C|u|^{2}, \quad\left|W_{x x}(u)\right| \leq C|u| \tag{2.24}
\end{equation*}
$$

Consider the Hamiltonian system with

$$
H(p, q)=\frac{1}{2}|p|^{2}-U(q), \quad p \in \mathbb{R}^{n}, q \in \Omega \subset \mathbb{R}^{n}
$$

For this system the origin of $\mathbb{R}^{2 n}$ is an equilibrium point that corresponds to the critical point $p=0$ of U. Set $D=\operatorname{diag}\left(-\lambda_{1}^{2}, \ldots,-\lambda_{m}^{2}, \lambda_{m+1}^{2}, \ldots, \lambda_{n}^{2}\right)$. The eigenvalues of the symplectic matrix

$$
\left(\begin{array}{cc}
0 & D \\
I & 0
\end{array}\right)
$$

are

$$
\begin{gathered}
-\lambda_{i}, \quad i=m+1, \ldots, n \\
\lambda_{i}, \quad i=m+1, \ldots, n \\
\pm i \lambda_{i}, \quad i=1, \ldots, m .
\end{gathered}
$$

Let $\left(e_{1}, 0\right), \ldots,\left(e_{n}, 0\right),\left(0, e_{1}\right), \ldots,\left(0, e_{n}\right)$ be the basis of $\mathbb{R}^{2 n}$ defined by $e_{j}=\left(\delta_{j 1}, \ldots, \delta_{j n}\right)$, where $\delta_{j i}$ is Kronecker's delta. The stable S^{s}, unstable S^{u} and center S^{c} subspaces invariant under the flow of the linearized Hamiltonian system at $0 \in \mathbb{R}^{2 n}$ are

$$
\begin{aligned}
& S^{s}=\operatorname{span}\left\{\left(-\lambda_{j} e_{j}, e_{j}\right)\right\}_{j=m+1}^{n} \\
& S^{u}=\operatorname{span}\left\{\left(\lambda_{j} e_{j}, e_{j}\right)\right\}_{j=m+1}^{n} \\
& S^{c}=\operatorname{span}\left\{\left(e_{j}, 0\right),\left(0, e_{j}\right)\right\}_{j=1}^{m}
\end{aligned}
$$

From (2.15) and (1.4) we have

$$
\lim _{t \rightarrow+\infty}\left(\dot{u}^{*}(t), u^{*}(t)\right)=0 \in \mathbb{R}^{2 n}
$$

Let W^{s} and W^{u} be the local stable and unstable manifold and let W^{c} be a local center manifold at $0 \in \mathbb{R}^{2 n}$. From the center manifold theorem [4], [10], there is a constant $\lambda_{0}>0$ such that, for each solution $(p(t), q(t))$ that remains in a neighborhood of $0 \in \mathbb{R}^{2 n}$ for positive time, there is a solution $\left(p^{c}(t), q^{c}(t)\right) \in W^{c}$ that satisfies

$$
\begin{equation*}
\left|(p(t), q(t))-\left(p^{c}(t), q^{c}(t)\right)\right|=\mathrm{O}\left(e^{-\lambda_{0} t}\right) \tag{2.25}
\end{equation*}
$$

Since W^{c} is tangent to S^{c} at $0 \in \mathbb{R}^{2 n}$, the projection W_{0}^{c} on the configuration space is tangent to $S_{0}^{c}=\operatorname{span}\left\{e_{j}\right\}_{j=1}^{m}$, which is the projection of S^{c} on the configuration space. Therefore, if $\left(p^{c}, q^{c}\right) \not \equiv 0$, given $\gamma>0$, by (2.25) there is t_{γ} such that $d\left(q(t), S_{0}^{c}\right) \leq \gamma|q(t)|$, for $t \geq t_{\gamma}$. For γ small, this implies that $q(t) \notin \Omega$ for $t \geq t_{\gamma}$. It follows that $\left(p^{c}, q^{c}\right) \equiv 0$ and from (2.25) $(p(t), q(t))$ converges to zero exponentially. This is possible only if $(p(t), q(t)) \in W^{s}$ and, in turn, only if $q(t) \in W_{0}^{s}$, the projection of W^{s} on the configuration space. This argument leads to the conclusion that the trajectory of u^{*} in a neighborhood of 0 is of the form

$$
\begin{equation*}
u^{*}(t(s))=\mathfrak{u}^{*}(s)=s \eta+z(s) \tag{2.26}
\end{equation*}
$$

where

$$
\eta=\sum_{i=m+1}^{n} \eta_{i} e_{i}
$$

is a unit vector ${ }^{1}, s \in\left[0, s_{0}\right)$ for some $s_{0}>0$, and $z(s)$ satisfies

$$
\begin{equation*}
z(s) \cdot \eta=0, \quad|z(s)| \leq c|s|^{2}, \quad\left|z^{\prime}(s)\right| \leq c|s| \tag{2.27}
\end{equation*}
$$

for a positive constant c.
We are now in the position of constructing our local perturbation of u. We first discuss the case $U=V, z(s)=0$. We set

$$
\bar{u}(s)=s \eta
$$

and, in some interval $\left[1, s_{1}\right]$, construct a competing map $\bar{v}:\left[1, s_{1}\right] \rightarrow \mathbb{R}^{n}$,

$$
\bar{v}=\bar{u}+g e_{1}, \quad g:\left[1, s_{1}\right] \rightarrow \mathbb{R}
$$

with the following properties:

$$
\begin{align*}
& V(\bar{v}(1))=0 \\
& \bar{v}\left(s_{1}\right)=\bar{u}\left(s_{1}\right) \\
& \mathcal{J}_{V}\left(\bar{v},\left[1, s_{1}\right]\right)<\mathcal{J}_{V}\left(\bar{u},\left[0, s_{1}\right]\right) . \tag{2.28}
\end{align*}
$$

The basic observation is that, if we move from \bar{u} in the direction of one of the eigenvectors e_{1}, \ldots, e_{m} corresponding to negative eigenvalues of the Hessian of V, the potential V decreases and therefore, for each $s_{0} \in\left(1, s_{1}\right)$ we can define the function g in the interval $\left[1, s_{0}\right]$ so that

$$
\begin{equation*}
\mathcal{J}_{V}\left(\bar{u}+g e_{1},\left(1, s_{0}\right)\right)=\mathcal{J}_{V}\left(\bar{u},\left(1, s_{0}\right)\right) \tag{2.29}
\end{equation*}
$$

Indeed it suffices to impose that $g:\left(1, s_{0}\right] \rightarrow \mathbb{R}$ satisfies the condition

$$
\sqrt{V(\bar{u}(s))}=\sqrt{1+g^{\prime 2}(s)} \sqrt{V\left(\bar{u}(s)+g(s) e_{1}\right)}, \quad s \in\left(1, s_{0}\right] .
$$

[^1]

Figure 2: The maps $\bar{u}(s)$ and $\bar{v}(s)$.

According with this condition we take g as the solution of the problem

$$
\left\{\begin{array}{l}
g^{\prime}=-\frac{\lambda_{1} g}{\sqrt{s^{2} \lambda_{\eta}^{2}-\lambda_{1}^{2} g^{2}}}=-\frac{\frac{\lambda_{1} g}{s \lambda_{\eta}}}{\sqrt{1-\frac{\lambda_{1}^{2} g^{2}}{s^{2} \lambda_{\eta}^{2}}}} \tag{2.30}\\
g(1)=\frac{\lambda_{\eta}}{\lambda_{1}}
\end{array}\right.
$$

where we have used (2.23) and set

$$
\lambda_{\eta}=\sqrt{\sum_{i=m+1}^{n} \lambda_{i}^{2} \eta_{i}^{2}}
$$

Note that the initial condition in (2.30) implies $V(\bar{v}(1))=0$. The solution g of (2.30) is well defined in spite of the fact that the right hand side tends to $-\infty$ as $s \rightarrow 1$. Since g defined by (2.30) is positive for $s \in[1,+\infty)$, to satisfy the condition $\bar{v}\left(s_{1}\right)=\bar{u}\left(s_{1}\right)$, we give a suitable definition of g in the interval $\left[s_{0}, s_{1}\right]$ in order that $g\left(s_{1}\right)=0$. Choose a number $\alpha \in(0,1)$ and extend g with continuity to the interval $\left[s_{0}, s_{1}\right]$ by imposing that

$$
\begin{equation*}
\sqrt{V(\bar{u}(s))}=\alpha \sqrt{1+g^{\prime 2}(s)} \sqrt{V\left(\bar{u}(s)+g(s) e_{1}\right)}, \quad s \in\left(s_{0}, s_{1}\right] . \tag{2.31}
\end{equation*}
$$

Therefore, in the interval $\left(s_{0}, s_{1}\right]$, we define g by

$$
\begin{equation*}
g^{\prime}=-\frac{1}{\alpha} \sqrt{\frac{1-\alpha^{2}+\alpha^{2} \frac{\lambda_{1}^{2} g^{2}}{s^{2} \lambda_{\eta}^{2}}}{1-\frac{\lambda_{1}^{2} g^{2}}{s^{2} \lambda_{\eta}^{2}}}} \leq-\frac{\sqrt{1-\alpha^{2}}}{\alpha} . \tag{2.32}
\end{equation*}
$$

Since (2.31) implies

$$
\mathcal{J}_{V}\left(\bar{v},\left[s_{0}, s_{1}\right]\right)=\frac{1}{\alpha} \mathcal{J}_{V}\left(\bar{u},\left[s_{0}, s_{1}\right]\right)
$$

from (2.29) we see that \bar{v} satisfies also the requirement (2.28) above if we can choose $\alpha \in(0,1)$ and $1<s_{0}<s_{1}$ in such a way that

$$
\mathcal{J}_{V}(\bar{u},(0,1))>\frac{1-\alpha}{\alpha} \mathcal{J}_{V}\left(\bar{u},\left(s_{0}, s_{1}\right)\right)
$$

Since (2.32) implies $s_{1}<s_{0}+\frac{\alpha g\left(s_{0}\right)}{\sqrt{1-\alpha^{2}}}$ a sufficient condition for this is

$$
\mathcal{J}_{V}(\bar{u},(0,1))>\frac{1-\alpha}{\alpha} \mathcal{J}_{V}\left(\bar{u},\left(s_{0}, s_{0}+\frac{\alpha g\left(s_{0}\right)}{\sqrt{1-\alpha^{2}}}\right)\right)
$$

or equivalently

$$
\begin{equation*}
1>\frac{1-\alpha}{\alpha}\left(\left(s_{0}+\frac{\alpha g\left(s_{0}\right)}{\sqrt{1-\alpha^{2}}}\right)^{2}-s_{0}^{2}\right)=2 s_{0} g\left(s_{0}\right) \sqrt{\frac{1-\alpha}{1+\alpha}}+\frac{\alpha g^{2}\left(s_{0}\right)}{1+\alpha} . \tag{2.33}
\end{equation*}
$$

By a proper choice of s_{0} and α the right hand side of (2.33) can be made as small as we like. For instance we can fix s_{0} so that $g\left(s_{0}\right) \leq \frac{1}{4}$ and then choose α in such a way that $\frac{1}{2} s_{0} \sqrt{\frac{1-\alpha}{1+\alpha}} \leq \frac{1}{4}$ and conclude that (2.28) holds.

Next we use the function g to define a comparison map v that coincides with u^{*} outside an ϵ neighborhood of 0 and show that the assumption that the trajectory of u^{*} ends up in some $p \in P$ must be rejected. For small $\epsilon>0$ we define

$$
\begin{equation*}
v(\epsilon s)=\epsilon s \eta+z(\epsilon s)+\epsilon g(s-\sigma) e_{1}, \quad s \in\left[1+\sigma, s_{1}+\sigma\right], \tag{2.34}
\end{equation*}
$$

where $\sigma=\sigma(\epsilon)$ is determined by the condition

$$
U(v(\epsilon(1+\sigma)))=0,
$$

which, using (2.23), (2.24), (2.27) and $g(1)=\frac{\lambda_{n}}{\lambda_{1}}$, after dividing by ϵ^{2}, becomes

$$
\begin{equation*}
\frac{1}{2} \lambda_{\eta}^{2}\left((1+\sigma)^{2}-1\right)=\epsilon f(\sigma, \epsilon), \tag{2.35}
\end{equation*}
$$

where $f(\sigma, \epsilon)$ is a smooth bounded function defined in a neighborhood of $(0,0)$. For small $\epsilon>0$, there is a unique solution $\sigma(\epsilon)=\mathrm{O}(\epsilon)$ of (2.35). Note also that (2.34) implies that

$$
v\left(\epsilon\left(s_{1}+\sigma\right)\right)=\mathfrak{u}^{*}\left(\epsilon\left(s_{1}+\sigma\right)\right) .
$$

We now conclude by showing that, for $\epsilon>0$ small, it results

$$
\begin{equation*}
\mathcal{J}_{U}\left(\mathfrak{u}^{*}(\epsilon \cdot),\left(0, s_{1}+\sigma\right)\right)>\mathcal{J}_{U}\left(v(\epsilon \cdot),\left(1+\sigma, s_{1}+\sigma\right)\right) . \tag{2.36}
\end{equation*}
$$

From (2.26) and (2.34) we have

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}} \epsilon^{-1}\left|\frac{d}{d s} \mathfrak{u}^{*}(\epsilon s)\right|=1, \quad \lim _{\epsilon \rightarrow 0^{+}} \epsilon^{-1}\left|\frac{d}{d s} v(\epsilon s)\right|=\sqrt{1+g^{\prime 2}(s)}, \tag{2.37}
\end{equation*}
$$

and, using also (2.24) and $\sigma=\mathrm{O}(\epsilon)$,

$$
\begin{align*}
& \lim _{\epsilon \rightarrow 0^{+}} \epsilon^{-2} U\left(\mathfrak{u}^{*}(\epsilon s)\right)=V(\bar{u}(s)), \quad s \in\left(0, s_{1}\right), \tag{2.38}\\
& \lim _{\epsilon \rightarrow 0^{+}} \epsilon^{-2} U(v(\epsilon s))=V(\bar{v}(s)), \quad s \in\left(1, s_{1}\right)
\end{align*}
$$

uniformly in compact intervals.
The limits (2.37) and (2.38) imply

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0^{+}} \epsilon^{-2} \mathcal{J}_{U}\left(\mathfrak{u}^{*}(\epsilon \cdot),\left(0, s_{1}+\sigma\right)\right)=\lim _{\epsilon \rightarrow 0^{+}} \sqrt{2} \int_{0}^{s_{1}+\sigma} \sqrt{\epsilon^{-2} U\left(\mathfrak{u}^{*}(\epsilon s)\right)} \epsilon^{-1}\left|\frac{d}{d s} \mathfrak{u}^{*}(\epsilon s)\right| d s, \\
& =\sqrt{2} \int_{0}^{s_{1}} \sqrt{V(\bar{u}(s))} d s=\mathcal{J}_{V}\left(\bar{u},\left(0, s_{1}\right)\right) \\
& \lim _{\epsilon \rightarrow 0^{+}} \epsilon^{-2} \mathcal{J}_{U}\left(v(\epsilon \cdot),\left(1+\sigma, s_{1}+\sigma\right)\right)=\lim _{\epsilon \rightarrow 0^{+}} \sqrt{2} \int_{1+\sigma}^{s_{1}+\sigma} \sqrt{\epsilon^{-2} U(v(\epsilon s))} \epsilon^{-1}\left|\frac{d}{d s} v(\epsilon s)\right| d s, \\
& =\sqrt{2} \int_{1}^{s_{1}} \sqrt{V(\bar{v}(s))} \sqrt{1+g^{\prime 2}(s)} d s=\mathcal{J}_{V}\left(\bar{v},\left(1, s_{1}\right)\right) .
\end{aligned}
$$

This and (iii) above imply that, indeed, the inequality (2.36) holds for small $\epsilon>0$. The proof is complete.

We can now complete the proof of Theorem 1.1. We show that the map $u^{*}:\left(T_{-}, T_{+}\right) \rightarrow \mathbb{R}^{n}$ possesses all the required properties. The fact that u^{*} satisfies (1.2) and (1.4) follows from Lemma 2.3. Lemma 2.2 implies (1.5) and, if $T_{-}>-\infty$, also (1.6). The fact that $x_{-} \in \Gamma_{-} \backslash P$ is a consequence of Lemma 2.4 and implies that Γ_{-}has positive diameter. Viceversa, if Γ_{-}has positive diameter, Lemmas 2.5 and 2.6 imply that $T_{-}>-\infty$ and that (1.6) holds for some $x_{-} \in \Gamma_{-} \backslash P$. The proof of Theorem 1.1 is complete.
Remark. From Theorem 1.1 it follows that if N is even then there are at least $N / 2$ distinct orbits connecting different elements of $\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\}$. If N is odd there are at least $(N+1) / 2$. Simple examples show that, given distinct $\Gamma_{i}, \Gamma_{j} \in\left\{\Gamma_{1}, \ldots, \Gamma_{N}\right\}$, an orbit connecting them does not always exist. Let

$$
\mathcal{U}_{i j}=\left\{u \in W^{1,2}\left(\left(T_{-}^{u}, T_{+}^{u}\right) ; \mathbb{R}^{n}\right): u\left(\left(T_{-}^{u}, T_{+}^{u}\right)\right) \subset \Omega, u\left(T_{-}^{u}\right) \in \Gamma_{i}, u\left(T_{+}^{u}\right) \in \Gamma_{j}\right\}
$$

with $i \neq j$ and

$$
d_{i j}=\inf _{u \in \mathcal{U}_{i j}} \mathcal{A}\left(u,\left(T_{-}^{u}, T_{+}^{u}\right)\right)
$$

An orbit connecting Γ_{i} and Γ_{j} exists if

$$
d_{i j}<d_{i k}+d_{k j}, \quad \forall k \neq i, j
$$

The proof of Theorem 1.2 uses, with obvious modifications, the same arguments as in the proof of Theorem 1.1 to characterize u^{*} as the limit of a minimizing sequence $\left\{u_{j}\right\}$ of the action functional

$$
\begin{equation*}
\mathcal{A}\left(u,\left(0, T^{u}\right)\right)=\int_{0}^{T^{u}}\left(\frac{1}{2}|\dot{u}(t)|^{2}+U(u(t))\right) d t \tag{2.39}
\end{equation*}
$$

in the set

$$
\begin{equation*}
\mathcal{U}=\left\{u \in W^{1,2}\left(\left(0, T^{u}\right) ; \mathbb{R}^{n}\right): 0<T_{+}^{u}<+\infty, u(0)=0, u\left(\left[0, T_{+}^{u}\right)\right) \subset \Omega, u\left(T_{+}^{u}\right) \in \partial \Omega\right\} \tag{2.40}
\end{equation*}
$$

Remark. In the symmetric case of Theorem 1.2 it is easy to construct an example with $T_{+}<T_{+}^{\infty}$. For $U(x)=1-|x|^{2}, x \in \mathbb{R}^{2}$, the solution $u:[0, \pi / 2] \rightarrow \mathbb{R}^{2}$ of (1.2) determined by (1.4) and $u([0, \pi / 2])=$ $\{(s, 0): s \in[0,1]\}$ is a minimizer of \mathcal{A} in \mathcal{U}. For ϵ small, let $t_{\epsilon}=\arcsin (1-\epsilon)$ and define $u_{\epsilon}:\left[0, T^{u_{\epsilon}}\right] \rightarrow$ \mathbb{R}^{2} as the map determined by (1.4), $u_{\epsilon}\left(\left[0, t_{\epsilon}\right]\right)=\{(s, 0): s \in[0,1-\epsilon)\}$ and $u_{\epsilon}\left(\left(t_{\epsilon}, T^{u_{\epsilon}}\right]\right)=\{(1-\epsilon, s)$: $\left.s \in\left(0, \sqrt{2 \epsilon-\epsilon^{2}}\right]\right\}$. In this case $T_{+}=\pi / 2$ and $T_{+}^{\infty}=3 \pi / 4$.

2.1 On the existence of heteroclinic connections

Corollary 1.3 states the existence of heteroclinic connections under the assumptions of Theorem 1.1 and, in particular, that $U \in C^{2}$. Actually, by examining the proof of Theorem 1.1 we can establish an existence result under weaker hypotheses. In the special case $\partial \Omega=P, \# P \geq 2$, given $p_{-} \in P$, the set \mathcal{U} defined in (2.1) takes the form

$$
\begin{aligned}
& \mathcal{U}=\left\{u \in W^{1,2}\left(\left(T_{-}^{u}, T_{+}^{u}\right) ; \mathbb{R}^{n}\right):-\infty<T_{-}^{u}<T_{+}^{u}<+\infty\right. \\
& \left.\quad u\left(\left(T_{-}^{u}, T_{+}^{u}\right)\right) \subset \Omega, U(u(0))=U_{0}, u\left(T_{-}^{u}\right)=p_{-}, u\left(T_{+}^{u}\right) \in P \backslash\left\{p_{-}\right\}\right\}
\end{aligned}
$$

In this section we slightly enlarge the set \mathcal{U} by allowing $T_{ \pm}^{u}= \pm \infty$ and consider the admissible set

$$
\begin{gathered}
\tilde{\mathcal{U}}=\left\{u \in W_{l o c}^{1,2}\left(\left(T_{-}^{u}, T_{+}^{u}\right) ; \mathbb{R}^{n}\right):-\infty \leq T_{-}^{u}<T_{+}^{u} \leq+\infty\right. \\
\left.u\left(\left(T_{-}^{u}, T_{+}^{u}\right)\right) \subset \Omega, U(u(0))=U_{0}, \lim _{t \rightarrow T_{-}^{u}} u(t)=p_{-}, \lim _{t \rightarrow T_{+}^{u}} u(t) \in P \backslash\left\{p_{-}\right\}\right\}
\end{gathered}
$$

Proposition 2.7. Assume that U is a non-negative continuous function, which vanishes in a finite set $P, \# P \geq 2$, and satisfies

$$
\sqrt{U(x)} \geq \sigma(|x|), \quad x \in \Omega, \quad|x| \geq r_{0}
$$

for some $r_{0}>0$ and a non-negative function $\sigma:\left[r_{0},+\infty\right) \rightarrow \mathbb{R}$ such that $\int_{r_{0}}^{+\infty} \sigma(r) d r=+\infty$.
Given $p_{-} \in P$ there is $p_{+} \in P \backslash\left\{p_{-}\right\}$and a Lipschitz-continuous map $u^{*}:\left(T_{-}, T_{+}\right) \rightarrow \Omega$ that satisfies (1.4) almost everywhere on $\left(T_{-}, T_{+}\right)$,

$$
\lim _{t \rightarrow T_{ \pm}} u^{*}(t)=p_{ \pm}
$$

and minimizes the action functional \mathcal{A} on $\tilde{\mathcal{U}}$.
Proof. We begin by showing that

$$
\begin{equation*}
a_{0}=\inf _{u \in \mathcal{U}} \mathcal{A}=\inf _{u \in \tilde{\mathcal{U}}} \mathcal{A}=\tilde{a}_{0} \tag{2.41}
\end{equation*}
$$

Since $\mathcal{U} \subset \tilde{\mathcal{U}}$ we have $a_{0} \geq \tilde{a}_{0}$. On the other hand arguing as in the proof of Lemma 2.2 , if $T_{+}-T_{-}=$ $+\infty$, given a small number $\epsilon>0$, we can construct a map $u_{\epsilon} \in \mathcal{U}$ that satisfies

$$
a_{0} \leq \mathcal{A}\left(u_{\epsilon},\left(T_{-}^{u_{\epsilon}}, T_{+}^{u_{\epsilon}}\right)\right) \leq \mathcal{A}\left(u,\left(T_{-}^{u}, T_{+}^{u}\right)\right)+\eta_{\epsilon}
$$

where $\eta_{\epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$. This implies $a_{0} \leq \tilde{a}_{0}$ and establishes (2.41). It follows that we can proceed as in the proof of Theorem 1.1 and define $u^{*} \in \tilde{\mathcal{U}}$ as the limit of a minimizing sequence $\left\{u_{j}\right\} \subset \mathcal{U}$. The arguments in the proof of Lemma 2.2 show that (2.8) holds. It remain to show that u^{*} is Lipschitzcontinuous. Looking at the proof of Lemma 2.3 we see that the continuity of U is sufficient for establishing that (1.4) holds almost everywhere on $\left(T_{-}, T_{+}\right)$, and the Lipschitz character of u^{*} follows. The proof is complete.

Remark. Without further information on the behavior of U in a neighborhood of $p_{ \pm}$nothing can be said on $T_{ \pm}$being finite or infinite and it is easy to construct examples to show that all possible combinations are possible. As shown in Lemma 2.4 a sufficient condition for $T_{ \pm}= \pm \infty$ is that, in a neighborhood of $p=p_{ \pm}, U(x)$ is bounded by a function of the form $c|x-p|^{2}, c>0 . U$ of class C^{1} is a sufficient condition in order that u^{*} is of class C^{2} and satisfies (1.2).

3 Examples

In this section we show a few simple applications of Theorems 1.1 and 1.2.
Our first application describes a class of potentials with the property that, in spite of the existence of possibly infinitely many critical values, (1.2) has a nontrivial periodic orbit on any energy level.
Proposition 3.1. Assume that $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies

$$
\begin{aligned}
& U(-x)=U(x), \quad x \in \mathbb{R}^{n} \\
& U(0)=0, U(x)<0 \text { for } x \neq 0 \\
& \lim _{|x| \rightarrow \infty} U(x)=-\infty
\end{aligned}
$$

Assume moreover that each non zero critical point of U is hyperbolic with Morse index $i_{m} \geq 1$. Then there is a nontrivial periodic orbit of (1.2) on the energy level $\frac{1}{2}|\dot{u}|^{2}-U(u)=\alpha$ for each $\alpha>0$.
Proof. For each $\alpha>0$ we set $\tilde{U}=U(x)+\alpha$ and let $\Omega \subset\{\tilde{U}>0\}$ be the connected component that contains the origin. Ω is open, nonempty and bounded and, from the assumptions on the properties of the critical points of U, it follows that $\partial \Omega$ is connected and contains at most a finite number of critical points. Therefore we are under the assumptions of Corollary 1.6 for the case $N=1$ and the existence of the periodic orbit follows.

Figure 3: Symmetric periodic orbit for the example with potential (3.1).

An example of potential $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that satisfies the assumptions in Proposition 3.1 is, in polar coordinates r, θ,

$$
U(r, \theta)=-r^{2}+\frac{1}{2} \tanh ^{4}(r) \cos ^{2}\left(r^{-1}\right) \cos ^{2 k}(2 \theta)
$$

where $k>0$ is a sufficiently large number.
Next we give another application of Corollary 1.6. For the potential $U: \mathbb{R}^{2} \rightarrow \mathbb{R}$, with

$$
\begin{equation*}
U(x)=\frac{1}{2}\left(1-x_{1}^{2}\right)^{2}+\frac{1}{2}\left(1-4 x_{2}^{2}\right)^{2} \tag{3.1}
\end{equation*}
$$

the energy level $\alpha=-\frac{1}{2}$ is critical and corresponds to four hyperbolic critical points $p_{1}=(1,0),-p_{1}$, $p_{2}=\left(0, \frac{1}{2}\right)$ and $-p_{2}$. The connected component $\Omega \subset\{\tilde{U}>0\},\left(\tilde{U}=U(x)-\frac{1}{2}\right)$ that contains the origin is bounded by a simple curve Γ that contains $\pm p_{1}$ and $\pm p_{2}$. In spite of the presence of these critical points, from Theorem 1.2 it follows that there is a minimizer $u \in \mathcal{U}$, with \mathcal{U} as in (2.40) and $u\left(T^{u}\right) \in \Gamma \backslash\left\{ \pm p_{1}, \pm p_{2}\right\}$, and Corollary 1.6 implies the existence of a periodic solution v^{*}. Note that there are also two heteroclinic orbits, solutions of (1.2) and (1.4):

$$
u_{1}(t)=(\tanh (t), 0), \quad u_{2}(t)=\left(0, \frac{1}{2} \tanh (2 t)\right)
$$

These orbits connect p_{j} to $-p_{j}$, for $j=1,2$. By Theorem 1.2 both u_{1} and u_{2} have action greater than $\left.v^{*}\right|_{\left(-T_{+}, T_{+}\right)}$.

Our last example shows that Theorems 1.1 and 1.2 can be used to derive information on the rich dynamics that (1.2) can exhibit when U undergoes a small perturbation. We consider a family of potentials $U: \mathbb{R}^{2} \times[0,1] \rightarrow \mathbb{R}$. We assume that $U(x, 0)=x_{1}^{6}+x_{2}^{2}$ which from various points of view is a structurally unstable potential and, for $\lambda>0$ small, we consider the perturbed potential

$$
\begin{equation*}
U(x, \lambda)=2 \lambda^{4} x_{1}^{2}+x_{2}^{2}-2 \lambda^{2} x_{1} x_{2}-3 \lambda^{2} x_{1}^{4}+x_{1}^{6} \tag{3.2}
\end{equation*}
$$

This potential satisfies $U(-x, \lambda)=U(x, \lambda)$ and, for $\lambda>0$, has the five critical points $p_{0}, \pm p_{1}$ and $\pm p_{2}$ defined by

$$
\begin{gathered}
p_{0}=(0,0) \\
p_{1}=\left(\lambda\left(1-\left(\frac{2}{3}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}, \lambda^{3}\left(1-\left(\frac{2}{3}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right) \\
p_{2}=\left(\lambda\left(1+\left(\frac{2}{3}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}, \lambda^{3}\left(1+\left(\frac{2}{3}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right)
\end{gathered}
$$

which are all hyperbolic.
We have $U\left(p_{2}, \lambda\right)<0=U\left(p_{0}, \lambda\right)<U\left(p_{1}, \lambda\right)$ and p_{0} is a local minimum, p_{1} a saddle and p_{2} a global minimum. Let α be the energy level. For $-\alpha<U\left(p_{2}, \lambda\right)$ or $-\alpha \geq U\left(p_{1}, \lambda\right)$ no information can be

Figure 4: Bifurcations of dynamics of (1.2) with the $\alpha=0$, bottom left: $\alpha=0.05$, bottom right: $\alpha=-U\left(p_{2}, 1\right)$. The shaded regions are not accessible.
derived from Theorems 1.1 and 1.2 therefore we assume $-\alpha \in\left[U\left(p_{2}, \lambda\right), U\left(p_{1}, \lambda\right)\right)$. For $-\alpha=U\left(p_{2}, \lambda\right)$ Corollary 1.3 or Corollary 1.6 yields the existence of a heteroclinic connection u_{2} between $-p_{2}$ and p_{2}. For $-\alpha \in\left(U\left(p_{2}, \lambda\right), 0\right)$ Corollary 1.6 implies the existence of a periodic orbit u_{α}. This periodic orbit converges uniformly in compact intervals to u_{2} and the period $T_{\alpha} \rightarrow+\infty$ as $-\alpha \rightarrow U\left(p_{2}, \lambda\right)^{+}$. For $\alpha=0$ Corollary 1.4 implies the existence of two orbits u_{0} and $-u_{0}$ homoclinic to $p_{0}=0$. We can assume that u_{0} satisfies the condition $u_{0}(-t)=u_{0}(t)$ and that $u_{\alpha}(0)=0$. Then we have that $u_{\alpha}\left(\cdot \pm \frac{T_{\alpha}}{4}\right)$ converges uniformly in compact intervals to $\mp u_{0}$ and $T_{\alpha} \rightarrow+\infty$ as $-\alpha \rightarrow 0^{-}$. For $-\alpha \in\left(0, U\left(p_{1}, \lambda\right)\right), \partial \Omega$ is the union of three simple curves all of positive diameter: Γ_{0} that includes the origin and $\pm \Gamma_{2}$ which includes $\pm p_{2}$ and Corollary 1.5 together with the fact that $U(\cdot, \lambda)$ is symmetric imply the existence of two periodic solutions \tilde{u}_{α} and $-\tilde{u}_{\alpha}$ with \tilde{u}_{α} that oscillates between Γ_{0} and Γ_{2} in each time interval equal to $\frac{T_{\alpha}}{2}$. Assuming that $\tilde{u}_{\alpha}(0) \in \Gamma_{2}$ we have that, as $-\alpha \rightarrow 0^{+}, \tilde{u}_{\alpha} \rightarrow u_{0}$ uniformly in compacts and $T_{\alpha} \rightarrow+\infty$. Finally we observe that, in the limit $-\alpha \rightarrow U\left(p_{1}, \lambda\right)^{-}, \tilde{u}_{\alpha}$ converges uniformly in \mathbb{R} to the constant solution $u \equiv p_{1}$.

Acknowledgements

The first author is indebted with Peter Bates for fruitful discussions on the subject of this paper.

References

[1] N. Alikakos and G. Fusco. On the connection problem for potentials with several global minima. Indiana Univ. Math. Journ. 57 No. 4, 1871-1906 (2008)
[2] P. Antonopoulos and P. Smyrnelis. On minimizers of the Hamiltonian system $u^{\prime \prime}=\nabla W(u)$, and on the existence of heteroclinic, homoclinic and periodic connections. Preprint (2016)
[3] A. Braides. Approximation of Free-Discontinuity Problems. Lectures Notes in Mathematics 1694, Springer-Verlag, Heidelberg (1998)
[4] A. Bressan. Tutorial on the Center Manifold Theorem. Hyperbolic systems of balance laws. CIME course (Cetraro 2003). Springer Lecture Notes in Mathematics 1911, 327-344. Springer-Verlag, Heidelberg (2007)
[5] G. Buttazzo, M. Giaquinta, S. Hildebrandt. One-dimensional Calculus of Variations: an Introduction Oxford University Press, Oxford (1998)
[6] N. V. De Paulo and P. A. S. Salomão. Systems of transversal sections near critical energy levels of Hamiltonian systems in \mathbb{R}^{4}, arXiv:1310.8464v2 (2016)
[7] A. Monteil and F. Santambrogio. Metric methods for heteroclinic connections. Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma. 4072 (2016)
[8] C. Sourdis. The heteroclinic connection problem for general double-well potentials. Mediterranean Journal of Mathematics 13 No. 6, 4693-4710 (2016)
[9] P. Sternberg. Vector-Valued Local Minimizers of Nonconvex Variational Problems, Rocky Mountain J. Math. 21 No. 2, 799-807 (1991)
[10] A. Vanderbauwhede. Centre manifolds, normal forms and elementary bifurcations. Dynamics Reported 2 No. 4, 89-169 (1989)
[11] A. Zuniga and P. Sternberg. On the heteroclinic connection problem for multi-well gradient systems. Journal of Differential Equations 261 No. 7, 3987-4007 (2016)

[^0]: *Dipartimento di Matematica, Università dell'Aquila; e-mail: fusco@univaq.it
 ${ }^{\dagger}$ Dipartimento di Matematica, Università di Pisa; e-mail: giovanni.federico.gronchi@unipi.it
 ${ }^{\ddagger}$ Dipartimento di Matematica, Università di Pisa; e-mail: matteo.novaga@unipi.it

[^1]: ${ }^{1}$ Actually η coincides with one of the eigenvectors of $U^{\prime \prime}(0)$.

