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Abstract

An asymptotic analysis is performed for thin anisotropic elastic plate clamped along its
lateral side and also supported at a small area θh of one base with diameter of the same
order as the plate thickness h � 1. A three-dimensional boundary layer in the vicinity
of the support θh is involved into the asymptotic form which is justified by means of the
previously derived weighted inequality of Korn’s type provides an error estimate with the
bound ch1/2 |lnh| . Ignoring this boundary layer effect reduces the precision order down to

|lnh|−1/2
. A two-dimensional variational-asymptotic model of the plate is proposed within

the theory of self-adjoint extensions of differential operators. The only characteristics of the
boundary layer, namely the elastic logarithmic potential matrix of size 4 × 4, is involved
into the model which however keeps the precision order h1/2 |lnh| in certain norms. Several
formulations and applications of the model are discussed.

Keywords: Kirchhoff plate, small support zone, asymptotic analysis, self-adjoint exten-
sions, variational model.
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1 Introduction

1.1 Motivation

We consider a thin elastic anisotropic plate

Ωh =
{
x = (y, z) ∈ R2 × R : y = (y1, y2) ∈ ω, |z| < h/2

}
(1.1)
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Figure 1: A plate with small clamped area (a) and its two-dimensional model where the black
square indicates an asymptotic point condition (b).

of the relative thickness h � 1 with one or several small, of diameter O(h), support areas at
its lower base Σ−h (see Figure 1,a). In this paper we assume that the plate is clamped along the
lateral side υh while the bases Σ±h are traction-free, except at the only small support zone

θh =
{
x : η := h−1y ∈ θ, z = −h/2

}
. (1.2)

Here, ω and θ are domains in the plane R2 with smooth boundaries and compact closures (see
Figure 1,b), the y-coordinate origin O is put inside θ,

Σ±h = {x : y ∈ ω, z = ±h/2} , υh = {x : y ∈ ∂ω, |z| < h/2} . (1.3)

This paper is a direct sequel of [4] where a convenient form of Korn’s inequality in Ωh was
derived as well as a boundary layer effect near θh was investigated scrupulously. These results,
combined with the classical procedure of dimension reduction, see [7, 8, 13, 23, 32] etc., and
an asymptotic analysis of singular perturbation of boundaries, see [10, 15], allow us here to
construct and justify asymptotic expansions of elastic fields in Ωh, i.e., displacements, strains
and stresses.

A small Dirichlet perturbation of boundary conditions may lead to neglectable changes in
a solution but in our case, unfortunately, such a change is fair and significant in two aspects.
First of all, fixing the plate (1.1) with the sharp supports at θ1

h, ..., θ
J
h , cf. (1.2), results in the

Sobolev point conditions, see, e.g., [5], namely the average deflexion w3 vanishes at the points
O1, ...,OJ , the centers of the small support areas. Due to the Sobolev embedding theorem in
R2 these additional restrictions are natural in the variational formulation of the traditional two-
dimensional model of Kirchhoff’s plate while the only implication defect turns into a certain
lack of smoothness properties of the solution at the points O1, ...,OJ . Much more disagreeable
input of the small support areas becomes a crucial reduction of the convergence rate: instead
of the the conventional rate O(

√
h) for the Kirchhoff model, we detect O(| lnh|−1/2), cf. [6],

that is unacceptable for any application purpose.
The three-dimensional boundary layers, described and investigated in [4], see also [18, 21],

help to construct specific corerctions in the vicinity of θh, to take into account their influence on
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the far-field asymptotics and, as a result, to achieve the appropriate error estimate O(
√
h| lnh|).

At the same time, the global asymptotic approximation of the elastic fields becomes quite
complicated so that its utility in application is rather doubtful. In this way, it is worth to
restrict our analysis to the fair-field asymptotics whose dependence on the small parameter h
remains complicated but can be expressed through rational functions in lnh and an integral
characteristics of the support area, namely a 4× 4-matrix of elastic capacity [4, 18].

To provide a correct and mathematically rigorous two-dimensional model of the supported
plate, we employ two approaches. First, we turn to the technique of self-adjoint extensions
of differential operators (see the pioneering paper [1], the review [30] and, e.g., the papers
[11, 17, 25, 29], especially [20] connecting this approach with the method of matched asymptotic
expansions). To simulate the influence of localized special boundary layer, we provide a proper
choice of singular solutions by selecting a special self-adjoint extension in the Lebesgue space
L2(ω) of the matrix L(∇y) of differential operators in the Kirchhoff plate model, see (2.30),
(2.29). Parameters of this extension depend on the quantity | lnh| and the elastic logarithmic
capacity matrix, see [4, Sect. 3.2], which is similar to the logarithmic capacity in harmonic
analysis, cf. [12, 31].

The introduced model is two-fold and can be formulated as either an abstract equation with
the obtained self-adjoint operator, or a problem on a stationary point of the natural energy
functional in a weighted function space with detached asymptotics. Advantages and deficiencies
of these approaches are discussed in Section 3. In any case the compelled removal of a major
part of the three-dimensional layer from the asymptotic form surely reduces capabilities of the
model which, in particular, does not give the global approximation of stresses and strains, but
does outside a neighborhood of the sets θh and υh where the Dirichlet conditions are imposed.
Thereupon, we mention that, first, the Kirchhoff model itself does not approximate correctly
stresses and strains near the clamped edge, too, and, second, quite many applications demand
to determine asymptotics of displacements only. In Corollaries 11 and 13 we will give some
error estimates for the model, in particular, an asymptotic formula for the elastic energy of the
three-dimensional thin-plate. Results [26] predict that the model also can furnish asymptotics
of eigenfrequencies of the plate but this will be a topic of an oncoming paper.

1.2 Formulation of the problem

Similarly to [4], in the domain (1.1) we consider the mixed boundary-value problem of the
elasticity theory

L(∇)u(h, x) := D (−∇)>AD (∇)u (h, x) = f (h, x) , x ∈ Ωh, (1.4)

N+(∇)u(h, x) := D (e3)>AD (∇)u (h, x) = 0, x ∈ Σ+
h , (1.5)

N−(∇)u(h, x) := D (−e3)>AD (∇)u (h, x) = 0, x ∈ Σ•h = Σ−h \ θh,
u (h, x) = 0, x ∈ θh, (1.6)

u (h, x) = 0, x ∈ υh. (1.7)

Let us explain the Voigt-Mandel notation we use throughout the paper. The displacement
vector (u1(x), u2(x), u3(x))> is regarded as a column in R3, > stands for transposition and the
Hooke’s law

σ (u) = Aε (u) = AD (∇)u (1.8)
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relates the strain column

ε =
(
ε11, ε22, 2

1/2ε12, 2
1/2ε13, 2

1/2ε23, ε33

)>
, εjk (u) =

1

2

(
∂uj
∂xk

+
∂uk
∂xj

)
,

with the stress column σ (u) of the same structure as ε (u) . Moreover, the stiffness matrix A of
size 6× 6, symmetric and positive definite, figures in (1.8) as well as the differential operators

D (∇)> =

 ∂1 0 2−1/2∂2 2−1/2∂3 0 0

0 ∂2 2−1/2∂1 0 2−1/2∂3 0

0 0 0 2−1/2∂1 2−1/2∂2 ∂3

 , ∂j =
∂

∂xj
, ∇ =

 ∂1

∂2

∂3

 . (1.9)

The variational formulation of problem (1.4)-(1.7) implies the integral identity

(AD (∇)u,D (∇) v)Ωh
= (f, v)Ωh

, ∀v ∈ H1
0 (Ωh; Γh)3 , (1.10)

where ( , )Ωh
is the scalar product in L2 (Ωh) , H1

0 (Ωh; Γh) is a subspace of functions in the

Sobolev space H1 (Ωh) which vanish on Γh = θh∪υh, see (1.6) and (1.7), and the last superscript
3 in (1.10) indicates the number of components in the test (vector) function v = (v1, v2, v3)> .

We here have listed only notation of further use while more explanation and an example of
the isotropic material can be found in Section 1.2 of [4].

1.3 Architecture of the paper

In §2 we present the standard asymptotic procedure of dimension reduction to provide explicit
formulas in the Kirchhoff plate’s model. Based on the results obtained in [4], we construct in
§3 asymptotic expansions of a solution u(h, x) to problem (1.4)-(1.7) including the boundary
layer near the support area (1.2) and derive the error estimates in various versions.

The technique of self-adjoint extensions of differential operators is outlined in §3 for the
Kirchhoff plate supported at one point, i.e. with the Sobolev condition, together with the
choice of the extension parameters on the base of the previous asymptotic analysis. Finally, the
asymptotic-variational model mentioned in Section 1.1 is discussed at length in §4.

2 The limit two-dimensional problem

2.1 The dimension reduction

We suppose that the right-hand side of system (1.4) takes the form

f (h, x) = h−1/2f0 (y, ζ) + h1/2f1 (y) + f̃ (h, x) (2.1)

where ζ = h−1z ∈ (−1/2, 1/2) is the stretched transverse coordinate and f0, f1 are vector
functions subject to the conditions∫ 1/2

−1/2
f0

3 (y, ζ) dζ = 0, f1
1 (y) = f1

2 (y) = 0, y ∈ ω. (2.2)

Now we assume f0 and f1 smooth and postpone a detailed description of properties of f0, f1

and f̃ to Section 3.2. We emphasize that, owing to linearity of the problem, any reasonable
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right-hand side can be represented as in (2.1), (2.2). After appropriate rescaling our choice of
the factors h−1/2 and h1/2 in (2.1) as well as the orthogonality condition in (2.2) ensures that
the potential energy stored by the plate Ωh under the volume force (2.1) gets order 1 = h0, see
Section 4.4.

As shown in [22], [23, Ch.4], the asymptotic ansatz

u (h, x) = h−3/2U0 (y) + h−1/2U1 (y, ζ) + h1/2U2 (y, ζ) + ... (2.3)

of the solution to problem (1.4)-(1.6) is perfectly adjusted with decomposition (2.1). The
coordinate change x 7→ (y, ζ) splits the differential operators L (∇) and N± (∇) in (1.4) and
(1.5), respectively, as follows:

L (∇) := D (−∇)>AD (∇) = h−2L0 (∂ζ) + h−1L1 (∇y, ∂ζ) + h0L2 (∇y) , (2.4)

N± (∇) := D (0, 0,±1)>AD (∇) = h−1N0± (∂ζ) + h0N1± (∇y) ,

where

L0 = −D>ζ ADζ , L1 = −D>ζ ADy −D>y ADζ , L2 = −D>y ADy,

N0± = ±D>3 ADζ , N1± = ±D>3 ADy

Dζ = D (0, 0, ∂ζ) , Dy = D (∇y, 0) , D3 = (0, 0, 1) , (2.5)

∂ζ = ∂/∂ζ, ∇y = (∂/∂y1, ∂/∂y2) .

We now insert formulas (2.4) and (2.3), (2.1) into (1.4) and (1.5) and collect coefficients of
hp−2 and hp−1, respectively. Equalizing their sums yields a recursive sequence of the Neumann
problems on the interval (−1/2, 1/2) 3 ζ with the parameter y ∈ ω. For p = 0, 1, 2, we have

L0Up = F p := −L1Up−1 − L2Up−2 for ζ ∈
(
−1

2 ,
1
2

)
, (2.6)

N0±Up = Gp± := −N1±Up−1 at ζ = ±1
2 ,

where U−2 = U−1 = 0. Since F 0 = 0, G0± = 0 and F 1 = 0, G1± = ∓D>3 ADyU
0, we readily

take

U0 (y) = w3 (y) e3, U1 (y) =
2∑
i=1

ei

(
wi (y)− ζ ∂w3

∂yi
(y)

)
(2.7)

as solutions to problem (2.6) with p = 0 and p = 1. Here, ej is the unit vector of the xj-axis
and

w = (w1, w2, w3)> (2.8)

is a vector function to be determined. Notice that h−3/2w3 (y) and h−1/2wi (y) will be the
averaged deflection and longitudinal displacements in the plate.

If p = 2, one may easily verify that the right-hand sides in (2.6) become

F 2 (y, ζ) = D>ζ ADyU
1 +D>y A

(
DζU

1 +DyU
0
)

= D>ζ AY (ζ)D (∇y)w (y) , (2.9)

G2± (y) = ∓D>3 AY (1/2)D (∇y)w (y)

where DζU
1 +DyU

0 = 0 in view of (2.7) and

Y (ζ) =

(
I3 −21/2I3ζ
O3 O3

)
, D (∇y)> =

 ∂1 0 2−1/2∂2 0 0 0

0 ∂2 2−1/2∂1 0 0 0

0 0 0 2−1/2∂2
1 2−1/2∂2

2 ∂1∂2

 ,

(2.10)
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cf. (1.9), I3 and O3 are the unit and null matrices of size 3× 3.
Hence,

U2 (y, ζ) = X (ζ)D (∇y)w (y) (2.11)

and X is a matrix solution (of size 3× 6) to the problem

−D>ζ ADζX (ζ) = D>ζ AY (ζ) , ζ ∈
(
−1

2 ,
1
2

)
, ±D>3 ADζX

(
±1

2

)
= ∓D>3 AY

(
±1

2

)
. (2.12)

Compatibility conditions in problem (2.12) are evidently satisfied.
The problem with p = 3

L0Up = F p for ζ ∈
(
−1

2 ,
1
2

)
, N0±Up = Gp± at ζ = ±1

2 (2.13)

gets the right-hand sides

F 3 = −L1U2 − L0U1 + f0 = D>ζ ADyU
2 +D>y A

(
DζU

2 +DyU
1
)

+ f0, (2.14)

G3± = ∓N1±U2 = ∓D>3 ADyU
2.

Let us consider the compatibility conditions

Ipj (y) :=

∫ 1/2

−1/2
F pj (y, ζ) dζ +Gp+j (y) +Gp−j (y) = 0, j = 1, 2, 3, (2.15)

with p = 3. By (2.14) and (2.7), (2.11), we have

DζU
2 (y, ζ) +DyU

1 (y, ζ) = (DζX (ζ) + Y (ζ))D (∇y)w (y) (2.16)

and

I3
i (y) = e>i D

>
y

∫ 1/2

−1/2
A (DζX (ζ) + Y (ζ)) dζD (∇y)w (y) dζ +

∫ 1/2

−1/2
f0
i (y, ζ) dζ.

Since e>i D
>
y = e>i D (∇y) according to (1.9), (2.5), (2.10), the equalities I3

i (y) = 0 with i = 1, 2
are nothing but two upper lines in the system of differential equations

D (−∇y)>AD (∇y)w (y) = g (y) , y ∈ ω, (2.17)

where

A =

∫ 1/2

−1/2
Y (ζ)>A (DζX (ζ) + Y (ζ)) dζ (2.18)

and

gi (y) =

∫ 1/2

−1/2
f0
i (y, ζ) dζ, i = 1, 2. (2.19)
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The compatibility condition (2.15) with j = 3 is fulfilled automatically. Indeed, we take into
account the orthogonality condition in (2.2) and write

I3
3 (y) =

∫ 1/2

−1/2
e>3 D

>
y A (DζX (ζ) + Y (ζ)) dζ D (∇y)w (y)

=

2∑
i=1

∂

∂yi

∫ 1/2

−1/2
(Dζζei)

>A (DζX (ζ) + Y (ζ)) dζ D (∇y)w (y)

=

2∑
i=1

∂

∂yi

(
−
∫ 1/2

−1/2
e>i ζD

>
ζ A (DζX (ζ) + Y (ζ)) dζ

+ e>i ζD
>
3 A (DζX (ζ) + Y (ζ))

∣∣∣1/2ζ=−1/2

)
D (∇y)w (y) = 0.

Here, we again applied representation (2.16) together with the identity

Dye3 =

2∑
i=1

Dζζei
∂

∂yi
(2.20)

inherited from (1.9), (2.5), and finally recalled problem (2.12) for the 3× 6-matrix X .
Let us demonstrate that the third line of system (2.17) is equivalent to the equality

I4
3 (y) = 0, (2.21)

that is the third compatibility condition (2.15) in problem (2.13) with the right-hand sides

F 3 = −L1U3 − L0U2 + f1 = D>ζ ADyU
3 +D>y A

(
DζU

3 +DyU
2
)

+ f1
3 ,

G4± = ∓N1±U3 = ∓D>3 ADyU
3.

We have

I4
3 (y) =

∫ 1/2

−1/2
e>3 D

>
y A

(
DζU

3 +DyU
2
)
dζ + f1

3 (2.22)

=

2∑
i=1

∂

∂yi

∫ 1/2

−1/2
(Dζζei)

>A
(
DζU

3 +DyU
2
)
dζ + f1

3

= f1
3 +

2∑
i=1

∂

∂yi
e>i

(
−
∫ 1/2

−1/2
ζD>ζ A

(
DζU

3 +DyU
2
)
dζ +

(
ζD>3 A

(
DζU

3 +DyU
2
))
|1/2ζ=−1/2

)

= f1
3 +

2∑
i=1

∂

∂yi
e>i

∫ 1/2

−1/2
ζ
(
D>y A

(
DζU

2 +DyU
1
)

+ f0
)
dζ

= g3 +

2∑
i=1

∂

∂yi
e>i D

>
y

∫ 1/2

−1/2
ζA (DζX + Y) dζD (∇y)w

where

g3 (y) = f1
3 (y) +

2∑
i=1

∫ 1/2

−1/2
ζ
∂f0

i

∂yi
(y, ζ) dζ. (2.23)
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Let us clarify calculation (2.22). First, we used identity (2.20) and integrate by parts in the
interval (−1/2, 1/2) . Then we took into account problem (2.6) with p = 3 and its right-hand
sides (2.14). Finally, formula (2.16) was applied.

In view of (1.9) and (2.10) one observes that

2∑
i=1

∂

∂yi
e>i D

>
y ζ = e>3 D (∇y)Y (ζ)

and, hence, equality (2.21) indeed implies the third line of system (2.17) due to definition (2.18).

2.2 The plate equations

Owing to the Dirichlet condition (1.7) on the lateral side υh of the plate Ωh, we supply system
(2.17) with the boundary conditions

wi (y) = 0, i = 1, 2, w3 (y) = 0, ∂nw3 (y) = 0, y ∈ ∂ω, (2.24)

where ∂n = n>∇y and n = (n1, n2)> is the unit vector of the outward normal at the boundary
of the domain ω ⊂ R2. Notice that conditions (2.24) make the main asymptotic terms (2.7) in
ansatz (2.3) vanish at the lateral boundary υh.

It follows from the weighted Korn’s inequality (2.10) in [4] and will be shown by other means
later that the Dirichlet conditions (1.6) at the small support zones (1.2) lead to the Sobolev
(point) condition at the y-coordinates origin O, namely

w3 (O) = 0. (2.25)

To prove the unique solvability of the limit two-dimensional problem (2.17), (2.24), (2.25) needs
a piece of information on the matrix A of the system.

Lemma 1 Matrix (2.18) is block-diagonal and takes the form

A =

(
A′ O3

O3 A(3)

)
=

(
A0 O3

O3
1
6A

0

)
(2.26)

where A0 = A(yy)−A(yz)A
−1
(zz)A(zy) is a symmetric and positive definite 3×3-matrix constructed

from submatrices of size 3× 3 in the representation of the stiffness matrix

A =

(
A(yy) A(yz)

A(zy) A(zz)

)
. (2.27)

Proof. We introduce the diagonal matrix J = diag
(
2−1/2, 2−1/2, 1

)
and, by (2.27) and

(1.9), rewrite problem (2.12) as follows:

−A(zz)J∂2
ζX (ζ) = A(zy)(O3,−21/2I3), ζ ∈ (−1/2, 1/2) ,

±A(zz)J∂ζX (±1/2) = ∓A(zy)(I3,∓21/2I3).

Its solution thus reads

X (ζ) = J−1A−1
(zz)A(zy)

(
−ζI3, 21/2

(
ζ2

2 −
1
24

)
I3
)
. (2.28)
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Inserting this formula into (2.18) assures representation (2.26). Since matrix (2.27) is symmetric
and positive definite, these properties are evidently passed to A0. �

Representation (2.26) indicates a remarkable fact: for any homogeneous anisotropic plate
the limit two-dimensional system (2.17) divides into the fourth-order differential operator

L3 (∇y) = 1
6D3 (∇y)>A0D3 (∇y) (2.29)

for the deflection w3 and the 2× 2-matrix second-order of differential operators

L′ (∇y) = D′ (−∇y)>A0D′ (∇y) (2.30)

for the longitudinal displacement vector w′ = (w1, w2)> .
In the isotropic case (see formula (1.10) in [4]) we have

A0 =

 λ′ + 2µ λ′ 0
λ′ λ′ + 2µ 0
0 0 2µ

 , λ′ =
2λµ

λ+ 2µ

while L3 (∇y) and L′ (∇y) are the bi-harmonic operator and the plane Lamé operator

L′3 (∇y) =
µ

3

λ+ µ

λ+ 2µ
∆2
y, L′ (∇y) = −µ∆yI2 −

(
λ′ + µ

)
∇y∇>y .

Remark 2 Throughout the paper it is convenient to write the constructed solutions of problems
(2.6) and (2.13) with f0 in the form

Up (y, ζ) = W p (ζ,∇y)w (y) , p = 0, 1, 2, 3, (2.31)

where, according to (2.7), (2.11) and (2.28),

W 0 (ζ,∇y) =

 0 0 0
0 0 0
0 0 1

 , W 1 (ζ,∇y) =

 1 0 −ζ∂1

0 1 −ζ∂2

0 0 0

 , ∂i =
∂

∂yi
, (2.32)

W 2 (ζ,∇y) = J−1A−1
(zz)A(zy)

(
−ζI3, 21/2

(
ζ2

2
− 1

24

)
I3
)
D (∇y) .

A concrete formula for W 3 (ζ,∇y) will not be applied. We emphasize that (2.31) is a linear
combination of derivatives of w′ = (w1, w2) of order p− 1 and w3 of order p. �

Proposition 3 Let

g3 = g0
3 −

2∑
i=1

∂

∂yi
gi3, g0

3, g
i
3, gi ∈ L2 (ω) . (2.33)

Problem (2.17), (2.24), (2.25) admits a unique solution in the energy space H = H1
0 (ω; ∂ω)2×

H2
0 (ω; ∂ω ∪ O) . Moreover, this solution falls into H2 (ω)2 ×H3 (ω) and meets estimate

||w;H2 (ω)2 ×H3 (ω) || ≤ cN (2.34)

where N is the sum of norms of functions indicated in (2.33). The space H consists of vector
functions (2.8) in the direct product H1 (ω)2 ×H2 (ω) of Sobolev spaces such that the Dirichlet
(2.24) and Sobolev (2.25) conditions are satisfied.
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Proof. The variational formulation of problem (2.17), (2.24), (2.25) reads: to find w ∈ H
fulfilling the integral identity

(
AD(∇y)w,D(∇y)v

)
ω

=
(
g0

3, v3

)
ω

+
2∑
i=1

(
(gi, vi)ω +

(
gi3,

∂v3

∂yi

)
ω

)
, ∀v ∈ H. (2.35)

The latter, as usual, is obtained by multiplying system (2.17) scalarly with a test function v ∈ H
and integrating by parts in ω with the help of conditions (2.24), (2.25) for v and the formula
for g3 in (2.33). Clearly, the right-hand side of (2.35) is a continuous linear functional in H 3 v.
The left-hand side of (2.35) may be chosen as a scalar product in H. Indeed, the necessary
properties of this bi-linear form are inherited from the positive definiteness of the matrix A0

together with the following Friedrichs and Korn inequalities:

||u;L2 (ω) || ≤ cω||∇yu;L2 (ω) ||, ∀u ∈ H1
0 (ω; ∂ω) , (2.36)

||∇yw′;L2 (ω) || ≤ cω||D′ (∇y)w′;L2 (ω) ||, ∀w′ ∈ H1
0 (ω; ∂ω)2 .

Equivalently, we may write equation (2.35) as the minimization problem

min

{
1

2

(
AD(∇y)w,D(∇y)w

)
ω
− (g, w)ω : w ∈ H

}
where g = (g1, g2, g3) is given by (2.33). Notice that the Sobolev embedding theorem H2 ⊂ C
in R2 assures that H is a closed subspace in H1 (ω)2 × H2 (ω) and the second inequality in
(2.36) can be easily derived by integration by parts because w′ vanishes at ∂ω.

Now the Riesz representation theorem guarantees the existence of a unique weak solution
to problem (2.35) and the estimate

||w;H1 (ω)2 ×H2 (ω) || ≤ cN .

Finally, a result in [14, Ch.2] on lifting smoothness of solutions to elliptic problems, see also [5]
for details about the fourth-order equation, concludes with the inclusion w ∈ H2 (ω)2 ×H3 (ω)
and inequality (2.34). �

A classical assertion, cf. [7, 8, 13, 32] and others, was outlined in Theorem 7 of [4], namely
the rescaled displacements h3/2u3 (h, y, hζ) and h1/2ui (h, y, hζ) , i = 1, 2, taken from the three-
dimensional problem (1.4)-(1.7), converge in L2 (ω × (−1/2, 1/2)) as h → +0 to the functions
w3 (y) and wi (y) − ζ ∂w3

∂yi
(y) , respectively, where w = (w1, w2, w3)> is the solution of the two-

dimensional Dirichlet-Sobolev problem given in Proposition 3. Moreover, the convergence rate
O(| lnh|−1/2), see Theorem 8 and Remark 6, is rather slow and in the next section we will
improve the asymptotic result by constructing three-dimensional boundary layers studied in
[4, 18, 21].

3 Constructing and justifying the asymptotics

3.1 Matching the outer and inner expansions

Intending to apply the method of matched asymptotic expansions, cf. [10, 33] and [15, Ch.2],
we regard (2.3) as the outer expansion suitable at a distance from the small support area (1.2).
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In the vicinity of the set θh we, as mentioned in Section 3 of [4], use the stretched coordinates

ξ = (η, ζ) = (h−1y, h−1z) (3.1)

and engage the inner expansion in the form

u (h, x) = h1/2P (ξ) a+ ... (3.2)

where P is the elastic logarithmic potential, see Section 3.4 in [4], and a ∈ R4 is a column to
be determined. The decompositions for this potential derived in [4] show that, when ρ→ +∞,
we have

h1/2P (ξ) a = h1/2
( 3∑
p=0

hpW p (ζ,∇η) Φ] (η) + d] (η, ζ)C]
)
a+ ... = (3.3)

=

3∑
p=0

hp−3/2W p (ζ,∇y)
(

Φ] (y)−Ψ lnh+ d] (η, 0)C]
)
a+ ...

Here, the operators W p(ζ,∇η) were introduced in Remark 2 and dots stand for lower-order
asymptotic terms and we have taken into account formulas

W p (ζ,∇η) = hp−1W p (ζ,∇y)H, H = diag{1, 1, h}, (3.4)

d] (η, ζ) = H−1d] (y, ζ) , Φ] (η) = H−1
(

Φ] (y)− d] (y, 0) Ψ lnh
)

where d] and Φ] are the following 3× 4-matrices

d] (η, ζ) =

 1 0 0 ζ
0 1 −ζ 0
0 0 η2 −η1

 (3.5)

Φ] (y) =
(
d] (−∇y, 0)>Φ (y)>

)>
=

 Φ′ (y)

0 0

0 0
0 0

Φ2
3 (y) Φ1

3 (y)

 , Φj
3 =

∂Φ3

∂yj
,

which are composed, respectively, from rigid motions and the nondegenerate block-diagonal
4× 4-matrix

Ψ = diag
{

Ψ′,Ψ3,Ψ3

}
(3.6)

where Ψ′ is a non-degenerate numeral 2× 2-matrix and Ψ3 is a scalar in the representations

Φ′(y) = Ψ′ ln r + ψ′(ϕ), Φ3(y) = r2

(
−1

2
Ψ3 ln r + ψ3(ϕ)

)
(3.7)

of the fundamental matrix of the differential operator (2.30) of size 2× 2 and the fundamental
solution of the scalar differential operator (2.29). These were described in detail in Section 3.4
of [4] on the base of general results in [9]. Moreover, (r, ϕ) is the polar coordinate system and
ψ′, ψ3 are smooth on the unit circle S1 3 ϕ. Furthermore, we have used the diagonal matrix
H = diag {1, 1, h} and the obvious formulas

d] (η, ζ) =
(
W 0 +W 1 (ζ,∇η)

)
d] (η, 0) , W 2 (ζ,∇η) d] (η, 0) = W 3 (ζ,∇η) d] (η, 0) = 0. (3.8)
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Note that lnh comes to (3.4) from the relation ln |η| = ln |y| − lnh and H is caused by different
orders of differentiation in W p (ζ,∇η) and different degrees of ρ = |η| in matrix functions but
H disappears from the final expression in (3.3).

We also will need the following expansion of the elastic logarithmic potential, see Section
3.6 in [4],

P(ξ) = (1− χθ(η))

(
3∑
p=0

W p (ζ,∇η) Φ] (η) + d] (η, 0)C] + Υ] (η)

)
+
˜̃P(ξ) (3.9)

which had been used in (3.3). Ingredients of (3.9) were defined in (2.32) and (3.5)-(3.7) while C]

stands for the elastic capacity matrix, χθ a smooth compactly supported function which equals
1 in the vicinity of the clamped area θ, the vector function Υ] was described in Section 3.6 of

[4] but it plays an auxiliary role and an explicit form is not used below, and the remainders
˜̃P

admits the estimates for a big ρ = |η|

|∇pη∂
q
ζ
˜̃P(ξ)| ≤ cpqρ−1+ε, |∇pη∂

q
ζ
˜̃P3(ξ)| ≤ cpqρε, p, q = 0, 1, 2, ..., ε > 0. (3.10)

The presence of Φ] (y) drives all detached terms in (3.4) from the space H1 (ω)2×H2 (ω) where
the solution w of the limit problem (2.17), (2.24), (2.25) was found in Proposition 3. On the
other hand, the Neumann boundary condition (1.5) on the lower base Σ− does not hold on
the small set θh = Σ− \ Σ• which shrinks to the coordinate origin O. Hence, the dimension
reduction procedure in Section 2 was not able to deduce the differential equations at the point
O and we did not have a regular reason to cast out solutions with reasonable singularities. Let
us introduce such solutions.

We denote by G′ the Green 2×2-matrix of the Dirichlet problem in ω for the matrix operator
(2.30). Its particular value G′ (·,O) is a distributional solution of the problem

L′ (∇y)G′ (y,O) = δ (y) I2, y ∈ ω, G′ (y,O) = 0, y ∈ ∂ω, (3.11)

where δ is the Dirac mass and I2 is the unit 2× 2-matrix.
As known, the Green function G3 of the Dirichlet problem for the fourth-order scalar dif-

ferential operator (2.29) belongs to H2 (ω) ⊂ C (ω) and its value

G3 (O,O) = (A3D3 (∇y)G3 (·,O) ,D3 (∇y)G3 (·,O))ω

is positive, see, e.g., [5]. The derivative in the second argument

G3,i (y,O) =
∂

∂yi
G3 (y,y) |y=0 (3.12)

leaves the space H2 (ω) but remains Hölder-continuous in ω and satisfies the equation

L3 (∇y)G3.i (y,O) = − ∂

∂yi
δ (y) , y ∈ ω, (3.13)

and the Dirichlet conditions (2.24). However, the Sobolev condition (2.25) is not achieved yet
and we set

Gi3 (y,O) = G3,i (y,O)−G3,i (O,O)G3 (O,O)−1G3 (y,O) , (3.14)
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cf. [5], so that Gi3 (O,O) = 0 and Gi3 (y,O) = ∂nG
i
3 (y,O) = 0, y ∈ ∂ω. Finally we introduce

the matrix function of size 3× 4

G] (y) =

 G′ (y,O)

0 0

0 0
0 0

−G2
3 (y,O) G1

3 (y,O)


which, by virtue of (3.11) and (3.13), admits the representation

G] (y) = Φ] (y) + Ĝ] (y) (3.15)

where Φ] is the singular matrix function in (3.5) and Ĝ] is the regular part. According to general

properties of the Green matrices of second-order systems, see [9], first two lines Ĝ]i, i = 1, 2,

in Ĝ] involve smooth functions in ω, however the singularity O
(
r2 |ln r|

)
of the subtrahend in

(3.14) moves some entries of Ĝ]3 from C2 (ω) but keep them still in the Hölder space C1,α (ω)
with any α ∈ (0, 1) . Hence, the remainder in (3.15) verifies the relations

Ĝ] (y) = d] (y, 0)G] + G̃] (y) , G̃]i (y) = O (r) , i = 1, 2, G̃]3 (y) = O(r2(1 + | ln r|)), (3.16)

where G] = G] (A,ω) is a numeric matrix of size 4 × 4. Properties of this matrix are just the
same as ones of the elastic logarithmic capacity and verification of its symmetry is a sufficient
simplification of the proof of Theorem 13 in [4].

Lemma 4 The 4× 4-matrix G] = G] (A,ω) in (3.16) is symmetric.

Let us put into the outer expansion (2.3) the singular solution

w (y) = ŵ(y) +G](y)a (3.17)

of problem (2.17), (2.24), (2.25) with the same coefficient column a ∈ R4 as in (3.2) and the
smooth solution ŵ ∈ H2 (ω)2 ×H3 (ω) given in Proposition 3. With a reference to the Sobolev
embedding theorem H2 ⊂ C and the standard Hardy inequalities (see, e.g., Section 2.1 in [4]),
we write

ŵ (y) = d](y, 0)F + w̃(y) (3.18)

where the coefficient column F ∈ R4 and the remainder w̃ satisfy the estimates

|F | ≤ cN , (3.19)∫
ω
r−2(1 + |ln r|)−2

(
|∇yw̃′(y)|2 + r−2|w̃′(y)|2 + |∇2

yw̃3(y)|2 (3.20)

+r−2|∇yw̃3(y)|2 + r−4|w̃3(y)|2
)
dy ≤ cN ,

while N is the sum of norms of functions in (2.33).
Notice that, according to definition of the Green matrix, we have

F =

∫
ω
G] (y) g (y) dy.
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Using formulas (3.17), (3.18) and notation (2.31), we obtain for the outer expansion (2.3) that

h−3/2
3∑
p=0

hpUp (y, ζ) = h−3/2
3∑
p=0

hpW p (ζ,∇y)w (y) (3.21)

=
3∑
p=0

hp−3/2W p (ζ,∇y)
(
d] (y, 0)F +

(
Φ] (y) + d] (y, 0)

)
a
)

+ ...

where dots again stand for lower-order asymptotic terms. The method of matched asymptotic
expansions requires that the expressions detached in (3.21) and (3.3), coincide with each other.
This coincidence implies the system of linear algebraic equations

F + G]a = − lnh Ψa+ C]a (3.22)

and, thus,

a (lnh) =
(
|lnh|Ψ + C] (A, θ)− G] (A,ω)

)−1
F. (3.23)

We here display the dependence of C] and G] on the stiffness matrix A and the domains θ and
ω. Since the matrix (3.6) is not degenerate, the matrix

M ] (lnh) = |lnh|Ψ + C] (A, θ)− G] (A,ω) (3.24)

is invertible for a small h ∈ (0, 1), too. Moreover, column (3.23) is a rational vector function in
|lnh| = − lnh while clearly

a (lnh) = |lnh|−1 Ψ−1F +O(|lnh|−2). (3.25)

Formula (3.23) gives concrete expressions to all terms in (2.3), (3.17) and (3.2) so that our
formal construction of main terms in the outer and inner expansions is completed.

3.2 The final assumptions on the right-hand sides

To provide the necessary properties of the regular solution (3.18) of problem (2.17), (2.24),
(2.25), we put the following requirement on terms in representation (2.1):

f0 ∈ L2
(
ω ×

(
−1

2 ,
1
2

))3
, f1

3 ∈ H−1 (ω) . (3.26)

The latter inclusion, as usual, cf. [14], means that

f1
3 (y) = ∇>y

−→
f 1

3 (y) + f1
30 (y) ,

−→
f 1

3 =
(
f1

31, f
1
32

)> ∈ L2 (ω)2 , f1
30 ∈ L2 (ω) . (3.27)

More precisely, the right-hand side (2.23) of the third equation in system (2.17) gives rise to
the continuous functional

(g3, v3)ω :=
(
f1

30, v3

)
ω
−

2∑
i=1

(
f1

3i +

∫ 1/2

−1/2
ζf0
i (·, ζ) dζ,

∂v3

∂yi

)
ω

, v3 ∈ H1
0 (ω) . (3.28)
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In view of (2.19), (3.26) and (3.28), (3.27) condition (2.33) in Proposition 3 is fulfilled so that
the solution ŵ ∈ H2 (ω)2 ×H3 (ω) meets estimate (2.34) where, as well as in (3.19), (3.20), N
can be now fixed as

N =
∥∥f0;L2

(
ω ×

(
−1

2 ,
1
2

))∥∥+
2∑
p=0

∥∥f1
3p;L

2 (ω)
∥∥ . (3.29)

For the remainder f̃ in (2.1), we suppose that the expression

Ñ = h−1/2| lnh|−1
(
h−1||s2

hS
−1
h2 f̃3;L2 (Ωh) ||+

2∑
i=1

||shS−1
h1 f̃i;L

2 (Ωh) ||
)

(3.30)

gets the same order as the expression (3.29). Notice that weights

sh(y) = h+ dist(y, ∂ω), Shq(y) = (h2 + |y|2)−q/2(1 + | ln(h2 + |y|2)|)−1, q = 0, 1, (3.31)

come from the anisotropic Korn inequality (2.10) in [4] and make the norms on the right-hand
side of (3.30) much weaker that the common Lebesgue norms. The factor h−1/2 |lnh|−1 is
consistent with the final error estimate in Theorem 7. In other words, our way to signify the
smallness of this remainder does not spoil the precision of the two-dimensional model.

3.3 The global approximation solution

We proceed with constructing a vector function u ∈ H1
0 (Ωh; υh ∪ θh)3 which is a bit cumbersome

but very convenient for an estimation of the difference u−u between the true and approximate
solutions of problem (1.4)-(1.7). In the next section we will get rid of unnecessary terms in u
to conclude a fair asymptotics of u.

Although in the previous section we have used the method of matched expansions, we
now apply an asymptotic structure attributed to the method of compound expansions, see a
comparison of the methods in [15, Ch.2]. We give priority to expansion (3.2) and insert into
(2.3) the decaying near O component w̃, see (3.18) and (3.20), instead of the whole singular
solution (3.17). We also introduce the cut-off functions

Xω
h (y) = 1− χ

(
h−1 |n|

)
, Xθ

h (y) = 1− χ
(
2h−1r/Rθ

)
(3.32)

χ ∈ C∞ (R) , χ(r) = 1 for r < 1
2 , χ(r) = 0 for r ≥ 1, 0 ≤ χ ≤ 1,

which help to fulfill the Dirichlet conditions (1.7) and (1.6) because Xω
h and Xθ

h vanish near the
clamped sets υh and θh respectively. To this end, Rθ is fixed such that θ belongs to the disk
B2
R of radius R = Rθ.

We set

u (h, x) = h−1/2Xω
h (y)P

(
h−1x

)
a (lnh) + (3.33)

+ h−3/2Xω
h (y)

2∑
p=0

hpW p (ζ,∇y)
(
Xθ
h (y) w̃ (y)− hw (h, y)

)
where the following correction term is introduced

w (h, y) =
(
1− χ

(
R−1
ω r
))

Υ]
(
h−1y

)
(3.34)
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with Υ] taken from (3.9) and Rω > 0 is such that BRω ⊂ ω. We emphasize that, according
to definition of the differential operators (2.32) in (2.31), the inclusion w̃ ∈ H2 (ω)2 × H3 (ω)
assures that

W p (ζ,∇y) w̃ ∈ H3−p (ω)3 for any ζ ∈ (−1/2, 1/2) (3.35)

and, therefore, the term W 3 (ζ,∇y) w̃ (y) does not belong to the energy space H1 (Ωh)3 and is
excluded from the global approximation solution, i.e., p = 0, 1, 2 but p 6= 3 in (3.33).

Thanks to the cut-off functions (3.32) and the Dirichlet conditions for P, the displacement
field satisfies conditions (1.6), (1.7). Hence, the difference v = u−u ∈H̊1 (Ωh; υh ∪ θh)3 can be
taken as a test function in the integral identity (1.10). Subtracting from both sides the scalar
product (AD (∇)u, D (∇)v)Ωh

, we arrive at the formula

(AD (∇)v, D (∇)v)Ωh
= (f,v)Ωh

− (AD (∇)u,v)Ωh
. (3.36)

By the Korn inequality (see (2.10) and Theorem 2 in [4]), the left-hand side of (3.36) exceed
the product cA|||v; Ωh|||2• with the weighted anisotropic Sobolev norm

|||u; Ωh|||2• =

∫
Ωh

(
2∑
i=1

(
|∇yui|2 +

h2

s2
h

S2
h1

( ∣∣∣∣∂ui∂z

∣∣∣∣2 +

∣∣∣∣∂u3

∂yi

∣∣∣∣2 )+
1

s2
h

S2
h1 |ui|

2
)

(3.37)

+

∣∣∣∣∂u3

∂z

∣∣∣∣2 +
h2

s4
h

S2
h2 |u3|2

)
dx.

and our immediate objective becomes to examine the right-hand side. The complication arises
from the cut-off functions (3.32) which are included into (3.33) and meet the relations

|∇yXω
h (y) | ≤ ch−1, supp |∇yXω

h | ⊂ ω (h) := {y ∈ ω : 0 > n > −h} , (3.38)

|∇yXθ
h (y) | ≤ ch−1, supp |∇yXθ

h| ⊂ B2Rωh.

Denoting vω = Xω
h v and w̃θ = Xθ

hw̃, we obtain

||D (∇)vω;L2 (Ωh) || ≤ c
(
||D (∇)v;L2 (Ωh) ||+ h−1||v;L2 (ω (h)× (−h/2, h/2)) ||

)
≤ C||D (∇)v;L2 (Ωh) || =: Cn,

||w̃θ;H2 (ω)2 ×H3 (ω) || ≤ c
(
||w̃;H2 (ω)2 ×H3 (ω) ||2 + J

)
≤ c||w̃;H2 (ω)2 ×H3 (ω) ||2 ≤ CN ,

where J is the weighted integral on the left in (3.20). In both inequalities we have taken into
account that the weights sh (y) and r (1 + |ln r|) are small in the boundary strip ω (h) and the
disk B2Rθh.
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3.4 Estimating the discrepancies

Let h−3/2Xω
hW − h−1/2Xω

hW stand for the last sum in (3.33). We have

(AD (∇)u, D (∇)v)Ωh
= h−1/2 (AD (∇)Pa,D (∇)vω)Ωh

(3.39)

+ h−1/2
(
A (D (∇)Xω

h )
(
Pa+ h−1W −W

)
, D (∇)v

)
Ωh

+
(
AD (∇)

(
Pa+ h−1W −W

)
, (D (∇)Xω

h )v
)

Ωh

+ h−1/2 (AD (∇)W, D (∇)vω)Ωh
+ h−3/2 (AD (∇)W, D (∇)vω)Ωh

=: I1 + I2 + I3 + I4.

First of all, we observe that v = 0 at the lateral side υh and, therefore, after extending vω as
null over the layer R2 × (−h/2, h/2) we make the coordinate dilation (3.1) and integrate by
parts to conclude that I1 = 0 since P is a solution of the homogeneous elasticity problem in
the infinite layer Λ = R2 × (−1/2, 1/2) clamped over the set θ × {−1/2} on its lower base.

Next, formulas (3.9) and (3.17), (3.18) together with the matching condition (3.22) yield

P (ξ) a+ h−1W (h, x)−W (h, x)

=
˜̃P (ξ) a+ h2

(
W 3 (ζ,∇y) Φ] (η) + d] (η, 0)C] + Υ] (η)

)
a+ h−1

2∑
p=0

hpW p (ζ,∇y)w (y) .

The first term on the right is estimated by means of (3.10) noticing that ρ−1 = hr−1 = O (h) in
the thin boundary strip ω (h) . The second term and its derivatives become O

(
h2 (1 + |lnh|)

)
near the plate edge due to formulas (3.5), (3.8) and (3.25). Furthermore,∫

ω(h)

(
s−2
h

∣∣w′∣∣2 +
∣∣∇yw′∣∣2 + s−4

h |w3|2 + s−2
h |∇yw3|2 +

∣∣∇2
yw3

∣∣2) dy
≤ c

∫
ω(h)

(∣∣∇yw′∣∣2 +
∣∣∇2

yw3

∣∣2) dy
≤ ch

(∥∥w′;H2
(
ω \ BRω/2

)∥∥2
+
∥∥w3;H3

(
ω \ BRω/2

)∥∥2
)

≤ chN

follows from formulas (3.20), (3.25), the standard Hardy inequalities (cf. Section 2.1 in [4]) and
another consequence of the Newton-Leibnitz formula with some fixed T ≥ Rω/2, namely∫ h

0
|U (t)|2 dt =

∫ h

0

∫ T

t

∂

∂τ

(
χ (τ/T )U (τ)2

)
dτdt ≤ c

∫ h

0

∫ T

t

(∣∣∣∣dUdτ (τ)

∣∣∣∣2 + |U (τ)|2
)
dτdt

≤ ch
∥∥U ;H1 (0, T )

∥∥2
.

Estimating the matrix function D (∇)Xω
h according to (3.38) and mentioning that, by virtue

of weight (3.31) in norm (3.37),∥∥(D (∇)Xω
h )v;L2 (Ωh)

∥∥ ≤ c|||v;ω (h)× (−h/2, h/2) |||• ≤ cn,
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we deduce that

|I2| ≤ ch−1/2h1/2
(
h−1h (1 + |lnh|)2 |a| (mes2 ω (h))1/2 (3.40)

+
∥∥w;H1 (ω (h))2 ×H2 (ω (h))

∥∥2
+ h2 (1 + |lnh|)2 |a| (mes2 ω (h))1/2 )n

≤ ch1/2 |lnh|n.

Note that, in the middle part of (3.40), h−1/2 is the original common factor, h1/2 comes from
integration in z, mes2 ω (h) = O (h) and (1 + |lnh|)2 reduces finally to 1 + |lnh| due to the
inequality |a (lnh)| ≤ c (1 + |lnh|)−1N inherited from (3.23), (3.19) and (3.25).

The third term I3 is examined in the simplest way. Indeed, formulas (2.32) and (2.11), (2.9)
assure that

h−1/2D (∇)W (h, x) (3.41)

= h1/2((DζX (ζ) + Y (ζ))D (∇y)w (h, x) + hDyW
2 (ζ,∇y)w (h, x))

and we readily obtain that
|I3| ≤ ch1/2h1/2 |lnh| Nn.

Estimating the fourth term I4 in (3.39) follows the standard scheme in the theory of thin
plates with a modification caused by the cut-off function Xθ

h present in (3.33). The function
w̃θ satisfies the system

L (∇y) w̃θ = g̃θ := Xθ
hg − [L(∇y), Xθ

h]

where [L, Xθ
h] is the commutator of the differential operator with the cut-off function Xθ

h. By
(3.20) and (3.38), we have∫
ω

(
S2

1,h|(1−Xθ
h)g′|2 + h−2S2

2,h|(1−Xθ
h)g3|2

)
dy ≤ ch2 (1 + |lnh|)2N , (3.42)∫

ω
S2

1,h|[L′, Xθ
h]w̃′|2dy ≤ c

∫
B2Rθh

(r + h)2 (1 +
∣∣ln (r2 + h2

)∣∣)2 (h−4|w̃′|2 + h−2|∇yw̃′|2
)
dy

≤ ch2 |lnh|4N ,∫
ω
S2

2,h|[L3, X
θ
h]w̃3|2dy

≤ c
∫
B2Rθh

(r + h)4 (1 +
∣∣ln (r2 + h2

)∣∣)2 (h−8|w̃3|2 + h−6|∇yw̃3|2 + h−4|∇2
yw̃3|2 + h−2|∇3

yw̃3|2
)
dy

≤ ch2 |lnh|4N .

In these calculations we used that weights are small on the disk B2Rθh and coefficients of order k
derivatives in the first- and third-order operators [L′, Xθ

h] and [L3, X
θ
h] are O(hk−2) and O(hk−4),

respectively. Returning to the notation in Section 2.2, we set Ũp (y, ζ) = W p (ζ,∇y) w̃θ (y) ,
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p = 0, 1, 2, and, similarly to (3.41), write

I4 = h−5/2
(
ADζŨ

0, D (∇)vω
)

Ωh
+ h−3/2

(
A
(
DζŨ

1 +DyŨ
0
)
, D (∇)vθ

)
Ωh

(3.43)

+ h−1/2
(
A
(
DζŨ

2 +DyŨ
1
)
, D (∇)vθ

)
Ωh

+ h1/2
(
ADyŨ

2, D (∇)vθ
)

Ωh

= h−3/2
(
A (DζX + Y)D (∇y)wθ, Dζv

ω
)

Ωh
+ h−1/2

(
A
(
DζŨ

2 +DyŨ
1
)
, Dyv

ω
)

Ωh

+
(
ADyŨ

2, Dζv
ω
)

Ωh
+ h1/2

(
ADyŨ

2, Dyv
ω
)

Ωh

=: h−3/2I40 + h−1/2I41 + h1/2I42.

Here, we have taken into account that DζŨ
0 = 0, DζŨ

1 +DyŨ
0 = 0 due to (2.7) and, moreover,

I40 = 0 because the 3× 6-matrix X solves problem (2.12) and wθ is independent of ζ. Recalling
problem (2.13) with p = 3, we see that

I41 = −
(
D>y A

(
DζŨ

2 +DyŨ
1
)

+D>ζ ADyŨ
1,vθ

)
Ωh

+
∑
± ±

(
D>3 ADyŨ

2,vω
)

Σ±h
(3.44)

=
(
D>ζ ADζŨ

3 + f0,vω
)

Ωh
−
∑
± ±

(
D>3 ADζŨ

3,vω
)

Σ±h

=
(
f0,vω

)
Ωh
−
(
ADζŨ

3, Dζv
ω
)

Ωh

=
(
f0,vω

)
Ωh
− h
(
ADζŨ

3, D (∇)vω
)

Ωh
+ h
(
ADζŨ

3, Dyv
ω
)

Ωh
.

We emphasize that the differential properties (3.35) put all entries of scalar products into the
Lebesgue space L2 (Ωh) . Furthermore, we have the estimates

h−1/2
∣∣ (f0,vω

)
Ωh
−
(
f0,v

)
Ωh

∣∣ = h−1/2

∣∣∣∣∣
2∑
i=1

(
f0
i , (1−Xω

h )vi
)

Ωh

∣∣∣∣∣ (3.45)

≤ ch−1/2h1/2
∥∥f0;L2 (Ω1)

∥∥h |||v;ω (h)× (−h/2, h/2) |||•
≤ chNn,

h−1/2
∣∣h(ADζŨ

3, D (∇)vω
)

Ωh

∣∣ ≤ ch1/2h1/2N
∥∥D (∇)vω;L2 (Ωh)

∥∥ ≤ chNn.

Notice that the factors h1/2 came into (3.45) due to the change z 7→ ζ = h−1z. It remains to
consider the last terms in (3.43) and (3.44). We write

h1/2
(
A
(
DyŨ

2 +DζŨ
3
)
, Dyv

ω
)

Ωh
= h1/2

(
A
(
DyŨ

2 +DζŨ
3
)
, Dye3v

ω
3

)
Ωh

+h1/2
(
A
(
DyŨ

2 +DζŨ
3
)
, Dy (vω − e3v

ω
3 )
)

Ωh
=: h1/2I1

42 + h1/2I2
42,

where vω3 (y) = h−1
∫ h/2
−h/2v

ω
3 (y, z) dz. The known inequality∥∥Dy (vω − e3v

ω
3 ) ;L2 (Ωh)

∥∥ ≤ ∥∥D (∇)vω;L2 (Ωh)
∥∥ , ∀vω ∈ H1

0 (Ωh, υh)3 ,

see, e.g., [22, Section 4.3] and [23, Proposition 3.3.13], yields:

h1/2
∣∣I2

42

∣∣ ≤ ch1/2h1/2Nn.

Finally, calculation (2.22) together with formulas (2.18), (2.26) for the matrix A and the re-
lation D3 (∇y) = 2−1/2∇yD′ (∇y) between blocks in the matrix D (∇y) , see (2.10), demonstrate
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that

h1/2I1
42 − h1/2

(
f1

3 ,v
ω
3

)
Ωh

= h3/2

(
2−1/2

(
D′ (−∇y)>A(3)D3 (∇y) w̃θ3,∇yvω3

)
ω

−
(
f1

30,v
ω
3

)
ω

+

2∑
i=1

(
f1

3i +Xθ
h

∫ 1/2

−1/2
ζf0
i (·, ζ) dζ,

∂vω3
∂yi

)
ω

)
.

We here took into account that in the approximate solution (3.33) the component w̃ of (3.18)
is multiplied with the cut-off function Xθ

h, see (3.32). Hence, to use the integral identity (2.35)
with particular test functions vi = 0 and v3 = Xθ

hv
ω
3 , which vanish in neighborhood of ∂ω and

O, we need to process several commutators with coefficient supports located in the small disk
B2Rθh in the same way as we had done in (3.42). All of them receive bounds of similar order in
h, always much better than in (3.40), and therefore we list only typical estimates

h3/2
∣∣∣([D′ (∇y)>A(3)D3 (∇y) , Xθ

h

]
w̃3,∇yvω3

)
ω

∣∣∣
≤ ch3/2

(∫
B2Rθh

(
h−6 |w̃3|2 + h−4 |∇yw̃3|2 + h−2

∣∣∇2
yw̃3

∣∣2 )dy)1/2 ∥∥∇yvω3 ;L2 (B2Rθh)
∥∥

≤ ch3/2 |lnh| Nh1/2
∥∥∇yvω3 ;L2 (B2Rθh × (−h/2, h/2))

∥∥ ≤ ch |lnh|2Nn,

h3/2
∣∣∣(f1

30,v
ω
3

)
ω
−
(
f1

30, X
θ
hv

ω
3

)
ω

∣∣∣
≤ ch3/2

∥∥f1
30;L2 (ω)

∥∥h1/2
∥∥vω3 ;L2 (B2Rθh × (−h/2, h/2))

∥∥ ≤ ch2 |lnh|2Nn,

h3/2
∣∣∣(f1

3i,v
ω
3 ∂iX

θ
h

)
ω

∣∣∣
≤ ch3/2

∥∥f1
3i;L

2 (ω)
∥∥h−3/2

∥∥vω3 ;L2 (B2Rθh × (−h/2, h/2))
∥∥ ≤ ch |lnh|2Nn.

In this way we finally obtain:

h1/2
∣∣I1

41 −
(
f1

3 ,v
ω
3

)
Ωh

∣∣ ≤ ch |lnh|2Nn.

We are in position to reckon calculations performed. Comparing bounds in all estimates for
terms on the right of (3.39) we detect the worst one in (3.40), namely ch1/2 |lnh| Nn. Recalling
also supposition (3.30), we finally derive from (3.36) and (3.39), (2.1) the formula

(AD (∇)v, D (∇)v)Ωh
≤ ch1/2 |lnh|

(
N+Ñ

) ∥∥D (∇)v;L2 (Ωh)
∥∥

which together with the weighted anisotropic Korn inequality of Theorem 1 in [4] lead to the
following assertion.

Proposition 5 Under assumptions (2.2) and (3.26), (3.27) on the right-hand side (2.1) in
problem (1.4)-(1.7) (or (1.10) in the variational form) the difference v of the true u and ap-
proximate u solutions meets the estimate

|||u− u; Ωh|||• ≤ c
∥∥D (∇) (u− u) ;L2 (Ωh)

∥∥ ≤ Ch1/2 |lnh|
(
N+Ñ

)
(3.46)

where u is determined in (3.33), N and Ñ in (3.29) and (3.30), ||| · |||• stands for the norm
(3.37) and C is a constant independent of both, the right-hand side f and the small parameter
h ∈ (0, h0] , h0 > 0.
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Remark 6 As verified in [34], the error O(h1/2) of the Kirchhoff plate model (that is without
the small support (1.6)) cannot be improved because of the boundary layer phenomenon near
the edge. We will see that the boundary layer near the support θh brings a perturbation of much
bigger order O(|lnh|−1).

3.5 Theorem on asymptotics

The complicated form (3.33) with various cut-off functions was technically needed to satisfy the
stable boundary conditions (1.6) and (1.7) in the variational formulation (1.10) of the problem
but after verifying estimate (3.46) we may get rid of some waste items while keeping the same
order of proximity. We consider two versions of the simplified asymptotic structures, namely

uθ (h, x) = h−1/2P
(
h−1x

)
a (lnh) + h−3/2

2∑
p=0

hpW p (ζ,∇y) w̃ (y) (3.47)

with the notation in (3.33) and

uω (h, x) = h−3/2
2∑
p=0

hpW p (ζ,∇y)
(
ŵ (y) +G]θ (h, x) a (lnh)

)
+ h−1/2P̃

(
h−1x

)
a (lnh) (3.48)

where, comparing formula (3.15) with the content of Section 3.5 in [4], we set

G]θ (h, x) = (1− χ(r/2hRθ))Φ
] (y) + Ĝ] (y) , (3.49)

P̃ (ξ) = P (ξ)−
2∑
p=1

W p (ζ,∇η) (1− χ (ρ/2Rθ))
(

Φ] (η) + d] (η, 0)C]
)
.

Theorem 7 Under conditions of Proposition 5, the vector functions (3.47), (3.48) meet esti-
mate (3.46).

Proof. According to (3.49), the approximate asymptotic solutions (3.47) and (3.48) differ
from each other only for the singular term, cf. (3.4),

(1− χ (2r/hRθ)) Φ] (y) = (1− χ (2ρ/Rθ))H(Φ] (η) + d] (η, 0) Ψ lnh),

and the concomitant rearranging of the rigid motion

h−1/2H−1d](y, 0)(C] −Ψ lnh)a (lnh) ,

taking into account the matching condition (3.22).
Hence, it is sufficient to check up the estimate for uθ. First of all, we observe that the

discrepancy of (3.47) in the Dirichlet conditions (1.7) on the lateral side υh of the plate is equal
to

h−3/2
2∑
p=0

hpW p (ζ,∇y)HΥ]
(
h−1y

)
+ h−1/2 ˜̃P (ε−1x

)
+ h1/2W 2 (ζ,∇y) w̃ (y) . (3.50)

Fast decay of the first two terms in (3.50) and the small coefficient h1/2 in the third term allow
us to withdraw from (3.33) the cut-off function Xω

h as well as term (3.34) which gets the small
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factor h in (3.33) and vanishes in the disk BRω/2 3 y, that is at a distance from θh. This requires a
standard and simple calculation based on weights in norm (3.37) and has been outlined in many
publications (see, e.g., [22], [23, §4.3] etc.). To take off from (3.33) the other cut-off function Xθ

h

which is null in the vicinity of θh, becomes much more delicate issue since the support of
∣∣∇yXθ

h

∣∣
is located very near singularities of the asymptotic terms. We make use of the weighted estimate
(3.20) for w̃ and observe that the expressions hp−3/2W p (ζ,∇y)

(
1−Xθ

h (y)
)
w̃ (y) vanish outside

the cylinder B2Rθh × (−h/2, h/2) where all weights in (3.20) and (3.37) are big. In this way we
write

hp−3/2|||W p(1−Xθ
h)w̃; Ωh|||•

≤ chp−3/2h1/2

(
p−1∑
q=0

h−(p−1−q)h−1 |lnh|−1 ||∇qyw̃′;L2(B2Rθh)||

+

p∑
q=0

h−(p−q)h−1| lnh|−1||∇qyw̃3;L2(B2Rθh)||

)

≤ chp−1

(
p−1∑
q=0

h−(p−1−q)h1−q||r−2+q(1 + |ln r|)−1∇qyw̃′;L2(B2Rθh)||

+

p∑
q=0

h−(p−q)h2−q||r−3+q(1 + |ln r|)−1∇qyw̃3;L2(B2Rθh)||

)
.

Note that the factors h1/2 and h−1| lnh|−1 arrived due to integration in z ∈ (−h/2, h/2) and tak-
ing the weights Sh1 and hSh2 into account. Plugging into norms the weights r−2−q (1 + |ln r|)−1

and r−3−q (1 + |ln r|)−1 according to (3.20), we have gained back h2−q |lnh| and h3−q |lnh| ,
respectively, that had led to the bound chN which is even better than in (3.46). �

3.6 Further simplifications of asymptotic forms

By virtue of (3.20), (3.23) and the definition of the elastic capacity potential in [4], the elastic
energy of the boundary layer term h−1/2P̃

(
h−1x

)
a (lnh) in (3.48) gets order∥∥D (∇)h−1/2P̃a;L2(Ωh)

∥∥2
= O((h−1h3h−2|a (lnh) |2) = O(| lnh|−2) (3.51)

and therefore it cannot be omitted in the asymptotic expansion of the elastic fields in the plate
Ωh when one attends to achieve an error estimate with the power-law bound cδh

δ, δ > 0.
However, contenting ourselves with the logarithmic precision O(|lnh|−1), we may write much
simpler asymptotics.

Theorem 8 Under conditions of Proposition 5, the regular solution ŵ ∈ H1 (ω)2 ×H2 (ω) of
the two-dimensional Sobolev-Dirichlet problem (2.17),(2.24), (2.25) is related to the solution
u ∈ H1

0 (Ωh; Γh)3 of the three-dimensional problem (1.4)-(1.7) by the inequality

|||u− h−3/2
2∑
p=0

hpW pŵ; Ωh|||• ≤ c |lnh|−1/2 (N+Ñ ),

where W p (ζ,∇y) are differential operators in (2.32) and c is a constant independent of h ∈
(0, h0] and quantities N , Ñ given in (3.29), (3.30).
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Proof. We still have to estimate the ingredients hp−3/2W p (ζ,∇y)G]θ (h, x) a (lnh) , p =
0, 1, 2, of the asymptotic solution (3.34). We take into account representation (3.15) of the
Green matrix G] which is smooth in the punctured domain ω \ O and recall Remark 2 about
W p (ζ,∇y) together with formulas (3.7), (3.5) for the fundamental matrix. Then we write

h−3/2|||G]θ3 a; Ωh|||• ≤ ch−3/2h1/2h

(
1 +

∫
ω\BRθh

(
r2 (1 + |ln r|)2

(r2 + h2)2 (1 + |ln (r + h)|)2
(3.52)

+
(1 + |ln r|)2

(r2 + h2) (1 + |ln (r + h)|)2

)
dy

)1/2

|a (lnh)|

≤ c |lnh|1/2 |lnh|−1 = c |lnh|−1/2 ,

h−1/2|||W 1G]θa; Ωh|||•

≤ ch−1/2h1/2

(
1 +

∫
ω\BRθh

(1 + |ln r|)2

(r2 + h2) (1 + |ln (r + h)|)2dy

)1/2

|a (lnh)| ≤ c |lnh|−1/2 ,

h1/2|||W 2G]θa; Ωh|||•

≤ ch1/2h1/2

(
1 +

∫
ω\BRθh

(1 + |ln r|)2

r2 (r2 + h2) (1 + |ln (r + h)|)2dy

)1/2

|a (lnh)| ≤ c |lnh|−1/2 .

For p = 0, we considered a specific input of the third component u3 into the weighted norm
(3.37) while in the other cases p = 1, 2 the estimates were derived in the standard way: h1/2

comes from integration in z and 1 is inserted to bound the regular part of G]. Note that the
first two integrals in (3.52) are O (|lnh|) while the third one is O

(
h−1 |lnh|

)
so that the relation

|a (lnh)| = O(|lnh|−1) is very important. �

A similar effect of the catastrophic precision drop due to the Dirichlet condition at a small
region was underlined in [6] for an homogenization problem in a perforated domain, too.

Our last simplification of asymptotic formulas is based on the following two observations.
First,

||h−1/2P̃a;L2 (Ωh) ||2 = O((h−1h3|a (lnh) |2) = O(h2| lnh|−2)

because the factors h−2 and h3 were introduced into (3.51) due to differentiation and integration
in the fast variables ξ = h−1x. Second, logarithmic singularities do not lead the Green matrix
G] out from the spaces L2 (ω) and L2 (Ωh) . In other words, the boundary layer may be excluded
from the asymptotic form but G] may be included without any cut-off function when dealing
with the Lebesgue norms of displacements (for stresses and strains this does not hold true, of
course).

Let us formulate a simple but substantial consequence of our previous results.

Theorem 9 Under conditions of Proposition 5, the inequality

2∑
i=0

∥∥∥∥ui − h−1/2

(
wi − h−1z

∂w3

∂yi

)
;L2 (Ωh)

∥∥∥∥+ h
∥∥∥u3 − h−3/2w3;L2 (Ωh)

∥∥∥ ≤ ch1/2 |lnh| (N+Ñ )

is valid where w (lnh;x) is the singular solution (3.17) of the two-dimensional problem (2.17),
(2.24), (2.25) with the column a (lnh) ∈ R4 calculated in (3.23) and c is a constant independent
of h ∈ (0, h0] and quantities N , Ñ given in (3.29), (3.30).
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4 A variational asymptotic model of a plate with small supports

4.1 A symmetric unbounded operator and its adjoint

We intend to apply a traditional scheme to model media with small defect in the framework
of self-adjoint extension of differential operators, see the pioneering paper [1] together with the
review paper [30] where a physical terminology refers to ”potentials of zero radii”. Thanks to
the block-diagonal structure of the matrix L (∇y) , cf. Lemma 1, all preparatory results below
are substantiated by the papers [11] and [20] where a scalar fourth-order differential operator
and a second-order system are considered. At the same time, a straight way verification on
them is an accessible task, too.

Let A0 be an unbounded operator in the Hilbert space L2 (ω)3 with the differential expression
L (∇y) and the domain is

D
(
A0
)

=
{
w ∈ C∞c (ω \ O)3 : (2.24) is fulfilled

}
. (4.1)

Since the matrix L (∇y) is elliptic and block-diagonal, the closure A = A0 gets the same
differential expression but the domain

D (A) =
{
w ∈ H2 (ω)2 ×H4 (ω) : w (y) = 0, ∂nw3 (y) = 0, y ∈ ∂ω, (4.2)

w (O) = 0 ∈ R3, ∇yw3 (O) = 0 ∈ R2
}
.

Here, the Sobolev theorem on embedding H2 ⊂ C is taken into account as well as the fact
that H1 (ω) * C (ω) . In this way the property of w in (4.1) to vanish in a neighborhood of the
coordinate origin O were converted into five point conditions in (4.2) including the Sobolev one
(2.25).

Both A0 and A are symmetric but not self-adjoint. Indeed, their adjoint operator A∗ keeps,
as it is shown in [11, 20] and can be verified directly, the differential expression L (∇y) but its
domain becomes much bigger, namely

D (A∗) =
{
w = w(sing) + w(reg) : w(reg) ∈ H2 (ω)2 ×H4 (ω) , w(reg) (y) = 0, (4.3)

∂nw(reg)3 (y) = 0, y ∈ ∂ω, w′(sing) (y) = G′ (y,O) a′, a′ = (a1, a2)> ,

w′(sing)3 (y) = G3 (y,O) a0 +G1
3 (y,O) a3 +G2

3 (y,O) a4,

a0 ∈ R, a = (a1, a2, a3, a4)> ∈ R4
}
.

Recall that the Green matrix G′ of problem (3.11) and the Green function G3 of the Dirichlet
problem for the operator L3 (∇y) together with its derivatives (3.12) live in the Lebesgue space
but higher-order derivatives do not. In particular, D (A∗) ⊂ L2 (ω)3 .

4.2 Self-adjoint extensions

One readily observes that codimension of the subspace D (A) ⊂ D (A∗) is 10 = 5+5, i.e. five free
constants a0, ..., a4 in (4.3) and b0 = w(reg)3 (O) , b = d] (∇y, 0)w(reg) (O) ∈ R4. Moreover, the
defect index of A∗ equals (5 : 5), cf. [11, 20]. Hence, according to the von Neumann theorem,
see [2, §4.4], the operator A admits self-adjoint extensions.
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The Friedrichs extension (or the hard one, [2, §10.3]) is obtained, for example, as a restriction
of A∗ onto the subspace

{
w ∈ D (A∗) : a0 = 0, a = 0 ∈ R4

}
of codimension 5 and corresponds

to the classical formulation in H2 (ω)2 × H4 (ω) of problem (2.17),(2.24) with the right-hand
side g ∈ L2 (ω)3 . The Dirichlet-Sobolev problem (2.17),(2.24), (2.25), again with g ∈ L2 (ω)3 ,
is associated with a self-adjoint extension possessing the domain{

w ∈ D (A∗) : a = 0 ∈ R4, b0 = w3 (O) but a0 is arbitrary
}
.

However, to realize modeling of the three-dimensional elasticity problem (1.4)-(1.7) in Ωh we
ought to deal with a different self-adjoint extension.

Theorem 10 Let M be a symmetric (real) 4 × 4-matrix. The restriction AM of A∗ onto the
linear space

D (AM ) =
{
w ∈ D (A∗) : d] (∇y, 0)> ŵ (O) =Ma, ŵ3 (O) = 0, (4.4)

ŵ (y) = w(reg) (y) + a0G (y,O)
}

is a self-adjoint extension of the operator A with domain (4.2).

Proof. To verify that (4.4) constitutes the domain of a self-adjoint operator, we first of all
mention that D (A) ⊂ D (AM ) and dim (D (A∗) /D (AM )) = 5 because five linear restrictions
are imposed on the free coefficients in (4.3), namely on a, w(reg)3 (O) and d] (∇y, 0) ŵ (O) =

(ŵ1 (O) , ŵ2 (O) , ∂1ŵ3 (O) , ∂2ŵ3 (O))>, see (3.5). Then the symplectic form

q (w, v) = (A∗w, v)ω + (w,A∗v)ω (4.5)

is properly defined on the direct product. At the same time, with a clear reason, form (4.5)
vanishes in the case both w and v belong to the domain of a self-adjoint extension of A. Thus,
if we confirm that q (w, v) = 0, ∀w, v ∈ D (AM ) the theorem is concluded.

We take functions from (4.3) with the attributes a(w), a(v) ∈ R4 and write

q (w, v) = lim
t→+0

(
(Lw, v)ω\Bt − (w,Lv)ω\Bt

)
= lim

t→+0

( (
N ′w′, v′

)
St + (N3w3, (1,∇y) v3)St −

(
w′,N ′v′

)
St − ((1,∇y)w3,N3v3)St

)
where Bt and St are the disk and circle with radius t and the center at y = 0 while the
Neumann operators N ′ and N3 are taken from the Green formula for the differential operator
matrix L = diag {L′,L3} in the domain ω \Bt with a small hole. Natural integration properties
of the fundamental matrix (3.7), given, e.g., by formulas (3.36) and (3.42) in Section 3.4 in [4],
provide a direct calculation of the last limit according to the representation in (4.3) and we
finally obtain

q (w, v) = (Lw, v)ω − (w,Lv)ω (4.6)

= (d] (∇y, 0)> v̂ (O) + G]a(v))
>a(w) − a>(w)

(
d] (∇y, 0)> ŵ (O) + G]a(w)

)
.

Since the matrices M and G] are symmetric, inserting relationship given in (4.4) shows that
the right-hand side of (4.6) vanishes. �

We call (4.6) the generalized Green formula, cf. [20, 28], [27, Ch.6]; it holds for any w, v ∈
D (A∗) .
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4.3 The operator model for the supported plate

We simplify representation (2.1) of the right-hand side in the three-dimensional problem (1.4)-
(1.7) and set

f (h, x) = h−1/2
(
f0

1 (y) , f0
2 (y) , hf0

3 (y)
)>
, f0

j ∈ L2 (ω) . (4.7)

The introduced restrictions (2.2) and (3.26), (3.27) are, of course, satisfied and, according to
(2.19), (2.23), (3.29)

g (y) = f0 (y) =
(
f0

1 (y) , f0
2 (y) , f0

3 (y)
)>
, N =

∥∥f0;L2 (ω)
∥∥ , Ñ = 0. (4.8)

Let A (lnh) be the self-adjoint operator AM](lnh) given by Theorem 10 with the numeral
matrix (3.24). We consider the abstract equation

A (lnh)w = g ∈ L2 (ω)3 . (4.9)

A solution of this equation takes form (3.17) where ŵ ∈ H1 (ω)2 × H2 (ω) is the unique so-
lution of the Sobolev-Dirichlet problem (2.17), (2.24), (2.25) and the column a = a (lnh) =
M ] (lnh)−1 d] (∇y, 0) ŵ (O) is perfectly defined through formulas (3.23) and (3.18) for a small
h > 0. In other words, the abstract equation (4.9) is uniquely solvable and, moreover, its solu-
tion w ∈ D (A (lnh)) coincides with generator (3.17) of the outer asymptotic expansion (2.3)
constructed in Sections 2.1 and 3.1.

Theorem 9 assures the following result.

Corollary 11 A solution w of equation (4.9) with the chosen self-adjoint extension A (lnh)
and a right-hand side as in (4.7) and (4.8) satisfies the estimate∫

Ωh

2∑
i=1

∣∣ui (h, x)− h−1/2wi (lnh, y)
∣∣2 + h2

∣∣u3 (h, x)− h−3/2w3 (lnh, y)
∣∣2dx ≤ ch1/2 |lnh| N

where N is given in (4.8) and c is a constant independent of data (4.7) and the small parameter
ε ∈ (0, ε0), ε0 > 0.

4.4 The variational model for the supported plate

The self-adjoint operator A (lnh) traditionally gives rise to the energy functional

1
2 (A (lnh)w,w)ω − (g, w)ω . (4.10)

We also introduce the functional

E (w; g) = 1
2 (A∗w,w)ω − (g, w)ω + 1

2a
>(M ] (lnh) a− d] (∇y, 0) ŵ (O)) (4.11)

which according to (4.4) at M = M ] (lnh) , coincides with (4.10) for v ∈ D (A (lnh)) but is
defined on the whole space

H =
{
v ∈ D (A∗) : ŵ3 (O) = 0

}
(4.12)

which becomes Hilbert with the norm

‖w;H‖ =
(∥∥w(reg);H

2 (ω)2 ×H4 (ω)
∥∥2

+ |a0|2 + |a|2
)1/2

.
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Theorem 12 A solution w ∈ D (A (lnh)) of equation (4.9) is the only stationary point of
functional (4.11) in H.

Proof. Since, by definition, A∗G] = 0 ∈ L2 (ω)4 , the generalized Green formula (4.6) and
the symmetry of the matrices M ] (lnh) and G] convert the variation of E into

1

2
(Lw, v)ω +

1

2
(Lv, w)ω − (g, v)ω +

1

2
a>(v)

(
M ] (lnh) a(w) − d] (∇y, 0) ŵ (O)

)
(4.13)

+
1

2
a>(w)

(
M ] (lnh) a(v) − d] (∇y, 0) v̂ (O)

)
=

1

2
(Lw, v)ω +

1

2
(v,Lw)ω − (g, v)ω +

1

2
a>(w)

(
d] (∇y, 0) v̂ (O) + G]a(v)

)
− 1

2
a>(v)

(
d] (∇y, 0) ŵ (O) + G]a(w)

)
+

1

2
a>(v)

(
M ] (lnh) a(w) − d] (∇y, 0) ŵ (O)

)
+

1

2
a>(w)

(
M ] (lnh) a(v) − d] (∇y, 0) v̂ (O)

)
= (Lŵ − g, v)Ω + a>(v)

(
M ] (lnh) a(w) − d] (∇y, 0) ŵ (O)

)
.

Equating (4.13) to null and taking a test function v ∈ C∞c (ω \ O)3 yields

(Lŵ − g, v)Ω = 0 =⇒ L (∇y) ŵ (y) = g (y) , y ∈ ω \ O,

while conditions (2.24) and (2.25) are inherited from the inclusion w ∈ H. Since a(v) ∈ R4 is ar-

bitrary, we conclude that expression (4.13) vanishes provided M ] (lnh) a(w) = d] (∇y, 0) ŵ (O) .
Thus, w falls into the domain D (A (lnh)) .

In a similar way one verifies that a solution w of (4.9) annuls the variation of functional
(4.11). �

From this theorem it follows that the abstract equation (4.9) is equivalent to the variational
problem for the quadratic functional (4.11), cf. [16]. The latter is much more suitable for, e.g.,
numerical implementation because the space (4.12) does not involve any linear restriction on w
except for the Sobolev condition (2.25).

The potential energy of the three-dimensional plate (1.1) under the volume force (4.7) is
equal to

Eh (u; f) = 1
2 (AD (∇x)u,D (∇x)u)Ωh

− (u, f)Ωh
= −1

2 (u, f)Ωh
;

here the Green formula for a solution u of (1.4)-(1.7) was applied. The last expression demon-
strates that, although the introduced model cannot provide ”good” approximation of the strain
and stress fields near the support area θh, Corollary 11 leads to a simple asymptotic formula
for the energy.

Corollary 13 For the right-hand sides (4.7) and (4.8), the solutions u (h, x) of the three-
dimensional problem (1.4)-(1.7) and the solution w (lnh, y) of its two-dimensional model provide
the following relationship between the corresponding energy functionals

|Eh (u; f)− E (w; g)| ≤ c
√
εN

where N is given in (4.8) and c is a constant independent of data (4.7) and the small parameter
ε ∈ (0, ε0) , ε0 > 0.
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Modifying calculation (4.13) and applying the standard Green formula in ω, we derive that

E (w; g) = 1
2(Lŵ, ŵ +G]a)ω − (g, ŵ +G]a)ω + 0 (4.14)

= 1
2(Lŵ, ŵ)ω − (g, ŵ)ω − 1

2a
>d (∇y, 0) ŵ (O) + a>d (∇y, 0) ŵ (O)

= E(ŵ; g) + 1
2a
>M ] (lnh) a,

where

E(ŵ; g) =
1

2
(AD (∇y) ŵ,D (∇y) ŵ)ω − (g, ŵ)ω. (4.15)

In other words, the energy functional (4.11) computed for the solution w ∈ D (A (lnh)) of
the two-dimensional plate model (4.9) is equal to the sum of the potential energy (4.15), stored
by the Kirchhoff plate with the Sobolev-Dirichlet conditions, and the correction term

1

2
a>M ] (lnh) a (4.16)

which describes the energy concentrated in the vicinity of the small clamped zone θh. It should
be mentioned that, in view of (3.25) and (3.24), value (4.16) gets order O(|lnh|−1) and is
positive. The latter complies extension (1.2) of the Dirichlet area in the minimization problem

Eh (u; f) = min
v∈H1

0 (Ωh;Γh)3
Eh (v; f)

compared with the traditional problem on the plate (1.1) clamped along the lateral side υh.
Although the model energy functional (4.14) gains the positive increment (4.16), the station-

ary point indicated in Theorem 12 does not constitute its minimum because of the calculation

E (w + v; g)− E (w; g) =
1

2

(
Lv̂, v̂ +G]a(v)

)
ω

+
1

2
a>(v)M

] (lnh) a(v)

=
1

2
(AD (∇y) v̂,D (∇y) v̂)ω +

1

2
a>(v)

(
M ] (lnh) a(v) − d] (∇y, 0) v̂ (O)

)
where the last terms can get any sign in H. This terms vanishes in D (A (lnh)) and, quite
expected, the energy functional (4.11) admits the global minimum over the intrinsic linear
space (4.4) at the solution w of equation (4.9).

4.5 Conclusive remarks

Asymptotics derived and justified in §3 indicates a distinguishing feature of the influence of the
small support θh on the strain-stress state of the plate Ωh, see (1.1) and (1.3). Namely, the
three-dimensional boundary layer phenomenon in the vicinity of θh overrides the standard error
estimateO(h1/2) for the two-dimensional Kirchhoff model and the convergence rateO(|lnh|−1/2)
in

h1/2ui (h, y, hζ)→ ŵi (y)− ζ ∂ŵ3

∂yi
, i = 1, 2, (4.17)

h3/2u3 (h, y, hζ)→ ŵ3 (y) in H1 (ω × (−1/2, 1/2)) ,

see Theorem 8, becomes too sluggish so that cannot maintain an engineering application. An
acceptable error estimate in Theorem 7, comparable with the usual one in the Kirchhoff theory,
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requires to include into the asymptotic form the three-dimensional elastic field, that is the
elastic logarithmical capacity potential P

(
ε−1x

)
in Section 3.5 of [4] which is not described

explicitly yet even for the disk θh of radius h and the isotropic material. However, replacing
in (4.17) the regular solution ŵ ∈ H1 (ω)2 × H2 (ω) of the Dirichlet-Sobolev problem (2.17),
(2.24), (2.25) for the singular solution (3.17) procures the convergence rate O

(
h1/2 |lnh|

)
in

h1/2ui (h, y, hζ)− wi (lnh, y) + ζ ∂ŵ3
∂yi

(lnh, y)→ 0, i = 1, 2, (4.18)

h3/2u3 (h, y, hζ)− w3 (lnh, y)→ 0 in L2 (ω × (−1/2, 1/2)) ,

however in the Lebesgue, not Sobolev norm.
The problem to determine the necessary singular solution w ∈ L2 (ω)2×H1 (ω) is well-posed

with different formulations in Sections 4.3 and 4.4. Its structure (3.17), (3.23) of w, refers to
the Green matrix (3.15), (3.16) and the integral characteristics C] (A, θ) in the representation
of the logarithmic elastic potential P in the elastic layer, see Theorem 13 in [4]. The elastic
logarithmic capacity matrix is a numeral 4× 4-matrix and can be computed numerically.

Convergence (4.18) does not provide information about the stress and strain fields in the
plate, however, using a technique of local estimates in [19, 23], it is possible to verify that, under
certain restrictions on the volume forces (3.26), this convergence becomes pointwise outside a
neighborhood of θh. We mention that, as discovered in [34], see also [24], pointwise convergence
of stresses and strains is always broken near the clamped edge υh of the plate with or without
small perturbation at θh.

Both, the asymptotic procedure and the models, can be easily adapted to the plate (1.1)
with several small support areas θ1

h, ..., θ
J
h sparsely distributed on one or two bases Σ±h .

In view of block-diagonal structure (2.26) of the matrix A the Dirichlet-Sobolev problem
(2.17), (2.24), (2.25) naturally decouples into independent problems for the vector w′ = (w1, w2)
of longitudinal displacements and the deflection w3. Since the elasticity problem for the infinite
layer Λ = R2 × (−1/2, 1/2) clamped over the only area θ × {−1/2} loses the symmetry with
respect to the plane

{
ξ ∈ R3 : ξ3 = ζ = 0

}
, the elastic capacity matrix C] does not get in general

a block-diagonal structure and thus the relationship imposed in (4.4) on the regular and similar
components of the solution w = (w′, w3) of the model equation (4.9) couples the vector w′ and
the scalar w3 at the level O(|lnh|−1).
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