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Abstract. We prove a quantitative estimate on the number of certain singularities in
almost minimizing clusters. In particular, we consider the singular points belonging to
the lowest stratum of the Federer-Almgren stratification (namely, where each tangent cone
does not split a R) with maximal density. As a consequence we obtain an estimate on
the number of triple junctions in 2-dimensional clusters and on the number of tetrahedral
points in 3 dimensions, that in turn implies that the boundaries of volume-constrained
minimizing clusters form at most a finite number of equivalence classes modulo home-
omorphism of the boundary, provided that the prescribed volumes vary in a compact
set.

The method is quite general and applies also to other problems: for instance, to count
the number of singularities in a codimension 1 area-minimizing surface in R8.

1. Introduction

In this paper we consider one of the most famous examples of stratified singularities,
namely the boundaries of almost minimizing bubble clusters in Rn. They were first studied
by Almgren, who proved the existence and regularity of isoperimetric bubble clusters up
to a set of dimension (n− 2) (see Theorem 2.4 below), and to Taylor who gave a complete
description of minimizing clusters in dimension 3. In this context, she exploited the idea of
stratification of the singular set, proving that the singular set is made of a finite number of
smooth surfaces, meeting along C1,α curves with angles of 120 degrees, that in turn meet
at some points and form isolated tetrahedral singularities.

The idea of splitting the singular set according to the number of symmetries of the
tangent plane was first introduced in the context of dimension-reduction by Federer, and
then developed by Almgren in its fundamental contribution [Alm00], in order to study the
regularity of Q-valued harmonic maps. For a more recent presentation, we refer to the
work of White [Whi97]. In our context, given an almost minimizing cluster E in Rn, so
that ∂E has locally finite (n− 1)-Hausdorff measure, this corresponds to consider for every
k = 0, ..., n− 1 the sets

Σk(∂E) = {x : every tangent cone at x has at most k symmetries}

Key words and phrases. Perimeter-minimizing clusters, stratification of the singular set, isolated
singularities.
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(see Section 2 for more precise definitions). They are an increasing family of sets with
respect to k with the property that

dim(Σk(∂E)) ≤ k.

Recently, the idea of quantitative stratification has been further analyzed by Naber and
Valtorta [NV15a, NV15b] both in the context of harmonic maps and in the one of stationary
varifolds. They were able to prove that each stratum is a rectifiable set and that, under
the minimality assumption, the biggest stratum of singular points has not only dimension
(n− 3) or (n− 7) respectively, but also finite Hausdorff measure.

In this paper, given an almost minimizing cluster E we make a quantitative estimate on
the number of singular points with given density Θ0 ∈ (1,∞) in the 0-stratum, namely on
the set

Σ0,Θ0(∂E) =
{
x ∈ Σ0(∂E) : Θ∂E(x) = Θ0

}
, (1.1)

where we recall that the density of the boundary ∂E at a point x ∈ ∂E exists by the
monotonicity formula (see Theorem 2.1 below) and is given by

Θ∂E(x) = lim
r→0+

P (E ;Br)

ωn−1rn−1
= lim

r→0+

Hn−1(∂E ∩Br)

ωn−1rn−1

(where ωn−1 denotes the volume of the unit ball in Rn−1). The constant Θ0 is chosen to
be the maximal density of area-minimizing cones in Rn

Θ0 = max
{

ΘC(0) : C ⊆ Rn is a cone-like minimizing cluster
}

(1.2)

and it is assumed to be strictly greater than the density of any cone with at least one
simmetry

Θ0 > max
{

ΘC(0) : C ⊆ Rn is a cone-like minimizing cluster with at least a symmetry
}

= max
{

ΘC(0) : C ⊆ Rn−1 is a cone-like minimizing cluster
}

(1.3)

(a more precise definition of symmetry can be found in (2.2)). We notice that this as-
sumption is satisfied, for instance, in the case of isoperimetric clusters in dimension 2 and
3, where the cone-like minimizing clusters are classified, the density is constant in each
stratum and decreasing with respect to the stratum.

One can easily see by a contradiction argument via blowup that this set is discrete;
Proposition 3.4 quantifies this fact by showing that if x ∈ Σ0,Θ0(∂E) and

B(x, r/2) \B(x, λr) ∩ Σ0,Θ0(∂E) 6= ∅

for any r sufficiently small and for a suitable λ, then the quantity appearing in the mono-
tonicity formula drops of a fixed amount between r and λ2r. This, together with a covering
argument on the singular set first introduced by Cheeger and Naber [CN13] and then re-
visited by Naber and Valtorta [CNV15], allows to prove the following result.
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Theorem 1.1. Let n,N ∈ N, 0 < r0,Λ, Θ0 ∈ (1,∞) be defined in (1.2) and satisfying
(1.3), E be a (Λ, r0)-minimizing cluster and let Σ0,Θ0(∂E) be the set defined in (1.1). Then
there exists C := C(n,Λr0), c := c(n,Λr0) such that for every R ∈ (0, cr0) and x0 ∈ Rn

H0
(
Σ0,Θ0(∂E) ∩BR(x0)

)
≤ C

P (E;B2R(x0))

Rn−1 .

In dimension 2 and 3, the possible blow-ups of the boundary are classified, and corre-
spond up to isometries to triple junctions (in dimension 2 and 3) and to tetrahedral sin-
gularities (in dimension 3). If we set θ0 to be the density of triple junctions and tetraedral
points, in dimension 2 and 3 respectively, the density of the cones in the minimal stratum
is always the same and Σ0(∂E) = Σ0,Θ0(∂E). Theorem 1.1 implies then the following:

Corollary 1.2. Let n = 2 or n = 3, N ∈ N, m0 ≤ M0, m ∈ [m0,M0]n. Then there exists
a constant C := C(N,m0,M0) such that each solution E of the isoperimetric problem

inf
{
P (E) : E is an N-cluster in Rn with m(E) = m

}
, (1.4)

satisfies the estimate

H0
(
Σ0(∂E)

)
≤ C. (1.5)

Therefore the set of isoperimetric clusters as m varies in [m0,M0]n can be split in a finite
number of equivalence classes according to homeomorphisms of their boundary.

The previous result was obtained, with considerably more effort, in [CLM14, CLM]
as a consequence of an improved convergence theorem for minimizing clusters, and it is
inspired by a list of questions concerning partitioning problems proposed by Almgren in
[Alm76, VI.1(6)], precisely “to classify in some reasonable way the different minimizing
clusters corresponding to different choices of m ∈ RN

+ ”. It can be shown that, inside each
equivalence class, one can actually build C1,1-diffeomorphisms, but this would require at
least in dimension 3 more technique, as developed in [CLM14, CLM], and goes beyond the
purpose of this paper.

A consequence of the previous corollary is that, in dimension n = 2 and 3, the solu-
tions of the isoperimetric problem with volumes m have a bounded number of connected
components of Rn \ ∂E as m varies in [m0,M0]n. For instance, when N = 2, the number
of edges is exactly 3H0

(
Σ0(∂E))/2, and the number of faces can be estimated by noticing

that each edge is in common to at most 2 faces. So the number of connected components
of Rn \ ∂E is estimated by 3H0

(
Σ0(∂E)). A similar argument works also in dimension 3.

The method used to show Theorem 1.1 is quite general and applies to other problems with
stratified singularities. For instance, in a totally analogous way we can count singularities
in the 0-stratum with maximal density for area-minimizing hypersurfaces in any dimension.
A simpler result can be obtained when the singular set is discrete; indeed, in this case we
don’t need any assumption on the density of the tangent cones to obtain an estimate on the
number of singularities. For instance, a corollary of our method is the following theorem,
which refines the volume bound in [NV15b] in the 8-dimensional case:
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Theorem 1.3. Let E be a set locally minimizing the perimeter functional in R8. Then
there exists a universal constant C such that for every R > 0 and x0 ∈ Rn

H0
(
Sing(∂E) ∩BR(x0)

)
≤ C

P (E;B2R(x0))

Rn−1 .
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2. Notation and preliminaries

A N -cluster, or simply a cluster, is a family E = {E(h)}Nh=1 of disjoint sets of Rn, called
the chambers of E . A cone-like cluster is a cluster E = {E(h)}Nh=1 such that E(h) = rE(h)
for every r > 0 and h = 1, ..., N . The volume of E is the vector m(E) = (|E(1)|, ..., |E(N)|).
The relative perimeter P (E ; Ω) of the cluster E in any open set Ω is defined as

P (E ; Ω) =
1

2

M∑
i=1

P (E(i); Ω) ,

so that P (E) = P (E ;Rn). Finally, the boundary of a Borel set E ⊂ Rn is defined as

∂E =
{
x ∈ Rn : 0 < |E ∩Br(x)| < |Br(x)| for every r > 0

}
. (2.1)

and the boundary of a cluster as

∂E =
N⋃
h=1

∂E(h) .

We define the set of regular points Reg E as the set of points x ∈ ∂E such that there exists
a neighborhood of x where ∂E is an embededded C1,1-hypersurface.

A natural object to study the regularity of clusters are the so-called almost minimizers.
Given Λ ∈ [0,∞) and r0 ∈ (0,∞], a N -cluster E in Rn is a (Λ, r0)-minimizing cluster if for
every x ∈ Rn, r ≤ r0, the inequality

P (F) ≤ P (E) + Λrn

holds for every cluster F such that F(i) ∩Bc
r = E(i) ∩Bc

r for i = 1, ..., N .
A fundamental tool to prove the regularity of the boundary of almost minimizing clusters

is the monotonicity formula.

Theorem 2.1 (Monotonicity formula for clusters). Let Λ ∈ [0,∞) and r0 ∈ (0,∞]. If E
is a (Λ, r0)-minimizing cluster, the quantity

MΛ(E , x, r) =
eΛrP (E ;Br)

rn−1

is nondecreasing for r ≤ r0 and for every x ∈ ∂E. Moreover, if Λ = 0 and for two radii
r1 < r2 the quantity M0 is constant between them, namely M0(E , x, r1) = M0(E , x, r2), then
E coincides with a cone in the annulus Br2(x) \Br1(x).
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From the monotonicity formula it follows that at each point x ∈ ∂E of a (Λ, r0)-
minimizing cluster, the blow-ups (E − x)/r converge in L1 up to subsequence to a (0,∞)-
minimizing cone-like cluster C. Moreover, the boundaries (∂E−x)/r converge to ∂C in the
Hausdorff sense. This motivates the definition of the set of tangent cones at the point x,
denoted by Tan(x, E), as the the set of possible limits of (E−x)/r. For the same reason, we
consider the cone-like (0,∞)-minimizing clusters of Rn, that appear also in the definition
of Θ0 in (1.2).

Next, we split the singular set of ∂E according to the maximal number of symmetries of
its tangent cones. To this end, we recall that ΘC(0) ≥ ΘC(x) for every x ∈ Rn by upper
semicontinuity of the density and we define L∂C as the set where equality is realized

L∂C := {x ∈ ∂C : Θ∂C(x) = Θ∂C(0)} . (2.2)

The dimension of L∂C describes the number of symmetries of the cone ∂C. The set L∂C
enjoys the following properties.

Lemma 2.2. Let C be a cone-like cluster in Rn. Then L∂C defined in (2.2) is a linear
subspace of Rn+1 and, if we denote by k ∈ {0, ..., n− 1} the dimension of L∂C, then there
exists a (0,∞)-minimizing cone C′ in Rn−k such that C = C′ × L∂C.

The previous lemma allows to split the singular set according to the dimension of the
vector spaces L∂C, where C is any tangent cone at x.

Definition 2.3 (Stratification). Given an almost minimizing cluster E , we define for every
k ≤ n the k-th stratum of ∂E by

Σk(∂E) := {x ∈ Sing(∂E) : dim(L∂C) ≤ k for every C ∈ Tan(x, E)} .

Trivially the inclusion Σk(∂E) ⊂ Σk+1(∂E) holds and it is known that for every k =
1, ..., n

dimH(Σk(∂E)) ≤ k ∀k = 0, . . . , n ,

namely Hk+α(Σk(∂E)) = 0 for every α > 0.
The highest stratum coincides with the set of regular points Reg E and a posteriori it

corresponds to the union of the reduced boundaries, in the sense of De Giorgi, of the
chambers of E . More precisely it consists in the set of boundary points where the blow-up
is a couple of complimentary half-spaces, which in turn is a locally C1,1 set in the context
of almost minimizing clusters.

The following Theorem, due to Almgren [Alm68, Alm76], shows the existence and reg-
ularity of an area-minimizing cluster with volume constraint.

Theorem 2.4 (Existence of isoperimetric clusters, regularity and almost minimality). For
every m ∈ RN

+ there exists a bounded isoperimetric cluster E of Rn, namely a minimizer of
(1.4), and the diameter of E is uniformly bounded as soon as m varies in a compact subset
of RN

+ . Moreover, RegE is a finite union of analytic hypersurfaces with constant mean
curvature in Rn, which is relatively open in ∂E and the complement Sing E = ∂E \ RegE
satisfies the bound on the Hausdorff dimension

dim(Sing E) ≤ n− 2.
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Moreover, let 0 < m0 < M0; there exist Λ, r0 > 0 depending only on m0,M0 such that each
minimizer E of (1.4) is a (Λ, r0)-minimizer if m ∈ [m0,M0]N .

The less known part of the previous statement is perhaps the last sentence on almost-
minimality, which follows by a contradiction argument employing the so called “volume-
fixing variations (for the sake of completeness, we mention that this short argument is
presented in [CLM14, Proof of Theorem 1.10]).

In dimension n = 2, the only area-minimizing cone, up to isometries, is the triple
junction, namely a set made by three disjoint sectors of 120 degrees, meeting at the origin.
As a consequence, the following classical result on the structure of any almost-minimizing
cluster holds (see [Mag12, Theorem 30.7] or [CLM14, Theorem 5.2]).

Theorem 2.5 (Structure of isoperimetric clusters in R2). If E is a (Λ, r0)-minimizing
cluster for some Λ ∈ [0,∞), r0 ∈ (0,∞]in dimension n = 2, Reg E is a locally finite union
of C1,1-curves (with the diameter of each curve estimated from below by 1/2Λ as soon as
the curve has empty boundary), the set Σ0(∂E) coincides with the whole singular set and
is discrete. Finally, for each x ∈ Σ0(∂E) there exist exactly three C1,1 curves, belonging to
three different interfaces, which share x as one of their endpoints.

From this theorem it follows easily that every minimizing cluster in problem (1.4) in
dimension n = 2 is a finite union of open circular arcs (with nonempty boundary), meeting
at triple junctions with angles of 120 degrees.

In dimension n = 3, it has been shown by Taylor [Tay76] (see also [CLM, Theorem 1.1])
that the only cones locally minimizing the area-functional are, up to isometries: a reference
closed cone Y in R3 defined by three half-planes meeting along their common boundary
line (which contains the origin of R3) by forming 120 degrees angles, and a reference closed
cone T in R3 spanned by edges of a regular tetrahedron and with vertex at the barycenter
of the tetrahedron (which is assumed to be the origin of R3). Correspondingly, at every
singular point in Sing E of an almost-minimizing cluster E , we must have a unique blow-
up, either of the type Y or of the type T , and the structure of the singular set can be
understood thanks to a epiperimetric inequality at triple junctions.

Theorem 2.6 (Taylor’s description of isoperimetric clusters in R3). Let Λ ∈ [0,∞), r0 ∈
(0,∞]. There exists α ∈ (0, 1) with the following property. If E is a (Λ, r0)-minimizing
cluster in R3 then the blow-up at each boundary point is unique and

Σ0(∂E) = {x ∈ ∂E : the blow-up of ∂E at x is isometric to T},

Σ1(∂E) \ Σ0(∂E) = {x ∈ ∂E : the blow-up of ∂E at x is isometric to Y }.
Moreover Σ0(∂E) is locally finite, there exists a locally finite family S(E) of closed connected
topological surfaces with boundary in R3 and a locally finite family Γ(E) of closed connected
C1,α-curves with boundary such that S∗ = S \Σ0(E) is a C1,α-surface with boundary in R3

for every S ∈ S(E),

∂E =
⋃

S∈S(E)

S, Reg ∂E =
⋃

S∈S(E)

int(S∗), Σ0(∂E) =
⋃

S∈S(E)

bd(S∗),
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Σ1(∂E) =
⋃

γ∈Γ(E)

int(γ), Σ0(∂E) =
⋃

γ∈Γ(E)

bd(γ).

A similar characterization of the singular set in dimension 4 or more is currently an
open problem, especially because we don’t have any description of the singular cones.
For instance, an interesting problem would be to characterize the minimizing cones in R4

without symmetries; this would in turn describe the possible blow-ups of almost minimizing
clusters.

3. Proofs

Before proving Theorem 1.1, we show a covering lemma, that was previously employed
in similar formulations in [CNV15, GS15] and a proposition, showing that whenever there
is a singular point in Σ0,Θ0(∂E) in a certain annulus around a given singular point in the
same set, then the monotonicity formula drops of a fixed amount.

Lemma 3.1 (Covering lemma). Let X ⊆ B1/2 ⊆ Rn be a collection of points and let
N ∈ N, λ ∈ (0, 1/5). Assume that for every x ∈ X there exists a collection of scales
Sx ⊆ N ∪ {0} such that |Sx| ≤ N and

X \ {x} ⊆
⋃
j∈Sx

Bλj \Bλj+1 . (3.1)

Then

H0(X) ≤
(10

λ2

)nN
. (3.2)

Proof. The thesis is equivalent to prove that, given a set X ⊆ B1/2 with more than
(10λ−2)nN elements, there exists an element x ∈ X such that the number of annulai
occupied by points in X is strictly greater than N , namely

H0
({
i ∈ N : X ∩

(
Bλi(x) \Bλi+1(x)

)
6= ∅
})

> N.

We prove this statement by induction on N . If N = 0 the statement holds. Let us assume
that the statement holds for N − 1 and let us prove it for N . Let d be the diameter of X,
namely d := supx,y∈X |x− y|; it follows that

X ∩
(
Bd(x) \Bd/2(x)

)
6= ∅ for every x ∈ X. (3.3)

If d ∈ [λk+1, λk) for some k ∈ N we deduce that d/2 ∈ [λk+2, λk). From (3.3), for every
x ∈ X at least one of the two annulai Bλk(x) \ Bλk+1(x) and Bλk+1(x) \ Bλk+2(x) contains
an element of X:(
Bλk(x)\Bλk+1(x)

)
∩X 6= ∅ or

(
Bλk+1(x)\Bλk+2(x)

)
∩X 6= ∅ for every x ∈ X. (3.4)

Let x0 be an element of X and, thanks to Lemma 3.2 let us cover Bλk(x0) with (10λ−2)n

balls of radius λk+2/2. Since λk is greater than or equal to the diameter of X, we see that
X ⊆ Bλk(x0); therefore, one of these balls, denoted by B, contains more than (10λ−2)n(N−1)
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points. Applying the inductive assumption on B ∩X after rescaling it by λk+2, we know
that there exists a point x ∈ X such that

H0
({
i ≥ k + 2 : X ∩

(
Bλi(x) \Bλi+1(x)

)
6= ∅
})

> N − 1.

Since (3.4) holds, we know that at least another annulus is occupied and we have proved
the inductive statement. �

Lemma 3.2. For every µ ∈ (0, 1) there exists a covering of B1 ⊆ Rd made by (5µ−1)n

balls of radius µ.

Proof. We apply the Vitali covering lemma: for every x ∈ B1−µ/5 we consider Bµ(x) and
we extract a Vitali subcovering, namely a finite number of centers xi, indexed by i ∈ I,
such that the balls Bµ/5(xi) are disjoint and the balls Bµ(xi) cover B1 The cardinality of
I, that we denote with N , must satisfy N |Bµ/5| ≤ |B1| since the balls Bµ/5(xi) are disjoint
and contained in B1; this implies that N ≤ |B1||Bµ/5|−1 = (5µ−1)n. �

Remark 3.3. The exponential dependence on N in the estimate (3.2) of Lemma 3.1 is
optimal. Indeed, we can perform the following construction in R. Let N be a natural
number and λ = 1/4. For every e1, ..., eN ∈ Z/2Z, consider the point p(e1, ..., eN) =∑N

i=1(−1)ei2−12i ∈ R. The collection consists of 2N distinct points. We show that each
point has at most N dyadic annulai occupied by other points, by proving the following
claim. Let e1, ..., eN ∈ Z/2Z and let j ∈ {1, ..., N}; then the points of the form

p(e1, ..., ej−1, ej + 1, ej+1..., eN)

as ej+1, ..., eN vary belong to B2−12j+2(p(e1, ..., eN))\B2−12j(p(e1, ..., eN)), so that they belong
to exactly one dyadic ring.

Indeed, we have that

|p(e1, ..., ej−1, ej + 1, ej+1..., eN)− p(e1, ..., eN)− 2(−1)ej2−12j)|

=
∣∣∣ N∑
k=j+1

(−1)ek2−12k −
N∑

k=j+1

(−1)ek2−12k
∣∣∣

≤ 2
N∑

k=j+1

2−12k ≤ 2 · 2−12j

∞∑
k=1

2−12k ≤ 1

4
· 2−12j

(3.5)

and consequently

2−12j ≤ 7

4
· 2−12j ≤ |p(e1, ..., ej−1, ej + 1, ..., eN)− p(e1, ..., eN)| ≤ 9

4
· 2−12j ≤ 2−12j+2.

Proposition 3.4. Let n,N ∈ N, 0 < r0,Λ, Θ0 ∈ (1,∞) E be a (Λ, r0)-minimizing cluster.
Then there exist δ, λ ∈ [0, 1/8], r1 ≤ r0 (depending only on n,N,Λ and r0) such that if
x ∈ Σ0,Θ0(∂E), r ≤ r1 and

MΛ(E , x, r)−MΛ(E , x, 4λ2r) ≤ δ,

then
Σ0,Θ0(∂E) ∩ (Br/2 \Bλr) = ∅.
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The previous proposition quantifies the fact that the singular set Σ0,Θ0(∂E) is discrete:
indeed, as it is shown in the Proof of Theorem 1.1, by the monotonicity formula and by
Proposition 3.4 for every x ∈ Σ0,Θ0(∂E) the number of annulai of the form Br1(4λ)n(x) \
Br1(4λ)n−1(x) which intersect Σ0,Θ0(∂E) is finite.

Proof. Assume by contradiction that there exist sequences rk → 0, λk → 0, and a sequence
of (Λ, r0)-minimizing clusters Ek such that 0 ∈ Σ0,Θ0(∂Ek)

lim
k→∞

(
MΛ(Ek, 0, rk)−MΛ(Ek, 0, 4λ2

krk)
)

= 0, (3.6)

and for every k there exists a singular point xk ∈ Σ0,Θ0(∂Ek)∩ (Brk/2 \Bλkrk). We consider
the rescaled clusters Ek/|xk| and, up to a subsequence, we assume that limk→∞ xk/|xk| =
x ∈ ∂B1 and that Ek/|xk| converges to a generalized cluster E∞, minimizing in the whole
space. Moreover we have that the perimeter of the rescaled clusters in any ball is bounded
independently on k

P
(
(Ek/|xk|) ∩Br

)
≤ Nωn−2r

n−1 + (n− 1)ωn−1r
n−1 + Λrn for every r > 0.

Indeed, we can build a competitor for Ek/|xk| in Br obtained by putting (N − 1) vertical
discs splitting Br in N parts such that the i-th part has the same volume as the i-th
chamber of E in Br.

Moreover, again by minimality of each Ek we have that no perimeter is lost when taking
the limit as k →∞ in some fixed Br: in other words, for every r > 0 we have that

lim
k→∞

MΛ|xk|(Ek/|xk|, 0, r) = M0(E∞, 0, r).

By the upper semicontinuity of the density, we know that the point x must have at least
density Θ0; since Θ0 is the maximal density of an area-minimizing cone-like cluster, the
density is exactly Θ0. In particular, this limit point still belongs to the 0-stratum for the
limit cluster E∞.

Since λkrk ≤ |xk| ≤ rk/2 for every k ∈ N, we have

lim
k→∞

λ2
krk
|xk|

= 0,
rk
|xk|
≥ 2. (3.7)

Hence, by (3.6) and by the monotonicity of MΛ|xk|(
Ek
|xk|

, 0, ·) we know that

0 = lim
k→∞

MΛ(Ek, 0, rk)−MΛ(Ek, 0, 4λ2
krk)

= lim
k→∞

[
MΛ|xk|

( Ek
|xk|

, 0,
rk
|xk|

)
−MΛ|xk|

( Ek
|xk|

, 0,
4λ2

krk
|xk|

)]
≥ lim

k→∞

[
MΛ|xk|

( Ek
|xk|

, 0, 2
)
−MΛ|xk|

( Ek
|xk|

, 0,
4λ2

krk
|xk|

)]
= M0(E∞, 0, 2)−M0(E∞, 0, 0)

(3.8)

(we denote with M0(E∞, 0, 0) the density at 0, namely infr>0M0(E∞, 0, r) ≥ 2 ). Therefore,
the previous quantity is exactly 0 and the cluster E∞ is a cone-like cluster in B1, again by
the monotonicity formula in Theorem 2.1. Hence the whole segment x[0, 2] is a singular
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line for the limit cluster with at least the same density as the origin. Then, we blow up
the cluster E∞ at 0, finding a new cone-like cluster E ′∞ which coincides with E∞ in B2 and
with the whole line xR+ as a singular line with density greater or equal than the one at
the origin. So the cone-like cluster E ′∞ splits as a product with a factor that is given by
the line xR (by Lemma 2.2), and 0 cannot be a singularity of type Σ0(∂E∞). �

Proof of Theorem 1.1. By scaling the cluster E of a factor r0 and by translation, we reduce
to the case r0 = 1, namely we want to prove that if E is a (Λ, 1)-minimizing cluster there
exist C := C(n,Λ), r1 := r1(n,Λ) such that for every R ∈ (0, r1/2)

H0
(
Σ0,Θ0(∂E) ∩BR(0)

)
≤ C1+

P (E;BR(0))

Rn−1 . (3.9)

Let δ, λ ∈ [0, 1/8], r1 ≤ 1 be as in Proposition 3.4 (depending only on n and Λ) and let
R ≤ r1/2. We apply the result with r = 2R(2λ)n; we deduce that if for some n ∈ {0, 1, ...}
and x ∈ Σ0,Θ0(∂E)

Σ0,Θ0(∂E) ∩
(
BR(2λ)n(x) \BR(2λ)n+1(x)

)
6= ∅,

then
MΛ(E , x, 2R(2λ)n)−MΛ(E , x, 2R(2λ)n+2) ≥ δ. (3.10)

Let us call Nx the number of integers n = 0, 1, ... such that the condition in (3.10) is
satisfied. By applying (3.10) for every n ≥ 0, we have that

δNx ≤
∞∑
n=0

MΛ(E , x, 2R(2λ)n)−MΛ(E , x, 2R(2λ)n+2), (3.11)

so that in particular the set Σ0,Θ0(∂E) is discrete. Since by Theorem 2.1 the quantity
M(E , x, ·) is monotonically increasing, and since the intervals in the set {[2R(2λ)n+2, 2R(2λ)n) :
n odd} are all disjoint, and the same holds for {[2R(2λ)n+2, 2R(2λ)n) : n even}, we deduce
that ∑

n even

MΛ(E , x, 2R(4λ)n)−MΛ(E , x, 2Rλ(4λ)n) ≤MΛ(E , x, R),∑
n odd

MΛ(E , x, 2R(4λ)n)−MΛ(E , x, 2Rλ(4λ)n) ≤MΛ(E , x, R)

and by (3.11)

Nx ≤
2MΛ(E , x, R)

δ
≤ 2eΛP (E ;B2R(x0))

δRn−1
.

Therefore, we apply Lemma 3.1 to the rescaled set of points
(
Σ0,Θ0(∂E)∩BR(0)

)
/(2R) and

with N = 2eΛP (E ;B2R(x0))/δRn−1 to deduce that, for every x0 ∈ Rn, (3.9) holds with a
constant C depending only on n and λ.

�

Proof of Corollary 1.2. By Theorem 2.4, we know that there exists a bound on the diameter
of the isoperimetric cluster solving problem (1.4) with volume constraint m ∈ [m0,M0].
and that there exist Λ, r0 such that each volume-constrained minimizer E is also (Λ, r0)-
minimizing. By Theorem 1.1 there exists r1 > 0 such that in each ball of radius r1 there is
only a quantified number of triple junctions in dimension n = 2 (resp. tetrahedral points
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in dimension n = 3); covering the cluster with balls of radius r1 and using the bound on
the diameter, we obtain (1.5).

Let us now fix n = 2 and let us work in the context of the structure Theorem 2.5. Since
the number of triple junctions is finite, there exists only a finite number of equivalence
classes when we see ∂E as a non-oriented graph and the classes are according to graph
homeomorphisms (namely, bijective maps sending vertices to vertices and edges between
two given vertices in the edge between corresponding vertices). Each graph homeomor-
phism between the graphs corresponding to ∂E and ∂E ′ can be moreover extended to a
homeomorphism between ∂E and ∂E ′ by parameterizing each edge by arc-length.

When n = 3 (see Theorem 2.6), we notice that the density of tetrahedral points is
strictly bigger than the density at triple junctions. Indeed, the second one equals 3/2, as
for the corresponding singularity in R2, by coarea formula. The first one can be computed
by noticing that the side of a tetrahedron inscribed in the unit circle is 23/23−1/2 and
that the angle at the circumcenter in a triangle made with two vertices of the tetrahedron
is 2 arccos(21/23−1/2), so that the density of the tetrahedron is 12 arccos(21/23−1/2)π−1 '
2, 3096. In this context, we consider graph homeomorphisms which preserve not only the
edges (as in the two dimensional case), but also the faces between a certain subset of
vertices. Let us consider one of the finitely many equivalence classes (up to these graph
homeomorphisms). Finally, by the Jordan curve theorem applied to the continuous curve
that bounds a face in ∂E , we can build an homeomorphism between this face and the unit
disk that agrees with the arc-length parametrization on the boundary. Doing it also to the
corresponding face of the cluster E ′, we can compose the two homeomorphisms to obtain a
continuous, invertible map between the corresponding faces. Repeating this procedure on
each face, we obtain an homeomorphism between ∂E and ∂E ′. �

The following proposition exploits a simplified version of Proposition 3.4 in the context
of area-minimizing hypersurfaces in R8.

Proposition 3.5. Let E be a set locally minimizing the perimeter functional in R8. Then
there exist universal constants δ, λ ∈ [0, 1/8] such that if x ∈ SingE, r > 0 and

P (E;Br)

rn−1
− P (E;B4λ2r)

(4λ2r)n−1
≤ δ,

then
Sing(E) ∩ (Br/2 \Bλr) = ∅.

Proof. By scaling, we can assume r = 1. Assume by contradiction that there exists a se-
quence λk → 0, and a sequence {Ek}k∈N of sets locally minimizing the perimeter functional
such that 0 ∈ Sing(Ek) and such that

lim
k→∞

(
P (Ek;B1)−

P (Ek;B4λ2k
)

(4λ2
k)
n−1

)
= 0,

and a sequence of singular points xk ∈ Sing(Ek)∩ (B1/2 \Bλk). We consider the rescaled
sets Ek/|xk| and, up to a subsequence, we have that limk→∞ xk/|xk| = x ∈ ∂B1 and that
Ek/|xk| converges to a limit cone E∞ in L1(B1), minimizing in B1.
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By the upper semicontinuity of the density and by the fact that singular points have
density greater than 1+ε for some ε > 0, both the origin and the point x are singular in the
limit cone. Therefore, the whole segment x[0, 1] is singular but this gives a contradiction
since the singular set of any 7-dimensional hypersurface in R8 is discrete.

�

Proof of Theorem 1.3. The proof follows from Proposition 3.5 and Lemma 3.1 as in the
proof of Theorem 1.1. �
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