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Abstract. By means of a variational approach we rigorously deduce three one-dimensional
models for elastic ribbons from the theory of von Kármán plates, passing to the limit as the

width of the plate goes to zero. The one-dimensional model found starting from the “linearized”
von Kármán energy corresponds to that of a linearly elastic beam that can twist but can deform

in just one plane; while the model found from the von Kármán energy is a non-linear model that

comprises stretching, bendings, and twisting. The “constrained” von Kármán energy, instead,
leads to a new Sadowsky type of model.
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1. Introduction

Geometrically a ribbon is a body with three length scales: it is a parallelepiped whose length
` is much larger than the width ε, which, in turn, is much larger than the thickness h. That is,
` � ε � h. Since two characteristic dimensions are much smaller than the length, ribbons can
be efficiently modelled as a one-dimensional continuum, see [14]. In the literature, two types of
one-dimensional models are found: rod models and “Sadowsky type” models. We shall mainly
discuss the latter, since we work within that framework; for rod type models we refer to [7] and
the references therein.

So far, “Sadowsky type” models have been deduced starting from a plate model, that is, from
a two-dimensional model obtained from a three-dimensional problem by letting the thickness h go
to zero. Starting from a Kirchhoff plate model, a one-dimensional model for an isotropic elastic
ribbon was proposed by Sadowsky in 1930, [15, 20]. The model was formally justified in 1962 by
Wunderlich, [23, 26], by considering the Kirchhoff model for a plate of length ` and width ε, and
by letting ε go to zero. The justification given was only formal, since it was based on an ansatz
on the deformation. Wunderlich’s technique is quite ingenious, but it leads to a singular energy
density; we refer to [17] for a rigorous analysis of the so-called Wunderlich energy. A corrected
Sadowsky type of energy was derived in [9] and generalized in [1, 10].

A third approach, which partly justifies the two approaches mentioned above, is to let the width
ε and the thickness h go to zero simultaneously. By appropriately tuning the rates at which ε
and h converge to zero, one obtains a hierarchy of one-dimensional models: in [11, 12] several rod
models have been deduced, and in a forthcoming paper we will show that also “Sadowsky type”
models can be obtained.

Before describing the contents of the present paper, we point out that the literature on ribbons
is really blooming in several interesting directions, see, for instance, [2, 3, 4, 6, 8, 18, 21, 22].

Our starting point are the von Kármán plate models, whereas the papers quoted above have the
Kirchhoff plate model as a starting point. The von Kármán model for plates has been successfully
used in [5] to describe the plethora of morphological instabilities observed in a stretched and
twisted ribbon.

The von Kármán plate equations, formulated more than a hundred years ago [24], have been
recently justified by Friesecke, James, and Müller [13]. These authors consider a three-dimensional
non-linear hyper-elastic material in a reference configuration Ωh = Sε × (−h2 ,

h
2 ) with a stored

energy density W : R3×3 → [0,+∞) satisfying standard regularity and growth conditions. In [13]
the set Sε is quite general, but in this introduction, in order to be consistent with the previous
discussion, we take Sε = (−`/2, `/2)×(−ε/2, ε/2). Then, the energy associated with a deformation
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y : Ωh → R3 is given by

Eh(y) =

ˆ
Ωh

W (∇y) dx.

By scaling the elastic energy per unit volume Eh/h ∼ hβ , with β a positive real parameter, in [13]
a hierarchy of plate models has been derived (by letting h go to zero) by means of Γ-convergence
theory. The larger β is, the smaller the energy becomes. Therefore, heuristically, for large β the
limit of the rescaled energy should produce the linear plate equation. This is indeed corroborated
in [13]. Still in the same paper it is shown that for β = 2α − 2 and for the regimes α > 3,
α = 3, and 2 < α < 3 three different Γ-limits are obtained that correspond to von Kármán type
of energies.

Precisely, denoting by u : Sε → R2 and v : Sε → R the in-plane and the out-of-plane displace-
ment fields, respectively, the three asymptotic energies are as follows (see [13, Theorem 2]):

(LvK)ε for α > 3 we have the “linearized” von Kármán theory, where u = 0 and v minimizes the
functional

ILvKε (v) :=
1

24

ˆ
Sε

Q2(∇2v) dx,

with Q2 : R2×2
sym → [0,+∞) the positive definite quadratic form of linearized elasticity, see

Remark 2.5 for a precise definition;
(vK)ε for α = 3 we have the von Kármán theory, where the in-plane and the out-of-plane

displacements u and v minimize the functional

IvKε (u, v) :=
1

2

ˆ
Sε

Q2

(1

2
[∇u+ (∇u)T +∇v ⊗∇v]

)
dx+

1

24

ˆ
Sε

Q2(∇2v) dx;

(CvK)ε for 2 < α < 3 we have the “constrained” von Kármán theory, in which the functional

ICvKε (v) :=
1

24

ˆ
Sε

Q2(∇2v) dx

has to be minimized under the non-linear constraint

∇u+ (∇u)T +∇v ⊗∇v = 0, (1.1)

or, equivalently, the functional ICvKε has to be minimized under the constraint

det(∇2v) = 0

(which is, in turn, necessary and sufficient for the existence of a map u satisfying (1.1)).

The existence of minimizers and the characterization of the Euler equations for constrained von
Kármán plates have been studied in [16].

By letting h go to zero, the three-dimensional domain Ωh = Sε × (−h2 ,
h
2 ) is “squeezed” to

become Sε. In this paper, we consider the von Kármán energies and we let ε go to zero, still by
means of Γ-convergence, to find one-dimensional models for elastic ribbons in the von Kármán
regimes. In this way, the two-dimensional domain Sε = (−`/2, `/2) × (−ε/2, ε/2) is “squeezed”
to the segment I = (−`/2, `/2), which we parametrize with the coordinate x1. In the limit, the
in-plane displacement u : Sε → R2 generates two displacements: an axial displacement ξ1 : I → R,
and an orthogonal “in-plane” displacement ξ2 : I → R. The out-of-plane displacement v : Sε → R,
in turn, generates an “out-of-plane” displacement w : I → R and the derivative of v in the direction
orthogonal to the axis leads to a rotation ϑ : I → R. The limit energies that we find in the three
regimes are the following:

(LvK) the limit of the “linearized” von Kármán energy is

JLvK(w, ϑ) :=
1

24

ˆ
I

Q1(w′′, ϑ′) dx1;

(vK) the limit of the von Kármán energy is

JvK(ξ, w, ϑ) :=
1

2

ˆ
I

Q0

(
ξ′1 +

|w′|2

2

)
dx1 +

1

24

ˆ
I

(
Q0(ξ′′2 ) +Q1(w′′, ϑ′)

)
dx1;
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(CvK) the limit of the “constrained” von Kármán energy is

JCvK(w, ϑ) :=
1

24

ˆ
I

Q(w′′, ϑ′) dx1.

Here Q1, Q0, and Q are energy densities whose precise definition can be found in Section 2; see
Remark 2.5 for the specialization of these energies in the isotropic case.

We note that, since Q1 is quadratic, the functional (LvK) corresponds to the energy of a linearly
elastic “three-dimensional beam” in which the section Sε is unstretchable: the energy is simply
due to the “out-of-plane” bending of the axis and to the torsion of the cross-section orthogonal
to the axis. The limit functional (vK) is non-linear and penalizes stretching and both bendings of
the axis, as well as the torsion of the cross-section. The functional (CvK) is sometimes called the
energy of a beam with large deflections, see [25]. Despite the appearance, the energy functional
(CvK) is very different from that of (LvK). Indeed, in contrast to Q1, the energy density Q is not
quadratic. It incorporates into its definition the non-linear constraint (1.1) that appears into the
two-dimensional model (CvK)ε. The energy density Q agrees with the corrected Sadowsky energy
density found in [9] in the isotropic case, and with that found in [10] for the general anisotropic
case. To the best of our knowledge, the model (CvK) is new.

We conclude this introduction by pointing out that the statements of the results and the precise
definitions are given in Section 2, while Section 3 is exclusively devoted to the the proofs of these
results.

2. Narrow strips

Let ` > 0, let I denote the interval (−`/2, `/2), and let Sε = I × (−ε/2, ε/2) with ε > 0. For
u ∈ W 1,2(Sε;R2) and v ∈ W 2,2(Sε) we consider the scaled von Kármán extensional and bending
energies

Jextε (u, v) =
1

ε

1

2

ˆ
Sε

Q2

(
Eu+

1

2
∇v ⊗∇v

)
dx, Jbenε (v) =

1

ε

1

24

ˆ
Sε

Q2(∇2v) dx,

where Eu = 1
2 (∇u+∇uT ) is the symmetric part of the gradient of the in-plane displacement u,

while ∇2v denotes the Hessian matrix of the out-of-plane displacement v. The energy density
Q2 : R2×2

sym → [0,+∞) is assumed to be a positive definite quadratic form.
To simplify our analysis we rewrite the energies over the domain S := S1 = I × (−1/2, 1/2).

More precisely, we introduce the scaled versions y : S → R2 and w : S → R of u and v, respectively,
by setting

y1(x1, x2) := u1(x1, εx2), y2(x1, x2) := εu2(x1, εx2), w(x1, x2) := v(x1, εx2),

and define the scaled differential operators

Eεy :=

(
∂1y1

1
2ε (∂1y2 + ∂2y1)

1
2ε (∂2y1 + ∂1y2) 1

ε2 ∂2y2

)
,

∇εw :=
(
∂1w,

1

ε
∂2w

)
, ∇2

εw :=

(
∂2

11w
1
ε∂

2
12w

1
ε∂

2
21w

1
ε2 ∂

2
22w

)
,

so that

Eεy(x) = Eu(x1, εx2), ∇εw(x) = ∇v(x1, εx2), ∇2
εw(x) = ∇2v(x1, εx2).

By performing the change of variables in the energy integrals we have that Jextε (u, v) = Jextε (y, w)
and Jbenε (v) = Jbenε (w), where

Jextε (y, w) :=
1

2

ˆ
S

Q2

(
Eεy +

1

2
∇εw ⊗∇εw

)
dx, Jbenε (w) :=

1

24

ˆ
S

Q2(∇2
εw) dx. (2.1)
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Since we do not impose boundary conditions, we require the displacements to have zero average
and, for the out-of plane component, also zero average gradient. That is, we shall work in the
following spaces: for every open set Ω ⊂ Rα with α = 1, 2, we consider

W 1,2
〈0〉 (Ω) :=

{
g ∈W 1,2(Ω) :

ˆ
Ω

g(x) dx = 0
}
,

W 2,2
〈0〉 (Ω) :=

{
g ∈W 2,2(Ω) :

ˆ
Ω

g(x) dx = 0 and

ˆ
Ω

∇g(x) dx = 0
}
,

and similarly we define W 1,2
〈0〉 (Ω;R2).

Our first result is about compactness of sequences with bounded energy; the limit of the in-plane
displacements will belong to the space of two-dimensional Bernoulli-Navier functions defined by

BN〈0〉(S;R2) : = {g ∈W 1,2
〈0〉 (S;R2) : (Eg)12 = (Eg)22 = 0}

= {g ∈W 1,2
〈0〉 (S;R2) : ∃ ξ1 ∈W 1,2

〈0〉 (I) and ξ2 ∈W 1,2
〈0〉 (I) ∩W 2,2(I) such that

g1(x) = ξ1(x1)− x2ξ
′
2(x1), g2(x) = ξ2(x1)},

where the second characterization can be obtained by arguing as in [19, Section 4.1].

Lemma 2.1. Let (wε) ⊂W 2,2
〈0〉 (S) be a sequence such that

sup
ε
Jbenε (wε) <∞. (2.2)

Then, up to a subsequence, there exist a vertical displacement w ∈ W 2,2
〈0〉 (I) and a twist function

ϑ ∈W 1,2
〈0〉 (I) such that

wε ⇀ w in W 2,2(S), ∇εwε ⇀ (w′, ϑ) in W 1,2(S;R2), (2.3)

and

∇2
εwε ⇀

(
w′′ ϑ′

ϑ′ γ

)
in L2(S;R2×2

sym) (2.4)

for a suitable γ ∈ L2(S).

Moreover, if (yε) ⊂W 1,2
〈0〉 (S;R2) is a further sequence such that

sup
ε
Jextε (yε, wε) <∞, (2.5)

then, up to a subsequence, there exists y ∈ BN〈0〉(S;R2) such that

yε ⇀ y in W 1,2(S;R2).

Also,
Eεyε ⇀ E in L2(S;R2×2

sym)

for a suitable E ∈ L2(S;R2×2
sym) such that E11 = ∂1y1.

The rest of this section is devoted to state the Γ-convergence results starting from the simpler
case of the linearized theory (LvK)ε, and proceeding in the order of increasing difficulty to consider
the standard and the constrained models (vK)ε and (CvK)ε, respectively.

2.1. The linearized von Kármán model. In order to state our first convergence result we need
to introduce some definitions. Let Q1 : R× R→ [0,+∞) be defined by

Q1(κ, τ) := min
γ∈R

{
Q2(M) : M =

(
κ τ
τ γ

)}
.

Let JLvK : W 2,2
〈0〉 (I)×W 1,2

〈0〉 (I)→ R be defined by

JLvK(w, ϑ) :=
1

24

ˆ
I

Q1(w′′, ϑ′) dx1.

Theorem 2.2. As ε→ 0, the functionals Jbenε Γ-converge to the functional JLvK in the following
sense:
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(i) (liminf inequality) for every sequence (wε) ⊂ W 2,2
〈0〉 (S), w ∈ W 2,2

〈0〉 (I), and ϑ ∈ W 1,2
〈0〉 (I)

such that wε ⇀ w in W 2,2(S), and ∇εwε ⇀ (w′, ϑ) in W 1,2(S;R2), we have that

lim inf
ε→0

Jbenε (wε) ≥ JLvK(w, ϑ);

(ii) (recovery sequence) for every w ∈W 2,2
〈0〉 (I) and ϑ ∈W 1,2

〈0〉 (I) there exists a sequence (wε) ⊂
W 2,2
〈0〉 (S) such that wε ⇀ w in W 2,2(S), ∇εwε ⇀ (w′, ϑ) in W 1,2(S;R2), and

lim sup
ε→0

Jbenε (wε) ≤ JLvK(w, ϑ).

2.2. The von Kármán model. The statement of our second convergence result needs some
further definitions. Let Q0 : R→ [0,+∞) be defined by

Q0(µ) := min
z∈R

Q1(µ, z) = min
(z1,z2)∈R2

{
Q2(M) : M =

(
µ z1

z1 z2

)}
.

Let JvK : BN〈0〉(S;R2)×W 2,2
〈0〉 (I)×W 1,2

〈0〉 (I)→ R be defined by

JvK(y, w, ϑ) :=
1

2

ˆ
S

Q0

(
∂1y1 +

|w′|2

2

)
dx+

1

24

ˆ
I

Q1(w′′, ϑ′) dx1.

Theorem 2.3. As ε → 0, the functionals JvKε := Jextε + Jbenε Γ-converge to the functional JvK

in the following sense:

(i) (liminf inequality) for every pair of sequences (yε) ⊂ W 1,2
〈0〉 (S;R2), (wε) ⊂ W 2,2

〈0〉 (S), y ∈
BN〈0〉(S;R2), w ∈ W 2,2

〈0〉 (I), and ϑ ∈ W 1,2
〈0〉 (I) such that yε ⇀ y in W 1,2(S;R2), wε ⇀ w

in W 2,2(S), and ∇εwε ⇀ (w′, ϑ) in W 1,2(S;R2), we have that

lim inf
ε→0

JvKε (yε, wε) ≥ JvK(y, w, ϑ);

(ii) (recovery sequence) for every y ∈ BN〈0〉(S;R2), w ∈W 2,2
〈0〉 (I) and ϑ ∈W 1,2

〈0〉 (I) there exists

a pair of sequences (yε) ⊂W 1,2
〈0〉 (S;R2), (wε) ⊂W 2,2

〈0〉 (S) such that yε ⇀ y in W 1,2(S;R2),

wε ⇀ w in W 2,2(S), ∇εwε ⇀ (w′, ϑ) in W 1,2(S;R2), and

lim sup
ε→0

JvKε (yε, wε) ≤ JvK(y, w, ϑ).

2.3. The constrained von Kármán model. The constrained von Kármán energy of a dis-
placement v ∈ W 2,2

〈0〉 (Sε) such that det∇2v = 0 a.e. in Sε is Jbenε (v). We observe that the map w,

defined over the rescaled domain, belongs to the space

W 2,2
det,ε(S) :=

{
w ∈W 2,2

〈0〉 (S) : det∇2
εw = 0 a.e. in S

}
.

We set JCvKε : W 2,2
det,ε(S)→ R the functional JCvKε (w) = Jbenε (w).

Let Q : R× R→ [0,+∞) be defined by

Q(κ, τ) := min
γ∈R

{
Q2(M) + α+(detM)+ + α−(detM)− : M =

(
κ τ
τ γ

)}
,

where

α+ := sup{α > 0 : Q2(M) + α detM ≥ 0 for every M ∈ R2×2
sym}

and

α− := sup{α > 0 : Q2(M)− α detM ≥ 0 for every M ∈ R2×2
sym}.

Let JCvK : W 2,2
〈0〉 (I)×W 1,2

〈0〉 (I)→ R be defined by

JCvK(w, ϑ) :=
1

24

ˆ
I

Q(w′′, ϑ′) dx1.

Theorem 2.4. As ε→ 0, the functionals JCvKε Γ-converge to the functional JCvK in the following
sense:
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(i) (liminf inequality) for every sequence (wε) with wε ∈ W 2,2
det,ε(S), w ∈ W 2,2

〈0〉 (I), and ϑ ∈
W 1,2
〈0〉 (I) such that wε ⇀ w in W 2,2(S), and ∇εwε ⇀ (w′, ϑ) in W 1,2(S;R2), we have that

lim inf
ε→0

JCvKε (wε) ≥ JCvK(w, ϑ);

(ii) (recovery sequence) for every w ∈ W 2,2
〈0〉 (I) and ϑ ∈ W 1,2

〈0〉 (I) there exists a sequence (wε)

with wε ∈W 2,2
det,ε(S) such that wε ⇀ w in W 2,2(S), ∇εwε ⇀ (w′, ϑ) in W 1,2(S;R2), and

lim sup
ε→0

JCvKε (wε) ≤ JCvK(w, ϑ).

Remark 2.5. The quadratic energy density Q2 can be computed from the non-linear energy
density W of the material, also mentioned in the introduction, by first computing the quadratic
energy density Q3, see [13],

Q3(F ) :=
∂2W

∂F 2
(I)(F, F ) =

3∑
i,j,k,l=1

∂2W

∂Fij∂Fkl
(I)FijFkl, F ∈ R3×3,

and then by minimizing over the third column and row:

Q2(A) := min{Q3(F ) : Fαβ = Aαβ α, β = 1, 2}, A ∈ R2×2
sym.

If the energy density W is isotropic, the quadratic energy density Q3 has the following repre-
sentation:

Q3(F ) = 2µ|Fsym|2 + λ(Fsym · I)2, Fsym :=
F + FT

2
∈ R3×3,

where µ and λ are the so-called Lamé coefficients. A simple computation then leads to

Q2(A) = 2µ|A|2 +
2µλ

2µ+ λ
(A · I)2, A ∈ R2×2

sym.

The energy densities Q1, Q0, and Q, may be found to have the following representation

Q1(κ, τ) = EYκ
2 + 4µτ2,

where EY := µ 2µ+3λ
µ+λ is the Young modulus of the material,

Q0(κ) = EYκ
2,

and

1

12
Q(κ, τ) =

D
(κ2 + τ2)2

κ2
if |κ| > |τ |,

4Dτ2 if |κ| ≤ |τ |,

where D := µ(λ+µ)
3(2µ+λ) is the bending stiffness.

3. Proofs

This section is devoted to prove the theorems stated in the previous section. For a given function
u ∈ L1(S), we shall denote by 〈u〉 the integral mean value of u on S, that is,

〈u〉 :=
1

`

ˆ
S

u(x) dx.

We use the same notation to denote the average over I of functions defined on I.

Proof of Lemma 2.1. Let (wε) ⊂ W 2,2
〈0〉 (S) be a sequence of vertical displacements of S satisfying

(2.2). This bound and the fact that Q2 is positive definite imply that

‖∂2
11wε‖L2(S) + ‖ε−1∂2

12wε‖L2(S) + ‖ε−2∂2
22wε‖L2(S) ≤ C (3.1)

for any ε. Since ˆ
S

wε(x) dx = 0,

ˆ
S

∇wε(x) dx = 0
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for every ε > 0, by Poincaré-Wirtinger inequality the sequence (wε) is uniformly bounded in

W 2,2(S). Therefore, there exists w ∈ W 2,2
〈0〉 (S) such that wε ⇀ w weakly in W 2,2(S), up to a

subsequence.
By the previous bound, ∇(ε−1∂2wε) is a bounded sequence in L2(S;R2) and, by Poincaré-

Wirtinger inequality, also (ε−1∂2wε) is bounded in L2(S). It follows that w is independent of x2

and there exixts ϑ ∈ W 1,2
〈0〉 (S) such that ε−1∂2wε ⇀ ϑ weakly in W 1,2(S), up to a subsequence.

Moreover, also ϑ is independent of x2.
By (3.1), up to subsequences, we have that ∇2

εwε converges to a matrix field A weakly in
L2(S;R2×2

sym). By using the convergences established above, it follows that A11 = w′′ and A12 = ϑ′.
The entry A22, that cannot be identified in terms of w and ϑ, is denoted by γ in the statement.
This proves (2.4).

We now prove the second part of the statement. The bound (2.5) implies that∥∥∥Eεyε +
1

2
∇εwε ⊗∇εwε

∥∥∥
L2
≤ C (3.2)

for any ε. Since (∇2
εwε) is bounded in L2, we have

‖∇εwε ⊗∇εwε‖L2 ≤ C‖|∇εwε|2‖L2 = C‖∇εwε‖2L4 ≤ C(‖∂1wε‖2L4 + ‖ε−1∂2wε‖2L4)

≤ C(‖∇∂1wε‖2L2 + ‖∇ε−1∂2wε‖2L2) ≤ C‖∇2
εwε‖2L2 ≤ C

for any ε, and the third to last inequality follows by the imbedding W 1,2(S) ⊂ Lq ∀ q ∈ [2,+∞)
and Poincaré-Wirtinger inequality. Together with (3.2), this implies that the sequence (Eεyε) is
bounded in L2.

By the definition of Eε and Korn-Poincaré inequality we have that

‖yε‖W 1,2 ≤ C‖Eyε‖L2 ≤ C‖Eεyε‖L2 ≤ C. (3.3)

Hence, up to subsequences, there exist E ∈ L2(S;R2×2
sym) and y ∈W 1,2

〈0〉 (S;R2) such that

Eεyε ⇀ E in L2(S;R2×2
sym),

yε ⇀ y in W 1,2(S;R2).

By the definition of Eε and (3.3) we have that

(Eyε)12 ⇀ 0 = (Ey)12, (Eyε)22 ⇀ 0 = (Ey)22;

hence, y ∈ BN〈0〉(S;R2). Finally, the observation that (Eεyε)11 = ∂1(yε)1 ⇀ ∂1y1 in L2(S)
concludes the proof. �

Proof of Theorem 2.2–(i). Let (wε) ⊂ W 2,2
〈0〉 (S) be such that wε ⇀ w in W 2,2(S), and ∇εwε ⇀

(w′, ϑ) in W 1,2(S;R2), for some w ∈W 2,2
〈0〉 (I) and ϑ ∈W 1,2

〈0〉 (I). Without loss of generality, we can

assume that lim infε→0 J
ben
ε (wε) < +∞. By Lemma 2.1 we infer that, up to subsequences,

∇2
εwε ⇀

(
w′′ ϑ′

ϑ′ γ

)
=: Mγ in L2(S;R2×2

sym)

for some γ ∈ L2(S). By weak lower semicontinuity and the definition of Q1 we have

lim inf
ε→0

Jbenε (wε) = lim inf
ε→0

1

24

ˆ
S

Q2(∇2
εwε) dx

≥ 1

24

ˆ
S

Q2(Mγ) dx ≥ 1

24

ˆ
I

Q1(w′′, ϑ′) dx1 = JLvK(w, ϑ).

�

Proof of Theorem 2.2–(ii). Let w ∈W 2,2
〈0〉 (I) and ϑ ∈W 1,2

〈0〉 (I). We set

Mγ :=

(
w′′ ϑ′

ϑ′ γ

)
,

where γ ∈ L2(I) is such that
Q1(w′′, ϑ′) = Q2(Mγ).
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The fact that γ belongs to L2(I) follows immediately by choosing M0 = w′′e1 ⊗ e1 + ϑ′(e1 ⊗ e2 +
e2 ⊗ e1) as a competitor in the definition of Q1 and by using the positive definiteness of Q2.

Let ϑε ∈ C∞(I) be such that
´
I
ϑε(x1) dx1 = 0, ϑε → ϑ in W 1,2(I), and εϑ′′ε → 0 in L2(I). Let

γε ∈ C∞(I) be such that γε → γ, εγ′ε → 0 and ε2γ′′ε → 0 in L2(I). Let

wε(x) = w(x1) + εx2ϑε(x1) +
ε2

2

(
x2

2γε(x1)− 〈x2
2γε〉 − x1〈x2

2γ
′
ε〉
)
. (3.4)

It turns out that wε ∈ W 2,2
〈0〉 (S) and, by the convergences above, we have wε → w in W 2,2(S),

∇εwε → (w′, ϑ) in W 1,2(S;R2), and ∇2
εwε → Mγ in L2(S). Moreover, by strong continuity we

have

lim
ε→0

Jbenε (wε) = lim
ε→0

1

24

ˆ
S

Q2(∇2
εwε) dx =

1

24

ˆ
I

Q1(w′′, ϑ′) dx1 = JLvK(w, ϑ).

�

Proof of Theorem 2.3–(i). Let (yε) ⊂ W 1,2
〈0〉 (S;R2), (wε) ⊂ W 2,2

〈0〉 (S) be such that yε ⇀ y in

W 1,2(S;R2), wε ⇀ w in W 2,2(S), and ∇εwε ⇀ (w′, ϑ) in W 1,2(S;R2), for some y ∈ BN〈0〉(S;R2),

w ∈ W 2,2
〈0〉 (I) and ϑ ∈ W 1,2

〈0〉 (I). As usual, we can assume that lim infε→0 J
vK
ε (yε, wε) < +∞ and

by Lemma 2.1 we deduce that, up to subsequences,

Eεyε ⇀ E and ∇2
εwε ⇀

(
w′′ ϑ′

ϑ′ γ

)
=: Mγ in L2(S;R2×2

sym)

for some E ∈ L2(S;R2×2
sym) with E11 = ∂1y1, and γ ∈ L2(S). Moreover, by the convergences above,

Eεyε +
1

2
∇εwε ⊗∇εwε ⇀ E +

1

2
(w′, ϑ)⊗ (w′, ϑ) in L2(S;R2×2

sym).

Then, by lower semicontinuity, we have

lim inf
ε→0

JvKε (yε, wε) ≥ lim inf
ε→0

1

2
Jε(yε, wε) + lim inf

ε→0

1

24
J lin
ε (wε)

= lim inf
ε→0

1

2

ˆ
S

Q2

(
Eεyε +

1

2
∇εwε ⊗∇εwε

)
dx+ lim inf

ε→0

1

24

ˆ
S

Q2(∇2
εwε) dx

≥ 1

2

ˆ
S

Q2

(
E +

1

2
(w′, ϑ)⊗ (w′, ϑ)

)
dx+

1

24

ˆ
S

Q2(Mγ) dx

≥ 1

2

ˆ
S

Q0

(
∂1y1 +

1

2
|w′|2

)
dx+

1

24

ˆ
I

Q1(w′′, ϑ′) dx1

= JvK(y, w, ϑ).

�

Proof of Theorem 2.3–(ii). Let y ∈ BN〈0〉(S;R2), w ∈ W 2,2
〈0〉 (I), and ϑ ∈ W 1,2

〈0〉 (I). As before,

there exists γ ∈ L2(I) such that the matrix

Mγ :=

(
w′′ ϑ′

ϑ′ γ

)
satisfies

Q1(w′′, ϑ′) = Q2(Mγ).

There exist ξ1 ∈ W 1,2
〈0〉 (I) and ξ2 ∈ W 1,2

〈0〉 (I) ∩W 2,2(I) such that y1(x) = ξ1(x1) − x2ξ
′
2(x1) and

y2(x) = ξ2(x1). Moreover, there exists z ∈ L2(S;R2) such that the matrix

Mz :=

(
∂1y1 + 1

2 |w
′|2 z1

z1 z2

)
=

(
ξ′1(x1)− x2ξ

′′
2 (x1) + 1

2 |w
′(x1)|2 z1

z1 z2

)
satisfies

Q0

(
∂1y1 +

1

2
|w′|2

)
= Q2(Mz).
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It is easily seen that z1 and z2 depend linearly on ∂1y1 + 1
2 |w
′|2. Since ∂1y1(x1, x2) + 1

2 |w
′(x1)|2 =

ξ′1(x1)− x2ξ
′′
2 (x1) + 1

2 |w
′(x1)|2, there exist ζα ∈ L2(I) and ηα ∈ L2(I) such that

zα(x1, x2) = ζα(x1) + x2ηα(x1), α = 1, 2.

Let wε be as in the proof of Theorem 2.2–(ii) (see (3.4)), and let ζεα, η
ε
α ∈ C∞(I) be such that

ζεα → ζα and ηεα → ηα in L2(I) and εζεα
′ → 0 and εηεα

′ → 0 in L2(I). Let us define

(yε)1(x1, x2) := ξ1(x1)− x2ξ
′
2(x1) + ε

(
x2

2η
ε
1(x1)− 〈x2

2η
ε
1〉
)
,

(yε)2(x1, x2) := ξ2(x1) + ε
(ˆ x1

0

(
2ζε1(s)− w′(s)ϑ(s)

)
ds− 〈

ˆ x1

0

(
2ζε1(s)− w′(s)ϑ(s)

)
ds〉
)

+
ε2

2
x2

(
2ζε2(x1)− ϑ2(x1)

)
+
ε2

2

(
x2

2η
ε
2(x1)− 〈x2

2η
ε
2〉
)
.

Then it is easy to check that

Eεyε +
1

2
∇εwε ⊗∇εwε →Mz in L2(S;R2×2

sym).

Thus, by strong continuity,

lim
ε→0

JvKε (yε, wε) = lim
ε→0

(1

2
Jextε (yε, wε) +

1

24
Jbenε (wε)

)
= lim

ε→0

(1

2

ˆ
S

Q2

(
Eεyε +

1

2
∇εwε ⊗∇εwε

)
dx+

1

24

ˆ
S

Q2(∇2
εwε) dx

)
=

1

2

ˆ
S

Q2(Mz) dx+
1

24

ˆ
S

Q2(Mγ) dx

=
1

2

ˆ
S

Q0

(
∂1y1 +

1

2
|w′|2

)
dx+

1

24

ˆ
I

Q1(w′′, ϑ′) dx1

= JvK(y, w, ϑ).

�

The proof of the Γ-convergence theorem 2.4 is based on a relaxation result for a quadratic
integral functional with a constraint on the determinant, that has been proved in [10, Proposition 9]
and recalled here for reader’s convenience.

Let B be a bounded open subset of Rn. Let Q : B×R2×2
sym → [0,+∞) be measurable in the first

variable and quadratic in the second. Define the functional

F : L2
(
B;R2×2

sym

)
→ [0,+∞]

by

F(M) :=


ˆ
B
Q(x,M(x)) dx if detM = 0 a.e. in B,

+∞ otherwise.

Theorem 3.1 ([10]). The weak-L2 lower semicontinuous envelope of F is the functional

F : L2
(
B;R2×2

sym

)
→ [0,+∞)

given by

F(M) =

ˆ
B

(
Q(x,M(x)) + α+(x)(detM(x))+ + α−(x)(detM(x))−

)
dx,

where for every x ∈ B

α+(x) := sup{α > 0 : Q(x,M) + α detM ≥ 0 for every M ∈ R2×2
sym}

and

α−(x) := sup{α > 0 : Q(x,M)− α detM ≥ 0 for every M ∈ R2×2
sym}.
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Proof of Theorem 2.4–(i). Let (wε) be such that wε ∈ W 2,2
det,ε(S), wε ⇀ w in W 2,2(S), and

∇εwε ⇀ (w′, ϑ) in W 1,2(S;R2), for some w ∈ W 2,2
〈0〉 (I) and ϑ ∈ W 1,2

〈0〉 (I). Under the assump-

tion that lim infε→0 J
vK
ε (wε) < +∞, by Lemma 2.1 we deduce that, up to subsequences,

∇2
εwε ⇀

(
w′′ ϑ′

ϑ′ γ

)
in L2(S;R2×2

sym)

for some γ ∈ L2(S). Since det∇2
εwε = 0, an application of Theorem 3.1 with Q(x,M) := Q2(M)

and B = S shows that

lim inf
ε→0

JCvKε (wε) = lim inf
ε→0

1

24
F(∇2

εwε) ≥
1

24
F
(
w′′ ϑ′

ϑ′ γ

)
≥ 1

24

ˆ
I

Q(w′′, ϑ′) dx1.

Therefore, we conclude that

lim inf
ε→0

JCvKε (wε) ≥ J(w, ϑ).

�

Proof of Theorem 2.4–(ii). Let w ∈W 2,2
〈0〉 (I) and ϑ ∈W 1,2

〈0〉 (I). We set

M :=

(
w′′ ϑ′

ϑ′ γ

)
,

where γ ∈ L2(I) is such that

Q(w′′, ϑ′) = Q2(M) + α+(detM)+ + α−(detM)−.

As before, the fact that γ belongs to L2(I) follows immediately by choosing M0 = w′′e1 ⊗ e1 +
ϑ′(e1 ⊗ e2 + e2 ⊗ e1) as a competitor in the definition of Q and by using the positive definiteness
of Q2.

By Theorem 3.1 with Q(x,M) := Q2(M) and B = I, there exist M j ∈ L2(I;R2×2
sym) with

detM j = 0 and such that M j ⇀M weakly in L2(I;R2×2
sym) and F(M j)→ F(M), as j →∞. We

can also assume that M j ∈ C∞(Ī;R2×2
sym). The proof of this fact relies on a construction described

in [9, Theorem 2.2–(ii)]. We give here full details for convenience of the reader. Suppose that
(Mn) be a sequence of matrices with the same properties of (M j) apart from the regularity, and
denote by λn ∈ L2(I) the trace of Mn. Since Mn is symmetric with detMn = 0, there exists
βn = βn(x1) ∈ (−π/2, π/2] such that

Mn =

(
cosβn − sinβn
sinβn cosβn

)(
λn 0
0 0

)(
cosβn sinβn
− sinβn cosβn

)
,

and βn is uniquely determined if λn 6= 0. When λn(x1) = 0, we set βn(x1) = 0. We may
assume without loss of generality that λn ∈ L∞(I), possibly after truncating λn in modulus
by n, while Mn still enjoys the same properties as before. We can find λn,k ∈ C∞(Ī) and
βn,k ∈ C∞(Ī; (−π/2, π/2)) such that, as k → ∞, λn,k → λn and βn,k → βn in Lp(I) for every
p < +∞. Set

Mn,k :=

(
cosβn,k − sinβn,k
sinβn,k cosβn,k

)(
λn,k 0

0 0

)(
cosβn,k sinβn,k
− sinβn,k cosβn,k

)
.

Then, detMn,k = 0 for every n, k and Mn,k →Mn in L2(I;R2×2
sym), as k →∞.

Thus, by a diagonal argument, we may assume that there exist λj ∈ C∞(Ī) and βj ∈ C∞(Ī)
such that |βj | < π/2 on Ī, and with

M j :=

(
cosβj − sinβj

sinβj cosβj

)(
λj 0
0 0

)(
cosβj sinβj

− sinβj cosβj

)
= λj

(
cos2 βj sinβj cosβj

sinβj cosβj sin2 βj

)
we have that M j ∈ C∞(Ī;R2×2

sym), detM j = 0 for every j, M j ⇀M in L2(I;R2×2
sym), and F(Mj)→

F(M), as j →∞.
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For all j = 1, 2, . . . and all k, l ∈ {1, 2} we define M
j

kl(x1) :=
´ x1

0
M j
kl(s) ds,

wj(x1) :=

ˆ x1

0

(x1 − s)M j
11(s) ds− 1

`

ˆ
I

(ˆ t

0

(t− s)M j
11(s) ds

)
dt− x1〈M

j

11〉,

and

ϑj(x1) := M
j

12(x1)− 〈M j

12〉.
It is clear that wj ⇀ w weakly in W 2,2(I) and ϑj ⇀ ϑ weakly in W 1,2(I), as j → ∞. Moreover,

wj ∈W 2,2
〈0〉 (I) and ϑj ∈W 1,2

〈0〉 (I).

After extending βj smoothly to all of R, still satisfying |βj | < π/2, we define αj := π
2 + βj ,

b̃j(ξ1) := cosαj(ξ1)e1 + sinαj(ξ1)e2 and Φj(ξ1, ξ2) := ξ1e1 + ξ2b̃
j(ξ1).

Observe that, by the definition of b̃j and since (wj)′′ = M j
11 and (ϑj)′ = M j

12,(
(wj)′′

(ϑj)′

)
· b̃j = 0. (3.5)

Arguing as in [10, Lemma 12], we see that for every ε ≤ εj the matrix ∇Φj(ξ1, ξ2) is invertible for
|ξ2| ≤ ε, and the map (Φj)−1 : Sε → R2 is well defined. For such ε define zj : Sε → R by setting

zj
(
Φj(ξ1, ξ2)

)
= wj(ξ1) + ξ2b̃

j(ξ1) ·
(

(wj)′(ξ1)
ϑj(ξ1)

)
. (3.6)

We clearly have

zj(·, 0) = wj . (3.7)

Moreover, taking derivatives in (3.6) and using (3.5), we obtain

∇zj(Φj)T∇Φj =

(
(wj)′(ξ1) + ξ2(̃bj)′(ξ1) ·

(
(wj)′(ξ1)
ϑj(ξ1)

)
, b̃j(ξ1) ·

(
(wj)′(ξ1)
ϑj(ξ1)

))
=

(
(wj)′(ξ1)
ϑj(ξ1)

)T
∇Φj .

Since ∇Φj is invertible for small |ξ2|, we conclude that for small |ξ2| and all ξ1

∇zj
(
Φj(ξ1, ξ2)

)
=

(
(wj)′(ξ1)
ϑj(ξ1)

)
. (3.8)

Taking the derivative with respect to ξ2, we conclude that

∇2zj(Φj(ξ1, ξ2)) b̃j(ξ1) = 0.

In particular, the kernel is nontrivial, so det∇2zj = 0 on Sε. Since M j b̃j = 0, in particular we

have that (∇2zj(·, 0)−M j) b̃j = 0. But from (3.7) we see that

e1 ·
(
∇2zj(·, 0)−M j

)
e1 = ∂2

11z
j(·, 0)− (wj)′′ = 0.

Since e2 · b̃j 6= 0 and since (∇2zj(·, 0)−M j) is symmetric, we conclude that

∇2zj(·, 0) = M j . (3.9)

Finally, for ε small enough we define w̃jε : S → R by w̃jε(x1, x2) = zj(x1, εx2). From (3.7) it
follows immediately that w̃jε → wj strongly in L2(S), as ε→ 0. Moreover, since

∇εw̃jε(x) = ∇zj(x1, εx2),

equation (3.8) implies that ∇εw̃jε → ((wj)′, ϑj) strongly in W 1,2(S;R2), as ε → 0. In particular,
denoting by Fε ∈ R2 the average of ∇εw̃jε over S, we have

lim
ε→0

Fε =
1

`

ˆ
I

(
(wj)′

ϑj

)
(x1) dx1 = 0,
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by definition of wj and ϑj . Similarly, denoting by cε the average of w̃jε over S, we have cε → 0.
Hence the functions wjε : S → R defined by

wjε(x) := w̃jε(x)− Fε ·
(
x1

εx2

)
− cε,

still satisfy w̃jε → wj strongly in L2(S) and ∇εw̃jε → ((wj)′, ϑj) strongly in W 1,2(S;R2). Moreover,

wjε ∈W
2,2
〈0〉 (S) by definition of Fε and cε.

Finally, since
∇2
εw

j
ε(x) = ∇2

εw̃
j
ε(x) = ∇2zj(x1, εx2),

we have that wjε ∈ W
2,2
det,ε(S). By (3.9) we deduce that ∇2

εw
j
ε → M j strongly in L2(S;R2×2

sym), as
ε→ 0. Hence,

lim
ε→0

JCvKε (wjε) = lim
ε→0

1

24

ˆ
S

Q2(∇2
εw

j
ε(x)) dx =

1

24

ˆ
S

Q2(M j(x)) dx =
1

24
F(M j).

Therefore, by taking diagonal sequences we obtain the desired maps. �
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ONE-DIMENSIONAL VON KÁRMÁN MODELS FOR ELASTIC RIBBONS 13

[20] M. Sadowsky: Ein elementarer Beweis für die Existenz eines abwickelbaren Möbiuschen Bandes und die
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