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Abstract. By virtue of a suitable approximation argument, we prove a Pohožaev identity for
nonlinear nonlocal problems on RN involving the fractional p−Laplacian operator. Furthermore
we provide an application of the identity to show that some relevant levels of the energy functional
associated with the problem coincide.
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1. Introduction

1.1. Overview. In the seminal paper [17] Pohožaev discovered the celebrated identity

N

ˆ
Ω
F (u) dx = N − 2

2

ˆ
Ω
|∇u|2 dx+ 1

2

ˆ
∂Ω
x · ν

∣∣∣∣∂u∂ν
∣∣∣∣2 dHN−1,

which is valid for weak energy solutions of the semilinear elliptic problem
(1.1) −∆u = F ′(u), in Ω, u = 0, on ∂Ω.
As a major application of such an identity, he was able to get nonexistence of nontrivial solutions
of (1.1), when Ω ⊂ RN is a smooth bounded domain, star-shaped with respect to the origin and
F satisfies suitable assumptions.

The result in [17] stimulated further developments and extensions and a general variational
identity for Euler-Lagrange equations of functionals of the Calculus of Variations was eventually
formulated in 1986 by Pucci-Serrin [18]. Their results also included identities for systems, as
well as for higher order equations, such those involving the polyharmonic operator (−∆)m. They
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also covered both the case of bounded and unbounded domains. In the last case some results in
the half-space were previously obtained by Esteban-Lions in [10] in 1982.

The only drawback of the general formula obtained in [18] is that it was stated for solutions
of class C2, which is of course quite a serious restriction if one thinks about degenerate/singular
quasilinear problems such as

(1.2) −∆pu := div(|∇u|p−2∇u) = f(u).

Indeed, in this case the optimal regularity of solutions is known to be C1,α, see for example [8].
For this reason, the subsequent improvements were also focused on weakening the regularity
assumption of the solutions for the validity of Pohožaev-Pucci-Serrin type identities. In the one-
dimensional case this was done in [19], while for the particular case of equation (1.2) in a smooth
bounded domain, Guedda-Veron in 1989 proved the identity

N

ˆ
Ω
F (u) dx = N − p

p

ˆ
Ω
|∇u|p dx+ p− 1

p

ˆ
∂Ω
x · ν

∣∣∣∣∂u∂ν
∣∣∣∣p dHN−1,

for solutions u ∈ W 1,p
0 (Ω) ∩ L∞(Ω). The technique of [13] is essentially based upon a suitable

approximation of the problem with smoother problems on which the formula holds and then on
providing some a priori estimates in order to pass to the limit and get the desired identity.

Finally, in 2003 Degiovanni-Musesti-Squassina derived [9] a general Pohožaev identity for
C1 solutions to variationl equations

−div∇ξL (x, u,∇u) +DsL (x, u,∇u) = f, in Ω,

where the function ξ 7→ L (x, s, ξ) is strictly convex for each (x, s) ∈ Ω×R. This generalized the
identity of [18] by removing the C2 assumption on u and the C1 assumption on ∇ξL (excluding
e.g. the case of the p−Laplacian when 1 < p < 2) by imposing, instead, the natural assumption
of strict convexity of L (x, s, ·).

The great interest arisen in the recent years in the study of nonlocal problem, led researchers
to investigate some kind of nonlocal counterparts of the Pohožaev identities. Clearly, in this
framework, the main problem is the lack of (sufficiently) high regularity for the solutions and, for
bounded domains, the lack of regularity up to the boundary. In 2014, Ros-Oton-Serra proved
a boundary regularity result [23] for the solutions of (−∆)su = f , where (−∆)s is the fractional
Laplacian defined by

(−∆)su = F−1
(
|ξ|2 sF (u)

)
.

Here F denotes the Fourier transform on RN . Precisely, they proved that, if Ω ⊂ RN is a C1,1

domain and f : Ω→ R is bounded, then the ratio
u

dsΩ
, where dΩ(x) := dist(x, ∂Ω),

admits a continuous extension to Ω which is of class Cα, for some α ∈ (0, 1). By virtue of this
regularity result, in [20, Theorem 1.1] the same authors were able to prove that if f : R → R is
a locally Lipschitz function and u ∈ Hs

0(Ω) ∩ L∞(Ω) is a solution to (−∆)su = f(u), then the
following identity holds

(1.3) N

ˆ
Ω
F (u) dx = N − 2 s

2

ˆ
Ω

∣∣∣(−∆)s/2u
∣∣∣2 dx+ Γ(1 + s)2

2

ˆ
∂Ω
x · ν

(
u

dsΩ

)2

dHN−1.
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This can be used to get non-existence results in star-shaped domains for critical or supercritical
nonlinearities. In the critical, it should be noted that only positive solutions can be ruled out,
due to the current lack of unique continuation results up to the boundary.

In passing from semilinear to quasilinear nonlocal problems, the regularity issue becomes much
harder and for the fractional p−Laplacian operator (−∆p)s, formally defined by

(−∆p)su(x) = 2 lim
ε↘0

ˆ
RN\Bε(x)

|u(x)− u(y)|p−2 (u(x)− u(y))
|x− y|N+s p dy, x ∈ RN .

the boundary regularity for the solution of the problem (−∆p)su = f has been recently studied
by Iannizzotto-Mosconi-Squassina in [14], where it was proved that, if f ∈ L∞(Ω), then
u ∈ C0,α(Ω) for some α ∈ (0, s].

The further expected improvement, which would eventually open the doors to the possibility of
getting a quasilinear counterpart of (1.3) is to prove that, as in the linear case p = 2, u/dsΩ admits
a continuous extension to Ω which is of class Cα. This regularity result is currently missing, for
a more detailed discussion we refer the reader to the recent survey paper [16]. We mention that,
without a Pohožaev identity, in [21] a nonexistence result for (−∆p)su = f(u) for supercritical
nonlinearities was derived for bounded solutions which belong to W 1,r(Ω) for some r > 1. The
latter is a rather severe restriction (especially for very low values of s), although some progresses
in this direction were recently obtained in [4].

1.2. Main result. Recently, the interest in the study of spatial decay for the optimizers of the
fractional Sobolev embedding [5] has lead the authors to study the problem

(1.4) (−∆p)su = f(u) in RN .

It is thus natural to wonder wether bounded energy solutions of (1.4) satisfy a suitable Pohožaev
identity. This is indeed the case. In order to state the main result of the paper, we let

Ds,p(RN ) :=
{
u ∈ L

N p
N−s p (RN ) : ‖u‖pDs,p :=

ˆ
R2N

|u(x)− u(y)|p

|x− y|N+s p dx dy < +∞
}
.

Theorem 1.1 (Pohožaev identity on RN ). Let 1 < p < ∞, s ∈ (0, 1) be such that s p < N ,
f ∈ C0(R,R) and set F (t) =

´ t
0 f(τ) dτ . If u ∈ Ds,p(RN ) ∩ L∞(RN ) is a weak solution to (1.4),

namely
ˆ
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+p s dx dy =

ˆ
RN

f(u)ϕdx, ∀ ϕ ∈ C∞0 (RN ),

with the property F (u) ∈ L1(RN ), it holds

(1.5) N − s p
p

‖u‖pDs,p = N

ˆ
RN

F (u) dx.

A slight variant of the arguments proving the assertion of Theorem 1.1 yields a nonautonomous
version of the Pohožaev identity (1.5). See Remark 5.1 for more details.
We stress that the assertion of Theorem 1.1 is new also in the semi-linear case p = 2. In this case,
the formula was previously known but only for bounded weak solutions u ∈ Hs(Rn) (in particular,
u ∈ L2(RN )) to equation (1.4), see [11, Proposition 4.1]. Finally, the condition F (u) ∈ L1(RN ) is
often naturally verified for any weak energy solution, see Corollary 2.5 for some simple criteria.
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We now give an heuristic derivation of formula (1.5). Let E be the energy functional associated
with equation (1.4), that is

E(v) := 1
p
‖v‖pDs,p −

ˆ
RN

F (v) dx, v ∈ Ds,p(RN ).

If u is a solution of (1.4), then we have
(1.6) 〈dE(u), ϕ〉 = 0, for every ϕ ∈ Ds,p(RN ).
We now consider the family of rescaled functions ut(x) = u(x/t), then we formally get

d

dt
E (ut)

∣∣∣
t=1

= 〈dE(u),∇u · x〉.

If we suppose that ∇u · x is an admissible test function, from (1.6) one would obtain
〈dE(u),∇u · x〉 = 0.

On the other hand, by scaling we also have
d

dt
E(ut)

∣∣∣
t=1

= N − s p
p

tN−sp−1 ‖u‖pDs,p −N tN−1
ˆ
RN

F (u) dx
∣∣∣
t=1

= N − s p
p

‖u‖pDs,p −N
ˆ
RN

F (u) dx.

By joining the last three displays, one would eventually get the desired Pohozaev identity. Of
course, this argument assumes that ∇u · x ∈ Ds,p(RN ), which seems hardly true, both from the
regularity and from the summability point of view.

1.3. Sketch of proof. Let us spend some words on the proof of Theorem 1.1. The first step is
to freeze the term f(u) =: f and define regularizations fε in a sufficiently strong sense. Then we
approximate the equation dJ (u) = f (where J (v) = 1

p‖v‖
p
Ds,p) with entire elliptic problems of

the form dJε(uε) = fε, where

(1.7) Jε(v) = 1
p
‖v‖pDs,p + ε

1
2 ‖v‖

2
Ds,2 ,

and prove that uε → u in a sufficiently strong sense. Since there is no local integration by parts
formula which allow to reduce the global Pohǒzaev identity from a local one, this approximation
must be done globally in RN , forcing some decay properties for the test functions allowed in the
weak form of the equation.

We then prove a series of regularity statements on uε, ensuring that for any η ∈ C∞c (RN ), the
function η x · ∇uε is a viable test function for the weak form of dJε(uε) = fε.

Then we derive an approximate local form of the Pohǒzaev identity arising from the domain
perturbation Φt(x) = x+ tη(x)x. More precisely, we prove the validity of

(1.8) d

dt
Jε(uε ◦ Φt)

∣∣∣∣
t=0

= 〈dJε(uε), η x · ∇uε〉 =
ˆ
RN

fε∇uε · η x dx.

On the other hand, the energy Jε is a double integral of the form

Jε(v) =
ˆ
R2N

eε(x, y, v(x)− v(y)) dx dy

so that changing variable it holds

Jε(uε ◦ Φt) =
ˆ
R2N

eε(Φ−1
t (x),Φ−1

t (y), uε(x)− uε(y)) dΦ−1
t (x) dΦ−1

t (y).
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We then prove that the left hand side in (1.8) can be computed changing variables first, and then
differentiating in t, providing

d

dt
Jε(uε ◦ Φt)

∣∣∣∣
t=0

= Pε(uε, η)

for some expression Pε(uε, η) which represent a localized (through η) approximation (through ε)
of the left hand side of (1.5).

The corresponding identity is at this stage

Pε(uε, η) =
ˆ
RN

fε∇uε · η x dx,

and we proceed in letting ε → 0. Through some a-priori estimates it is readily seen that
Pε(uε, η) → P0(u, η). The difficulty is now to take the limit in the right hand side of the
identity, since the gradient term is going to blow-up as ε→ 0 (unless one assumes u ∈W 1,r

loc (RN )
as in [21]). To deal with it, we integrate by parts before passing to the limit, introducing an error
term. More precisely, we writeˆ

RN
fε∇uε · η x dx =

ˆ
RN

f(uε)∇uε · η x dx+ errε = −
ˆ
RN

F (uε)div(η x) dx+ errε,

where the error term can be estimated through

|errε| =
∣∣∣∣ˆ

RN
(fε − f(uε))∇uε · η x dx

∣∣∣∣ ≤ ‖(fε − f(uε))∇uε‖H−1,t‖η x‖H1,t′ ,

where H1,t′ denotes the Bessel potentials space. To conclude, we prove in the appendix the
following bilinear estimate, much in the spirit of the commutator estimate of Kato-Ponce:

‖h∇v‖H−1,t ≤ C‖h‖Lq‖v‖Lr ,
1
q

+ 1
r

= 1
t
< 1.

This implies, for suitable choices of q and r, that errε → 0 as ε → 0, and a final passage to the
limit η → 1 provides the asserted identity, as long as F (u) ∈ L1(RN ).

1.4. Structure of the paper. In section 2.1 we describe our functional analytic setting and
prove some auxiliary results. In section 2.2 we deal with some basic properties of energy solu-
tions with particular emphasis on the reaction term f(u). Section 2.3 collects some inequalities
involving the integrand of the approximating functional (1.7). In section 3 we construct the ap-
proximation fε and study the convergence of the corresponding family {uε}. Section 4 is devoted
to the regularity theory for uε, culminating in the viability of the test function η x · ∇uε. In
section 5 we prove Theorem 1.1 in a series of steps. Finally, we give some applications of the
Pohǒzaev identity in the last section. Namely, in section 6.1 we study various energy level of the
ground states for subcritical entire equations driven by the fractional p-Laplacian, while section
6.2 points out some non-existence results.

Acknowledgments. The authors are members of the Gruppo Nazionale per l’Analisi Matemat-
ica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica
(INdAM). Part of this manuscript was written during a visit of S.M. and L.B. at the University
of Verona in July 2016 and a subsequent meeting at the University of Cagliari in October 2016.
The organizers, hosting institutions and their facilities are gratefully acknowledged.
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2. Preliminaries

2.1. Notations and functional analytic setting. Given A ⊆ RN we set Ac = RN \A and let
χA be the characteristic function of A. For 1 ≤ q ≤ +∞ and a measurable function u : RN → R,
we set

‖u‖q = ‖u‖Lq(RN ).

If h ∈ RN \ {0} and ψ ∈ RN → R is a measurable function, we set
ψh(x) = ψ(x+ h) and δhψ = ψ(x+ h)− ψ(x).

In the case ψ : RN × RN → R, we use the same notation for
ψh(x, y) = ψ(x+ h, y + h) and δhψ = ψ(x+ h, y + h)− ψ(x, y).

On R2N we will consider the measure

dµ = dx dy

|x− y|N
.

Remark 2.1. It may be worth noting that the measure µ is not σ−finite on R2N . This can
cause some troubles in applying Fubini’s Theorem with respect to this measure, so that all the
integrals involving µ should be defined on R2N \ {(x, x) : x ∈ RN}, where µ is indeed σ−finite.
However, to ease the notation we will omit this technicality.

We moreover let
Dsu(x, y) = u(x)− u(y)

|x− y|s
, x 6= y.

It is easy to see that for every pair of measurable functions u, v we have the Leibniz-type rule

(2.1) Ds(u v)(x, y) = Dsu(x, y) v(x) + v(y)
2 + Dsv(x, y) u(x) + u(y)

2 .

For any 1 < p < +∞ and measurable u : RN → R, the quantity

‖u‖Ds,p =
(ˆ

R2N
|Dsu|p dµ

) 1
p

,

defines a uniformly convex norm on the reflexive Banach space

Ds,p(RN ) =
{
u ∈ Lp∗(RN ) : ‖u‖Ds,p < +∞

}
, with p∗ = N p

N − s p
.

The topological dual of Ds,p(RN ) will be denoted by D−s,p′(RN ) with, as usual, p′ = p/(p − 1).
We define

Sp,s = min
u∈Ds,p(RN )

{‖u‖pDs,p : ‖u‖p∗ = 1},

i.e. the sharp Sobolev constant for the continuous embedding Ds,p(RN ) ↪→ Lp
∗(RN ). We will

also use the following space

Ds,p0 (Ω) :=
{
u ∈ Ds,p(RN ) : u ≡ 0 in Ωc

}
,

for a general open set Ω ⊂ RN .
In Section 6 we will also need the Sobolev space

W s,p(RN ) := Ds,p(RN ) ∩ Lp(RN ),
equipped with the norm

‖u‖pW s,p = ‖u‖pp + ‖u‖pDs,p .



POHOŽAEV IDENTITY FOR QUASI-LINEAR NONLOCAL PROBLEMS 7

Notice that, as Ds,p(RN ) is reflexive and C∞0 (RN ) is strongly dense in Ds,p(RN ), the functionals

Ds,p(RN ) 3 u 7→
ˆ
RN

ϕudx,

form a dense subset of D−s,p′(RN ), which we will still denote by C∞0 (RN ).
The following result will be needed in the following.

Lemma 2.2. Let g ∈ C∞0 (RN ), then for every s ∈ (0, 1) and 1 < p <∞ we have

sup
|h|>0

∥∥∥∥δhekg

h

∥∥∥∥
D−s,p′

≤ ‖gxk‖D−s,p′ , k = 1, . . . , N,

for some C = C(N, s, p) > 0.

Proof. Let us fix k ∈ {1, . . . , N} and prove the first inequality. We have
δhekg(x)

h
=
ˆ 1

0
gxk(x+ t hek) dt,

thus by linearity we obtain for every ϕ ∈ Ds,p(RN )〈
δhekg(x)

h
, ϕ

〉
=
ˆ 1

0
〈gxk(x+ t hek), ϕ〉 dt

≤
(ˆ 1

0
‖gxk(·+ t hek)‖D−s,p′ dt

)
‖ϕ‖Ds,p .

By using the translation invariance of the dual norm and taking the supremum over ϕ 6= 0, we
get the conclusion. �

Finally, for a set Ω ⊂ RN we will also make use of the following spaces:

LpΩ(dµ) :=
{
K ∈ Lp(R2N , dµ) : supp(K) ⊆ (Ω× RN ) ∪ (RN × Ω)

}
.

It is readily checked that
u ∈ Ds,p0 (Ω) =⇒ Dsu ∈ LpΩ(dµ).

Moreover, LpΩ(dµ) is an L∞(R2N , dµ) module, in the sense that KH ∈ LpΩ(dµ) for any K ∈ LpΩ(dµ)
and H ∈ L∞(R2N , dµ).

A simple criterion to consider products with more general H is given in the following lemma.

Lemma 2.3. Let Ω ⊆ RN be bounded, K ∈ Lq
′

Ω(dµ) and H ∈ Lqloc(R2N , dµ) be such that

(2.2) H(x, y) ≤ K

|x− y|δ
, for some δ > 0 and |x− y| ≥M

Then KH ∈ L1(R2N , dµ) with
‖KH‖L1(R2N ,dµ) ≤ C‖K‖Lq′ (R2N ,dµ),

for some finite C depending only on q, Ω, δ, M , K and H.

Proof. Let R > 0 be such that Ω ⊆ BR and A = BR+M . Then the inequality in (2.2) holds for
any x ∈ Ω and y ∈ A. Using supp(KH) ⊆ (Ω× RN ) ∪ (RN × Ω), we split the integral over R2N

as follows ˆ
R2N
KH dµ =

ˆ
A×A
KH dµ+

ˆ
Ω×Ac

KH dµ+
ˆ
Ac×Ω

KH dµ,
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and apply Hölder’s inequality. This provides

‖KH‖L1(R2N ,dµ) ≤ ‖K‖Lq′ (R2N ,dµ)

(
‖H‖Lq(A×A,dµ) + ‖H‖Lq(Ω×Ac,dµ) + ‖H‖Lq(Ac×Ω,dµ)

)
.

The first norm involving H is finite by assumption, and since assuption (2.2) is symmetric in x
and y, it suffices to estimateˆ

Ω×Ac
|H|q dµ ≤ Kq

ˆ
BR

ˆ
BcR+M

dx dy

|x− y|N+q δ ≤ C(N, q, δ)Kq RN M−q δ,

which concludes the proof. �

2.2. Basic properties of energy solutions. As mentioned in the introduction, we are con-
cerned with bounded weak solutions to (1.4) in the sense that u ∈ Ds,p(RN ) ∩ L∞(RN ) and

(2.3)
ˆ
R2N
|Dsu|p−2DsuDsϕdµ =

ˆ
RN

f(u)ϕdx, ∀ϕ ∈ C∞0 (RN ).

Clearly then f(u) ∈ L1
loc(RN ) ∩ L∞(RN ) and Hölder’s inequality ensures∣∣∣∣ˆ
RN

f(u)ϕdx
∣∣∣∣ ≤ ‖u‖p−1

Ds,p‖ϕ‖Ds,p , ∀ϕ ∈ C∞0 (RN ),

so that f(u) actually extends to a unique element of D−s,p′(RN ), which we will still denote by
f(u). It is an old question (addressed for classical Sobolev spaces in [7]) whether f(u), as an
element of Ds,p(RN ), can be represented as the L2 multiplication by the function f(u), i.e. to
find conditions which ensures that for a suitable v ∈ Ds,p(RN ) it holds

f(u) v ∈ L1(RN ), 〈f(u), v〉 =
ˆ
RN

f(u) v dµ,

where by 〈·, ·〉 we denote the duality pairing between D−s,p′(RN ) and Ds,p(RN ).

Lemma 2.4. Let p > 1, s ∈ (0, 1), f ∈ L1
loc(RN ) ∩ D−s,p′(RN ). If v ∈ Ds,p(RN ) ∩ L∞(RN ) is

such that f v ≥ h for some h ∈ L1(RN ), then

f v ∈ L1(RN ), 〈f, v〉 =
ˆ
RN

f v dx.

Proof. We first observe that

〈f, ϕ〉 =
ˆ
RN

f ϕ dx for every ϕ ∈ Ds,p(RN ) ∩ L∞(RN ) with bounded support.

This follows by the density of C∞0 (BR) in Ds,p0 (BR)∩L∞(BR) and dominated convergence, for a
ball BR such that BR ⊇ Ω.

For the second statement notice that it suffices to prove it separately for v+ and v− since they
both satisfy f v± ≥ −|h| ∈ L1(RN ). Consider vn ∈ C∞0 (RN ) positive and such that

lim
n→∞

‖vn − v+‖Ds,p = 0 and lim
n→∞

‖vn − v+‖Lp(BR) = 0, for every BR ⊂ RN .

Finally, we define wn = min{vn, v+}. Since the map (a, b) 7→ min{a, b} is Lipschitz, we get that
wn ∈ Ds,p(RN ) and

|Dswn| ≤ |Dsvn|+ |Dsv+|.
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Clearly wn → v+ a.e. and 0 ≤ wn ≤ v+ for any n. Up to subsequence we can thus suppose that
wn ⇀ v+ in Ds,p(RN ), which implies

(2.4) 〈f, v+〉 = lim
n→∞

〈f, wn〉 = lim
n→∞

ˆ
RN

f wn dx.

Since

f(x)wn(x) ≥
{

0 if f(x) ≥ 0,
f(x) v+(x) if f(x) < 0,

it holds f wn ≥ −|h|, so that Fatou’s lemma ensures

−
ˆ
RN
|h| dx ≤

ˆ
RN

f v+ dx ≤ lim inf
n

ˆ
RN

f wn dx = 〈f, v+〉,

and thus f v+ ∈ L1(RN ). Finally, using |f wn| ≤ |f v+| and applying Dominated Convergence in
(2.4), we get the conclusion. The proof for v− is entirely analogous. �

Here we list some simple criteria ensuring that some of the assumptions in Theorem 1.1 can
be removed for non-oscillating nonlinearities.

Corollary 2.5. Let p > 1, s ∈ (0, 1), f ∈ C0(R,R) and u ∈ Ds,p(RN ) ∩ L∞(RN ) solve problem
(2.3).

(1) If f(t) t does not change sign in a neighborhood of 0 then f(u)u ∈ L1(RN ).

(2) If f is monotone in a neighborhood of 0, then F (u) ∈ L1(RN ).

Proof. We prove the two statement separately.
(1) Suppose without loss of generality that f(t) t ≥ 0 for |t| ≤ δ, where δ > 0. Then (u − δ)+
has support of finite measure by Chebyshev inequality. Since f(u) is bounded, it holds v1 :=
f(u) (u− δ)+ ∈ L1(RN ). Moreover

v2 := f(u) min{δ, u+} ≥ −|f(u)|uχ{u>δ},

so that by the previous Lemma, v2 ∈ L1(RN ). By observing that f(u)u+ = v1 + v2, the latter
belongs to L1(RN ). A similar argument shows that f(u)u− ∈ L1(RN ).
(2) Suppose without loss of generality that f is non-decreasing for |t| ≤ δ. We have two distinguish
two cases: either f(0) = 0 or f(0) 6= 0. In the first case, then for some 0 < δ′ ≤ δ, t 7→ f(t) t does
not change sign and the previous point gives f(u)u ∈ L1(RN ). Clearly F (u) ∈ L1({|u| ≥ δ′}) by
Chebyshev inequality and the boundedness of F (u). Finally on {|u| ≤ δ′} it holds 0 ≤ F (u) ≤
f(u)u ∈ L1(RN ), which proves the claim.

If f(0) 6= 0, then f does not change in a neighborhood of the origin. For simplicity, we can
assume that there exsist δ > 0 such that f(t) > 0 for |t| ≤ δ. By the same argument as before,
we get that f(u)u+ and f(u)u− both belong to L1(RN ). This in turn implies that u ∈ L1(RN ),
indeed ˆ

RN
|u| dx =

ˆ
{|u|>δ}

|u| dx+
ˆ
{|u|≤δ}

|u| dx

≤
ˆ
{|u|>δ}

|u| dx+ 1
f(0)

ˆ
{|u|≤δ}

f(u) |u| dx < +∞,

where we used the monotonicity of f . By observing that |F (u)| ≤ ‖f(u)‖∞ |u|, we get the desired
conclusion. �
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Remark 2.6. It is natural to expect that, as in the local case, there are no global bounded finite
energy solutions to (2.3) if f satisfies f(0) 6= 0. A proof of this fact, however, is still missing.

2.3. Approximating functional. The main tool to prove Theorem 1.1 will be a natural ap-
proximation procedure for the corresponding energy functional

E(u) = 1
p
‖u‖pDs,p −

ˆ
RN

F (u) dx.

We will employ the following uniformly elliptic regularization on the kinetic part, given by

u 7→
ˆ
R2N

Jε(Dsu) dµ,

where for ε ≥ 0

Jε(t) = |t|
p

p
+ ε
|t|2

2 .

We now prove some basic inequalities for the approximating integrand Jε which will ensure
regularity and well-posedness of the approximating procedure. The proof of the following result
is straightforward.

Lemma 2.7. Let ε > 0 and 1 < p < +∞, for every a, b ∈ R we have

(2.5)
(
J ′ε(a)− J ′ε(b)

)
(a− b) ≥ ε (a− b)2.

Lemma 2.8. For every a, b ∈ R and every g : R→ R Lipschitz non-decreasing function, we have

(2.6) J ′ε(a− b) (g(a)− g(b)) ≥ |G(a)−G(b)|p,

where

G(t) =
ˆ t

0

(
g′(τ)

) 1
p dτ.

Proof. We observe that
(a− b) (g(a)− g(b)) ≥ 0,

thanks to the monotonicity of g. Thus we obtain

J ′ε(a− b) (g(a)− g(b)) =
(
|a− b|p−2 + ε

)
(a− b) (g(a)− g(b))

≥ |a− b|p−2 (a− b) (g(a)− g(b)).

We can now apply [3, Lemma A.2] and get the conclusion. �

Lemma 2.9. Let ε > 0, 1 < p < +∞ and g : R→ R be a Lipschitz non-decreasing function. For
every a, b, c, d ∈ R and λ > 0, h 6= 0 we have

(2.7) 1
h

(
J ′ε

(
a− b
λ

)
− J ′ε

(
c− d
λ

)) g (a− c
h

)
− g

(
b− d
h

)
λ

≥ ε

∣∣∣∣∣∣∣∣
H

(
a− c
h

)
−H

(
b− d
h

)
λ

∣∣∣∣∣∣∣∣
2

,

where

H(t) =
ˆ t

0

√
g′(τ) dτ.
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Proof. We first prove (2.7) in the case h = 1. We observe that if a − b = c − d, then we have
a− c = b− d as well and the inequality is trivially true. Let us assume a− b 6= c− d, without loss
of generality we can assume a− b > c− d (which is equivalent to a− c > b− d). We then have(
J ′ε

(
a− b
λ

)
− J ′ε

(
c− d
λ

))
g(a− c)− g(b− d)

λ

=
J ′ε

(
a− b
λ

)
− J ′ε

(
c− d
λ

)
a− b
λ
− c− d

λ

(
a− c
λ
− b− d

λ

)
g(a− c)− g(b− d)

λ

≥ ε

λ2 (a− c− (b− d))
(
g(a− c)− g(b− d)

)
,

where we used (2.5). We now call X = a− c and Y = b− d, then it is sufficient to observe that
by Jensen’s inequality

(X − Y ) (g(X)− g(Y )) = (X − Y )2
 X

Y
g′(τ) dτ ≥

(ˆ X

Y

√
g′(τ) dτ

)2

= (H(X)−H(Y ))2.

This concludes the proof for h = 1.
For h = −1, we just need to observe that the left-hand side of (2.7) is(

J ′ε

(
c− d
λ

)
− J ′ε

(
a− b
λ

))
g (c− a)− g (d− b)

λ
,

and thus we are back to the previous case.
Finally, for a general h 6= 0 we have

1
h

(
J ′ε

(
a− b
λ

)
− J ′ε

(
c− d
λ

)) g (a− c
h

)
− g

(
b− d
h

)
λ

= 1
h2

J ′ε

a− b
h
λ/h

− J ′ε

c− d
h
λ/h


 g

(
a− c
h

)
− g

(
b− d
h

)
λ/h

,

and we conclude by using the first part of the proof with
a

h
,

b

h
,

c

h
,

d

h
and λ

h
.

This gives the desired conclusion. �

3. Existence for the approximating problem

For ε ∈ (0, 1] we now construct a family of functions {uε}ε which approximate the solution u
of (1.4). In what follows, we set

%ε(x) = 1
εN

%

(
x

ε

)
, x ∈ RN ,

where % is a standard compactly supported positive mollifier. In order to approximate the term
f(u) in the desired norms, we need the following technical result.
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Lemma 3.1. Let η ∈ C∞0 (B1) be a function such that
0 ≤ η ≤ 1, η ≡ 1 on B 1

2
, |∇η| ≤ C.

For every ε ∈ (0, 1], we define ηε(x) = η (ε x), for x ∈ RN . We then introduce the linear smoothing
operator

Tε : D−s,p′(RN ) → D−s,p′(RN )
Λ 7→ (Λ ηε) ∗ %ε,

defined by
〈Tε(Λ), v〉 := 〈Λ, ηε (v ∗ %ε)〉, for every v ∈ Ds,p(RN ).

Then Tε(Λ) ∈ C∞0 (RN ) for every Λ ∈ D−s,p′(RN ) and
(3.1) lim

ε↘0
‖Tε(Λ)− Λ‖D−s,p′ = 0.

Proof. The fact that Tε(Λ) ∈ C∞0 (RN ) is a standard fact in the theory of distributions, let us
prove (3.1).

We observe that {Tε}ε is an equi-bounded family of linear operators, indeed for every v ∈
Ds,p(RN ) with unit norm we get

|〈Tε(Λ), v〉| ≤ ‖Λ‖D−s,p′ ‖ηε (v ∗ %ε)‖Ds,p

= ε
s−N

p ‖Λ‖D−s,p′ ‖η (v 1
ε
∗ %ε2)‖Ds,p

≤ C εs−
N
p (‖η‖∞ + ‖∇η‖∞) ‖Λ‖D−s,p′ ‖v 1

ε
∗ %ε2‖Ds,p

≤ C ′ εs−
N
p (‖η‖∞ + ‖∇η‖∞) ‖Λ‖D−s,p ‖v 1

ε
‖Ds,p

≤ C ′ (‖η‖∞ + ‖∇η‖∞) ‖Λ‖D−s,p .
The first equality follows by scaling, the second inequality follows by [6, Lemma A.1], while
the third one follows from Young’s inequality for convolutions. In particular, from the previous
argument it follows that

‖Tε(Λ1)− Tε(Λ2)‖D−s,p′ ≤ C ‖Λ1 − Λ2‖D−s,p′ , for every Λ1,Λ2 ∈ D−s,p
′(RN ),

with C > 0 independent of ε > 0. By using this and recalling that C∞0 (RN ) is a dense subspace
of D−s,p′(RN ), in order to prove (3.1) it is thus sufficient to prove that

lim
ε→0
‖Tε (Λ)− Λ‖D−s,p′ = 0, for every Λ ∈ C∞0 (Ω).

To this aim, let us take Λ ∈ C∞0 (RN ), then we observe that Tε(Λ) can be written as an integral,
i.e.

〈Tε(Λ), v〉 =
ˆ
RN

Λ ηε (v ∗ %ε) dx =
ˆ
RN

(Λ ηε) ∗ %ε v dx,

by Lemma 2.4, since the term Λ ηε (v ∗%ε) is in L1(RN ). By using this writing and observing that
Λ ηε = Λ for ε sufficiently small, we get

‖Tε (Λ)− Λ‖D−s,p′ = sup
‖v‖Ds,p=1

〈Tε(Λ)− Λ, v〉 = sup
‖v‖Ds,p=1

ˆ
RN

[
(Λ ηε) ∗ %ε − Λ

]
v dx

= sup
‖v‖Ds,p=1

ˆ
RN

[
Λ ∗ %ε − Λ

]
v dx ≤ sup

‖v‖Ds,p=1
‖Λ ∗ %ε − Λ‖(p∗)′ ‖v‖p∗

≤ S
− 1
p

p,s ‖Λ ∗ %ε − Λ‖(p∗)′ → 0, as ε→ 0,
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where in the last inequality we used Sobolev inequality. This concludes the proof. �

Remark 3.2 (Approximation of f(u)). By recalling that f(u) ∈ L1
loc(RN )∩D−s,p′(RN ), in light

of the previous result in what follows we will take, by using the notation above,

fε = Tε(f(u)) =
(
(f(u)) ηε

)
∗ %ε,

(notice that the last equality holds true just by Fubini). Such an approximation has the following
properties

fε → f(u) strongly in D−s,p′(RN ),

sup
ε∈(0,1]

‖fε‖∞ ≤ C < +∞, and fε → f(u) in Lqloc(R
N ), for every q ≥ 1.

The first property follows from Lemma 3.1, while the last two properties follows from the fact
that u ∈ L∞(RN ) (thus the same is true for f(u)).

Proposition 3.3. Let ε ∈ (0, 1] and 1 < p < +∞. Then the minimization problem

(3.2) I := inf
v∈Ds,2(RN )∩Ds,p(RN )

{ˆ
R2N

Jε(Dsv) dµ−
ˆ
RN

fε v dx

}
,

admits a unique solution uε. Moreover, we have

(3.3)
ˆ
R2N

J ′ε(Dsuε)Dsϕdµ−
ˆ
RN

fε ϕdx = 0,

for every ϕ ∈ Ds,2(RN ) ∩ Ds,p(RN ).

Proof. We first observe that by definition of Jε, we immediately get

0 ≤
ˆ
R2N

Jε(Dsv) dµ = ε

2 ‖v‖
2
Ds,2 + 1

p
‖v‖pDs,p < +∞,

for every v ∈ Ds,2(RN ) ∩ Ds,p(RN ). Thus the functional is well-defined on this space. Moreover,
the functional is weakly coercive on Ds,2(RN ) ∩ Ds,p(RN ). Indeed, we haveˆ

R2N
Jε(Dsv) dµ−

ˆ
RN

fε v dx ≥
ε

2 ‖v‖
2
Ds,2 + 1

p
‖v‖pDs,p − ‖fε‖D−s,p′ ‖v‖Ds,p .

A standard use of Young’s inequality leads to

(3.4)
ˆ
R2N

Jε(Dsv) dµ−
ˆ
RN

fε v dx ≥
ε

2 ‖v‖
2
Ds,2 + c ‖v‖pDs,p −

1
c
‖fε‖p

′

D−s,p′ ,

for some c = c(p) > 0. The previous estimate implies that the infimum in (3.2) is finite and that
any minimizing sequence {vn}n∈N ⊂ Ds,2(RN ) ∩ Ds,p(RN ) is bounded. Thus we can infer weak
convergence (up to a subsequence) to a function uε ∈ Ds,2(RN )∩Ds,p(RN ). We also observe that
for every ball BR, we have

sup
n∈N
‖vn‖W s,p(BR) ≤ CR.

By exploiting the compactness of the embedding W s,p(BR) ↪→ Lp(BR), we have in particular (up
to a subsequence)

vn → uε, for a. e. x ∈ BR.
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In conclusion, by Fatou’s Lemma we getˆ
BR×BR

Jε(Dsuε) dµ−
ˆ
RN

fε uε dx ≤ lim inf
n→∞

ˆ
BR×BR

Jε(Dsvn) dµ−
ˆ
RN

fε vn dx

≤ lim inf
n→∞

ˆ
R2N

Jε(Dsvn) dµ−
ˆ
RN

fε vn dx = I.

By taking the limit as R goes to +∞ and using the Monotone Convergence Theorem, we finally
get that uε is the desired minimizer. Uniqueness of the minimizer is now a plain consequence of the
strict convexity of the functional. Finally, equation (3.3) is precisely the optimality condition. �

Proposition 3.4 (Convergence of minimizers). We have

lim
ε→0
‖uε − u‖Ds,p = 0.

Proof. We first observe that {uε}ε is bounded in Ds,p(RN ). Indeed, by testing the minimality of
uε against ϕ = 0 and using (3.4), we obtain

ε

2 ‖uε‖
2
Ds,2 + c ‖uε‖pDs,p −

1
c
‖fε‖p

′

D−s,p′ ≤ 0.

By using that fε is uniformly bounded in D−s,p′(RN ) by construction, we get the claimed bound.
We now need to identify the weak limit of {uε}ε. Let us call v ∈ Ds,p(RN ) such weak limit.

Since uε ⇀ v in Ds,p(RN ), Jε(uε) ≥ ‖uε‖Ds,p and fε → f(u) in D−s,p′(RN ), it holds
1
p
‖v‖pDs,p − 〈f(u), v〉 ≤ lim inf

ε→0

1
p
‖uε‖pDs,p − 〈f(u), uε〉

≤ lim inf
ε→0

ˆ
R2N

Jε(Dsuε) dµ−
ˆ
RN

fε uε dx.

Let us fix ϕ ∈ C∞0 (RN ). By the minimality of uε and the fact that fε → f(u) in L1
loc(RN ) we

obtain
1
p
‖v‖pDs,p − 〈f(u), v〉 ≤ lim inf

ε→0

ˆ
R2N

Jε(Dsϕ) dµ−
ˆ
RN

fε ϕdx

≤ 1
p
‖ϕ‖pDs,p − 〈f(u), ϕ〉.

By density of C∞0 (RN ) in Ds,p(RN ), the previous estimate implies that v minimizes the strictly
convex functional

ϕ 7→ 1
p
‖ϕ‖pDs,p − 〈f(u), ϕ〉,

on Ds,p(RN ). Since by assumption u is a critical point of the latter, the strict convexity forces
v = u. By weak convergence, we also have

(3.5) ‖u‖pDs,p ≤ lim inf
ε→0

‖uε‖pDs,p .

In order to improve the convergence, we observe that

〈f(u), u〉 = ‖u‖pDs,p ,

and
〈fε, uε〉 =

ˆ
R2N

J ′ε(Dsuε)Dsuε dµ ≥ ‖uε‖pDs,p .
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By the first part of the proof and the strong convergence of fε to f(u) in D−s,p′(RN ), we get
‖u‖pDs,p = 〈f(u), u〉 = lim

ε→0
〈fε, uε〉 ≥ lim sup

ε→0
‖uε‖pDs,p ,

which, together with (3.5), ensures the conclusion by uniform convexity of the norm. �

4. Regularity for the approximating problem

In this section we will prove some regularity estimates for the solution uε of (3.2). For ease of
notation, in the proofs we will drop the subscript ε and simply write u and f , in place of uε and
fε.

Proposition 4.1 (Boundedness). Let s ∈ (0, 1) and 1 < p < +∞, then we have uε ∈ L∞(RN ).
Moreover, it holds

‖uε‖∞ ≤ C ‖uε‖
p∗−p
p∗−1
p∗ ,

for some C = C(N, p, s, ‖f(u)‖∞) > 0.

Proof. For every M > 0, we set

gM (t) =
{

min{t,M}, if t ≥ 0,
0, if t < 0.

We then define
uM = gM ◦ u ∈ Ds,p(RN ) ∩ Ds,2(RN ) ∩ L∞(RN ).

We observe that for every β ≥ 1, the function uβM is an admissible test function in (3.3). Thus
we obtain ˆ

R2N
J ′ε(Dsu)DsuβM dµ ≤

ˆ
RN
|f |uβM dx.

We define

Gβ,M (t) = β
1
p

ˆ t

0
gM (τ)

β−1
p (g′M (τ))

1
p dτ = β

1
p

p

β + p− 1 gM (t)
β+p−1
p ,

then by (2.6) we get

β

(
p

β + p− 1

)p ˆ
R2N

∣∣∣∣Dsu
β+p−1
p

M

∣∣∣∣p dµ ≤ ˆ
RN
|f |uβM dx.

By Sobolev inequality, this in turn implies(ˆ
RN

u
p∗ β+p−1

p

M dx

) p
p∗

≤ 1
Sp,s β

(
β + p− 1

p

)p ˆ
RN
|f |uβM dx < +∞.

By using the uniform bound on |f | and β > 1 we obtain(ˆ
RN

u
p∗ β+p−1

p

M dx

) p
p∗

≤ C
p
p∗

(
p∗
β + p− 1

p

)p ˆ
RN

uβM dx,

for some C = C(N, p, s, ‖f(u)‖∞) ≥ 1. By setting

βn+1 = p∗

p
(βn + p− 1), β0 = p∗, σn = βn

βn + p− 1 < 1,

we obtain βn ↗ +∞ and

‖uM‖βn+1 ≤ C
1

βn+1 β
p∗

βn+1
n+1 ‖uM‖

σn
βn
.



16 L. BRASCO, S. MOSCONI, AND M. SQUASSINA

We can iterate this inequality and by using that σn < 1, we get for any n ≥ 1

‖uM‖βn+1 ≤ C

n+1∑
i=1

1
βi

(
n+1∏
i=1

β
1
βi
i

)p∗
‖uM‖

∏n

i=0 σi
p∗ .

Now βn can be determined explicitly: by setting γ = p∗/p > 1, this is

βn = γn β0 + (p− 1) γ
n+1 − γ
γ − 1 ,

so it holds
lim
n→∞

βn
γn

= β0 + (p− 1) γ

γ − 1 = p∗
p∗ − 1
p∗ − p

.

Therefore
+∞∑
i=1

1
βi
< +∞ and

+∞∏
i=1

β
1
βi
i < +∞,

and also

lim
n→∞

n∏
i=0

σi = lim
n→∞

n∏
i=0

γ
βi
βi+1

= lim
n→∞

γn+1 β0
βn+1

= p∗ − p
p∗ − 1 .

This provides the estimate

‖uM‖∞ ≤ C ‖uM‖
p∗−p
p∗−1
p∗ ,

for some C = C(N, p, s, ‖f‖∞) ≥ 1. We now let M go to +∞, which gives u+ ∈ L∞(RN ). By
repeating the argument above for1 u−, we can obtain u ∈ L∞(RN ). �

Proposition 4.2 (Higher differentiability). Let s ∈ (0, 1) and 1 < p < +∞, then we have
∇uε ∈ Ds,2(RN ) and

‖(uε)xk‖Ds,2 ≤
1
ε
‖(fε)xk‖D−s,2 , k = 1, . . . , N.

Proof. We need to differentiate the equation in a discrete sense. Let us fix k ∈ {1, . . . , N}
and take h 6= 0. We then consider equation (3.3) and plug-in the test function ϕ−hek , with
ϕ ∈ Ds,2(RN ) ∩ Ds,p(RN ). By changing variables, we thus getˆ

R2N
J ′ε(Dsuhek)Dsϕdµ−

ˆ
RN

fhek ϕdx = 0.

By subtracting (3.3) from this, we get

(4.1)
ˆ
R2N

δhek

(
J ′ε(Dsu)

)
Dsϕdµ−

ˆ
RN

δhekf ϕ dx = 0,

which holds true for every ϕ ∈ Ds,2(RN ) ∩ Ds,p(RN ). We now test the previous identity with
ϕ = δheku, which is admissible. We observe at first that

Ds(δheku) = u(x+ hek)− u(y + hek)− (u(x)− u(y))
|x− y|s

= δhek D
su,

thus we have ˆ
R2N

δhek

(
J ′ε(Dsu)

)
δhek D

su dµ−
ˆ
RN

δhekf δheku dx = 0.

1It is sufficient to test (3.3) with −gM (−u)β . Observe that t 7→ −gM (−t) is non-decreasing.
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We now observe that

δhek

(
J ′ε(Dsu)

)
δhek D

su =
(
J ′ε(Dsuhek)− J ′ε(Dsu)

)
(Dsuhek −Dsu),

thus we can use Lemma 2.7 with the choices

a = Dsuhek and b = Dsu.

This yields for every h 6= 0

ε

ˆ
R2N
|Ds(δheku)|2 dµ ≤

ˆ
RN
|δhekf | |δheku| dx

≤ ‖δhekf‖D−s,2 ‖δheku‖Ds,2 .

We can now absorb the last term, divide by |h|2 and use Lemma 2.2 to estimate the term
containing δhekf . This gives

(4.2)
∥∥∥∥δheku

h

∥∥∥∥
Ds,2
≤ 1
ε
‖fxk‖D−s,2 .

By using Sobolev inequality, we get in particular that

sup
|h|>0

∥∥∥∥δheku

h

∥∥∥∥
2∗
< +∞.

By the finite differences characterization of integer order Sobolev spaces, we get ∇u ∈ L2∗(RN ).
Moreover, there exists {hn}n∈N ⊂ R \ {0} converging to 0 such that

δhneku

hn
→ uxk strongly in L2∗(RN ).

We can thus pass to the limit in (4.2) by using Fatou’s Lemma and get the desired result. �

Proposition 4.3 (Lipschitz regularity). Let s ∈ (0, 1) and 1 < p < +∞, then we have

‖∇uε‖∞ ≤ C ‖∇uε‖
2∗−2
2∗−1
2∗ ,

for some C = C(ε,N, p, s, ‖∇fε‖∞) > 0 which blows-up as ε↘ 0.

Proof. For every M > 0, we still define

gM (t) =
{

min{t,M}, if t ≥ 0,
0, if t < 0.

Let us fix k ∈ {1, . . . , N} and take h 6= 0. We insert in (4.1) the test function

ϕ = gM

(
δheku

h

)β
, β ≥ 1,

which gives

ˆ
R2N

δhek

(
J ′ε(Dsu)

)
h

DsgM

(
δheku

h

)β
dµ =

ˆ
RN

δhekf

h
gM

(
δheku

h

)β
dx.
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We now observe that
δhek

(
J ′ε(Dsu)

)
h

DsgM

(
δheku

h

)β
= 1
h

(
J ′ε

(
uhek(x)− uhek(y)

|x− y|s
)
− J ′ε

(
u(x)− u(y)
|x− y|s

))

×
gM

(
uhek(x)− u(x)

h

)β
− gM

(
uhek(y)− u(y)

h

)β
|x− y|s

,

thus we can use Lemma 2.9 with the choices
a = uhek(x), c = u(x), b = uhek(y), d = u(y) and λ = |x− y|s.

We obtain
ε

ˆ
R2N

∣∣∣∣DsHβ,M

(
δheku

h

)∣∣∣∣2 dµ ≤ ˆ
RN
|δhekf |

∣∣∣∣∣gM
(
δheku

h

)β∣∣∣∣∣ dx,
where

Hβ,M (t) =
√
β

ˆ t

0
gM (τ)

β−1
2 (g′M (τ))

1
2 dτ = 2

√
β

β + 1 gM (t)
β+1

2 .

By Sobolev inequality in Ds,2(RN ), we obtain

S2,s ε

ˆ
RN

∣∣∣∣∣∣gM
(
δheku

h

)β+1
2

∣∣∣∣∣∣
2∗

dx


2

2∗

≤ (β + 1)2

4β

ˆ
RN

∣∣∣∣δhekf

h

∣∣∣∣
∣∣∣∣∣gM

(
δheku

h

)β∣∣∣∣∣ dx.
By using that ∇f ∈ L∞(RN ), we can proceed with a Moser’s iteration as for the L∞ estimate. �

Proposition 4.4. For any p > 1 and ε > 0 it holds
(4.3) J ′ε(Dsuε) ∈ L2

loc(R2N , dµ)
Moreover, if p ≥ 2 J ′ε(Dsuε) ∈ L2(R2N , dµ) while if 1 < p < 2 it holds

(4.4) |J ′ε(Dsuε)(x, y)| ≤ C(uε)
|x− y|s (p−1) , if |x− y| ≥ 1.

Proof. By Proposition 4.3 we have
(4.5) |Dsuε(x, y)| ≤ ‖∇uε‖∞|x− y|1−s

which, being |J ′(t)| ≤ ε|t|+ |t|p−1, yields
|J ′ε(Dsuε)(x, y)| ≤ ε ‖∇uε‖∞|x− y|1−s + ‖∇uε‖p−1

∞ |x− y|(p−1)(1−s)

proving (4.3) by a direct computation. Moreover, Propositions 4.1 gives

(4.6) |Dsuε(x, y)| ≤ |uε(x)|+ |uε(y)|
|x− y|s

≤ 2 ‖uε‖∞
|x− y|s

.

For p ∈ (1, 2) and |x− y| ≥ 1 it holds |x− y|−s ≤ |x− y|−s(p−1), hence (4.6) proves (4.4) through

|J ′ε(Dsuε)(x, y)| ≤ ε 2 ‖uε‖∞
|x− y|s

+ 2 ‖uε‖p−1
∞

|x− y|s(p−1) ≤ 2‖uε‖∞ + ‖uε‖p−1
∞

|x− y|s(p−1) .

Finally, using (4.5) for |x−y| ≤ 1 and (4.6) for |x−y| > 1 we obtain Dsuε ∈ L∞(R2N ). Therefore,
for p ≥ 2, it holds

|J ′ε(Dsuε)| ≤ ε |Dsuε|+ ‖Dsuε‖p−2
∞ |Dsuε|,

which implies J ′ε(Dsuε) ∈ L2(R2N , dµ) by Dsuε ∈ L2(R2N , dµ). �
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Corollary 4.5. Let ε > 0, s ∈ (0, 1), 1 < p < +∞ and Ω ⊂ RN be open and bounded. For any
K ∈ L2

Ω(dµ) it holds

(4.7) J ′ε(Dsuε)K ∈ L1(R2N , dµ).
Moreover, if p ≥ 2 equation (3.3) holds for every ϕ ∈ Ds,2(RN ) and if 1 < p < 2 it holds for any
ϕ ∈ Ds,20 (Ω).

Proof. For p ≥ 2, (4.7) directly follows from J ′ε(Dsuε) ∈ L2(R2N , dµ) and K ∈ L2(R2N , dµ).
For 1 < p < 2 we use (4.3) and (4.4) in conjunction with Lemma 2.3 to get (4.7) again. The
last statement for p ≥ 2 follows immediately from J ′ε(Dsuε) ∈ L2(R2N , dµ) and the density
of Ds,p(RN ) ∩ Ds,2(RN ) in Ds,2(RN ), while for p ∈ (1, 2), we simply observe that Ds,20 (Ω) ⊆
Ds,p(RN ) ∩ Ds,2(RN ) for any open bounded set Ω ⊂ RN .

�

5. Proof of the main result

In this section we proof Theorem 1.1, differentiating the energy functional under suitable
compactly supported perturbations of the domain. In order to do so, we will need to use a
particular version of the rule of derivation under the integral sign, whose statement is postponed
at the end of the proof (see Theorem 5.2 below).

For ease of readability, we divide the proof into various intermediate steps.
Step 1: construction of the perturbation. Let R > 1 and η ∈ C∞0 (RN ) be a positive cut-off
function, supported in BR. For |t| < δ < 1 (δ depending on η), the map defined by

x 7→ x+ t η(x)x =: x′ = Φt(x)
is a smooth diffeomorphism of RN which is uniformly bilipschitz for |t| < δ, i.e.

sup
|t|<δ

(
‖DΦt‖∞ + ‖DΦ−1

t ‖∞
)
< +∞.

Since ∂tΦt(x) = η(x)x and Φ0(x) = x = x′, it holds

∂tΦ−1
t (Φt(x)) +DΦ−1

t (Φt(x)) ∂tΦt(x) = 0,
so that

(5.1) ∂tΦ−1
t (x′) = −DΦ−1

t (x′) η(Φ−1
t (x′)) Φ−1

t (x′), ∂tΦ−1
t (x′)

∣∣∣
t=0

= −η(x′)x′.

Moreover, for any fixed x′, by the Jacobi formula we get

(5.2) ∂tdetDΦ−1
t (x′) = tr

(
D∂tΦ−1

t (x′)
)

and ∂tdetDΦ−1
t (x′)

∣∣∣
t=0

= −div(η(x′)x′).

We set
uε,t(x) = uε ◦ Φt(x) = uε(x+ t η(x)x),

and observe that changing variable x′ = Φt(x) it holds
ˆ
R2N

Jε(Dsuε,t) dµ =
ˆ
R2N

Jε

(
uε(x′)− uε(y′)

|Φ−1
t (x′)− Φ−1

t (y′)|s

)
detDΦ−1

t (x′) detDΦ−1
t (y′)

|Φ−1
t (x′)− Φ−1

t (y′)|N
dx′ dy′

which can be written as

(5.3)
ˆ
R2N

Jε(Dsuε,t) dµ =
ˆ
R2N

Jε (Kst Dsuε) HtKNt dµ
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where we set for x 6= y

Kt(x, y) = |x− y|
|Φ−1
t (x)− Φ−1

t (y)|
, Ht(x, y) = detDΦ−1

t (x) detDΦ−1
t (y).

Observe that, for |t| < δ,

(5.4) sup
|t|<δ
‖Kt‖∞ + sup

|t|<δ
‖Ht‖∞ < +∞

and for any (x, y) ∈ R2N the maps t 7→ Kt(x, y) and t 7→ Ht(x, y) are smooth. For future purposes
we compute

(5.5) ∂tKαt = −αKαt
Φ−1
t (x)− Φ−1

t (y)
|Φ−1
t (x)− Φ−1

t (y)|
∂tΦ−1

t (x)− ∂tΦ−1
t (y)

|Φ−1
t (x)− Φ−1

t (y)|
,

∂tHt = trD∂tΦ−1
t (x) detDΦ−1

t (y) + detDΦ−1
t (x) trD∂tΦ−1

t (y).

Hence, according to (5.1) and the bilipschitz character of Φt,

|∂tΦ−1
t (x)− ∂tΦ−1

t (y)|
|Φ−1
t (x)− Φ−1

t (y)|
≤ ‖DΦt‖∞Lip

(
DΦ−1

t η(Φ−1
t )Φ−1

t

)
≤ C(‖η‖C2) < +∞.

By (5.2) and (5.4), we infer that t 7→ ∂tKt and t 7→ ∂tHt are continuous for any (x, y) ∈ R2N and

(5.6) sup
|t|<δ
‖∂tKt‖∞ + ‖∂tHt‖∞ < +∞.

Step 2: differentiating under the integral sign. According to (5.3), our aim is to prove the
following chain of equalities for t = 0ˆ

R2N

d

dt
Jε(Dsuε,t) dµ = d

dt

ˆ
R2N

Jε(Dsuε,t) dµ

= d

dt

ˆ
R2N

Jε(KstDsuε)HtKNt dµ =
ˆ
R2N

d

dt

(
Jε(KstDsuε)HtKNt

)
dµ.

(5.7)

In order to do so, notice that uε is Lipschitz, so that the integrands above are all well defined. In
view of an application of Theorem 5.2 below, we claim that the maps

t 7→
ˆ
R2N

Jε(Dsuε,t) dµ =
ˆ
R2N

Jε(KstDsuε)HtKNt dµ,

t 7→
ˆ
R2N

d

dt
Jε(Dsuε,t) dµ,

t 7→
ˆ
R2N

d

dt

(
Jε(KstDsuε)HtKNt

)
dµ,

are well defined and continuous in |t| < δ. For the first map, changing variable x′ = Φt(x) we getˆ
R2N

Jε(Dsuε,t) dµ =
ˆ
R2N

Jε(Kst Dsuε)HtKNt dµ,

and by the smoothness of Kt and Ht and the bound (5.4), we immediately infer its continuity
through dominated convergence. For the second map, using the same change of variable as before
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we have ˆ
R2N

d

dt
Jε(Dsuε,t) dµ =

ˆ
R2N

J ′ε(Dsuε,t)Ds(η x∇uε ◦ Φt)dµ

=
ˆ
R2N

J ′ (Kst Dsuε)Ds
(
η ◦ Φ−1

t Φ−1
t ∇uε

)
Ks+Nt Ht dµ,

(5.8)

and the integrand is pointwise continuous in t, therefore it suffices to dominate it uniformly in
|t| < δ. Notice that for any λ ∈ R it holds

|J ′(λt)| = |λt|+ |λt|p−1 ≤ (|λ|+ |λ|p−1)|J ′(t)|,

therefore

(5.9) |J ′ε(KstDsuε)| ≤ (‖Kst‖∞ + ‖Ks(p−1)
t ‖∞)|J ′ε(Dsuε)|.

and using (5.4) it holds

|J ′ (Kst Dsuε)Ds
(
η ◦ Φ−1

t Φ−1
t ∇uε

)
Ks+Nt Ht| ≤ C|J ′(Dsuε)||Ds

(
η ◦ Φ−1

t Φ−1
t ∇uε

)
|

Notice that supp(η ◦ Φ−1
t ) ⊆ BR+1, hence the last factor is supported in A := (BR+1 × RN ) ∪

(RN ×BR+1). Using (2.1) as

|Ds
(
η ◦ Φ−1

t Φ−1
t ∇uε

)
| ≤ ‖∇uε‖∞

∣∣∣Ds
(
η ◦ Φ−1

t Φ−1
t

)∣∣∣+ ∥∥∥η(Φ−1
t ) Φ−1

t

∥∥∥
∞
|Dsuε|,

and using the bounds
sup
|t|<δ
‖η(Φ−1

t ) Φ−1
t ‖∞ = ‖η x‖∞ ≤ R

and

sup
|t|<δ

∣∣∣Ds
(
η ◦ Φ−1

t Φ−1
t

)
(x, y)

∣∣∣ ≤ C(η, δ) min
{
|x− y|−s, |x− y|1−s

}
∈ L2(R2N , dµ),

we thus obtained∣∣∣J ′ (Kst Dsuε)Ds
(
η ◦ Φ−1

t Φ−1
t ∇uε

)
Ks+Nt Ht

∣∣∣
≤ C |J ′(Duε)|χA

(
|Dsuε|+ min

{
|x− y|−s, |x− y|1−s

})
.

Corollary 4.5 ensures that the right hand side is in L1(R2N , dµ), which provides the claimed
continuity through dominated convergence.

For the third map, we computeˆ
R2N

d

dt

(
Jε(Kst Dsuε)HtKNt

)
dµ

=
ˆ
R2N

J ′ε (Kst Dsuε) ∂tKst DsuεHtKNt + Jε (Kst Dsuε) (∂tHtKNt +Ht ∂tKNt ) dµ.
(5.10)

The second term on the right-hand side is bounded through (5.4) and (5.6) by a multiple of
Jε(Dsuε), uniformly in |t| < δ. For the first term we proceed as before, noting first that by
inspection of (5.5) shows that supp (∂tKst ) ⊆ A. Therefore (5.9), (5.4) and (5.6) imply the bound

|J ′ε (Kst Dsuε) ∂tKst DsuεHtKNt | ≤ C |J ′ε(Dsuε)|χA |Dsuε|,

which is in L1(R2N , dµ) again by Corollary 4.5. Thus we conclude as before.
Therefore (5.7) is proved for |t| < δ and the right-hand sides of (5.8) and (5.10) are equal.
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Step 3: Pohožaev identity for the approximating problem. By computing them at t = 0
through (5.1) and (5.2), we thus haveˆ

R2N
J ′ε(Dsuε)Ds(η x∇uε)dµ = s

ˆ
R2N

J ′ε (Dsuε) Dsuε
x− y
|x− y|

· η(x)x− η(y) y
|x− y|

dµ

+
ˆ
R2N

Jε (Dsuε)
[
N
x− y
|x− y|

· η(x)x− η(y) y
|x− y|

− 2div(η x)
]
dµ.

Since η x∇uε is a feasible test function for (3.3), we obtained the identityˆ
RN

fε η x∇uε dx = s

ˆ
R2N

J ′ε (Dsuε) Dsuε
x− y
|x− y|

· η(x)x− η(y) y
|x− y|

dµ

+
ˆ
R2N

Jε (Dsuε)
[
N
x− y
|x− y|

· η(x)x− η(y) y
|x− y|

− 2 div(η x)
]
dµ.

(5.11)

Step 4: taking the limit. We now let ε go to 0 in the previpus equality, by starting with the
right-hand side. By Proposition 3.4, we have that Dsuε → Dsu strongly in Lp(R2N , dµ). Testing
(3.4) with uε, one gets

lim
ε→0

ε

ˆ
R2N
|Dsuε|2 dµ = lim

ε→0

[ˆ
RN

fε uε dx− ‖uε‖pDs,p
]

= 〈f(u), u〉 − ‖u‖pDs,p = 0,

therefore

(5.12)
√
ε uε → 0, in Ds,2(RN ).

Since

Jε(Dsuε)− J0(Dsu) = ε

2 |D
suε|2 + |D

suε|p

p
− |D

su|p

p
,

we obtain that Jε(Dsuε)→ J0(Dsu) strongly in L1(R2N , dµ). Moreover the functions

x− y
|x− y|

η(x)x− η(y) y
|x− y|

, div(η x),

are both bounded, thus we obtain

lim
ε→0

ˆ
R2N

Jε (Dsuε)
[
N
x− y
|x− y|

· η(x)x− η(y) y
|x− y|

− 2div(η x)
]
dµ

=
ˆ
R2N

|Dsu|p

p

[
N
x− y
|x− y|

· η(x)x− η(y) y
|x− y|

− 2div(η x)
]
dµ.

Similarly, using
J ′ε(Dsuε)Dsuε − |Dsu|p = ε |Dsuε|2 + |Dsuε|p − |Dsu|p,

we obtain through (5.12)

lim
ε→0

ˆ
R2N

J ′ε (Dsuε)Dsuε
x− y
|x− y|

· η(x)x− η(y) y
|x− y|

dµ =
ˆ
R2N
|Dsu|p x− y

|x− y|
· η(x)x− η(y) y

|x− y|
dµ.

Therefore the right-hand side in (5.11) converges to the corresponding quantity with ε = 0.
To compute the limit as ε↘ 0 of the left-hand side of (5.11), we split it asˆ

RN
fε η x∇uε dx =

ˆ
RN

(fε − f(uε)) η x∇uε dx+
ˆ
RN

f(uε) η x∇uε dx.
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Integrating by parts the last term we get

lim
ε→0

ˆ
RN

f(uε) η x∇uε dx = lim
ε→0

ˆ
RN
∇F (uε) η x dx

= − lim
ε→0

ˆ
RN

F (uε) div(η x) dx = −
ˆ
RN

F (u) div(η x) dx.
(5.13)

For the other term, observe that uε is uniformly bounded by Proposition 4.1 and f is continuous.
Since by Proposition 3.4 we have uε → u in Lp∗(RN ), then fε − f(uε)→ 0 in Lp

∗

loc(RN ). Indeed,
for every bounded set Ω ⊂ RN we have

‖fε − f(uε)‖Lp∗ (Ω) ≤ ‖fε − f(u)‖Lp∗ (Ω) + ‖f(u)− f(uε)‖Lp∗ (Ω),

and the first term converges to 0 thanks to Lemma 3.1, while for the second one we can use the
Dominated Convergence Theorem.

Since uε is bounded in Lp
∗(RN ) and uε ∈ W 1,∞(RN ) ⊆ W 1,p∗′

loc (RN ), Corollary A.2 applies
with r = q = p∗, ensuring that

lim
ε→0

ˆ
RN

(
fε − f(uε)

)
η x∇uε dx = 0.

Thus we proved that

lim
ε→0

ˆ
RN

fε η x∇uε dx = −
ˆ
RN

F (u) div(η x) dx.

By letting ε↘ 0 in (5.11), we obtain

−
ˆ
RN

F (u) div(η x) dx = s

ˆ
R2N
|Dsu|p x− y

|x− y|
η(x)x− η(y) y
|x− y|

dµ

+
ˆ
R2N

|Dsu|p

p

[
N

x− y
|x− y|

· η(x)x− η(y) y
|x− y|

− 2 div(η x)
]
dµ.

(5.14)

Step 5: conclusion. Finally, we take η of the form ηR(x) = ϕ(x/R), with ϕ ∈ C∞0 (B1) positive,
such that ϕ ≡ 1 in B1/2. Clearly∣∣∣∣ x− y|x− y|

· ηR(x)x− ηR(y) y
|x− y|

∣∣∣∣ ≤ ‖ϕ‖∞ + ‖∇ϕ‖∞,

and

|div(ηR x)| ≤
∣∣∣∣ 1
R
∇ϕ

(
x

R

)
· x
∣∣∣∣+ div(x)

∣∣∣∣ϕ( xR
)∣∣∣∣ ≤ (1 +N) (‖ϕ‖∞ + ‖∇ϕ‖∞) .

Moreover, for any (x, y) ∈ R2N

x− y
|x− y|

· ηR(x)x− ηR(y) y
|x− y|

→ 1, div(ηR x)→ N,

as R → +∞. Hence, by the Dominated Convergence Theorem, we can let R → +∞ into (5.14)
with η = ηR to obtain the desired identity (1.5). �

Remark 5.1. In the non-autonomous case f = f(x, u) the proof above provides a general
version of the Pohožaev identity when f(x, t) and DxF (x, t) are Carathéodory and both F (u)
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and x ·DxF (x, u) belong to L1(RN ). Indeed, it suffices to substitute (5.13) withˆ
RN

f(x, uε) η x∇uε dx =
ˆ
RN
∇F (x, uε) η x dx−

ˆ
RN

DxF (x, uε) η x dx

= −
ˆ
RN

F (x, uε) div(η x) dx−
ˆ
RN

DxF (x, uε) η x dx,

and proceed as before. Under the previous assumptions one therefore gets the Pohožaev identity

(5.15) N − s p
p

‖u‖pDs,p = N

ˆ
RN

F (x, u) dx+
ˆ
RN

x ·DxF (x, u) dx.

In the proof above we needed the following result.

Theorem 5.2. Let I ⊆ R be a closed bounded interval, (X,µ) be a σ-finite measure space and
G : I ×X → R e measurable function. Suppose that

(1) For any x ∈ X the function t 7→ G(t, x) is absolutely continuous with derivative ∂tG(t, x) ∈
L1(I) and ∂tG : I ×X → R is measurable.

(2) The maps

I 3 t 7→
ˆ
X
|G(t, x)| dµ, I 3 t 7→

ˆ
X
|∂tG(t, x)| dµ

are continuous.
Then t 7→

´
X G(t, x) dµ is differentiable in I and

d

dt

ˆ
X
G(t, x) dµ =

ˆ
X
∂tG(t, x) dµ.

Proof. By the continuity hypthesis and Fubini’s Theorem G and ∂tG belong to L1(I ×X). Ap-
plying again Fubini’s Theorem, for any ϕ ∈ C∞0 (R) it holdsˆ

R

[ˆ
X
G(t, x) dµ

]
ϕ′(t) dt =

ˆ
X×R

G(t, x)ϕ′(t) dµ dt =
ˆ
X

ˆ
R
G(t, x)ϕ′(t) dt dµ

= −
ˆ
X

ˆ
R
∂tG(t, x)ϕ(t) dt dµ = −

ˆ
R

[ˆ
X
∂tG(t, x) dµ

]
ϕ(t) dt.

Therefore the distributional derivative of t 7→
´
X G(t, x) dµ coincides with the continuous function

t 7→
´
X ∂tG(t, x) dµ. Applying [22, II.5, Theorem V] we obtain the claim. �

6. Applications

In this section, we consider some applications of our main result.

6.1. Least energy characterizations. Let f ∈ C0(R,R) and let us set

F (t) =
ˆ t

0
f(τ) dτ, t ∈ R.

We assume that, for some ` < 0,

(6.1) lim
t→0

f(t)
|t|p−2 t

= ` and lim
|t|→+∞

f(t)
|t|p∗−1 = 0.

This implies in particular that for every δ > 0 we have
(6.2) |f(t)| ≤ Cδ |t|p−1 + δ |t|p∗−1, t ∈ R,
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for some Cδ = Cδ(`, p, f) > 1 which may blow-up as δ ↘ 0. For later reference, we also record
the following estimate

f(t) ≤ (`+ δ) |t|p−1 + Cδ |t|p
∗−1, t ∈ R,

which follows from the conditions on f . Correspondigly, we get

(6.3) |F (t)| ≤ Cδ
|t|p

p
+ δ
|t|p∗

p∗
, t ∈ R,

and

(6.4) F (t) ≤ (`+ δ) |t|
p

p
+ Cδ

|t|p∗

p∗
, t ∈ R.

Thus from (6.3) we get F (u) ∈ L1(RN ) for any u ∈W s,p(RN ). The functional E : W s,p(RN )→ R
given by

E(u) := 1
p
‖u‖pDs,p −

ˆ
RN

F (u) dx,

is the energy functional associated with problem
(6.5) (−∆p)su = f(u) in RN .
It is readily checked that under the previous growth assumptions on f , E is of class C1.

Lemma 6.1 (Pohožaev identity). Let u ∈ W s,p(RN ) be any nontrivial weak solution to (6.5)
under assumption (6.2). Then

(6.6) u ∈ P :=
{
u ∈W s,p(RN ) \ {0} : N − s p

p
‖u‖pDs,p −N

ˆ
RN

F (u) dx = 0
}
.

Proof. By Theorem 1.1, it suffices to show that any weak solution to (6.5) under the growth
assumptions (6.2) is bounded. For k > 0 and t ∈ R, we set

|t|k = min{k, |t|}.
For any α > 0 we test the equation with v = u |u|αk ∈W s,p(RN ). From the growth condition (6.2)
we readily get f(u) v ∈ L1(RN ), so that Lemma 2.4 is in force. We set g(t) = t |t|αk and observe
that

G(t) =
ˆ t

0

(
g′(τ)

) 1
p dτ ≥ p

p+ α
t |t|

α
p

k .

By testing the equation with ϕ = g(u) and then applying (2.6), we obtain

‖G(u)‖pDs,p ≤
ˆ
R2N
|Dsu|p−2 DsuDsv dµ =

ˆ
RN

f(u) g(u) dx.

Using Sobolev inequality on the left-hand side and (6.2) on the right, we get

(6.7)
∥∥∥∥u |u|αpk ∥∥∥∥p

p∗
≤ 1
Sp,s

(
p+ α

p

)p ˆ
RN

[
|u|p |u|αk + |u|p∗ |u|αk

]
dx.

We now introduce the sequence of exponents

α0 = p∗ − p, αi+1 = p∗

p
αi, i ∈ N.

For every i ∈ N, we also choose Mi > 0 such that

1
Sp,s

(
p+ αi
p

)p (ˆ
{|u|≥Mi}

|u|p∗ dx
)1− p

p∗

<
1
2 .



26 L. BRASCO, S. MOSCONI, AND M. SQUASSINA

By Hölder’s inequality, for every i ∈ N we haveˆ
RN
|u|p∗ |u|αik dx ≤Mαi

i

ˆ
{|u|<Mi}

|u|p∗ dx

+
(ˆ
{|u|≥Mi}

|u|p∗ dx
)1− p

p∗
(ˆ
{|u|≥M}

|u|p∗ |u|
p∗
p
αi

k dx

) p
p∗

.

By using this in (6.7) and absorbing the last term (this is possible thanks to the choice of Mi),
we obtain

1
2

∥∥∥∥u |u|αipk ∥∥∥∥p
p∗
≤ 1
Sp,s

(
p+ αi
p

)p [ˆ
RN
|u|p |u|αik +Mαi

i

ˆ
RN
|u|p∗ dx

]
.

We can now use the estimate to prove that

u ∈ Lp∗+αi(RN ) =⇒ u ∈ Lp∗+αi+1(RN ), for every i ∈ N.

By starting from i = 0 and iterating infinitely many times the previous scheme, we thus obtain
at first u ∈ Lq(RN ), for every p ≤ q < +∞.

We now want to enforce this information into u ∈ L∞(RN ). To this aim, we take α > 0 and
define

γ =
√
p∗

p
, qα = p∗

α
+ γ,

then by Hölder’s inequalityˆ
RN

[
|u|p+α + |u|p∗+α

]
dx ≤

∥∥∥|u|p + |u|p∗
∥∥∥
q′α

∥∥∥|u|α∥∥∥
qα
.

Observe that the first term on the right-hand side is uniformly bounded: indeed, by observing
that

1 < q′α < γ′,

by Lebesgue interpolation and Young’s inequality∥∥∥|u|p + |u|p∗
∥∥∥
q′α
≤
∥∥∥|u|p + |u|p∗

∥∥∥ϑα
1

∥∥∥|u|p + |u|p∗
∥∥∥1−ϑα

γ′

≤
∥∥∥|u|p + |u|p∗

∥∥∥
1

+
∥∥∥|u|p + |u|p∗

∥∥∥
γ′

=: Y,

for suitable ϑα ∈ (0, 1) determined by scale invariance. Observe that Y < +∞ by the first part
of the proof.

By taking the limit as k goes to +∞ in (6.7) and using the previous estimate, we obtain∥∥∥|u|1+α
p

∥∥∥p
p∗
≤ Y

Sp,s

(
p+ α

p

)p ∥∥∥|u|α∥∥∥
qα
.

By recalling the definitions of γ and qα, this estimate can be rewritten as(ˆ
RN
|u|p∗+γ2α dx

) 1
p∗+γ2α

≤
(
Y

Sp,s

) 1
p+α (p+ α

p

) p
p+α

(ˆ
RN
|u|p∗+γα dx

) 1
p∗+γα

α
p+α

.

A standard iteration for αi = γi now provides the desired L∞ estimate. �

The following is a modification of [2]. Notice that in our setting we are not assuming symmetry
conditions on f and a Radial Lemma of Strauss–type does not hold in general for s ∈ (0, 1).
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Lemma 6.2 (Solvability). Let us suppose that (6.1) hold. If

(6.8) S :=
{
u ∈W s,p(RN ) :

ˆ
RN

F (u) dx = 1
}
6= ∅,

then there exists a nontrivial solution to (6.5).

Proof. By proceeding as in [2], the solution will be a suitable rescaling of a minimizer of the
constrained problem
(6.9) E := inf

u∈S
E(u).

Indeed, observe that if w is such a minimizer, then it is a weak solution of
(−∆p)sw = λ f(w).

We first observe that λ 6= 0, indeed if one would have λ = 0, then from the equation we would get
w ≡ 0 which does not verify the constraint (recall that F (0) = 0). Moreover, by using Lemma
6.1, it is not difficult to see that λ > 0. More precisely, we have

(6.10) N − s p
N p

‖w‖pDs,p = λ

ˆ
RN

F (w) dx = λ.

Then a solution of (6.5) is obtained by taking the rescaled function x 7→ w(λ−1/s p x).
To solve the minimization problem (6.9), consider a minimizing sequence {un}n∈N ⊂ S. We

will construct another minimizing sequence {wn}n∈N ⊂ S which is radially monotone. For any
n ∈ N,

1 =
ˆ
RN

F (u+
n ) dx+

ˆ
RN

F (−u−n ) =: I+
n + I−n .

Suppose that I−n ≤ 0. Then I+
n ≥ 1 and we let

(6.11) v+
n (x) := u+

n

(
(I+
n )1/Nx

)
.

By scaling it holds v+
n ∈ S and

‖v+
n ‖

p
Ds,p = (I+

n )−
N−s p
N ‖u+

n ‖
p
Ds,p ≤ ‖un‖

p
Ds,p .

If I+
n ≤ 0, we proceed similarly.
Suppose then that 0 < I±n < 1 for all n ≥ n0, and let v±n be defined as in (6.11). By [12, Remark

3.3], we know that

‖z+‖pDs,p + ‖z−‖pDs,p ≤ ‖z‖
p
Ds,p , for all z ∈ Ds,p.

It follows by scaling that
‖un‖pDs,p ≥ ‖u

+
n ‖

p
Ds,p + ‖u−n ‖

p
Ds,p

≥ (I+
n )

N−s p
N ‖v+

n ‖
p
Ds,p + (I−n )

N−s p
N ‖v−n ‖

p
Ds,p

≥
(
(I+
n )

N−s p
N + (I−n )

N−s p
N

)
min

{
‖v+
n ‖

p
Ds,p , ‖v

−
n ‖

p
Ds,p

}
≥
(
I+
n + I−n

)N−s p
N min

{
‖v+
n ‖

p
Ds,p , ‖v

−
n ‖

p
Ds,p

}
.

By recalling that I+
n +I−n = 1, up to a subsequence, either {v+

n } or {−v−n } is minimizing. Suppose
without loss of generality that {v+

n } is minimizing and let wn = (v+
n )∗ be its radially symmetric

decreasing rearrangement. By Pólya-Szegő principle (see [1, Theorem 9.2]), {wn}n∈N ⊂ S is still
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minimizing and we can suppose that wn converges to w ∈ Ds,p(RN ), weakly in Ds,p(RN ) and
almost everywhere. Observe that by lower semicontinuity, we have

(6.12) ‖w‖pDs,p ≤ E + 1.

Proceeding as in [2] provides a uniform bound on ‖wn‖p, so that ‖wn‖q is bounded for any
p ≤ q ≤ p∗. If F = F+ − F−, then using (6.1) we have

lim
t→0+

F+(t)
tp + tp∗

= lim
t→+∞

F+(t)
tp + tp∗

= 0.

Moreover by [5, Lemma 2.9] with ϑ = p, we have the decay estimate 0 ≤ wn(x) ≤ C|x|−N/p for
some C > 0 independent on n. Therefore [2, Theorem A.I] applies, giving

lim
n→∞

ˆ
RN

F+(wn) dx =
ˆ
RN

F+(w) dx,

while by Fatou’s Lemmaˆ
RN

F−(w) dx ≤ lim inf
n→∞

ˆ
RN

F−(wn) dx

= lim inf
n→∞

ˆ
RN

F+(wn) dx− 1 =
ˆ
RN

F+(w) dx− 1,

that is
I :=

ˆ
RN

F (w) dx ≥ 1.

In order to conclude, we just need to show that I = 1. Let us assume that I > 1, then we define
as above

w̃(x) = w
(
I

1
N x

)
.

We have w̃ ∈ S and
E + 1 ≤ ‖w̃‖pDs,p = I−

N−s p
N ‖w‖pDs,p < E + 1,

where in the second inequality we used (6.12) and I > 1. This gives a contradiction, thus I = 1
and w is the desired minimizer. �

We have the following result, which was first obtained in the semilinear local case in [15].

Theorem 6.3 (Energy characterization). Suppose (6.2) holds. We define the following energetic
levels:

• Mountain-Pass value
c := inf

γ∈Γ
sup
t∈[0,1]

E(γ(t)),

where
Γ :=

{
γ ∈ C([0, 1],W s,p(RN )) : γ(0) = 0, E(γ(1)) < 0

}
;

• least energy of solutions

m := inf
{
E(u) : u ∈W s,p(RN ) \ {0} is a weak solution to (6.5)

}
;

• Pohožaev value
p := inf

u∈P
E(u),

where P is defined in (6.6);
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• ground state value

s := s

N

(
N − s p
N p

)N−s p
s p

inf
u∈S
‖u‖N/sDs,p ,

where S is defined in (6.8).
Then

c = m = p = s.

Proof. We shall divide the proof into five steps.
Step 1: c ≤ m. Let u ∈ W s,p(RN ) be any nontrivial solution of (6.5) and consider the curve
γ ∈ C([0,∞);W s,p(RN )) defined by

γ(t)(x) :=

u
(
x

t

)
for t > 0,

0 for t = 0.

Then, we have

(6.13) E(γ(t)) = 1
p
‖γ(t)‖pDs,p −

ˆ
RN

F (γ(t)) dx = tN−s p

p
‖u‖pDs,p − t

N

ˆ
RN

F (u) dx.

Since u ∈ P by Lemma 6.1, we have ˆ
RN

F (u) dx > 0.

Notice that
d

dt
E(γ(t)) = N − s p

p
tN−sp−1 ‖u‖pDs,p −N tN−1

ˆ
RN

F (u) dx,

thus t 7→ E(γ(t)) is increasing for

t ≤
N

ˆ
RN

F (u) dx

N − s p
p

‖u‖pDs,p
= 1,

and decreasing otherwise. Hence, we have

max
t≥0
E(γ(t)) = E(γ(1)) = E(u).

Observe that t 7→ E(γ(t)) diverges to −∞ as t goes to +∞, thus there exists µ > 1 such that

E(γ(µ)) = µN−s p

p
‖u‖pDs,p − µ

N

ˆ
RN

F (u)dx < 0.

We consider the rescaled curve γ̃ ∈ C([0, 1];W s,p(RN )) defined by

γ̃(t)(x) := γ(µ t)(x), t ∈ [0, 1], x ∈ RN .

Then, we have γ̃(0) = 0 and E(γ̃(1)) < 0, which yields γ̃ ∈ Γ. Therefore, we have

c ≤ max
t∈[0,1]

E(γ̃(t)) = max
t∈[0,µ]

E(γ(t)) = E(γ(1)) = E(u).

Taking the infimum over all the nontrivial solutions u to (6.1), we get c ≤ m.
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Step 2: γ([0, 1]) ∩ P 6= ∅ for all γ ∈ Γ. Consider the Pohožaev functional

P(u) := N − s p
p

‖u‖pDs,p −N
ˆ
RN

F (u) dx.

We first prove that there exists ρ > 0 such that, if 0 < ‖u‖W s,p ≤ ρ, then E(u) > 0. Taking into
account the growth conditions (6.4) we obtain

P(u) = N − s p
p

‖u‖pDs,p −N
ˆ
RN

F (u)dx

≥ N − sp
p
‖u‖pDs,p + N (−`− δ)

p

ˆ
RN
|u|pdx− Cδ

ˆ
RN
|u|p∗ dx

≥ C ‖u‖pW s,p − C` ‖u‖p
∗

W s,p ,

by choosing δ = −`/2 > 0. The previous computation show that we can choose ρ > 0 small
enough, so that P(u) > 0 if 0 < ‖u‖W s,p ≤ ρ. Observe now that

P(u) = N E(u)− s ‖u‖pDs,p .
If γ ∈ Γ, we have

P(γ(0)) = 0 and P(γ(1)) ≤ NE(γ(1)) < 0.
From the previous discussion and the last property, we have ‖γ(1)‖W s,p > ρ. We define

t0 = sup{t ∈ [0, 1] : ‖γ(t)‖W s,p ≤ ρ}.
By continuity of t 7→ ‖γ(t)‖W s,p , we have 0 < t0 < 1. Moreover, by the definition of t0

‖γ(t0)‖W s,p = ρ and ‖γ(t)‖W s,p ≥ ρ, for t0 ≤ t ≤ 1.
Then by continuity of t 7→P(γ(t)), there exists t0 < t1 < 1 such that

‖γ(t1)‖W s,p ≥ ρ and P(γ(t1)) = 0.
This means γ(t1) ∈ P.
Step 3: p = s. The function Φ : S → P defined by

Φ(u)(x) := u

(
x

tu

)
, tu :=

(
N − s p
N p

)1/s p
‖u‖1/sDs,p .

establishes a bijective correspondence between S and P. This implies
p = min

u∈P
E(u) = min

u∈S
E(Φ(u)).

Moreover, by (6.13), for any u ∈ S it holds

E(Φ(u)) = s

N

(
N − s p
N p

)(N−s p)/sp
‖u‖N/sDs,p .

From the previous discussion we directly get p = s, by recalling the definition of s.
Step 4: m = p = s. We can suppose that S 6= ∅ (otherwise the claim is trivial). Then Lemma
6.2 shows that (6.5) has at least a solution. Moreover, by Lemma 6.1 we get that any solution to
(6.5) belongs to P. This implies that

m ≥ p.

We now take a minimizer w ∈ S for the problem
min
u∈S
E(u).
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As observed in the proof of Lemma 6.2, there exists λ > 0 such that wλ(x) = w(λ−1/s p x) is a
solution of (6.5). We then have

m ≤ E(wλ) = λ
N
s p
−1

p
‖w‖pDs,p − λ

N
s p

ˆ
RN

F (w) dx

= λ
N
s p

(
‖w‖pDs,p
p λ

− 1
)

=
(
N − s p
N p

) N
s p

‖w‖N/sDs,p
s p

N − s p
,

where we used the relation (6.10) between the norm of w and λ. By recalling the definition of s
and using Step 3, we thus obtain

m ≤ s = p.

Step 5: conclusion. By Step 1, we know that c ≤ m. Now, given γ ∈ Γ, by virtue of Step 2
there exists t1 ∈ (0, 1) such that γ(t1) ∈ P. In turn, by exploiting Step 4, we get

m = p ≤ E(γ(t1)) ≤ max
t∈[0,1]

E(γ(t)).

Hence, by the arbitrariness of γ, we conclude m ≤ c. This concludes the proof. �

6.2. Nonexistence results. From Theorem 1.1, we get the following

Corollary 6.4 (Nonexistence for power nonlinearities). Let q > 1 be such that q 6= p∗. Then

(−∆p)su = |u|q−2u, in RN ,

admits no nontrivial solution u ∈ Ds,p(RN ) ∩ L∞(RN ) ∩ Lq(RN ).

Proof. We have f(t) = |t|q−2 t and by hypothesis f(u)u ∈ L1(RN ). Thus by testing the equation
with u itself we get

‖u‖pDs,p =
ˆ
RN
|u|q dx.

On the other hand, by observing that F (t) = |t|q/q, from Theorem 1.1 we get
N − s p
N p

‖u‖pDs,p = 1
q

ˆ
RN
|u|q dx.

By comparing the last two displays, we eventually get the conclusion. �

More generally, under the assumption of the previous Section, we have the following

Proposition 6.5 (Nonexistence). Let f : RN × R → R be a Caratheodory function such that
f(·, t) is of class C1 for all t ∈ R and let F (x, t) =

´ t
0 f(x, τ) dτ . Moreover, suppose that

G(x, t) = N F (x, t) + x ·DxF (x, t)− N − s p
p

f(x, t) t ≤ 0,

and for any x ∈ RN it vanishes at t = 0 only. Then the equation

(6.14) (−∆p)su = f(x, u), in RN ,

admits no nontrivial weak solution u ∈ Ds,p(RN ) ∩ L∞(RN ) such that F (x, u) and x ·DxF (x, u)
are in L1(RN ).
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Proof. By hypothesis on G, the function f(x, u)u is bounded from below by an L1(RN ) function,
which implies by Lemma 2.4 that f(x, u)u ∈ L1(RN ). Testing equation (6.14) with u yields,
again through Lemma 2.4

‖u‖pDs,p = 〈f(·, u), u〉 =
ˆ
RN

f(x, u)u dx.

This, combined with the Pohožaev identity (5.15), yieldsˆ
RN
H(x, u) dx = N

ˆ
RN

F (x, u) dx+
ˆ
RN

x ·DxF (x, u) dx− N − s p
p

ˆ
RN

f(x, u)u dx = 0.

By assumption, this implies u = 0 almost everywhere, concluding the proof. �

Corollary 6.6. Let us suppose that f : R→ R is such that the function

G(t) := N F (t)− N − s p
p

f(t) t, t ∈ R,

is non positive and vanishes at t = 0 only. Then problem (6.5) has no nontrivial weak solution
u ∈ Ds,p(RN ) ∩ L∞(RN ) such that F (u) =

´ u
0 f(t) dt is in L1(RN ).

Appendix A. A bilinear estimate

Let F denote the Fourier transform, S the Schwartz class and S ′ the space of tempered
distributions. For every s ∈ R and 1 < p < +∞, by Hs,p(RN ) we denote the Bessel potential
space, defined as {

u ∈ S ′ : F−1
((

1 + |ξ|2)s/2 F (u)
)
∈ Lp(RN )

}
.

This is endowed with the norm

‖u‖Hs,p :=
∥∥∥F−1

(
(1 + |ξ|2)s/2 F (u)

)∥∥∥
p
.

We recall that for s ∈ R and 1 < p < +∞, we have

(A.1)
(
Hs,p(RN )

)∗
= H−s,p

′(RN ),

see [24, Theorem 2.5.6 & Theorem 2.11.2].
Given a polynomial P , the differential operator P (D) is a continuous operator S ′ → S ′. We

are concerned with the product of two tempered distributions of the form P (D) Λ1 and Q(D) Λ2.
In this case we are not only looking for the well-posedness issue, but also on stability with respect
to approximation and (negative) Bessel norm estimates.

Proposition A.1. Let
1
q

+ 1
r

= 1
t

for some t, p, q > 1 and P , Q two polynomials with
deg(P ) + deg(Q) = k.

Then there exists C = C(P,Q, q, r,N) > 0 such that for any u, v ∈ S it holds
(A.2) ‖P (D)u ·Q(D) v‖H−k,t ≤ C‖u‖q ‖v‖r.
In particular, the product P (D)u · Q(D) v extends to a bilinear continuous operator ΠP,Q :
Lr(RN )× Lq(RN )→ H−k,t(RN ).
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Proof. This is a direct consequence of the Coifman-Meyer multilinear Theorem. Since P (D)u,
Q(D) v ∈ S, taking the Fourier trasform gives

F
(
P (D)u ·Q(D)v

)
(ξ) =

ˆ
{ξ1+ξ2=ξ}

P (i ξ1)Q(i ξ2) F (u)(ξ1) F (v)(ξ2) dξ1.

We define
m(ξ1, ξ2) = P (i ξ1)Q(i ξ2)

(1 + |ξ|2)
k
2

.

By induction, we can verify that m is a Coifman-Meyer multiplier, i.e.∣∣∣∣∂iξi1∂jξj2m(ξ1, ξ2)
∣∣∣∣ ≤ Cij

(|ξ1|+ |ξ2|)|i|+|j|
, for any multi-index i, j.

Indeed, since m is of the form R(ξ1, ξ2)/(1 + |ξ1 + ξ2|2)α where R is a polynomial function, any
partial derivative is of the same form, and an inductive degree argument on |i| + |j| shows that
for any multi-indexes i, j it holds

∂iξi1
∂j
ξj2
m(ξ1, ξ2) = Ri,j(ξ1, ξ2)

(1 + |ξ1 + ξ2|2)
k
2 +|i|+|j|

, with deg(Ri,j) ≤ k + |i|+ |j|.

Therefore the bilinear multiplier operator Tm defined as

F (Tm(u, v)) (ξ) =
ˆ
{ξ1+ξ2=ξ}

m(ξ1, ξ2) F (u)(ξ1) F (v)(ξ2) dξ1,

satisfies
‖Tm(u, v)‖t ≤ Cm ‖u‖q ‖v‖r,

which is equivalent to (A.2) by the definition ofH−k,t(RN ). The last statement clearly follows. �

For practical applications, we will need the following consequence.

Corollary A.2. We take
1
q

+ 1
r
< 1,

and consider {un}n ⊂W 1,r′
loc (RN ) ∩ Lqloc(RN ) and {vn}n ⊂ Lrloc(RN ) satisfying

‖un‖Lq(Ω) ≤ CΩ < +∞, for any bounded Ω ⊂ RN , vn → 0 in Lrloc(RN ).
Then

(A.3) lim
n→∞

ˆ
RN

vn∇un · F dx = 0, for every F ∈ C∞0 (RN ;RN ).

Proof. We take F ∈ C∞0 (RN ) and fix η ∈ C∞0 (RN ) such that η ≡ 1 on a bounded neighbourhood
of supp(F ). Then we set

ṽn = η vn ∈ Lr(RN ) and ũn = η un ∈W 1,r′(RN ) ∩ Lq(RN ).
By construction, the integral in (A.3) does not change with these substitutions and by our as-
sumptions we have

‖ũn‖q ≤ C and lim
n→∞

‖ṽn‖r = 0.

We may notice that, for any k = 1, . . . , N , if v ∈ Lr(RN ) and u ∈ W 1,r′(RN ), then v ∂xku ∈
L1(RN ) ⊆ S ′. It is readily checked that this function coincides with the tempered distribution
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Λ = v · ∂xku (uniquely) defined by density in Proposition A.1. Indeed, let ũj ∈ C∞0 (RN ) such
that ũj → u strongly in W 1,r′(RN ) ∩ Lq(RN ). For any ϕ ∈ S, it holds

〈Λ, ϕ〉 = lim
j→∞

ˆ
RN

v ∂xk ũj ϕdx =
ˆ
RN

v ∂xkuϕdx+ lim
j→∞

ˆ
RN

v ∂xk(ũj − u)ϕdx,

and the last limit vanishes by Hölder inequality. The claimed limit now immediately follows from
(A.2), since by taking

1
t

= 1
p

+ 1
q
,

we have

lim
n→∞

∣∣∣∣ˆ
RN

vn∇un · F dx
∣∣∣∣ = lim

n→∞

∣∣∣∣ˆ
RN

ṽn∇ũn · F dx
∣∣∣∣ ≤ lim

n→∞
‖ṽn∇ũn‖H−1,t ‖F‖H1,t′

≤ C lim
n→∞

‖ṽn‖r ‖ũn‖q ‖F‖H1,t′ = 0,

where we used (A.1). This concludes the proof. �
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