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1. Introduction

Let (X,w) be a compact Kéahler manifold of complex dimension n. It is known that the volume V,
depends only on the Kéhler class of w, namely,

Z (w+ v T08)" = X/ W=V,

for any real-valued smooth function ¢ with w, := w + /=189¢ > 0, because of the closedness of w.
If (X,g) is a compact Hermitian manifold of complex dimension n, the same result does not hold in
general. In Section 2 below, we consider a function to describe such a phenomena, i.e., we define

Err, (o) := /w” f/wg,
X X

where w is the associated real (1, 1)-form of g. If 99(w*) = 0 for k = 1,2, we can show
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n __
X X

for any real-valued function ¢ € C*°(X)gr with w, := w + /—199¢ > 0. Actually, this result has implicitly
contained in [2,13]. We give here an alternative proof of this result.

In Kéhler geometry, energy functionals, such as Mabuchi K-energy functional [9], Aubin—Yau energy func-
tionals [10,14], and Chen—Tian energy functionals [1], play an important role in studying Kédhler—Einstein
metrics and constant scalar curvatures. When I was in Yau’s Seminar, I asked myself that it is possible to
define energy functionals on compact complex manifolds? This is one motivation to write down this note.
Another motivation comes from a question in S.-T. Yau’s survey [15], namely to find necessary and sufficient
conditions for a complex manifold to admit a Kéhler structure. When n = 2, it was settled by Siu [11] or see
also [8]: A compact complex surface is Kdhler if and only if its first Betti number is even. In the second part
of this note we construct Mabuchi £ functional and Aubin-Yau functionals Z2Y, 74Y on any compact
complex surface.

Let (X,g) be a compact Hermitian manifold of complex dimension 2 and w be its associated real
(1,1)-form. Let

P, i={p e C®(X)r | wy :=w+ V—-19d¢p > 0}.

For any ', ¢ € P, we define

1
1 .
LY (¢ ¢") / / prwd, dt —
0

where ; is any smooth path in P,, from ¢’ to ¢”. Also we set

1

//\/_5 (p:0¢y) dt

0

1

&~

UJ

1
//\/ aCU/\ QDtaQOt dt
0 X

Theorem 1.1. The functional LM (¢, ") is independent of the choice of the smooth path {¢;}o<i<1 and
satisfies the 1-cocycle condition. In particular

1
m gp(w2—|—w/\w¢—|—w2)

X

Lyl (p) = /(\/_&uA&er\/_awA@w)

1

2V,
X
Moreover, for any ¢ € P, and any constant C € R, we have

B0

M — —
g +0) = 01— 2

for any p1, 02 € P, and any constant C € R, we have

Err,
LY (01,03 + C) = LY1, 02) +C(1 ~ L(w))

Ve

In Section 4, we construct Aubin—Yau functionals on compact complex surfaces. Let (X, g) be a compact
Hermitian manifold of complex dimension 2 and w be its associated real (1, 1)-form. Set

1 _
Ay (o) = W/—\/—law/\gaago.
X
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For convenience, we consider the complex conjugate of A, (¢) given by
1 —
B.(p) == v V—=10w A pdop.

Note that A, (p) is actually equal to B, () so that A, (¢) is real-valued. Indeed, by Stokes’ theorem, we
obtain

Au(p) = ()
X
_ A (B A Do + pddp)
X
A (B A B + pddY)
5 (pOyp)
X
= Bw(‘P)
We now define
1
T2 (p) == v /<p(w2 — w?p) + 24, () + 2Bu ()
X
_ 2 _02) +4A4
= V_w (p(o.} —OJ@) + w(‘P>7
X
X 1
TN () ::v//gp ) ds + Au(p) + Bu(v)
0 X

1
:Viw//cpw—w ds +2A,(p).
0 X

Theorem 1.2. For any compact Hermitian manifold (X, g) of complex dimension 2, we have

1 2
ng}Y(%’) < TN (p) < 513\,(90)
for any ¢ € P,,, where w is ils associated real (1,1)-form.

We hope this exposition will give some ideas to study Yau’s problem. The author [5,6] have constructed
those functionals on higher dimensional compact complex manifolds. We [7] will later use those functionals
to study geometric problems.
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2. Err,, map on complex manifolds

Let (X,g) be a compact Hermitian manifold of complex dimension n and write the associated real
(1,1)-form as

w=v-lg,; dz' A dzi.

Let P, be the space of all real-valued smooth functions ¢ € C*®(X)R, so that w + /—190¢ is positive
definite on X:

P, = {(p € C*®(X)r ’ w4+ vV—190¢p > O}.

Also we set
PY = {cp € P, } sup ¢ = 0}.
X
2.1. Err,, map on compact complex manifolds

To such a function ¢ € P, we associate the quantity

If (X,w) is Kéhler, we have V,, = V,,(¢) for any ¢ € P,. In the non-Kéhler case, it is not in general true.
Hence it is reasonable to define

Brr (o) i= Vi~ Valo) = [ w7 = [l (23)

X X

A natural question is when does Err,(¢) vanish for any/a ¢ € P,? Clearly there exists a smooth real-valued
function ¢g = 0 € P, such that

we, =w", sup o = 0,
X
hence

Brn (o) = [ = [ =0, (2.4)

X X

This gives us some information about Err,(p) and motivates us to consider

sup Err,, := sup (Err,(¢)), inf Err,, := inf (Erry,(p)). (2.5)
pEPY pEPY
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In any case, one has

inf Err,, < 0 < sup Err, < /w”. (2.6)
X

It is interesting to find some conditions to guarantee that the equalities hold. To study this behavior of Err,,
we consider the following several natural conditions on w:

o Condition 1.1:

V—10w A dw and +/—100w are non-negative (2.7)
o Condition 1.2:

V=10w A dw and +/—180w are non-positive (2.8)

o Condition 2:
90(w*) =0, k=1,2. (2.9)

o Condition 3:
d(w" ) =0. (2.10)

o Condition 4:
90(w™ 1) =0. (2.11)

Remark 2.1. Condition 2 has appeared in [4] as a sufficient condition to solving the complex Monge-Ampére
equation on Hermitian manifolds. The metric satisfying the third condition is called a balanced metric, which
naturally appears in string theory (V. Tosatti and B. Weinkove [12] solved the complex Monge-Ampeére
equation on Hermitian manifolds with balanced metrics; later, they [13] dropped off the balanced condition).
When n = 2, this condition is indeed the K&ahler condition. A metric satisfying Condition 4 is called a
Gauduchon metric, and a theorem of Gauduchon [3] shows that there exists a Gauduchon metric on every
compact Hermitian manifold. Notice that Condition 3 implies Condition 4, and Condition 2 is equivalent to
00w = 0 = 0w A Ow. In particular, Condition 2 implies Condition 1.1 and Condition 1.2. In our case n = 2,
Condition 2 is equivalent to Condition 4.

Theorem 2.2. (i) If w satisfies Condition 1.1, then
inf Err,, = 0. (2.12)
(ii) Correspondingly, if w satisfies Condition 1.2, then
sup Err,, = 0. (2.13)

(iii) In particular sup Err,, = inf Erry, = 0 provided that w satisfies Condition 2.
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Proof. (i) We knew that Err,(¢g) = 0 for some ¢ € PY. To prove the result, we need only to show that
Err,, () = 0 for each function ¢ € PY. By definition we have

El"I'w(SD) = —/wz—‘r/w" = /—‘/—18590/\ Z w;/\wn_l_i
X X X

0<i<n—1

= Z /w; Awr A (—\/—_1854,0)

0isn—1%

S / VE10(wl, A w17 A B

0<isn—1%

= w4 (n—1—)w,| AwS P AOw AW 278 AV/—=10p
¢ v

0isn—1%

- Z /[iw—k(n—l—i)w@]/\wfp_l/\wn_Q_i/\aw/\\/—lap

- Z V-1 [gp(iwf;l AW 1 (n—1— i)w; Aw™ 27 A 00w

+ wé(iwfjl AW 1 (n—1— i)wiJ Aw™ 27 A Ow]

= Y (L+1nL),

0<i<n—1

where

pliws ' AW T 4 (n—1— i)w; Aw™ 2] A (—V=100w),

X
/ V-10liw ' Aw™ T (n—1— i)wfo Aw™ 27 A w.
X

Since v/—100w > 0 and ¢ < 0 on X, the first term I; is non-negative. Applying the integration by parts to
I1;, we deduce

IIi:/go[(z—l) CEANOw AW pi(n — 1 —i)w Zpl/\w" 271 A Qw
X
+i(n — 1 —1d)wy LA Ow AW TR 1+(n—1—i)(n—2—i)w;/\w"737i/\5w]/\\/—180.)

/gooﬂ AW (i3 - 1)w? +22(n—1—z)w@/\w—l—(n—l—z)(n—Q—z)wi]
X

A (=V=10w A ow).

Since v/—10w A Ow is non-negative and ¢ is non-positive, it follows that II; > 0. Thus Err,(¢) > 0 for each
¢ € PY and therefore inf Err,, = 0.

(ii) If w satisfies Condition 1.2, the above reasoning gives that Err,(¢) < 0 for each ¢ € P, ie.,
sup Err,, < 0. Hence sup Err,, = 0.

(iii) It is an immediate consequence of (i) and (ii). O



Y. Li / J. Math. Anal. Appl. 416 (2014) 81-98 87

Corollary 2.3. If w satisfies Condition 2, then Err,(¢) = 0 for any ¢ € PY. Equivalently, in this case, the
number V(o) = fX wg does not depend on the choice of ¢ € Py, and equals V,, = fX w™.

2.2. Vanishing property of Err,, map on compact complex surface

Let (X, g) be a Hermitian manifold of complex dimension n and let wy be its associated real (1,1)-form.
We say that g is a Gauduchon metric if aé(wg—l) =0.
We recall a theorem of Gauduchon or see Remark 2.1.

Theorem 2.4. (See Gauduchon [3].) If X is a compact complex manifold of complex dimension n, then in
the conformal class of every Hermitian metric g there exists a Gauduchon metric gg, i.e., there is a positive
function ¢ € C®(X)r such that gc := g is Gauduchon. If X is connected and n > 2, then gg s unique
up to a positive constant.

Suppose now that (X, gog) be a compact complex surface with Hermitian metric g. By Theorem 2.4, we
have a Gauduchon metric g and its associated (1,1)-form w. Since w is a Gauduchon metric, it follows that
00w = 0 and that

Err, (o) = / (@ — wp) (@ + wy) = / (@ +wp) A —v/ 190

X X

— [ —VFI08w + ) o = [ 21000 o =0,

X

Corollary 2.5. Let (X, g) be a compact complex surface with Hermitian metric g and let wg be its associated
Gauduchon metric. Then

Err,,(¢) =0 (2.14)
for all ¢ € Py, .
3. Mabuchi £wM functional on complex surfaces
In this section we construct the Mabuchi functional on a complex surface.
8.1. Mabuchi LM functional on compact Kihler manifolds

Suppose that (X, w) is a compact Kéhler manifold of complex dimension n. For any pair (¢, ") € P,XP,,

we define
LM P, xP, — R
as follows:
) 1
K“I\,/[(w',go”) = Vw//@w:;t dt (3.1)
0 X

where {p; : 0 <t < 1} is any smooth path in P, such that ¢y = ¢’ and p; = ¢”. For any ¢ € P,, we set

L (p) = L0, ¢). (3.2)
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Mabuchi [9] showed that the functional (3.1) is well-defined, and hence we can explicitly write down

LY ().

In this section we extend Mabuchi £M functional to any compact complex surface by adding two extra

terms on the right hand side of (3.1).

3.2. Mabuchi LM functional on compact complex surfaces

Suppose now that (X,g) is a compact complex surface and w be its associated real (1,1)-form. Let
¢, ¢" € P, and {¢}o<i<a be a smooth path in P, from ¢’ to ¢”.
Let
) 1
L0 (e, ¢" :—// tw ,dt. (3.3)
Vi
0
Set
P(s,t) :==sp¢, 0<s<1, 0<t< L (3.4)
Consider a 1-form on [0, 1] x [0, 1]
o N
0 2 2
X X
Taking differential on ¥°, we have
dw° = 1°dt A ds,
where
0 (0 4 oy
= == - . 3.6
/8t<8s ) /85(8t w) (36)

X X

Directly computation shows

o_ [[PY 5 0¥ (O Py 5 O o
I /{&6 ¢+28_“¢A\/_186(E)]/[asat '”Hat w/\\/—88< )}

/z_www:@(aa_f) 22, w—aa@w)
X

In the following we deduce two slightly different formulae of I°. The first one is

IO—/QZ—f%A\/Twé(%—f)+ %f wAWaa(M)
X X

- [(3) () () o(3)
[ e o] ()
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5¢ Y
+ [-2vo( ) new + 3] no(5)
X
Y PN Skl W1 L W ik oy
—/ 2 lasaw/\3<at>+/ 2 18taw/\5<as>
X X

/2\/_(% (aaf)Aa +/2\/_87’D (?{f)/\a

Similarly, we have

!2\/_% <8Zf>/\8 +! 2\/_(% (;ﬁ)mm

Next, we define

1
1
£1 (¢',¢") //azaw/\ 00y d (3.7)
Ve 0
. 1
£2 (¢, ¢") = //b 0w A (p10py) d (3.8)
0

Here we require az = bs, and as, by are determined later. As before, consider

o [ foren () [ o (53
o [ [ (o3 o (1))

Therefore

awt = I dt A ds,

where

[-8166)) 2
=[G o)l o [ o) i) o
/
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In the same way, one deduces

dv? =1 dt A ds,

and

L NS A o, (O 5

X

>

Combining above formulas, we have

nor 10
n (3.10)

Setting as = —v/—1 and by = /—1, we get

Thus

dv =0, (3.11)
where
=00 4wt 4y
The following theorem is an immediate consequence of the above discussion.

Theorem 3.1. Let (X, g) be a compact complex surface and w be its associated real (1,1)-form. The functional

1 1
2 =k [ otk [ [VFToan odsa
wO X WO X
1
+V%//ﬁ5w/\(gota<pt)dt (3.12)
0 X

is independent of the choice of the smooth path {¢,}o<i<1- In particular,

= %/w(w2+w/\ww+w?p) +%/(p[f\/flaw/\&er\/fléw/\&p]. (3.13)

X X

Proof. Applying Stokes’ theorem to the region A = {(s,t) € R? 0 < s,t < 1} and using Eq. (3.9), we

o:/d;p:/u?:/(w0+wl+w2)
A OA OA

have
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/gptw% dt — //8 ww

1

[ (2‘5)w> o

+//¢_am 0p1) d //\/_a (o(5) ) oo,

0 0

// —V=10w A (:0¢y) dt

t=1

t=0

Equivalently,

t=1

w

[ [ | [ (6(5)) el

+//mm<a<z—f>w>dsm

0 X

t=0

o
Z
O\H

It turns out that L£M(y', ") is well-defined. For the second argument, we can choose the smooth path
pr=1t-0,0<t<1. O

Remark 3.2. When (X, g) is a compact Kéhler surface, the functional (3.12) or (3.13) coincides with the

original one.

Suppose that S is a non-empty set and A is an additive group. A mapping N : S x S — A is said to
satisfy the 1-cocycle condition if

(i) N(o1,02) + N(o2,01) = 0;
(11) N(U1,02) +N(02,03) +N(O’3,0’1) =0.

Corollary 3.3. The functional LM satisfies the 1-cocycle condition.

Corollary 3.4. For any ¢ € P, and any constant C € R, we have

L, 0+ C) C(l EHVL@U (3.14)

In particular, if 00w = 0, then LM (¢, 0 +C) = C.

Proof. We choose the smooth path ¢ = ¢ 4+ tC, t € [0,1]. So

LM, p+C) = /CwiJrCt dt
X

/ Cwi dt
X

Cw

Ve

2
©

&=

Il
|-
X\ O °oY——
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— )
_c (1 _ Erlé(@))

If furthermore 90w = 0, then Err,(¢) = 0 for any ¢ € P,,. O

Corollary 3.5. For any 1,92 € P, and any constant C € R, we have

Err,
ﬁ?f(%s&zﬂLC)=E3A(¢1,¢2)+C<1—%). (3.15)

Proof. From Corollary 3.3, one has

LY (1,02 + C) + LM (02, 01) = LN (02,02 + C).

Then the conclusion follows from Corollary 3.4. O
4. Aubin—Yau functionals on compact complex surfaces

In this section we extend Aubin—Yau functionals to compact complex surfaces, including Kéhler surfaces,
and deduce a number of basic properties of these functionals.

4.1. Aubin—Yau functionals on compact Kihler manifolds

Suppose that (X,w) is a compact Kéhler manifold of dimension n. For (¢, ¢") € P, x P, Aubin—Yau
functionals are defined by

1
Y (¢, ¢") = v /(gp” - ) (wg, — w@//), (4.1)
Y x
T (@) = =L ¢") + 1 /(w" — ¢ )wlk (4.2)
Yx
By definition, we have
ij (@,a 90”) + ij (@//, s0/) _ I:}Y(QDI, C,O/,) — ISY ((,0”7 <P/)- (4.3)
For any ¢ € P, we set
1
I8 (0= o [ ele” - o), (4.4
X
1 T, (50) . 1
wl\$ n
T = [ B = o [ o —ur,) ds (45)
0 0 X

It is clear that



Y. Li / J. Math. Anal. Appl. 416 (2014) 81-98

By definition we have

1 n—1
1 ) n—1—1¢
ij(w) = v/ ds/cp(—\/—laﬁ(sgo)) /\Z 1= /\wscp
Yo X i=1
- 1
= 7V~ — /sds/go'aggo/\ Z WA [w%—s(ww—w)]z
Y0 e 0<i<n—1
- 1
= 7VV — /sds/goa&p Z wnTTEA Z ( ) ) jsjwifj/\wi
Yy e 0<i<n—1 0<j<i
1
/-1 _ ; , _ S
= /@884,0/\ Z Z (Z,)wnlj A wl, /(1—3)“]31“
Yoy 0<j<n—1j<i<n—1 J 3
—v/=1 _ o . i\ =)'+ 1!
= 00p N N — e
v #0den D “p 2 i) i+2)!
X 0<jsn—1 Jj<isn—1
—/—1 - Jj+1
= d0p N n=1=j A
v | w99 Zw saz DY
X
_ 1 3 nij n—1—j j
= AP N Z ?w Aw,
X 0<yjgn—1
since
Z 1 _ Z < 1 1 > _ 1 1
j<i<n—1(i+2)(i+l)_j<i<n—1 i+l i42)  j+1 n+l

On the other hand,

n —v/—1 = ; .
T2 (p) = 0P N nlE At
nile (V)= [ $90 Z nt1” Yo
0<ig<n—1
Hence
n 1 = J
—IAY _ gAY :_/ /=169 A n—1 N
e (@) = TV (e) = o [ e(—V/=1000) > W),
X 1<j<n—1
Moreover,

(0 + DI - T = 5 [0 -VTT0BeA 3 (=1 AL

Yy 0<j<n—1

Remark 4.1. Notice that formulae (4.7) and (4.8) are also valid when w is non-Kéhler.
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4.2. Aubin—Yau functionals over compact complex surfaces

Let (X, g) be a compact complex manifold of complex dimension n and w be its associated real (1, 1)-form.
From Remark 4.1, we can formally use the notion Z2Y, 74Y and £M, but now w may not be Kihler.
Precisely, for any ¢ € P,, we set

1
Yx
1 1
A (s9) 1
j“’Ag(SO) :/ IS s = v//gp(wn_wsga) ds (4 10)
0 Yo X
Hence
n 1 = I o1 .
X 1<j<n—1
Moreover,
1 _
(0 + DI - T = [0 =VTI00n 3 -1-gen AL (412)
“x 0<j<n—1

Restricting to compact complex surfaces and introducing two extra functionals on P,

1 _
Au(p) = 5 /cp — V/=10w A g, (4.13)
X
1
B, () := v oV —10w A dp, (4.14)
X

(clearly A, () = By (¢)), we define Aubin—Yau functionals as follows (here constants a, b, ¢, d are determined
later, and actually a =b=c=d = 2)

IV (p) : Iw|.( )+ aAu (@) + bBu (), (4.15)
JjY(np): Viw/gow + cAu (@) + dBu (). (4.16)
X
Since
JUJA\Y(@)=V% p(—V=1000) A Y T (W Al

it follows that
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T2V () = T (@) + (¢ = D) Au(p) + (d — 1)Bu(p), (4.17)
and that

;(IﬁY(so) — adu(p) = bBu(p)) — (J2Y (9) = (e = D Au(p) — (d — 1)Bu(y))

0(—v—100y) Z %wlfj/\wi,

1<5<1

&=

wy A (—vV/—=100yp)

wl

¥

we AV —1 00¢.

Wl =

¥

&=

[
|-
M M X

Thus the left hand side has two slightly different expressions. If we adopt the first one, we have
2
g(fﬁy(so) — a Ay, (p) = bBu(9)) = (TS (#) = (¢ = D AL(p) = (d = 1)Bu(v))

1 _
= ﬁ/\/fla(gowso) A Oy
X
1 _
=37 / V—=1(0p Nwy + pow) A Op
Y x
1 = 2
=3 V=10 N 0p Nw, — g.Aw(gp).
X
On the other hand, using the second expression gives

%(Iﬁ‘y(so) — adu(p) = bB.(p)) — (J27 (9) = (e = D AL(p) — (d — 1)Bu(y))

! / —VTTB(gw,) A g

C 3V,
X
:%/—J—_l(ggp/\wcp—&-cpgw)/\&p
X
:i/\/f—l&p/\&p/\w 728 (p).
3V, L3
X

Therefore
;(Iﬁy(w) — aAu () = bBu(9)) — (T2 () = (¢ = 1) Au(p) — (d — 1)Bu(¢))

1 = Aus () + Bu(¥)
_m/\/—_l(')(p/\&p/\w@ 3 )
X

or, equivalently,

2 1 _
glﬁY(so) — TN (p) = T / V=10¢ N dp Aw,, (4.18)
X



96 Y. Li / J. Math. Anal. Appl. 416 (201/) 81-98

where we require

2 1 2 1
Theorem 4.2. For any ¢ € P, one has
2
3LV (0) = T (9) 2 0. (4.20)
Using (4.12) yields
3(75(0) — 3Au(9) — 5Bu(0)) — (Z27(0) = Auli) = Bul)

&)=

P(—vV=100p) A > (1= jw' ™ Aw]

0<<1

o(—V—100¢) A w

= -

(ow) A (=V/=100)

=

= -

M M M R

(pw) AV —100¢.

As the proof of Theorem 4.2, we have

3(TY () = (e = DAL(p) — (d— DBu(p)) — (Z5¥ (¢) — aAu(p) — bBu(p))
= —/\/—_16(<pw)/\5ap: —/\/—_1(8<p/\w+<p8w)/\5<p

= VL/\/—w@/\&pAw—?Aw(w)
wX

and
3(T2Y () = (e = DAL(p) = (d = DB(9)) — (27 () — adulp) — bBu())
= Viw/f\/jlg‘(gow) NOp = Viw/*\/jl(&@/\‘djupgw) Ay
¥ X
= V%/ﬁ&wgcww — 2B.,(¢p).
X
Hence

3(T2Y (@) — (¢ = D) Au(p) — (d = DBu(p)) — (Z5Y(¢) — aAu(p) — bBu(p))

_ V%/J—_mpm%m; — (Au() + Bu(90)).
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Equivalently,
1 _
3T (p) —I2Y () = V/\/—l&p/\&p/\w, (4.21)
Y x

where we also require
3c=1)—a—-1=0=3(d—-1)—b—1. (4.22)
Theorem 4.3. For any ¢ € P,, one has
3T () =I5 () 2 0. (4.23)
Combining (4.19) and (4.22) we obtain the value of those constants:
a=b=c=d=2.

Corollary 4.4. For any compact complex surface (X,g) and any real-valued smooth function ¢ € P,, we
have

1 2
S 107 (0) S T2V () < 3TV (),

3

570 (9) S Tulp) < BT (¢),

1 1 2

5T (9) < FTSY(9) SISV (9) =I5 (0) < S0 (0) < 2T25%(9),
where w is its associated real (1,1)-form.
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