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Abstract In this paper we prove that the Hk (k is odd and larger than 2) mean curvature
flow of a closed convex hypersurface can be extended over the maximal time provided that
the total L p integral of the mean curvature is finite for some p.
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1 Introduction

Let M be a compact n-dimensional hypersurface without boundary, which is smoothly
embedded into the (n + 1)-dimensional Euclidean space R

n+1 by the map

F0 : M −→ R
n+1. (1.1)

The Hk mean curvature flow, an evolution equation of the mean curvature H(·, t), is a smooth
family of immersions F(·, t) : M → R

n+1 given by

∂

∂t
F(·, t) = −Hk(·, t)ν(·, t), F(·, 0) = F0(·), (1.2)

where k is a positive integer and ν(·, t) denotes the outer unit normal on Mt := F(M, t) at
F(·, t).

When k = 1 the Eq. (1.2) is the usual mean curvature flow. Huisken [1] proved that the
mean curvature flow develops to singularities in finite time: Suppose that Tmax < ∞ is the
first singularity time for the mean curvature flow. Then supMt

|A|(t) → ∞ as t → Tmax.
Recently, Le and Sesum [2] and Xu et al. [5] independently proved an extension theorem on
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the mean curvature flow under some curvature conditions. A natural question is whether we
can extend general Hk mean curvature flow over the maximal time interval.

The short time existence of the Hk mean curvature flow has been established in [4], i.e.,
there is a maximal time interval [0, Tmax), Tmax < ∞, on which the flow exists. In [3], we
proved an extension theorem on the Hk mean curvature flow under some curvature condition;
that is, the condition (b) in Theorem 1.1 holds and the second fundamental form has a lower
bound along the flow. In this paper, we give another extension theorem of the Hk mean
curvature flow for convex hypersurfaces.

Theorem 1.1 Suppose that the integers n and k are greater than or equal to 2, k is odd,
and n + 1 ≥ k. Suppose that M is a compact n-dimensional hypersurface without boundary,
smoothly embedded into R

n+1 by a smooth function F0. Consider the Hk mean curvature
flow on M,

∂

∂t
F(·, t) = −Hk(·, t)ν(·, t), F(·, 0) = F0(·).

If

(a) H(·) > 0 on M,
(b) for some α ≥ n + k + 1,

||H(·, t)||Lα(M×[0,Tmax)) :=
⎛
⎜⎝

Tmax∫

0

∫

Mt

|H(·, t)|αg(t)dμ(t)dt

⎞
⎟⎠

1
α

< ∞,

then the flow can be extended over the time Tmax. Here dμ(t) denotes the induced metric on
Mt .

If the second fundamental form has a lower bound, i.e., hi j (t) ≥ Cgi j (t), then H(t) ≥
nC > 0 which satisfies condition (a). Therefore the above theorem is a weak version of that
in [3].

2 Evolution equations for the H k mean curvature flow

Let g = {gi j } be the induced metric on M obtained by the pullback of the standard
metric gRn+1 of R

n+1. We denote by A = {hi j } the second fundamental form and
dμ = √

det(gi j )dx1 ∧ · · · ∧ dxn the volume form on M , respectively, where x1, . . . , xn

are local coordinates. The mean curvature can be expressed as

H = gi j hi j , gi j =
〈
∂ F

∂xi
,

∂ F

∂x j

〉

g
Rn+1

; (2.1)

meanwhile the second fundamental forms are given by

hi j = −
〈
ν,

∂2 F

∂xi∂x j

〉

g
Rn+1

. (2.2)

We write g(t) = {gi j (t)}, A(t) = {hi j (t)}, ν(t), H(t), dμ(t),∇t , and �t the correspond-
ing induced metric, second fundamental form, outer unit normal vector, mean curvature,
volume form, induced Levi–Civita connection, and induced Laplacian operator at time t .
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The position coordinates are not explicitly written in the above symbols if there is no confu-
sion.

The following evolution equations are obvious.

Lemma 2.1 For the Hk mean curvature flow, we have

∂

∂t
H(t) = k Hk−1(t)�t H(t) + Hk(t)|A(t)|2 + k(k − 1)Hk−2(t) |∇t H(t)|2 ,

∂

∂t
|A(t)|2 = k Hk−1(t)�t |A(t)|2 − 2k Hk−1(t) |∇t A(t)|2 + 2k Hk−1(t)|A(t)|4

+ 2k(k − 1)Hk−2(t)|∇t H(t)|2.
Here and henceforth, the norm | · | is respect to the induced metric g(t).

Corollary 2.2 Suppose that minM H(0) > 0. If k is odd and larger than 2, then

H(t) ≥ min
M

H(0) (2.3)

along the Hk mean curvature flow. In particular, H(t) > 0 is preserved by the Hk mean
curvature flow.

Proof By Lemma 2.1, we have

∂

∂t
H(t) = k Hk−1(t)�t H(t) + Hk(t)|A(t)|2 + k(k − 1)Hk−2(t) |∇t H(t)|2

= k Hk−1(t)�t H(t) +
(

Hk−1(t)|A(t)|2 + k(k − 1)Hk−3(t) |∇t H(t)|2
)

H(t).

Since k ≥ 2 and k is odd, it follows that

Hk−1(t)|A(t)|2 + k(k − 1)Hk−3(t) |∇t H(t)|2

is nonnegative and then (2.3) follows from the maximum principle. ��

Lemma 2.3 Suppose k is odd and larger than 2, and H > 0. For the Hk mean curvature
flow and any positive integer �, we have
(

∂

∂t
− k Hk−1(t)�t

) ( |A(t)|2
H �+1(t)

)
= k(� + 1)

k − 1

〈
∇t Hk−1(t),∇t

( |A(t)|2
H �+1(t)

)〉

− 2k

H �+4−k(t)

[(
H(t)∇t A(t) − � + 1

2
A(t)∇t H(t)

)]2

+ 2k(k − 1)

H �+3−k(t)
|∇t H(t)|2 + 2k − � − 1

H �+2−k(t)
|A(t)|4

− k(� + 1)(2k − � − 1)

2H �+4−k(t)
|A(t)|2 |∇t H(t)|2 .

Proof In the following computation, we will always omit time t and write ∂/∂t as ∂t . Then

∂t H = k Hk−1�H + Hk |A|2 + k(k − 1)Hk−2|∇ H |2.
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By Corollary 2.2, H(t) > 0 along the Hk mean curvature flow so that |H(t)|i = Hi (t) for
each positive integer i . For any positive integer �, we have

∂t |H |�+1 = (� + 1)H �∂t H

= (� + 1)H �
(

k Hk−1�H + Hk |A|2 + k(k − 1)Hk−2|∇ H |2
)

= k(� + 1)Hk+�−1�H + (� + 1)Hk+�|A|2
+ k(k − 1)(� + 1)Hk+�−2|∇ H |2,

�|H |�+1 = �H �+1 = (� + 1)∇
(

H �∇ H
)

= (� + 1)
(
�H �−1|∇ H |2 + H ��H

)

= (� + 1)H ��H + �(� + 1)H �−1|∇ H |2.
Therefore

∂t H �+1 = k Hk−1�H �+1 − k�(� + 1)Hk+�−2|∇ H |2
+ (� + 1)Hk+�|A|2 + k(k − 1)(� + 1)Hk+�−2|∇ H |2

= k Hk−1�H �+1 + (� + 1)Hk+�|A|2
+ k(k − � − 1)(� + 1)Hk+�−2|∇ H |2. (2.4)

Recall from Lemma 2.1 that

∂t |A|2 = k Hk−1�|A|2 − 2k Hk−1|∇ A|2 + 2k Hk−1|A|4 + 2k(k − 1)Hk−2|∇ H |2.
Calculate, using (2.4),

∂t

( |A|2
|H |�+1

)

= ∂t |A|2
|H |�+1 − |A|2

|H |2�+2 ∂t |H |�+1

= k Hk−1�|A|2 − 2k Hk−1|∇ A|2 + 2k Hk−1|A|4 + 2k(k − 1)Hk−2|∇ H |2
H �+1

− |A|2 [
k Hk−1�H �+1 + (� + 1)Hk+�|A|2 + k(k − � − 1)(� + 1)Hk+�−2|∇ H |2]

H2�+2

= k Hk−1 1

H �+1 �|A|2 − 2k

H �+2−k
|∇ A|2 + 2k

H �+2−k
|A|4 + 2k(k − 1)

H �+3−k
|∇ H |2

− k|A|2
H2�+3−k

�H �+1 − � + 1

H �+2−k
|A|4 − k(k − � − 1)(� + 1)

H �+4−k
|A|2|∇ H |2,

and

�

( |A|2
H �+1

)
= 1

H �+1 �|A|2 + �

(
1

H �+1

)
|A|2 + 2

〈
∇|A|2,∇

(
1

H �+1

)〉
,

∇
(

1

H �+1

)
= −(� + 1)H �∇ H

H2�+2 = −(� + 1)∇ H

H �+2 ,

�

(
1

H �+1

)
= ∇

(−(� + 1)∇ H

H �+2

)

= −(� + 1)
H �+2�H − ∇ H(� + 2)H �+1∇ H

H2�+4
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= −(� + 1)

[
�H

H �+2 − (� + 2)
|∇ H |2
H �+3

]
,

�H �+1 = ∇
[
(� + 1)H �∇ H

]
= (� + 1)

[
�H �−1|∇ H |2 + H ��H

]

= �(� + 1)H �−1|∇ H |2 + (� + 1)H ��H.

Combining with all of them yields

(
∂t − k Hk−1�

) ( |A|2
H �+1

)

= k Hk−�−2�|A|2 − 2k

H �+2−k
|∇ A|2

+ 2k

H �+2−k
|A|4+ 2k(k − 1)

H �+3−k
|∇ H |2− k|A|2

H2�+3−k

[
�(�+1)H �−1|∇ H |2 + (� + 1)H ��H

]

− � + 1

H �+2−k
|A|4 − k(k − � − 1)(� + 1)|A|2

H �−k+4 |∇ H |2

− k Hk−1
[

1

H �+1 �|A|2 − (� + 1)
|A|2�H

H �+2 + (� + 1)(� + 2)
|A|2|∇ H |2

H �+3

]

− 2k Hk−1
〈
∇|A|2,∇

(
1

H �+1

)〉

= − 2k

H �+2−k
|∇ A|2 +

(
2k

H �+2−k
− � + 1

H �+2−k

)
|A|4 + 2k(k − 1)

H �+3−k
|∇ H |2

− k(� + 1)(k + � + 1)|A|2|∇ H |2
H �+4−k

− 2k Hk−1
〈
∇|A|2,∇

(
1

H �+1

)〉
.

On the other hand,
〈
∇|A|2,∇

(
1

H �+1

)〉
= 2

〈
∇ A · A,

−(� + 1)H �∇ H

H2�+2

〉

= −2(� + 1)

H �+3 〈H∇ A · A,∇ H〉.

Thus, we conclude that

(
∂t − k Hk−1�

) (
|A|2

H�+1

)
= − 2k

H�+2−k
|∇ A|2 + 2k − � − 1

H�+2−k
|A|4 + 2k(k − 1)

H�+3−k
|∇ H |2

− k(� + 1)(k + � + 1)|A|2|∇ H |2
H�+4−k

+ 4k(� + 1)

H�+4−k
〈H∇ A · A, ∇ H〉.

Consider the function

f := −2k

H �+2−k
|∇ A|2 − k(� + 1)(k + � + 1)|A|2|∇ H |2

H �+4−k
+ 4k(� + 1)

H �+4−k
〈H∇ A · A,∇ H〉.

Since

2k(� + 1)

H �+4−k
〈H∇ A · A,∇ H〉 = k(� + 1)

H �+3−k

〈∇|A|2,∇ H
〉
,

∇
( |A|2

H �+1

)
= ∇|A|2

H �+1 − (� + 1)|A|2∇ H

H �+2 ,
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it follows that

2k(� + 1)

H �+4−k
〈H∇ A · A,∇ H〉 = k(� + 1)

H2−k
∇ H

[
∇

( |A|2
H �+1

)
+ (� + 1)|A|2∇ H

H �+2

]

= k(� + 1)

k − 1

〈
∇ Hk−1,∇

( |A|2
H �+1

)〉

+ k(� + 1)2

H �+4−k
|A|2|∇ H |2.

Consequently,

f = −2k

H �+2−k
|∇ A|2 − k2(� + 1)

H �+4−k
|A|2|∇ H |2

+ k(� + 1)

k − 1

〈
∇ Hk−1,∇

( |A|2
H �+1

)〉
+ 2k(� + 1)

H �+4−k
〈H∇ A · A,∇ H〉

= −2k

H �+4−k

[(
H∇ A − � + 1

2
A · ∇ H

)2
]

− 2k(� + 1)(2k − � − 1)

4H �+4−k
|A|2|∇ H |2

+ k(� + 1)

k − 1

〈
∇ Hk−1,∇

( |A|2
H �+1

)〉
.

Finally, we complete the proof. ��
Corollary 2.4 Suppose k is odd and larger than 2, and H > 0. For the Hk mean curvature
flow, we have(

∂

∂t
− k Hk−1(t)�t

) ( |A(t)|2
H2k(t)

)
= 2k2

k − 1

〈
∇t Hk−1(t),∇t

( |A(t)|2
H2k(t)

)〉
+ 2k(k − 1)

Hk+2(t)
|∇t H(t)|2

− 2k

Hk+3(t)
[H(t) · ∇t A(t) − k A(t) · ∇t H(t)]2 .

3 Proof of the main theorem

In this section we give a proof of theorem 1.1. For any positive constant C0, consider the
quantity

Q(t) := |A(t)|2
H2k(t)

+ C0 H �+1(t), (3.1)

where the integer � is determined later. By (2.4) and Corollary 2.4, we have
(

∂

∂t
− k Hk−1(t)�t

)
Q(t)

≤ 2k2

k − 1

〈
∇t Hk−1(t),∇t Q(t) − C0∇t H �+1(t)

〉

+2k(k − 1)

Hk+2(t)
|∇t H(t)|2 + C0

[
(� + 1)Hk+�(t)|A(t)|2

+ k(k − � − 1)(� + 1)Hk+�−2(t) |∇t H(t)|2
]

= 2k2

k − 1

〈
∇t Hk−1(t),∇t Q(t)

〉
− 2k2

k − 1
C0(k − 1)(� + 1)Hk+�−2(t) |∇t H(t)|2
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+ 2k(k − 1)

Hk+2(t)
|∇t H(t)|2 + C0k(k − � − 1)(� + 1)Hk+�−2(t) |∇t H(t)|2

+ C0(� + 1)Hk+�(t)
[

Q(t) − C0 H �+1(t)
]

H2k(t)

= 2k2

k − 1

〈
∇t Hk−1(t),∇t Q(t)

〉

+ |∇t H(t)|2
[

2k(k − 1)

Hk+2(t)
− C0k(� + 1)(k + � + 1)Hk+�−2(t)

]

+ C0(� + 1)H3k+�(t)Q(t) − C2
0 (� + 1)H3k+2�+1(t).

Now we choose � so that the following constraints

� + 1 ≤ 0, k + � + 1 ≤ 0, 3k + 2� + 1 ≥ 0

are satisfied; that is

− 1

2
− 3

2
k ≤ � ≤ −1 − k. (3.2)

In particular, we can take

� := −2 − k. (3.3)

By our assumption on k, we have k ≥ 3 and hence (3.3) implies (3.2). Plugging (3.3) into
the above inequality yields

(
∂

∂t
− k Hk−1(t)�t

)
Q(t) ≤ 2k2

k − 1

〈
∇ Hk−1(t),∇t Q(t)

〉

+ |∇t H(t)|2
[

2k(k − 1)

Hk+2(t)
− C0k(k + 1)

H4(t)

]

− C0(1 + k)H2k−2(t)Q(t) + C2
0 (1 + k)Hk−3(t). (3.4)

Choosing

C0 := 2(k − 1)

k + 1
H2−k

min > 0 (3.5)

where Hmin := minM H = minM H(0), we arrive at

2k(k − 1)

C0k(k + 1)
≤ Hk−2

min ≤ Hk−2(0) ≤ Hk−2(t)

according to (2.3). Consequently,

(
∂

∂t
− k Hk−1(t)�t

)
Q(t) ≤ 2k2

k − 1

〈
∇t Hk−1(t),∇t Q(t)

〉

− C1 H2k−2(t)Q(t) + C2 Hk−3(t), (3.6)

for C1 := C0(1 + k) and C2 := C2
0 (1 + k).

Lemma 3.1 If the solution can not be extended over Tmax, then H(t) is unbounded.
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Proof By the assumption, we know that |A(t)| is unbounded as t → Tmax. We now claim
that H(t) is also unbounded. Otherwise, 0 < Hmin ≤ H(t) ≤ C for some uniform constant
C . If we set

C3 := C1 H2k−2
min , C4 := C2Ck−3,

then (3.6) implies that
(

∂

∂t
− k Hk−1(t)�t

)
Q(t) ≤ 2k2

k − 1

〈
∇t Hk−1(t),∇t Q(t)

〉
− C3 Q(t) + C4. (3.7)

By the maximum principle, we have

Q′(t) ≤ −C3Q(t) + C4 (3.8)

where

Q(t) := max
M

Q(t).

Solving (3.8) we find that

Q(t) ≤ C4

C3
+

(
Q(0) − C4

C3

)
e−C3t .

Thus Q(t) ≤ C5 for some uniform constant C5. By the definition (3.1) and the assump-
tion H(t) ≤ C , we conclude that |A(t)| ≤ C6 for some uniform constant C6, which is a
contradiction. ��

The rest proof is similar to [3,5]. Using Lemma 3.1 and the argument in [3] or in [5], we
get a contradiction and then the solution of the Hk mean curvature flow can be extended over
Tmax.
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