Geom Dedicata (2014) 172:147-154
DOI 10.1007/s10711-013-9912-8

ORIGINAL PAPER

On an extension of the H¥ mean curvature flow
of closed convex hypersurfaces

YiLi

Received: 4 March 2013 / Accepted: 23 August 2013 / Published online: 22 September 2013
© Springer Science+Business Media Dordrecht 2013

Abstract In this paper we prove that the H* (k is odd and larger than 2) mean curvature
flow of a closed convex hypersurface can be extended over the maximal time provided that
the total L? integral of the mean curvature is finite for some p.
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1 Introduction

Let M be a compact n-dimensional hypersurface without boundary, which is smoothly
embedded into the (n + 1)-dimensional Euclidean space R"*! by the map

Fo: M — R (1.1)

The H¥ mean curvature flow, an evolution equation of the mean curvature H (-, t), is a smooth
family of immersions F(-,7) : M — R"*! given by

0

S FCn = —H'C.0ve.n. F(.0) = Fo(), (12)
where k is a positive integer and v(-, ) denotes the outer unit normal on M; := F(M,t) at
F(,1).

When k = 1 the Eq. (1.2) is the usual mean curvature flow. Huisken [1] proved that the
mean curvature flow develops to singularities in finite time: Suppose that Thax < 00 is the
first singularity time for the mean curvature flow. Then sup M, |[A|(t) = oo ast — Tpax.
Recently, Le and Sesum [2] and Xu et al. [5] independently proved an extension theorem on
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the mean curvature flow under some curvature conditions. A natural question is whether we
can extend general H* mean curvature flow over the maximal time interval.

The short time existence of the H¥ mean curvature flow has been established in [4], 1.e.,
there is a maximal time interval [0, Tiax), Tmax < 00, on which the flow exists. In [3], we
proved an extension theorem on the H¥ mean curvature flow under some curvature condition;
that is, the condition (b) in Theorem 1.1 holds and the second fundamental form has a lower
bound along the flow. In this paper, we give another extension theorem of the H* mean
curvature flow for convex hypersurfaces.

Theorem 1.1 Suppose that the integers n and k are greater than or equal to 2,k is odd,
andn+ 1 > k. Suppose that M is a compact n-dimensional hypersurface without boundary,
smoothly embedded into R"*' by a smooth function Fy. Consider the H* mean curvature
flow on M,

d
S Fen= —HNC v (1), F(,0) = Fo().
If

(a) H(:-) >0on M,
(b) forsomea >n+k+1,

TmaX
HHCOlanonn = | [ [ 1HC DR duordr | < oo,
0 M,

then the flow can be extended over the time Tyax. Here du(t) denotes the induced metric on
M[.

If the second fundamental form has a lower bound, i.e., h;;(t) > Cg;;(t), then H(t) >
nC > 0 which satisfies condition (a). Therefore the above theorem is a weak version of that
in [3].

2 Evolution equations for the H* mean curvature flow

Let g = {gij} be the induced metric on M obtained by the pullback of the standard

metric grn+1 Of R*t1. We denote by A = {h;;} the second fundamental form and
du = ,/det(g,-j)dxl A -+ A dx™ the volume form on M, respectively, where xb "
are local coordinates. The mean curvature can be expressed as
iy oF oF
— oiip.. Y .
H—g hl], glj—<axi7axj>g 5 (21)
R+l
meanwhile the second fundamental forms are given by
3’F
hij = —\V, —/—— . (22)
dx'ox/ <
Rn+1

We write g(¢) = {gij (1)}, A(t) = {hij (1)}, v(1), H(t),du(t), V;, and A, the correspond-
ing induced metric, second fundamental form, outer unit normal vector, mean curvature,
volume form, induced Levi—Civita connection, and induced Laplacian operator at time .
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The position coordinates are not explicitly written in the above symbols if there is no confu-
sion.
The following evolution equations are obvious.

Lemma 2.1 For the H* mean curvature flow, we have
%H(r) =kH" YO AH @) + HX0OIADO) + k(k — DH* (1) [V, H(0)]*,
%m(m2 = kH* 'O AJADP =2k H @0 VAP + 2kH (0] A
+ 2k(k — DH*2() |V, H(1)|?.
Here and henceforth, the norm | - | is respect to the induced metric g(t).
Corollary 2.2 Suppose that miny; H(0) > 0. If k is odd and larger than 2, then

H(t) > min H(0) 2.3)
M

along the H* mean curvature flow. In particular, H(t) > 0 is preserved by the H* mean
curvature flow.

Proof By Lemma 2.1, we have
%H(r) = kH*'"0)AH (1) + HY 0)|A@) > + k(k — DH*2(t) [V, H(1)|?
— kH"'(0) A H () + (H’H(t)m(m2 +k(k — )H*3@) |V,H(t)|2) H(b).
Since k > 2 and k is odd, it follows that
HMOIA@P + kk — DH () [V H (1))
is nonnegative and then (2.3) follows from the maximum principle. O

Lemma 2.3 Suppose k is odd and larger than 2, and H > 0. For the H* mean curvature
flow and any positive integer £, we have

= JAOP Y _ k+1) i1 |A(t)|2)>
(a; kH (’)A’)(H@H(z))_ - <V,H (z),v,(HHl(z)

2k 41 2
- g [(H(r)v,Am - TA(r)v,H(t))]
2k(k — 1) N s T
+Hg+37,k(t)lth(z)l + MW’)'
k(€ + 1)k —¢—1)
— gy AOPIVHOP.

Proof In the following computation, we will always omit time ¢ and write d/d¢ as d;. Then

H =kH*"'"AH + HY AP + k(k — )H*2|VH|?.
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By Corollary 2.2, H(t) > 0 along the H¥ mean curvature flow so that |H (t)|' = H'(z) for
each positive integer i. For any positive integer £, we have

& HI =@+ 1)H'H
= ¢+ DH" (kH"_lAH + HY AP + k(k — 1)H"‘2|VH|2)
=k(t + D)H"TAH + (¢ + DHY AP
+ k(k — 1)L+ DH 2| VH|?,
AHIH = AH™ = @+ DV (HEVH)
—+1) (sz—‘ \VH? + H‘AH)
=+ 1DH'AH + ¢+ DHH"YWVH.
Therefore
GH = kHFTAH —kee + DHHM 2 VH)?
+ 4+ DHYAP? +ktk— D+ DH 2 VH)?
= kH*'AH" + (0 4+ HHF AP
+k(k — € — 1)+ DH 2| VH?, (2.4)
Recall from Lemma 2.1 that
W AP = kH'AJAP = 2kH" YV AP + 2kHE YA + 2k — DHF 2| VH).
Calculate, using (2.4),

AP?
8[ e —
|H|t+!
_BAP AR e
TH|ET | H|R2 i |H |

KHF"TAJA)? —2kH*" Y VA2 + 2kHFYA* 4+ 2k(k — 1)H*2|VH|?

Hi{+1
|AP [kH*'AHS + (0 + DHMYAPR + k(k— € — D€+ DHM 2 VH|?
- H20+2
1 2k 2k 2k(k — 1)
_ k—1 2 2 4 2
=kH o AlAP — g VA + gz AN + s IV
KA e £+ g k= C=DE+D oo
g2tk AH™ — Hli+2—/<|A| - T [AI7IVH,
and
AP I ) 1 ) , I
it ) = e AAP + A (g ) 14P +2{VIAR V(7))
1 —(+1)H'VH —(+1)VH
v g+l )~ H20+2 - HE2
1 —(t+1)VH
A(Hm) ZV(W)

HY2AH —VH(+2)HVH

=-(+1) 204
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—(t+2)

H+2

|VH|?
HZ+3

AH
=—+1) [
AH™ = v [(z + I)HZVH] — U+ [ZHZ_1|VH|2 + HEAH]
=4+ DH" \VH)? + ¢+ )H'AH.

Combining with all of them yields

(0 — kH*"a) (;fl )

e 2k
= kHF2A1A)7 — WWAF

2%k 2k(k — 1) k| A2 1o 2 ¢
+ e A+ e \VH|>— W[Z(Z—H)H IVH? + (¢ + 1)H AH]
—epar - M VAR o
— kH"! [HL}H AJAP = (¢ + 1)“‘;# + e+ 1) +2>M';'l¥”2]
—2ka*‘<V|A|2,V(#)>
— — e VAR + (s — v ) AT+ e IVAP
_ ket Dk ;f;—ilknAFlVle — 2kH! <V|AI2, v (H‘}+1)>'
On the other hand,
<V|A|2,V(H;+1)>=2<VA~A,W>
= %(HVA-A,VH}.

Thus, we conclude that

O —kH* A AP 2% vapR 4+ 2 4 2E-D oy
(’_ ) gt | = ~ g VAl Hz+2 % | M k| |

k(€ + 1)k + €+ DIAZVH]?  4k(€+1)
- H+4—k 4k {

HVA-A,VH).

Consider the function

—2k 5 k(4 D(k+e+ DIAPIVH]? 4k +1)
f= Hi+2— x| VAT = FAk T (HVA-A,VH).
Since
2k(€+1) k(€ +1) 5
g (HYA-AVH) = —mp (VIAF, VH),
|A]* VIAR (¢ + DIAPVH
v e ) T gt H+2 '

@ Springer



152 Geom Dedicata (2014) 172:147-154

it follows that

722(&1,1() (HVA-A,VH) = k(:;:kl) v [V (lﬁfl) € 2z|zﬂ2VH]
_ kgfil) <VH’H, v (ngl»
+ %mﬂwmz.
Consequently,
— T %IAIZIVHIZ
+ kfjll) <VH’<—1, \Y% (ngl )> + 25;;_,1() (HVA-A,VH)
- HZTZf_k |:(HVA - %A : VH)2:| _ 2k +42(€2+]Z__k£ ) |APIVH|?
+ kfjll) <VH’H, \Y (Iﬁfl»
Finally, we complete the proof. O

Corollary 2.4 Suppose k is odd and larger than 2, and H > 0. For the H* mean curvature
flow, we have

L [ADOPPY 2k el |A@t)[? 2k(k — 1) )
(& kH (I)Az) (HT(Z‘)) T <VtH ®),V, (HZk(t))>+ 20 |V H ()]

— . —_— . 2
T () [H() - ViAQ@) — kA1) - ViH(1)]”.

3 Proof of the main theorem

In this section we give a proof of theorem 1.1. For any positive constant Cp, consider the
quantity

lA®)I? e+1
1) = CoH" ™" (1), 3.1
W) = gy + CoH ) (3.1)
where the integer £ is determined later. By (2.4) and Corollary 2.4, we have
a
(5 - ka_l(f)Az) (1)

2
< % (V,Hk“(r), V(1) — Cov,H”l(o)

2k(k — 1)
Hk+2 )

+Mk—e—1xt+nHk”*aHVJHm{

Vi HOP + Co[(€+ DH* 0)]A0P

2k? i 2k?
= (v 0. view) -

i Colk — D€+ DH™20) |V, H (1))
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2k(k — 1)
Hk+2(t)

+ ot + DH @) [ @) = Col™ (0] H* (1)
2K
T k-1

+ |th(:>|2[

+ IV, H(@®)|> + Cok(k — € — 1)(£ + DH*2(6) |V, H(®)|?

(veH* "), vi0)
2k(k — 1)
Hk+2(t)
+ Co(t + DH* ) Q1) — CE e + HH* 21 (g,

— Cok(€ + ) (k + € + 1)H’<+f*2(z)]

Now we choose ¢ so that the following constraints
£+1<0, k+£4+1<0, 3k+2(+1>0

are satisfied; that is

1 3
————k<tf<-1-—k. 32
2 2 - = (3-2)
In particular, we can take
=2 —k. (3.3)
By our assumption on k, we have £k > 3 and hence (3.3) implies (3.2). Plugging (3.3) into
the above inequality yields
k2
(v, viow)
-1
2k(k — 1)  Cok(k + 1)
Hk+2(t) H4(t)
— Col+H* 2 0() + CZA + ) H (). (3.4)

(3 - ka—‘mAz) o) <

ot k

+|v,H<r>|2[

Choosing

2k —1) 5,
Cy = -
O k 1 min

>0 (3.5
where Hpi, := miny H = miny, H(0), we arrive at

2k(k — 1) k=2 k—2 k-2

— < H . “<H 0)<H t

Cok(k +1) — ™ — 0= ®

according to (2.3). Consequently,

d k—1 2k2 k—1
(5 ~ kH (r)A,) 0 = = (vt 0. Vi)

— CH* () 0@ + CLH (1), (3.6)
for Cy := Co(1 + k) and C3 := C§(1 + k).

Lemma 3.1 [fthe solution can not be extended over Ty, then H (t) is unbounded.
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Proof By the assumption, we know that |A ()| is unbounded as t — Tinax. We now claim
that H (¢) is also unbounded. Otherwise, 0 < Hpin < H(¢t) < C for some uniform constant
C. If we set

Cy:=C H* 2, Cy:=Cr,CF3,

min
then (3.6) implies that

9 k-1 2k k-1
o —kH N0, Q(t)§m<VtH ), Vi) = C300) + Ca. (3.7)

By the maximum principle, we have
Q1) = —C3Q(1) + Cy (3.8)

where
Q) := mﬁf}x o).

Solving (3.8) we find that
Cy Ca\ _cy
1< — 0) — — 3
Q) = G +(Q( ) C3)€

Thus Q(t) < Cs for some uniform constant Cs. By the definition (3.1) and the assump-
tion H(t) < C, we conclude that |A(z)| < C¢ for some uniform constant C¢, which is a
contradiction. o

The rest proof is similar to [3,5]. Using Lemma 3.1 and the argument in [3] or in [5], we
get a contradiction and then the solution of the H* mean curvature flow can be extended over

Tmax .
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