MINIMIZING MOVEMENTS FOR MEAN CURVATURE FLOW OF DROPLETS WITH
PRESCRIBED CONTACT ANGLE
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ABSTRACT. We study the mean curvature motion of a droplet flowing by mean curvature on a horizontal
hyperplane with a possibly nonconstant prescribed contact angle. Using the minimizing movements method
we show the existence of a weak evolution, and its compatibility with a distributional solution. We also
prove various comparison results.

1. INTRODUCTION

Historically, capillarity problems attracted attention because of their applications in physics, for in-
stance in the study of wetting phenomena [17, 31], energy minimizing drops and their adhesion proper-
ties [49, 1, 20, 18], as well as because of their connections with minimal surfaces, see e.g. [28, 14] and
references therein.

In this paper we are interested in the study of the evolution of a droplet flowing on a horizontal hy-
perplane under curvature driven forces with a prescribed (possibly nonconstant) contact angle. Although
there are results in the literature describing the static and dynamic behaviours of droplets [2, 50, 12],
not too much seems to be known concerning their mean curvature motion. Various results have been
obtained for mean curvature flow of hypersurfaces with Dirichlet boundary conditions [35, 53, 47, 48]
and zero-Neumann boundary condition [5, 34, 52, 38]. It is also worthwhile to recall that, when the
contact angle is constant, the evolution is related to the so-called mean curvature flow of surface clusters,
also called space partitions (networks, in the plane): in two dimensions local well-posedness has been
shown in [16], and authors of [39] derived global existence of the motion of grain boundaries close to
an equilibrium configuration. See also [43] for related results. In higher space dimensions short time
existence for symmetric partitions of space into three phases with graph-type interfaces has been derived
in [30, 29]. Very recently, authors of [25] have shown short time existence of the mean curvature flow of
three surface clusters.

If we describe the evolving droplet by a set E(t) C 2, ¢t > 0 the time, where Q = R" x (0, +00)
is the upper half-space in R"*!, the evolution problem we are interested in reads as

V =Hgy  on QNIE() (1.1)

where V' is the normal velocity and Hp;) is the mean curvature of OF (t), supplied with the contact
angle condition on the contact set (the boundary of the wetted area):

VE(t) *Ent+1 = ﬁ on 3E(t) N 89, (12)

where vy is the outer unit normal to Q N JE(t) at 0L, and 3 : 92 — [~1,1] is the cosine of the
prescribed contact angle. We do not allow 0F(t) to be tangent to 02, i.e. we suppose |3| < 1—2k on
0Q for some k € (0, %] Following [38], in Appendix B we show local well-posedness of (1.1)-(1.2).

Short time existence describes the motion only up to the first singularity time. In order to continue the
flow through singularities one needs a notion of weak solution. Concerning the case without boundary,
there are various notions of generalized solutions, such as Brakke’s varifold-solution [15], the viscosity
solution (see [32] and references therein), the Almgren-Taylor-Wang [3] and Luckhaus-Sturzenhecker
[41] solution, the minimal barrier solution (see [10] and references therein); see also [37, 26] for other
different approaches.
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In the present paper we want to adapt the scheme proposed in [3, 41], and later extended to the notions
of minimizing movement and generalized minimizing movement (shortly GMM) by De Giorgi [23] (see
also [0, 8]) to solve (1.1)-(1.2). Let us recall the definition.

Definition 1.1. Ler S be a topological space, F : S x S X [1,400) X Z — [—00, +00] be a functional
and u : [0,+00) — S. We say that u is a generalized minimizing movement associated to F, S (shortly
GMM) starting from a € S and we write w € GM M (F,S,7,a), if there exist w : [1,400) X Z — S
and a diverging sequence {\;} such that

lim w(\;, [Ajt]) = u(t) forany t >0,

Jj—+oo
and the functions w(\ k), X\ > 1, k € Z, are defined inductively as w(\ k) = a for k <0 and
F\ k,w\k+1),w(\ k) = migF(A, k,s,w(\ k)) Vk > 0.
sE

If GMM(F,S,7Z,a) consists of a unique element it is called a minimizing movement starting from

a.

In the sequel, we take S = BV (Q,{0,1}), F = Ag: BV(Q,{0,1}) x BV (£,{0,1}) x [1,400) X
Z — (—00, +0o0] defined by

Ag(E, Ey, \) :Cﬁ(E,Q)—l-)\/ dg, dz,
EAEy

where Ey € BV (€,{0,1}) is the initial set, dg, is the distance to 2N JEy and
Co(E,Q) = P(ED) ~ | fxmdH”
o9

is the capillary functional. If 2 = R™ (hence when the term |, aq BxE dH™ is not present), the weak
evolution (GMM) has been studied in [3] and [4 1], see also [45] for the Dirichlet case. Further when no
ambiguity appears we use GM M (Ey) to denote the GMM starting from Ey € BV (€, {0,1}).

After setting in Section 2 the notation, and some properties of finite perimeter sets, in Section 3 we
study the functional Cg(-,2) and its level-set counterpart Cg(-,€2), including lower semicontinuity and
coercivity, which will be useful in Section 6. In particular, the map E — Ag(FE, FEo, \) is LY(f)-
lower semicontinuous if and only if ||8]cc < 1 (Lemma 3.6). Although we can also establish the
coercivity of Ag(-, Ey, A) (Proposition 3.3), compactness theorems in BV cannot be applied because
of the unboundedness of 2. However, in Theorem 4.1 we prove that if Ey € BV (€,{0,1}) is bounded
and ||f|lc < 1, then there is a minimizer in BV (€2,{0,1}) of Ag(:, Ey, ), and any minimizer is
bounded. In Lemma 4.6 we study the behaviour of minimizers as A — +oco. In Proposition 4.4 we
show existence of constrained minimizers of Cs(-,(2), which will be used in the proof of existence of
GMMs and in comparison principles. In Appendix A we need to generalize such existence and uniform
boundedness results to minimizers of functionals of type Cs(-,{2) 4+ V under suitable hypotheses on V.

In Section 5 we study the regularity of minimizers Ag(-, Fo, A\) (Theorem 5.3). We point out the
uniform density estimates for minimizers of Ag(-, £, A) and constrained minimizers of Cg(-,2) (The-
orem 5.1 and Proposition 5.7), which are the main ingredients in the existence proof of GMMs (Section
7), and in the proof of coincidence with distributional solutions (Section 8).

In Section 6 we prove the following comparison principle for minimizers of Ag(-, £y, A) (Theorem
6.1): if Eo, Fy are bounded, Eo C Fy, ||51]|ocs [|52]lcc < 1 and 1 < B2, then

a) there exists a minimizer FY of Ag, (-, Fo, \) containing any minimizer of Ag, (-, Eo, \);

b) there exists a minimizer Ey, of Ag, (-, Eo, \) contained in any minimizer of Ag, (-, Fo, \);
if in addition dist(Q N 0Ey, Q2 N 0Fy) > 0, then any minimizer Ey and F\ of Ag, (-, Ey,\) and
Ap, (-, Fo, \) respectively, satisfy Ex C Fy. Asacorollary, we show thatif ET is a bounded minimizer
of Cs(+,€2) in the collection £(E™) of all finite perimeter sets containing E, and if ||f]|~c < 1, then
forany Ey C ET, aminimizer E) of Ag(-, Ey, \) satisfies Ex C E™ (Proposition 6.11).

In Section 7 we apply the scheme in Definition 1.1 to the functional Ag(-, Ep, \): as in [41, 46]
we build a locally %—Hdlder continuous generalized minimizing movement ¢ € [0, +o0) — E(t) €
BV (9Q,{0,1}) starting from a bounded set Ey € BV (£2,{0,1}) (Theorem 7.1). Moreover, using the

results of Section 6, we prove that any GMM starting from a bounded set stays bounded. In general,
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for two GMMs one cannot expect a comparison principle (for example in the presence of fattening).
However, the notions of maximal and minimal GMMs (Definition 7.2) are always comparable if the initial
sets are comparable (Theorem 7.3). This requires regularity of minimizers of Ag(-, Ep, A) and Cs(-,(2),
see Sections 4 and 5. Finally, in Section 8 we prove that, under a suitable conditional convergence
assumption and if 1 < n < 6, our GMM solution is, in fact, a distributional solution to (1.1)-(1.2).

2. SOME PRELIMINARIES

2.1. Notation. yp stands for the characteristic function of the Lebesgue measurable set F' C R"*!
and |F| denotes its Lebesgue measure. The set of L'(§2) -functions having bounded total variation in
an open set 2 C R"! is denoted by BV (Q), and

BV(Q2,{0,1}) :={ECQ: yr € BV(Q)}.

Given E C BV(Q,{0,1}) we denote by P(E,Q) the perimeter of E in Q, ie. P(E,Q) :=
Jo|DxE|, by 0*E the essential boundary of E, andby vg(z) the measure-theoretical exterior normal
to E at x € 0*F. Since Lebesgue equivalent sets in {2 have the same perimeter in {2, we assume that
any set E C () we consider coincides with the set

re R lim wzl
r—0+ |B(z)]

of points of density one, where B,.(x) is the ball of radius r > 0 centered at x. Recall that 9*E = JF.
For simplicity, set P(E,R"*1) = P(E). We say that £ C R"*! has locally finite perimeter in R"*!,
if P(E,Q) < +oo for every bounded open set ' C R"™*!. The collection of all sets of locally
finite perimeter is denoted by BVi,.(€2, {0,1}). We refer to [33, 7] for a complete information about
BV -functions and sets of finite perimeter.

For a fixed nonempty Ey € BV (€,{0,1}) set

E(Ey) :={E € BV(Q,{0,1}): Ey C E}, (2.1)
which is L!(£2) -closed.

Given p >0 and [ > 0 let C/l) = Bp x (0,1) stand for the truncated cylinder in R™*! of height I,
whose basis is an open ball Bp C R™ centered at the origin of radius p > 0; also set §; := R" x (0,1).

2.2. Some properties of sets of finite perimeter. By [2 1, Theorem II], forevery E € BVj,.(€, {0, 1})
the additive set function O fo |Dx | defined on the open sets O C ) extends to a measure
B [5|Dxg| defined on the Borel o -algebra of 2. Moreover, P(-,Q) is strongly subadditive, i.e.

P(ENF,Q) + P(EUF,Q) < P(E,Q) + P(F,Q) forany E,F € BV(Q,{0,1}).  (2.2)

Let © be an open set with Lipschitz boundary and E € BVj.(R™"! {0,1}). We denote the interior
and exterior traces of the set £/ on 02 respectively by XE’ and x5 and we recall that X% € LllOC (09).
Moreover, the integration by parts formula holds [21]:

/XE divgdr = — / 9-Dxk +/ (X = Xp)g-vadH"  Vge CHRM™LR™),  (23)
Q Q [2)9]

where vq is the outer unit normal to 9f).
If V C Q is an open set with Lipschitz boundary, then

P(E.Q) = P(E,V) + P(E,Q\T) +/ IXh — x| dH™
Qnov
The trace setof £/ C 2 on 0f is denoted by Tr(E). With a slight abuse of notation we set x1v(g) =
xE- Note that
P(E,Q):= P(E,Q) + / xXgdH" = P(E).
o0

In general, even if E € BV(Q,{0,1}), the traces x5 are in L. _(99Q), but not in L'(0R). For
+00

instance, if 0 = (R X (O,—i—oo)) UACR?and A= {J (m—-2zm+ ) x (=1,0], then
m=2
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E = A € BV(9,{0,1}), whereas H!(Tr(E)) = +oo. In Lemma 2.1 we show that xp € L'(99)
forany £ € BV(£2,{0,1}), provided that 2 is a half-space.

From now on we fix © := R" x (0,+400); we often identify 92 = R™ x {0} with R", so that
E C 02 means £ C R”, and 7 : {2 — 0f) denotes the projection

(T, xpy1) =&, == (2, 2p41) € Q.

2.3. Controlling the trace of a set by its perimeter. The following lemma shows that the L'(092) -
norm of the trace of E € BV (Q,{0,1}) is controlled by P(E, ().

Lemma 2.1. Forany E € BV (£,{0,1}) and for any 3 € L*>°(0N) the relations

/ BxedH"
o
hold. In particular, P(E) < +o0.

< /Q 80| |Dxg| < 1Bl P(E, ). 2.4)

Proof. The last inequality of (2.4) is immediate. The first inequality is enough to be shown for 5 > 0.
Step 1. If 3 is locally Lipschitz, then (2.4) follows from the divergence theorem. Indeed, suppose
that supp (8) is compact. Since div((5 o m)e,+1) = 0, we have

0= / div((Bom)ent1)dx = (Bom)vg - ept1 dH" — Bxe dH".
E QNo*E oN

Hence nonnegativity of g implies that

/ BXEdH"S/ Bowd%":/ﬁoﬂ|DXE]. (2.5)
o0 QNo*E Q

If supp (8) is not compact, we use 7 (|z|)B(x) in (2.5) instead of [(x), where 7 : [0,4+00) —
[0,400) is Lipschitz, linear in [k,k + 1], m = 1 in [0,k] and 7 = 0 in [k + 1,+00). Now (2.4)
follows from the monotone convergence theorem. In particular, when S =1 we have

P(E) = P(E,Q) + /SQ XedH" < 2P(E, Q).

Step 2. Assume that 3 = x; for some open set O C 9. Consider a sequence {fj} of nonnegative
locally Lipschitz functions converging H™ -almost everywhere to 3 on 02 such that 8y < 8 and

supp B C O. By Fatou’s lemma and Step 1 we get

BxpdH" < liminf BexpdH" < liminf/ Brom|Dxg| < / Bom|DxEg|
90 k—+oo Jo0 k—+oco J Q

Step 3. Assume that 3 = x 4, where A C 99 is a measurable set. Fix ¢ > 0, a closed set K C A

such that H"(A \ K) < ¢ and a decreasing sequence {O;};>; of open sets such that (| O; = K.
1>1
Using Step 2 for every [ > 1 we establish

/ XpdH" < / XpdH" + ¢ < / XpdH" +¢ < /  |Dxsl + <. 2.6)
A K O; 7=1(Oy)

Since P(E,2) < +o0, there exists h. > 0 such that for any h > h. one has

/ |DxE| < e.
" [h,+00)

Thus, for any h > h. and [ > 1 we have

/ AerEs/A |D><Er+/ |DxErs/ Dxe| +<.
ﬂ—_l(ol) OlX(07h) RnX[h,+OO) OlX(07h)

This and (2.6) imply

/XEdH" < / |Dxp|+ 2e. 2.7)
A O1x(0,h)
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In addition

lim [ |IDXE| Z/ |DxEl S/ _ |Dxgl Z/X;gOﬂDXE!- (2.8)
l=+00 /O, x(0,h) K x(0,h) T~ 1(K) Q

From (2.7)-(2.8) and the inequality x z < x ; we obtain

/AXEd’HHS/XAOW‘DXE|+28’
A Q

and arbitrariness of ¢ implies the assertion.
Step 4. If 5 = Z CiX A, G > 0, where A are disjoint measurable subsets of 9, then the
‘77
result follows from Step 3. Finally, if 5 € L°°(0€) is any nonnegative function, as in the proof of Step
2, approximation of § with an increasing sequence of step functions and Fatou’s lemma conclude the
proof. O

From Lemma 2.1 it follows that E € BV (£2,{0,1}) if and only if E € BV (R"*! {0,1}).
Remark 2.2. If v € BV(f2), then its trace belongs to L(92). Indeed, it is well-known that

+oo
/\u\dw-/ /X{u<t} dxdt+/ /x{u>t} ) dxdt, (2.9)

/|Du| / P({u < t},9) dt+/ P({u>t},Q)dt, (2.10)

in particular, {u > t},{u < s} € BV(Q) forae. t >0 and s < 0. Using (2.4) with 5 = 1, for a.e.
t>0and s <0 we get

/BQ X{ustydH™ < P({u > t},9Q), /BQ X{u<s}dH" < P({u < 5},9Q)

and we obtain
/ |u|cm"g/\pu|.
o0 Q

Notice that for every 5 € L>°(0f2) one has also
0 400
BudH" = —/ / BX {u<t} dH"dt + / / BX{u>t) dH"dt. (2.11)
o0 —o0 JOQ 0 o0
The following lemma is the analog to comparison theorem in [6, page 216]'.

Lemma 2.3. Let E € BV (Q,{0,1}) and H C R""! be a closed half-space such that vy - ;11 > 0.
Then

P(E,Q) > P(ENH,Q). 2.12)

Proof. Note that if vy = e,41 then (2.12) follows from [6, page 216]. So we assume that vy - epyq €
[0,1). Translating if necessary we may suppose that 0 € 0H N 9Q. Let (9Q N OH)L denote the 2-
dimensional subspace orthogonal to 92 N 0H, which is spanned by vy and e,4;. Take a unit vector
v € (0QNOH)* suchthat v-vg =0 and v -e,1 < 0 andlet L C R**! be the open halfspace of
R such that vy, = v. Notice that by construction, [0 XEnrdH™ = [ XEnrdH", therefore

P(E,Q) — P(ENH,Q) = P(E,QN L) + P(E.Q\ L) + / XL — oL |dH”
QNOL

P(EﬂH,Q)ZP(E,QﬂL)Jr/ XEnLdH" — [P(EQH,Q)+/ XEdeHn]
o0 o0

=P(E,L)— P(ENH).

YFor any E € BV(R™*! {0,1}) and any closed convex set C' C R™"! the inequality P(E N C) < P(E) holds;
equality occurs if and only if |E\ C| =0.
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Hence, we need just to show

P(E,L) > P(EN H). (2.13)
Since E N H C L we have
P(E,L)=P(E,H)+P(E,L\ H) + / IXEnH — XEA(L\H)| dH" (2.14)
QNOH
and
P(ENH)=P(E,H) +/ YEnm dH", (2.15)
QNOH

where H is the interior of H. Applying Lemma 3.2 below with Q :=R"*'\ H, =1, A=L\H
and 7 the orthogonal projection over OH (so that 7—!(m(A4)) N Q) = A), using also E C Q we get
P(E,L\ H) > / XEn\H)dH" —/ XEn(L\H)dH". (2.16)
OH QNOH
Now (2.13) follows from (2.14)-(2.16) and the inequality |a — b| > a — b. O

Corollary 2.4. Let Ey be a closed convex set such that vg, - ep41 > 0 H"-a.e. on QN OEy. Then
P(Ey, Q) < P(E,Q) forevery E € E(Ey).

Proof. Since Ej is convex, we can choose countably many {z;} C QN0*Ey, densein QNIEy, such
that
EO = ﬂ H:Eja
j=1

where H,, is the closed half space whose outer unit normal is v, (z;). Then an inductive application
of Lemma 2.3 and the lower semicontinuity of perimeter imply the assertion. U

3. CAPILLARY FUNCTIONALS

Let 5 € L>(0N). The capillary functional Cg(-,€2) : BV (£2,{0,1}) — R and its “level set” version
Cs(-,Q) : BV(Q) — R are defined as

Cs(E,Q) := P(E,Q) — | BxpdH", (3.1)
o0

and
Cs(u, ) ::/ | Du| — BudH",
Q o

respectively. Note that Cg(-,Q) is convex, Cg(u,f?) = C_g(—u,Q) for any v € BV(Q), and
Cs(E,Q) = Cp(xr, ) forany E € BV (,{0,1}). Moreover, when ||3||oc < 1, by (2.4) the func-
tional Cg(-,€?) is nonnegative, and the same holds for Cg(-,{2) as by (2.9)-(2.11) one has

0 +00
cﬁ(u,g)z/_ C_s({u<t},9) dt+/0 Co({u > t},Q) dt. (3.2)

The functional Cg(-,€2) will be useful for the comparison principles (Section 6).

Remark 3.1. If 5 € Lip(9Q2) N L*>°(91), then div(S o me,+1) = 0 and hence, for any u € BV ()
one has

/ BudH" = —/ Boment - voudH"™
oN oN

=— / div(B o mep41)udx + / BomDpyiu = / BonDyiiu,
Q Q Q

where D,,1u is the (n + 1) -st component of the vector measure Du. Hence, the functional Cs(,2)

can also be represented as
D +1U
C(u,Q):/(l—ﬂOW s )\Du!
’ 0 Dl
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3.1. Coercivity and lower semicontinuity. The next lemma is a localized version of [18, Lemma 4],
which is needed to prove coercivity of Cg(-,€2) and Cg(-,§2) and will be frequently used in the proofs
(see for example the proofs of Theorem A.3 and Theorem 5.1).

Lemma 3.2. Assume that ||f|lcc < 1 and E € BV (Q,{0,1}). Then for any open set A C Q with
A € BVioe(R"1{0,1}) and

" ([W_l(ﬂ(A)) \AlNQn a*E) —0 (3.3)
the inequality
1 _ o
PEA) ~ [ pxmaant > TS0 [P(E,A> + [ xena d%"] (34
oN oN

holds.
Proof. Let us first show that if F C Q has locally finite perimeter in R"*!, then

XF < Xa(r) H"-ae. on 0Q. (3.5)

Set G := {& € Tr(F) : Xrx(F)(Z) = 0}. For any ¢ > 0 take an open set O C 99 such that G C O
and H"(O \ G) < e. Since H"(n(F)NG) =0, one has
]Fﬂﬂ'il(G)| :/ - xrdz :/ dxn+1/XF(£,xn+1)dH"(i)

= 1(G) 0 G

+oo N +oo ~
= HY(GN{(%,0): (T,2ps1) € F})dopi1 = H"(GN7r(F))dx,1 = 0.
0 0

Let Bp C R"™ denote the ball of radius p > 0 centered at the origin. Recall that for any v > 0 the
following estimate [33, page 35] holds:

N . 1
/ A XFdH”<P(F,(OﬁBp)><(O,’y))+/A R XFdr.
OnB, Y J(ONB,)x(0,7)

1 1
—I—/A R xpda:+/AA R XF dx
T J(GNB,)x(0,7) 7 J(O\G)NB,)x(0,7)

<P(F.0 x (0,7)) + }y FOr(G) + H O\ G) < P(F,O x (0,7)) + .

Now letting ¢,v7 — 07 we get H"(G N B’p) = 0 and (3.5) follows from letting p — —+o00.
We have

1+Bom 1+8om 1+fBom
/Xw(A)O77|DXE’ =/ —— |Dxg&l =/ —— |Dxa&l, (3.6)
9 2 Ti(n(a) 2 A 2
where in the second equality we used (3.3). Moreover, from (3.5) with F' = A we get
1+ n 1+ n 1+ n
/ IBXEOA dH =/ XA v XEdH" < / Xr(A) v XE dH". (3.7
oo 2 o9 2 o9 2

Now, using Lemma 2.1 with 8 replaced with (1 + )X (4)/2, from (3.6) and (3.7) we obtain

1+ 14+ 3o
/ IBXEHA dH" S/ 1+fom |IDx g (3.8)
o0 2 A 2
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Finally, adding the identities

1—Bom 1+Bom
PEA) = [ 1Dxel = [ =7 T 1Dxel+ [ ST (D,
A A A

2
n 1-— n 1+ n
—/ Bxpadi = [ 220\ poaan —/ LB enadir,
00 o0 2 o0 2
and using (3.8) we deduce
1—Pom —
PEA) - [ pxeadn = [0 Dl + [ 2 P veaane,
o0 A 2 o0 2
This relation yields (3.4). O

Proposition 3.3 (Coercivity of the capillary functionals). If —1 < 8 <1 —2x H" -a.e. on 0S) for
some K € [0, 3], then

kP(E) < Cs(E,Q) < P(E) VE € BV (Q,{0,1}). 3.9
Moreover, if ||B|loc < 1— 2k for some k € [0,3], then
m/]Du\ <Cs(u,) < /\Du| Yu € BV (Q). (3.10)
Q Q
Proof. The inequality kP(E) < Cg(£,Q2) follows from Lemma 3.2 with A = 2. Moreover, it is
immediate to see that
18l <1 = Cp(E,Q) < P(E) VE € BV (Q,{0,1}). 3.11)

Now (3.10) follows from the inequalities

KP({u < .9) 4 & | Xuey M < Coalfu < 11.9) < PUu <t D)+ [ xucy di”
a0 a0
fora.e. t <0 and
kP({u>t}, Q)+ /i/ X{usty AH" < Cs({u > t},Q) < P({u > t},Q) +/ X{ust} dH"
a0 a0

for a.e. ¢ > 0, from (2.9)-(2.11), (3.2) and by [33, Remark 2.14], possibly after extending u to 0
outside (). O

Remark 3.4. From the proof of Proposition 3.3 it follows that if v > 0, then (3.10) holds for any
B e L>*(0Q) with —1 < g <1 —2k; if u <0, (3.10) is valid whenever —1 + 2x < 5 < 1.

Remark 3.5. If 3 > 1 on a set of infinite /" -measure, then Cg(-,£2) is unbounded from below. Note
also that if ||3|loc < 1, then ) is the unique minimizer of Cg(-,Q) in BV (£,{0,1}). Indeed, clearly,

_ Q) — . E. Q).
0=Co0 )= min | CH(E.9)

If there were a minimizer E # () of Cg(-,(2), there would exist / > 0 such that |E \ €;| > 0. Now
since Tr(E) = Tr(E N ), by [6, page 216] we have

0=Cs(E,Q) >Cs(E NnQ;, Q) >0,
a contradiction.

Lemma 3.6 (Lower semicontinuity). Assume that f € L*(02). Then the functionals Cs(-,§) and
Cs(+, ) are LY(Q) -lower semicontinuous if and only if ||8]|oo < 1.

Proof. Assume that ||3|loc < 1. In this case the lower semicontinuity of Cg(-,€2) is proven in [I8,
Lemma 2]. Let us prove the lower semicontinuity of Cg(-,€2). Take ux,u € BV (Q2) such that u; — u

in L'(Q). By (2.9) we may assume that [, [{ur < t}A{u < t}|dz — 0 as k — 400 forae. t € R.
8



Then using the nonnegativity of summands, the lower semicontinuity of Cs(-,{2) and Fatou’s Lemma in
(3.2) we establish

0 +o0o
> T i o
lim inf Cg(ug, 2) _lligirolf/_oo C_p({ur < t},9) dt+l]§§i€of/0 Co({ur > t},Q)dt

k—+o0

0 —+00
> liminf C_ t},Q)dt lim inf t},Q)dt
> [ tmintosttue <eh@)atr [ fmin ot > 0.9

—00

0 400
Z/OOCB({u<t},Q) dt—i—/o Cs({u > t},Q) dt = Cp(u, Q).

Now assume that HBHOO > 1, i.e. theset {& € 90 : |B(Z)| > 1} has positive H" -measure. Let for
some ,80 > 0 theset A := {8 > 1+¢} satisfy |A| > 0p. By Lusin’s theorem, for any &k > 4”5”“’
there exists 8y € C(09) such that H"({8 # Br}) < + and || Bklsc < [|Blloc- Let k be so large that
H"({Br > 14 €}) > dp/2 and choose an open set O C {fr > 1+ ¢} of finite perimeter such that
0/4 < H™"(O) < +o0. Define the sequence of sets B, := O x (0 L) c Q. Cleatly, E,, — 0 in

LY(Q) as m — +oo. Then, indicating by P(O) the perimeter of O in R", from the relations
Co(E, Q) =~ P(O) + H(O / BaH™
I
< PO)+#(0)— [ e+ [ 15— pula”
<L P(0) ~ eHMO) + 2BH (O N {6 # i) < - P(O) — 2
m o MU= 47’

we establish 5,
liminf Cg(Ep,, Q) < 7 < 0=Cg(0,Q).

m—-+00
Since Cg(xE, ) = Cg(F, ), one has also hm}rnf Cs(XEn, ) <0=7Cg(0,9). Hence Cg(-,2) and
m—+00
Cs(+, Q) are not L'(£2) -lower semicontinuous.

Finally, let for some €,8; > 0 the set B := {# < —1 — ¢} satisfy |B| > §;. Again by Lusin’s
theorem for any | > % there exists 3, € C(09) such that H"({8 # Bi}) < 1 and ||B]jec <
[Blloc- We may choose [ so large that H" ({8 < —1 —e}) > 61/2. Let us choose an open set
U C {p; < —1 — &} of finite perimeter such that §;/4 < H"(U) < +oo. Now define the sequence of
sets Fr, == U x (£,14+ 1) C Q. Clearly, F,,, = F :=U x (0,1) in L'(€) as m — 4oc. Then
from the relations

Cs(Fm, Q) =P(U) + 2H"(U) = Cs(F, Q) + H"(U /&mn

<CH(F.Q) + /U (1+ B)dH" + /U 18— BlaH”

n n 5
<Cy(F, Q) — eH"(U) +2[|B8llocH" (U N {B # Bi}) < C3(F, Q) — 41,
we establish 5
lim inf Cy(Fyn, 2) < C5(F.2) - %1 < C4(F,9).
m—r—+0Q
In particular, }}fgf{l}f} Ca(XF,., ) < Cg(xF, ). O

Remark 3.7. If Q is an arbitrary bounded open set with Lipschitz boundary and ||| < 1, then
the lower semicontinuity of Cg(-,{2) is a consequence of [4, Theorem 3.4]. In this case Cg(-,?) is
bounded from below by —H™(0f2). Hence again Fatou’s lemma and (3.2) yield lower semicontinuity
of Cg(', Q)

9



4. CAPILLARY ALMGREN-TAYLOR-WANG-TYPE FUNCTIONAL

In the sequel, for a given nonempty set F' C €2, dp stands for the distance function from the boundary
of OF in Q:
dr(z) = dist(z, QN IF).
The function
~ —d if x € F,
dp () := r() .
drp(z) ifzxeQ\F,
is called the signed distance function from OF in ) negative inside F. The distance from the empty

set is assumed to be equal to +oo.
Notice that for E, F C Q, F # (),

/ dpdx:/ JFdx—/ JFdx:/JFdx—/JFdx, @.1)
EAF E\F F\E E F

provided drpdz < +00. Moreover, we assume / dpdx := 0 whenever |[EAF| = 0.
ENF EAF
Given € L>®(0R), Ey € BV(Q,{0,1}) and A > 1, recalling the definition of Cg(-,Q2) in
(3.1), we define the capillary Almgren-Taylor-Wang-type functional Ag(-, Eg,A) : BV (Q,{0,1}) —
[—00, +00] with contact angle /3, as

Aﬁ(E, Ep,\) := Cﬁ(E, Q)+ A dg, dx, 4.2)
EAEy
so that
Ag(E, Eg, \) =P(E, Q) + A / dgydz — [ BxepdH™ — A / dg, dx 4.3)
E o0 E

0

whenever / dg,dx < +oo.
ENEy

4.1. Existence of minimizers of the functional Ag(-, Ey, \). We always suppose that A > 1 and in
this section we assume that

Ey € BV(9,{0,1}) is nonempty and bounded , 44)
B e L®0Q)and 3k € (0,4]: =1 < B < 1— 2k H"-a.e on ON. '

Hence, there exists a cylinder CH = Bp x (0, H) containing Ej whose basis is an open ball Bp CR"
of radius D > 0 and height
H=1+max{zp41: == (2,2n41) € Ep}.
Define

n+1
P(EN\
Ry := Ro(n, k, Ey) = D + 1 + max {8”2+"+1 <(0)> ; 4M(H,n)}, 4.5)
K
where u(k,n) = (1/k + 2)nTH . The proof of the next result is essentially postponed to Appendix A,
since the main idea does not differ too much from [18].

Theorem 4.1 (Existence of minimizers and uniform bound). Suppose that (4.4) holds. Then the

minimum problem

inf E, Ey, )\ 4.6
Eerl&,{o;})Aﬁ(  Eo, A) (4.6)

has a solution E) . Moreover, any minimizer is contained in Cgo .
Proof. Let f = )\CZEO and
Vi BV(Q,{0,1}) = (—00, 400, V(E) ;:/ fda.
E

Then V satisfies Hypothesis A.1 and by Remark A.4 Rg < Ry. Now the proof directly follows from
Theorem A.3. ]
10



Remark 4.2. If Ey = (), then (4.6) has a unique solution E) = (). Moreover, for some choices of
A>1and ) # Ey € BV(Q,{0,1}), the empty set solves (4.6). For example, let B, be the ball
centered at x such that x,, 11 > 4p + 4. If \p < n, then as in [19, 1], one can show that E) = () is
the unique minimizer of Ag(-, B,, A).

Remark 4.3. Let F' minimize Ag(-, Ep, A) in BV(C’{.%’O7 {0,1}). Then F is an unconstrained mini-
mizer, i.e.

F Ey, \) = i E. Eg, \). 477
Ag(F, Eo, \) EeB\i’r(lSllr,l{O,l})Aﬂ( , Eg, A) 4.7

Indeed, let E) be any minimizer of Ag(-, Ko, A). Clearly, Ag(F, Eo,\) > Ag(E\, Eo, A). On the
other hand, by Theorem 4.1 E), C C’go and by minimality of F' in C’gg we have Ag(F, Ep, \) <
Ag(Ey, Eo, \), which implies (4.7).

Recalling Remark 3.5 and definition (2.1) of £(Ey) we have also the following result.

Proposition 4.4 (Existence of constrained minimizers of Cg). Under assumptions (4.4) the con-
strained minimum problem

inf C3(E,Q 4.8
EEBV(Q,{(I)%}),EES(EO) ’8( ) ( )

has a solution. In addition, any minimizer E* satisfies ET C CHO, where Ry is given by (4.5), and
E™ is also a solution of

in Cs(E, Q).
BeBV(Q,{0,1}), EE(E+)
Proof. Set
0 if Ee&(E),
V:BV(Q,{0,1}) = [0, 400], V(E):= : 4.9
(©.{0,1)) = [0, Focl, - V(E) {—i—oo if E € BV(Q,{0,1})\ £(Eo). 9

Then V satisfies Hypothesis A.l1 and Ry < Ry. Now existence of a minimizer ET of Cs(-,Q) in
E(Ep) and the inclusion B C C’go follow from Theorem A.3. To show the last statement we ob-
serve that the inclusion Ey C ET implies E(E1) C £(Ey). Hence the minimality of E™ yields the
inequality Cg(E1,Q) < Cg(E,Q) forany E € E(ET). O

Solutions of (4.8) will be called constrained minimizers of Cg(-,€2) in E(Ep).

Example 4.5. Suppose that Ey C 2 is a closed convex set so that vg, - e,41 > 0 H™-ae. on
Q2N 0Ey. Then for every 3 € L>(0Q,[—1,0]) the set Ejy is a constrained minimizer of Cg(-,{2) in
E(Ep). Indeed, by Corollary 2.4 P(Ey, Q) < P(E,Q) forall E € E£(Ey), therefore

Cs(E, Q) — Cs(Eo, Q) = P(E,Q) — P(Ey, Q) + /89(—,8)XE\EOd’H” > 0.

The following lemma shows the behaviour of E) as A — +oo.

Lemma 4.6 (Asymptotics of E) as time goes to 07 ). Assume (4.4) and |Eq \ Eo| = 0. Then any
minimizer E)\ satisfies:
a) lim |E\AE| =0,
A—400
b) lim Cg(E\, Q) = Cs(Ey, 2
) Hm Cs(E) Q) = Cs(Eo, Q)

c) ,\ETOO)\IEAAEO dg, dr = 0.

d) if [|Bllec < 1, then QN OE) K QNOEy as A — 400, where K denotes Kuratowski
convergence [40].

Proof. a) We have
IQP(EA) < Aﬁ(E)\, Eo, )\) < .AB(E(), Eo, )\) = CB(EO, Q) < P(E(])
Moreover, from Ag(E\, Ey, A\) < P(Ep) and (2.4) we get /\fEAAEO dg, dz < P(Ep), hence

lim dg, dz = 0. (4.10)
A—400 E,\AE,
11



Recall from Theorem 4.1 that £ C Cgo for all A > 1. Hence, by compactness, from every diverg-
ing sequence {\;} we can select a subsequence {)\;, } such that

Ey, = Ex in L'(Q)

for some F, € BV(C};IO, {0,1}). From (4.10) we deduce that onoAEo dg, dr = 0, and thus, since

dg, > 0 and by assumption |Ep \ Eo| = 0, we get |EoAEy| = 0. Now arbitrariness of {)\;} implies
a).
b) Clearly, Cs(Ey, Q) < Ag(E\, Eo, A) < Cg(Eo,?) forall A > 1. Then by a) and by the L*(12) -
lower semicontinuity of Cg(-,{2) (Lemma 3.6) we establish
Cg(E[), Q) < liminfcﬁ(E)\, Q) < thllng(E/\, Q) < CB(E(), Q),

and b) follows.
c) follows from b) and nonnegativity of A f E\AE, dg, dx, since

lim sup)\/ dp, dz < lim [Cg(Eo,$2) — Cs(Ex, Q)] = 0.
E\AE, A—+00

A——+0o0

d) It suffices to show that every diverging sequence {);} has a subsequence {\’} such that

J—+oo

K — lim QA0Ey = QNJE,

Choose any sequence A\; — +oo. By compactness of closed sets in Kuratowski convergence [40, page
340], there exists a closed set C' C  such that up to a not relabelled subsequence W@E’AJ K ¢
as j — +oo. Let us show first that QN JEy C C. Take any = € R"*!\ C'; we may suppose that
z € Q. Since C is closed, there exists aball B,(x) such that B,(x)NC = (). Since QN IE), 5 C as
j — oo, wehave B,(x)NQNJEy;, = for j > 1 large enough. Therefore, P(E);, B,(2)N$2) = 0,
and by a) and lower semicontinuity, P(Ep, B,(x) N ) = 0. This yields B,/5(x) NQNIEy = () and
thus R"1\ C C R"™\ QN OE,.

Now suppose that there exists © € C \ QN OEy. Then there exists p > 0 such that B,(z) N
QNOEy = 0. Since z € C, there exists z; € QN OE), suchthat z; — x. Choose j € N so large
that z; € B,/ (x) and R(n, /<a)/\j_1/2 < p/4, where R(n, k) is defined in (5.2). By Proposition 5.5
below, we have

On the other hand, by construction, dg,(z) > <> Which leads to a contradiction. This yields C C
QN oKy, and d) follows. 0

5. DENSITY ESTIMATES AND REGULARITY OF MINIMIZERS

In this section we assume that

Ey € BV(€,{0,1}) is nonempty and bounded , 5.1)

BeL®0Q) and Ik € (0,3]: [|8]lc <1 — 2. '
Define

1
nts3 Wn +(n+ 1wy, 2 K(n+1

R(n, k) = (2 +3 ( n+)1 “) L v(n, k) = : ( ) . (5.2

Wnt1k VR(n, k)2 +4k(n+ 1) + R(n, k)

and
+1 n
Cn,k):=(n+ Dwpt1 + 2w, + % Wntl, ¢(n,K) = cpi1 (g) , (5.3)

where ¢, is the relative isoperimetric constant for the ball. The aim of this section is to prove the
following uniform density estimates for minimizers of Ag(-, Ey, A), needed to prove regularity of min-

imizers (Theorem 5.3) and Proposition 5.6.
12



Theorem 5.1. Assume that Ey and [ are as in (5.1) and E\ € BV (,{0,1}) is a minimizer of
Ag(-, Eo, A). Then either Ex =) or

K\ n+1 ’E)\QB( )| K\ n+1
i A 7\l 1 (2
(4) T wpprttt T ! (4) ’ >4)
c(n, k) < P(E)‘;JW < C(n,k) (5.5)
forevery x € OE\ and r € (0, Vi?/';)) In particular,
HP(DE\\ 9" Ey) = 0. (5.6)

We postpone the proof after several auxiliary results. First we show a weaker version of Theorem 5.1;
the difference stands in that Proposition 5.2 holds for r < O(%) and O(%) depends on FEj, whereas

Theorem 5.1 is valid for r < O(,\1/2) and O(Auz) is independent of Ej.
Proposition 5.2. Under the assumptions of Theorem 5.1, setting

A = A\, n, k, P(Ep)) = Adiam(Bp, gy 41 % (=1, H 4+ 1)),
K n+1)

for any nonempty E\, x € OE) and r € (0, min{1, }), the density estimates (5.4)-(5.5) hold.

Proof. For completeness we give the full proof of the proposition using the methods of [41, 46]. We
recall that one could also employ the density estimates for almost minimizers of the capillary functional
(see for instance [24, Lemma 2.8]).

Set 7o := min{1, = ”H 1 and fix = € 9*Ey. Let B, := B,(z) be the ball of radius 7 € (0,70)
centered at x, we can choose r such that

H™(OB, NOE,) = 0.

First we show that F/, satisfies
kP(ExN By) < 2H"(ExNdB,) + A|Ey N By. (5.7)
Comparing Ag(Ey, Ey, \) with Ag(Ey \ B,, Ey, \), fora.e. s € (r,79) we establish

P(Ex, B;NQ)— / BXE\nB, AH" + ) / dg,dy
BN E\NDBy

<P(E\,(Bs\ B,) N Q) +H"(E\NOIB,).
Sending s — 7 we get
P(E\,B,NQ) — / BxE, dH™ + X / dp,dy <H"(Ex N dB,). (5.8)
B,NoQ E\NB,

By Theorem 4.1 E) C Cgo and thus, since g < 1, forany y € B,

Mdg, (y)| < Adiam(Bpiry41 X (=1, H +1)) = A. (5.9)
Moreover, using (3.9) for Ey N B, we get (5.7):

kP(ExN B,) <P(E\, B, NQ) +H"(E\N0B,) — / Bxp, dH"
B,-NoN

SZH”(E/\ N 8BT) + A|E)\ N BT|

Now by the isoperimetric inequality,
L n
P(ExNB,) > (n+ w11 |Ex N B |71, (5.10)
Set m(r) := |E)\ N B;|. Then m is absolutely continuous, m(0) = 0, m(r) > 0 forall » > 0 and
m/(r) = H"(E\xNJIB,) forae. r € (0,79). Consequently, (5.7) and (5.10) give
1 n n
k(n + Dw S im(r)nT < 2m/(r) + Am(r) = 2m'(r) + Am(r) 75 im(r) 1. (5.11)
13




(n+1)

Since m(r) < wypy1r™tt and r < ”T, from the last inequality we obtain

K 1

7 (D Bm(r) 7T < ml(r).

Integrating we get the lower volume density estimate

+1
m(r) > (g)n W Y e (0,19).

Let us prove the upper volume density estimate in (5.4). Since Ey C Q if x € 002 N 0*FE), the
inequality
|IBr\ Ex\| _ 1 (m)nﬂ
2 > - Vr >0 5.12
Wparr™tl T 2 = 4 re (5.12)

is trivial. So assume that © € QN 0*E). Since Ag(E\, Eo, \) < Ag((E\U B;) N, Ep, A), arguing
as in the proof of (5.8) we get

P(E)\,B,NQ)+ / BX(B.r)\Ey dH" <H"((Q\ E)x)NOB,) + A d~E0dy. (5.13)
09 (BrN)\Ex

From the isoperimetric inequality, (3.9), (5.13) and also (5.9), it follows that

L n
k(0 -+ D (B, \ Bx) N QI7T < kP((B, \ By) NQ) <C_5((B, \ Fx) N9, 9)
<P(Ex, B, N Q) + /89 BX(B.na)\Ey AH" +H"((2\ Ex) N OB;) (5.14)

<2ZH"((Q\ Ex) NOB;) + Al(B, \ Ex) N Q.
Repeating the same arguments as before we establish
Br \Ex| o (B \EA)NO| <g>"+1

Vr € (0,79).
W™ 7wt (0,70)

Let us now show (5.5). From (5.8) we get

P(E\,B,) =P(E,,B,NQ) + / XE, dH"
BN

SH”(E)\Q(()BT)-F/ (1—|-5)XEA Cl,Hn—‘rA‘E,\ﬂBT|
B,NoN

<(n 4+ Dwnpt1r™ + 2w,r™ + wpp1r™ (Ar
+ +

k(n+1
< |:(’I’L+ 1)Wn+1 + 2w, —|—wn+1(2) rn

fora.e r € (0,79). Since P(E),-) is a nonnegative measure, this inequality holds for all r € (0, ro).
This proves the upper perimeter estimate in (5.5).

The lower perimeter density estimate in (5.5) follows from (5.4) and the relative isoperimetric inequal-
ity (see for example [7, page 152]). (I

Theorem 5.3 (Regularity of minimizers up to the boundary). Assume that Ey and S satisfy (5.1).
Then any nonempty minimizer Ey is open in R™ and QN 0*Ey, is an n -dimensional manifold of
class C* for a suitable o € (0,1), and H*((0Ex\ 0*E\) N Q) =0 forall s > n — 7. Moreover, if
B € Lip(0R2), then

a) H"((0ExNONA(Tr(E)))) = 0;

b) OF) N 0N is a set of finite perimeter in 0S) and

HH(D(OE\ N OQ) \ 0*(OE\ N ON)) = 0,

where O(OE\NONY) denotes the boundary of OE\NOQ in 0N). Moreover, if My = QN OE},
then
O(OE)\ N ON) = My N oS
14



c) There exists a relatively closed set ¥ C M)y with H" (X N ON) = 0 such that in a neighbor-
hood of any = € (M N dQ) \ = the set My is a C*'/2 -manifold with boundary, and

Vg, ~ent1 =0 on (MyNoQ)\X.

Proof. Since E) is a minimizer of Ag(-, Fp, ) inevery ball B C 2, we can apply [44, Theorem 5.2]
to prove that E is openand QN O*Ey is C% with H*((0E) \ 0*E\) N Q) =0 forall s >n — 7.
Moreover, if 8 € Lip(0f2), by (5.9) the remaning assertions follow from [24, Lemma 2.16, Theorem
1.10]. ]

Remark 5.4. (Compare&ith [41, Remark 1.4] and [46].)
a) Assume that € E) and r > 0 are such that B,(z) N Ey = (). Then dg, > 0 in E)\ N B,(x)
and from (5.8) we get

P(E\, B, NQ) — / Bxs, AH™ <H™(E\N OB,). (5.15)
BN

Then proceeding as in the proof of Proposition 5.2 we get |E\N B, | > (k/ 2)”Jrl Wny1r™ L. Moreover,

from (5.15) it follows that

P(E\,B,NQ) <H"(E\xNIB,) + / XE, dH" < [(n + Dwpy1 + wn}r”.
B,NoQ

b) Similarly, if z € E and B,(z) N (Q\ Eo) = 0, then |B, \ Ex| > (k/2)" ™ wppir L.
Observe that in both cases r need not be in (0, min{1, %}) and the assumption x € JE) is not

necessary.
The following proposition is the analog of [41, Lemma 2.1] and [46, Proposition 3.2.1].

Proposition 5.5 ( L°° -bound for the distance function). Assume that Eg and 3 are as in (5.1) and
E\ € BV(Q,{0,1}) is a minimizer of Ag(-, Ey,\). Then

\/XHdEo”LOO(EAAEO) < R(n, k). (5.16)

Proof. Let R := R(n, k). Suppose by contradiction that there exist ¢ > 0, A > 1 and = € E\AE)

such that dg, (x) > (R+¢)A~/2. Consider first the case x € E) \ Ey. By regularity of E) (Theorem

5.3) we may assume that z € OE) \ Ep. Note that B, N Ey = (), where B, := B,(z), p =

(R + e)A\"/2/2. Since Ag(Ey, Eo,\) < Ag(Ex\ B,, Eo,\), and dg,(y) = dg,(y) > p for any

y € B, N E), from (5.8) we establish

(R+e)AL/?
2

|E)\ﬂBp’ < )\/
E\NB,

This and Remark 5.4 (a) yield?

R+ )k Tt
(2n+)2A1/ 2pM < wna(n + 1) + wi] ",

JEOdy < H"(EADBBP)+/ BxEy dH" < [wpt1(n+1)+wy]p".
B,NoQ

Wn+1

or equivalently, recalling the definition of p

wp + (n+ 1w
(R_|_5)2 < 2’fl+3 n ( )1n+1 — R2,
Wn+1 kT
which is a contradiction. A similar contradiction is obtained when = € Ey \ E). O

Proof of Theorem 5.1. We repeat the same procedures of the proof of Proposition 5.2 with improved
estimates for the volume term of Ag(-, Ep, A). Let R := R(n,x), v :=vy(n,k). Fix x € 0*E), and
choose 7 € (0,YA"1/2) such that H"(OB, N JEy) = 0. From (5.16) it follows

sup dp, < RATV/2,
(E)\\Eo)ﬁBr

2 Since the upper bound for the radii in Proposition 5.2 is of order O(%), in general, we cannot apply it with p.
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Therefore, using the obvious inequality

sup  dg, <2r+ sup dg, < (2v+ R))\_l/Q,
(E,\ﬂEo)ﬂBr (Eo\EA)ﬂBr

from (5.8) we establish that

P(E\,B,NQ) — / BxE, AH"+ <H"(ExN8B,) + (R + 27)AY?|E\ N B,|. (5.17)
B-NoN

Since m(r) := |E) N By| < wppr™ and r < ﬁ, similarly to (5.11) from (5.17) we deduce

1 _1

1 n n
k(n+ Dwpfim(r)=+1 < 2m/(r) + (R+ 27))\1/2rw;ﬁm(r)n7+1, forae. r € (0,7A/?2),

By the definition of + one has
1/2 1
(R4+27)A/4r < (R+2’y)’y:§m(n+1).

Thus,
L n
g (n+ Dwfim(r)=1 <m'(r) forae. re (0,9A7"/3).

Integrating this differential inequality we get the lower volume density estimate in (5.4).
Let us prove the upper volume density estimate in (5.4). Due to (5.12) we may suppose that = €
QN O*Ey. As above one can estimate dg, in (B, \ Ey) NQ as follows:

sup dg, <2r+ sup dg, < (2y+ R))\_l/z. (5.18)
QN((Br\Ex)\Eo) E\AE

Since dg, < 0 in QN ((B,\ Ex)NEp), plugging (5.18) in (5.13) and proceeding as above we establish
K
4

from which the upper volume density estimates in (5.4) follows.
The proof of (5.5) is exactly the same as the proof of perimeter density estimates in Proposition 5.2.
Finally, (5.6) is a standard consequence of a covering argument. ]

# n
(n+ Vw1 [(Br\ Ex) N Q1 <H"((Q\ Ex) N By),

Let us prove the following L' -estimate for the minimizers of Ag(-, Ep, A), the analog of [41, Lemma
1.5] and [46, Proposition 3.2.3]. Notice carefully the exponent —1/2 of A in (5.19).

Proposition 5.6 ( L' -estimate). Assume that Ey and B satisfy (5.1) and the uniform volume density
estimates (5.4) holds for Ey. Then for any minimizer Ey of Ag(-, Eo, \) the estimate

1
|E\AEo| < Cp o P(Eo) € + - dp,dr, (€ (o, Wf’f)) (5.19)
NN A/
holds, where
8 TL+]. 1
Ch = (K) w1 b(n) cngr (5.20)

and b(n) is the constant in Besicovitch covering theorem.
Proof. Set
A:={x € E\AEy: dg,(x) > {}, B:={x€ E\AEy: dg,(x) < (}.

By Chebyshev inequality
1

E\AEy

Let us estimate |B|. Since Fjy is bounded, by Besicovitch’s covering theorem there exist at most count-
ably many balls {By(z;)}, x; € OEp such that any point of OE; belongs to at most b(n) balls,
16



O0Ey C |JBy(x;) and B C |J Bae(z;). Since the balls {Byy(z;)} cover B, by the density estimates

7 (2
(5.4) and the relative isoperimetric inequality we get

4 n+1 ‘
| Bae()] =2 wy 1 0771 < 27 <ﬁ> min{|By(x;) N Eol, | Be(xi) \ Eol}
] n+1 1 n
<(3) vt emingiBn) 0 Bl B \ Bol) 7

8 n+l g
< <H> Wit} Lenia P(Eo, By(x1)).

Therefore
n+1

8 n+1 1 8 _1
BI<(3) witen S PEB) < () Wil o) eon P(ED)

Now (5.19) follows from the estimates for |A|, |B| and from |E\AEy| < |A| + |B|. O

A specific choice of ¢ will be made in the proof of Theorem 7.1. We conclude this section with a
proposition about the regularity of minimizers of Cg(-,{2).

Proposition 5.7 (Density estimates for constrained minimizers of Cg ). Assume that Eqy and (3 satisfy
(5.1) and there exist c1,ca,e € (0,1) such that for every x € OEy and r € (0,¢) the inequalities
| By () N Ey )

|Br(z)|  ~
hold. Let E* be a constrained minimizer of Cg(-,Q) in E(Ey). Then for every x € OET and
re(0,¢)

€1 >

N (E)nH - |B(x) N ET| <1 (/@)nﬂ,

8 |B,.(z)] 4

(5.21)
P(EY, B(x,7))

Cnyre] T (R/8)" < o

< (n+ Dwpyt + wn.
In particular, H"(OE™ \ 0*E*) = 0.

Proof. Let x € OE™, and r € (0,¢) be such that H"(0B, N 0*E*) = 0, where B, := B,(z).
We start with the upper volume density estimate in (5.21). We may suppose = € QNd*E™, since the
case x € QN I*ET is trivial. Using Cz(ET,Q) < Cs((E1 U B,) NQ,Q), asin (5.13) we establish

P(ET,B,) + / BX (BB dH" < H((Q\ ET)NOB,). (5.22)
a9
Adding H"(0B, N (2 \ E™)) to both sides and proceeding as in (5.14) we get

1 n
s(n+ Vw1 [(Br \ ET)NQIT <2H™(Q\ EY)NOB,)

and hence as in the proof of Theorem 5.1
n+1
BAE 2 (5) warr™

This implies the upper volume density estimate in (5.21).

The lower volume density estimate is a little delicate, since in general we cannot use the set £ =
E*\ B, as acompetitor since it need not belong to £(Ep). If d := dg,(z) = 0, then = € JF, and,
hence, using Ey N B, C E* N B, and the lower volume density estimate for Ey we establish

|E* N By S |Eo N By
B~ By
1

K n+1
> 20 (§>

7



If d >0 and r € (0,min{e,d}), then we may use comparison set E*\ B, and as in the proof of (5.4)
we obtain
|E+ N B, K\ n+l PANGE!
O (5 2 (5"

G| 1 - (5.23)

8
Suppose d < e. Since one can extend (5.23) to (0, d] by continuity, if » € (d, min{2d, }), then

IETNB,| _ |[EYNBy| (d\"™ _ k1
> (2) =(5) za(
| By | | B4l 8

r
Let r € [2d,¢) and xp € 2N OEy be such that d = | — xo|. Then using B(z,r) D B(zg,r — d),
the lower density estimate for Fy and r — d > r/2, we obtain

‘E+ ﬂBT’ > ’E() ﬂBT,d((L'())‘ (= d ntl > o 1 n+l — (E)n—i-l
‘BT‘ o ’Brfd(xo)‘ r - 2 - 8 '

Now the lower perimeter estimate follows from the volume density estimates and the relative isoperi-
metric inequality. The upper perimeter estimate is obtained from (5.22):

;@)n+1

P(ET,B,) <H"((Q\ ET)NOB,) — / Bx(B\E+)no dH" < ((n 4+ Dwpy1 + wp)r™.
o0

Finally, the relation H"(OE* \ 0* E1) = 0 is a consequence of the density estimates together with a
covering argument. U

6. COMPARISON PRINCIPLES
The main result of this section is the following comparison between minimizers of Ag(-, Ep, A).
Theorem 6.1 (Comparison for minimizers of Az ). Assume that Ey, Iy, B1, 32 satisfy (4.4). Suppose

that Ey C Fy and 1 < (B9. Then

a) there exists a minimizer Fy of Ag, (-, Fo, \) containing any minimizer of Ag, (-, Eo, A);

b) there exists a minimizer Ey, of Ag, (-, Eo, ) contained in any minimizer of Ag, (-, Fo, A).
If in addition

dist(2 N OEy, QN OFy) > 0, (6.1)
then all minimizers Ey and F\ of Ag, (-, Eo, \) and Ag, (-, Fy, \) respectively satisfy
E\ C F).

Remark 6.2. We do not exclude the case that either E\ or F) is empty.

Remark 6.3. For any E), [ satisfying (4.4), using Theorem 6.1 with 31 = 2 = § and Fj = Ep,
we establish the existence of unique minimizers E), and E} of Ag(-, Ep, A), such that any other
minimizer £ satisfies Ey, C E\ C EY.

Definition 6.4 (Maximal and minimal minimizers). We call E and E), the maximal and minimal
minimizer of Ag(-, Eg, \) respectively.

Before proving Theorem 6.1 we need the following observations. Given [ satisfying (4.4), C =
CP h,r >0 and v € LE(Q), v > 0 ae. in Q\ C, define the convex functional Bs(-,v,C) :

loc

BV (€,]0,1]) = (=00, +00], a sort of level-set capillary Almgren-Taylor-Wang-type functional, as
Bs(u,v,C) = Ca(u, ) —I—/ uv dz.
Q

Set

(6.2)

K

n+1
Cs(C, Q) + y|CI\ ™
R1(C,v) :=r + 1+ max {8”2+"+1 ( s )+ [ollz=(o) |> , Ap(s, N)}a

n+1

where p(k,n) = (1/k+2) » . By Example A.2 the functional

V: BV (Q,{0,1}) — (—o0, +o0], V(E) := / vdx
E

18



satisfies Hypothesis A.1. Thus, by Theorem A.3 the functional £ € BV (Q,{0,1}) — Bg(xg,v,C) €
R has a minimizer, and every minimizer F, satisfies

E, C Ch, (o) (6.3)
Notice that by (2.11) and (3.2),

1
By(u, v, C) = / Bi(xqusty. v, C)dt Y € BV(Q,[0, 1), 64)
0

which yields that x g, is a minimizer of Bg(-,v,C) in BV (£, [0, 1]).
The following remark is in the spirit of [13, Section 1].

Remark 6.5 (Minimality of level sets). From (6.4) it follows that © € BV (€,[0,1]) is a minimizer
of Bg(+,v,C) in BV (£,0,1]) if and only if X, is a minimizer of Bs(-,v,C) forae. t € [0,1].
Indeed, let for some u € BV(Q [0,1]) the function X, be a minimizer of B 5(-,v,C) forae. t e
[0,1]. Then forany w € BV (€2,[0,1]) and fora.e. ¢t € [0, 1] onehas Bg(w, v, C) > Bs(X{u>t}> v, C),
therefore,

1
By(u,v,C) = / Bi(xqusty, 0> O)dt < Ba(w, v, C).
0

Conversely, if u € BV(Q,[0,1]) is a minimizer of Bg(-,v,C), then for a.e. ¢ € [0,1] one has
Bs(u,v,C) < Bg(X{ust}, v, C). Hence, from (6.4) it follows that Bg(u,v,C) = Bg(x{u>t},v,C)
fora.e. ¢t € [0,1]. In particular, if v € BV(1,[0,1]) is a minimizer of Bg(-,v,C), then by (6.3)
{u>t}C 071121(0 y forae. te [0,1], i.e. u=0 a.e.in O\ C7ha1(c »)- Hence,

min Bs(u,v,C) = min Bs(u,v,C). (6.5)

u€BV (Q,[0,1]) u€BV(Q,[0,1]), v =0 ae. in Q\CRl(C )

Lemma 6.6. Let Ey, (B satisfy (4.4), and Ry be defined as in (4.5). Then E) is a minimizer of
Ag(-, Eo, A) ifand only if x g, is a minimizer of Ba(-, UEO,CRO), where vgo = )‘Xcg dg,.
0
Proof. By (4.3) we have
Ag(E, Eo, \) = Ba(xE, vy, Chy) — )\/ dg,dz  VE € BV(CH ,{0,1}). (6.6)
Eo

Now if E) minimizes Ag(-, Ep,A), we have E) C Cgo (Theorem 4.1) and thus, for any u €
BV (£,[0,1]) with u =0 a.e. in Q\ C’go from (6.4)-(6.6) we deduce

1 1
Bﬁ(u,vgo,cgo):/o B[g(x{wt},ng,C’go)dt:/o .Ag({u>t},E0,)\)dt+)\/E dp, dx
0

1
2/ AB(EA,EO,)\)dtJr)\/ d, dx = Bs(XE,, v, Chy)-
0 Eo

By (6.5) xE, isaminimizer of Bg(:, vgo, C’go).
Conversely, assume that X, is a minimizer of Bs(-, U;,\JU, C’go ), then by (6.6) E, C Cgo is a mini-
mizer of Ag(-, Ep, \) in BV(CgO, {0,1}). Hence, by Remark 4.3 E} is a minimizer of Ag(-, Ep, A).
]

Proposition 6.7 (Strong comparison for minimizers of Bg). Assume that vy,vs € LIOC(Q), V1 > Vg
a.e. in Q and vy > 0 a.e. in Q\C. Suppose also that B1 < [ satisfy (4.4). Let u1,us € BV (9,[0,1])
be minimizers of Bg, (-,v1,C) and Bg,(-,v2,C) respectively. Then u; < up a.e. in §.

Proof. Adding the inequalities Bg, (u1,v1,C) < Bg, (ur Aug,vi,C) and Bg,(uz,v2,C) < Bg,(u1 V
ug2,v2,C') and using

/]D(ul/\uQ)H—/ |D(u1\/u2)|§/\Du1|—|—/ Dus)|,
Q QO Q Q
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we establish

/ (B2 — B1)(u1 —ug) dH" < / (vg — v1)(u1 — ug) dx.
OQN{ui>ua}

{ur>u2}
Since v; > vy and B; < [33, this inequality holds if and only if [{u; > u2}| =0, i.e. u3 < ug ae.in
Q. O

Proposition 6.8 (Comparison for minimizers of Bg). Assume that vi,ve € LS. (), v1 > vy a.e. in
Q and ve > 0 a.e. in Q\ C. Suppose also that 1 < Po satisfy (4.4). Then:
a) there exists a minimizer ui, of 851(-,01,0) such that w1, < ug for any minimizer uy of
852('7 V2, 0)5
b) there exists a minimizer vy of Bg,(-,v2,C) such that wi < u3 for any minimizer ui of
851(',’01,0).

Proof. a) Take € € (0,1). Since v; + & > vy ae. in 2, by Proposition 6.7 any minimizer u§,us €
BV (Q,[0,1]) of Bg,(-,v1 +¢,C) and Bg,(-,v2,C) respectively, satisfies uj < up. Let Ry :=
max{R1(C,v1), Ri1(C,v2)}. By minimality, Bg, (uj,v1 +¢,C) < Bg,(0,v1 +¢,C) = 0, and since
by Remark 6.5 uf =0 a.e.in 2\ C7h€1’ recalling (3.10) we get

[ 1061 = ol iy, + DICK, | <+

By compactness, there exists uj, € BV(,[0,1]) such that, up to a (not relabelled) subsequence,
u§ — up, in L'(Q) and ae. in Q as ¢ — 0. Then any minimizer uy of Bg,(-,vs,C) satisfies
w1, < ug a.e. in .

It remains to show that u, is a minimizer of Bg, (-,v1,C). By (6.5) we may consider only those
u € BV(Q,[0,1]) with v = 0 ae. in Q\ C7h€1 as a competitor. In this case, the continuity of
uws |, ch, wv dz, the minimality of «§ and the lower semicontinuity of Cg(-,2) imply

Bg, (u,v1,C) = lim Bg, (u,v1 +¢,C) > liminf Bg, (uj,v1 +¢,C)
e—0t o+

E—

> lim ig_lf Cg, (uf, ) + lim ui(vy +¢)dx

+ Joh
e—0 e—0 CR1

Zcﬂ1(ul*79)+/ U14V1 dJU:Bﬁl(ul*,vl,C').

h
C’R1
b) can be proven in a similar manner. O

Proof of Theorem 6.1. Let R := max{R(Ey), R(Fp)}, where R(Ey) and R(Fp) are defined as in
(4.5). Then by Theorem 4.1 any minimizer E) (resp. F)) of Ag, (-, Eyg,\) (resp. Ag, (-, Fp, \)) is
contained in the cylinder C':= Bp x (0, H), where
H=1+ max{ max _ Tp4l, max 7:L‘n+1}.
(2!, xn+1)€EED (z',n+1)EF0

Set v1 := v1(\, Eg) = Adp, and vy := va(\, Fy) = Adp,. Since FEy C Fy C Q, we have dg, > dp,.
Moreover, by (4.4) there exists a cylinder C := CH such that v > 0 in Q\ C.

a) Since v; > v2 and (1 < f2, by Proposition 6.8 b) there exists a minimizer u3 := uj(\, Fp) of
Bg, (-, v2, C) such that any minimizer u; of Bg, (-, v1,C) satisfies

up < uj. (6.7)

By Remark 6.5 there exists ¢ € (0, 1) such that X{uz>t} S aminimizer of Bg, (-, v2, C). Then, recalling
the expression of vy, by Lemma 6.6 F} := {uj > t} is a minimizer of Ag, (-, Fy, A). Moreover, if
E) is a minimizer of Ag, (-, Ep, A), then by Lemma 6.6 xg, is a minimizer of Bg, (-,v1,C), and by
(6.7) xE, < uj. In particular,

E, = {XE,\ >t} - {u§ > t} =: F;:

b) is analogous to a) using Proposition 6.8 a).
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The last assertion follows with the same arguments from Lemma 6.6 and Proposition 6.7, since (6.1)
implies that dg, > dp,. O
One useful case is when Ej is a constrained minimizer of Cg(-,€2) in £(Ep): in this case Ey acts

as a barrier for minimizers of Ag(-, Eo, A).

Proposition 6.9. Assume that Ey, b1, B2 satisfy (4.4). Let 51 < B2, Ey be a constrained minimizer of
Cp,(-,92) in E(Ey) and Ey € BV (Q,{0,1}) be a minimizer of Ag, (-, Eo,\). Then E\ C E.

Proof. Comparing E) with Eg N E) we get
P(E)\,Q)-i-)\/ CZEO daZSP(E)\ﬂEo,Q)-l-/ BlXEA\E'O dH".
Ex\Eo o0

From the constrained minimality of Ey we have Cg,(Ey,2) < Cg,(Eo U E\,Q), i.e.

P(Eo,Q) SP(EUUEA,Q)/ B XE\\Eo dH™.
o
Adding these inequalities we obtain

P(E\,Q) + P(Eo, Q) + )\/ dg, dz <P(E\U Eg,Q) + P(E\ N Ey, Q)
Ex\Eo

+/ (B1 = Ba)XE\\E, dH".
o0
Then the condition 5; < B2 and (2.2) yield that

A / dp, dz < 0.
Ex\Eo

Since JEO > 0 outside Ep, the last inequality is possible only if |Ey \ Eg| = 0, i.e. Ey C Ep. O
Proposition 6.9 gives the following monotonicity principle.

Proposition 6.10 (Monotonicity). Assume that E, B satisfy (4.4), Ey is a constrained minimizer of
Cs(-,Q) in E(Ey) such that |Ey \ Eo| =0 and E, € BV (,{0,1}) is a minimizer of Ag(-, Ep, c)
for a« > 1. Then E\ C E,, forany 1 < X\ < u. Moreover, every E,, o« > 1 is also a constrained
minimizer of Cg(-,Q) in E(E,).

Proof. Comparison between £ and E) N E, gives

P(E)\,Q> —l—)\/ CZEO dr < P(E)\QEIL,Q)‘i‘/ 6XE/\\E;L dH™.
EX\Ey o0

Similarly, for £, and E) U E, we have

P(E,,Q) < P(E\UE,,Q) + u/

JE‘o dx — / B XE\\Eu dH".
E\\E, a0

Adding the above inequalities and using (2.2) we obtain
(A —p) / dg, dz < 0. (6.8)
E\\Ey,

By hypothesis |Ey \ Eo| = 0, according to Proposition 6.9, E, E,, C Ey, Thus ciEO <0in Ey\ E,.
But since A < 1, (6.8) is possible only if |Ey \ E,| =0, i.e. E\ C E,.

To prove the final assertion take any set E € E£(E,). Then using Ag(Eq, Ey, o) < Ag(Ey N
Ey, Ey, a), af(EomE)\Ea dg,dz >0, and E, C EyN E, we get

CB(EQ,Q) SC[;(EQ,Q)—FC%/ dE0d$365(EﬂEO,Q).
(EoNE)\Ea
Moreover, since Cz(Ep, ) < Cg(E£ U Ep, ), from (2.2) we obtain
Cﬁ(Ea, Q) + Cg(Eo, Q) < CIB(EO NnE, Q) + Cﬁ(Eo UE, Q) < CQ(E, Q) + Cﬁ(Eo, Q),

i.e. CB(Eom Q) < CQ(E, Q) (I
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Proposition 6.11 (Comparison between minimizers of Cs and Ag). Suppose that Ey and [ satisfy
4.4).
a) Let ET € BV(Q,{0,1}) be a constrained minimizer of Ca(-,Q) in E(Ey). Then every mini-
mizer Ey of Ag(-, Eg, \) satisfies Ey C E+.
b) Let ET € BV (Q,{0,1}) be a bounded constrained minimizer of Cg(-,?) in E(E™). Then for
every Eqg C E and for every minimizer E) of Ag(-, Eg, \) one has Ey C C E+. Moreover,
E™ can be chosen such that |E+\ ET| = 0.

Proof. a) By Proposition 4.4 ET is a constrained minimizer of Cs(-,€2) in E(ET). Let Ey be the

maximal minimizer of Ag(-, ET, \) (Definition 6.4). By Proposition 6.9 we have E;r C E+. Take any
minimizer E) of Ag(-, Ey, \). Since Ey C E™, by Theorem 6.1 a) we have

E\C Ef CE*.

b) The proof of the first part is exactly the same as the proof of a). To prove the second part, we take
any E| € BV (£,{0,1}) satisfying the hypotheses of Proposition 5.7 and containing Ejy. By Theorem
4.4 there exists a constrained minimizer E* of Cg(-,Q) in £(EY). In particular, ET is bounded, and
by Proposition 5.7 H"(0ET) = P(E*) < +o0. Since ET\ET C 0E+, wehave |[EF\Et|=0. O

7. EXISTENCE OF A GENERALIZED MINIMIZING MOVEMENT
Consider the functional .:l/\g : BV (2,{0,1}) x BV(Q,{0,1}) x [1,400) X Z — [—00,+00] given
by
o~ Ag(F,G,N) if k>0,
Ag(F,G,\ k) :==
s ) {|FAG| if k <0,

where [x] denotes the integer part of = € R.

For any k& € N we build the family of sets E(k) iteratively as follows: E(0) := Ey and E)(k),
k > 1, is a minimizer of .21\5(, E\(k—1),\ k) in BV(€,{0,1}); notice that existence of minimizers
follows from Theorem 4.1. e e

From now on, we omit the dependence on k& of Ag, and we use the notation Ag(F, G, \).

Theorem 7.1 (Existence). Let Ey and [ satisfy (5.1). Then GM M (Ey) is nonempty, i.e. there exist

amap t € [0,+00) — E(t) € BV(Q,{0,1}) and a diverging sequence {\;} C [1,400) such that
.liin |Ey, ([MtDAE(t)] = 0, t € [0,+00). (7.1)
Jj—+o0

Moreover, every GMM t € [0,400) — E(t) starting from Ey is contained in a bounded set depending
only on Ey and (3, and belongs to 01/2((0, +00), LY(R)), in the sense that

loc
|E()AE()| < 0(n,)P(Eo)|t — |2 forall t,t' >0, |t —t/| <1, (7.2)

where 0(n, k) = CZ’“ +1 and C,, is defined in (5.20). If in addition |Ey \ E| = 0, then (7.2) holds
forany t,t' >0 with |t —t'| < 1. Finally,

VEAj([,\jt])H"I_a*E,\J([)\ 1) & UE( yYH"LO"E(t) forall t >0 as \j — +oo. (7.3)

Proof. Given k > 0 set di(-) := dist(-,Q2 N OE\(k)). Then for & > 1 the minimality of E)(k)
entails
Ag(Ex(k), Ex(k—1),X) < Ag(Ex(k — 1), Ex(k—1),)),
ie.
CQ(E)\(]C), Q)+ A dp_1dx < Cg(EA(/{I —1),Q). (7.4)
Ex(k)AE(k—1)
In particular, the sequence & € NU {0} — Cg(Ex(k), 2) is nonincreasing and

Cs(Ex(k),Q) < Cp(EN(0),Q) = Cs(Ep, ) < P(Ey). (7.5)
Let ¢t > 0 and set k& = [At]. Then (3.9) yields
/iP(E,\(P\t])) < Cg(E)\([/\t]), Q) < P(Eo) (7.6)
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Take t1,t2 > 0, t; <ty andlet A > 1 be large enough that for some kg, N € N, N >3
ko = [)\tl], ko+ N —1= [)\tg],

i.e.

ko ko+1 ko+ N —1 ko+ N
)\St1< h\ <... < \ <t < h .
Then
N —2 k‘0+N—1—(k‘0+1)
A A
Since all Ey(s), s > 1 satisfy uniform density estimates (5.4)-(5.5) (Theorem 5.1), by Proposition
5.6 we have’

<ty —1. (1.7)

ko+N-—2
|Ex(M2)) AEX(M))| = [Ex(ko + N — DAE(ko)| < > [Ex(s)AEA(s + 1)

s=ko

(7.8)
ko+N—2 k0+N 2

<Cont P(E( / o) o
Z ( Z B (s+1)AE (s Eae)

s=ko
forany ¢ € (0 2, ”)) The first sum can be estimated using (7.6):

1 o\1/2
(Eo)
K

ko+N—2

S PEAs) <

s=ko

Moreover, for any s € N, by (7.4)

i)

(N —1). (7.9)

Ay (o) dz < 5 (Co(Br(),2) = Ca(Ex(s +1), ),

/E“)‘j (S—‘rl)AE)\ (8)

and thus
ko+N—2 ko+N—-2

2 /E (s-+1)AEx(s) dE*(s)dxgi by (Cﬁ(EA(S)’Q)_Cﬂ(EA(S+1)7Q))

s=ko s=ko

:i (Cg(E,\(kzo), Q) — Cs(Ex(ko + N — 1), ﬂ))-

Using (7.5) and the nonnegativity of Cg(-,2) we get
ko+N—2

/ dp, (s dv < : (7.10)
S JEst)AB() A
Thus, from (7.8), (7.9) and (7.10)

i (Ed
CnnP(Eo)

[E(M])AEN([M2])] = — A

(7.11)

Now take A so large that

1
ty —t) > ————,
SRR WD EDY

so that Proposition 5.6 holds for ¢ = From (7.11) and (7.7) we obtain

1
>\|t2—t1‘1/2 '
CoxP(Eg) N —2 1 CpP(Eo)

K )\‘tg—t1|1/2 A H‘tg—t1’1/2

|Ex((M])AEN([M])] < P(Ey) [tz — t1]/*

(7.12)

1 Cn,HP(EO)
<On, W) P(Eo) |tz = 0" + 3 2o

3Notice that at this point we use t; > 0; since a priori we do not know whether Ej satisfies the density estimates, we
cannot start summing from s = 0 = ko.
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By Proposition 6.11 b) there exists a constrained minimizer E* 2 Ey of Cg(-,Q) in £(E™) such
that |[E+\ E*| = 0 and Ej)(1) C E*. By induction, we can show that E\(k) C E* forall k& > 1.
Consider now an arbitrary diverging sequence {)\;}. Compactness and a diagonal process yield the
existence of a subsequence (still denoted by {X;}) such that E, ([\;t]) convergesin L'(Q) to a set
E(t) for any rational ¢t > 0 as j — +oc.

If t1,t2 € QN (0, +00), with 0 < [t; —ta| < 1, letting A\; — +o0 in (7.12) we get

|E(t1)AE(t2)] < 0(n, k)P (Eo)|ta — t1]"/2. (7.13)

By completeness of L!(€) we can uniquely extend {E(t) : t € QN (0,+00)} to a family {E(¢t) :

t € (0,400)} preserving the Holder continuity (7.13) in (0,+o00). Now we show (7.1). If ¢t = 0,

Ey = Ey;(0) = E(0) in L'(Q) as j — +oo. If £ > 0, take any ¢ € (0,1) and t. € QN (0, +00)

such that |t — t.| < . By the choice of {\;}, (7.1) holds for ¢, and thus, using (7.12)-(7.13) we get
limsup | By, (A AE(H)] < limsup By, (M) AE, (At])]

Jj—+oo Jj——+oo

+ limsup | Ey; ((Ajte]) AE(t:)| + [E(te) AE(1)]

Jj—+oo

<20(n, k) P(Ep)|t — t-|"/? < 20(n, k) P(Eo)v/e.

Therefore, letting € — 0% we get (7.1).
When |Ey \ Ep| =0, forany t € (0,1), choosing A sufficiently large, from (7.12) we obtain

[EA(M)AE(0)] <|Ex(MDAEA(D)] + [Ex(1)AE]

111/2  1C,.P(E) (7.14)
<6(n, PE‘t—— s TUE0) e (1) AE,|.
— (n K/) ( 0) A )\K/|t—%|l/2+| )\() 0|
By Lemma 4.6 a) the last term on the right hand side converges to 0 as A — +oo. Hence letting
A — 400 in (7.14) we get the (1/2) -Holder continuity of ¢ — E(t) in [0, +00).
Now let us prove (7.3). We need to show that for any ¢ € [0, +00)

lim ¢ vg, (1) JH" = / ¢ vpm dH" V¢ € Co(R™ R,
I7H00 S+ By (M\t]) J I*E(t)

If ¢ € CHR™1 R* 1), by the generalized divergence formula (2.3) and by (7.1) we have

lim O -vE, () dH" = lim div ¢ dH"
oo a*EAj([)\jt]) Ex; (At j—+oo E)\j(P\jt])
(7.15)

= / diV¢dHn = / (;5 VE(t) dH"™.
E(t) O*E(t)

In general, we approximate ¢ € C.(R"™! R"*1) uniformly with ¢, € C}(R"*1 R"*1) k > 1 and
use the previous result.

Finally, if {E(t)}¢>0 € GM M (E)p), then by construction and Proposition 6.11b) one has ) ([A;t]) C
E*, where ET := E*(Ep, ) is a bounded minimizer of Cs(-,Q) in E(ET); therefore E(t) C E*
forall ¢t > 0. O

Definition 7.2 (Maximal and minimal GMM). Let Ey, 3 satisfy (5.1), and {\;} be a diverging se-
quence such that

E*(t) = ‘lim E)\j(P‘jt])* Vi > 0
J—+oo
existin L'(Q), where Ey ([\jt])* is the maximal minimizer of Ag(-, Ex, ([A\jt]—=1)*, A;) with (Eg)* :=
Eq (Definition 6.4). We call E*(t) the maximal GMM associated to the sequence {\;}. Analogously,
E(t) :== lim By ([A\jt])« vt >0,
J—+00
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obtained using the minimal minimizers E,([\;t])« of .Zt\g(, Ey, ([Ajt] — 1)s, Aj) with (Ep)« := Eb,
is called the minimal GMM associated to the sequence {\;}.

Observe that if ¢ — E(t) is any GMM obtained by the sequence {);}, then according to the proof of
Theorem 7.1 (possibly passing to nonrelabelled subsequences) there exist the maximal GMM ¢ — E*(t)
and the minimal GMM ¢ — E,(t) associated to {\;}. Now by Remark 6.3 one has E,(t) C E(t) C
E*(t) forall t > 0.

Theorem 7.3 (Comparison principle for maximal and minimal GMM). Let FEy, Fy, 51, B2 satisfy
(5.1) with Ey C Fy and 1 < Ba. If Ei(t) and Fy(t) are minimal GMMs associated to a sequence
{\;}, then E.(t) C Fi(t) for all t > 0. Analogously, if E*(t) and F*(t) are maximal GMMs
associated to {\}}, then E*(t) C F*(t) forall t > 0.

Proof. Since Ey C Fy, and 1 < (2, by definition of F)(k)* and Fy(k)" (resp. FE\(k), and
F\(k),) and by Theorem 6.1, we have Ey,(k) C Fy.(k) (resp. EX(k) € Fy(k)) which implies
E.(t) C Fi(t) (resp. E*(t) C F*(t))forall t > 0. O

From the proof of Theorem 7.1 and Propositions 6.9 -6.10 we get the following result (compare with
[11]), that could be applied, for instance, to Ey as in Example 4.5.

Theorem 7.4. Let Ey be a constrained minimizer of Cz(-,Y) in E(Ey) such that |Ey \ Ey| = 0.
Then every maximal (minimal) GMM t — E(t) starting from Ey satisfies E(t) C E(t') provided
t>t>0.

Proof. Applying Propositions 6.9 and 6.10 inductively to maximal minimizers E(k)* of .Zl\ﬁ(, E\(k—
1)*,\) we get Ey(k)* C E)(k—1)* forall K > 1 and X\ > 1. Hence, if ¢ > ¢’ > 0 then
E\([M])* € Ex([A])*. Now the assertion of the theorem follows from (7.1). The arguments for
minimal minimizers are the same. O

8. GMM AS A DISTRIBUTIONAL SOLUTION

The aim of this section is to prove that under suitable assumptions GMM is in fact a distributional
solution of (1.1)-(1.2). Let us start with the following

Definition 8.1 (Admissible variation). A vector field X = (X', X,.1) € CHQ,R"™) is called
admissible if X - e,y1 =0 on 0N

Observe that if X € C, (€2, R"*!) is admissible, then for any s € (—¢,) with £ > 0 sufficiently
small, the vector field fs = Id+sX isa C* -diffeomorphism that satisfies f5(Q2) = Q, fs(Q) = Q.

Proposition 8.2 (First variation of Ag). Suppose that Ey, [ satisfy assumptions (5.1) and let E €
BV (Q,{0,1}) be bounded with Tr(E) € BV (R™,{0,1}). Then
d

—| Ag(fs(E), Eo, A) =/ (divX —vg - (VX)vg) dH"
ds ls=0 QNO*E

8.1)
+ A / dp, X - v dH" — / BX - Uy dH" Y,
QNI*E 9*Tr(E)
where O*Tr(E) is the essential boundary of Tr(E) on 09 and ler( ) s the outer unit normal o
Tr(E) C R™.
Proof. From [42, Theorem 17.5]

L pir(E),Q) = /ma*E(divX—uE (VX)vg) dH™.

ds
Moreover, [42, Theorem 17.8] and the admissibility of X imply that

d ~ ~ -
5l / dEde:/ dEOX-I/Ed’an/ dg, X -vg dH".
§1s=0 Jr (E) O*E QNo*E
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Finally, since Tr(E) is a set of finite perimeter in 02 = R™, again using [42, Theorem 17.8] we get

d n n
- BXf.(m)dH Z/BT BX" vy gy A"
*Tr(E)

dsls=0 a0

O

Remark 8.3. Under assumptions (5.1) and 5 € Lip(99Q), if E) is a minimizer of Ag(-, Ep, A), and if
QNOE, isa C? -manifold with H"~! - rectifiable boundary, then the mean curvature H g, of QNOE)
isequal to —Adg,. Indeed, using the tangential divergence formula for manifolds with boundary we have

/ (div X — vp, - (VX)vp,) dH" = /
QNOE

Hg, X - vg, dH" + / XN dnnt,
QNOE O*Tr(Ey)

where n* = (n>‘/, n) 41) is the outer unit conormal to Q2N OE) at QN JE) N 0. By minimality of
Ey, wehave L As(f(E)), Eg, \) =0, ie.

/ (Hp, + \gy) X - v, dH" + X' (0 = By ) dHT Y =
QNIE 8*Tr(Ey) A

This implies Hp, = —\d £, and n = Bz/Tr( By Notice that from the latter in particular, we get
B=n* (Vl[‘r(Ex)’O) = VE, " n+l,
accordingly for instance with Theorem 5.3.
Remark 8.3 motivates the following definition [9, 42].

Definition 8.4 (Distributional mean curvature). Let E € BV (§2,{0,1}). The function Hg € L'(QN
O*E; H'L(QNO*E)) is called distributional mean curvature of QNO*E iffor every X € CL(Q, R*1)
the generalized tangential divergence formula holds:

/ (divX —vg - (VX)vg) dH" = / Hg X -vpdH™. (8.2)
QNO*E QNO*E

Given z € R"™ and t > 0 set

—_ 7 . > l
un(t,z) == Mg, (w-1) (@) %ft > 5
0 ift €0, 5).

Remark 8.5. By Theorem 5.3, Tr(E)([At])) € BV(R™,{0,1}).
The next result relates GMM with distributional solutions of (1.1)-(1.2).

Theorem 8.6 =0, {E(t)}+>0
be a GMM starting from E obtained along the diverging sequence {\;}. Suppose that

H'L(QN OBy, ((Mt]) X H'L(QNO*E(t)  as j — +oo forae. t > 0. (8.3)
Then there exist a function v : [0, +00) X  — R with
+00
/ / )2dH" dt < a(n, k) P(Ejp), (8.4)
QNo*E
and a (not relabelled) subsequence such that
+oo +00
lim / puy; dH"dt = / / v dH"dt, (8.5)
J—=+oo Jo Qno* By, (A1) 0 QNo*E(t)

+oo “+oo
lim / U, VE, (Do) - Y dH"dt = / / vV - YAH dt  (8.6)
j=+o0 Jo Qno*Ey, (M) Bx; st]) 0 QMO*E(t) E()

forany ¢ € C.(Q), ¥ € C([0,+0) x Q,R" 1) where a(n, k) := 75[(7?:}%3"$I11;°ﬁ]b(n) Moreover,

{E(t)}1>0 solves (1.1)-(1.2) with initial datum Ey in the following sense:
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(i) for a.e. t > 0 the set QN O*E(t) has distributional mean curvature H E@¢) = v and if
1 <n <6, forevery ¢ € CL([0,+00) x Q) :

+00 +oo
/ Oy dxdt + / #(0,2)dr = / / OH gy dH" dt; 8.7
0 E(t) E(0) 0 Qno* E(t)
(i) if B € Lip(99) and there exists h € L. ([0,+00)) such that
P(Tr(Ey;([Mt])) < h(t)  forall j>1 andae. t >0, (8.8)

then Tr(E(t)) € BV(R",{0,1}) fora.e. t >0 and

/ (diVX - VE(t) : (VX)VE(t)) dH"
QNO*E(t)

(8.9
_ /Q ooy 0 X v dH" + /a e BX" Uy ey AH "
for every admissible X € C}(Q,R"1).
The need for assumption (8.3) is not surprising; see [41, 46] for conditional results obtained in other

contexts in a similar spirit. We postpone the proof after several auxiliary results.

Proposition 8.7. Assume that Ey and [ satisfy (5.1). Then for any X > 1 and a.e. t > 1/)\ the
function vy (t,-) is the distributional mean curvature of E([At]).

Proof. Set E := E)([At]). Remark 8.5 and (8.1) imply that
/ (divX —vg - (VX)vg) dH" = / X -vpdH"™.
QNO*E QNoO*E

Hence, it suffices to prove vy(t,-) € LY(QNI*E;H"LQNI*E) forae. t € [1/\,+o0) and since
P(E(t),Q) < +o0, this follows from Lemma 8.9 below. O
Remark 8.8. From Definition 8.4, Proposition 8.7 and Lemma 8.9 it follows that

oA(t,z) = Hg, () (t,z) forae. t > 1/ and H"-ae. z € QN IEL([AE]).
This is a discretized version of equation (1.1).

Lemma 8.9 (Uniform L?-bound of the approximate velocities). Under assumptions (5.1) the in-
equality

+oo
/ / (vx)? dH"dt < a(n, k) P(E)
0 QNIOEy([At])
holds.

Proof. The proof is analogous to the proof of [46, Lemma 3.6]. Given ¢ > 0 and E € BV (Q,{0,1})
let
(OF)T == {x ¢ R™ . dist(z,QNIE) < ¢}.
For t € [},+00) and ¢ € Z such that £ < 1+ [logy(R(n, #)A/2)], where R(n,k) is given by
(5.2), define

K(¢) = {33 € (8E)\([)‘t] - 1)>;(n7ﬂ)>\1/2

By Proposition 5.5 E)\([At]))AE\([At] — 1) € UK (). Take x € K(¢) N Q2N IEN([At]). Then
Be—i () N Ex([At] — 1) = 0 and hence, by Remark 5.4 the following density estimates hold:
A

BB w1z () e (50)

28 < |o(z,t)] < QEH}.

(8.10)

—1\ "
HH(BQZTA(:B) NQNOEN([M]) < [(n+ Dwpgr + wn} (2)\> )
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Using 271 < |vy(y,t)| < 5.2 forany y € By (z), from (8.10) we deduce
A

(vA)? dH™ <25[(n + L)wny1 + wy) (2713 <2€>\1>n

/324_1 (£)NQNIE ([M])
A

25[(n + Dwn1 + wn) )\/
(r/2)" wn 1 B o1 (@)N(Ex(M)AEA (M -1))

A

lua| dx.

Application of the Besicovitch covering theorem to the collection of balls {B.c—1 (z) : € K(¢) N
=

OE\([Mt])} gives

25[(n + 1)wn41 + wn]b(n)

2 n
vy ) dH" < )\/
(o) (8/2)" w1 {201 <oy |[<2042}0(Ex (M) AE ([A1]—1))

/ |va| dz.
K(O)NQNOE (M)

Now summing up these inequalities over ¢ € Z with £ < 1 + [logy(R(n,x)A/?)], and using the
properties of K (¢) and the definition of a(n,x) we get

/ (va)2dH™ < a(n, k) )\/ |va| de.
QNIE, (M) Ex(IMDAEX([A]-1)

Observe that by (7.4) for any ¢ > 1/\ one has
/ oalde < Co(Bx(IM] — 1).) — Co( (M), ).
Ex(MDAEX([M]-1)

Thus

(022 dH" < a(n, 1) A(Ca(Er([M] = 1), ) = Ca(BA(M]), 9)).
QNIE ([AY])

Fixing 7" > 0 and integrating this inequality in ¢ € [0, 7] we get

T [TA]+1
/ / (va)? dH™dt <a(n, k) Z (CB(E,\(]{Z —1),9Q) — Cz(Ex(k), Q))
0 JOQNOE, (M) i

<a(n,rk)Cs(Ep, ) < a(n, k) P(Ey),

where we used (3.9). Now letting 7" — 400 completes the proof. U
The following error estimate can be demonstrated along the same lines of [4 1, 46], therefore the proof
is omitted.

Proposition 8.10 (Error estimate). Let 1 < n < 6. Under assumption (4.4), for every ¢ € C.(]0, +00) X
Q) the following error-estimate holds:

—+00

A /% . (A(XE”(WD T X, (pyi-n)9 dr - /szmaEAj([Ajt]) A, (- S 47 )dt o
8.11)

Proof of Theorem 8.6. Lemma 8.9, (8.3) and [30, Theorem 4.4.2] imply that there exist a (not relabelled)
subsequence and a function v : [0, +00) X © — R satisfying (8.4)-(8.6). In particular, from (8.4) it
follows that Hpgy := v(t, ')‘Qma*E(t) € L2(QNO*E(t), H" (2N O*E(t))) forae. t > 0. Letus
prove that Hp,) is the distributional mean curvature of E(t) for a.e. ¢t > 0. Fixing ¢ > 0, by the
divergence formula (2.3) for any ¢ € CH(R"*! R"*!) one has

/ div ¢d$ - / qb : VE)\-(P\jt]) dH" = / ¢n+1d7'ln.
E)\j(P‘jt]) Qﬂa*E,\j([A]-t]) J 8908*E,\j([>\jt])

Hence, from (7.1) and (7.3) we get

/ div ¢pda — / ¢ vp@ dH" = lim O dH™. (8.12)
(1) QNo*E(1) i=+00 J (B, (A1)
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The left-hand-side of (8.12) is fTr( E()) Pnr1dH™, therefore,
H'LTr(Ey, (M) S HLTH(E(K))  as j — +oc. (8.13)
Combining this with (8.3) we get
H'LO"Ey, ([A\t]) N H"L_O*E(t) as j — +oo forae. t> 0.

Take 7 € CL([0,+0c0)) and an admissible X € C(Q,R""1). By (8.3) and [46, formula (4.2)] for
a.e. t >0 and for every F € C.(R"1 x R""1) one has

lim F(x,vg, (xg)()dH" = / F(z,vpe(z)) dH". (8.14)
J—rtoo QNo* Ex, (A1) J QNO*E(t)

In particular, taking F' € C.(Q x R"*1) such that F(z,¢) = div X (z) —&-VX ()¢ in Qx {|¢] < 2},
by the dominated convergence theorem, (8.2) and (8.6), for ¥ (¢, x) = n(t) X (x) we establish

Jj—+oo

+00 +oo
/ n(t) / F(z,vpe)(z))dH"dt = lim / N F(x, v, () dH"dt
0 QNO*E(t) 0 QNI* By, ([A;t]) J

Jj——+oo

+oo
= lim / U\, VE/\.([)\jt]) : \I/(t, (L‘)d?‘[”dt
0 QNo*Ex; ([Mt)) J

+o0o +oo
:/ / UVE(t) : \I/(t, $)d7‘[ndt = / n(t) / HE(t)VE(t) - X dH"™dt.
0 QNO*E(t) 0 QNo*E(t)

Since 1 € C1([0,+00)) is arbitrary, for a.e. ¢t > 0 we get

/ (leX — VE(t) . (VX)VE(t))dHn - / HE(t)VE(t) . Xd%n,
QNO*E(t) QNO*E(t)

hence Hpy, is the generalized mean curvature of (2 N 9*E(t).
Let us show (8.7). Take ¢ € CL([0,+00) x Q). By a change of variables we have

+o00
/ [ / bdz— / qsdx] dt
x Hes g Ex, (IMtl-1)

= X) — )\ xr dl‘d — 71 X d
= o(t, o(t+ 1/, t ¢(x,0) dx.
/1/)\3' /EAj([Ajt])( (t ) ( / ’ )) )‘j /E(O) ( )

Since E(0) = Ey, from (7.13) we get

+oo +o0 8¢
lim Aj[/ ¢d:c—/ <bd:v}dt: —/ / 9 (t,x) dedt— | (x,0)de.
i=teo Ji/x By, (M) By, (y1]-1) o Jew ot Eq

Therefore, (8.11), (8.5) and the definition of Hp ;) imply

+00 +oo
/ / Or¢ dzdt + ¢(x,0)dx = lim / vy dH"dt
0 E(t) Eo J—=+oo Jo QNOEy, (IAt)

—+00
= / / Hp¢ dH"dt.
0 QNO*E(t)
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(ii) Take an admissible X € C}(Q,R**!) and n € CL([0, +00)). From (8.1)

—+oo
/0 n(t) /Q —— (dle —VE (M) (VX)VEAj([Ath> dH"dt

+oo
_ nt/ on X - v o dHdE 8.15
/O (t) e g T P ) (8.15)

“+o0
= t BX' vk, oy dHTE
/0 n(t) /8 T, () Tr(Ex, (A1)

Let {\;,};>1 be any subsequence of {\;}. By the uniform bound (8.8) on the perimeters and by com-
pactness there exists a further subsequence {A;, }r>1 of {Aj }i>1 andaset F € BV(R",{0,1}) such

that Tr(Ej, ([ji,t])) — F in L*(R") and*
/ n—1 *
VIe(Es, (ng, ) T RO,

: J
]lk

(i 1) S Ve H IO F as k — +oo

Ik

forae. ¢t > 0. By (8.13) for every ¢ € C.(R™) we have

/ GdH™ = lim P dH" = / o dH™.
Te(E(t) Fotoo JTi(By;, (A, ) F

Whence, F' = Tr(E(t)). Therefore
V’/I‘r(EAj([)\jt})) H' L0 Te (B, ((At]) = Vg M LO*TYE(t)  as j — +oc.

Now taking limit in (8.15), using (8.14),(8.6) and applying the dominated convergence theorem on the
right-hand-side we get (8.9). U

APPENDIX A. EXISTENCE OF MINIMIZERS FOR SOME FUNCTIONALS

In this section we prove an existence result for minimum problems of type

where V : BV (Q,{0,1}) — (—o0,+00]. Since Cg(-,12) is finite in BV (£2,{0,1}), the functional
Gz is well-defined in BV (€2,{0,1}). We study (A.1) under the following hypotheses on V :

Hypothesis A.1. (a) V isbounded from below in BV (€, {0,1}) and there exists a cylinder CX C
Q, K > 1 suchthat V(CK) < 4o0;
(b) V(E) > V(ENC)) forany E € BV(Q,{0,1}), p€ (r,+oc], and l € (K —1,K +1);
(© V(E)=V(E\ (CK\CE)) forany E € BV(Q,{0,1}) and r < py < p1 < +00;
(d) V is L'(2)-lower semicontinuous in BV (€2, {0,1}).

Example A.2. Besides (4.9) the following functionals V : BV (2,{0,1}) — (—o0,40o0] satisfy Hy-
pothesis A.1:

1) given f € L () with f >0 ae.in Q\ C. for some r,1 > 0,
V(E) = / fdzx.
E
In particular, we may take f = Adp, with ) # Ey € BV (€,{0,1}) and Ey C C! so that by

(4.3) Gg coincides with Ag(-, Eo, ) + [5 dg,dz.
2) Given a bounded set Ey € BV (Q,{0,1}), V(E) = |EAEyP, p> 0.

4Arguing, for example, as in (7.15).
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Given V satisfying Hypothesis A.1 set

a:=kK sup inf Gg(E) —infV | .
R>r E€BV(CK {0,1})
Clearly, ka < gﬁ(cf() —infV, hence inf Gg < +o0.
In view of the previous observation, once we prove the next theorem, the proof of Theorem 4.1 follows.

Theorem A.3 (Existence of minimizers and uniform bound). Suppose that Hypothesis A.1 holds.
Suppose also € L*>®(02) and there exists k € (0, %] such that —1 < 3 < 1—2k H"-a.e on S.
Then the minimum problem

inf E
sesm oy 98 F)

has a solution. Moreover, any minimizer is contained in C’f{o, where’
Ro:=7r+ 1+ max {8”2+”+1 anTH, 4p(k, n)} (A.2)
and p(k,n) is defined in Section 4.1.

Remark A.4. In case of Example A.2 1) with f = )\CZEO for some Cf( 2 Ey,

ka < K sup inf Ag(E, Eg, \) < kAg(Ey, Eg, \) = kC(Ep, ) < kP (Ep).
R>r E€BV(CK {0,1})

Hence, Ry < Ry, where Ry is defined in (4.5). The same is true if V is as in (4.9).

The assumption on 3 and the L!(£2)-lower semicontinuity of Cg(-,2) (Lemma 3.6) imply the
LY(©) -lower semicontinuity of Gg. Moreover, the coercivity (3.9) of Cs(-, ), Hypothesis A.1 (a)
and (3.11) imply the coercivity of Gg :

Gs(E) > kP(E)+infV  VE € BV(2,{0,1}). (A3)

The main problem in the proof of existence of minimizers of Gg is the lack of compactness due to
the unboundedness of 2. However, for every R > 0 inequality (A.3), the compactness theorem in
BV(C{g ,{0,1}) (see for instance [7, Theorems 3.23 and 3.39]) and the lower semicontinuity of G
imply that there exists a solution Ef € BV (CE,{0,1}) of

inf Gs(E).
EeBV(CK {0,1})

To prove Theorem A.3 we mainly follow [18, Section 4], where the existence of volume preserving
minimizers of Cg(-,€2) has been shown. We need two preliminary lemmas. As in [18&, Section 3] first
we show that one can choose a minimizing sequence consisting of bounded sets.

Lemma A.5 (Truncations with horizontal hyperplanes and vertical cylinders ). Suppose that Hy-
pothesis A.1 holds. Then

inf E) = inf inf E). A4
pesvtioan PP = B e nv Bk oy ) (A4)

Proof. We need two intermediate steps. The first step concerns truncations with horizontal hyperplanes.
Step 1. We have

inf FE) = inf E). A5
seniim oy 98 E) = popy it ) 98 (A-5)

Indeed, it suffices to show that if E'\ Q, 1 # 0, then
4
Gs(E) > Gs(ENQ_1).

Clearly, £ and E'N€); 1 have the same trace on 9€) and thus
2

/[HB]XEd’H”:/ 1+ Bl X prg—— dH™
oN o0 K

_1
2

S0ne could refine the expression of Ry using the isoperimetric inequality [22], but we do not need this here.
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From the comparison theorem of [0, page 216] we have
P(E)> P(ENQ_1).
By Hypothesis A.1 (b) we have also

V(E) > V(EN Q)

therefore from the definition of Gg we get even the strict inequality

Gs(E) > gg(EﬂQK_%). (A.6)
The second step is more delicate and concerns truncations with the lateral boundary of vertical cylin-
ders.
Step 2. For any ¢ € (0,1) there exists R. > r and E. € BV(C}{, {0,1}) such that

E.) < inf E) +e.
Gs(Fe) < BeBV{Sc.{0.1}) Gs(B) +e
Indeed, according to Step 1 and Hypothesis A.1 (a), given € > 0 there exists F, € BV (Qg,{0,1})
with F. C €1 such that
4

Gs(E) + c < 4.

Gs(Fr) < 5

inf
EeBV(2,{0,1})
Since |F| < 400, for sufficiently large R > r one has
R+1 c
EOCHNCHI = [ W Enack) dp <,
R

Hence there exists R. € (R, R+ 1) such that

HU(E.NOCK) <5, H'(QNOTE.naCK) =o.

n~t (n(4)) = (m(4))
'
A=0N\CE Oy w#
Contribution
to P(F,A) F, 5
P 0
/]\TF(F;\CEE)

FIGURE 1. The choice of FE. : the perimeter of F. does not charge those portions of
0*F; on the lateral part of 86’}{ .

Now, let F. := F. N C]I%(E. Since H™ (Q NO*F. N 801{) =0, we have

P(E.,Q) =P(E.,Qx) = P(F.,Qx) + H"(F- N 9Ck.) — P(F.,Qx \ CK)
(A7)
=P(F.,Q)+H"(F-:n0Ck) — P(F.,Qx \ Ck).
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By Hypothesis A.1 (a), V(F;) > V(E.), thus employing (A.7) we get
Ga(FL) >Gp(Ex) — H'(F: N OCK ) + P(Fe, Qi \ CF) - /8 Xy A
By Lemma 3.2 applied with £ = F. and A = Qg \CfKE, we have

PG%QK\Ciyi//hEW%dH”ZO
o0 €
Consequently, from the choice of I, and R, we get

E.) <Gs(F "(F K inf E )
Gs(E:) <Gp(F.)+H"( 5OGCRE)<EEBV1&{OJ})Q5( )+e

This concludes the proof of Step 2.
Now, observe that

inf Gs(E) < inf inf Gs(FE).
EeBV(Q,{0,1}) R>0EeBV(CE {0,1})

On the other hand, since the mapping

R e (0,+00) — inf Gs(E
( ) EEeBV(Cg {0.1}) o(E)
is nonincreasing, Step 2 implies

inf Gg(E) > inf inf Gs(F),
EeBV(2,{0,1}) R>0 EeBV(CE {0,1})

therefore (A.4) follows. O
As in [18, Lemma 3] the following lemma holds.

Lemma A.6 (Good choice of a radius). Suppose that [ satisfies (4.4) and Hypothesis A.1 holds. Let
E® be a minimizer of Gz in BV (CE ,{0,1}). Then for any R > Ry there exists tg € [r + 1, Ro]
such that

H'(EFNoCE) =0.
Hence

P(ER,Q) = P(ER\ CK,Q) + P(ERNCK,Q). (A8)

tr
Proof. The idea of the proof is to cut the E® with vertical cylinders, similarly to [ 18, Lemma 5] where
cuts with horizontal hyperplanes are performed.

For R > Ry by the isoperimetric-type inequality [21, Theorem VI], (A.3), the minimality of E'
and by the definition of a we have

n ER) —inf
BRE <p(pfy < SED) itV % ( inf  Gy(E) +infv> <a.

K EeBV(CK ,{0,1})
Thus, for any 0 < a < b one has
IER N (CE\CE)| <™. (A.9)
Take r 4+ 1 < r1 < r9 < rg < Ry such that
H'(QNI*'ERNACE) =0, i=1,2,3,

and set
v =[BRN(CENC)], v =[BRN(CE\CL)L,
m = max H"(E®NaCK).
i=1,2,3 :
Step 1. We claim that
min{vy, va} < ,umnTH, (A.10)

where = p(k,n) > 0.

It suffices to prove that . .

v vy < 2pntim,
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We have
of T <P(BR N (CK\ CF)) < P(E,CE\CE) + 1" (E" nack)

2

n/ R K n
+H"(E 060T2)+/8QXERO(CTI§\C§) dH

R ~K K
<P(E",C,) \CE) + /{m X pro(CK\TK) dH" 4 2m.
Similarly,
= R ~K\ AK
vt <P(E™,C \ CE) + /m X prn(cx\OE) dH" + 2m.

Hence

n

0 = R cK\ CK
o oyt < P(BR,CK \Cff)Jr/aQXERm(c{g\Cfg)

dH" + 4m. (A.11)

Comparing E®\ (C[ \C’iff)) with Ef, we get Gg(E®) < Gg(ER\ (CK \FE)), therefore from
Hypothesis A.1 (c) we obtain

P(ER) <P(ER\ (CK\ CK)) + / [+ BIX preexam) AH" (A.12)
o0
Inserting in (A.12) the identity

P(E™\ (CE\ CK)) =P(E™) + #"(E® N oCK) + 1™ (ER nock)

R ~K\ ~K n
_P(E ’CTS\Cg)_/dQXERm(Cg\Cr}i)dH )
we get
P(ER,CEN\CE) - /mﬁXERmcg\C{i) dH™ < 2m. (A.13)

By Lemma 3.2 applied with A = C,{f \C’i,ff and £ = E¥| the left-hand-side of (A.13) is not less than

R oK\ 0K !
I{P(E acrs \CE) + K/BQ XERm(Cf:{S\Ci’Ig) i ’

hence
2m

R K K
P(E ,C’,,3\C’Tl)+/aQXERm(C£§\C€)dHn§ —
Then from (A.11) it follows that

n n

n_ 2 _n_
vln+1 + ,U2n+1 < <m + 4m> = 2u»+tim.
K

This finishes the proof of Step 1.
Before going to Step 2 we need some preliminaries. Choose any R > Rg. Let ag =r+1, by = Ryp.
Given 7+ 1 < ap < by <Rg, k €N, define

v = |EFN(CENCH)I.
By (A.6) Ef\ QK*i = (), hence

b
|[Ef N (Cf\ CE)| = /H”(ERmanf)dp, 0<a<b.

Therefore, for hy, = b’“jfa’“ itis possible to find 7y 1 € (ak,ar + hi), Tr2 € (ak";bk _ %’ ak;bk i %)
and ry3 € (bg — hg, by) such that

HUERNOCK ) < 35 HNQNOERNACK ) =0 fori=123. (A.14)
DS ,

34



We choose

: R K K R K K
e bess) = {uk) if |[ER N (CE \CK )| <|ERN(CE \CK ),

(Tk,Zv rk,?)) if ’ER N (CK \01{;2)‘ > ’ER N (01{;2 \ CXZ,S)’

Tk,1
Let
my, = max H(ETN 607{21-)'

i=1,2,3

Step 2. Using the definition of Ry we show that
1\ ()
my, < <2> . (A.15)
Indeed, according to (A.10), (A.14) and the definition of (ag,b;) one has

Vg1 < pmy,™ my < }Tk
br—a

By construction, bgi1 — ag1 > g, ie. hgp > %’“. By induction one can check that

koo 1/Oék

k
> jod I Z o (oh)
<|s=" (L) 2 A.16
my < (h0> o ; (A.16)

where « := nL+1 Note that
k
Zjozj <a
j=1

Since hg = Ro="=1 and vy < a“n by (A.9), the choice of Ry in (A.2) implies (") vy /hy < 1/2.
> o

Moreover h% 7=t < 1, since h% = Rof‘ful < 1. Now (A.15) follows from these estimates and

(A.16).

Step 3. Let ij, € {1,2,3} be such that m;, = H"(Ef N acf;ik). Since ay < 7k, < bg, {ar} is
nondecreasing and {by} is nonincreasing, there exists tr € [r+ 1, Ro| such that r; — tr (possibly
up to a subsequence). Then, by Step 2,

HY(EREN 8C£) = lim my =0,

k—+o00

Zjaj_l = % =n(n+1).

PR
= 1—a)

which concludes the proof of the lemma. O

Proof of Theorem A.3. Let us prove the existence of a minimizer of Gg. For R > Rg let tp €
[r +1,Ro] be as in Lemma A.6. Then from (A.8) and V(E®) > V(Ef N CL) we get

Gs(BER) > Go(ER nCE) + P(ER\ CE,Q) - /8 ) BX g M (A.17)
R
By (3.9) and the isoperimetric-type inequality
P(ER\ CE Q) - /6(2 BXER\@JH" > kP(E"\ CE) > s|E"\ CK | (A.18)

Thus from (A.17)
g/g(ER) > g/g(ER N Ctlli)
Hence, F:= ERnCE C 0712{0 satisfies

i E) = Gs(FH).
EEBV%;;’{M})%() Gs(F™)

From (3.9) and the minimality of F'® we get

kP(FT) < Cs(FR,Q) < Gs(FB) —infV < ka,
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and thus, by compactness there exists £ € B V(C’%O, {0,1}) such that (up to a subsequence) F* — E
in LY(Q) as R — 4oo. From the L!(Q)-lower semicontinuity of Gg and from (A.4) we conclude
that £ is a minimizer of Gg.

Now we prove that any minimizer E of Gg satisfies £ C C’f{o. Arguing as in the proof of (A.6) one
can show that F C @.

Claim. There exists R > r + 1 (possibly depending on V and r) such that £ C Cg .

For any p > 1 such that H"(Q2 N J*E N 805) = 0, by the minimality of £ we have Gg(F) <
Gs(ENCE), ie.

P(E, Qi \ CK) — / Bxpcx dH" < H(ENICS). (A.19)
[2/9]
By Lemma 3.2
P(E,Qx \ CK) - / By A" = k(P(E,c \ CF) + / Xpyeg AH").(A20)
oN oN
Moreover, by the isoperimetric-type inequality,
|E\ CK |51 < P(B, Qx \ CF) + H"(ENJCK) + / Xe\ox g dH".
oN

therefore, (A.19) and (A.20) imply

|E\ CF |7 < i H*(ENOCK). (A21)
Set m(p) = |E\ Cf |. Clearly, m : (1,400) — [0,|E|]. Moreover, m is absolutely continuous,
nonincreasing, lirf m(p) = 0 and H"(E N 005) = —m/(p) forae. p > r + 1. By (A.21)

—m/(p) = =t (n+ 1)m(p )nil. If E is unbounded, then m(p) > 0 forany p > r+ 1, and thus, for
any pi,p2 > r+ 1, p1 < p2 we have
1 K+1

1 1
m(p1) " —m(p2) T 2 —— (p2 = p1).

Now letting po — 400 we obtain m(p;) = +oo, acontradiction. Consequently, there exists R > r+1
such that m(R) =0, i.e. E C CE.

From the claim it follows that E is a minimizer of G also in BV (C%,{0,1}). By Lemma A.6
we can find tz € [r + 1,Rg] such that H"(E N AOCE) = 0. Then using V(E) > V(E N CE), the
relations (A.17) - (A.18) applied with E in place of E* imply

Gs(E) > Gs(E N CE) + 5| E\ CF |71

Therefore, the minimality of E yields ‘E\CTI;‘ =0,1e. FC Cf;. Since tr < Ry, the conclusion
follows. OJ

APPENDIX B. LOCAL WELL-POSEDNESS

In this appendix we sketch the proof of short time existence and uniqueness of smooth hypersurfaces
moving with normal velocity equal to their mean curvature in {2 and meeting the boundary 0f2 at a
prescribed (not necessarily constant) angle. The following theorem is a generalization of [38, Theorem
1], where short time existence and uniqueness have been proven for constant .

Theorem B.1 (Short time existence and uniqueness). Let 3 € C'T(0Q), [|Bllee <1 -2k, Kk €
( , 2] and Ey C Q be a bounded open set such that Ty = QN OEy is a bounded C3T% -hypersurface,

€ (0,1). Assume that U C R" is a bounded open set with C3* -boundary, p° € C3T*(U,R"+1)
is a parametrization of Ty such that p% 1 >0inl, p% 11 ="0o0n 0U, and

—eny1 + 8" )0 = DP°[n°) on 8U, (B.1)

0 ) is the outward unit normal to OU, vy = v(p°) is the outward unit normal of

0

where n° = (nf,...,n?
Lo at p° and Dp°[n’] = Z n9p).. Then there exists To = To(||Bllcr+e, [[P°[|cs+a) > 0, a unique
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family of bounded open sets {E(t) C Q: t € [0,Ty]} witha parametrization p € C1+/22+ ([0, Ty] x
U, R of T(t) = QN IE(t) solving the parabolic system

pi = trace((Dp - (Dp)") ' D?p) in (0, Ty) x U, (B.2)
where (Dp-(Dp)T)ij = po, ‘Do, and (D?p);; = Pojo; » coupled with the initial condition p(0,-) = 22,
the boundary conditions

{pn+1(t, =0 on OU for any t € [0, Tp], (B3)
e - v(p(t,)) = B(p(t,)) on U for any t € [0, Ty),
and the orthogonality conditions

DpP[n] - 10; = 0 on [0, Ty] x OU foreveryi=1,...,n —1, (B.4)

where v(p(t,-)) is the outward unit normal to T'(t) at p(t,-) and To1,...,70n_1 € R" x {0} isa
basis for the tangent space of T'g N OS2 at p°.

Remark B.2. Assumption (B.1) on p" is not restrictive. Indeed, if ¢ : U — To N ON isa C3F
parametrization of the contact set, we may extend it to a sufficiently small tubular neighborhood S :=
{x € U : dist(z,0U) < €} of OU in U with the properties that ¢ is a C3+® diffeomorphism,
q(S) c Ty and

q(0) = q(s) + |o = <|(ent1 — B(a(<))ro(4(s))) + O(lo — <),

where ¢ is the projection of o € S on OU. Since 0 =¢ — |0 — g|n0(g), it follows

V(<) n°(c) = —ent1 + B(a(<))vo(a(<)),

which is (B.1). Now we may arbitrarily extend ¢ to a C3*< diffeomorphism in I/ such that q(Uf) =
T,

Remark B.3. The unit normal to I'(¢) at the point p(¢,01,...,0,) € I'(t) can be written with a

(standard) abuse of notation v = v(p(t,o1,...,0,)) = |—Zl, where
[e1 €2 ... en enii]
Poy
U= 10(py) = det Poy
- pUn -

Proof of Theorem B.1. The idea of the proof is standard: first we linearize the equation around the
boundary conditions, then prove the existence result for the linearized system and finally we use a fixed
point argument.
Step 1. Let us linearize system (B.2) fixing some to > 0. Let X (to) C C1Te/22+e ([0, o] xU, R™1)

be the nonempty convex set consisting of all functions w € C1T/22+2([0, 5] x U, R"*1) such that

D ’LU(O, ) = va

2) wp41(t,-) =0 on OU forany t € [0, o],

n

3) Zn?wai 70, = 0 on [0,%0] x OU forevery i =1,...,n— 1.
=1 7

For w € X(to) set f(t,w) := trace[((Dw - (Dw)™)~! — (Dp° - (Dp°)")~1)D?w]. Then (B.2) is
equivalent to
w; = trace[(Dp" - (DpO)T)*1D2w} + f(t,w).
Notice that
|f(t,w)] < C(”POHcl(zj))Hchoz([o,tO]xa)Hw - pO”COJ([O,tO]XZj)’
where (]| POHcl(H)) > 0. Now we linearize the contact angle condition. Since we have e,, 1 - v(p?) =
B(p°), from Remark B.3 it follows that

ent1 - (P(wo) = 9(p5)) = B(w)[7(we)| = B(p°)|7(po)l. (B.5)
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Dy, 7 Dyt Dy, 0] (@ - (@)
~ Dpo'l v Dp021/ s Dpo'ny q0'2 (ql)OZ e (anrl)O'Q
Dy = . ; do = =
DP(Tl ﬁn+1 Dpa'g ﬁn+1 e Dpo'n I;n+1 qo’n (ql)o'n e (Q’I’L‘l’l)an
and
_ _ [ n n+l T
S Dy, 7' qo, Z 4 D)., (g5)
i=1 v i=1j=1
n 5 n n+l
> Dy, 4o > Dy, (¢5)
Dvlgs] = | =1 = | i=1j=1
pntl n ntl 5
_ZZ Dy, v qO'i_ Z Z ())o pntl (¢j)o;
Clearly, |H;(t,w)| = (||w P ||C01 Oto]xu)> Moreover,

7(wo)| = |[2(p5)] + v(8°) - Di(pg)[we — po] + Ha(t,w)
with |Ha(t, w)| = (Hw P20 Dto]xu)) Finally, since 8 € C+%(99) we have
B(w)[o(wo)| = BEZ@H)| = B0°)v(®°) - Do(p))[we — ] + Ha(t, w),
where Hy(t,w) = (||w PP o W)) Thus, (B.5) is equivalent to
(ent1 = B (")) - Do(p)[wo] = (ent1 — B°)v(P°)) - Do (p))[p5] + Ha(t, w),

where Hy(t,w) = O([w—p°2,, .
Thus we have the following linear parabohc system of equations

L(0,0¢,0,)w = fin (0,t9) x U
subject to the boundary conditions Bg(s, 0x)w = F'(t,<) on [0,tg] x OU, where

T

F(t,§) = 07 (€n+1 - 5(170)1/(170)) ’ Dﬁ(pg)[pg] + H4(t7 w): 07 v ,0

(n—1)—times

and, under the notation {go}" = {p?. ~p2]_}_1, oo =(pY), Bo =B’ the (n+1)x(n+1)-matrices
L(0,t,€,¢) and Bg(s,€), £ € R", ¢ € C are defined as follows:

L(0,¢,6) =diag [ (= Y g06&.¢C— > gl C— > 906& |

1,j=1 i,j=1 ij=1
[ 0 . 1 7
n+l n ~k n+l n . »
Z Z( 6k‘77’b+1 BOVO) 574 “ e Z Z( 5]€,7’l+1 — ﬂOVO)D(anrl)o-i Voé'z
k=1:i=1 Ee1i=1
n
Bs(s,€) = 701 21 né; . i 3 nl |
1= =
1 .
Top—1 2 1% . 7" 3 nlg
. = i=1 i
where the first row must be intended as [0, ...,0, 1].
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Step 2. Now we check the compatibility conditions [51]. Take any ¢ € OU and let 6 be in the
tangent space of OU at ¢. Let \g := A\o(s, (,0) be a solution of the quadratic equation

h(Xs,C,0) i=C+ Y g5 00 — 20 Y g m) + X > gindnd =0

i,j=1 i,j=1 i,j=1
in A\ € C with positive imaginary part. Notice that det £ = (h()\;s,¢,0))" ! and
L= (det £)£71 = diag((h(X; 6,6, 0))", ..., (A( X6, &, 0))™).
In order to prove the compatibility conditions we should prove that the rows of matrix
Bgs(s,i(0 — An®))L(z, ¢,i(0 — An°))

are linearly independent modulo the polynomial (A—Ag)"*! whenever R(¢) >0, |¢| > 0. According
to the definitions of £ and Bg one checks [38] that the compatibility conditions are equivalent to the
conditions

n—1

ciép+1 + Cgﬂ(po) + Z Cit2T0; =0 <= c1=c2=... =cp41 =0.

i=1
Since a basis of the tangent space {7p; ?:—11 of T'oN O belongs to the horizontal subspace of R"*! and
7(pY) isnormal to To N N at p° we have c3 = ... = ¢,41 = 0. Moreover, since |3| < 1 — 2k, and
I'y satisfies the contact angle condition, e,4; and D(po) are linearly independent, i.e. ¢; = c2 = 0.

Step 3. By [51, Theorem 4.9] since oU € C3t® 3 € C'**(9Q) and the compatibility con-

ditions hold, for any f,F € C%([0,to] x U), p° € C3+*(U) there exists a unique solution w €
C1He/2:24e ([0, to] x U) such that

wy = tr((Dp° - (Dp°)") L D*w) + f,

wpt+1(t,) =0 on OU for any t € [0, t¢],

(en+1 — BEY®")) - DI(°)[ws] = (ent1 — BE°)v (%)) - Do (p°)[pd] + F(t,z) on [0,to] x OU,

n
> ndwe, | ;=0 on[0,tg] x O andi=1,...,n—1.
j=1

Step 4. Finally, mimicking [27] we can prove the existence of and uniqueness of solution (B.2)-(B.4)
in time interval [0, Tp] for some sufficiently small Ty > 0 depending on ||3||c1+a and [|p°[|cs+a. O

We call E(t) the smooth flow starting from Ej.

Proposition B.4 (Comparison for strong solutions). Ler 5; € (—1,1), E[()i) C Q be bounded sets

such that 2N 8Eéi) are C3F hypersurfaces, and the smooth flows E©) (t) starting from E(()i) exist
in [0,T0), i=1,2. If B1 < By and dist(QNOE, QN OE) > 0, then dist(Q2n dEDV(t),Q N
OE@)(t)) > 0 forall t € [0, Ty].

Proof. The proof is an adaptation of the classical one (see for instance [10]). U
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