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ABSTRACT. The very definition of an Einstein metric implies that all its geometry is encoded
in the Weyl tensor. With this in mind, in this paper we derive higher-order Bochner type
formulas for the Weyl tensor on a four dimensional Einstein manifold. In particular, we
prove a second Bochner type formula which, formally, extends to the covariant derivative
level the classical one for the Weyl tensor obtained by Derdzinski in 1983. As a consequence,
we deduce new integral identities involving the Weyl tensor and its derivatives on a compact

four dimensional Einstein manifold and we derive a new rigidity result.
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1. INTRODUCTION

A smooth Riemannian manifold (M, g) of dimension n > 3 is said to be Einstein if the

Ricci tensor of the metric g satisfies
Ric = Ay,

for some A € R. In particular, every Einstein metric has constant scalar curvature R = nA.
In dimension three, Einstein metrics have constant sectional curvature, where in dimension

n > 4, the decomposition of the Riemann tensor and the Einstein condition imply

. R
Riem = W—I—mg@g,

where W is the Weyl tensor and ®is the Kulkarni-Nomizu product. Thus, all the geometry
of an Einstein metric g is encoded in its Weyl tensor W and, obviously, in the constant
R. Moreover, the special form of Riem naturally restricts the class of admissible Weyl-type
tensors (see [9, 12, 1]). We recall that the Weyl tensor W has the same symmetries of Riem,
is totally trace free and, on an Einstein manifold, it is also divergence free; this latter property
yields that the second Bianchi identity holds also for W, implying a PDE for the Laplacian
of W of the type

AW = gW—FW*W

1
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(where W x W is a quadratic term). Contracting the previous equation with W, after some
manipulations one can get the well known (first) Bochner type formula

1 R
GAW = VW[ 4 ZIWI* = 3 Wit Wijipg Wiipg »

which, in this particular form, holds only on four dimensional manifold with harmonic Weyl
curvature (see [3] and the next section for details). Here and in the rest of the paper we adopt
the Einstein summation convention over repeated indexes.

The aim of this paper is to find new algebraic/analytic constraints for W on four dimensional
Einstein manifolds. Among other results in this paper we derive a (second) Bochner type

formula involving the covariant derivative of W. Namely, we prove the following result:

Theorem 1.1. Let (M, g) be a four dimensional Finstein manifold. Then the Weyl tensor

satifies the equation
1 13
§A|VW|2 = ’VQW‘Q + ER‘VW‘Q — 10 Wijleiqu,thlpq,t-

This formula extends to the covariant derivative level the previous one for the Weyl tensor
obtained by Derdzinski in [3], but it requires the metric to be Einstein and not only to
have harmonic Weyl curvature. We point out that it is possible to derive quite easily a
“rough” Bochner type identity for the covariant derivative of Weyl (Proposition 5.1), and,
with some work, even a formula for the k-th covariant derivative V*W (Proposition 5.4).
These identities, although new, does not exploit the algebraic peculiarities of dimension four,
which are on the contrary essential in the proof of Theorem 1.1 (see Lemma 3.8 and 3.9).

An immediate consequence of our Bochner formula is the following second order L2-integral
identity for the self-dual and anti-self-dual part of the Weyl tensor W=:

Theorem 1.2. Let (M*, g) be a compact oriented four dimensional Einstein manifold. Then
R
Jromwep =2 [lawsp s £ [ows -
As a consequence, we show the following identity:

Proposition 1.3. Let (M* g) be a compact oriented four dimensional Einstein manifold.

Then 93 .
2, 40 +2 _ 2 +2 2 p2
/!VW!+12R/\VW] 12/!W|<6\W! R).

Note that, on the locally symmetric models S*, CP? and S? x S? with their standard
metrics, one has [WT| = |[W*| =0, 6]W*|?2 = R |W~| =0 and 6|W*|? = 6|]W~|> = R?
respectively. Finally, Theorem 1.2, combined with an improved algebraic integral estimate
relating the Hessian and the Laplacian of W, yields the following gap result :

Theorem 1.4. Let (M*,g) be a four dimensional oriented Einstein manifold with positive

/|v2Wi 12/|VWi

scalar curvature R. Then
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with equality if and only if VIW* = 0.

As a consequence using the classification of four dimensional locally symmetric Einstein

manifolds with positive scalar curvature we get the following rigidity result:

Theorem 1.5. Let (M*,g) be a four dimensional Einstein manifold with positive scalar

R
[ <3 1w,

then (M*, g) is isometric, up to quotients, to S*, CP? or S% x S? with their standard metrics.

curvature R. If

The compactness of M, in the previous statements, is required only to guarantee the validity
of some integration by parts argument, and thus could be extended to the negative or Ricci

flat cases under suitable decay assumptions at infinity.

The paper is organized in the following sections:
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2. DEFINITIONS AND NOTATIONS

The Riemann curvature operator of an oriented Riemannian manifold (M™,g) is defined
by
R(X,Y)Z =VxVyZ - VyVxZ - Vixy|Z.

Throughout the article, the Einstein convention of summing over the repeated indices will
be adopted. In a local coordinate system the components of the (1,3)-Riemann curvature

tensor are given by Rﬁjk% = R(%, %)% and we denote by Riem its (0,4) version with
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components by R;;p = gimR;?}d. The Ricci tensor is obtained by the contraction R;;, = ¢/ ZRZ-jkl
and R = ¢**R;;, will denote the scalar curvature. The so called Weyl tensor is then defined
by the following decomposition formula in dimension n > 3,

Wijki = Rijr — 3 (Rikgji — Rugji + Rjigik — Rjkgir)

R
e Dm=2) (9ikgjt — girgjk) -

The Weyl tensor shares the symmetries of the curvature tensor. Moreover, as it can be easily
seen by the formula above, all of its contractions with the metric are zero, i.e. W is totally
trace-free. In dimension three, W is identically zero on every Riemannian manifold, whereas,
when n > 4, the vanishing of the Weyl tensor is a relevant condition, since it is equivalent
to the local conformal flatness of (M™,g). We also recall that in dimension n = 3, local
conformal flatness is equivalent to the vanishing of the Cotton tensor

Cijk = Rijk — Rikj —

1
W(ngij - Rjgik) )

where R;;, = ViR;; and R, = ViR denote, respectively, the components of the covari-
ant derivative of the Ricci tensor and of the differential of the scalar curvature. By direct

computation, we can see that the Cotton tensor C satisfies the following symmetries

Cijk = —Cikjs Cijk + Cjki + Crij = 0,

moreover it is totally trace-free,

99 Cijk = g™ Cijr = ¢*Cij = 0,

by its skew—symmetry and Schur lemma. Furthermore, it satisfies

Cijki = 0,

see for instance [2, Equation 4.43]. We recall that, for n > 4, the Cotton tensor can also be

defined as one of the possible divergences of the Weyl tensor:

n—2 n—2
(2.2) Cijr = (TL—?)) Wikt = — <7’L—3> Wik, t-

A computation shows that the two definitions coincide (see e.g. [1]).
We say that a n-dimensional, n > 3, Riemannian manifold (M™", g) is an Finstein manifold
if the Ricci tensor satisfies
Ric = Ag,
for some A € R. In particular R = nA € R and the Cotton tensor C' vanishes. If n > 4,
equation (2.2) implies that the divergence of the Weyl tensor and thus of the Riemann tensor

are identically null on every Einstein manifold. Manifolds satisfying these curvature conditions
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are said to have harmonic Weyl curvature or harmonic curvature, respectively. The Hessian

V? of some tensor T of local components i’?f.'.'.f,} will be

(V?T)pq = qupT'jlm‘jl =T/

110 11...0,Pq

and similarly V¥ for higher derivatives. The (rough) Laplacian of a tensor T is given by

Alel 1"'1:21 = glg‘lTZ?1 1"'1.]; - The Riemannian metric induces norms on all the tensor bundles, and

in coordinates the squared norm is given by

2 _ _iu1m im J1--Jigmi...n
’T‘ _gl 1...gk kgjlnlgj T Tl 1

M9y .a, ~my..my, *

3. SOME ALGEBRAIC FORMULAS FOR THE WEYL TENSOR

In this section we present some known and new algebraic identities involving the Weyl

tensor and its covariant derivative.

3.1. General dimension n > 4. To perform computations, in this subsection, we freely
use the method of the moving frame referring to a local orthonormal coframe of the n-
dimensional, n > 4, Riemannian manifold (M™, g). If not specified, all indexes will belong to
the set {1,...,n}.

First of all, a direct consequence of the definition of the Weyl tensor and of the first Bianchi
identity for the Riemann curvature tensor is the first Bianchi identity for W:

Wikt + Witjk + Wikt = 0.
As far as the first derivatives of W are concerned, we have (see for instance [2])

Lemma 3.1. On every n-dimensional, n > 4, Riemannian manifold one has
1
Wijker + Wikt + Wi = m(citléjk + Cundjt + Ciredi — Ciudi — Ciindit — Cirebar)-
As a simple consequence we obtain the following identity:
Lemma 3.2. On every n-dimensional, n > 4, Riemannian manifold one has
1 2 1 . 2
Wikt tWijke, = §WW’ - 3\d1v Wl°.
In particular, on a manifold with harmonic Weyl curvature, one has
1 2
WijkttWigkea = 5[VWI".

For the second and third derivatives of W, it is known that (see for instance [2])
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Lemma 3.3. On every n-dimensional, n > 4, Riemannian manifold one has

(3.1)
Wijkl,st - I/Vz'jk:l,ts = erkerist + Wirk:erjst + Wijrerk:st + vvz'jk:rerst;

Wijk:l,trs - VVijkl,tsr = vjkl,thirs + VVivkl,thjrs + I/Vijvl,thlcrs + I/Vijkv,thlrs + VVijkl,vthrs~
Using the definition of the Weyl tensor in equation (3.1), we obtain

Lemma 3.4. On every n-dimensional, n > 4, Riemannian manifold the following commuta-
tion formula holds:

Wijkl,st - Wijkl,ts = erleTist + Wirlerjst + Wijerrkst + Wijkrerst

1
+ m [erkl(Rrs(Sit - théis + Rz‘tdrs - Risdrt)
+ Wirkl(Rrséjt - th5j5 + Rjtérs — stért)
+ WijTl(RT‘Sékt — Ryt0ks + Riilrs — Rksdr‘t)
+Wijkr(Rrs(5lt - th(;ls + th5rs - Rlsért)]
R
~ =) =) WramtCrsdie = Oredis) & Warka (8rdje = 6redjs)

+Wiiri (67505t — 0rt0ks) + Wijkr (Ors01 — 0rt0ys)] -
In particular, on every four dimensional Einstein manifold one has
Wiikt,st — Wijkits = WejkiWeist + WirtaWejst + WijriWoekst + Wijkr Wi+
1% (Wejidit — Wikidis + Wiska0jt — Witka ;s
+ WijsiOkt — Wijudks + WijksOu — WijkeOis)

_l’_

and

R
Wiikt,si = WirkiWejsi + WiiriWiksi + Wijkr Wiisi + ZWsjkl .

The general commutation formula for k-th covariant derivatives, k > 3, is contained in the
following lemma which is well known.

Lemma 3.5. On every n-dimensional, n > 4, Riemannian manifold, for every k € N, k > 3,
one has

Wagys,ir-ix_vix = WaBysiwirix_1 = WpBys,ir-ix_oBpain iy + Wapys,ir-ir_o Rppiy_1iy
+ Waﬁp&il"'ikszp’Yik—ﬂk =+ Waﬁ'va’il"'ik72Rp5ikflik

k—2

+ Z Wags,in-jn-ik_o Ljninin_vin-
h=1
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3.2. Dimension four. In this subsection we recall some known identities involving the Weyl
tensor and we prove some new formulas involving its covariant derivative. For algebraic
reasons, all of them hold only in dimension four.

First we recall that, if T = {Tj;n;} is a tensor with the same symmetries of the Riemann
tensor (algebraic curvature tensor), it defines a symmetric operator, T : A> — A2 on the
bundle of two-forms A? by

1
(3.2) (Tw)g = STijnwij ,
2

with w € A%, Hence we have that X is an eigenvalue of T if Tijriwij = 2Awyy, for some
0 # w € A% note that the operator norm on A? satisfies | T, = %|T\2.

The key feature is that A2, on an oriented Riemannian manifold of dimension four (M*, g),
decomposes as the sum of two subbundles A™, i.e.

(3.3) AP=ATpA.
These subbundles are by definition the eigenspaces of the Hodge operator
x: A% — A?

corresponding respectively to the eigenvalue +1. In the literature, sections of AT are called
self-dual two-forms, whereas sections of A~ are called anti-self-dual two-forms. Now, since
the curvature tensor Riem may be viewed as a map R : A2 — A2, according to (3.3) we have

the curvature decomposition

W++%I\ Ric
° _ R
Ric ‘ w +§I

—

R:

where
W=w"+w-
and the self-dual and anti-self-dual W¥ are trace-free endomorphisms of A*, I is the identity

map of A% and Roz'c represents the trace-free Ricci curvature Ric — %g.

Following Derdzinski [3], for # € M*, we can choose an oriented orthogonal basis w*,n, 6+
(respectively, w™,1n7,07) of A} (respectively, A} ), consisting of eigenvectors of W= such that
W] = 7] = 6%] = V3 and, at 7,

1
W= = S (Ve @w T @ +vE0 0 0%)

where A\* < y* < v* are the eigenvalues of WF. Since W are trace-free, one has A\* + p& +
v* = 0. By definition, we have

IWERe = A5 + (1) + (75)°.
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:I: :t

Since it will be repetedly used later, we recall that the orthogonal basis w , 0% forms a

quaternionic structure on T, M (see [3, Lemma 2]), namely in some local frame

+ 4+ _ &+ o+ _ 5.

Wip¥pj = nipnp] 92:0927] = —0ij,

_pE + _  * =+ £ _ +
wipnm 6”, n%pe = Wijs sz pi = Tij -

The following identities on the Weyl tensor in dimension four are known (see [3] and [§]
respectively)

Lemma 3.6. On every four dimensional Riemannian manifold, one has

1
(3.4) Wikt Wikl = Z\W\Qgtl = ||W||3\29tl
and
1
(3.5) Wikt WipkgWipta = 5 Wijki WijpaWiipg-

Remark 3.7. It is easy to see that the two identities holds independently for the self-dual
and anti-self-dual part of W.

As far as the covariant derivative of Weyl is concerned, it can be shown that (see again
[3]), locally, one has

(3.6) AVIWE = (dAF @ W + (0 — ) o n® + (vt -
+ (dp* @ n* + (\F — 1) @ w*™ + (1F — vF)a® @ 0F) @ n*
+ (dv*= @ 0F + i—)\ 0 @ wt + (uF —

for some one forms a*,b*, ¢*. By orthogonality, we get

IVWHRe = AP+ |du™ P+ o™ P4+ 2(u" —vF) 2|0 P20 =) b5 P 420 — )2
It follows from (3.6), that g has harmonic Weyl curvature, i.e. div(W) = 0, if and only if the
following relations (locally) hold (see [3])

Ak = (A= pw)bricr + (A —v)nrb
(3.7) pr = (10— N)Oricr + (1 — v)wpiag
vk = (V= Nnwby + (v — pwgar,

where we recall that A\ = (d\)g. The next identites will be crucial for the proof of Theorem
1.1.

Lemma 3.8. On every four dimensional Riemannian manifold with harmonic Weyl curva-
ture, one has

+ i+ +
WiuW W

Lot ok ot
jpat.k " ipgt,l — §Wijle" W,

1jpg,t " klpg,t
Moreover, one has

1
WiikiWipat e Wipats = =5 Wijkt Wijpat Whipq.t
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Proof. First we prove the self-dual case (the anti-self-dual case is very similar), namely, we
show that, if the ¢ has (half) harmonic Weyl curvature, then

W 1

(38) Wi?klw+ ipqt,l = _5

+ + +
Jpat.k Wz‘jle“ W

ijpg,t " " klpg,t

To simplify the notation, we suppress the + symbol on the eigenvectors and eingenvalues.
From (3.6), we have at some point

2Why = Awijwrt + gk + v 0ij0h
2W1Jgrpqt ()‘t“’pq + (A = p)enpg + (v — )‘)btepq)wij

o (1etpg + = B)cieopg + (1 = V)i ) i

+ (Vt9pq + (v = XN)bwpq + (10 — I/)atnpq> 0ij ,
2szqtl = (Alwqt + (A = p)ang + (v — /\)bleqt>wz'p

+ (Mmqt + (A = p)awq + (1 — V)al‘gqt>77ip

+ (Vleqt + (v = Nbwge + (1 — V)amqt) Oip -
By orthogonality and the fact that |w|? = |n|? = |0|> = 2, we get

ZWZJJFleZJerqt =2 wp (Atwpq + (A= p)empg + (v — /\)btepq)
+ 20k (Mmpq + (A = p)erwpg + (1 — u)atepq)

+2v 0y (Vtepq + (v — )‘)bt‘*’pq + (1 — V)atnpq> .

Note that the coefficient 2 on the left-hand side is due to the convention (3.2). Hence

W/i;'rleierpq,th:qu,t = 4| Aswpg + (A — p)cenpg + (v — )‘)btepq|2
+ gl pempg + (N — p)ewwpg + (1 — V)atequ
+ 4v|vbtpg + (v — A)bywpg + (1 — ’/>at7710q|2

A simple computation, using the fact that A + p + v = 0, implies

(3.9) WJMVW W

et Wiipar = MAA + pldpl® + v]dv|?

— A= v)lal® = (= N2 = v — p)?lef?.
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We note that this formula holds on every four dimensional Riemannian manifold. Concerning

the left-hand side of (3.8), using the quaternionic structure one has
4ijleqtl =— )\()\lwqt + (A= p)emg + (v — bleqt)wkléjp

- A Hinlgt + >\ ,U/)Clwqt + aleqt>wkl0]p

+ Mg + (v — N)bjwge + (1 — v)aymg

+un /\lwqt + /\ M)Clnqt + v — bﬁqt) 77klejp

(

+A(

(

M(umqt + (A = p)ewqgr + ( aleqt) Mt Ojp
,u(w&qt + ( ANbiwge + (10— v) amqt>
y()\lwqt + (A = pwemg + (v — bZth) Okinjp

+v (Mmqt + (A = p)ewqr + ( aleqt) Oriw;p

- V(Vleqt + (V - )‘)blwqt + -V al"?qt) Hk‘ld]p
Since W is trace free, a computation shows

2W i WinataWipat e =
+4A <Mk77qt + (A = p)egpwqr + (1 — V)akeqt> (Vlgqt + (v — Nbwg + (10— V)amqt>wkl
+4p (Vk9qt + (v = Nbgwg + (1 — V)%ﬁqt) ()\zwqt + (A= pemg + (v — )‘)bleqt> Mk
+4v <>\kwqt + (A= p)erng + (v — )\)bkeqt> (Mmqt + (A = p)awgr + (1 — V)az9qt> Ok
- 8(>\ka + By + v Fy
F A = ) — v)wmerdy + plp — v)O — p)magc + (v — A) (i — V)Hklbkal) ,

where

Dy = v(A — p)Oricr — p(v — XN)nrby,
Ep = Mp — v)wa; — v(A — p)buicr
Fk = ,u(u — )\)nklbl — )\(,u — V)wklal .
Since g has harmonic Weyl curvature, from (3.7), one has
Dy = =AM X — p(A = p)bgicr + v(v — Nmwiby
By = —p e — p(p — v)wgar + A — p)brier
Frp = —vuyp — Av — Nnb + p(p — v)wga -
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Substituting in the expression above, using again (3.7) and the fact that |wya|? = |a|?, we

get

W W Wi

ipqt,l"" jpqt.k = 8<)"d)"2 + M’d:u‘Q + y’dy‘Q

= A= v)lal? = p(v = AP = v = w)%el?)

Comparing with (3.9), we obtain the first formula stated in this lemma, namely

1
+ + + _ 1wt + +
Wijleipqt,lepqt,k - 9 Wijleiqu,thlpq,t '

As we have already observed, the proof for W~ is the same. To conclude, we have to show
the identity for the full Weyl tensor
1
WiikiWipgt,k Wipgt1 = _§Wijleiqu,thlpq7t-

Clearly, since the covariant derivative decomposes orthogonally
VW =VW+ 4+ VW™,

one has

- . — Wt +
WijkiWijpg,t Whipg. = Wijle'

+ — — —
ijq,thlpq,t + Wijle' W,

1jpg,t " klpg,t
and

WiitaWipat s Wipath = WisaWinat iWipats + WisiaWipat Wi

Jpat,k " ipqt, Jpat,k " ipgt,l
+ - - - + +
+ Wijlequt,kWipqt,l + Wijlequt,kWipqt,l :
Hence, it remains to show that
+ ¥ F o
(3.10) Wz‘jlequt,sz‘pqt,l =0.

In fact, one has

oW Wit

_ + + +
gtk Wipgrs = Aridij + Buw;; + Crng; + Db,

27
for some two tensors A, B,C,D. Since w™,n~,0  are orthogonal to w™,n", 0" we get the
result and this concludes the proof of the lemma. O

Finally, we have the following identity
Lemma 3.9. On every four dimensional Riemannian manifold, one has

1
WiitaWipkgtWipig,t = 3 WiitaWijpg,t Wipq,t -

Proof. First of all,
. . . — Wt + + - - -
WZJlelqu’tWJPl‘Lt - Wijklw/ipkq,twjplq,t + Wijklvvipkq,t jplg,t

T + — et + + - -
T 2WiiaWipkg tWiptat T WistaWipka tWiptg.t + WisttWipkg i Wipig. -
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Following the last part of the proof of Lemma 3.8, it is not difficult to deduce that

Wialezpkq tW]plqt Wz]lezpkq tW]plqt Wl]lezpk:q tW]plqt 0,
and thus
WijkiWipkq,t Wipig,r = Wz]klvvzjgkq tW];lq t Wz]kl szkq tW];lq t-
So we need to show that
1

+ + +
Wzglezpkq tW]plq t 9 Wijleiqu,thlpq,t :

From equation (3.9), which holds on every four dimensional Riemannian manifold, we have
= Nd\|? + pldu|® + v|dv|?

= Mp = v)*lal® = p(v = N[ = v(A = p)?[el?,

1
+ +
g I/VijlclV[/vszq thlpq t

and the corresponding expression holds for W~. Concerning the left-hand side, we recall that

QWZM Awijwir + 1 nine + v 0i50k
DW= (Mg + (3 = i)eung + (v = Nbubg ) wip
o+ (Bemg + (0 = wewong + (1 = V)arbe ) i
(Vi + (v = Mg + (1= V)arnig ) B
2W];lqt ()\twlq + (A —pemg + (v — )\)btelq)wjp
+ <Mt?71q + (A = p)cpg + (0 — V)at9zq> Nip
+ <Vt01q + (v — Nbwig + (1 — V)atmq> Ojp

Using the quaternionic structure, we have

4szkq thplq ¢ ()‘twkq (A — p)enrg + bt9kq) Lemig + (A — p)crwrg + (B — u)atelq> i
+ (Athq (A = p)cenrg + bt9kq> (Vt91q — Nbwig + (1 — V)atmq>?7ij
+ (Mt??kq + (A= p)eiwrg + (p—v atekq> (Atmq + (A= p)eimg + (v — AN)bibiq ) 0i;
kg + (A — p)crwrg + (p— v atekq) (Vtﬁlq — Nbpwg + (10— v)agmyg
— (uté?kq + (v = N)bwpg + (p— v atnkq) (Atwlq (A= p)eemg + (v — )\)btﬁlq)mj
(Vtekq + (v = Nbwig + (1 —v atnkq) <Mt771q + (X = p)cpg + (1 — V)at91q>

+ 131055
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for some two-tensor 1. Hence,

4vVZpkq tWJplq t
- 2<Mt77kq + (A — p)cpwpg + (1 — V)at9kq) (Vt9zq + (v = N)bwig + (1 — V)atmq)wz‘j
- 2(Vt9kq + (V= ANbwyg + (1 — V)atnkq) ()\twlq + (A= pemg + (v — )\)btelq) Nij
- 2<)\twkq + (A = pemng + (v — )\)btekq> <Mt771q + (A = p)erwrg + (p— V)atelq) 0ij
+ D105 -

This implies

+

2W1jle1pkq, ijlq,t -
— 4\ <Mt77kq + (A — p)cpwpg + (n—v at9kq> (Vtelq — AN)bgwrg + (o — V)atmq)wkz
- 4M(Vt9kq + (V= AN)biwrg + (1 —v) atnkq> (Atwlq (A = p)egmg + (v )\)bt9zq> u
—4v (Atwkq (>‘ M)Ctnkq btekq> <Mtnlq >\ M)thlq + (M - V)atelq) Or1

= =8A((1— ) = jum) — SM(( = N0 = A ) = 80 (A= )2l = A ) -
Now, since dA + du + dv = 0, one has

2\t = |dv[? — |dA]® — |dul?,
20wy = |dpl? — |dN)? — |dv|?,
2y = [N — |dp|* — |dv|*.

Finally, from the relation A + u + v = 0, we get

1
ZWi—j"—lezpkth—;lqt A‘dA|2 —|—,U,‘du|2 +V‘dV’2
= A= v)*[al* = (v = A2 = v(X = p)?[ef?,
and this concludes the proof of the lemma. O

4. THE CLASSICAL BOCHNER FORMULA FOR THE WEYL TENSOR

In this section we recall the well known Bochner formula for manifolds with harmonic Weyl
curvature (for a proof see e.g. [11, 7]).



14 GIOVANNI CATINO AND PAOLO MASTROLIA

Lemma 4.1. Let (M, g) be a Riemannian manifold of dimension n > 4, with harmonic Weyl
tensor (i.e. Winijkm =0). Then

AVVijk’l = Riprjkrl - ijWpikl - 2(Wiququkl - Wipqlequ + Wiquijql )

1
+ 5 [Bip Wit — RipWopjwt + Bip(Wagni = Whinj) = Biep(Wjti — W)

1
+ 5 [Bog(WhiqiOrj — WjatOki + Whing®j — WjkqOii)] -

As a consequence, one has
1
(4.1) §A‘W|2 = |VW|2 + 2quWpileqikl — 2<2Wijleipqujplq + %W/z’jleiquWklpq> .
In particular, in dimension four we have
Corollary 4.2. On a four dimensional manifold with harmonic Weyl curvature one has
R
(4.2) AWiji = Wikt = 5 Wijkt = 2WipjgWart = WipgtWipar: + Wipgk Wijgpt)

and

1 R
GAW = VW[ 4 ZIWI* = 3Wij5 Wi Wit -
Proof. The proof is just an easy computation using (4.1) with equations (3.4) and (3.5). O

An easy computation shows that the same equation holds for the self-dual and anti-self-
dual part of the Weyl tensor, namely on every four dimensional manifold with half harmonic
Weyl curvature, div(W=) = 0, one has

1 R
(4.3) GAWEP = [VWH2 4 2w = 3w Wi,

+
Witpg -
These first Bochner formulas for the Weyl tensor have been exploited in the last decades by
a number of authors. Just to mention some of them, we refer to Derdzinski [3], Singer [11],

Hebey-Vaugon [7], Gursky [4, 5], Gursky-Lebrun [6], Yang [13] and references therein.

5. HIGHER ORDER “ROUGH” BOCHNER FORMULAS

The aim of this section is to compute new “rough” Bochner type formulas for the k-th
covariant derivative of the Weyl tensor. The reason for this terminology is that the proof
do not make use of the algebraic properties related to dimension four, but only exploits the
commutation rules for covariant derivatives of W. We first treat the case k = 1; the general
case will be proved in Proposition 5.4.

Proposition 5.1. On a four dimensional Einstein manifold we have

1 R
5A|VW]2 = |V2W|? 4+ (VW,VAW) + Z\VWF + 8Wijkt s Wijki e Rrist -
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FEquivalently
1 R 2
iA’VW’Q = ‘V2W|2 + <VVV, VAW> + Z‘VW‘Z -+ 8Wijkl,serkl,tWrist + gR Wijkl,sWSjkl,i .

Remark 5.2. We explicitly note that for the proof of the previous proposition it is not suffi-

cient to assume div(Riem) = 0, but we have to require the metric to be Einstein.

From Proposition 5.1, we obtain a first integral identity which will be used in the proof of
Lemma 7.4.

Corollary 5.3. On a four dimensional compact Finstein manifold we have

1 R
/Wijkl,serkl,tWrist =-3 / \Wijht,st — ‘/Vz'jkl,tsf ~ 51 / VW2,

Proof. A simple computation shows that

1
§A|VVV|2 = VAW + Wijkt,sWijktast + 4Wijkt,s Wikt Rrist

R
= |V2W 2 + Wikt sWijktest + 4Wijkt.s Wikt e Wist + gWijkl,sWsjkl,i

= |V2W 2 + Wikt sWijktest + 4Wiikt.sWojkt.t Wrist + %VW\Z ,
where in the last equality we used Lemma 3.2. Now, noting that
1|W — W, |2: |v2w|2_Wu W
o1 Wighl,st ikl ts ikl st Wijki ts
and integrating on M the previous equation, we obtain the result. ]

The general Bochner formulas for the k-th covariant derivative of the Weyl tensor, k > 2,
is contained in the next proposition.

Proposition 5.4. On a four dimensional Finstein manifold, for every k € N, k > 2, we

have
1 A ket Ly (2 k k-1 R k2
(5.1) SAIVAW = [V 4 (VAW VAVE W) + 2| vFw |
+ 8Wa6“{i0,i1i2"'ikflik Waﬂ'YjOyiliQ"'ikfljk Rjoioikjk
k-1
20 Wabysirinemin-einvin Wesydiriain-—ix 1 x Rinininis -
h=1

. 2
Proof. Since ‘VkW’ = Wapys,ir--ir, WaBvys,ir i, We have

2
(’VkW’ ) = 2Waprsir- i, Wapybis —irt
t
and thus

1 2 2
(5.2) iA‘V’“W’ :‘v’f“w‘ - Woagnbiy iy Wapnbis iyt
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Now we want to write Wogysi,..ixtt @8 Wapgnsiy-i,_,tti, PlUs a remainder, using Lemma 3.5;
to do so, we observe that
Wapys,ir-intt = (Wa5’75,i1"-ikt)t = (Waﬂ'ﬂsyil'”ikfltik + ml)t
= Wapyé,iy-i_1tipt + (%1)t
= afBy0,i1-ig_qttig + mQ + (ml)ﬁ

where PR and Ry are two terms involving the Weyl tensor and the Riemann curvature tensor.
Indeed, using using Lemma 3.5, the fact that (M, g) is Einstein and div(W) = 0,

9‘{1 = Wa,@y&,il---ikt - Wa,@yé,il---tik

= Wsysir-in_1 Bpairt + Wapysin iy Bpgist + -« + Wapysir-ig_opLpin_qigts

k+3 terms

(ml)t = Wpﬁ'yé,il---ik,ltRpaikt + Wap'yzs,iy--ik,ltRpBikt +...+ Woz,ﬁ'y&,il---ik,gptRpik_lith

k+3 terms

E}{2 = Wa,@’y&,ilmik,ltikt - Waﬁ"/é,h'“ik,lttik

= Wisysir-ir_1tBpaigt + Wapys,ir-ip_1tBpixt + - -+ Wapysir-ip_opt Bpiy_yigt

k+3 terms

+ Wapys,is-ix_1pBptiyt
R
= (M), + ZWaﬂyé,z‘l---z‘k,lik,

and thus (5.2) becomes
1 2 2 R
gﬁ‘ka‘ = ‘VMW‘ + Wapysiri [Wamcs,n--~ik_1ttz’k +2R0); + L Wapysin-iy |-
Now, a lengthy computation shows that

Waﬁ’Y&il'“ik (ml)t = 4Waﬁ'yi07i1i2“'ik—1ik WO&B’Y]’o,hizmik—ﬂk Rjoioikjk
k—1

+§ WaBys,ivig-in-ix_vik WaBydiviz-jn-ix_ 1k Fonininin >
h=1

implying equation (5.1). O
Remark 5.5. We note that, with suitable changes, Proposition 5.4 holds in every dimension.

Remark 5.6. We observe that, with no changes in the proofs, all the previous formulas hold
also for the self-dual and anti-self-dual part of Weyl.



BOCHNER TYPE FORMULAS 17

6. THE SECOND BOCHNER TYPE FORMULA: PROOF OF THEOREM 1.1

In this section we first prove Theorem 1.1, namely we show that the following second

Bochner type formula,

1 13

§A|VW|2 = |V*W|* + ER\VWF — 10 WijiaWijpa.t Whipg.t
holds on every four dimensional Einstein manifold.

Proof of Theorem 1.1. From Proposition 5.1 we know that

1 R 2
§A|VW’2 = ‘V2W|2 + <VVV, VAW> + Z‘VWF + 8Wijkl,serkl,tWrist + éR Wijkl,swsjkm .
Now observe that, using Lemma 3.2, one has
1
Wik, s Wejkti = Wijkt,sWijks = §\VW|2 -

Moreover, since renaming indexes we have Wik sWo ik, iWrist = WijtaWipgt k Wipge,1, from
Lemma 3.8, we get
1
Wiikt, s Wikt it Wrist = —§Wijszz‘qu,thzpq,t-

Now, Theorem 1.1 follows from this lemma.

Lemma 6.1. On every four dimensional Riemannian manifold with harmonic Weyl curva-

ture, one has
1
(VW,VAW) = 5R|VW|2 — 6WiitaWiipg t Whipg.t -

Proof. First we observe that equation (4.2), using the first Bianchi identity, can be rewritten

as
R
AWijtg = Wijki e = EWijkl — WiipgWiipg — 2(WipkgWipig — WipigWipkq),
which implies, by the symmetries of the Weyl tensor,
R
<VW7 VAW) = Wijkl,t EWijkl - WiquWklpq - Q(Wipqujplq - Wipqujpkq)
¢

R
= §|VVV|2 — Wikt WijpgWhipg); — 4Wijntt (WipkgWiplq),

R 2
= §|VW| — Wikt tWijpat Whipg — Wikt tWijpgWiipg,t
— AWkt tWipkq tWiptg — AWiiki ¢ WipkgWiplg,t

R 2
= 5\VW| = Wpakt tWhpaijt Witij — Wijpa,t Wikt Whipg,t
— AWtk tWigh t Wipig — Witk t WipigWpigk t

where in the last line the change of indexes exploits again the symmetries of W. Thus we

have

R
(VW,VAW) = 5\VW|2 = 2Wijpg t Wi ikt Wipg,t — 8Wiitk t Wopigrk t Wiplgs
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which immediately implies the thesis using Lemma 3.9.

This concludes the proof of Theorem 1.1.

7. SOME INTEGRAL ESTIMATES

In this section, starting from Theorem 1.1, we derive some new integral identities for the
Weyl tensor for Einstein manifolds in dimension four. First of all we have the following
identity (which will imply Theorem 1.2 in the introduction).

Proposition 7.1. On a four dimensional compact Finstein manifold we have

/|V2W|2—g/|AW|2+f/|VW|2 =0.

Proof. We simply integrate over M the second Bochner type formula and use Lemma 6.1 to
get

R
) [1awE = [@WIAW) == [IVWE+6 [ WoaWopn Wit
ie.

5 5
10/Wijklwiqu,twklpq,t = 3/]AW\2+6R/\VW|2.

Remark 7.2. We will see in the next section that this formula also holds for W=.

Now, we want to estimate the Hessian in terms of the Laplacian of Weyl. Of course, one
has )
VW 2 AW,
In the next proposition we will show that on compact Einstein manifolds one has an improved
estimate in the L?-integral sense.

Theorem 7.3. On a four dimensional compact Einstein manifold we have

5
2712 > 2 AW |2
[Ivwe = lawe,
with equality if and only if VW = 0.

Proof. In some local basis, using the inequality for a 4 x 4 matrix |A|? > (trace A)?/4, one
has
271712 2 1 2 1 2
|VW|* = Z Wik st = 1 Z (Wijkl,st - Wijkl,ts) +3 Z (Wijkl,st +Wijkl,t5>
ijklst ijklst ijklst
>1 Z (W W >2+1‘AW|2
=1 ijkl,st ijkl,ts 4

ijklst
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with equality if and only if

1 1
(7.2) Wijki,st + Wijki s = 1 (trace (Wijh,st + Wijkl,ts)>5st =3 (AWijnt)dst
at every point. The final estimate now follows from the following lemma.

Lemma 7.4. On a four dimensional Einstein mam'fold we have

/ ‘szkl st — zykl ts - / |AW|2

Proof. From Corollary 5.3, we have

1 2 R
/Wz‘jkl,serkl,tWrist =—3 / |Wijkt,st — Wigkias|” — 21 / IVIV|2.
Moreover, from Lemma 3.8, we know that

1
— = WiikitWijpg t Whipg,t -

vvijkl,serkl,tWrist = 9

Thus, one has

2
/ \Wijkt,st = Wijkias|” =4 / WiiteiWijpg,t Wipg,t — / IVW|? = / AW,
where in the last equality we used equation (7.1). O

This concludes the proof of the inequality case. As far as the equality is concerned, from
equation (7.2), we know that, at every point, it holds
1
Wiikist + Wijki s = §(AWijkl)5st-
Taking the divergence with respect to the index ¢, using the second commutation formula in

Lemma 3.4 and the fact that Weyl is divergence free, we obtain

1 R
§Wijkl,tts + Wikt stt + Wikt i Ruist + Wivkt, e Bojst + Wijol i Rokst + Wijko i Ruoist + ZWijkl,s =0.

Contracting with Wj;z; s and using the decomposition of the Riemann tensor, we obtain

1 R 1
= §(VW, VAW) + (VW,AVW) 4+ dWijpt s Wit i Wrist + - Wijnt,s Wesjkii + ZR!VW\Q

3

1 1 R 1
= §<VW’ VAW) + §A|VW|2 — |V2W P + AWkt s Wit Weist + = Wikt s Wijkti + ZR!VW\Q

3
21 )
= ERWW| — 15WikaWijipg t Whipq,t »

where we have used Lemma 3.2 and 3.8, Theorem 1.1 and Lemma 6.1. Hence, we have proved
that, at every point, one has

7
(7.3) WissiWijngsWhipge = 55 BRIV
From the second Bochner formula (Theorem 1.1) one has

1 1
5ANW\? = |V2W|? - ER|VW]2.
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In particular, since R is constant, if R < 0, then integrating over M we obtain V?W = 0,
which implies AW = 0 and, by compactness, VW = 0. Now assume that R > 0. Let a be
the two form

(wat) ._ Wijpar
v IVIV]

defined where VW # 0. Note that || = 1. By (7.3), one has

(pat) (pat) _ 7
Wi i = oo R

at every point where VW # 0. In particular, by normalization, the positive constant 7R /120
is an eigenvalue of W viewed as an operator on A2. Since it is positive, either one has
7 7
= + T =—R = * T =——R.
pri=pt 120 or v:i=v' 4v 120

First of all we claim that u cannot be positive. In fact, if g > 0, then det(W) = Auv has to
be negative, where VW # 0. Since W is trace free, this is equivalent to say that

WijleiquWk’lpq <0.

From equation (4.3) one has
1 AlWI? = VIV |? R W2 = 3Wiir W W,
92 | | - |v | + 2 ’ ‘ 3 igklVVijpqVV kipq -

Assume that VW # 0. Let M. := {p € M : [VW|?(p) < }. Since g is Einstein, in harmonic
coordinates g is real analytic, and so is the function |[VW|?. In particular Vol(M.) — 0 as
e — 0. Integrating over M the Bochner formula for W (4.3), we obtain

R
0= / VW |* + 2/ W* — 3/ WijkiWijpgWhipg — 3/ Wikt Wijpg Whipg
M M M\Ms ME

R
z/ |VW|2+/ \W\2—3<sup]W\3)Vol(Ma),
M 2 I M

where we have used the fact that Wi WijpgWiipg < 0 on M \ M.. Letting ¢ — 0, we obtain
W =0, hence VIW = 0, so a contradiction. This argument shows that, necessarily,

7
—R
120"
where VIV # 0. In particular v < R/6, which implies that, where VW # 0, g has strictly
positive isotropic curvature (see [10]). Assume that VW # 0. By analyticity this condition

is true on a dense subset. Thus, by continuity (M, g) is an Einstein manifold with positive
isotropic curvature, hence isometric to a quotient of the round sphere S* (see again [10]). In
particular VW = 0, a contradiction. This concludes the proof of the equality case. O

From Propositions 7.1 and 7.3 we immediately get the following gap result in the form of
a Poincaré type inequality.
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Corollary 7.5. On a four dimensional Einstein manifold with positive scalar curvature R

R
[Ivwe =3 [ivwe,

with equality if and only if VW = 0.

we have

Equivalently, we can reformulate it in the following way
Corollary 7.6. On a compact four dimensional Finstein manifold we have
TR
O/|VW|2 - 6/Wijleiqu,thlpq,t <0,
with equality if and only if VIW = 0.

We conclude this section putting together Propositions 7.1 and 7.3 in order to obtain the
following L?-bounds:

Corollary 7.7. On a four dimensional Einstein manifold with positive scalar curvature R

5 [1awe < [wewp < 2 [lawe,

with equalities if and only if VW = 0.

we have

8. INTEGRAL IDENTITIES IN THE (ANTI-)SELF-DUAL CASES

In this final section we show that the integral identities proved in Section 7 hold separately

for the self-dual and anti-self-dual part. First of all we have the following

Theorem 8.1. Let (M*,g) be a compact four dimensional Einstein manifold. Then

/|v2w:|: /|AW:t’2 /|vw:|:|2

Proof. We will prove it for the self-dual case W. From the rough second Bochner formula

in Proposition 5.6, we have

2
fA\VWﬂz IV2WF2H(VIW T, VAW )+ |VW+\ +8W. kalthsﬁgRW Wikt -

7,]kl s ijkl,s

Now observe that, using Lemma 3.2, one has

Wit Wi = Wi, Wit

+12
ijkl,s ijkl,s " ijks, 1= |VW |

Moreover, renaming indexes we have Wit WE . Wiia = Wij aWi Wit From equation

ijkl,s " rjklt Jpqt,k " ipqt,l”
(3.10), we have
Wzyle pqt, kWp

and using Lemma 3.8, we obtain

qt,l — Wule pqt, kqutl

+ +
szykl sWr]kl tWMSt 7VVZ]lez]pq thlpq,t :
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Now, since the Hessian of W decomposes as V2W = V2W+ + V2W ™, one has
/<VVVJr VAWT) = /|AW+| /AW;]TMAWMM = /<VW+,VAW).
By orthogonality, a simple computation shows that
(8.1) / AW = / (YW, VAW = / VW2 46 / W Wt Wit
and the result follows. O

In particular, using the previous formula and readapting the computations in Theorem 7.3,
it is not difficult to prove Theorem 1.4 in the introduction that we recall here:

Theorem 8.2. Let (M*, g) be a four dimensional Einstein manifold with positive scalar

/|V2W:I:|2 > 1};/|VW:N:2

with equality if and only if VW* = 0.

curvature R. Then

Lemma 8.3. Let (M*,g) be a four dimensional Einstein manifold. Then

1 + ot Tt +4
/ ijkl,s mkltWriSt = 8/ (RWz]lezJquklpq — W= )

FEquivalently,

_ R 2 1 +2 12 2
/ igkl,s r]kltWTiSt_%/‘VW ‘ _48/‘W ’ <6|W ‘ _R)

Proof. First of all, from equation (3.10), one has

+
Wzgkl SWTjk‘l tWMSt - Wzgkl serkl tW'rzst

Moreover, integrating by parts and using the commutation formula in Lemma 3.4, we obtain
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+ + + + + +
Q/Wijkl,swrjkl,twrist - 2/‘/Vijkl,sterlerist

_ + + + +
- /(Wijkl,st - Wijkl,ts)erlerist

== / (W;;;lePiSt + Wi_;lePjSt + Wi—j"—plWPkSt + Wz'}rkaplst"‘
+ 1% (Wit = Wiiagis + Witugie — Wiadis
+ Wi}_slgkt - Wi}_tlgks + Wz‘;‘rksglt - Wi}%kt%)) Wr—;le:i_st
== / (W;;;lepist + Wi Wajst + Wi}_plWPkSt + Wi—;kaPZSt) WrJgszrJgst"‘

ris] ijsl ijks risl

R
% / (WJMWTEMW+ W W;;klei_sk + W5 WJW* )

== / (nglwﬁst + m;klej;st + W W +

igpl " pkst

A W Woist) Wi Wit

ijkp " plst rist

R
o e

1yr/+ =+ +
ipkq" " jplq + 2Wijle' W,

ijpq klpq)

1jpq

R

— / (W Wit +nglwzt+wf Wt +Wih Wt )W;,de

pjkl”" pist PJ ijpl "' p. ijkp " plst rist *
To conclude the proof, we have to show the fourth order identity
+ Wt +
(Wi Woist + WiniaW,

1
F W W + Wi W YW Wfst:ﬂwﬂ“.

pj pist pjst igpl ijkp’ " plst rikl" " r
Define
. + + + + + + + + + +
Q T (ijlepist + Wiplepjst + Wijplekst + Wijk:prlst) erlerist .
Note that

— + + + +
Q - ijkl WTjkl Wpist Wris

ot Wt
Wikt Wi Wt W,

pyst’ ' ris

A 2Wo W W Wi = Q1+Q2+2Qs .

ijpl pkst" " rist T

From equation (3.4), we have

Q1= %|W+|25pr W;;stW;Lst = i|W+|4-
So, it remains to show that Q2 = 3 = 0 on M. Following the notation of Section 3, we
easily get
Wi;szrJEkl = Nwipwrj + (20 + *0ip0yj .
Thus,

Q2 = Wi;le;;le;;stWrJgst = (Nwipwrj + 1 0ipej + V2 0ipr5) (N wpjwri + 17 npjnei + 1 0pj0r:)
= 2\t oYY 40+ N+ ) = 0,
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since A + p + v = 0. A similar computation shows

Qs = WL W Wh Wi

ijpl phst "V rist
= i((}? + p? + V2)5ir5pk + 22185 Opr; + 20 0ni0mp + 2,w/wl-rwpk)
X (Nwprwri + 1 0pk1ri + V2010
= —2(>\,uy2 + A vp? + prd?) = =22 (A + p+v) = 0.

This concludes the proof of the first identity in the lemma. The second one simply follows
from the Bochner identity (4.3). O

Putting together Lemma 8.3, equation (8.1), Lemma 3.8 and Lemma 8.1, we obtain the

following:
Proposition 8.4. Let (M*,g) be a four dimensional Einstein manifold. Then
1
/yAWiF +R/ VW2 = / W (6w~ R2)

and

23 5
/]VQWi]2+12R/WWi]2 - n/yWﬂQ(mWﬂ?—R?).
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