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ABsTRACT. We consider radially symmetric, energy critical wave maps from (1 + 2)-dimensional Minkowski
space into the unit sphere S™, m > 1, and prove global regularity and scattering for classical smooth data of
finite energy. In addition, we establish a priori bounds on a suitable scattering norm of the radial wave maps
and exhibit concentration compactness properties of sequences of radial wave maps with uniformly bounded
energies. This extends and complements the beautiful classical work of Christodoulou-Tahvildar-Zadeh [3, 4]
and Struwe [31,33] as well as of Nahas [22] on radial wave maps in the case of the unit sphere as the target.
The proof is based upon the concentration compactness/rigidity method of Kenig-Merle [6,7] and a “twisted”
Bahouri-Gérard type profile decomposition [1], following the implementation of this strategy by the second
author and Schlag [17] for energy critical wave maps into the hyperbolic plane as well as by the last two
authors [16] for the energy critical Maxwell-Klein-Gordon equation.
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1. INTRODUCTION

We consider wave maps ¢: R'*2 — §" from (1 + 2)-dimensional Minkowski space R!*? into the m-
dimensional unit sphere §” < R”*!, m > 1, satisfying the equation

(WM) O¢ = ~¢dad'9°¢
for radially symmetric initial data

(¢, 0:)li=0 = (¢o, ¢1): R? — TS™.

Here we use the extrinsic formulation of the wave maps equation, viewing the R”*!-valued function ¢ as
a column vector and denoting its transpose by ¢'. In particular, we note that any initial data (¢, ¢;) must
satisfy the consistency conditions

dodo = 1. ¢¢1 = 0.

Greek indices such as a are implicitly assumed to run from O to 2 and we use the standard conventions for
summing and raising/lowering indices with respect to the metric diag(—1, +1, +1) on Minkowski space R'*2.
We denote the d’ Alembertian by O = —6,2 + A and introduce the shorthand notation ¢[z] = (¢(¢), 9,¢(¢)) for
t € R. An initial data pair (¢g, ¢1): R?> — TS™ is called classical if it is smooth and constant in the exterior
of a compact set.



The wave maps equation (WM) admits a non-negative conserved energy functional

1 2
Elg] = 5 fR D 1009’ dx.
a=0

which is invariant under the scaling of the equation
o(t, x) — Pp(At, Ax), A1 >0.
The Cauchy problem for (WM) on R!*? is therefore energy critical.

The main result of this article asserts that for radially symmetric, classical initial data, the unique, smooth
solutions to (WM) exist globally in time and scatter to finite energy free waves. Moreover, we establish
a priori bounds on a suitable scattering norm of the solutions and we exhibit concentration compactness
properties of sequences of radially symmetric wave maps into the unit sphere with uniformly bounded
energies.

Theorem 1.1. There exists a non-decreasing function K : [0, c0) — [0, oo) with the following property: Let
(¢0, ¢1) be radially symmetric, classical initial data of energy E. Then there exists a global, unique, smooth
solution ¢: R1*? — S™ to (WM) with initial data $[0] = (¢o, ¢1) satisfying the a priori bound

liglls < K(E),

where the S norm is defined in Section 3 below. In particular, ¢ scatters to finite energy free waves as
t — +00 in the sense that there exist (fv,g+) € HL x L2 such that

tim [V = Vi8S O(f. 8] 2 = 0.

where S (£)(fx, g+) = cos(t|V|) f+ + % g+ denotes the free wave propagator.

We emphasize that global regularity and scattering for energy critical radial wave maps into arbitrary com-
pact target manifolds has already been established in by now classical works of Christodoulou-Tahvildar-
Zadeh [3,4] and Struwe [31,33] as well as of Nahas [22]. We shall next give a brief overview of the history
of the wave maps problem and motivate why we are revisiting the beautiful classical results on radial wave
maps. Then we conclude this introduction with an overview of the proof of Theorem 1.1.

1.1. History and motivation. We note that the wave maps problem has been the subject of a fascinating
and vast body of literature over the past decades that we cannot adequately review here in its entirety. Our
primary focus shall be on energy critical wave maps from (1 + 2)-dimensional Minkowski space.

The study of energy critical radial wave maps was begun in the seminal work of Christodoulou-Tahvildar-
Zadeh [4] where global regularity is proven for arbitrary compact target manifolds for radially symmetric
initial data with sufficiently small energy. This small energy global regularity result is then strengthened to a
large energy global regularity result by excluding concentration of energy provided the target manifold, un-
like the sphere, satisfies a suitable convexity condition. In a subsequent paper [3], Christodoulou-Tahvildar-
Zadeh also obtain pointwise scattering bounds on the solutions under the same convexity condition on the
target manifold. Struwe [31,33] then established large energy global regularity for radially symmetric wave
maps into arbitrary compact target manifolds by combining the results from [4] with a careful blowup anal-
ysis from [32]. More recently, Nahas [22] also proved scattering for radially symmetric wave maps into
arbitrary compact target manifolds.

For wave maps without any symmetry assumptions the sub-critical local well-posedness theory was de-
veloped by Klainerman-Machedon [8—10] and Klainerman-Selberg [12, 13], making crucial use of the null
structure in the quadratic derivative nonlinearity of the wave maps equation.

A very important step in extending the small energy global regularity result of Christodoulou-Tahvildar-
Zadeh [4] to the non-radial case was achieved by Tataru [38], establishing global regularity for energy critical
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wave maps into arbitrary compact target manifolds for initial data which is small in the scale-invariant ho-
mogeneous Besov space Bil (R?) x Bg’ l(Rz). This work introduced an important functional framework for
the study of the energy critical wave maps equation, in particular the delicate null frame spaces. The final
breakthrough to prove small energy global regularity for energy critical wave maps into the unit sphere S",
m > 1, was achieved by Tao [37] through the key realization that certain non-perturbative terms in the wave
maps nonlinearity can be cast into a better form by exploiting the gauge invariance of the wave maps prob-
lem. Small energy global regularity was then extended to other target manifolds by the second author [15]
for the hyperbolic plane H? and by Tataru [39] for arbitrary target manifolds that can be isometrically em-
bedded into Euclidean space. The key role that the gauge structure plays in the study of the wave maps
equation at the critical regularity to renormalize the equation into a better form was also further clarified in
the works of Klainerman-Rodnianski [11], Shatah-Struwe [27], Nahmod-Stefanov-Uhlenbeck [23] and the
second author [14] on global regularity for wave maps from higher-dimensional Minkowski space for small
critical Sobolev data.

For large energies, depending on the geometry of the target manifold, blowup can occur for energy critical
wave maps. Indeed, the blowup analysis of Struwe [32] for energy critical equivariant wave maps showed
that singularity formation must be tied to the existence of non-trivial finite energy harmonic maps from R?
into the target manifold. Later, the second author joint with Schlag and Tataru [18], Raphaél-Rodnianski [24]
and Rodnianski-Sterbenz [25] constructed examples of equivariant wave maps into S? that blow up in finite
time via the concentration of a non-trivial harmonic map.

These developments culminated in the threshold conjecture that for energy critical wave maps global
regularity is expected to hold for initial data with energy less than the energy of any non-trivial harmonic
map into the target manifold. This conjecture was established independently around the same time by the
second author and Schlag [17] for the hyperbolic plane H as the target, by Tao [34] for all hyperbolic spaces
H¢, d > 1, and by Sterbenz-Tataru [29, 30] for any target manifold that can be isometrically embedded into
Euclidean space.

Our motivation for this article is essentially twofold. On the one hand we analyze to what extent the
complicated function spaces introduced in the seminal works of Tataru [38] and Tao [37] can be replaced
by a simpler functional framework in the radial context to settle the perturbative theory for the wave maps
equation (WM) similarly to the strategy in Tao [37]. Here our goal was to avoid Fourier localization as
much as possible and apart from a basic spatial frequency localization, our framework in particular avoids
modulation localizations as in [38] and [37]. More specifically, our space S to control the regularity of radial
wave maps is built from dyadic subspaces S in the sense that

I3 =" ligul 3,

keZ

The dyadic subspace S is defined entirely in physical space and essentially has three parts of the following
schematic form

_1
Iglls, = llgwlls e + sup a2 Viuhellyzg + D 10: % 0z,
teZ ’ T

see Definition 3.1 for the precise definition. The first part of the S; norm consists of Strichartz-type norms
where we crucially exploit the larger range of admissible Strichartz pairs in the radial context, see for in-
stance Sterbenz [28] and Fang-Wang [5]. The second part is a local energy decay norm which quite naturally
replaces the important X l’%"x’—type space from the non-radial context. Finally, the third part of the S norm
is formed by certain atomic spaces Z;°. These basically correspond to an “incoming-outgoing” decomposi-
tion of free radial waves and involve L?, L -type norms which naturally replace the more complicated null

txr=tFr
frame spaces [38] from the non-radial context.

On the other hand, in this work we go beyond the results of Christodoulou-Tahvildar-Zadeh [3, 4],
Struwe [31, 33] and Nahas [22] in the case of radially symmetric wave maps into the unit sphere S,
3



m > 1, as the target manifold and prove, in addition to global regularity and scattering, a priori bounds
on the scattering norm S of the solutions to (WM) and we exhibit concentration compactness properties of
sequences of radially symmetric wave maps into the unit sphere with uniformly bounded finite energies.
To this end we use a version of the concentration compactness/rigidity method of Kenig-Merle [6,7] and a
modified Bahouri-Gérard type profile decomposition [1], following the implementation of this strategy by
the second author and Schlag [17] for (non-radial) energy critical wave maps into the hyperbolic plane H>
and the implementation by the last two authors [16] for the related energy critical Maxwell-Klein-Gordon
equation. Executing the concentration compactness/rigidity strategy in the context of energy critical wave
maps is compounded by the presence of non-perturbative terms in the wave maps nonlinearity, which have
to be dealt with via renormalization, and by certain strong low-high interactions in the wave maps nonlin-
earity. These difficulties will be explained in more detail in the next subsection. However, at this point we
emphasize a key difference between our work for the unit sphere S < R”*! m > 1, as the target and the
work of the second author and Schlag [17] for the H? target regarding the renormalization procedure. The
fact that the gauge group for the target H” is abelian was exploited heavily in [17] in order to implement a
global-in-frequency gauge change by passing to the Coulomb gauge in the intrinsic setting. The construction
of the Coulomb gauge is elementary and explicit in the abelian case, but it becomes problematic for large
energies in the non-abelian case. Since in our work the gauge group is no longer abelian for the targets S™
with m > 3, we instead employ a version of the gauge construction of Sterbenz-Tataru [29] in the extrinsic
setting which deals separately with each frequency level. The latter is a refinement and further development
of the microlocal gauge introduced by Tao [36,37] and is better suited for large energies.

1.2. Overview of the proof of Theorem 1.1. Here we provide an outline of the main ideas of the proof of
Theorem 1.1. Our goal is to show that there exists a non-decreasing function K : [0, c0) — [0, co) with the
following property: Let (¢g, ¢1): R> — TS™ be radially symmetric, classical initial data of energy E. Then
there exists a global, unique, smooth wave map ¢: R'*2 — S with initial data #[0] = (¢, ¢1) satisfying
the a priori bound

glls < K(E).

Once we have established this a priori bound, the scattering assertion of Theorem 1.1 is an immediate
consequence.

Following the general philosophy of the concentration compactness/rigidity scheme, we argue by con-
tradiction and assume that Theorem 1.1 fails. Then the existence of the function K(:) yielding the a priori
bounds must fail at some finite energy level. Correspondingly, the following set of energies must be non-
empty

&= {E : sup |l@llsi = +oo},
{¢: E[$I<E}

where the supremum is taken over all radially symmetric wave maps ¢: I X R?> — S™ with classical radially

symmetric initial data of energy E[¢] < E and defined on some time interval /. We shall prove a small

energy global regularity result together with a priori bounds on the scattering norm § for radial solutions to

(WM) in Theorem 5.4. For this reason the infimum of the set & has to be strictly positive

Ecrir :=inf &> 0.

Thus, we may pick a sequence of radial smooth wave maps ¢"*: I"xR? — S$™, n > 1, with maximal intervals
of existence /" such that

lim E[¢"] = Ecrir,  lim [|¢"ls(m) = +eo.

n—oo
In the following we call such a sequence of wave maps essentially singular. Our goal is now to rule out the
existence of such an essentially singular sequence of wave maps, hence proving Theorem 1.1. This will be

achieved in the following two main steps.
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e Extracting an energy class, radially symmetric, minimal blowup solution ¢* to (WM) of energy
E.,;; from the essentially singular sequence {¢"},>1. As a key tool we use a “twisted” profile de-
composition that takes into account the strong low-high interactions in the wave maps nonlinearity.
We develop this modified Bahouri-Gérard type nonlinear profile decomposition for our setting by
following the procedure introduced by the second author and Schlag [17] for energy critical wave
maps into H2. The minimal blowup solution can be thought of as a “minimal counterexample” to
Theorem 1.1 and its orbit must therefore possess a strong compactness property modulo the symme-
tries of the equation. We note that the heart of this paper resides in this extraction procedure which
is carried out in Section 7. All sections leading up to it lay the groundwork.

e Ruling out the minimal blowup solution ¢* via a version of the Kenig-Merle rigidity argument [7]
as in [17]. Here we utilize the strong compactness property of ¢> against general properties of
radial wave maps into the unit sphere. In particular, we invoke the non-existence of non-trivial,
finite energy, radial harmonic maps into the unit sphere. This step is accomplished in Section 8.

The severe difficulties with the extraction of a minimal blowup solution to (WM) can be highlighted by
comparing with the situation for the energy critical, defocusing nonlinear wave equation Ou = x> on R'*3. In
this context Bahouri-Gérard [1] introduced a highly influential nonlinear profile decomposition. It basically
asserts that a sequence of solutions to the quintic nonlinear wave equation with uniformly bounded energies
can be decomposed into a sum of nonlinear solutions, which are referred to as the nonlinear profiles and
which are rescaled and translated in space-time according to the non-compact symmetries of the equation,
and an error term, which can be made small in a suitable norm. The ability to extract a minimal blowup
solution ultimately relies on the asymptotic decoupling of different nonlinear profiles. In the quintic non-
linearity, the interactions of two different nonlinear profiles with essential frequency supports at divergent
scales are asymptotically negligible. This reduces to consider diagonal frequency interactions. But then
two different nonlinear profiles living at the same frequency scale must concentrate in divergent regions of
space-time so that their interactions in the quintic nonlinearity again vanish asymptotically.

In contrast, for energy critical wave maps frequency diagonalization appears to partially fail at the critical
regularity due to strong low-high interactions in the wave maps nonlinearity. In order to gain a better
understanding of these difficulties in our context of radial wave maps into the unit sphere, we now take a
closer look at the perturbative theory for the frequency localized wave maps equation (WM).

Renormalization and perturbative theory. More precisely, we study the evolution of a single dyadic fre-
quency block ¢, say k = 0, satisfying the equation

O¢o = —Po(¢dad 0" 9).

Upon decomposing each input of the nonlinearity into its Littlewood-Paley pieces, the nonlinear wave equa-
tion for ¢y assumes the following form

060 = —2¢<-100a0.._1,0" %0
- Z Z Po(¢<200ay, 0" b1s)

ko>—10 kz=kp+0O(1)
_ T aa _ T aa
2 ) beta10(P0(Bad], 00 5<.<5) = Dath], 0" ¢0)

ko<-10
+ error,

where we are only listing those interaction terms that are more difficult to deal with and the other relatively

insignificant interaction terms are just denoted by error. The difficulties with the high-high interactions of

the second term and the third term on the right-hand side are a more peculiar feature of our framework.

They are non-perturbative in the sense that they cannot be treated with the multilinear estimates within our

functional framework due to its relevatively elementary but appealing construction - for instance, we cannot
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gain in the high-high interactions in our null form estimates. But we note that these two interaction terms
could be easily handled with the full power of the more sophisticated functional framework from Tao [37].
Fortunately, this feature of our setting can be dealt with quite efficiently by passing to the “nonlinearly
modified variable”

= 1 t i 0
$o:=do+ 3 Z Z Po($<208;,bx;) + Z P<kr-10(Po(y, P-5<.<5) — &3, b0),
ka>=10 kz=kp+O(1) ko<-10
which has the effect of either distributing derivatives to different inputs with a better frequency balance or of
turning a trilinear interaction term into an easier quintilinear one upon reinserting the wave maps equation.
The wave equation for the new variable ¢, then takes on the form

O¢y = —2¢s—103a¢;_108"¢0 + error

and we are left to treat the more severe low-low-high interaction term on the right-hand side. Following
Tao [36,37] we exploit the geometry of the wave maps problem and use the orthogonality relation ¢'9%¢ = 0
which remains approximately preserved upon frequency localization. Then we arrive at a better equation
for ¢, namely

(1.1) 060 = ~2($<-100abL_1 = Bab<-100%_,()d"do + error,

where the matrix (¢§_106(,¢1_10 - 8w¢§_10¢1_10) is anti-symmetric. Now we have the following trilinear
estimate from Proposition 4.3 at our disposal

(1.2) 66,90, 0° G0l 12 5 274 Dl sy, idialls,, Idollsy. k2 + O(1) < ki <0,

for some absolute constant 6 > 0. The key exponential gain in this estimate allows us to handle those parts
of the low-low-high interaction term where a derivative falls on the lowest frequency. At the same time we
make the fundamental observation that we do not gain exponentially in the largest frequency difference in
this estimate, resulting in the strong low-high interactions alluded to before. We note that the direct analogue
of this estimate for the non-radial setting is due to Tao [37] and is much more difficult to achieve than within
our functional framework for the radial case. In view of (1.2), we split the interaction term on the right-hand
side of (1.1) into two parts

(1.3) 060 = 24w 10900 =2 D, Do ($1,0ad, — Jabr@] )0 o + error,
ko<=10 ky—10<k; <-10
where we are introducing the connection form
Agic-10 = — Z ((bskz—loaaﬁbz2 - 3a¢k2¢;k2_10)-
ka<-10

While in the second interaction term on the right-hand side of (1.3) a derivative falls on the lowest frequency
and this part can therefore be handled with the trilinear estimate, this is not the case for the first interaction
term. Thus, the latter term is non-perturbative and has to be renormalized into a better form. Following the
method first introduced by Tao [36,37], we define suitable S O(m + 1)-valued gauge transformations U<_g
and pass to the new variable U<_j0¢, satisfying the nonlinear wave equation

O(U<-10¢0) = U<-10(0¢y — 2Aa;<-109" $0)
+2(0aUs<-10 + U<-10Aa:<-10)0" 9o
+20,U<-100" (¢ — $0)
+(OU<-10)¢y.

where the key difficulty now resides in the second interaction term on the right-hand side. More precisely,
we implement a version of the gauge construction due to Sterbenz-Tataru [29], which is better suited for
6
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large energies, and define the gauge transformations U<, for & € R as solutions to the ODE

d .
%Ush = U<y By, hgf_noo U = 1d,

where the anti-symmetric matrix By, is of the schematic form

By = ¢sh—10¢:, - ¢h¢lh_10-

In particular, the anti-symmetry of By, ensures that the gauge transformations U< as solutions to the above
ODE are exactly orthogonal. This choice of gauge transformation effectively transfers a derivative to the
lowest frequency in the key difficult term 2(0q U<—10 + U<—10A4:<-10)0%@o so that it can basically be handled
with the trilinear estimate (1.2). Finally, we will have to transfer the bounds on the variable U<_j0, back
to the frequency localized wave map ¢¢. In particular, we note that we have to introduce certain frequency
and spatial truncations in the definitions of the gauge transformations and the new variable ¢, in order to
have additional sources of smallness at our disposal in the large energy setting. These modifications will be
explained as we go in the later sections. This essentially settles the perturbative theory for (WM).

We now describe the extraction procedure of the minimal blowup solution ¢ to (WM) which necessitates
the development of a “twisted” Bahouri-Gérard type profile decomposition to take into account the effect of
the strong low-high interactions described above. This undertaking is additionally compounded by the fact
that we have to work at the level of the gauged variables U<_1o¢, because only these satisfy a nonlinear wave
equation with good perturbative properties. As in [17] we use a finite induction on frequency procedure to
carefully disentangle the low-high frequency interactions.

Decomposition into frequency atoms and evolving the lowest frequency non-atomic part. The first step
consists in decomposing the essentially singular sequence of data {¢"[0]},,> into frequency atoms using the
Meétivier-Schochet procedure [21] as in Bahouri-Gérard [1]. Roughly speaking, the basic idea then goes
as follows. Ultimately, we would like to conclude that upon passing to a subsequence, if necessary, the
essentially singular sequence of data {¢"[0]},>; consists of exactly one frequency atom wich in turn consists
of exactly one concentration profile (to be defined precisely in Subsection 7.4) of asymptotic energy E.,;. In
this scenario, the sequence {¢"[0]},> has sufficient compactness properties that allow us to pass to a certain
limit whose wave maps evolution will be the desired minimal blowup solution to (WM). In order to rule out
all other possible scenarios, we seek to prove uniform in n, finite, global S norm bounds on (a subsequence
of) the sequence of wave maps evolutions {¢"},>1, which would contradict that the sequence is essentially
singular. To this end we first achieve control over the wave maps evolutions of certain low frequency
truncations of the essentially singular sequence of data {¢"[0]},>1. Using a finite inductive procedure over
the increasing size of the frequency supports of these low frequency truncations, we then conclude uniform
in n, finite, global S norm bounds on the actual essentially singular sequence {¢"},>1.

Using a version of the Métivier-Schochet procedure [21] we obtain a decomposition into frequency atoms
(of a subsequence) of the essentially singular sequence of data

A
¢"[0] = ) ¢"[0] + ¢" (0],
a=1

where the frequency atoms ¢"*[0] and the remainder term ¢*[0] have disjoint frequency supports. The
frequency atoms are sharply localized around frequency scales (19)~!, more precisely they have frequency
support on {|¢] € [(A)7'R; !, (19)~'R,]} for some sequence R, — oo growing sufficently slowly. The fre-
quency scales diverge from each other as n — oo in the sense that
a b
lim ﬁ+ﬁ=+oo, a#b.
n— o0 ,12 /lz
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We may assume that the atoms are ordered in terms of the increasing size of their frequency support
scales (1¢)~! and we introdue the notation p¢ = —log(1%) for the corresponding dyadic frequency support
scales. Moreover, the remainder term ¢”A [0] satisfies the important Besov norm smallness

im limsup [l¢"* [0l =0

1
A>o 5500

As described above, ultimately we would like to conclude that there is exactly one atom in the decompo-
sition (7.1), i.e. A = 1, which is of asymptotic energy E.;. If this is the case, we proceed directly to the
next stage below where we consider the evolution of the first “large” frequency atom. Otherwise, we now
start a finite inductive procedure to conclude that the sequence {¢"},>; cannot be essentially singular. To this
end we fix an integer A sufficiently large such that upon passing to a subsequence, if necessary,

lim sup [l¢"[O1[7,,» < o,

a>ho "7
where gy > 0 is a sufficently small constant that plays the role of a perturbative threshold in the key bootstrap
argument in Proposition 7.9. In particular, &g will be chosen sufficently small depending only on the size
of E..;; and it will be chosen to be less than the small energy global regularity threshold established in
Theorem 5.4. Then we observe that due to the sharp frequency localizations of the atoms ¢"*[0], 1 < a < Ao,
the remainder term ¢"0[0] gets split into Ao + 1 “frequency shells”

#"10] = " [0] + 6101+ + ¢ o),
where ¢”AEJO) [0] shall denote the lowest frequency component.

L . . )
Our first step now consists in showing that the lowest frequency “non-atomic” component ¢ [0] can be
globally evolved and satisfies finite S norm bounds just in terms of E,;; uniformly for all sufficiently large n.

Since the component ¢”AE>0) [0] may still have large energy, in order to be able to infer these S norm bounds,
0 0
we approximate qb”AB ) [0] by a finite number of delicately chosen low frequency truncations PSbLgﬁ”Ag ) [0].

However, up to this point we have totally ignored that the frequency truncations Psthb”AE)O) [0] = P<p, ¢"[0]
are not “geometric” in the sense that they are not actual maps R?> — 7'S™ into the unit sphere and therefore
do not constitute suitable initial data for the wave maps equation (WM). To overcome this issue we just
project the frequency truncations back to the sphere, using the normal projection operator, and denote the
resulting initial data by Il<;, ¢"[0]. This operation is well-defined and the frequency localization properties
are approximately preserved up to exponential tails if around the frequency cut-offs a certain Besov norm
smallness condition is satisfied, see Proposition 7.2. This, in particular, forces us to carry out a further refined

. . ©) .
frequency atom decomposition of the lowest frequency non-atomic part ¢"* [0] to carefully pick these low
frequency cut-offs by. Using a finite induction procedure we then obtain uniform in », a priori bounds on
the S norms of the global evolutions of the “geometric” lowest frequency non-atomic parts I1_,1_j,, g ¢"(0]
via an iterative bootstrap argument, which is accomplished in Proposition 7.8 in Subsection 7.3.

Selecting concentration profiles and adding the first large frequency atom. Having established control over
the global evolution of the lowest frequency non-atomic part IT_ 1 ..z, ¢"[0] in the previous step, we now

“add in” the first large frequency atom ¢ 101 = Pyt tog(r,) s +10g(r, @ [0] in the sense that we now attempt
to globally evolve the geometric initial data

I iog(r,) ¢ [0]-

In this paragraph we shall slightly abuse notation and write for simplicity

¢"[0] = Hsui+10g(Rn)¢n[0]’
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denoting the evolution of this data by ¢". By rescaling we may assume that 4! = 0 and we shall later
denote by u, = u! —log(R,) the frequency cut-off delimiting the essential frequency supports of the lowest
frequency non-atomic part and of the first large frequency atom. Moreover, we use the notation

¢"[0] = Hgy,'l_log(Rnﬁn[O] + (Hﬁlull+log(Rn)¢n - Hglu,ll—log(Rn)¢n)[O] = u"[0] + €"[0],

where u" denotes the global evolution of the lowest frequency non-atomic part established in the previous
stage. Since only the gauged variables satisfy a nonlinear wave equation with good perturbative properties,
we now enact a Bahouri-Gérard type profile decomposition at the level of the gauged variables U_ @ )¢k,
which then has to be translated back to the level of the coordinate functions ¢". Here, U®") denote the gauge
transformations defined by the evolutions ¢". In order to take into account the strong coupling between the
very low frequencies coming from #" and the high frequencies, we have to extract the concentration profiles
for €" with respect to a suitably modified linear wave operator to match the proper asymptotic evolution
of the variables Ui";:)tp_z as t — zoo. In view of (1.3) and (1.4) we use the following very natural linear
magnetic-type wave equation to select our concentration profiles

(1.5) DE = 20%) Ay jon () (UL)) 07

<Hn

where

Awiow@) == > > W )t = @t )p) + (UGN UL + AL,
kz <Un k2—10<k1 <Upn

The gauge transformations v < ) and the anti-symmetric matrix Ay jo (") are defined purely in terms of the
low frequency wave maps u#" over which we already have global control at this stage. Moreover, the anti-
symmetry of Ay 1,»(#") and the much lower essential frequency support of u” are key for proving asymptotic
energy conservation for the flow associated with (1.5), see Lemma 7.15. We note that the linear magnetic-
type wave equation (1.5) is the direct analogue of the linear magnetic wave equation in [17, Definition 9.18]
for the extraction of the concentration profiles in the context of energy critical wave maps into the hyperbolic
plane H?.

A pleasant feature of the linear magnetic-type wave equation (1.5) is that it is in fact independent of the
frequency level k € Z one works at. Rougly speaking, to obtain the profile decomposition at the level of
¢" one then evolves the data &/[0] := (¢ ) €, [0] with respect to the flow of (1.5) for each frequency k € Z,
selecting appropriate concentration tlmes and profiles, and passes back to the level of ¢" by multiplying with
(% @ ))T. Summing over all frequencies k € Z then roughly furnishes the desired profiles, see equation (7.38)
and the remarks following it for the precise definitions. Provided that all concentration profiles have energy
strictly less than E,;; we may then carefully construct the global evolution of the data II_ 1, 4g,)¢"[0] and
obtain uniform in #n, a priori bounds on the S norms, where a lot of work is required to accomplish that the
profile decomposition ansatz is “sufficiently geometric”. This whole step is carried out in Theorem 7.17 in
Subsection 7.4.

Conclusion of the induction on frequency process. We now continue this induction on frequency process
and by proceeding as in Subsection 7.3 obtain that the data IT_2_j,,,,#"[0] can be globally evolved with
uniform § norm bounds. Then we “add in” the second frequency atom P2 oo (r,) ;2 +10g(r,))®" [0] in the sense
that by proceeding analogously to Subsection 7.4 we may establish the global evolution of the corresponding
geometric data I1_ 2,00, ¢"[0] with uniform S norm bounds under the assumption that the associated
profiles all have energy strictly less than E,;;.

All in all, we may continue this procedure Ag many times and establish the global evolution with uniform
in n, a priori S norm bounds of (a subsequence of) the essentially singular sequence of data {¢"[0]},>1,
which would however be a contradiction, unless (a subsequence of) the sequence {¢"[0]},>1 is composed of
exactly one frequency atom that consists of exactly one profile of asymptotic energy E ;. Thus, we must
be in the latter scenario and (a subsequence of) {¢"[0]},> has sufficent compactness properties that allow us

9



to pass to a certain limit whose wave maps evolution will be the desired minimal blowup solution to (WM)
as detailed in Subsection 7.5. Here we note that the minimal blowup solution will merely have energy class
regularity but that a strong local well-posedness theory for (WM) is only available at sub-critical regularities.
For this reason we actually have to introduce a concept of energy class radial wave maps, which we achieve
in Subsection 7.2 by regularization and reduction to the small energy case via finite speed of propagation,
analogously to the procedures in [17] and [16].

The outcome of this last stage is that there exists a non-trivial, energy class, radially symmetric, minimal
blowup solution ¢*: I X R2 - §™ to (WM) of energy E..; and with maximal interval of existence /.
Moreover, there exists a continuous function A: I — (0, co) so that the family of functions

(6=, A0, A0 0,67 A" ): 1 e 1)
is pre-compact in H! x 1.2,

Rigidity argument. Finally, we have to rule out the existence of such a minimal blowup solution ¢ to
(WM). To this end we closely mimic the Kenig-Merle rigidity argument [7] as implemented in [17]. In
particular, we invoke the non-existence of non-trivial, finite energy, radially symmetric harmonic maps into
the unit sphere. This finishes the outline of the main ideas entering the proof of Theorem 1.1.

We expect that the restriction to the unit sphere S™, m > 1, as the target manifold in our work is not nec-
essary and that our method extends to arbitrary compact target manifolds since a similar gauge construction
as for the unit sphere works upon establishing additional estimates on the second fundamental form as in
Tataru [39] and Sterbenz-Tataru [29].

Moreover, we point out that neither the gauge construction nor the selection process for the concentration
profiles in our work crucially hinge on the radial symmetry assumption. We therefore suspect that the
method of this article combined with the sophisticated functional framework from Tao [37] ought to allow
for a similar result in the non-radial case upon restricting to energy levels below the energy of any non-trivial
harmonic map from R? to $™.

Organization of the paper. In Section 2 we introduce some notation and several basic definitions. In Sec-
tion 3 we present our precise functional framework. In Section 4 we collect the most important multilinear
estimates to handle the wave maps nonlinearity in the radial case. In Section 5 we carefully analyze the struc-
ture of the frequency localized wave maps nonlinearity and introduce the renormalization procedure to deal
with the non-perturbative terms. Moreover, we establish a small energy global regularity result for (WM).
In Section 6 we show that the S norm provides sufficient control on radial wave maps with classical initial
data to infer long time existence and scattering. In Section 7 we begin with the actual proof of Theorem 1.1
and accomplish the most difficult step of extracting a minimal blowup solution with the strong compactness
property. In Section 8 we rule out the existence of the minimal blowup solution and thus finish the proof of
Theorem 1.1.

2. PRELIMINARIES

Notation and conventions. We write A < B to denote A < CB for some absolute constant C > 0 that may
depend on fixed parameters and we shall use the notation A < B to indicate that the implicit constant in
the estimate is small. Moreover, we borrow from Tao [37] a convenient notation to describe multilinear
expressions of product type. For scalar functions ¢V(z, x), ..., ¢"(z, x) we denote by L(¢V, ..., ¢"™)(t, x)
any multilinear expression of the form

LV, ..., 6"t x) = f KOty -yt x = y1) - 0Pt x = y) dyi - . . dyn,

where the kernel K is a measure with bounded mass. We extend this notation to the case when ¢V, . .., ¢
take values as (m + 1)-dimensional vectors or as (m + 1) X (m + 1) matrices.
10



Littlewood-Paley projections. We denote by ¢ a non-negative smooth cut-off function satisfying ¢(y) = 1
for y < 1 and ¢(y) = 0 for y > 2. Then we set ¢o(y) = ¢(y) — ¢(2y) and ¢ (y) = ¢0(2_ky) fork € Z. We
define the dyadic Littlewood-Paley projection operators Py for k € Z by

Pif©) = (€D f(©).

We often write f; = Py f. Occasionally, we also need to use continuous Littlewood-Paley projections Py, for
h € R. We recall the following Leibniz rule for the Littlewood-Paley projections Py, see [37, Lemma 2].

Lemma 2.1. Ir holds that
2.1) Pi(fg) = fPrg + L(V.f,27%g).

Spatial cut-offs. We will also make use of cut-off functions for the radial variable » = |x|. For £ € Z we
denote by x;,.,; a smooth non-negative bump function supported in {r ~ 2%} such that we have a smooth
finite partition of unity

ZX{r~2f}(r) =1 forr>0.

teZ
Moreover, we denote by x;,<,; a smooth cut-off function to {r < 2%}, Analogously, we define the cut-off
functions x(,¢y and x o0 < <o)

Frequency envelopes. We shall use the tool of frequency envelopes from [36] to track the frequency dis-
tribution of certain norms. A sequence {ci}iez € €*(Z) of positive real numbers is a frequency envelope
if

2—0’|k—k/| 2+0'|k—k’|

Cr SCk S Cy

for all k, k' € Z, where o > 0 is a small absolute constant. We say that an initial data set ¢[0] lies underneath
the envelope {ck}kez if

IPkod[O1ll g1z < ck
for all k € Z. Given an initial data set ¢[0] we may obtain such an envelope by defining

ce = 3 2N P[0]l 51,2
(eZ

3. FUNCTION SPACES

In this section we introduce the functional framework used for the proof of Theorem 1.1. The space S
containing the radial wave map ¢ is built from dyadic subspaces S in the sense that

15 =" ligell3,
kezZ
where the space S is defined as follows.

Definition 3.1. Let k € Z and let ¢ be a radially symmetric function on R'*? with Fourier support in
{l€] ~ 2K). Then we define
L2 9y 1_ _
Iglls, == IVex@llorz +  sup 25 TN, @l + sup 257y pr gl e
2Sq,p£oo,é+%<% 0<a<l1

_1
+sup Il 2 Vesdllzgz + 10 +3)dllz: + 1@, — 0,z
ez
where Z° are atomic spaces defined below in Definition 3.2.

We note that the space S scales like free waves with H! x L2 initial data. The restrictions of the spaces S
and S to a time interval [ are denoted by S [/], respectively S ¢[/], with the induced norms. Next we provide
the definition of the atomic spaces Z;.

11



Definition 3.2. Let k € Z and let  be a radially symmetric function on R'*? with Fourier support in
{1€] ~ 2K}, We introduce the auxiliary norm

ly, := sup 2~ (z”)"|Lyr>2 Wr- wlleLw + supll)({,sz r 2w||Lsz

0<a<1
Then we define
Wiz = inf {(sup 27V e+ 0Ol
Y=gy 0<a<l
w0 sup sup 26T TR Oy + )nyk)}
2<q,p<oo, L+ 5 <3 0<d<l teZ.
and
Wl = it (s sup 26 R ety Dl + Il
Y=y +y) 2<g.peo, b+ 1 <1 0<i<1 ‘=

( sup - 3 /l)k”r+/llﬁ( )HL2 s+ W’( )”Yk)}
O<A<

We will place the nonlinearities in the simple L! L2 space. The remainder of this section is devoted to the
proof of the following key energy estimate connecting the S space and the L! L2 space.

Lemma 3.3 (Energy estimate). Let k € Z and let I be any time interval containing 0. For any radially
symmetric function ¢ on I x R? with Fourier support in {|€] ~ 2¥}, we have

3.1 gxllsiin < 1VexdkOlz2 + 106l 211

The proof of Lemma 3.3 is an immediate consequence of the next lemmas. Here we first note that in the
radial context a significantly larger range of admissible Strichartz norms is at our disposal, see Sterbenz [28]
and Fang-Wang [5].

Lemma 3.4 (Strichartz estimates). Let 2 < g, p < oo with (g, p) # (oo, 00) satisfy é + % < % Letk € Z and

let I be any time interval containing 0. For any radially symmetric function ¢ on I x R? with Fourier support
in €] ~ 2, it holds that

142 1y
25N ullpa i < IV bOll2 + 106111 1201
Next we prove Strichartz estimates involving a radial weight.

Lemma 3.5 (Weighted Strichartz estimates). Let 2 < p < oo and ;—) <A< 1% Let k € Z and let I be any time

interval containing 0. For any radially symmetric function ¢ on I x R? with Fourier support in {|&] ~ 2X}, we
have

142 Dk -1
25Nl 2 gy S IV Oz + 10611120

Proof. We adapt the proof of Strichartz estimates under the spherical symmetry assumption by Sterbenz [28]
to incorporate the radial weight 7. In view of Duhamel’s formula we may assume without loss of generality
that ¢ is of the form ¢ = ¢"VIf; for a radially symmetric function f; with Fourier support on [¢] ~ 2.
Moreover, by scaling invariance it suffices to consider the case k = 0.

First, we recall that for radially symmetric initial data, the free wave propagator in two space dimensions
takes on the specific form

@™ fo)(x) = f PR f(2) g = 2 f " 0 o rroeo(o) folpp dp,
R2 0

12



where ¢g(p) is a smooth bump function supported on {p ~ 1} and where

1 21 L.
Jo) = 5- f "D qap, yeR,
T Jo

is the Bessel function of order 0. Moreover, we recall the following standard asymptotics for the Bessel
function of order 0, see e.g. [40],

1 . 1 .
(3.2) Jo) =y 2" B +y 2B, v 1,
where the functions .. satisfy the symbol-type bounds
(33) BYON <y n=0,y>1.

We now distinguish the two regimes r < 1 and r > 1. In the former case, we just use Holder’s inequality,
the assumption A < % and a standard 77" estimate to obtain that

|LY{rsl}r_leitW|f0||LgL§ < Jevsnr™

< [l

< Ifoll2-

e fo 70 o 2rro)eo(o)folo)p dp

In the latter case r > 1, the asymptotics (3.2) yield that
_ i _1_ 0 . A 1
X1 (@™ fo)(r) ~ ZX{r»l}r 774 f e =RB, (2mrp)eo(p) folp)p? dp.
T 0

Noting that the function p — fo(p)p% is compactly supported in the interval (0,4), we may consider its
Fourier series

foop> = " cue'™, pe(0,4),

nez
whose Fourier coefficients satisfy
Dleal ~ oozl ~ 1ol
Lp Lx
nez

‘We can therefore write

X o)) ~ DT e )

+ nez

with
WEL 1) = Xirs1) f AMETDPR, (2nrp)go(p) dp.
0

From the symbol-type bounds (3.3) we obtain by repeated integration by parts that

Wt O <ar (14 e 7+ Z|)_M.
13



Thus, choosing M > 1 sufficiently large, we infer from an application of Holder’s inequality (in n € Z) and
the embedding £7 — 2 for p > 2 that

) 1
|LY{V>>1|7’_/IeiI|V|fO||L§ s Z (fl‘ (Z |Cn||lr//;_:(t, l’)l)prl—ﬁ(%ﬂ) dr)"
* nez
00 |C | » )
Z (j: (Z (1 +1t inr+ %I)M)pr1 P+ dr)”

+ nez

A

1

” lenl” 1-p(h+0) )F
d
(fl v '

nez

A

1

leal” »
(X e
(1 +|r + Fpra+d-1

nez

1

< (Z |Cn|2 )E

~ 1,91 :
nez (1+ |+ 2>t

Since by assumption A > %, we obtain the desired estimate

1
_1 ity 2
ettt ™ ol a1 < (2 1e?)” ~ ol

nez

Now we are in the position to deduce a weighted Ltszj’ Strichartz estimate.

Lemma 3.6 (Weighted endpoint Strichartz estimate). Let O < A < 1. Let k € Z and let I be any time interval
containing 0. For any radially symmetric function ¢ on I x R* with Fourier support in {|€] ~ 2X}, we have

1_ _
26" ya-tyr Bl 2 S IV Ol + 10611 21y
Proof. We begin by writing
s2nr Bl < Z I e<r<aryr ™ Pigllope-
>—k

Since the Littlewood-Paley projection operator Py lives at spatial scale 27%, for £ > —k it approximately
preserves the spatial localization enforced by the cutoff x(¢,<y¢+1y up to exponentially decaying tails that
can be dealt with easily. We may therefore replace the right-hand side of the previous line by

Z “,Y{2IS,,S2[+I}7"_/1Pk(/\/{zf—zs,,ngﬁ}Pk(ﬁ)”LIZL;o,
{2~k
where Py is a fattened Littlewood-Paley projection operator such that P Py¢ = Pip. Applying Bernstein’s

inequality for some 2 < p < co with zlv < % < 1%, we arrive at the bound

_A0A 2k _Ap 2 A
D 272 gy Pidlligr S Y 27220 2 Pl
>~k >k
Next we invoke the weighted Strichartz estimates from Lemma 3.5 to obtain the bound
A2k A— (L2 Ay _(l_
D7 272028 7GR, pO0)l 2 + gl .2) < 27 PRV pO)l,z + 106111 12),
>k
which finishes the proof. O

Moreover, we have the following local energy decay estimate.
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Lemma 3.7 (Local energy decay estimate). Let k € Z and let I be any time interval containing 0. For any
radially symmetric function ¢ on I x R* with Fourier support in {|&| ~ 2%}, it holds that

_1
Sup||)({r~2€}r 2Vl,x¢||Lt2L%[I] < ||Vt,x¢(0)||L§ + ”D¢”L}L§[1]-
(€7 ’

Proof. We proceed similarly to the proof of Lemma 3.5. In view of Duhamel’s formula, we may again
assume that ¢ is of the form ¢ = ¢Vl f; for a radially symmetric function f; with Fourier support on |&] ~ 2F.
Moreover, by scaling invariance it suffices to consider the case k = 0.

We first prove the local energy decay estimate for the time derivative 9,(¢'V! fy). Due to the radial sym-
metry assumption, we have the specific representation formula

3™ fo)(r) = 4n?i f ) &> Jo(2rrp)po(p) fo(p)p* dp.
0

We distinguish the regimes r < 1 and r > 1. Here we only treat the more difficult case » > 1. By the
asymptotics (3.2) we have that

L 0 7 oniger Ao 3
X1y 200 o)) ~ > ! f PR, (2nrp)eo(p) folp)p? dp.
+

0

The function p +— fo(p)p% has compact support in the interval (0,4) and can therefore be developed into a
Fourier series

foop> =" cue™, pe0,4),

nez

where the Fourier coeflicients satisfy

Dokl ~ lfotde2 [ < 1ol

nez

Now we follow closely the arguments in the proof of Lemma 3.5 to find that

2 1

P \d |cnl 1 2

sup ;27 0™ f))] 3, < sup (D f f e L u———
520|L\/{r e ”szLi 20 Vo Jr oty 2 (L It 7+ 1)

nez

Changing the order of integration and computing the time integral first, we see that the right-hand side obeys

the desired bound
1 1
2 2
sup (f Z len?r ! dr) < ( E |Cn|2) < follz-
{r~24) nez nez

>0

The proof of the local energy decay estimate for the spatial derivatives of V! fy proceeds analogously by
noting that the first derivative J;, of the Bessel function Jy of order 0 satisfies the same asymptotics (3.2) as Jo.
O

Finally, we turn to the atomic Z;° spaces.

Lemma 3.8 (The Z;° spaces). Let k € Z and let I be any time interval containing 0. For any radially
symmetric function ¢ on I x R? with Fourier support in {|€] ~ 2¥}, we have that

10: + 0z in < IVexdr Ol 2 + 10kl L1 1217

and

”(8t - ar)‘;bk”Z]:[]] < ”Vt,x¢k(o)||L§ + ||D¢’<”L}L§[1]'
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Proof. We only provide the proof of the estimate for the Z" space since the case of the Z;” space can be dealt
with analogously. Moreover, in view of Duhamel’s formula we may assume that ¢y is of the form V! f;
for a radially symmetric function f; with Fourier support on {|¢| ~ 2¥}. By scaling invariance it suffices to
consider the case k = 0.

Then we observe that

©0r + 0™ fo)(r) = 4n* f ) M (iJo(2mrp) + Jo(2rrp))eo(p) fop)p* dp.
0

By stationary phase it is easy to see that we have the asymptotics

. 21
(B4 i)+ I) = zi f eSO (] 4 5in(0)) dO = y 1B (v) +y 1 VB_(y), v > 1,
T Jo
where the functions 3. satisfy the symbol-type bounds
BYOI $ay™, n20,y>1.

We now distinguish the regimes r < 1 and r > 1. Here we only turn to the more delicate latter case r > 1.
By the asymptotics (3.4) we see that y{-s1)(d; + 9,)(e"V! Jfo) decomposes into two components

itV 3 T ariterp y 3
Xirs1}(0r + 0:)(€ fo)(r) ~ X137 2 [) e B+(2rrp)eo(p)fo(p)p? dp
3.5)

3 7 N 1
+ X2 f MR (2nrp)o(p) folp)p? dp.
0

It is easy to see that both components on the right-hand side have finite Yy norm. Moreover, the first
component on the right-hand side of (3.5) can be placed into the weighted Lt2+,L;’3r component of the Z;

space. More precisely, for any 0 < 4 < % we obtain by a standard 77* argument that

(o, N 3
R f SRR Orrovco(o)fo()o? dp
0

2
t+r=t-r

<

~

lo'e] . n 3
f PR B, Qrrp)eo()foo)o? dp

0 2

t+r—t-r

<

A 3
Jowp? |,
< lfoll2-

On the other hand, the second component on the right-hand side of (3.5) satisfies for any exponent pair (g, p)
with2 < ¢,p < coand ; + 4 < 7 and forany 0 < A < I that

2,

(e’

< Z 2(1—1)5
>1

_1 * i(1=r l :
- f it )pX{r»l}lg_(27rrp)<P0(p)f0(P)P2dP”LqLP
0 N

< Ilfoll 2,

where in the case of (g, p) = (o0, o) the last estimate just follows from Holder’s inequality while for all
other admissible exponent pairs (g, p) the last estimate follows from the proof of Strichartz estimates in the
radial case as in Sterbenz [28]. Putting things together, we conclude that

1B; + 3™ follzs < Nl follz2

which finishes the proof of Lemma 3.8. O
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Xty 1y f TR Qmrp)oo(o) folo)p? dp
0

qrp
L Ly

7 i fo(op?
1 f Py 1B (2rrp)po(p) fop)p? dp Lpp
0 o

<

~




4. MULTILINEAR ESTIMATES

Here we collect several important multilinear estimates that will be of crucial use to estimate the wave
maps nonlinearity. We begin with the following null form estimate.

Proposition 4.1 (Null form estimate). For < p < it holds that

1 1- 55k A (1= 25k 1
4.1) 029} 0" ||, < 21732073l lg s, -

Proof. The assertion follows by interpolation between the simple L;°L?’ estimate

oty 62z < 2 Bl g2 il < 22200 s, s,

and the following Lt% L)% estimate

4.2) 0assy,” a“¢k;|| < N lls 162 s,

which we now prove. Since in the radially symmetric setting it holds that
—20,00"Y = (0; + 0,)(0; — ) + (0; — 0)P(0; + O,

by symmetry it suffices to consider bounding the expression (d; + 8,)¢(1)(6, ,)q’)(z) in L L2 To this end
we decompose the two inputs into (+) and (—) components, i.e.

@+ 08 = @ + e + @, + 0)g”
and

@ = 02 = @i = 9B + (0 = 9.

Then we consider all possible interactions. In the case of (+)/(+) interactions we estimate

1@ + 000 @, - 08| 5

L2L2

S sup [ 00 212 D Itz @, - 00 o10
(eZ

< ligg ls., g,

and the case of (—)/(+) as well as of (—)/(—) interactions can be bounded analogously. We are therefore left
with the treatment of the delicate (+)/(—) interactions. By spherical symmetry, we may write

1@ + 00 (@; - )¢y )H 3 f f 1A @+ 0pe D 0, - 90037 dr .

Changing variables from (¢,r) to (t + r,t — r) and noting that r = %((t +r) — (t — r)), we can estimate the
previous line by

f f @+ )~ -0 (| @+ a,)¢,§‘;”||§ﬁr)(r +n (@ - ar>¢,£§">||§ﬁr)(r — P d(t+r)d( - r).
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Next we apply Holder’s inequality followed by the Hardy-Littlewood-Sobolev inequality and obtain the
desired bound

H||r%<a, + ar>¢§‘l’”||iog,

’L% H f (t+ 1) = (=2 (|r2 @, - ‘3’)"5i’_)|’§7:r)“‘ nd=rn) |

3
L+) ” 3

2 o0
1 LH—rLl—r

<[ + )9 It @ - o067l

4

3
Lt—r

<@ +ansl VN . |l - 06

3
-) ” 2
2 joo 2 joo
LH—rLt— Lt—rLH—r

Dz a2
<1915, I8, -
3 03
This finishes the proof of the L’ L; estimate (4.2) and thus concludes the proof of Proposition 4.1. O

We emphasize that the preceding proposition allows to estimate the null form 0,¢3%y “below” L2L2, in
3 3

factin L? L?. This feature will be crucial in the concentration compactness step in Section 7 to gain smallness
for certain multilinear expressions, which is explained in detail in Subsection 7.4.3. It was first pointed out
by Klainerman-Machedon [8] that the null form 8,4#3% can be estimated “below” L?L2 provided both
factors are free radial waves. The corresponding improvements without the radiality assumption are due to
Bourgain [2], Wolff [41] and Tao [35]. Next we establish a weighted null form estimate.

Proposition 4.2 (Weighted null form estimate). For 0 < A < % it holds that

A 1 2 1) min{k k. 1 2
(4.3) I 9a0y0 06| 2,2 < 270Gl 16 s, -

Proof. Without loss of generality we may assume that k; < k». Then we can dispense with the case when
the radial variable is restricted to the range r < 2% because here we can just bound by

Wiz 0y 80 1212 < D |Ler~2f'}”%+ﬂ‘9rr¢§<11)||L;wL;o|LY{r~2f}r_%3“¢1?||Lng

(<—k;
1 1 -1 2
< > 20T, Gl 2 50p a2 Va2
(< ez o

1_ 1 2
< 26D Vlis, Nig s, -

@)

L, can be written as a linear com-

Moreover, since in the radially symmetric setting the null form é)a¢]((11)6“¢

bination of terms (0, + (9,)(1);{11)(8, F a,)qﬁ), we are left to estimate

izt + 090, = 908212,
To this end we again decompose the two inputs into (+) and (—) components
@ £0)8) = @ 00" + @ 097, j=1.2

and then estimate all possible interactions. In the case of (+)/(—) interactions, we have that

0, - 9

1

(A =Dky ) (D) 2
<22 8y Msi, 1107 s, -
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Then we bound the (+)/(+) interactions by
HX{r>2—k1 }”M(az + ar)¢§{ll’+)(6t - ar)‘ﬁl(i’_)”LfLﬁ

S “/\/{r>2‘kl }r_A(af + a’)gbl(c:r)“L,ZL;“ Z H/\/{r~2‘}r+u(at - a’)gbl(c:)”L;"’Li
teZ

1 1 - 2
< 26Dk lls, 272 g2 ls
1 1 2
< 26D iglis, Nig s, -
In the case of (—)/(—) interactions we estimate as follows
1- 2,-
Wiz @ + 00837 @1 = 990|212

< D W 40, + 08407 o e 5P 2y 2 @1 = 99607210
teZ T tez o

1_ 1 2
< 26716 s, 1o ls,,
and the remaining case of (—)/(+) interactions can be treated in exactly the same manner. O
We conclude with the following delicate trilinear estimate.
Proposition 4.3 (Trilinear estimate). We have that
1 2 3 — L (ky —min{ko k 1 2 3
4.4) T 2 0 W 7 [ 5
for ki = min{ky, k3} + O(1).

Proof. We may assume without loss of generality that k; < k3. Moreover, we may restrict the radial variable
to the range {r > 27%2}, because otherwise we can just easily estimate

“/Y{rSZ’kZ }L(¢/(;)’ aa‘f’g)’ 3("752))“L; L2

1 1 2 -1 3
<IN Y Wiy 2 Vil e sup ey~ Vb s
t<—ky €

— Lk —k 1 2 3
< 273Nl Nl g s, -
In the radially symmetric setting we have the identity

—20,00"Y = (0 + 8,)¢(0; — O, + (8, — 0)$(D, + 0, ).
By symmetry it therefore suffices to now bound the expression
Wirso-) L83 @1 + 903 @1 = 9011
To this end we decompose (9; + Br)qﬁ) and (0, — 6,)¢1({‘:) into (+) and (—) components
@3¢ = @, 209" + @, £ 997 for j=2,3

and distinguish all possible interaction scenarios. In the case of (+)/(—) interactions, we estimate
1 2, 3,-
Wi LB, @+ 008 @ = 00812
_1m 1 (2,4) 1 (3.-)
S a5 oyl @+ 008712 e 772 @ = 900

— L=k 1 2 3
< 2766, ePls, e s,
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where we used that k; > k; + O(1) by assumption. Then we bound the (—)/(+) interactions by
2,— 3,
H)({r>2-k2}L(¢]((ll), (0, + ar)(b]((z ), (0 — (9r)¢,((3 +))”L}L}.

< [leps2n }r_%(pl(cl])HerL? Z [l 3r)¢1(;’_)||L;>OL;° sup |LY{r~2’-’}r_%an¢/(§’+)||L,2L§
© ez €

g - 1 2 3
< 27 E g lis, N, g s,

and the case of (—)/(—) interactions can be treated in exactly the same manner. Finally, we have to consider
the case of (+)/(+) interactions

Wizt LS @ + 3081270 = 08 12

< oty _%‘f’g)HLgL;«’ s+ (0 + L | PR > a2 @ - T P
(e

—L (ki —kp) =L (k3 —k 1 2 3
< 27wtk RV, gy, gy sy,

which finishes the proof. O

5. DECOMPOSITION OF THE NONLINEARITY AND RENORMALIZATION
In this section we study the structure of the nonlinearity in the frequency localized wave maps equation
5.1 O¢x = ~Pi(¢0a'39). k€ Z.

Our main tools to estimate this wave maps nonlinearity are the null form estimate (4.1) and the trilinear
estimate (4.4) from the previous section. However, these will turn out to be far from sufficient, even for
small energies. Accordingly, using Littlewood-Paley theory we will “peel off” the “good” parts from the
nonlinearity to isolate its non-perturbative parts. Then we will introduce the renormalization procedure to
deal with the latter parts of the nonlinearity. For the sake of readability we decided to only introduce a sim-
plified version of our renormalization procedure in this section. This version suffices for small energies, but
in order to handle large energies the construction of our renormalization procedure will, roughly speaking,
involve further frequency and spatial truncations. We will explain the necessary modifications as we go in
the later sections of this paper.

Our starting point is the following decomposition of the wave maps nonlinearity at fixed frequency 2,

P(¢0a9'0")
(5.2) =2 Y bat100ady, 0" i
ko<k—-10
(53) D Pda00.9],0°0)
ko>k—10 kz=kpy+0O(1)
(5.4 +2 Z ¢sk2—lO(Pk(aw(bZzaa¢k—5<-<k+5) - 5a¢£25a¢k)-
ky<k—10
(5.5) + Z Z PiL(¢ky-10<-<k—105 OaPir» 0" Pi3)

ky<k—10 k3=k+O(1)

(5.6) + D Pl a0 )
ko>k—10 k1 =ky+O(1) kz3<ka+0O(1)

(5.7) D D YIPLVibct10.0ati, ).
ko <k—10 k3=k+0O(1)
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In order to arrive at this decomposition, we begin with

Pu($3a00*9) = Pr(90ad’, 10" d<k-10) + 2PL($Fad’; 100" Dsk-10) + Pi(¢ats], 00" bsk-10)

and then further decompose into

Pi(¢dagp"0" )

(5.8) = Pi($0atL;_ 140" b<k-10)

(5.9) +2 3 PG 0atly_ 140" B v00)
k1>k—10

(5.10) +2 Z Pk(¢k2—10<-§k—loaa¢zzaa¢k—5<-<k+5)
ko<k—10

(5.11) #2037 PUGcta100a0), 0" $i-s<ckss)
ko<k—-10

(5.12) + Z Pk((bkz—5<~<k2+53a¢}£25”¢3k2—10)
ko>k—10

(5.13) + Y Pibstrr200a), 0" Br10<k+10)
ko>k—10

(5.14) D Pildkss<cksrsOay, 0 rs)-

k2>k—10 k3>k2+10

The first term (5.8) can be estimated in the same manner as the term (5.6) and is therefore not further
included in the decomposition (5.2)—(5.7). The second term (5.9) is of type (5.6), while the third term (5.10)
is of type (5.5). Using the Leibniz rule (2.1) for the projection Py, we may write the fourth term (5.11) as

2 Z Pk(¢k2—10<~§k—108a¢zzaa¢k—5<~<k+5)

ky<k—10
=2 Z ¢sk2—105a¢zzaa¢k
(5.15) ky<k-10 k
+2 Z 27 PrL(V x¢<ky-10> OaPisy» 0" Pr—s5<.<k5)
ky<k=10

+2 Z ¢sk2—1o(Pk(0a¢,t23a¢k—5<-<k+5)—3a¢225a¢k)-
ky k=10

Then the first term on the right-hand side of (5.15) coincides exactly with the term (5.2), the second term on
the right-hand side is of type (5.7) and the third term on the right-hand side coincides with the term (5.4).
Finally, the terms (5.12) and (5.14) are both of the type (5.6), while the high-high interactions term (5.13)
coincides with the term (5.3).

Let us now return to the decomposition (5.2)—(5.7) of the wave maps nonlinearity at fixed frequency.
In order to estimate the term (5.5) we will use the trilinear estimate (4.4), while we will bound the terms
(5.6) and (5.7) using a combination of the null form estimate (4.1) and Strichartz estimates. In contrast,
the first three terms (5.2) — (5.4) are not amenable to good bounds using the null form estimate and the
trilinear estimate. Correspondingly, we have to introduce a renormalization procedure to deal with these
non-perturbative terms. For the term (5.2) we will follow Tao’s idea [36,37] to apply a suitable gauge
transformation that casts this part of the nonlinearity into a better form, while for the other two terms (5.3)—
(5.4) we will pass to a “nonlinearly modified” version of ¢; that satisfies a better equation.
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We begin with the latter part of our renormalization procedure. Using the identity

D(¢(1)¢(2)T¢(3)) - 2¢(1)6a¢(2)1‘aa¢(3) + 230¢(1)aa¢(2)1‘¢(3) + 26a¢(1)¢(2)?aa¢(3)

(5.16)
+ D¢(1)¢(2)T¢(3) + ¢(1)D¢(2)T¢(3) + ¢(1)¢(2)TD¢(3)’

we may rewrite the high-high interaction term (5.3) into the schematic form

Pk(¢sk2+zoaa¢;a"¢k3)=D(% > Plbandl )

ko>k—10 k3=ka+0(1) ko>k—10 k3=ka+0(1)
(5 17) + Z Z PkL(aa¢§k2+20’ aa(bkz ’ ¢k3)
k2>k—10 k3:k2+0(1)
(5.18) D P06k, b b

k2>k—10 k3 :k2+0(1)

(5.19) + Z Z PrL(¢<iy+20, OPr,y > Pis)-

ky>k—10 kz=ko+0O(1)

Here we note that all terms apart from the first one on the right-hand side of the previous equation now have
a better structure in that a derivative falls on a lowest frequency or upon reinserting the wave maps equation
these terms become quintilinear and thus easier to estimate. In particular, we note that the term (5.17) is of
the same form as the term (5.6).

Similarly, using the Leibniz rule (2.1) for the projection Pj and the identity (5.16), the other difficult
term (5.4) can be rewritten into the schematic form

Y ¢Sk2_lo(Pk(6a¢126”¢k_5<.<k+s)—am,iza%k)=D( >, ¢sk2-lo(Pk(¢,iz¢k_5<.<k+s>—¢,§2¢k))

o k=10 o k=10
(5.20) + Z 27 L(Oat<ty-10, VO Phys Bho5<-<ks5)
ko <k10
(5.21) + Z 27K L(Bab<ty-10, Vihys O Pr—5<<ks5)
oy k=10
(5.22) + Z 27F(O<ty 10, Vil Pr—5<<ks5)
o k=10
(5.23) + Z 27 A p<ty-10, VaOPky» Pr—5<<ks5)
fr k=10
(5.24) + Z 27 LA p<ty-10> Vitby» Or—5<.<k45),
o k=10

where again all terms apart from the first one on the right-hand side are now amenable to better estimates
either because a derivative now falls on the lowest frequency or because upon reinserting the wave maps
equation the term is now quintilinear. We observe that the terms (5.20) and (5.21) are essentially of the
same form as the term (5.7) and can be dealt with in the same manner. Hence, introducing the following
“nonlinearly modified” version of ¢,

_ 1 +
(525  B=dets ), ), PlPsand b))+ D, bstam10(Pu@] Piscatss) — 0,00,
ko>k—10 k3=ka+0(1) ky<k—-10
22



our previous considerations imply that ¢; satisfies a wave equation of the following schematic form

O¢r = -2 Z $<kr-100a0], " i

ko<k-10

+ Z Z PiL(¢ky—10<-<k—105 OaPiy» O Pi3)
fr k=10 k3 =k+O(1)

(5.26) + Z Z Z PiL(¢k; > 0aBiy» 0" Piy)

frSh=10 ky =2+ O(1) ks <la+ O(1)
+ Z Z 27K PRIV x<ty—105 DuPhy» 0" 1)
fr k=10 k3 =k+O(1)

+ Or(9),
where Qx(¢) comprises all the quintilinear terms (5.18)—(5.19) and (5.22)—(5.24)

O(9) = Z Z PiL(P <ty +20(¢009" 07 9), ds» P13

ky>k—10 kz=ko+0(1)

+ Z Z PiL(¢<ty+205 Piy (900’ 0 $), b1,)
ko>k—10 kz=kpy+0O(1)

+ Z 2 L(Paky-10(900 0 07 $), Vbhy , P—5<.<kr5)

ko <k-10

+ Z 27 L(P<ty—10, ViPiy (980’ 0 P), Br—5<.<ks5)
fr k=10

+ Z 2 L(p<tr-10, Vs Pros<.<krs($0atp 0 9)).
ko<k-10
All the quintilinear terms in Qx(¢) can be easily estimated using just combinations of the null form es-
timate (4.1) and Strichartz estimates as well as the fact that |¢[|L>ze < 1. Thus, we can overcome the
difficulties with the terms (5.3)—(5.4) at the expense of passing from Ok to the new variable ¢;. Note that ¢
is also localized to frequency 2¥. In the following we will sometimes use the notation ¢ = 3,7 ¢x.

Now we still have to deal with the more severe term (5.2) which comes up as the first term on the
right-hand side of the equation (5.26) for ¢;. We follow Tao’s idea [36,37] and apply a renormalization
U<—10¢x so that O(U<;_10¢x) takes on a much better form. More specifically, we implement a version of
the gauge construction introduced by Sterbenz Tataru [29,30]. To this end we pick a smooth cut-off function
n € C*(R) such that n(y) = O fory < —% and n(y) = 1 for y > —3. Then we define for 4 € R the matrix

(527 By:= thnaz O@<e-100] = e8L,_10) = )1 = OG<-100] — el ).

{eZ leZ
Now we define the gauge transformations U<y, for 4 € R via the ODE
d .
(5.28) EU@ = U Bp, hgr_noo Uy = 1d.

By the anti-symmetry of By, it follows that the gauge transformations U<y, as solutions to the ODE (5.28)
satisfy U; ,U<n = 1d and are thus exactly orthogonal. However, they do not have a sharp frequency local-
ization. Fortunately, we will see that the renormalized quantity U<x_10¢x is still approximately localized to
frequency 2¥ up to exponentially decaying tails.

Next, we compute the equation that the renormalization U<,y satisfies. Upon defining for k € Z

(5.29) Ak = 0aid 1o ~ 9k-10008)
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and

(5.30) Ak = ) Aust
<k

we find that

O(U<k-106%) = U<k-10(0x — 2A0:<k-100"b1)
+2(0a Usk-10 + U<k-10A0:<k-10)0"
+20,U<k-100" (dx — P2
+ (AU <k-10)Px-

In the following proposition we carefully analyze the structure of each term in the nonlinearity of the wave
equation (5.31) for U<x_10¢x.

(5.31)

Proposition 5.1. It holds that
Odk — 2Aq:<k—100" Pk = Z Z PiL(@ky—10<-<k—105 OaPitr» " Pi3)

ko <k—10 k3=k+0(1)

+ Z Z Z PrL(¢k,, Oaiy» 0“ dr;)
(5.32) ka>k—10 ky =ky+0(1) k3 <kp+O(1)

+ Z Z 27K PLL(Y s<ty-105 D Prys O D)
fr k=10 k3 =k+O(1)

+ Ok(®).

Moreover, we have the following schematic identities

(5.33) (0aUs<k-10 + U<i—-10Aq:<k-10)0" b = Z U<ty—1 L(Pr,—-10<-<k~10, OaPry » 0" P1),

fy<k=10
(5.34) 0aU<k=100“(dr — d1) = Z U<ty -1 L(Oa L(¢ <k, 10, Dk, ), O (ke — k).
f k=10
(5.35) (QU<k-10)¢x = Z U<k -1 L(@OL($ <k, -105 Pry)» Prc)
f <k=10
+ Z Uiy -1 L0 L(p <k, ~10 Pk, )» 0 L{<k— 105 Pk, )» Pk)-
k1 <k, <k—-10

Proof. We begin with the proof of the first identity (5.32). In view of (5.26) we only have to understand the
structure of the term

6(t¢k2 ¢;k2_106a¢k-
ko<k—10

But here we can argue as in Tao [37, p. 461] and use the geometric identity ¢9%¢ = 0 to show that this term
is in fact a sum of terms of the schematic forms (5.5)—(5.7). This proves (5.32).
Next we turn to the proof of the schematic identity (5.33). Using the exact orthogonality of the gauge
transformations U<, by telescoping we may write U<_1¢ as
k=10
U<k-10 = U<y l_[ Ulj_l Us;j
Jj=k—M+1
for some M > 1. Applying a derivative d,, and letting M — co, we find that
0oUsk-10 = Z Uﬁj—law(U;/_l Usj)U;USk—lo-

j<k=10
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From the defining ODE (5.28) for the gauge transformations we have that
J

(5.36) U;._l Usj = f 1 U;_l UcyBpdh + 1d
i

and hence
J i
‘Y(U<j lUgj):aaflBhdh+(9(yfI(U;j_lUgj—Id)Bhdh.
j- Jj-

Thus, we may write

J
O0aU<t-10 + Usk—10Aq;<k-10 = Z Usj—l(aaf By, dh)U;Usk—IO
Jj<k=10 -1 ‘

+ Z U<j14a;j

j<k—10
+ Z USj—l(U;,'_lUSk—lo_Id)Aa;j
j<k=10 '
J
+ > Usja(00 f (UL} Ust = 1)By dh)U L Usin0
j<k=10 -1

Now by the definition of Bj, (5.27) we have that
8& f Bh dh = aoz(¢</ 10¢ ¢j¢<J 10) a i + (aa¢<j 10¢ ¢_] a¢<j 10)
j-1

Combining the two previous identities we find that

OaUck-10 + Usk—10Aa:<k-10 = Z Usj—lAa;j(_UljUsk—lo +1d)
j<k=10

+ Z Usj—l(aa‘psj—loﬁb;_¢jaa¢;-_10)UljU§k—10

Jj<k—10
(5.37)
+ Z USj—l(U;j_lUsk—IO_Id)Aa;j
Jj<k—10
+ U<J 1 8 f (U<J 1 Id)Bhdh)U U<k-10.
J<k 10

In view of the identity
ko
Ulkl Uskz —-1Id = ‘f]; Ulkl UshBh dh fork; <k,
1

the exact orthogonality of the gauge transformations Uy, the definition of Bj (5.27) and the fact that
lgllzere < 1, it is now apparent that when it comes to estimates, the first three terms on the right-hand
side of (5.37) are of the schematic form (5.33). To see this also for the last term on the right-hand side
of (5.37), we note that by iteratively inserting the identity (5.36), we obtain that

f (U<] 1 —1d)By dh = f f < Uiy By 0o By, dhy dhy
k-1

+ Zﬁ 1 f jk‘ <J 1U£hn+laa’Bhn+lBhn o .Bhl dhl’H—l ot dhl



Here the series may seem to diverge at first sight, but the integration over simplices yields the necessary com-
pensating % decay. Thus, also the last term on the right-hand side of (5.37) is of the schematic form (5.33),
which finishes the proof of (5.33).

Similarly, we can prove (5.34) using the identities
0o Usk-10 = Z USj—la(Z(Ulj_l Usj)U;-ng—m
j<k=10

and

J,
aa(U;._lUSj) = f UL, Usiy o By, dhi

j-1

0 ] hl hn
+Zf f f UL, \Ush10aBnBu, - Biy dhpsi -~ dhy.
=1 Vi1 i1 j-1

Finally, we turn to the proof of (5.35). From the telescoping identity

k=10

Usk-10 = U<-m l_[ U;_lUsj
Jj=k—M+1

for M > 1, we obtain that
OUgk-10 = Z Usj—ID(U;j_lUsj)UljUsk—lo
j<k=10

+2 > Usj8a(UL, L Usj) - 0"(UL,_\Up)UL, Usiro.
j1<j2<k—10

(5.38)

Then by iteratively inserting the identities
+ J + J
o(UL,Usj) = f (UL, U<h)Bydh +2 f
< i1 < .

j
. (UL, U<t)0" By dh + f/ _I(UL_I U;,)OBy, dh

and
J J
a(t(U;‘_l USj) = f aa(Ulj_l U<n)Bn dh + f (U;'_l U<n)0o By dh
J-1 J-1

into (5.38), we infer by similar arguments as before that (QU<_10)@x is indeed of the schematic form (5.35).
O

Next, we prove several useful bounds on ¢; and on the gauge transformations that will be needed in the
sequel.

Lemma 5.2. Let ¢: I x R> — S™ be a radial wave map of energy E. Then we have for all k € Z that

(5.39) pllzere S 1+E

and it holds that

(5.40) D Vel < E+ E.
keZ

Proof. We start with the proof of (5.39). Since ¢ maps into the sphere and the Littlewood-Paley projections
Py are disposable, we clearly have ||¢¢||.=.> < 1. Using Bernstein’s inequality, we easily bound the second
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component in the definition (5.25) of ¢ by

Pi($<kr+208) i) S D> 2l

x ko>k—10 kz=kp,+0O(1)
2
< D IV,
‘X
fy>k—10
S E,

k2>k—10 k3:k2+0(1)

while for the third component in the definition (5.25) we additionally use the Leibniz rule (2.1) for Py to
find that

¢gk2—10(Pk(¢Zz¢k—5<-<k+5) - ¢Zz¢k) Z 27 L(<ky-10, Vb » B0(1))

ko <k=10 L <o Ly
< D 2RIVl IVl
ko<k—10
SE.
The proof of (5.40) follows by analogous estimates. O

Lemma 5.3. Let ¢: I xR> — S™ be a radial wave map of energy E and let U<y, for h € R be the associated
gauge transformations as defined in (5.28). For 2 < p < oo it holds that

(5.41) ”VMUgmﬂﬁgf“@%E%+E)

Moreover, we have for 2 < p < oo that |

(5.42) 9.9 Vst < 2577¥CE? + .

Proof. By telescoping as in the proof of Proposition 5.1, we obtain the schematic identity

ViiUsk = ) Usio1 Vil st 10, 01)U L, Usk.
ko<k

Hence we find for 2 < p < oo that

IVeUsatllyr < D NEViatstoi0:60)0 + D 1L <to-10, Vi) o

ky<k T kos<k

<D DL Vadnlisligoliz + D1Vl
ko<k k1<k,—10 ko<k

_2 _2

<> > 2NV IVl + ) 2RIV il
ko<k k1<ko—10 ko<k

< 2N E + EY),

which yields (5.41). The proof of the bound (5.42) proceeds similarly. O

We conclude this section by establishing a small energy global regularity result for the wave maps equa-
tion (WM) for radially symmetric, classical initial data. The proof is a fairly immediate consequence of
the multilinear estimates from the previous section and of the careful decomposition of the wave maps
nonlinearity as well as of the introduction of the renormalization procedure in this section.

Theorem 5.4. There exists an absolute constant € > 0 such that for any radially symmetric, classical initial
data (¢o, $1): R> — TS™ with energy E[@] < &, there exists a unique, radially symmetric, classical global
solution ¢: R1*? — S™ to (WM) with initial data ¢[0] = (¢o, ¢1) satisfying

(5.43) Iglls ) < ELS]7.
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Proof. 1t is a standard argument to show that in order to conclude global regularity and the bound (5.43), it
suffices to prove frequency envelope bounds for the local-in-time evolution of a classical radial wave map
with initial data (¢g, ¢1), see [36,37]. Thus, let {ci}rez be a frequency envelope covering the initial data
(¢0, ¢1) and denote by ¢ be the classical wave maps evolution with initial data ¢[0] = (¢, ¢;) on a time
interval I = [-T, T] for some 0 < T < co. We shall prove frequency envelope bounds for the evolution by a
bootstrap argument. Making the bootstrap assumption

I1Pxlls, i < Cex, k € Z,

for some sufficently large, absolute constant C > 0, we shall now show that this implies the improved bound

C
I1Prlls, 1 < > Chs keZ.

By scaling invariance, it suffices to prove this bound for k = 0. To this end we first deduce a frequency
envelope bound for the renormalized quantity U<_jo¢,. This step is slightly compounded by the fact that
the variable U<_1o¢, is only approximately localized to frequency ~ 0 up to exponentially decaying tails.
Correspondingly, we show that for any 0 < a < 1, it holds that

(5.44) > 22l|Pry (U108, 1 < Ceo.
ko€Z

From this bound on U s—loao we can then pass back to ¢¢ and recover the improved bound

C
I1Podlls,n < 7 €0,

as explained in detail in the proof of Proposition 6.3 in the next section. In order to prove the bound (5.44)
we show that forany 0 < @ < 1,

(5.45) > 20|Py ¥, (U108, < Ceo
ko€Z
and that
(5.46) 2 2MP (U< 1080)|| 1120 S £Cco-
k()EZ

For sufficently small £ > 0 the energy estimate (3.1) then yields the desired bound (5.44). We note that
the exponential factors 2%l in (5.45) and (5.46) can be controlled by playing out Bernstein’s inequality
and the bounds on the gauge transformations from Lemma 5.3, see the proof of Proposition 6.3 in the next
section for such an argument. Then the bound (5.45) is straightforward to derive from the definition of
¢, using the properties of frequency envelopes. Finally, in order to deduce the bound (5.46), we recall
that Proposition 5.1 carefully lists each schematic term arising in the nonlinearity O(U<_10¢,). Using the
properties of frequency envelopes we then prove (5.46) separately for each schematic term. Specifically,
we may bound the first term on the right-hand side of (5.32) as well as the term (5.33) using the trilinear
estimate (4.4), while all other terms on the right-hand side of (5.32) as well as the terms (5.34)—(5.35) can
be estimated by a combination of the null form estimate (4.1) and Strichartz estimates. O

6. BREAKDOWN CRITERION

Here we show that the S norm introduced in Definition 3.1 provides sufficient control on a radially
symmetric, classical solution to the wave maps equation (WM) in order to infer long time existence and
scattering. The main result is summarized in the following proposition.
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Proposition 6.1. Let I be the maximal time interval of existence of a radially symmetric, classical wave map
¢: I xR> - §™. If I@llsn < oo, then we must have I = R. Moreover, ¢ then scatters to finite energy free
waves as t — +oo in the sense that there exist (f+,g+) € H. x L2 such that

1im [|V,.x6 = VixS ()(fe 82| 2 = 0,

where S (1)(fx, g+) = cos(t|V|) fx + % g+ denotes the free wave propagator.

We will give the proof of Proposition 6.1 at the end of this section. The key ingredient for the proof is the
next proposition which provides frequency envelope bounds for a radially symmetric, classical wave map
¢: I x R> — S$™ with finite S norm.

Proposition 6.2. Let ¢: IXR?> — S™ be a radially symmetric, classical wave map defined on a time interval I
containing time t = 0. Let {ci)rez be a frequency envelope covering the initial data ¢[0]. If ||§llsin < oo,
then there exists C = C(||plls[ry) > O such that for all k € Z,

IPklls i < Cek.
The proof of Proposition 6.2 relies on the following weak divisibility property of the S norm.

Proposition 6.3. Let ¢: I x R> — S™ be a radially symmetric, classical wave map of energy E defined on
a time interval I and satisfying ||¢lls;n < K. Then there exists a partition I = U;.V:llj into N = N(K,E)
consecutive time intervals I such that

6.1 Igllsir) < C(E) forj=1,...,N,
where C(E) is an absolute constant that just depends on the size of the energy E.

Proof. The proof proceeds in two steps. First we show that

(6.2) I — ¢lisin < C(E).
Then we prove that the interval I can be partitioned into N(K, E) consecutive subintervals /; such that
(6.3) ||(E5||5[1j] < C(E) for J =1,...,N.

The assertion (6.1) then is an immediate consequence of the two previous bounds. Their proof, however,
requires the introduction of certain frequency and spatial cutoffs in the definitions of the quantity ¢ and of
the gauge transformations U, which we will explain as we go. We will be able to prove (6.2) directly,
gaining smallness by choosing the frequency and spatial cutoff parameter sufficently large, while we will
establish (6.3) using a suitable divisibility argument.

We begin with the proof of the bound (6.2). To this end we recall that our motivation for the introduction
of the quantity ¢ = Y ;<7 ¢ was in the first place that the high-high interaction term (5.3)

DD PlSstnrandad) 0 bis)
k2>k—10 k3:k2+0(1)
as well as the term (5.4)

Z ¢sk2—1o(Pk(5a¢Zzaa¢k—5<-<k+5) - 8a¢zzaa¢k)
ky<k—10

in the wave map nonlinearity localized to frequency ~ 2* turn out to be non-perturbative due to our choice
to estimate the nonlinearity solely in L!'L2 and to build the S norm out of relatively elementary function
spaces. However, we can in fact “peel off” some more good parts from these terms. More precisely, the
following frequency and spatially truncated versions of (5.3)

(6.4) Z Z P k(X{rngk+m;¢gk2+203a¢,T{2 " brs)
k—10<ky <k+m kz=ky+0O(1)
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and of (5.4)

(6.5) 2 Z Pk—10<~<k+10(/\/ {r§2*k+m}¢Sk2+20(Pk(aa¢Zzaa¢k—5<-<k+5) - aadﬁ,tza”(bk))
k-m<ky<k—10

for some large parameter m > 1, can still be suitably estimated, as we will show in detail in the second part
of the proof of this proposition. Correspondingly, within this proof we may also work with the following
modified definition

- 1
(6.6) Pk — Pk = 3 Z Z Pk(X{r>2*k+'"l¢£kz+20¢;§2¢k3)

k—10<ky <k+m kz=ky+0O(1)
1

6.7) t5 00 D, Pdsnd] di)

k2>k+m k3:k2+0(1)

T _4f

(6.8) + Z Pk—10<-<k+10(/\/{r>2*’f+m}¢§k2+20(Pk(¢k2¢k—5<-<k+5) ¢k2¢k))

k—m<ky<k-10

: 4t

(6.9) + Z Pk—10<-<k+1O(¢sk2+2O(Pk(¢k2¢k—5<-<k+5) ¢k2¢k))-

ko<k—m

Note that additional error terms will arise here in the equation for O¢; when a derivative hits the spatial
cutoffs x;,,-mny. However, these extra terms can be dealt with easily. We now prove that

(6.10) 16 = Sllsin < 27" gl

for suitable @, 8 > 0, which immediately implies the desired bound (6.2) upon choosing m > 1 sufficiently
large depending on the size of [|@||s7;. We start off with the term (6.6) in the expression for & — ¢r and seek
to show by direct estimation that

2

1
I
) <2l

6.11) (Z H > Do Pliysarembsinaod] o)

Skl
k€Z k—10<ky<k+m k3=k+O(1)

To this end we prove (6.11) separately for each part of the Sy norm. We begin with the kinetic energy
component. Suppose V; . hits ¢z2. Using Strauss’ improved Sobolev embedding in the radial case

1 _1
(6.12) 172 0el] o < 272 il
we may estimate

2

)2
LPLA]

(Z” Z Z Pi(t(so-tom bk +20 Vi) i)

keZ k—10<ky<k+m k3=ky+O(1)

1

3(2( Z Z ”Vt’xqij”Lf"Lf.[l]”X{r>2'k+’”}¢k3“L;’"Lf;"[l])z)i

keZ k—10<ky<k+m k3=k,+O(1)
1

<0 D D Mwlsam2 2 P lgls ) )

keZ k—10<ky<k+m k3=k,+O(1)
1
-5 2
<2,

Analogously, we can deal with the expressions arising when V. hits ¢<x,+20 or the cutoff x;,.,-«my, which

yields (6.11) for the kinetic energy component of the S norm. In a very similar fashion we may also prove

(6.11) for the Strichartz, weighted endpoint Strichartz and local energy decay components of the S norm.

Hence we are left to prove (6.11) for the more delicate atomic space parts Z;". It suffices to consider the Z;°
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component. Assume that (9, + d,) hits the input ¢Zz. Then we decompose (9; + )¢y, into its (+) and (—)
components

@ + 0ty = B + 3B + (D, + 0.

We now show that in case of the (9, + 6,)¢§:2r) component, we can place the whole expression

Pr(X(>2-k+myP<hy+20(0r + 3r)¢,(;ﬁ¢k3)
k—10<ka <k-+m k3=ks+O(1)

into the (+) component of the Z; norm with the desired bound. Indeed, we have for the L2, L part that
1

~(3=k||,+2 (H)T °\?
Z sup 272 r Z Z Pk(X{r>2—k+m}¢§k2+20(at + ar)¢k2 ¢k3) 2= ]
kezZ t+r—t—r

0<1<} k—10<kp <k+m ky=ka+O(1)

1

(M 3N 2
keZ

0<A<} k—10<ks <k+m ka=ka +O(1)

2
B ——)

t+r-t—r

1

2\ 2

Z Z Z —LmA—Aky—k

S( sup 2 2m2 (k> )“¢k2”5k2“¢k3”5k3) )
keZ O</15% k—10<ky<k+m kz=ky+0(1)

1 1
T T
<2 2mm2||¢||s[1]’

where we again used Strauss’ improved Sobolev embedding (6.12). Similarly, we may bound the Y} norm.
Instead, when we face the (0; + 8,)¢](€;) component, we can suitably place the whole resulting expression
into the (=) component of the Z;” norm. More precisely, for the weighted LILY norm we find that

1,2 _
2(q+p l)kz/lk Z |'/\/{r~2f}r+/l Z Z Pk(X{r>2_k+'"}¢5k2+20(at + 6r)¢§<2)T¢k3)

LIy
leZ k—10<ky <k+m k3=ko+O(1)
G421k dk +A =)
S Z Z 2T 2 Z’[,\/{,qur (O +a’)¢k2 |’L7L£||/\”{r>2*k*’"}¢k3||L;>°L;°
k—10<ky <k+m k3=k+O(1) (€7,

<o 2(;+%—%+4)(k—k2)” 12
k—10<Zkz:§k+m ¢ Bk

and in view of the admissible ranges for (g, p) and A, upon square-summing over k € Z, we may bound
the whole expression by 2_‘5’"m%||¢||§[,] for some small 6 > 0, which is of the desired form. We proceed
analogously with the Yy norm. When (d; + 9,) hits the other inputs, the Z,j norm can be bounded similarly.
This finishes the proof of (6.11) and hence the proof of (6.10) for the term (6.6).

In order to show (6.10) for the term (6.7) we can proceed analogously only that we have to introduce an
additional splitting

Z Z Pi(¢p<trs208) 1) = Z Z Pl rer-4yB<kos208;, Bis)

ko>k+m k3=ky+0O(1) ky>k+m k3=k+O(1)

+ Z Z Pk(X{r>2_k}¢Sk2+20¢};¢k3)‘
k2>k+m k3:k2+0(1)

Suppose here that the input ¢3;£2 is hit by a derivative, then we achieve an exponential gain in —k3 and thus

smallness, either by using Bernstein to place ¢, into L;"’Lﬁ or by placing ¢y, into L;°LY and using Strauss’
improved Sobolev embedding (6.12).
Finally, the proof of (6.10) for the terms (6.8) and (6.9) works similarly to the above estimates and is left
to the reader. This finishes the first part of the proof of Proposition 6.3, namely establishing the bound (6.2).
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We now turn to the proof of the estimate (6.3). This step is slightly compounded by the fact that the renor-
malized variable U<¢_1ody is only approximately frequency localized to frequency 2 up to exponentially
decaying tails. We will first show via a divisibility argument that we can partition the time interval I = U;I;
into N(K, E) consecutive intervals I; = [t;,1;,1] satisfying

1
2\2
alk—ko| =
(6.13) (2 (3 2P Uarcrodoll, ) ) < €
keZ koeZ
for any 0 < @ < 1. Then we will infer the desired bound
RN
(D 18,11.) < cBy
kezZ '

by decomposing the product ¢; = U;k_lo(Usk—IO(Z’k) into a Littlewood-Paley trichotomy and invoking the

bounds (6.13) as well as by introducing a modified version of the gauge transformations Uy,.
We begin with the proof of (6.13). Using the energy estimate (3.1) we find that
1

(Z (Z Zalk—kol|‘Pko(Usk—lofl_ﬁk)||sko[,j])z)i < (Z (Z 2“"‘—'“”HVz,kao(Usk—lo@k)(tj)'|L§)2)§

(6.14) keZ koeZ keZ koeZ

+ (Z (Z 2“'k_k°|||Pk0D(Usk—m(z)k)“L,'L§[1j1)2)§‘

keZ koeZ

For the first term on the right-hand side of (6.14), we now show in detail that it is bounded by C(E) in the
case when the derivative V,  falls on ¢. The other case when it hits U<;_1o can be treated similarly. Using
Bernstein’s inequality and the sharp localization of @ to frequency 2¥, we obtain that

Z(Z 2a|k_k0|”Pko(Usk—lOVt,xﬁ_bk”L%)z S Z( Z 20(](_1(0)||Pko((1°k+0(1)Us/<—1o)Vz,x<5k||L3_)2

k€Z ko€Z keZ ko<k-10

+ Z ”Pk+0(1)(USk—lOVt,x‘zk)”ig
keZ

+Z( Z 2“(k°_k)HPko((Pko+0(l)Usk—lo)vt’x‘z)k)||ﬁ)2

keZ ko>k+10

SZ( Z 2a(k—ko)2ko—2k||viUsk_10’|L%||Vt,x&kllL§)2
k€Z ko<k—10 '

7 112
+ 3 Vil
‘X

keZ

- 2
—k) k=2 2
+ Z( Z 2a(k° k)2k ko”Vngk—lO”L%”Vt,xqjk”L)Zc) .
ke€Z ko>k+10 )

(6.15)

Then the bounds on the gauge transformation from Lemma 5.3, the kinetic energy bounds on ¢; from
Lemma 5.2 and the fact that @ < 1 yield that the right-hand side of the previous line is bounded by

CE)( Y, 207Vt " 2@2) 31V, ully, < C(E).

ko<k—10 ko>k+10 kezZ

Next we prove by divisibility that on suitable time intervals /; the second term on the right-hand side
of (6.14)

1

(6.16) (> (% 2 ProWskcr0dly12,) )

keZ koeZ
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is also bounded by C(E). Here we first recall from (5.31) that the wave equation for the renormalized
variable U<;_10¢y 1s given by
O(Usk-100x) = Usk-10(0¢k — 2A0:<k-100" 1)

+2(0a Usk-10 + Usk-10A0:2k-10)0" Pk

+ 20 U<x-100" (dr — ¢1)

+ (AU <k-10)Pk

(6.17)

and that in Proposition 5.1 we had carefully uncovered the schematic form of each term in the nonlinearity
on the right-hand side of (6.17). In view of these identities we observe that we can treat the exponential
tails in (6.16) by playing out Bernstein’s inequality and the bounds on the gauge transformations from
Lemma 5.3, analogously to how we proceeded in the estimate (6.15). It therefore suffices in the following
to prove by divisibility that we can partition the time interval / = U;/; into N(K, E) consecutive intervals /;
satisfying

(6.18) 2 IBWac1080l;12,,, < CB.
keZ

We now prove this bound seperately for each type of term appearing on the right-hand side of the wave
equation (6.17) for the renormalized variable U<;_10¢x. We start with the term (O¢x — 244:<k—100%¢x) and
recall its basic decomposition (5.32). First though, we have to deal with the two extra terms (6.4) and (6.5)
that appear due to our modified definition of ¢ in this proof. For the term (6.4) we use Bernstein’s inequality
to bound

2

:
Pr(X(r<o-tom P str+200ay, 0" bis )||
kez k10T <k+m ky=kr 7 0(1) '

2
SZ( Z Z 2k+[|LV{r~2f}f%Vt,x¢kz||izL3)

keZ k—10<ky<k+m {<—k+m

shols(Y, D D 2 i Vel

keZ k—10<ky<k+m {<—k+m

Ly

Then we observe that the last factor in the previous line has the divisibility property and satisfies

> D 2 e Vil < Com D iR, < ComlglE.

keZ k—10<ky<k+m {<—k+m keZ

It can thus be made sufficiently small when restricted to suitable time intervals noting that at this point the
size of the parameter m > 1 has already been fixed. Similarly, we can gain smallness for the other additional
term (6.5) on suitable time intervals. We continue with the first term on the right-hand side of (5.32). Here
we have to distinguish two cases

2

PiL($r,-10<-<k~105 OaPky> 0" P13) .
keZ "k <k—10 ks =k+O(1) L Ly

2
< Pk()({rgz—kz}L(¢k2—10<~§k—10,aa¢k2’aa¢k3)) o
keZ "k <k=10 ks=k+O(1) Ly L
2

+ Pk(/\,/{r>2-1<z 1 L(Pry-10<-<k-105 OaPiy> 0% iy )) .

1
k€Z “ky<k—10 kz=k+O(1) [
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In the first case we bound
2

Pk()({rgkz}L(¢k2—10<-sk—10, dadiy» 0% P, )) L

k€Z “ky<k—10 k3=k+O(1)

W1 2 _1 2
<2 2 X2 b Vel | sup o2 Vesdi 22
keZ " ky<k—10 ki >ko—10 €<—ky LILY tez o
1 2
<20 D0 D0 X Vi | llels
2Ly

ko€Z k1 >ky—10 (<—k;

and note that the first factor on the right-hand side of the previous line has the divisibility property

1
D7 X272 11 IV x|

ko €Z ky=kp—10 £<—k;

_Lp 2
S DL 2 Mkl Vel e < I
LALY : :

T ko€Z k1 =kp—10

and thus yields smallness on suitable time intervals. In the second case we use the trilinear estimate (4.4) to

bound
Z Z Z Pk()({r>2—kz}L(¢k2—10<‘sk—10,aa¢k2aaa¢k3)) L

k€Z “ky<k—10 kz=k+O(1) 1
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k€Z ky<k—10 k1>kp—10

< (Z 23k ||/Y{r>2-k1 }"_%‘pkl ”itzLi") ”‘Z’Hé

k]EZ

2

and then the first factor on the right-hand side has the divisibility property to gain the desired smallness. Next
we turn to the second term on the right-hand side of (5.32) and seek to achieve smallness for the expression

2
PkL(¢k1 > aa’¢k2’ a(l¢k3)

172
tLX

k€Z “ky>k—10 k1 =ky+0(1) k3<ky+0O(1)

To this end we note that by Bernstein’s inequality and the null form estimate (4.1) it holds that

2
PiL(¢k, OaPry» 0" Piy)

L2

ko>k—10 k1 =ky+O(1) k3<ka+O(1)

1
L
< E § § 25w 5 N|0atiddi]| 5 s
LILY LL}
ko>k—10 k1 =k + O(1) k3 <k +O(1) T e
—Lky=k)y— 5 (kp—k 2
< E E 2 5k )2 10(2 3)”¢k2||5k2”¢k3||5k3'
ko >k—10 k3 <k +O(1)

Hence, we can exploit the exponential gains in the frequency differences to achieve smallness when the
inputs have disparate frequency supports and reduce to the case where all inputs are at frequency 2+0™)
where M > 1 is chosen sufficiently large depending on ||¢||s. But then we obtain smallness by divisibility
as in the previous step. The third term on the right-hand side of (5.32) can be treated in exactly the same
manner and all quintilinear terms in the fourth term Qx(¢$) on the right-hand side of (5.32) are easier to
control using just Strichartz estimates and the null form estimate (4.1). We leave the details to the reader.

We are left to consider all remaining terms on the right-hand side of the wave equation (6.17) for the
renormalized variable U<;_1o@x. But in view of the schematic identities (5.33)—(5.35) from Proposition 5.1,
these are either of the same type as the first term on the right-hand side of (5.32), which we have already
dealt with above, or they are quintilinear and therefore easier to control.

34



Thus, we can partition the time interval I = U;I; into N(K, E) consecutive intervals /; satisfying

1

(6.19) (Z (Z 2""‘_k°‘||Pko(Usk—10<7>k)||5k0[Ij])z)E < C(E)

keZ koeZ

for any 0 < @ < 1. It now remains to transfer these bounds to ¢, i.e. to show that on each such interval /; we
have that

(> ||<Z>k||§k[,j])é < C(B).

keZ
To this end we use the exact orthogonality of the gauge transformations to write

o = U;k_loUsk—IOfZ’k
and then decompose into a Littlewood-Paley trichotomy in view of the localization of @ to frequency 2,
& = Pai—c(UL,_ o) Preocy(Usk-1081)
+ Prroy (UL, 1o) Pek-c(Usk=108x)

+ Z Z Pk(Pkl(Ulk_l()) sz(U;k_l()ék))
ki1>k+0(1) ko=k1+0(1)
= (LH)y + (HL); + (HH).

(6.20)

We now estimate (6.20) separately for each part of the S norm. Here we observe that for those parts of
the S, norm that do not involve a derivative the desired bound follows immediately from (6.19) and the
boundedness of Py, U lkz for arbitrary ki, ky € Z thanks to the exact orthogonality of Ul ko' Similarly, for
all other parts of the S norm when the derivative falls on the U<;_10¢ term, the desired bound follows

immediately.

Let us therefore begin with the treatment of the Strichartz component of the S; norm when the derivative
V, x falls onto the term U l 10+ Noting that the gauge transformation bounds from Lemma 5.3 also hold for
the transpose Uik—lO’ we find for the (LH);, part that

(L+2-1)k t 7
2 Z P, Vt’xUsk—IO“L;"’Lf;"[Ij]||Pk+0(1)(U§k_lO¢k)|’L?Lﬁ[lj]
ki<k-C
—knik + -
S Z 2722 ”Pkl Vt’xUSk—IOHLt“’Lﬁ[Ij]||Pk(U5k_lO¢k)“Sk[1j]
Ky <k+0(1)
—k lkl 1p -
< Z 27722M 2z C(E) ”Pk(USk—lO(pk)HSk”j]
ki<k+0(1)

< C(E) ’|Pk(Usk—1o<5k)||sk[1j]'

Square-summing over k € Z and invoking the previously established bound (6.19), we obtain the desired es-
timate. We proceed analogously with the Strichartz component for the (H L), and (HH); parts. The weighted
L2LY component and the local energy decay component of the S, norm can also be treated similarly so that
we now turn to the more delicate Z norm, the Z_ norm being handled in exactly the same manner. We
consider in detail the high-high part (HH); for the Z;" norm, the (LH); and (HL) parts being similar.

Here it turns out that we cannot avoid to pick up factors of ||¢lls| 1] which would destroy our final goal to
obtain a bound just in terms of the energy E on the interval /;. For this reason we have to slightly modify
the definition of the gauge transformations to introduce another source of smallness to compensate factors
of ||¢||S[1_,]- At this point we recall that the non-perturbative term (5.2),

(6.21) 2 Z ¢§k2—loaa¢zzaa¢k,
ky<k—10
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in the decomposition (5.2)—(5.7) of the wave maps nonlinearity at frequency 2* necessitated the introduction
of the gauge transformations U<j,. However, letting m > 1 be a sufficiently large integer depending only on
the size of the S [/] norm of ¢, we can in fact still “peel off”” the good term

2 Z X{rsz—w}¢sk2—108a¢£250¢k
k—m<ky<k—10

from (6.21). The latter term can be easily seen to have the divisibility property and can therefore be dealt
with accordingly in the previous parts of this proof of Proposition 6.3. Hence, we only have to use a gauge
transformation that suitably renormalizes the expression

2 Z ¢gk2—103a¢7€23“¢k+2 Z X{r>27k+m}¢sk2—105a¢7€25a¢k-

ky<k-m k—m<ky<k—10

Correspondingly, we modify the definition of the matrix Bj, in the construction of the gauge transformations
Ug,in (5.27) to

d .
By:= — > n(h+ 10 = m = Ob<r-100] = 06l 1)
(6.22) fif

i il
o é(n(/@ —0) = 1(h + 10 = m = O pog-110m (b<e-100) — BedL, 1)-

"

~i_10 1s of the schematic form

Then we may conclude as in the proof of Proposition 5.1 that (9, + d,)U

@ +0DUL_ o= Y Usta 191+ 9Lty 10, )

k3<k—-m
D Ustt @+ 09 X pmaam Lt 10, ).
k—m<k3z<k—-10

We now estimate in detail the Z,j norm of the (HH)j part of (6.20) when (0; + 0,) falls onto ¢,, the other
case being similar. Thus, we end up having to estimate the Z" norm of the following schematic expression

Z Pk(Pkl( Z Us/q—l(az+5r)¢k3)Pk2(ng—10¢_5k))
ki >k+0(1) ky=ki +O(1) ks <k—m ky<k—m

+ Z Z Z PPy, (U <ks—1X {r>2-kem) (O + 8r)¢k3)P k(U sk—loéﬁk))

k1>k+0(1) ko=k;+O(1) k—m<kz<k—10

(6.23)

and we begin with the first summand in (6.23). We distinguish the cases » < 27 and r > 27%. When r < 27%
we can place the whole output into the (—) component of the Z;" norm using just Bernstein and Strichartz
estimates. Indeed, for the weighted L LY norm of the () component we have

2($+%_1)k21k Z Z Z Z }X{%zf}r/lpk(i)k]( Z U§k3—1(6t + ar)¢k3)Pk2(USk—10<zk))
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L)

Choosing m > 1 sufficiently large depending on the size of the S[/] norm of ¢ to compensate the factor
of ||¢llsr on the right-hand side of the last line, we may then easily square-sum over k£ € Z and invoke the
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estimate (6.19) to obtain a final bound just in terms of the energy E. Similarly we bound the Y; norm of the
(=) component.
Let us now consider the case when r > 27, Here we distinguish whether (9; + 0,)¢x, is of (+) type or of

(-) type. If it is of (+) type, we place the whole expression into the (+) component of the Z" norm. To this

2
t+r

r/l)({r>2‘k} Z Z Z Pk(Pk.( Z U5k3—l(at+5r)¢](;))Pk2(Usk—10¢_5k))

2 0 A
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k3<k-m ko€Z

S 2 lsiy Y 1P Uar-1080)s, 1)
ko€Z

end we consider the L7, L7, part of the (+) component. For 0 < 4 < % we have

2—(%—/1)k

12 L, 1] ”sz(USk—lO(Zk)”LTOL?

t+r

and upon choosing m > 1 sufficiently large, we may easily square-sum in k € Z and obtain a final bound just
in terms of the energy E thanks to (6.19). For A = % we unfortunately do not straightaway have summability

in k3 < k — m. In this case we split the weight 72 = r279/% for some small & > 0 and absorb 7 into the
high-frequency factor Py, (U<—10¢x) via Strauss’ improved Sobolev embedding in the radial case

|lX{r>2*k}r6Pk2(Usk—IO‘zk)”L;wLio[lj] < 2(-0kzk ||Pk2(U3k—10<5k||L?oL§[,j]-

Then we can again sum over k3 < k—m and gain a smallness factor 279", The ¥} norm of the (—) component
of the Z]:“ norm is easier to bound. It therefore remains to consider the case when (J; + 0,)¢x, is of (-)
type. Here we try to place the whole expression into the (—) component of the Z;" norm. We start with the
weighted LLY part

2(#%_1)](2%2 }/‘({wzf}”/l Z Z Z Pe(P,( Z Usts 10y + 01y )Pioy(Us-1081))
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qrPry.
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k3
L LY. Tn order to ensure summability over the low frequencies k3 < k — m, we exploit that we can absorb a

where we aim to estimate (9; + d,)¢, ’ in LYLY, while placing the high-frequency factor Py,(U<x—106x) into

1_1, - .
weight 7277 into Pg,(U<k—10¢x) via the estimate
1_1 1,1
11 —(L+Lyk
r7 P fll oy < 2727V P A2,

which follows from interpolating Strauss’ improved Sobolev embedding with the trivial energy estimate.
This yields the following bound on the weighted LY LY part of the (—) component of the Z norm

L 140k (1-a+ 11 Ly 20 _(Lyly -
Z (g 1+Dky (1=t 3= =) 3||</’)k3llsk3[1_,v] Z 25k~ (3+%) 2|’Pk2(Us1<—1o¢k)||Sk2[,j]
k3<k-10 ko>k+O(1)
1_1_1

—(l=psi_1_1 (L Lyky—k -
< p~(=ty=5=pm Z 7—(3+5)k >||Pk2(ng—10¢k)||5k2[,jj,
ky>k+0O(1)

which yields a smallness gain 27" on account of the fact that 0 < A < 1 and }1 + zlv < % Then we can easily
square-sum this bound over k£ € Z and obtain a final estimate just in terms of E by invoking (6.19). The Y}
norm of the (—) component of the Z" norm can again be treated easily.

Finally, we have to estimate the Z norm of the second summand in (6.23). Here we proceed similarly
to the above treatment of the first summand only that we gain smallness using Strauss’ improved Sobolev
embedding and the restriction > 27%*"_ This finishes the proof of Proposition 6.3. O
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Next, we give the proof of Proposition 6.2 using the weak divisibility of the S norm.

Proof of Proposition 6.2. We may assume that the interval [ is of the form I = [0, T'] for some 0 < T < 0.
Then we first use Proposition 6.3 to partition I = U;V: i into N = N(l|glls(n, E) consecutive intervals
I; = [tj-1,t;] with fp = 0 and 7y = T such that ||¢||S[1j] < C(E)for j=1,...,N, where C(E) > Ois a
constant that depends only on the energy E of the wave map ¢. For each interval I; = [z;_1, ;] we introduce
a frequency envelope

) ._ —olk-t| ,
= Z 2 ||Pt’¢[tf—1]”1‘1;xL§’ ke,
teZ
for some small constant o > 0, and show via an iterative bootstrap argument that

IPells i < ¢,

which then implies the assertion of the proposition. To this end we further partition each interval I; = U;/;
into finitely many consecutive intervals /; which have suitable divisibility properties. On every interval /;
we now run a bootstrap argument. Starting with /;; we make the bootstrap assumption

1Pkl 11,1 < Cc](c’)

for some sufficently large, absolute constant C > 0 and now show that this implies the improved bound
C
IPls i1 < ¢
Then we continue analogously on all remaining intervals /;;. Here we again have to use the modified defi-
nition (6.6) of Ek and the modified definition (6.22) of the gauge transformations U, to have an additional

soure of smallness at our disposal as in the preceding proof of Proposition 6.3. Then it is easy to show that
forany 0 < a < 1,

Z Zalk_k()l”PkoV,’X(Usk_log_bk(tj))HLg < CC]({'I).
k()GZ
Moreover, picking the intervals /;; suitably, we may infer by divisibility arguments that for any 0 < @ < 1,
lk—kol = )
Z palk=ko ||Pk0|:|(ng_1o¢k)||L;Lg[,ﬂ] < Cc;
koEZ
and then the energy estimate (3.1) implies that
lk—kol Py )
Z alk—ko “Pko(ng—loff’k)“skO[Ijl] < Cc;”.
koEZ

Finally, we argue similarly as in the preceding proof of Proposition 6.3 to pass from the last bound back
to ¢ and recover the improved bound

C
IP@ls i < 5

This finishes the proof of Proposition 6.2. O
We are now in a position to provide the proof of the main result of this section.

Proof of Proposition 6.1. Suppose that I # R. Since we have ||¢||s[;; < co by assumption, Proposition 6.2
yields frequency envelope bounds for the evolution of ¢ on its maximal time interval of existence /,

IPclls, i < Cex,

where {c}rez is a frequency envelope covering the initial data ¢[0]. Then it is a standard argument to infer
that a subcritical norm of ¢[f] must stay finite on /, i.e.
sup ||¢[t]”Hj><H§‘1 < oo

tel
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for some s > 1. But then the local well-posedness theory [8-10, 12, 13] implies that the evolution of ¢
extends smoothly beyond the time interval /, contradicting the maximality of /. Thus, we must have / = R
and it remains to prove the scattering assertion. To this end we first note that in the gauged wave equation

O(U<k-10¢¢) = Fro k€ Z,

we have that ||F|| L' I2[R] < cr. Now for k < —1 or k > 1 we already know from the a priori bounds that
IV xokll L2 S Ck has very small norm, so it suffices to consider k = O(1). Picking a sufficently large time
T > 0 such that

”FkHLl'Lf[[T,oo)) < 1,
we then obtain that for k = O(1),
Usk-100(1) = S (t = T)(Usk-108[T1) + 010 g1 17,0001 for 1> T.
In order to infer scattering, it then suffices to show that

1im [|V,.(Usi-1064(0) = 30| 2 = 0.

for which in turn it suffices to prove that lim,_, HUsk—lo(f) - Id“Lw = 0 as well as lim;_,e [l¢x()llze = 0.
On the one hand, it is easy to see that

tllglo NG T)(Usk—loak[T])”Li? =0,

and the localization to frequency k = O(1) also implies that the error o LA ([T.co(1) goes to zero in L.

This then implies that ¢, (¢) converges to zero in L. To pass from here to ¢; again requires modifying the
definition of ¢, as in the previous proof of Proposition 6.3 so that the difference ¢, — ¢, becomes arbitrarily
small. Having uniform smallness for ¢ in L}’, we then obtain that

tlgglo |U<k=10(t) - Id”L;o =0,
which implies
$u(1) = S (t = T)Usic108[T1) + 01 reep(D) for 1> T.
Then the modified definition of ¢ yields that
o) = St = T)(Usk-1064[T1]) + Or=fl(T.op(1)  for £>T,

which gives scattering. O

7. CONCENTRATION COMPACTNESS STEP

In this section we begin with the actual proof of Theorem 1.1. We recall that our goal is to show that there
exists a non-decreasing function K : [0, c0) — [0, c0) with the following property: Let (¢, ¢1): R? — TS"
be radially symmetric, classical initial data of energy E. Then there exists a unique, classical, global wave
map ¢: R'*? — $” with initial data ¢[0] = (¢, ¢1) satisfying the a priori bound

liglls < K(E).

Once we have established this a priori bound, the scattering assertion of Theorem 1.1 is an immediate
consequence of Proposition 6.1.

We argue by contradiction and assume that Theorem 1.1 fails. Then the existence of the function K(-)
yielding the a priori bounds must fail at some finite energy level. Correspondingly, the following set of
energies must be non-empty

&= {E :osup |lgllsin = +00},
{¢: E[$]<E}
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where the supremum is taken over all radial, classical wave maps ¢: I x R> — S defined on some time
interval / and with energy E[¢] < E. By the small energy global regularity result from Theorem 5.4, the
infimum of the set & has to be strictly positive

E.;:=inf&E > 0.

Thus, we may pick a sequence of radially symmetric, classical wave maps ¢": I" x R> — §™, n > 1, with
maximal intervals of existence /" such that

lim E[¢"] = Ecpirs  lim [l¢" 5] = +oo.

n—00 n—00
In the following we call such a sequence of wave maps essentially singular. Moreover, we denote the

associated essentially singular sequence of initial data {¢"[0]},>1 by {(¢j, #])}n>1. Here, the subscripts in
(¢, ¢'}) should not to be confused with frequency localizations, but this will always be clear from the context.

Our goal is now to rule out the existence of such an essentially singular sequence of wave maps {¢"},>1,
hence proving Theorem 1.1. To this end we follow the general philosophy of the concentration compact-
ness/rigidity method introduced by Kenig-Merle [6, 7], but more precisely we shall follow the implemen-
tation of this strategy for energy critical wave maps into the hyperbolic plane as in [17] as well as for the
energy critical Maxwell-Klein-Gordon equation as in [16]. In this section we carry out a “twisted” Bahouri-
Gérard type profile decomposition that takes into account the strong low-high interactions in the wave maps
nonlinearity. It enables us to extract from the essentially singular sequence a non-trivial minimal blowup
solution to (WM) whose orbit satisfies a strong compactness property. Then we exclude the existence of
such a minimal blowup solution in the rigidity argument of the next, and final, section of this paper.

The first step consists in decomposing the essentially singular sequence of data {¢"[0]},>; into frequency
atoms using the Métivier-Schochet procedure [21] as in Bahouri-Gérard [1]. Roughly speaking, the basic
idea then goes as follows. Ultimately, we would like to conclude that upon passing to a subsequence, if
necessary, the essentially singular sequence of data {¢"[0]},>1 consists of exactly one frequency atom wich
in turn consists of exactly one concentration profile (to be defined precisely in Subsection 7.4) of asymptotic
energy E ;. In this scenario, the sequence {¢"[0]},>1 has sufficient compactness properties that allow us to
pass to a certain limit whose wave maps evolution will be the desired minimal blowup solution to (WM)
as detailed in Subsection 7.5. In order to rule out all other possible scenarios, we seek to prove uniform
in n, finite, global § norm bounds on the sequence of wave maps evolutions {¢"},>1, which would contradict
that the sequence is essentially singular. To this end we first achieve control over the wave maps evolutions
of certain low frequency truncations of the essentially singular sequence of data {¢"[0]},>1. Using a finite
inductive procedure over the increasing size of the frequency supports of these low frequency truncations,
we then conclude uniform in n, finite, global S norm bounds on the actual essentially singular sequence
{¢"}n>1. This inductive procedure over the increasing size of the frequency supports also enables us to
disentangle the strong low-high frequency interactions in the wave maps nonlinearity.

7.1. Decomposition into frequency atoms. We now turn to the details of the decomposition of the es-
sentially singular sequence of data {¢"[0]},>; into frequency atoms. Here we follow relatively closely Sec-
tion 9.1 and Section 9.2 in [17] as well as Section 7.2 in [16], which in turn partially mimic Section III.1 in
Bahouri-Gérard [1]. First, we need to introduce some terminology from [1].

We call a sequence of positive numbers {A,},>1 a scale. Two scales {A}},>1 and {/lﬁ}nzl are orthogonal if

AL
lim =2 + —Z = 400,
n—o0 /lz /ln
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Let {(f", g")},>1 be a bounded sequence of functions in H i (R?) x L)%(Rz) and let {4, },>1 be a scale. Then the
sequence {(f", g")}u>1 is called A,-oscillatory if

im timsup (| VO + e de + [ 0

TP + P de)

% n—eo {A"€1=R

and we say that the sequence {(f", g")}u>1 1S Ay-singular if for all 0 < a < b,

lim IV O +187(&)P de = 0.

=00 Na<a,|él<b)

Using the Métivier-Schochet procedure [21] as implemented in Bahouri-Gérard [1], we start off with a

decomposition
A

¢"[0] = > ¢"[0] + " (0]
a=1
of the essentially singular sequence of data {¢"[0]},,>1 into A%-oscillatory frequency atoms @0],1 <a <A,
for pairwise orthogonal frequency scales {19},>1 and into a remainder term ¢"*[0], which is A%-singular for
1 < a < A and has the smallness property
. . ~nA
i timsup 157101y, =0

Next we achieve a sharp frequency localization of the atoms by picking a sequence R, — oo growing

sufficently slowly and by then setting

¢"[0] := P[,u‘,f—loan,yZ+logR,,]¢n[O] fora=1,....A

and
¢nA[O] = Pr\(’l\zlUtﬁ—logRn,pﬁ+10an]C¢n[0]’
where we use the notation u¢ = —log(A%). Then we have the new frequency atom decomposition
A
(7.1) ¢"[01 = ) ¢"[0] + ¢"[0]
a=1

with the same properties as above, but now with the additional sharp frequency localization property of
the atoms. Moreover, we may assume that the atoms are ordered in terms of the increasing size of their
frequency support scales (14)7!.

As described above, ultimately we would like to conclude that there is exactly one atom in the decom-
position (7.1), i.e. A = 1, which is of asymptotic energy E..;. If this is the case, we proceed directly as
in Subsection 7.4. Otherwise, we now conclude via a finite inductive procedure that the sequence {¢"},>1
cannot be essentially singular. To this end we fix an integer A sufficiently large such that upon passing to a
subsequence, if necessary,

> limsup "[01I, . < &0,

a>hg " '
where g9 > 0 is a sufficently small constant that plays the role of a perturbative threshold in the key bootstrap
argument in Proposition 7.9 in Subsection 7.3. In particular, &y will be chosen sufficently small depending
only on the size of E.,; and it will be chosen to be less than the small energy global regularity threshold
from Theorem 5.4. Then we observe that due to the sharp frequency localizations of the atoms ¢"¢[0],
1 < a < Ag, the remainder term ¢™*°[0] gets split into Ag + 1 “frequency shells”

(1.2) #0107 = ¢80 [0] + 6720 [0] + ...+ ¢"0 U [0],

where ¢”Af)0) [0] shall denote the lowest frequency component.
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L . . )
Our first step now consists in showing that the lowest frequency “non-atomic” component ¢ [0] can
be globally evolved and satisfies finite S norm bounds just in terms of E,,; uniformly for all sufficiently

large n. Since the component ¢"AE>O) [0] may still have large energy, in order to be able to infer these S norm
0
bounds by bootstrap, we split ¢”Af) ) [0] into finitely many pieces

Cy
0) (0)
¢"N0 [0] = D" Py¢™ [0]
=1

by means of frequency localization to consecutive frequency intervals J, = [ay, b¢] such that
(=00, —log Ry] = UL ¢
and such thatfor £ =1,...,Cy,

©
1P, [0l ;2 < #0.

Here we recall that (—oo, ! —log R, ] is the (dyadic) frequency support of ¢>"Ag)) [0]. The number C; of such

frequency intervals is of the order 0(%"’) since ||¢"AE)0> [O]||?.1l w2 S Erir.

We now intend to inductively show that if

0) ©0)
D Py,¢"™0 101 = Py, ¢ [0]
(<L

can be globally evolved with uniform finite S norm bounds in terms of E;; for some L > 1 (for all sufficently
large n), then we may also conclude this for

(0) )
D Pyg™ [0] = Pay,,, 4" [0),

(<L+1

and the induction start for the first piece Py, ¢”A§>0) [0] is provided by the small energy global regularity result
from Theorem 5.4.

However, up to this point we have totally ignored that the frequency truncations P« L¢nAE)°) [0] = P<, ¢"[0]
are not “geometric” in the sense that they are not actual maps R?> — 7'S™ into the unit sphere and therefore
do not constitute suitable initial data for the wave maps equation (WM). To overcome this issue we just
project the frequency truncations back to the sphere, using the normal projection operator. As we shall see
next, this operation is well-defined and the frequency localization properties are approximately preserved up
to exponential tails if around the frequency cut-offs a certain Besov norm smallness condition is satisfied.

We begin with a general lemma that shows that the frequency truncations P<,, ¢, of maps ¢(: R? — §™,
n > 1, remain close to the sphere if around the frequency cut-offs {a,},>1 a certain Besov norm smallness
holds.

Lemma 7.1. Let {a,},>1 be a sequence of real numbers. Given 61 > 0 one can choose 6y < 01 sufficiently
small (depending on E,;) so that if we have

(7.3) lim sup || Pia,,a,+ 1180 | g <00
n—o0 500
for M ~1og((1 + Ecir)5;"), then it holds that

lim sup ”1 - (PS(XH¢8)T(PS(¥/1¢8)”L§O < 01.

n—oo

Proof. By definition we have

(P<a,} + Psa, 83 (P<a, 8} + Psa,#3) = 1
and therefore

1 = (Pa, 80" (P<a,#}) = 2P<0,+10((P<a, 80 (P50, 83)) + P2 +10((P50, 80) (Psa, #3))-
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Then we use Bernstein’s inequality and (7.3) to bound

ay+15
lim sup || P<a, +10((P<a, ) (Poa, #)| oo < lim supllPa, @il > 2X1Pesfllz2
n—oo * n—oo k=a,
a,+15
< limsup > IV.Pecpl2
n—oo k:an
< 0o S 01
Similarly, we obtain
lim sup [|P<a, +10(P>a, 85)' (Pa, 8p)| - < limsup > 2™ [IPigily,
n—oo X n—oo >a, x
a,+M
Slimsup > 2" VLI, + D 2 MIVL P,
n—eo k=a, k>a,+M
< Moo + 2_2MEcrit
< 01,
where in the last step we use that M ~ log((1 + Ecm)él‘l) and choose 6y < 61 log™' (1 + Ecm)éfl). O

For suitably chosen frequency cut-offs @, the frequency truncations P<,, ¢ therefore stay close to the
sphere. In order to recover exact maps into the sphere, we then simply project the frequency truncations
P<q, ¢, back to the sphere, using the normal projection operator I1. Hence, we set

P<o, 9
|P<a, 03

For the associated frequency truncations P<,, ¢ of the time derivatives ¢ in our essentially singular se-
quence of data ¢"[0] = (¢, #}), we just use linear orthogonal projection onto the respective fiber of the
tangent space and map P, ¢} to

(7-5) HSG,1¢,11 = PS(xnﬁbT - <H§an¢8’ P§an¢r11>H§a/n¢g € THS(,nngSm-

Thus, after frequency truncation of the data ¢"[0] = (¢, ¢7): R? — T'S™ to dyadic frequencies less than a,,,
we may recover the data pair

(7.4) <o, ¢ = 1(P<q, ¢p) =

My, ¢"[0] := (<o, 4f, Mg, ¢}): R* > TS™.

In the next proposition we prove that this operation approximately preserves the frequency localization if
the data satisfy a Besov norm smallness condition around the frequency cut-offs.

Proposition 7.2. Let {a,},>1 be a sequence of real numbers. Given §; > 0 one can choose 69 < 8
sufficently small depending on the size of E.;; so that if we have

(7.6) hflri)s;lp ||P[a,,—M,a,,+M]¢n[O]”B;’wagm < do
for M ~ log((1 + Ecm)él_l), then for all sufficently large n it holds that
(7.7) |Pe(P<e, "0 = Ta, " [OD) 1,2 < 612757 for k e Z.

Proof. We begin with the proof of (7.7) for the component Il<,,¢; for the low frequencies k < a,. Using
that ¢ = I1(¢), we may write

(o) d (o}
O — TP, o) = f P dh = f (PadIIT (Pl dh.

n
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Thus, we obtain from Bernstein’s inequality that

1PV (Pa, @) — Mo, 80 2

<||P f (VxPhgIT (P dh

o+ P [ o i an

L3
<2 f IV Prggill 227" IV P10l (P<ngs)ll 2 dh
all
+ 2k f 27V Prggll 2 IV Pl 2T (P<np)ls dh
ay
<2k f 27NV Pugll 21V Pl 21T (Pl dh.

ay

Using (7.6), we conclude that for all sufficently large n, the previous line is bounded by
1 @, +M 1 o] N
2E2. f 27V Prggll2 dh + 2°E2 f 27V Prgsill 2 dh
@, a,+M
1
< 2FMER MSo + 25 E i 27M.
For the high frequencies k > «a,, we use that
A
V. Pl(P<q, ) = VP f (Pup)IT’ (P<ingpyy) dh.
Then we have
IV PII(Pea, @) 2 < 27H{|IVEPAITIP<a, 89
X p
7.8) s2¥|pe | Tpgh Py i,
+ 24P [ (VPR Pl (P dh| .
We bound the first term on the right-hand side of (7.8) by
p Xp an—M
27k f 2"V Pugll 2 dh < 27F f 2"V Pugll 2 dh +27F f 2"V Pugll 2 dh
—o0 * an—M * —00 "

1
s 27 ® sy + E2 27M),

crit
while the second term on the right-hand side of (7.8) can be estimated by

'y Ay
27k f IV Pugill 2V P<iills dh < 275 f IV Pall 22" IV P<ndfl 2 dh
- ’ ap—M

o0

@, —M
w27 f IV Padll 22" 1V Peril 2 dh

(o9

< 27 (1 + Ei)(MSg +27M).
Thus, we have inferred that

IV P(Pea, ¥~ T, 85 2 S (1 + Ecri) (M + 2727 k=en,

Since M ~ log((1 + Ecm)él‘l), we obtain (7.7) for the component I1<,, ¢ upon choosing 6p < ¢, sufficently
small depending on the size of E,;.
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Finally, we turn to the proof of (7.7) for the time derivative component Il<,,¢7. For the low frequencies
k < a, we exploit the fact that (¢8)T¢’1’ = 0 to write

PSanQ)’ll - HSa,,(ﬁ’ll = _<H§an¢g’ P§a,1¢r1l>H§an¢8

< d
:f %((Hsh%,Psh(ﬁrf)Hsh%)d}l

= f (H<ppy, P<n®’Y(Prd)IT (P<py) dh

+ [ AP (P<ndp), P<n¢’DIL(P<ndyy) dh

ay

+ f (thd)g, Ph([ﬁ?)HShng dh.

Then we may bound the first term on the right-hand side of (7.9) by

(7.9)

|P f (T, PardY PRI (P |,

<2 f ITLen gl 1P <ndl NPl 2 I (Penlles dh
0%

n

1 00
< 2E? f 2V Pl 2 dh
Q,

crit
n

< 2591 + Ecri)(Mo +27M),
which is of the desired form, while the other two terms on the right-hand side of (7.9) can be dealt with
similarly. Proving (7.7) for [1<,, ¢/ for the high frequencies k > @, is a variant of the previous estimates. O

Remark 7.3. We note that Proposition 7.2 and its proof are reminiscent of Proposition 11.1 in Sterbenz-
Tataru [29] where it is shown that for initial data sets with small “energy dispersion” frequency truncation
followed by normal projection approximately preserves the frequency localization properties up to exponen-
tially decaying tails.

. . ©)
Thus, for the ensuing induction on frequency process, we shall use HSbL¢”A0 [0] as the actual data for

. : . ©) i
the wave maps evolution. But in order for this data [1;, Lq)"Ao [0] to approximately have the same frequency

.. . . . . . (©)
localization properties up to exponentially decaying tails as the frequency truncations PsbLgb"Ao [0], Propo-
sition 7.2 requires the Besov norm smallness condition (7.6). This, in particular, forces us to implement the
following delicate selection procedure for the endpoints of the intervals J; = [ag, be].

We first use the Métivier-Schochet procedure [21] to carry out a further refined decomposition of the
0
lowest frequency “non-atomic” component ¢"Ag)[0] into finitely many “smaller” frequency atoms. More
precisely, given any d¢ > 0 we decompose into
JA) o
P10 = Y 0]+ ¢ N[0]
j=1
©)
such that the “small” atoms ¢"*/ [0] are frequency localized to
N a0
el € [ )T R (TR
for a sequence R,(P) — oo growing sufficently slowly as n — oo and such that
©
(7.10) tim sup 6™ 5 [0l < o.

n—oo
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By the orthogonality of the frequency scales, we may assume that for sufficently large »n the frequency
intervals
AP 1 p(O-1 9\ (0)
[ O R @ TR,

are disjoint for different a(/.o).

Then we are in the position to describe how the frequency intervals J, can be chosen inductively. Assume
that the intervals

Ji=lai,bil,...,Je-1 = [ar-1,be-1]

have already been specified. Then we pick the maximal interval [a,, b¢] with the property that a; = by—1 and
such that

||P[a[,1~7£]¢nAE)O) [OJHiI}XL% = &0-

If it happens that
. a;’ 0 a’ 0
b € [-log(4," ) — 2log(R, "), —log(4," ) + 21og(R, )],

then we shift the interval endpoint upwards and take
©

_ 4; (0)
by = —log(4,’ ) +21og(R,"),

otherwise we set by = by.
The point of this construction is that for £ = 1,..., Cy, the frequency intervals J, = [a¢, b¢] now satisfy

[P35 10112 5 20

and have the desired key property that for any fixed M > 0, it holds that
. ©)

(7.11) lim sup || Pip,-mpr+an @™o [0]) B <00
n—oo 00 00

for all sufficently large n.

7.2. Interlude: A concept of energy class radial wave maps. At the end of the entire concentration
compactness step in this Section 7 we want to extract a minimal blowup solution to the wave maps equation
(WM) that is merely of energy class. However, since the local well-posedness theory [8-10, 12, 13] only
pertains to data of regularity H i*(RZ) X HQ*(RZ), we first of all have to introduce a notion of the wave
maps evolution of radially symmetric energy class data. We shall achieve this analogously to the procedures
in [17] and [16] by regularization and reduction to the small energy case via finite speed of propagation. We
begin with the following “high-frequency perturbation” lemma.

Lemma 7.4. Let ¢ : [0, T] X R* — S™ be a wave map which is supported in the frequency interval (—co, K]
for some K € R up to an exponentially decaying tail, more precisely such that

lgills oy < 01277F K k> K,
for some positive constants 0 < 61 < 1 and o > 0. Suppose that
llglls o1y < Ci

for some C; > 0. Then there exists 6 = 6(Cy,0) such that if €[0] € H}C+ X H2+ is a data pair such that
(¢ + €)[0] constitutes admissible initial data mapping into TS™ and such that

|[€M01|,1,.,2 <6 with 61 < 6,
and moreover if €[0] is supported up to exponentially decaying tails at frequencies [K, o) in the sense that

|PielO]] 1,2 < 627750, k<K,
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then the data (¢ + €)[0] can be evolved on [0, T] X R? as a wave map (¢ + €)(t, x) of class H i* X HS* and we
have that
ll€lls 0,77y < C2(C1,0) 6.

Proof. From the basic local existence theory [8—10, 12, 13] we know that the data (¢ + €)[0] can be evolved
locally in time as a wave map of class H!* x H*. It remains to show that this evolution extends all the way
up to time ¢ = T. This we do by a bootstrap argument which is a simplified version of the one that will be
used for controlling the lowest frequency “non-atomic” component in Subsection 7.3. In fact, we make the
bootstrap assumption
ll€klls (ro.r1) < Clek + di)

for some sufficiently large C > 0, where {c}rez is such that ¢, = O for k < K and ;<7 ci < 62, while {di }rez
is such that d; = 627Kl for k < K and di = 0 for k > K. Then we argue as in the bootstrap argument in
the proof of Proposition 7.9 in Subsection 7.3. O

Now assume that we are given a radially symmetric data pair ¢[0]: R? — T'S™ of energy class ¢[0] €
(H! N L) x L2. Then we can pass to the frequency truncated data IT.x#[0] for any K € R. As each of these
data sets are of class H!* x H%* we have a canonical evolution for them on some local time intervals, which
may however a priori depend on K. But then we observe

Lemma 7.5. Let $[0]: R?> — TS be radially symmetric data of energy class ¢[0] € (H }C NLY) X Lﬁ. Then
there exists a time T, > 0, T, = T.(¢[0]), and some sufficiently large Ky € R such that for any K > Ky, the
wave maps evolution ¢(K)(t, x) of the data I1.g¢[0] exists on [0, T.] X R2, and moreover, we have a uniform
bound

”¢(K)”S([O,T*]) < C(¢[O])’ K 2 Ko.

Proof. The claim will follow from the small energy global regularity result from Theorem 5.4 via Huy-
gen’s principle and a simple partition of unity argument to patch together the global-in-space solution from
spatially localized ones. To this end we define the annuli

Crig, =X€R*: R <|x| <Ry}, O0<R| <Ry <+c0

and denote by n > 0 the cutoff for the small energy global regularity theory. Given radially symmetric

data ¢[0]: R* — T'S™, there exists a covering of R? by finitely many annuli Cg,_, &, j = 1,2,...,J, with

Ry =0,R; = +0o, R; <2R;_y for j € {2,...,J — 1}, and such that ¢>[O]|CR . coincides with the restriction
j-1R;

to Cg,_, r; of some radially symmetric data #U[0]: R? — TS™ of energy less than n. To see this, pick
finitely many such annuli Cg, , g, with the property that

letonle.,

Then observe that for any x,y € C%ijl,sz, jef2,...,J — 1}, with r = |x| and 7 = |y|, we have that

e L 1.
\an WXL n

|aw—¢@ﬂ=]jfvmvwh

NG
<l (1ol , <n

112R;

Then picking xo € Cg, , g, arbitrarily and introducing

) .— _ i _
¢ =Mlxey, L o+ -xc,, o) je2,...J-1)

. o . . 2 . — .
where {yc Ly o, } j=1,..,7 1s a smooth partition of unity of R~ with y¢ Lny o, | Cry vy = 1, we obtain
)
IV ||L§(R2) <7
as well as
@) =
¢ ’CRJ 1R; a ¢



Further, we set

at(p(j) = XC%RJ«_I,ZRj 019 _XC%R,_I.zR_,((at‘?’)Tfﬁ(j)) ¢(j)‘

Then we have 9,/ Co. o = Oip and itis easily seen that
j-1R;

||61¢(j)”L§,(R2) <

Importantly, the constructed data pair ¢'[0] = (¢, 3,¢0): R? — TS™ is again radially symmetric. It is
also straightforward to modify this construction on C 1R;12R; for j = 1 and for j = M. Replacing ¢[0]
by ¢®[0] = IT.x¢[0] results in the data ¢*X)[0], which satisfy the same bounds (with a slightly different
implied constant) for large enough K. It then follows from the small energy global regularity theory that we
can evolve these data ¢"*®)[0] to global wave maps and a simple application of Huygen’s principle implies
that the evolutions ¢'® exist on a joint time interval [0, T..] for some 0 < T, < 1 for all large enough
K > K. Moreover, we may infer uniform bounds

6“5 0.7y < C=(@10D, K > Ko,

O

Combining the two preceding lemmas, we can now deduce the desired concept of energy class evolution.
Given radially symmetric energy class data ¢[0]: R? — T'S™ with ¢[0] € (H! N L) x L2, we see that by
Lemma 7.5 there exists T.(¢[0]) > 0 such that for all sufficiently large K > Kj the wave maps evolutions
¢(K)(t, x) exist on a joint time interval [0, 7.] and moreover, using Lemma 7.4, we see that the sequence
{¢(K)}K2KO converges in the sense of || - ||so,7,)- It also follows that the limit is canonical, i.e. it does not
depend on the precise choice of regularization. Correspondingly, we introduce

Definition 7.6. Let ¢[0]: R> — TS™ be a radially symmetric energy class data pair $[0] € (H. N L) x L2
and let {¢©[0}x be a sequence of frequency truncated data pT[0] = M.k ¢[0] such that ¢[0] — ¢[0]
as K — oo in the sense of H )]C X L)zc. We denote by ¢ the smooth local wave maps evolutions of the data
#"10] and define I = (=T, T1) = UI to be the union of all open time intervals I 3 0 such that

lim inf |l ‘
JCiflucIl)osed 11?1’102 ||¢ ||S[J] <

Then we define the wave maps evolution of $[0] on I x R? to be
glrl:= lim g1, 1€,

where the limit is taken in the energy topology. We refer to I as the maximal lifespan of ¢. For any closed
time interval J C I, we set

plls = [}E{}onﬁbm“swl'

Our above considerations also imply the following characterization of the maximal lifespan 7 of an energy
class wave maps evolution.

Lemma 7.7. Let ¢, $X and I be as in the preceding Definition 7.6. Suppose that I # R. Then it must hold
that

.. (K) B
JCI,SJucIl)osed hllgl’lﬁgf ”¢ ||S[J] = 0.
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7.3. Evolving the lowest frequency non-atomic part. In this subsection we prove that the lowest fre-
0

quency non-atomic part ¢"Aé)[0], more precisely the associated wave map data IT_1_o,g,)¢"[0], can be

globally evolved for all sufficiently large » with uniform in » bounds on the S norms of the global evolutions

just in terms of E,;;. The end result is summarized in the following proposition.

Proposition 7.8. Let ¢”AE>0) [0] be defined as in (7.2). Then provided g < 01 < &g are chosen sufficently
small depending on the size of Ecris, the associated wave map initial data 11,1 _qg,)@"[0] can be evolved
globally in time for all sufficently large n and their evolutions denoted by I1_,1 ooz, ¢" 0bey

It o @l g < CCEerie)
uniformly for all sufficently large n for some constant C(E.,;;) > 0 that depends only on E.,.

We shall prove Proposition 7.8 via a finite inductive procedure over the increasing size of the frequencies,
more precisely we shall inductively conclude that for L = 1,...,Cy, the data Il<, ¢"[0] can be globally
evolved for all sufficently large n with uniform in n bounds on the S norms of the evolutions. The induction
start is given by the small energy global regularity result from Theorem 5.4 and the induction step is provided
by the following key proposition of this subsection.

Proposition 7.9. Assume that for some 1 < L < Cy, the data HSquﬁ”AE)O) [0] can be evolved globally in time
for all large n and that their evolutions denoted by HSquﬁ"Ag» satisfy

M2, s, < Co.

Then provided 69 <« 01 and 61 = 61(Ca, Eit) are chosen sufficiently small, there exists C3 = C3(Cp) > 0
0

such that for all sufficently large n, HSbLHqﬁ"AB)[O] can be globally evolved and their evolutions denoted by

Mep,,, 6™ satisfy

nAY
“HSbL+1¢ 0 HS[R] <G
Proof. To simplify the notation in the following proof we shall write

_ AO AD AD
¢ = HSbL¢n 0, €= HSbL+1¢n 0 _HSbL¢n 0,

keeping in mind that ¢ and € depend on n. Since by assumption ¢ exists globally in time with finite S
norm, we have frequency envelope bounds for ¢ thanks to Proposition 6.2. In particular, due to the Besov
smallness (7.11) around the frequency interval endpoint by, this implies that for all sufficently large n,

(7.12) I1Peolls, iz S 61277420 for k > by.

While ¢ exists globally in time, € only exists locally in time and for now, any statement we make about
€ is meant locally in time on some interval /y around ¢ = 0. In order to prove global existence and finite S
norm bounds for €, we use Proposition 6.3 to partition the time axis R = U?/: Ij into N = N(C, Eyiy) many
time intervals /; with the property that

gllsir;) < C(Ecrir) for j=1,...,N.

We tacitly assume that these intervals are intersected with Iy and that the interval /; contains time ¢ = O.
Our strategy is to iteratively prove S norm bounds for € by bootstrap on each interval /;. Here we encounter
the danger that the energy of € could keep growing as we move to later time intervals and could thereby
leave the perturbative regime before we would have concluded S norm bounds on € on all time intervals
Ii,...,Iy. However, we will see that the energy transfer between € and ¢ is controlled by the underlying
Besov error ¢, which therefore implies approximate energy conservation for e. We now fix the interval
I, with the understanding that all the arguments in this step can be carried out for the later time intervals
12, | N-
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For the ensuing bootstrap argument we introduce another smallness parameter ¢, > 0 satisfying
D<o <xh<eg x 1.

Here we recall that dy is the underlying Besov error (7.10) of the non-atomic component in the frequency
atom decomposition and that §; controls the approximate frequency localization (7.7) of the normal projec-
tion operator. Then we make the following bootstrap assumptions.

Bootstrap assumptions: Suppose that

(7.13) ||Pk5||Sk[11] < C(Ck + dk) fork € Z,
where C = C(E.;) > 1 is a sufficently large constant and where {cy}xez satisfies
(7.14) ck=0fork<by, cx=0fork>bry, Y .ci<e
keZ
as well as
(7.15) D, i <8} forsome M > 1 with 2™ <63,
by <k<bp+M

Moreover, {di}rez satisfies
(7.16)  dp =627 P fork < by, dp=0forby <k <bper, di =627 D for k > by
The idea here is that {d;}iez incorporates the frequency leakage to € coming from ¢ in the difference
equation for € as well as the approximate frequency localization of the data €[0] up to exponential tails
coming from application of the normal projection operator I1. Upon writing
© © ©) © ©
(717) €01 = Pio 19" 101 + (Mep,, "0 = Pep, ¢"0)[0] = (T, @0 = Py, ¢"0)[0],

it becomes clear that by the choice of the frequency intervals [bz,br+1], by the Besov smallness (7.11)
around the endpoints of these intervals and by the approximate preservation of the frequency localization by
the normal projection operator I1 as established in Proposition 7.2, we have for all sufficiently large » that

1PrelON| 1,0, < € + i

In a first step we use a direct energy conservation argument to recover the envelope for the low frequencies
k < by, with respect to the kinetic energy norm. Then we will crucially use this bound and the “renormalized
difference equation” for € to recover the full bound.

Lemma 7.10. If € satisfies the assumption (7.13), then for some 1 < Dy < C the following improved bound
for the kinetic energy component for the low frequencies k < by holds

(7.18) ”Vt,kaEHLtwL}([]l] < Do(cx + di).

Proof. We may assume that k = 0, so in particular we have by > 0 in the following. Then we observe that
€ satisfies the wave equation

D&y = —Po((¢ + ©)3a(d + €)'0°(§ + €)) + Po(43a00"¢) = PoX(¢, €).

Passing to the corresponding energy identity, we see that we need to show

f f PoX(¢, €)' 0,0 dx dt| < C26327270L,
I, JR2

We now prove this bound separately for each term in

(7.19) —X(}, €) = €0gd' %D + 20046 %P + €0y€ 0%€ + 2€00€ 0P + PpOpe I €.
(i) Contribution of Po(€d,¢'0%¢). We split into
(7.20) Po(€0a$'0$) = Po(P>p, €009 ¢) + Po(P(-10.5,1€000 0" $) + Po(P<-10€00¢ " ¢).
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Then we have for the first term

f f Po(Psp, €do0'07¢) 0,0 dx di
I JR?

DI

k1>by kr=k| +0(1)

f f Po(Py, Py (000" 0$)) 8,60 dx di|.
I JR?

303
In case of high-high interactions, we place Py,(0,¢'3%¢) into L7 L2, while in case of low-high and high-
5 5

low interactions, we put Py, (9,¢'9%¢) into L}L}. Thus, in the former case we obtain from the null form
estimate (4.1), the bootstrap assumptions (7.13) and the exponential decay (7.12) of the S norms of ¢ for
k > by the bound

2
S Z Z ”Pkl E“Lfo;"[]l]’|Pk3¢’|sk3[11]|"9f60||L;>°L§[11]
kl >bL k3>k1
1
s YD aihiggtairthambu syt
k1>bL k3>k1
< C?532727h
for 61 > O sufficiently small. In the latter case, we similarly infer the estimate

<> D] Hpkle||L%m21—5klzrt)k3||pkl¢||5kl[,1]||pk3¢||sk3[ll]“a,60||
T X

5
[oe] 7
ki>by, k3<k;+0(1) LPLs ]

1 1 1
< Z Z 2‘§k1802mk12mk3512—0(k1—bL)||Pk3¢”Sh[IIJC522—0'bL
ki>by ks<ki+0(1) )

< > 275hggs 27 POC(E i) Coy 2
kl >bL

<« 82,

Next, for the contribution of the second term in (7.20)

f f Po(P_10.,1€000 0% ¢) 0,60 dx di,
I JR?

we argue similarly and use that
1
1P €l oo s €227 0177 for &y < by

and a divisibility argument (from 0,¢'0%¢) to force smallness. Finally, in order to treat the third term
in (7.20), for each frequency k£ < —10 we consider the expression

f f Po(PkePowawa%))*afeOdxdr‘
I JR?

and now further distinguish for the radial variable the cases » < 1 and r > 1.
When r < 1 in case of low-high and high-low interactions in Py(d,¢'0%$) we easily estimate

ffzX{rgl}Po(PkGPO(aafﬁTaaﬁb))Tazfo dxdt
I JR

< D a2 | sIPrellz e[ Po(@add* @) 2 21, P ”/\/{VNZZ}F_%afGOHL,zL%[Il]
<0 ’ €

S ”PkGIISk[I]]||Po(ad¢aa¢)”LIZLi[ll]||€0”SQ[11]

S zvkczégz_zo—bL Hpo(aa’(paa(p)”L,zL}»[h] ’

Then one can sum over k < —10 and smallness is obtained from divisibility of the ||P0(6a¢6“¢)|| 2 norm.

L3[1]
In case of high-high interactions in Py(d,¢'9%¢), we use Holder’s inequality to place Pye into L LY[14],
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303
the null form Po(a(,w‘aaq)) into L} L;[;] and 0,¢ into LfL;" [1], gaining smallness from divisibility of the

3 03
L’ L;[I1] norm in this case.

We can therefore now turn to the more subtle case when r > 1. We first treat the high-high interactions in
Po(0,¢'3%¢). Here we use Strauss” improved Sobolev embedding to estimate

f sz{r>1}PO(Pk€ Z PO(aad’;a(y¢k1+0(1)))Tat€O dxdt
L Jr

k1>0

Lo 1
= Z|LV{r~26}P e Z 2 @ay, 0 brrom)|| o SUP a2 0160|220
t Hx Ly L[] re7, ¢ Bl
>0 k>0
Al 1
< me{Z 2+ 1}||Pk€||5k[11]||€0||So[11]HZ ”+2(3a¢zlaa¢k1+ou)) [P
>0 k>0 e

< (1 + [k])27*C? 52720t

Z r+%(5a¢zl 0 dr,+o1))

k1>0

L2

This bound can be summed over k < —10 and we obtain smallness since the LtzL)%[I 1] norm here has the
divisibility property thanks to the weighted null form estimate (4.3). In case of low-high interactions in
Po(0a¢'0%¢) (and then analogously for high-low interactions), we write

ff)({»uPo(PkE Z Po(Bat) 8°90)) dreo dx dt
n Jr? !

k1<0(1)

=ffX{r>1}Po(Pk6 Z Po(3at) 8°90)) dreo dx dt
I JR? !

k<k;<O(1)
+ Zffz)({r>1}Po(Pk€Po(9a¢;g5a¢o))T5z60 dxdt.
k1 <k I JR

Then we can bound the first term on the right-hand side exactly as in the high-high case only that we pay
a price of |k|?, which can still be absorbed by the gain 2°* and then summed over k < —10. For the second
term on the right-hand side we distribute the weight differently, more precisely for some 0 < A < % we again
use Strauss’ improved Sobolev embedding and estimate by

Z Z”X{r~2f}r%_APkGHL,wL?[II]||r+/la“¢li.aa¢0”LfL§.[ll] S;elg |L\/{r~2f}r_%at€0||L,2L§

>0 k1 <k
. — (L= +
< ) D, min(2 0 12 GNPl | Dat], 0 Goll 2 2, le0llsainy
k1<k £>0 ’
(1= - (L=
< (1 + D2 GO Pyl 27308 40,61 000l eolsoin
k1 <k

1

s (1 + |k|)20'kcz5§2—20'bL(Z 2—2(%—/1)161 ||r+/laa¢ilaa¢0||izL2[11])2 .
k1<0 o

The last line can then be summed over £ < —10 and by the weighted null form estimate (4.3) the last factor
here has the divisibility property yielding smallness.

(ii) Contribution of Po(¢0,€'0%¢). Here we split into

f f Po(¢0a€ 0%¢) 0160 dx dt = f f Po(¢<—1000€ 8°0) 8,60 dx dt
I JR? I, JR2

+ff Po(¢>_10606%80¢)T6,60dxdt.
I JR2
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Since the second term is truly quadrilinear and thus easier to treat, we only turn to the details of the estimate
of the first term, which we may schematically write as

(7.21) f f 2 Po(0a€'0"9)p._ 0r€0 dx .
I} JR

Since ¢ + € and ¢ are wave maps into the sphere, we have the following geometric identity at our disposal
0=(p+ e)Tat(¢ +€) = ¢T(9te + Efatqb + ET(’);G.

Upon applying the projection Py and decomposing Po(¢'d;€) into a Littlewood-Paley trichotomy, we find
that we can schematically rewrite the term (7.21) as

f f Po(0u€' 0" ¢)(~dydie<10~ D Po(¢] i) — Pol€'0i9) — Po(€',)) dxdr.
L JR? >0

This leads to four contributions, which we now estimate separately.
(ii.1) We begin with the term

ff Po(aaeT8“¢)¢88,eS_1odxdt.
L Jr2

In case of high-low or low-high interactions in Po(0,€'3%¢), we use the null form estimate (4.1) to place

. ER
Po(0a€'0%9) into L’ L] and put ¢o as well as d;e<_1o into L)L3, gaining smallness from divisibility of
[lol| Lo In case of high-high interactions in Po(0,€'3%¢) we integrate by parts to move a derivative d,
away from €, which leads to the terms

ff P()(E.I‘ng)gbga,ES_]O dxdl+ff Po(eTaaqﬁ)aa{bgatfs_]o dxdt-i—ff P()(E.I-aagb)gbgaaaﬁg_]o dxdt,
L JR? n Jr? L Jr2

where in the first term we have to reinsert the wave maps equation for ¢. Then one can essentially argue as
in (i) to bound these terms.
(ii.2) Next, we consider the term

f f Po(0a€'0"¢) > Po(9], drer,) dxdt.
I JR? k>0

In case of high-low interactions in Py(d,€'3%¢) (and then analogously for low-high interactions), we split
into

Z ff Po(aafgaa(ﬁg_lo)f’o((ﬁzlatfkl)dxdl‘+ Z
0<r<hy, VI VB

k] >bL

f fR;2 Po(a(,636a¢g_10)P0(¢;£1atfkl ) dxdt.
I

Then it is easy to see that in the first summand we can restrict to » > 1, which allows us to estimate via the
weighted null form estimate (4.3) for some 0 < 4 < I

S, | [ Po@ucian e oe] i) dxr
I

O<k<by,

A i a
<[P Po@ag) 0" d<- 10l 22y D izt el g 1006 21,
0<k;<by,

1 1
2: 21—k Ty 2 2: 2 kg 2 220 (b k1) |2
< ||EO||S()[1|]”¢”5[11]( 2°G ) 1||X{r>2‘k1}r ¢k1||L,2L§°[11]) ( 277 ) 'C 622 b 1))

0<k<by, 0<k<by,
1

2 25-20b 2(3 -k g |I? :
< C6527°7 L( Z P 1|L\/{r>2-k1}’” ¢’<IHL,2L;O[11])
0<k <bp,
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and here the last factor has the divisibility property yielding smallness. For the second summand we use
Bernstein and the null form estimate (4.1) to bound by

Z ff P0(6(1656“¢§_10)P0(¢L6,ekl)dxdt
k|>bL 1 Rz

< ||0ne 0% A€ ||, o
|00} 0% ¢ mHL%LX_%U]anlnL; , Wil sz

27
; 15D, LY

-3k —o(ki—b
< lleollsorrllells Z 273416,277 D g s, 1
k]>bL

—ob -3p i
< C6277 LC(Ecri)01272 Lgé
< C26%2‘2‘7bL.

In case of high-high interactions in Po(0,€'3%¢) we have to integrate by parts to move a derivative d, away
from € and then one can argue essentially as in (7).

(ii.3) Here we further decompose the term Po(e' d,¢) into a Littlewood-Paley trichotomy so that we schemat-
ically have

f f Po(o€ 0% ¢)Py(€'0,0) dx dt = f f Po(0o€ 0" ®)Po(€!_,,0ip0) dx dt
I JR? I JR? -

(7.22) + f f i Po(3a€" 0 $)Po(€)dip<10) dx dt

I VR

T aa +
+ Z j;l fRZ Py(0u€'0 ¢)P0(Eklal¢k1)d)€dt.

k1>0

For the first term on the right-hand side of (7.22) for high-low interactions in Po(d,€'0%®) (and similarly
for low-high interactions) we can proceed as we did for the third term in (7.20), where now d,€'3%¢ replaces
da¢'0%¢. Correspondingly, the divisibility part to achieve smallness has to be modified a bit, and in fact has
to come from the last factor d,;¢o9 which we place in the local energy decay space. Specifically, we arrive at
the expression

1
(201 + 7 000 "
tezZ
which has the divisibility property here. For high-high interactions in Po(d,€'0%¢) one again has to integrate
by parts to move a derivative d, away from e.

The second term on the right-hand side of (7.22) can be treated easily using the null form estimate (4.1)
and Strichartz estimates in case of high-low and low-high interactions in Py(d,€'3%¢), while for high-high
interactions one has to integrate by parts again.

Finally, the third term on the right-hand side of (7.22) can be dealt with analogously to (ii.2).

(ii.4) In this case we can essentially proceed as in (7i.3) only that it is easier to achieve smallness thanks to
the extra factor e.

2
L}LIN]

(iii) Contribution of Po(€d €' 0%€). As usual we split into
P

ff PO(EageTade)J’(?tEodxdt: ff PO(ES—IOBGG%(?QG)T(?:Q)dxdt
iR I JR?2
T qa T
+ Z Z fllfR2 PO(P/qEsz(aa/E 0 E)) alEOdth,

k1>—10 k2=k1+0(1)

For the first term on the right-hand side we may proceed as at the end of (i) to infer the desired bound. For the
second term we distinguish high-high interactions in Py, (d,€'3%€) from high-low and low-high interactions.
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In the former case we place Py, (d,€'0%€) into L; L; and use the null form estimate (4.1) to infer

ff Po(Pklesz(aaeTaae))T(),eodxa’t

k1>—10 kp=k;+0(1)
D IPkel, iy D 1Pk ellzsrspldreolize

ks>—-10 k>-10
1
-1k
< £ Z 27381 Pry €lls ., tnllOreolls orn-
ki>—10

By further distinguishing the frequency regimes and exploiting the smallness and decay properties (7.14)—
(7.16) of {ci}rez and {dy}xez, we find that

_1
2734 1Py ells,, 1 l10eeolls o)

k1>—10
(i _ _1 _ _1 _
< ), 2Ry N 2Tk, 0o e Y 2T, 062
—10<k<by, br<ki<br+M ki >b +M

1
< P2 +( Z Ck.) 5,2 T 4 0=iM g 5 0@+ Db
b <ki<bp+M
< C25327 2,

In total, for sufficiently small £y > 0 we obtain the desired bound

f f Po(Pr, €Pry(0u€ 07 €)) 060 dx di| < £9C?632727" <« C26227270,
k1>—10 ka=k1+0(1)

3, 3
In the case of high-low or low-high interactions, we place Py,(d,€'d%€) into Lf+L§+ and then proceed
similarly as above.

(iv) Contributions of Po(€d,€' 0%¢) and Po(pd,e'd%€): These terms do not offer anything new and can be
treated similarly as above, which finishes the proof of Lemma 7.10. O

Next, we recover the full envelope bound. We may assume that k£ = 0 and now want to infer the improved
bound ||€ollsyz,] < %(co + dp). To this end we will use the “renormalized difference equation” for ¢ given
by

o(UL'5(@ + €)) —o(UL do) = F ™ — iy,

where U g:f) and U(S‘i) denote the gauge transformations defined by ¢ + €, respectively ¢. We will proceed
in several steps which we briefly sketch before we turn to the details.

(a) First we show that for some D > 1 with | < Dy < D; < C, we have for any 0 < @ < 1 that

7.23) > 27l [P e (U6 F 09 = UL o @0) 247,y < D10+ o).
koeZ

Note that here it is again necessary to control the above weighted sum over all frequency outputs
since the frequency localizations of (¢ + €), and @ to frequency ~ 1 are only approximately pre-
served by the gauge transformations up to exponentially decaying tails. By the energy estimate (3.1)
we can then conclude that

(7.24) > 2l || p (U6 F €y - UL 0¢0)||Sk iy S Dileo + do).
k()EZ
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(b) Next we show that we have

k (p+e) @ 7
(7.25) 2 2P U = UL )dolls, 1,y S Dileo +do).
koGZ
This step crucially relies on the improved bounds on the kinetic energy of ¢, for the low frequencies
k < by, which we have already established in Lemma 7.10.
(c) Combining (7.24) and (7.25) we immediately obtain

k @+ (s 2 7
(7.26) ](Z%ZQI ol ”Pk0 U5_+1€0((¢ +€)y — ¢O)||Sk0[111 < Di(co + dp).
0E

(d) Then we write
¢+ —do = (UL N ULT (9 + )~ d)
and decompose into a Littlewood-Paley trichotomy. Using the bound (7.26) we may then proceed
as in the proof of Proposition 6.3 to infer that for some D, > 1 with 1 <« Dy < D1 < D, <« C,

(7.27) 166 + €00 = doll, 1,y < Dalco +do).

Here we do not have to work with the modified version of the gauge transformations as introduced
in Proposition 6.3 because we already have that ||¢l|s;;,] < C(Eir). We will correspondingly not
provide further details on this step.

(e) Finally, we invoke the bound (7.27) and exploit the inherently multilinear structure of

(p+€)y—do—e&

to conclude the desired improved bound

C
lleollsorr) < E(Co + dp).
We now provide the details of the key steps (a), (b) and (e) in separate lemmas, starting with (a).

Lemma 7.11. If € satisfies the bootstrap assumption (7.13) for some C = C(E..;) > 1 sufficiently large,
then we have for some 1 < D <« C that forall0 < a < 1,

(7.28) Z nalkol ||Pk0D(U(S¢_+1E(;(¢ + €) — U(j—)lOéO)”L}Li[ll] < Di(co + dp).
k()EZ

Proof. We begin by observing that it suffices to prove

(7.29) IBWE 5@ + @ = UL, (80|12, < Dileco + do).

Then the bound on the weighted sum (7.28) over all output frequencies can be established as in the proof of
Proposition 6.3.

For each characteristic component of the renormalized wave maps nonlinearity as summarized in Propo-
sition 5.1, we now have to establish the estimate (7.29) for the difference of the corresponding expression
for ¢ + € and ¢. Here we show this in detail for the first term on the right-hand side of (5.32), namely when
a derivative falls on the lowest frequency; for all other terms one has to proceed similarly. We are therefore
now facing a difference term of the schematic form

U(ifo) Z (¢ + Eky-10<--100a(¢ + G)zzaa(cb +€)o - U(j_)lo Z ¢k2—10<-§—108a¢;;26&¢0-
ko<—10 ko<—10

This leads to a number of expressions which we are now estimating separately.

(i) Contribution of (U?_TO) - U(s¢—)10) Dikr<—10 ¢k2_10<.s_1060¢22(9“¢0. We distinguish further between the

relation of the frequency scale O to b, which is the upper endpoint of the “essential” frequency support of ¢.
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(i.1) 0 > by. This case is straightforward on account of the smallness ||Pi¢lls, < §:1277*=b) for k > b;. We
simply use the exact orthogonality of the gauge transformations and the trilinear estimate (4.4) to bound

(p+€) (®) § i
||(US¢—160 - Uslp_lo) ¢k2—10<'s—loaa¢kzaa¢o’|L1L2[ll] S Z
t ~x

2
1515, 11,7 lIolls ot
ko<-10 ko<—10

< C(Eerig)512470L

< §,27be,

(i.2) 0 < br. Here we have to argue more carefully, since we now have to gain smallness from the difference
of the gauge transformations U W _y@ By the defining ODE (5.28) for the gauge transformations we

<-10 <-10°
have that
-10

—-10
v - UL = [ UG B ans [ Wl - v an

By further expanding the second term on the right-hand side, we obtain an expansion containing only terms
involving differences Bgfﬁ) - B;j”, namely

R —-10 hl hn—l
a3 ve-u =3 [ [ [ U -
n=l Y —® —00 —00

Since the repeated expansion leads to difference terms of lower and lower frequencies, this infinite sum is

convergent due to the assumed exponential decay of di for k < by. In view of the definition (5.27) of B;l¢+€)

and ng), we may therefore replace (7.30) by the schematic expression

D LPto1066) + Llesty 10 $10) + LlEsty 10, €, ).
k1<-10

Noting that by a simple divisibility argument we may assume that

b}

H Z ¢k2_10<'§—1060¢;£280‘¢0

<
LIL2(1)]

ka<—10
we find that
||(U(<¢_+160) - U(<¢_)1()) Z ¢kz—10<'s—loaa¢zzaa¢0||L,L2
- - t <]
ka<—-10
< H( Z L(P<k,-10, €k,) + L€<k;-10, Pk,) + L(€<ky 105 €k1)) Z ¢k2—10<-s—103a¢1250¢0 ’LILZ[I]
k1<-10 ky<-10 o
T qa
< Z ll€k, 1L Loy || Z Pkr-10<-<-100a4;,0 ¢0“L,‘L§[11]
ki<-10 ka<—10
< Z 0,277k H Z ¢k2—10<~g—100a¢225”¢0|| -
Lt Lx[ll]
ki<-10 ka<—10
< §,27be,
(ii) Contribution of U (<¢—To) Dikr<-10 ek2_10<.3_1080¢226“¢0. Again we further distinguish between the relation

of the frequency scale 0 and by.
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(ii.1) 0 > b;. Here we immediately obtain from the smallness [|¢xlls, < 51277*=b1) for k > b; and the
trilinear estimate (4.4) the desired bound

1
(p+e) T 2 2 2 2
lvee > ekz_m<.g_loaa¢kza“¢oHL}LZ[Ms(§ sl 1) (O 100l 1) ollsoiny
i k[ kZ

25—

1
< &2 C(Ecrin)1 277"

< 5,270,

(ii.2) 0 < by. By the trilinear estimate (4.4) here we have

(¢+e) — (ki —k
‘U<¢ 10 Z €ky-10<-<— 103<z¢k2 ¢OHL1L2 < Z Z 27ath 2)”€k1”Skl[11]||¢k2||Sk2[1|]||¢0||50[11]
ky=—10 ky=—10 ky—10<ky <10

< 6227 PLC(Eerir)

and then one forces smallness via a divisibility argument.

(iii) Contribution of v b 10 Zk2< 10 €k~ 10<-<-1000 ek 0%¢p. In this case the smallness comes from the bound
Dkez ck < &p. Indeed, by the trilinear estimate we obtain

(p+e) T qa 2
HU< 10 €k2—10<-s—105(16k23 €OHL}L%“1] S( Z ||€k2||5k2[[1])||€0||S0[11]

kr=—10 ko<—10
< &0C(co + dp)

< Di(cqg + dp).

(iv) All other contributions can be estimated similarly to the above cases. O
We proceed with step (b).

Lemma 7.12. If € satisfies the bootstrap assumption (7.13) for some C = C(E.;) > 1 sufficently large,
then we have for some 1 < Dy < Dy < C that forall 0 < a < 1

(7.31) 2 2P (W = UL, )80, 11,y S Dileo + o).
k()EZ

Proof. We have to prove the bound (7.31) separately for each component of our S norm. To this end we
distinguish again between the relationship of the frequency scale O to b;. In case that by < 0, we exploit the
smallness ||¢lls, < 81277%=bL) for k > by. Instead when by > 0, we have to invoke the already improved
estimate (7.18) on the kinetic energy of ¢ for the low frequencies k < by. Moreover, we achieve control
over the weighted sum over all frequencies ko € Z in (7.31) by essentially playing out the frequencies using
Bernstein’s inequality. O

Finally, we turn to step (e). Having established that “(¢ + €) — (}0” Solli] < Dsy(co + dp) for some D>, <« C,
we may now quickly infer the desired improved bound

C
ll€olls oy < E(CO +do)

and thus close our bootstrap argument by exploiting the inherently multilinear structure of (¢ + €), — o — €.
Indeed, recalling the definition (5.25) of ¢, we see that each multilinear expression in (¢ + €)y — Po — €
contains at least one factor of €. Then we again distinguish the relationship between the frequency scale 0
and by, and either exploit the smallness ||¢«lls, < 61277*=bL) for k > by or the already improved bound on
the kinetic energy of €, for k < by, which completes the final step (e).
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At this point we have thus achieved that for C = C(E,,;) > 1 sufficently large, we may infer by bootstrap
on the time interval /; the improved bound

C
(7.32) IPrells,in) < 5 (cx+di) fork e Z.

We would now like to repeat the above bootstrap argument on the remaining time intervals I, ..., Iy in
order to conclude that € exists globally in time and satisfies uniform in »n global-in-time S norm bounds. As
alluded to before, here we encounter the danger that the energy of € could keep growing as we move to later
time intervals. However, by (7.32) the frequency profile of € is essentially preserved along the evolution
on the time interval /;. For this reason there cannot actually be much energy transfer between € and ¢,
since ¢ is exponentially decaying for frequencies k > by. The next lemma indeed shows that the energy of
€ is approximately preserved along the evolution on the interval I;. More precisely, the energy transfer is
controlled by the smallness parameter ¢,, which can be chosen arbitrarily small.

Lemma 7.13. Assuming the bounds (7.32) on the evolution of € on Iy, it holds that
(7.33) IVexe®I7; < IVexe O}, + C(Eerin) 62 fort € I,

Proof. By energy conservation for the wave maps evolutions ¢ + € and ¢ on /], we have that

2
D 1a(g + DI, = const. for e 1,
a=0 ’

and

2
Z ||3a¢(t)||i% = const. forteI.
a=0
Moreover, since it holds that

2 2 2 2
D 102€I, = D102 + ODIZ, = > 10ab D72 =2 ) fR (Da€ Da)(1, ) dx,
a=0 ’ a=0 * a=0 * a=0 2

it suffices to estimate on the time interval I,

2 2
;)fRz Oo€ Do dx = Z Z fRz Pidoe Prdod dx,

keZ a=0

where Py is a slightly fattened Littlewood-Paley projection such that PyP; = P;. Using the bounds (7.32)
on € as well as the exponential decay (7.12) of ¢ for frequencies k > by, we therefore obtain on /; that

2
> f On€' Do dx
a=0 R?

< D WPVl g PVl o2,

keZ

s D, 2 OB eyt D, (ek+ a2
ke(—o0,bp )NZ ke[by,+c0)NZ

SEcrit 62 + 61

gEcr[[ 62

O

Since the number of time intervals N = N(C», E,,;;) is controlled by the size of C, and E,,;, we can a
priori ensure to choose the underlying Besov error §p so small that the energy of € never leaves the perturba-
tive regime, i.e. it stays less than, say, 2&y. Hence, we can carry out the above bootstrap argument to infer S
norm bounds on € on all remaining time intervals /o, ..., Iy. This finishes the proof of Proposition 7.9. O

7.4. Selecting concentration profiles and adding the first large frequency atom.
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7.4.1. Setting up a profile decomposition. Having established control over the global evolution of the lowest
frequency non-atomic part II_,i_j,.g,¢"[0] in the previous subsection, we now “add in” the first large

frequency atom ¢"'[0] = Pl Jog(Ry) il +log(r, @ [0] In the sense that we now attempt to evolve the data

Moyt 10z, 9" 0)-
In this subsection we shall slightly abuse notation and write for simplicity

¢"10] = Iyt s10g(r,) 9" 101
Moreover, we denote by

w'[0] = Tgy) tog(r,)¢"10]
the data of the lowest frequency non-atomic part and by

fin = 1, — 10g(Ry)
the upper frequency cut-off delimiting the lowest frequency non-atomic part. Finally, we shall write
€101 = Tt iog(r,) @101 — Tt -togir, 9" 0)-

By rescaling we may assume that y, = 0.

In fact, we shall first attempt to evolve a sequence of slightly modified data

¢"<K[0] = Tk, ¢"[0],

which have better frequency localization properties, and thence infer bounds on the evolutions of the original
data IT_ 11,0z, #"[0]. Correspondingly, we also introduce the notation

€"<10] = ¢"<F[0] - u"[0].

In order to obtain these bounds, we shall have to take advantage of a suitable profile decomposition, which
however is quite delicate to achieve on account of the poor perturbative properties of the wave maps equation
expressed in terms of the coordinate functions.

The very first step to pick the concentration profiles is to correctly identify their asymptotic behavior.
To guess the correct ansatz, we shall throughout assume that the evolutions ¢" of the data ¢”[0] exist on
some large time interval /. In particular, this means that the gauge transformations U(ﬁ:) associated with
the evolutions ¢" are a priori well-defined. At this point it is important to observe that in the trilinear
estimate (4.4) we do not gain exponentially in the difference of the largest to the smallest frequency present.
For this reason the low frequencies will exert a non-negligible influence on the high frequencies for large
times, which we have to take into account by the correct choice of the concentration profiles. At frequency
k = 0 we arrive at the equation

O(U%95) = oUW+ €M) =: 200 Aa ton 3" € + UL Folu", €,

where Ay 10(#") incorporates all (perturbative) low frequency terms stemming purely from u" for which
there are no exponential frequency gains in the corresponding interactions in the wave maps nonlinearity. In
view of the structure of the wave maps nonlinearity as detailed in Proposition 5.1, we arrive at the expression

At == D" " @h)@utdy) = @atef i) + (UL 0,0 + AL,
ko <Hn ka—10<ky <Hn

where U %3 is the gauge transformation defined by «" and Ag’ <)ﬂ is the connection form (5.30) defined by u".
Then we may write

U A tow )€l = UL Ag 1ons YUY 3°(UG €l + error,
where we expect error to be a better term with a derivative on a low frequency term. Furthermore, we expect

the high-frequency contribution to U(jg) coming from €" to be negligible, and so we replace the first term
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on the right by U_ it o AatowW")(U_ e ))TGQ(U i‘%) €y)- In fact, due to the rapid decay of u" at large frequencies

k > u,, where we recall that u, denotes the frequency cutoff delimiting the frequency atom €" from below,

we shall replace this by the even more natural U gﬁ:ﬂa,low(u”)(U @ )) o“(U i%) €y)- Importantly, note that

this is now no longer dependent on the choice of a specific frequency k = 0. Moreover, we observe that to
formulate the right equation we have to pass to the variable & := U i%) €,> and more generally &' := U (i ) € -

Then we shall use the following very natural equation to select our concentration profiles (which in effect
is the same for all frequencies and so we shall not indicate a localization here)

(7.34) D& = 2U%) Ay ton (UL 9.

Observe that the anti-symmetric matrix U(<” AgtowW"(U? @ ))T is defined purely in terms of the low fre-
quency constituent ", over which we already have control.

After these heuristics, we now proceed with the actual selection of the concentration profiles. Here
we shall proceed naturally in two steps, first picking the profile at time # = O for which of course the
flow associated with (7.34) is irrelevant, and then picking the temporally unbounded profiles, using the
terminology of [16] and [17]. A technical difficulty here consists in identifying a profile which actually
maps into the target sphere S™. Also, since functions in H.(R?) are not even distributions, we start by
carefully implementing a frequency cutoff away from —oo, and more precisely to the frequency interval
[-K, ) for some K > 1. The number K will later on play the role of a parameter which we need to fine
tune. Furthermore, we also need to restrict the frequencies from above, below some threshold K. This we
do by passing to the truncated data ¢™<%-[0]. Once we obtain bounds for the S norms of the evolution that
are uniform in K,, we shall be able to invoke a simpler perturbative argument just as in the control of the
lowest frequency non-atomic part to infer the desired bound.

The following lemma provides a first version of a decomposition into a bounded and an unbounded
profile.

Lemma 7.14. Writing ¢"><5 = u"* + €<% and passing to a suitable subsequence with respect to n, there
exists p, € S and for each K > Ky and n sufficiently large, a decomposition (all at time t = 0)

K. _ _Kn<K, Kn,<K, Kn,<K.
~ “bounde. unbounde
* P+ = Counded T Cunboundea T g
9 n,<K, Kn,<K. Kn,<K. Kn,<K.,
t€ g s

- ybaunded Y unbounded

e’

where we have

2 .
lim sup lim sup (”V Kn.<K. Kn.<K. ) < lim sup ||V,’xe ’
K- n—oo * n—oo
lim limsup ||V, =0,
K—co j 500 x
lim lim sup ||{ =0,
K—eo  y 500 *
as well as the asymptotic orthogonality relations
Kn,<K. \T Kn,<K, _
nh_)rgo (Vxebounded) unbounded(x) dx=0
Kn,<K. \t Kn,<K* _
nh—{?o (ybounded) Yunbounded () dx =

<K, m Kn,<K, Kn,<K,
The components eboun oy Map into S™ and the data pair (€, .y, ) is admissible in the sense that

( Kn,<K, )T . Kn<K, _ 0
€pounded bounded ~
1



V.e Kn,<K., —'VE<K

. e . Kn,<K, )
Pomwzse. Moreover, 'the limits limg_,0o V€ ounded € ted and limg_, Ybounded = ybuun deq EXIST IR L3
independently of n with

ek eL*nH],

2
bounded € Lx :

<K.
Y bounded
We also have the compatibility relation (€, b - mde d)T . ybou*n deq = O pointwise. Furthermore, it holds that

k<K 0in L. asn — oo. Finally, we have that u" — p. — 0in L} as n — oo and for any Ry > 0,

unbounded loc
we have
[}1_{120 lim sup ”/YBROU Snpl = 0,
lim lim sup|LyBR 4 , =0.
K—oo  y 00 0 x

Proof. The extra parameter K here plays the role of an additional frequency cutoff. Write
En,<1(* — P[—K,oo)fn’<K* + P(—oo,—K)En’<K*-

The sequence {P[_g,«)€"}, being bounded in H 1(R?), passing to a subsequence we may pick a weak limit
K,<K,

€poundeq> Which is either zero or non-zero. Then upon passing to the subsequence,
n,<K, K <K,
P_g.c0)€ €bounded

converges weakly toward zero as n — oo, and in particular, it converges pointwise toward zero (due to the

essentially sharp frequency localization). By letting K run through all positive integers and implementing
K <K, K,<K.
= for

a Cantor diagonal argument to successive subsequences, we can arrange that Pk «)€, "~ = €, "+ ,

K.<K. : 2 <K. <K, 1 )
K > K, and thence that V X€hpunded CONVETges Il{n Ly as K — oo to, say, Ve, withe, - € HINLY.
Similarly, we may assume that limg. _,eo Vi€ " exists in L2. Now write
y y * bounded X
n<K, _ K,<K, n,<K, n,<K, K. <K,
¢ =u"+ eb()unded + P(_"O’_K]E + (P[_K’OO)E Ebounded

Localizing to a large ball Br around the origin, notice that (with the error vanishing as n — o)

u”|BR = pn +orx(l),
XBe(Pi-k €K — gl ) = or2(1).
It follows that (ebmm doq T P-co—k1€" .+ Pn is within a o7~ (1) neighborhood of S™. Passing to a
subsequence, we may Suppose p, — px for some p, € S™, whence ( fo 72*6 gt P(_oo,_K]e”’<K*)| B, + D is

arbitrarily close to S provided # is sufficiently large. Further, observe that

K<K (ZKR) +||V K.<K,

T({R~R.})’

Now for a suitable quantity §(K) — 0 as K — oo, put R, > 27X§(K ) . By convergence of V ;} ;Kde 4 1n L2

as K — oo, we get from this
K.<K,
|| bo“nd6d||L;°({R>2’K6(K)_%}) -0

as K — co. Also, putting

o(K, K,) := lim sup “VP(—OO,—K]E'Z’<K*| 12
n—oo X

then indeed we have limg_,, 6(K, K,) = 0, and passing to a subsequence as K — oo we can find p; € R”*!
such that

n,<K,

P -K)€ B \B g =p1+ore(1)

1 _ .
asn, K — oo, where R.x := 27X6(K, K.)™ 2, since the variation of the function Poo-K €K+ on Br.« \B%R*K

is S 0(K, K*)% as n is very large.
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It follows that choosing x5,  as before, the expression

K <K, n,<K,
XBr,x €pounded +XBR*KP(_°°’_K]6 +( _XBR*K) "P1LEPs

converges toward S as n, K — oo. Letting II be the normal projection onto S”* and labelling

_Kn<K, K<K. K.
Eommded = TIO(Br €pommaed + X Br g PlooK1E"™ + (1= xBy )+ P1 + Ps),

K bounded
Kn,<K, n,<K, K,<K,
6unbounded P[ K,00)€” Eb()unded ’
nK,<K, ._ K,<K, n,<K,
n =(1 _H)(XBR,(Gbounded"'XBRKP(—w,—K]f +( _XBR*K)'pl +P*)

" K K*
+ (1= XBy JPeoo -1 €K = 1)+ (1= XBy V€pmmieas

we infer a representation

. ~Kn,<K, Kn,<K, Kn, <K,
TP = 6b0unded + 6unbounded tn
with all the properties of the lemma (but with & ~K” <f -, in place of lﬁ'ff -). We carefully observe that

K,<K.
(1 = xBp )P, K]e"“f —p1)+ (1= xBy Ve

is supported outside of Bg, for K large enough, and that
K,<K. K.
(1 - H)(/\/BR KEbmjnded +XBR KP(—DO K]E + (1 _XBR*K) - P1 + P*)
converges toward zero in the L3’-norm as n, K — oco. It remains to show smallness of the term
K.<Kx <K.
(1 - H)(XBR Keb();nded + X Bk KP(—‘X’,—K]En< + (1 _/YBR*K) ‘p1t p*)
with respect to H!. This is clear by an argument as above, provided we include a cutoff y 1pe in front.
Ry
Thus, consider now the term
K<K, <K
X%BR*K(l B H)(XBR*K ebodnded + XB KP(_w’_K]€n< + (1 _XBR*I() "1t p*)
_ K <K, <K,
B X%BR*K(I B H)( €pounded T P(_"Os_K]En + p*)

= X1g,, (1= TD@" = " = p.) = Pk = 6500 ).

Extending (1 — IT) smoothly to all of R”*! and using the same notation for the global operator, we get on
account of

L= (@"<*) =0
the following

| V[sXX%BR*K(l - H)(¢n’<K* - " = p)— (P[_K’oo)en’< K<Ks

1
- ||V”xf X%BR KaS(l - H)(¢n’<K* —s@" = p.) — S(P[—K,OO)E”KK* lﬁ)dﬁwn ds 12
0 s

<K. _ _K<K.
s ”VZ’X(X%BR*K e p*))”l‘)zc * ”VZ’X(X%BR*K (P[—K,oo)En ) b()unded))”L2
<K, _K<K,
+ (s, @ = PO o + (1, (Progcore™ <
All terms at the end are easily seen to converge to 0 as n — oo. To see this for the second term, use that

uvx(m&,(><P[_K,m>e"’<’<* €pomndea) 12 = 0

<K, K <K,
bound d

“X%BR*K VX(P[—K,oo)En’ K<K*

as n — oo since P[_g )€™ — 0 weakly as n — oo. Also we have
<K. <Ky
< “/\/%BR V(P KK]E” ~ P k1€ bounded

+ |IX%BR*KVX(P(KP°)€"’< *




Then the first term on the right-hand side converges to 0 as n — oo and the second converges to 0 as K — oo
uniformly in n. For the term

||VI,X(X%BR*K (un - p*))”L%,

use the fact that lim,,, y1 1By, (u" — ps) = 0 as well as the evacuation to extremely low frequencies for u"

~Kn,<K, S V.e <K

as n — oo. We also observe here that since V€ for any large enough n and K — oo, we

*€hounded *€hounded
* m
may indeed pick € boundeq 10 Map into S™.
As for decomposing the time derivative, let 7115(;35; , be a weak limit of Pj_g «)0,€™ <K asn — oo, and
then let
Kn,<K, K,<K,
yunbounded P[ K m)at €’ ybounded’
Kn,<K, <K,
§ " = P(_oo KJ(? e’ .
We have
_ n_ Kn,<K, Kn,<K, Kn,<K.\T K,<K, Kn,<K, Kn,<K,
0= (Lt D« t Ebounded unbounded +n ) (6 ' + ybounded Y unbounded + g )

But then on any bounded set D we have in the pointwise sense that

Kn <K, )T . (atun + yK,<K* Kn,<K, {Kn,<K*) =0

lim (Lt P unbounded bounded yunbounded

and similarly (on a bounded set D) we have the pointwise limit

Kn,<K*)T K,<K., Kn,<K, + é«Kn,<K*) -0

n
(6t uw+ ybounded + yunbounded

)
Jim (7

Also, again exploiting the frequency localization, we get

Kn,<K,\T/. Kn,<K, Kn,<K.\ _
hm ( bounded) (yunbounded + g ) =0
Finally, we conclude that if we put
~Kn<K, ._ _K<K. Kn <K, ( Kn,<K, )T_ K <K,
ybounded ybounded bounded bounded ybounded
and then write
n,<K., ~Kn,<K, Kn,<K, 2Kn,<K,
die - ybounded Y unbounded ¢

with
*Kn,<K, _ +Kn,<K, Kn,<K, Kn <K.\T K,<K.,
g - g + Ebounded bounded ) ybounded

Then we have found the desired representation with 5/50"un [i , in place of yllfonu;(i ;,and £ 7Km<K< in place of

gKn,<K* . 0O

Note from the preceding proof that setting now

Kn<K, _ K,<K, <K
ebounded H(XBR*K ebounded +XBR*K P(_oo,_](]fn + (1 _XBR*K) Pt p*)’
the implied frequency localization from above (up to exponential tails) allows us to conclude the more
precise local convergence statement that on any bounded set D we have

Kn,<K, <K =0

bounded

hm H

©°NH(D)

uniformly for all sufficiently large n. Similarly, upon passing to a subsequence if necessary, we have that for
any such D

lim =0
K—oo

| Kn,<K. <K,
ybounded

(D)

for a suitable limit function ybmm ded € L2,
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In the preceding we have always kept the upper frequency bound K, fixed. However, we may now
increase K. and only consider subsequences of the sequence of n considered previously. Doing this we may
achieve that actually

Kl* lgloo (Vx Ebounded ’ 7b0unded )

2 _
exists in LZ. In what follows we shall use the notation eb N (V) (e hmm ded® ybmm ded)"

. . Kn,<K, Kn,<K, . ..
It now remains to reveal the fine structure of the data pair (€, 7=  y~m< , 1.e. to resolve it into
unbounded’ / unbounded

profiles. To this end we shall use the key equation (7.34). As we have to work with the gauged variables for
each frequency block, we use for each dyadic frequency k € Z the data pair

~Kn,<K., (¢"<%*) Kn,<K. (¢” <K<y Kn,<K, (¢"<K*)\ Kn,<K. )
(735) Eunbounded,k [0] (U unbounded. k’ U unbounded + at (U ) unbounded k

To state the decomposition into concentration proﬁles for the linear evolution, we first need a precise de-
scription of solutions to (7.34).

Lemma 7.15. Given €[0] € H}C X L)ZC(RZ;R’”“), there exists a unique solution e, ) e COR; H}C X
Lﬁ(Rz; R™1Y) to (7.34) satisfying uniform bounds

€™ Nls gy < C(||u"||5[R])“é[o]||HxnxL§(Rz;Rm+1)-
The solution €™(t, ) vanishes asymptotically in the sense that giveny > 0, there exists a decomposition
=(n) _ z(m) | ~(n)
€V =§" +§
and a time to(y, ||u"||s, €[0]) > O such that for all n,
~(n) ~(n)
”61 ||S[R] <7 ” HL""L""[( co,~to]Ultg,00)] = V"
Finally, we have asymptotic energy conservation in the sense that

lim sup “|V,’x€(")(t, -)||L2_ =0.

n—oo

: 2
XLy

Proof. The a priori bounds follow from the divisibility argument used in the proof of Proposition 6.3. More-
over, we can infer that if {ci}rez 1s a sufficiently flat frequency envelope covering the data €[0], then we
obtain
|| lls,ir1 < DAl lls e
The asymptotic decay follows as in the proof of Proposition 9.20 in [17]. Correspondingly, we only turn
to the details of the proof of the asymptotic energy conservation. Our reasoning will be closely related to
but in certain aspects a much simplified version of the proof of Proposition 9.14 in [17]. Thus, let P; be
slightly modified Littlewood-Paley projections with the property that the corresponding cutoffs y;(£) on the
frequency side satisfy for all & # O that
D@ =1.

kezZ
In particular, we then have (setting & = Py€)

- 2 - 2
D V@, ]| = V180, )| -
keZ
In particular, it suffices to prove asymptotic energy conservation for the frequency localized functions &. To
simplify the notation within this proof, we shall write
Ay = U(u ﬂ(t tow(u" )(U(u ))T
Then on localizing (7.34) to dyadic frequency k € Z, we obtain

Dé/(cn) Zﬂa ” aa~(") + F]((n),
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. 2 . .
where we have lim, e ) ||F ](C")H 1172 = 0. We shall now consider the quantity
¢ x

E" (1) := % f (108" - Ao’ + Y ;8" = A e[ ) dx
j=12

and show that uniformly for all # € R,

(7.36) lim E{"(1) = ||V, &0, ).

n—oo

Then on account of the fact that uniformly for all # € R,
lim " ||ﬂc,,<,;<”)||L2 =0,

n—oo

kezZ

the final conclusion of the lemma follows. In order to show (7.36), we differentiate E,((”)(t) and find
E(n)) )= f (5n~( " ﬂ0,<k31€,£n) - 3tﬂo,<k6 bl - (0., e ﬂ0,<k€,£”>) dx

f (at] _ﬂj,<k(9z§,in) _atﬂj, (n))T (a ~(n) ﬂ] & (n)) dx
j=12
=1+11.

To simplify things below, we first observe the following schematic vanishing relations

lim 0" A Vi k& Ve dxdt = 0,

n—oo Jpi+2

lim f (O Ak — 0; A0 Vil V& dxdt = 0,
RH—Z

n—oo

n—oo

lim f (A)*V1 & e" dxdt = 0,
RI+2
~(m)y2
lim (V,xﬂ<k)ﬂ<k(ek )Y dxdt =
n—oo Rl

Here one may replace R!*? by I x R? for any time interval I, the vanishing relations being uniform in 7. To
see the first of these relations, we write schematically

0" Ag <k = P<k(U(<';:l)(9au"6“ ”(U(” )) ) + cubic terms,

where the cubic terms arise upon differentiating U(<'Ln) or re-expanding Ou" using the wave maps equation.

Then it is straightforward to place the cubic terms into L! LY using the Strichartz type norms in our S space
in conjunction with Bernstein’s inequality. In fact, from the definition of «", the cubic terms live at fre-
quency < u, up to asymptotically vanishing terms with respect to L LY. Then one closes by observing
that

||pl(vtx~(n) (n))”LwLH < < p0li=kpy=(1- )k||~(n)||s <2 ali~kly—(1- )kck

where {ci}rez is a sufficiently flat frequency envelope covering the data €[0]. On the other hand, owing to
the null structure, the principal term

P (U8, (U))

can be placed into L again essentially reduced to frequencies < yu,, while one uses

||P1(Vtx~(n) (n))“ <2 oll- k|2 (0+)k
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The second null form
11; X (O A<k —0 jﬂ0,<k)Vt,x€](€n)§,(cn) dx

is handled similarly, and since we can similarly bound ||(ﬂ<k)2|| 3. and H(Vt,xﬂ<k).7l<k” 3., We also get the
Lt,x Lt,X

remaining vanishing relations.
It now remains to reduce (E,(("))'(t) to the expressions in the preceding vanishing relations. To this end we
first observe that by the anti-symmetry of (A, it holds that

(Ao, <k516( IR 3z~(n) 0,
and thus for the term I we have

1= f (00" = 2A9 08" — 3, A0 &) - (9,80 — Ao &) dx + error,

where error refers to terms satisfying the above vanishing relations. Next, we integrate by parts in term //
to find that

= Z f (atjek _ﬂ]<kat6k _a’ﬂl kE( ))T ((9 e” — J<k6kn)) dx
j=12

= — Z f (8 E(n))T (8,1”(") ﬂj,<kaj€,(<”) - ajﬂj,<kél({”)) dx
j=12

f (ﬂ] <k6t€ + 5,ﬂj <k€_(n)) (5 & ﬂj,<k€_]£n)) dx'
=12
Then by the anti-symmetry of A, we have the relation (A <k(')te("))T ~(") (c’),él(("))T :

may write the preceding further as

Z f 02" - (98" - 2A; 408" - 3, A; &™) dx

j<kajk N nd

j=12
- Z fz(atﬂj‘kélin)f ‘(9J-E/(€") dx + error.
j=12 VR

We further modify the first term on the right-hand side above to obtain

=-> f (08" — Ag &) - (98" - 2A; 408" - 8;A; &™) dx

j=1,2

_ 2L 2 gy — 2t g 2

(ﬂo «& ) -0;;&" dx (6,&11]< R -0, dx + error
J=12 j=12
==y f (08" — Ao &) - (9;;8" — 2A;0,8" — 0,A;.1&") dx

j=1,2

+ Z f (0,A, <ke(")) -0, e(") dx — Z f (azﬂj<k€(n)) -0, e(n) dx + error,
j=12 j=1,2

~(n))T c') E(")

where we also used that (Ag <, 0. Putting things together, we find that

(EMY (1) = f (- 08" +2A, 7€ + " Aq &) - (9,8 - Ao &) dx

+ Z f ((0; A0 <k — 0: A, <k)é("))T (9jélin) dx + error
j=1,2
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and the asymptotic energy conservation follows by using the equation satisfied by & e™ as well as the above

vanishing relations. O

We now turn to the process of extracting linear concentration profiles with respect to the wave operator
B = 8 = 2U%) Ag o (UL)) 6.

In the following we use notation borrowed from [1], [17] and [16]. We denote by S 4» the wave propagator
associated with £14. and shall say that a sequence of data pairs €"[0]: R> — R”*! x R"™*! is essentially
supported at frequency ~ 1, provided it holds that

1;1—{1010 hflr:supHP[ RRIE" O]HHM2 =0.

Given a sequence of data {€"[0]},>; essentially supported at frequency ~ 1 and uniformly bounded in
HI(R?2; R™1) x L2(R?; R™*1), we introduce the set

Up (E"[0]) := {V e ’, HH®R" R™Yn 2R R™Y) - 3((1,, x0))ns1 € RXR? st

t,loc

S an(@' IO + ty, x + x) = V1.

Here the weak limit is in the sense of LfloLH}C and we observe that each such weak limit V(z, x) solves

OV = 0 in the sense of distributions. We define
- 2 N
nan(€'[0]) := sup {E(V) = f 2 VexV[ dx : Ve Up@'T0D).
R

Then the extraction process of the linear concentration profiles is summarized in the following proposition,
which we formulate in the context of general data which have the weak frequency localization properties
of €"[0].

Proposition 7.16. Let {€'[0]},>1 be a sequence of radially symmetric data pairs R* — R™*1 x R"™* ! which
are essentially supported at frequency ~ 1 and satisfy a uniform energy bound

sup [[£'101]| 17 < 1

Upon passing to a suitable subsequence, there exists a sequence of profiles &[0], b > 1, as well as sequences
of time shifts {t,},>1, b > 1, satisfying the divergence relation
lim |f -] = +00, b#V,

n—oo

so that we have for any B > 1,

B
San(@10D(E %) = 3" S wnier @ LODE = 15, ) + E(1, x)
b=1

and such that
lim lim sup 74 (€3[0]) = 0

= pooo

If the data é€"<%:[0] also depend on two parameters K and K, such that

lim lim sup lim sup ||6K”’ <K *[0] — ghon<k. [O]”Hl )
Kip—00 Ix12
1,2 K,.— o n—oo

=0

e&<Ke and the remainder term eX™ <K*

and similarly for K., then constructing the corresponding profiles €, B

we may assume that the limits
lim lim &°<[0]

K—oo K, >0 b
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exist in H. x L2, and also that limg_,« limg, e 1 An(§§”’<K*

conservation

[0]) exists. Finally, we have asymptotic energy

1im [[V,.1(S areg o @LOD)O = 14, )| 2 = @101 1,20 221,

as well as the asymptotic orthogonality relation

><L2_2|
=1

Proof. Using Lemma 7.15, the proof proceeds in direct analogy to the proof of Proposition 7.11 in [17] or
to the proof of Lemma 9.23 in [16]. O

el

><L2 + || ><L2 +o(l) asn— oo,

For each dyadic frequency k € Z we now consider the sequence {€ Lﬁ’;:fn ded. ,[0]},5, defined further above

in (7.35) and extract concentration profiles Ef,:K [0], b > 1. Applying Proposition 7.16 each time and
passing to a suitable subsequence, we may assume that we obtain the same time scales {7, },,>1. Importantly,
by the construction of {fg):’fi ded. k[O]}n>1 in Lemma 7.14, the extracted concentration proﬁles K <K “[0],
b > 1, must all be temporally unbounded, i.e. we have lim,, |f;| = +oo for every b > 1. In order to

simplify the notation we set
~K K.
CE ) = S e & IO — 1),

Moreover, for later reference, we observe that due to our deﬁnition (7.35) and simple frequency considera-

tions, we have that E,f,’: TS essentially supported at frequency ~ 2 in the sense that

Z 20’|a| Z ||Pk+a~Kn <K, ”Sm)% < ||~K<K*

acz keZ

: 2
)CXLX

for an absolute constant o > 0.

Then it is natural to make the following ansatz for each dyadic frequency k € Z,

K. 1<K ~K K, , ~Kn<K, Kn,<K,
(7.37) G = g+ eboundedk + (U(¢ ) ( A €BZ< ) + ’7(1;)1 )
b=1

and without the frequency localization
. B
n<K. _ n_ (¢"= ) eKn<K. | -Kn<K. Kn,<K,
(7.38) ¢ =u" — p.+ bounded + Z(U [ + & ) +7 .
keZ b:l

Here, eZOKM 10q OF course refers to the wave maps evolution of the data ek

: boujlded[o] = (Ebounded’ ybounded) con-
structed in the preceding Lemma 7.14.

There is a small subtlety in (7.37) on account of the fact that the expression

(¢"<K> ~1< <K, | ~Kn<K.
U )( A

b=1
is not necessarily localized to frequency ~ 2% but only up to exponentially decaying tails, and hence the

same applies to 175(')1‘1{*, whence the different notation. Note, however, that by definition we have

T € Mk €Bk My

n, <Ky ~ n,<Ks
(U(j;( ))T( ~Kn <K, ~Kn,<K*)_+_ Kn<k. _ p ((U(jc< ))T( ~Kn <Ko | ~Kn,<K*)_+_ Kn,<K*)
b=1 b=1

= <K ~Kn<K, , ~Kn<K, = Kn,<K,

Pk(( U ))T(Zfblch +€BZ< ))+Pkn(k')1’<
b=1

69



for a suitable localizer Py, and this is what we shall substitute in frequency localized terms. Then we can
also replace (7.38) by

n<K. _ n <K, (¢" <K*) ~Kn,<K, ~Kn <K Kn,<K,
(139) @ = pok el Y P (Z ek )+ > P
keZ b=1 kezZ

More precisely, this ansatz is natural to make as long as we are in the regime where the bK* is truly
ounded

nonlinear, while in its asymptotic regime we would want to replace it by a solution to (7.34). Unfortunately,
by comparison to [17] and [16], it appears harder here to make a good global ansatz for the solution, as the
previous Lemma 7.14 has already indicated how delicate the correct choice of the bounded profile at time
t = 0 was. In fact, we expect the correct choice of bounded profile at the next concentration time 7 = f}
(assuming, as we may, that /{ < ] < ...) to delicately hinge on ¢™<K+ at that time. Our way out of this
shall be a careful inductive procedure, first controlling the solution (in terms of the 75<X+) on the time
slice [0, 7 — T.] for some sufficiently large but finite 7. (and as usual picking n large enough), and then
delicately modifying the ansatz (7.39) to track the solution on [#{ — T, ; — T>.] and so on. Here a crucial
point shall be that our choice of B shall be rather simple, and in fact only hinge on ||u"||sr;. This should
be compared with the cruder arguments in [17] and [16], where the choice of B hinges on fine properties
such as S norm bounds of the profiles and their scattering behavior. In our situation, in light of the poor
perturbation theory and the fact that we do not even know the later nonlinear profiles, we could not possibly
define B in this manner.

We call the expressions

1n,<Kx - ;
bounded[o] Z Pk (U(¢ ) IfZKK )[0], b> 1,
keZ

the profiles (all evaluated at time ¢ = 0). We note that the energy of these expressions as n — oo is well-
defined. Also, it follows from Lemma 7.14 that we have the asymptotic orthogonality relation

9,075, ->||ig

ZPk (U(¢n<K*) ~Kn <K, )(0 )“L2
keZ

(7.40)

N ||V;,x Z Pk((U(j;:d(*)) t ~Kn,<K. )(0’ ')“Lf%. +o(1),
keZ

where the error vanishes asymptotically as K,n — oo. The following theorem is the key result of this
subsection.

Theorem 7.17. Assume that the profiles all have asymptotically (as K, K. — o) energy strictly less than
E .is. In particular, this is the case when there are at least two profiles present for K, K, large enough. Then
the data ¢"<%+[0] can be evolved globally in time and the resulting solution ¢"™<% satisfies uniformly for
large K. and n the bound

(7.41) |
In fact, given 5, > 0, there exists B = B(||u"||s, 02) such that there are profiles € f”fded and € ~K" K b>1,

satisfying for K, K., n sufficiently large

S<00.

zn, <K, s« zKn,<K, ~Kn,<K,
E[ bounded] < E[ bounded] + 62’ E[eb ] < E[Eb ] + 62’ b= 1’
and also
zn, <K,
” bounded“S < o0, H

o, b>1,



uniformly for n, K, large and such that

n<K, _ zn,<K, 2Kn,<K. (¢™<Kx) teKn<K, | xKn<K.
¢ =u'+ Eb()unded + Z + Z (U Bk +n
kezZ

zn, <K, zKn,<K, P . . <K,
with ||77 < 02. The profiles €, -~ , and €, coincide with the nonlinear profile €, . ., respec-

tively certain nonlinear profiles EZK* near t = 0, respectively near t = t}, and are of the form

~Kn<K Z( (¢"<K*) Kn<K’

keZ

~Kn,<K, .

~Kn,<K,
where the € €p i

bk is a solution to (7.34).

are solutions to (7.34) far away from these times. Also, €

Remark 7.18. We emphasize that the bound (7.41) on the S norms of the evolutions ¢"><X+, which holds
uniformly for all sufficently large K, and n, implies via the high-frequency perturbation Lemma 7.4 that the
data I1_,1 100z, @"[0] can be globally evolved with uniform S norm bounds for all sufficently large n. This
conclusion is key for the next step in our induction on frequency process in the next subsection.

Before we begin with the proof of Theorem 7.17 we first address some technical issues.

7.4.2. Technical remarks about multilinear estimates using the decomposition (7.39). In the sequel, we
shall estimate the terms on the right hand side of the basic gauged wave equation

1,<Kx 1n,<Ks
(742) D(U(<¢}€ ) I’l <K ) — U(j;( )Fk(¢n,<1(*7 Vt,x¢n’<K*)

or minor variations thereof by inserting the decompositions (7.39) and exploiting a priori bounds on u”",

K. ~Kn,<K., ~Kn,<K., -
€ <R and €g. " , where for the last two expressions we of course need control over all frequen-

baunded ’ Eb,k

ciesk € Z.

We recall that the structure of the renormalized nonlinearity Fy(:,-) was carefully analyzed in Propo-
sition 5.1. For what follows it will be useful to introduce the notion of “perturbative factors” and “non-
perturbative factors” in the multilinear expressions constituting the nonlinearity F(:,-). We call an input of
a multilinear expression in F(-,-) a “non-perturbative factor” if it can only be estimated in L;°L?’ in order
to place the whole multilinear expression into L! 2. These “non-perturbative factors” can only occur in the
quintilinear expressions1 Or(¢) in (5.32) as well as in (5.34) and in (5.35). All other inputs of any multilinear
term in Fy(-, -) will be referred to as “perturbative factors”.

Then we will be facing the technical difficulty that the “gauged terms”

( U(¢"v<’<* ))T ~Kn,<K. ( U(¢"’<K* ))T ~Kn,<K.,
<k <k

B

again involve the a priori uncontrolled function ¢™<X+  although we of course have a priori control over

||( v <K*))TH ;~- Also, observe that the two preceding expressions actually are not localized sharply to

frequency ~ 2*, but only up to exponentially decaying tails. To deal with these issues we formulate

Lemma 7.19. Let {c( Nz be a sufficiently flat frequency envelope covering Y,z 27*- k'”P (~K" <K )“Sk for
some small o > 0. Then substituting

ZP ((U(¢"<K*))T~Kn <K)

TAn example of a “non-perturbative factor” is the input ¢<k o in the following quintilinear expression

( beiro Diky=ky+o) Pry (¢<k1 10 Z,q k4+0(,)(6‘,¢(3))’f8”¢(4)) (5>) arising in the term Q(¢) in (5.32).
71



for ¢" <K~ for the “perturbative factors” in the terms Fi(¢"<5,V, .¢"<%*), and calling the resulting func-
§ S 1 the bound

tions Gy, we get under the bootstrap assumption “ Dk Pkn(k)

;(;cf»;(;

) el

. Similar inequalities can be obtained

||Gk||L L2 < C(”unHS’ || bounded

Thus, one can estimate Gy as if the factors were just Py ),; € €

[ K*)) ~Kn <K)

when one or more of the “perturbative factors” in Fy(-,-) are occupled by Xz Pk((U( while

other “perturbative factors” are occupied by one or more of the remaining terms in (7. 39)

Proof. We illustrate it by considering the specific term

Fu@Vid) = > > $udat) 9" r.

k1<kk2<k1—10
Thus we have to bound the expression
7n,<Ksx n, K« ~Kn, 1n,<Kx ~Kn,
743) > PG ) P (UYL T 0 P T ).

ki <k kp<ki—10

As usual, to simplify things, we reduce as we may to the case k = 0. To begin with, we infer the general
bound

(7.44) 25 ” pk((U@” <’<*>)T~Kn <K. <

LOON k 9

where the implied constant on the right is like the constant C(+) in the statement of the lemma. To see this,
write

1,<Ks - 1n,<Kx - g
Pk((U(¢ ))T D Pk(P<k—10(U(¢ ))TP[k—IO,k+10]€f:’<K')
n<K*
(7.45) + Pi(P-1044101(UY, )TP<k—1o€fZ !
+ Pk(sz—IO(U(j;c’ Y Psicio %ﬁ? <.

The desired bound for the first term on the right is immediate. The bound for the third term on the right is
also immediate, using

1Psx10@ LN o 0 < 274|910

||L,°°L§ ~

and Bernstein’s inequality

[PuPacro @™ Pascrogff sy = D 2P

”L;'“L2

FLY
k1>k—10
< ok Z 2——k12 olk—ki| (b) < 2—7 (b)
k1>k—10

n,<Kx
For the second term on the right, we expand P[k_lo,kJrlo](U " )) schematically into

2FPUY TN Vb ], — 10, UL,

k|<k

Then, depending on where the derivative V, lands, re-expand either V¢, or V¢, using (7.39), and repeat
application of the above trichotomy. Then using that

~Kn,<K, —k ()
||P<k—10 €k <2 Mc,

MLy

for M large enough, one obtains the desired bound (7.44) after finitely many steps, using Holder’s inequality.
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Now back to (7.43), consider first the case where all derivatives fall on a &-factor, which is the expression

@K\ T 2Kn,<K. @ KNt o Kn<Koyt (@ KNt g0 2Kn,<K.
(7.46) }, E‘ Pr((Ug, )& ) Pu(Us, 7)'0a8,,77) Po((Uy ) 098,57).
k1<0k2<k1—10

Then if in each of the expressions P,(...),i = 1,2 and Py(...), we have a low-high interaction, we can

simply bound the factors (U fn’<K*))T in L7, and the estimate follows. On the other hand, if at least one of

the first two of these expressions has a high-low or high-high interaction, we place both factors inside it
into Lf’ij’, using the observation before, and then also place the remaining low frequency term P(...)
into L} L, while we simply place Po(...) into L°L2. In case of a high-low or high-high interaction inside
Py(...), we place the lower frequency term into L)L and the remaining low frequency terms P(...),

j=1,2,into L’LY, while the high frequency term inside Py(...) gets placed into L°L2.

A
1<Ky .
If at least one derivative d,, falls on a term (U (f ))' , say inside Py, (... ), one can again close by placing

three low frequency terms into L7 LY as long as there is a low-high or high-high interaction inside Py, (.. .).

7,<Ks\ 4 . A 7, <K
In case of a high-low interaction, one uses re-expansion of d,(U (jq ))1 , using the equation for U(j{z ) and

(7.39), similar to the proof of (7.44). O

7.4.3. Animportant bilinear estimate. In the proof of Theorem 7.17, an important role shall be played by the
fact that certain source terms which are multilinear expressions whose factors are all essentially supported at
frequency ~ 1, but which enjoy smallness of their L}’-norm, have small square-summed (over frequencies)
L!L2-norm. This smallness can be gained on account of our delicate bilinear null form estimate (4.1)

3
which allows us to estimate the null form 9,¢d%¥ “below” the Lix—space, in fact in LZX. This crucial
fact was first pointed out by Klainerman-Machedon [8] provided both factors are free waves. We note that
the corresponding improvements without the radiality assumption are due to Bourgain [2], Wolff [41] and
Tao [35] and played an important role in [17]. We quickly illustrate how to use this result with the following

Lemma 7.20. Let {€™)},s1 be a family of functions essentially localized to frequency ~ 1 and with uniform
bounds

suplle™|ls < 1
n>1

as well as the pointwise decay lim,,_, HPkV,,xe(")” [o = 0 for all k € Z. Then denoting by F (€™, Vt,xe(”))

any one of the source terms occurring in our equation

aU9d) = UDFu(,V,.0),
we have

tim 3 e T =
keZ

Proof. First, we may reduce the output frequency k as well as the frequencies of all perturbative factors in
Fi(-,-) to size O(1) due to the essential frequency localization of €. Then we consider a generic expression

(n) (n) (n) _
€ aasz 8“6k3 . kj=0().

‘We have

(RGBT (TS P [Tt P

where the implied constant depends on k; » 3 and we used Bernstein’s inequality to pass from L L2 to L} L2~
Further, by interpolation and the null form estimate (4.1) we have

= 3
z}—ﬂx s l—[ ”El(cl;)”_g;jHﬁaeg)aael(;)
Jj=23

1
4+
L

R e D e K

Then the last factor at the end vanishes asymptotically due to our assumption, which yields the claim. O
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The preceding lemma, or simple variations thereof, will play an important role in Step 2 of Stage 1 of
the proof of Theorem 7.17 below, and more specifically, in the proof of Lemma 7.22 on an “essentially
unbounded” time interval. Working on a bounded time interval as in Step 1 below, one can use much cruder
bounds, as for example in (ii) of Step 1 below.

7.4.4. The proof of Theorem 7.17. We now use the preceding preparations to provide

Proof of Theorem 7.17. The strategy shall be to understand the bound as well as the profile decomposition
on the interval [0, 7/ — 7] and then reveal in a second step how to adjust the profile decomposition to cover
also the interval [t" -7, t” —T,.] for sufficiently large T, and T, as well as for sufficiently large parameters
K and n. This will reveal that ensuring T]An( Kn,<K. [0]) < 6.(lu"|ls,d2) is indeed enough to hold the error
term 775K+ < §, even as the process gets contlnued beyond time 7. At every step, the values of K and n
may have to be increased, but since there is only an a priori bounded number of steps, this process will not

diverge. Finally, by their construction, the profiles € ~Z <K. eq & k<K win satisfy uniform S norm bounds

with respect to n, K and K. sufficiently large. We now proceed in two stages:

Stage 1: Control of the solution on the first time slice [0,t] — T.] for sufficiently large T,. In turn, we
distinguish between the region where GZOKMZ Jeq 18 DONlinear and the region where it scatters:

Step 1: Here we control the solution on any sufficiently large but fixed finite time interval starting at t = 0:

Lemma 7.21. Given any R > 0 (which we will eventually choose depending on the properties of € b(m’;l ded’

and arbitrary 63 > 0, there are K and n sufficiently large such that defining Pk77( Kn<K: via (1.39) fora
fixed choice of B, we have uniformly for all large K, that

Kn,<K,
” Z Py Mgy

S ([0, R])

In particular, we can achieve that || > Pin
the statement of Theorem 7.17.

< 8y, where 8y > 0 is the constant prescribed in

)

Observe that this holds independently of the B chosen in (7.38). The choice of B will be important for
the control later on and will be done depending only on the size of ||u"||s and §,. For simplicity of notation,
we shall from now on write X<k = 37, Pkn([g‘ <K and nK" <K=y Pkngc'; <K

Proof of Lemma 7.21. We recall the frequency localized wave equation for ¢ <K+, written schematically as

n,<Ks K. n,<Kx i g
D(U(jc )¢Z < ) U(<¢;C )Fk(¢n’<K i Vt,x¢n,<K )
T4



For technical reasons, specifically the ability to pass from ¢” <K to ¢>Z’<K* , we shall in fact replace the former
quantity by

n<K*RM n<K* n,<K, n,<Ki\T 1<K
¢ D D (/i Wi

k|,2>k+lOgR

n,<K, n,<K.\T n,<K,
+ PD 0100 R Z (4:77) ¢, )
ki2€lk+log M k+log R]
n,<K. n,<K, n,<K,
+ Py <k—1010gR Z X{r=2*M) (¢ ) ¢ )

k<kj 2<k+log M

(¢
(¢
(¢
(Y ay )
(
(

k1 <k—log R]

+
Q)

" ¢Zl<11(010gRV(¢n <K ) ¢n <K, )

ki €[k—log R.k—log M]

<KN\T n,<K,
+ Py X{r=2- kM}¢kl 1010gRV(¢n ) ¢Z )
ki elk—Tog M.k]

Here the parameter M will be chosen large depending on the size of || bou’;l de d“ ¢ and [lu"[|s, while the param-

eter R shall be chosen large depending on more subtle properties of € <K. " such as its energy distribution

€bounded
n,<Kx
among frequencies. In particular, we may assume R > M. We also need to modify the matrices U_ (¢ ’
in order to render them “less dependent” on 75™<K-_ Specifically, we replace them by U(j;{ " R Wthh is

ﬂ,<K* . . . . . .
constructed analogously to U (jc ) but with the matrix By, in its construction (5.27) modified to

By =~ Zn(h—lologR O(b<e-100) = Pl 1)
€eZ
ZXM gy ((h = €) = (b = 1010g R = O)(p<r-108] — et y)-
t’eZ

This results in the new equation

(¢"<%R) ,n.<K..RM @R pRM) ( on.<K. <Ke
o(UG ) = USRS @ Vg,

In order to pass to an equation for 75"><K+ we need to subtract off the bulk terms. This is straightforward

for the low frequency term u" as well as the asymptotic terms
(¢"<K)\t ~Kn <K, = ~Kn,<K.
2 AWy >< )
k =1

but more delicate for the bulk term eb K ;- Here we make the following

Observation 1: For any fixed k and n there exists a (constant) matrix G;{") € SO(m + 1) with the property
that as n — oo

_— <K _— 5
olal (¢n <K R) <K R.M (n) . (Ebozmded’R) <K.,R.M 2
Z 2 ( Z ”P k(U €oundeds ~ Cr UL ebounded,k)”S 1sa([O,R)

1

a€’Z

= o(1) + cR||n

_pl000_~Ksy
+ 546 R 2

RIXR?)
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for suitable o > 0. Also, there is a partition of [0, R] into O(R' + K!%9Y many time intervals I ;j such that
we have for all j

(S R ¥

1

<K
(n) bouna’ed’ ) (R M)
) G U<k F ( bounded’ v

2
bounded bounded))”L 112(1; ])

_R1000_oKx

S+(54€ o,

= o(1) + cg||n

where the error o(1) is in the sense as n — oo. Also, cg is a coefficient with limg_ cg = 0. In fact, the

matrix G(k") does not depend on M but it may implicitly depend on R, K...

We observe here that the factors G](C") are analogous to the exponential corrections e2% in Proposi-
tion 9.24 in [17]. We complement this with the following observation of a similar flavor:

Observation 2: We have the asymptotic relations as n — co

chr|a|(ZHPk+a(U(¢n<m R nRM ZRM U(u R) nRM)”S) = o(1),

acz
1

> 2 Z [Peaa@ ™ P EED @, v = U R FE @ i) ) = o),

acz

where uZ’R’M is defined in analogy to ¢/ <KRM

We leave the proofs of these observations for later. Then the proof of Lemma 7.21 shall follow from the
following steps:

Step 1 of proof of Lemma 7.21: Fix a time slice [0,R] x R%. Given 64 > 0 (which we will later choose
sufficiently small depending on 83, ||€ bounded”S’ [lu"|ls ), then we have for K sufficiently large that

1, <K n <Kx T P A 2
T ( HD U(¢ R) ~ <K, RM _yeR “HWRM G(n) U(e R _<K,.RM “ )
lf/lllsoljp Z ( k <k uk €bounded k) Ltl L%([O,R])
<6 e—R”""—Z’“‘c (leX: oo lells) + R (log R + K.)?2|| Cro(||eX: ]l )
=04 11 bounded N S g n 10 bounded S’ S

13

+ D(” bounded”S ’ ||I/£n||5)||7]

To see this, we start by observing the identity

<Kx —_—
(n) (ebounded’R) <K.,R.M (n) bounded R) (R.M)
D(G U G U F ( bounded’ bounded)

<k bounded k
and so
@K R n,<K..R.M (u",R) RM 0 1 Gomiea®) <K RM
o(U, ¢ —UL T =G Uy €bounded k
(¢" <K R) (RM), 1<K, n,<K, () (Ebounded’R) (R.M) <K, Ve<ks W".R) p(RM) \ n n
=U F @ Ve -G Uy F " Cpoundea ¥ €pounded) ~ U™ Fi ™ (", Vi)

_ (¢" KR (GRM)( yn<K. g gn.<K. (RM) <K, RM) (0 7,1 (R.Mn)
= U<k ( (™", V=) — F ( baunded’ Ve d) - Fk (", Vu )) + Ak ’

bounde
where Observations 1 and 2 imply that after restriction to any one of O(R'% + K!%°) many time intervals I;
we get
1
. (R,M,n)||2 7
i ; A2 = 0

This time restriction step will be carried out explicitly in Step 5 below.
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Thus, it now remains to bound the term

@K R ( 2(RM)  n.<K, o sn.<K, (R.M) _<K. <K. (RM) (i x7,n
(7.47) U (F P Ve )= F € ppmaear Y pounaed) — Fr W', Vu ))'

Here we distinguish between different interaction terms, first amongst the bulk terms in the decomposi-
tion (7.39). Before doing so, we quickly comment on the fact that the nonlinearity F ,(CR’M)(QS”‘K*, V<Ko

now involves some additional terms on account of the fact that we modified ¢<K+ to ¢-<K:-R-M a5 well as
n,<Kx 1,<Kx . . :
U (j( "o U S’;{ ®_For the former modification these terms are schematically of the form

Pi(Pri-1010g R k] Z (9a¢,tlaa¢k2), Z Pk(,\({,gz—kM}¢<kl—10V3(z¢,t13w¢k)

ki=kz+O(1)€[k.k+log R] k1€[k—101log M k]
" 4
(7.48) Pr(¢<k Z X{rsZ‘kM}aa¢kl "¢r,).  Pr(d< Z )(E,SszM}ﬁb;q Vixi,)
k<ki=ko+O(1)<k+log M k<ki=ko+O(1)<k+log M

P Z XErSZ‘kM}¢<k1 - 10V¢Zl " 1)
ki€[k—101og M k]

as well as additional terms where y’ is replaced by x”’ at the expense of the operator V,,. For the latter
modification we get additional terms of the schematic form

i i
P<ki-10X(r<2-41 g10}0aby O Pr, Z P<ki=10X gty gaoyr, ViePi
kyelk-T0log R A1 ky€lk-T0log R k]

” +
¢<k1 —IOX{rsszl R40}¢k1 ¢k'
ki€[k—log R.k]

We claim that all of these terms admit good bounds in terms of the frequency square-summed L} L2-
norm, albeit possibly at the expense of a power of R or M, and that they all have the important divisibility
property. By this of course we mean that if one of the factors ¢, is replaced by n;, then we can divide time
into O(MX + RX) many intervals for some explicit K such that the corresponding square sum L!L2-norm

restricted to such a time slice is bounded by < ||5lls. The implicit constant in O(MK + RX) depends only
on [|¢lls. We quickly explain this for the first term in (7.48), the others being handled similarly. Thus write

.
Pi(dik-1010g Rk > Oaty, 0% P1,)
ki=k+O(D)elkk+log R]

(7.49) = Pi(x(r<r®02-1}Pk-1010g R.A] Z aa¢,§laa¢k2)
ki =ko+O(1)elkk+log R
Py Dol 1)
+ Pr(X{>r%02-5,P[k—101og R k] 29y, 0" Dky)-

k1=ky+O(1)€[k,k+log R]
Then to estimate the second term on the right-hand side we use the null form estimate (4.1) to infer that

||Pk(X{r>R402‘k}¢[k— 101log R.k] Z 8a¢;; aa¢k2)|'Lt1 12
ki =ky+O(1)e[k,k+log R] ”

s 2%“X{r>R402*k}¢[k—10logR,k]“L3L°°|| Z datpy, 0" | 3
" k=k+O(Delkk+log R] Lix

1

—1 2 \2 2

SR DL ledR,) D ewls,
telk—101log R.k] ki

Here we have used an interpolate between the improved L3’-bound

ity P k‘l’”L;j; SRP kPl
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and the L?* LY Strichartz estimate to get improved control over “/\/{rzz—k R}Pk¢|| 131 Finally, square-summing
+ ~x

over k € Z, we get
1

(Z (1Pt R202-4 P10 10g R Z 3a¢zlaa¢k2)”iﬁ)§ < R 'og(R) [Igl13.

keZ ki=ko+O(1)€[k,k+log R]

which of course gains smallness for R >> 1. To bound the first term on the right-hand side of (7.49) further
above, we use the local energy decay norm

1Pk G <024y B1- 10108 R 11 Z 5a¢,tl )| L

ky=ky+O(1)€lk k+log R]

$R40“¢[k—1010gR,k]“L,°;( Z Z (2“# _20”/\/{r~25}r_%vt,x¢k|“L%X)Z)

k+log R>k1>k <40log R—k

$R40“¢[k—1010gR,k]“L§1( Z Z (2k1+£ Rl eat sz¢k1”Lz )

k+log R>k1>k £{<40log R—k;

Then square summing over k € Z results in the bound

1
(D IPcprorsiduromeris Y Batiidd0)lyp)" < R log®g.-

keZ ki1=ko+0(1)>k
Moreover, the quantity
kl +¢ 20 1 2 9
> TR Vudally ) 5 Y sup o Vidall; < 1015
k1 €<40log R—k; & (€2 )
is easily seen to have the divisibility property.

Back to controlling (7.47), we now discuss how to bound the various interactions:

(i) Interactions between u" and € ;( ﬁn Jeq- These are either terms in which u" appears in one of the lowest

frequency “non-perturbative” factors such as
n _ <K. T aa )T <K
Pk((u<k710 p*) Z Pkl(P<k1_10€bounded Z (aaebounded k4) e bounded ks PkZ bounded |’
ki2>k+10 ka=ks+O(1)

where one can only place (1"
factor” such as

<K, n N\t o, n )T n
P k( €bounded,<k—10 Z P kl(P <k1=10€p0unded Z Oa(u,) 0", ) Prottly_y ).
ki 2>k+10 ky=ks +O(1)

10 — P+) Into L7 or else they are terms where u” appears in a “perturbative

For the former type of term one gets smallness for the square-summed L!L2 norm from the smallness of
u’,_io — P+ on the support of Pke wndea 10T k € Z of moderate size, while for extremely small or large k
one exploits the smallness of Py bﬁ; deq- FOT the second type of term, one may assume that the frequencies
2k 2ks 2ks applied to u" are extremely small, in which case one gains by placing the nonlinearity into L°L2

instead of L! 2 and making up by multiplying with R (which is held fixed) and then letting n — oo.

1, <K
(ii) Interactions between u'* and Pk((U(¢ )) (Zb | € ~K” <K 4 Egz <K )) Here, if u" appears in a “non-

perturbative factor” and not in a “perturbative factor”, then we exploit the pointwise decay of the expression
~ 7n,<Kx

Sk Pk((U(i ))T( Zf | %Z(Z <K 4 €§Z’<K")). In fact, observe that due to the essential frequency localization

(up to exponentially decaying tails) we infer

Jim | S (e

8

=

=0.
L;;([O,R] xR2)




U(¢"*<K*))T ~Kn,<K, ~Kn,<K,

The same holds for the remainder term > ( since €3 *(0, -) converges weakly to zero

for all k € Z. To close the case in which all “perturbatlve factors are of the form

Z Pk((U(j,«*))T( Z Kn<K. | €§Z,<K*))’
3

we achieve L!L? for the product by placing it into L°L2 and multiplying with R, and the former norm
can be bounded by placing all factors into L*LS (for cubic terms, and similarly for higher order terms) by
interpolating between L°L2 and L, with the latter norm being asymptotically vanishing (as n — o) due

1,x°
to the preceding remarks.

~ n,<Kx
If ™ appears in at least one “perturbative factor” while > Pk((U @ ))T( > B bt € “K" <k +€gZ’<K* )) appears

in the “non-perturbative factor”, we close again by using the asymptotic Vanlshlng of this term in L7, if not
all “perturbative factors” are u". If all “perturbative factors” are frequency localized versions of u", We gain
smallness on account of the frequency localization of

Z Pk((U(j(MK*))T( Z gbK]r(z <K, 4 égz <K, ))

k b=1
to frequencies > y, up to exponentially decaying errors.

7, <K
(iii) Interactions between ebolf;ded and Y Pk((U(¢ N (X2 I”K" <Ky égZ’<K*)) as well as pure self-

interactions of Y Pk((U(j( "yt (Z B ek g gk )) These are handled exactly like the preceding
case.

(RM)
Fk

We emphasize that the discussion up to this point applies to all terms occurring inside , also to the

additional terms stemming from modifying Fy to F’ /ER’M), in light of the discussion preceding (i).
(iv) Interactions involving <K+ These are the most delicate ones, but we can again get rid of most terms:

(iv.1) Interactions involving n%"<X- and at least one factor u". Assume that the factor #" is in a non-
perturbative position, and all other perturbative factors are occupied by (frequency localizations of) k<K

Write this term schematically as (u”, |, — p.)F ,((R’M)(nK”‘K*). Then we get

(Z ”(uik—m - p*)FI({R’M)(nKnKK* 2
k

L1113

%
! X<[0,RJ>) < |n

5

On the other hand, if at least one of the other perturbative factors is occupied by a e; K
ounded

~ n,<Ksy_ - . .
cally vanishing term 3, Pk((U(j( N( o Ef,’: <K 4 éK"’<K*)), we estimate it by

5

<C “nKn,<K*’ §

or an asymptoti-

1

(RM)(, Kn<K, <K. (@"<Ke) ~Kn <K, | Kn<K.\\|? 2
Wy ioFy (0 s Cpoundea» 2k U ) (Zb 1€ Y ))HL}L%([O,R]))

+ C2||nKn,<K*

5
where C; > depend only on ||eb<olin de d” ¢ provided n is sufficiently large to kill the effect of the asymptotically
vanishing terms.

Next, consider the terms where at least one perturbative factor is occupied by " and where there is at
least one factor 7><K-_If this latter factor is in a perturbative position, then we bound the term by

S C3(Hun”S’ || bounded“S)“]7 + C4(||I/tn||s, ” bomzded||5‘)||77

On the other hand, if the factor nX<K+ is in a non perturbative position and all perturbative factors are
occupied by «", then we have to complement this argument with a pure energy type bound just as in the
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proof of the bound for the lowest frequency non-atomic part in Proposition 7.9. We provide this in the next
item:

(iv.2) Choosing K and n large enough, we have for all k < u, that

Iy

~L2([0,R])

“ROO2K o glkby| | p zk(C5(|Iu”IIS> ’

< Gae eimnaedl IS s + Colls. sl 1)

< 64e_R]000_2K* 2—O'|k—bL|

for a suitable absolute constant o > 0. Here 64 will be determined in terms of 63 as well as ||u"||s. In fact,
this is much simpler than the proof of the corresponding bound for the lowest frequency non-atomic part in
Lemma 7.10. Replacing € by nX<X+ there and ¢ by

B

_ <K. U@" <K*) ~Kn<K, , -Kn, <1<*)
w=u" p*+6bounded+z( Ebk +E s
b:1

then fixing a very low frequency k < u, we have to bound integrals of the form

R
f f Pk(nKn,<K* aauTaau) i athnKn,<K* dxdt
0 R2

as well as other, similar ones. But the preceding expression is bounded by

Pk(nK"’<K*8auTE)“u)TE)th17K”’<K* dx dt‘
R2

<R|fy

L;f;([o,R])|'aa”aa”||L;>°L;+([o,R])”afP ki <= ([0.R])

and this in turn is bounded by the expression further above. Indeed, observe that the terms

<Ky ~K K. | ~Kn<K,
Z(U(l/’ )) ( n<K. EB’Z< )
k b=1

. . . . . . 000 *
asymptotically do not contribute, on account of their asymptotic vanishing property. The term §4e* 1025 p—olk=bl

comes from the initial data n%X"<X-[0] at time ¢ = 0, which can be made small by picking K large enough on
account of Lemma 7.14. The other integrals in the energy identity are handled similarly.

We can now close case (iv.1):

(iv.3) Conclusion of case (iv.1). Consider now a term of the schematic form 77<,Z' <1§*F (R, M)(u" Vu'). We
bound this by

1 1

O e S T 0 PR R O e S T TR R
k k>pn

1
o ( D It P )

k<pin

Then for the first term on the right we have

: Kn<K. s®RM), n o ml2 \2 _
r}l—>n(;lo( Z 550 Fi W, Vu )”L,le) =0,
k>pin
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while for the second term on the right, we use (iv.2) to bound it by

1
Kn,<K. -(RM), n NI 2 _R1000_oKs 3
timsup (" 7556 P, V| ) < e .

n—oo fe<ptn

(v) Interactions between nX"<%+ and ebou Jeg- 1his is the most delicate case on account of the situations
where 77%"<K- is in a non-perturbative position while the perturbative factors are all e d ;- In fact, it is in

this situation where the very precise information about 75X"<X+ at ¢ = 0 from Lemma 7.14 becomes really

important. The basic idea is to partition the time slice [0, R] x R? into a cylinder [0, R] X Bg, for some
very large R, chosen such that ebou*n deq 18 small in the complement of Bg,, and the set [0, R] x B, . More
specifically, R, will be chosen depending on R and 63, and R will then later be chosen to control the solution
on all of [0, ] — T.].

Now given R and 63 > 0, pick R, sufficiently large such that

1
( Z ”/\/ F(R M)( bounded)”il LE([O,R]XRZ)) 2 < 646_R1000_2K* ’

Kn,<K, Kn,<K,
<k—10 <k-10

while all the perturbatlve positions are occupied by € bou Jeq- Then due to the simple L% -bound ||17

(RM) . . . . : .
where 77 F, (€ baun Jeq) 1S @ schematically wrltten term in which is a non-perturbative factor

<1

~

t.x

provided K, n are sufficiently large, we get the bound
1

Kn,<K, -(R,M) 2 2 _R1000_nKs
(Z “/\’Bﬁt Malio Feo (g bounded)”L}L%([O,R]XRz) < dae :
3

Thus, consider now the region [0, R] X Bg, where n%"<K+ and e;K* Jeq INteract strongly. Then the smallness
Kn’<[(* ounae

will have to come from the factor 5 <10

. In fact, use the splitting

Kn,<K, F(R M) (e

Kn,<K, R.M
X Bg, ]7<k 10 e F( )(

Kn,<K, (R,M)
ounded) X B, n[ 10log R,k—10] F ( bounded)

ounded) + X Bg, U 101log R

Then we control the first term on the right with the estimate
1

(Z “XBR* n[I(rll(leong 10]F(R M)( ;52ded)||i}L§([O,R]xR2))2
k
(“ bounded”S)
1
+ ( Z “/YBR* n{(nlgﬁng 101 F % M bounded)||i}L§<[0,R]xR2>)2

k>K,
(“ bounded”S)

are exponentially decreasing for k > K.,

< R"(logR + K.)?||p

< R*(logR + K.)?||

(R.M)
on account of the fact that the norms ||F (€ boun de d)“ LI 2(0.RIR)

by our enforced frequency localization. For the second term on the right we use that for ¢ € [0, R]
Kn,<K, Kn,<K, Kn,<K,
|XBR* M 10108 R ')| <R ||af'7<—101og RHL‘”([O RIxr2) T ”/\/Bm 1< 10100 RO> ')”L_‘;O'

Since we may choose R, > R'® we may essentially move the cutoff X B, Past the frequency localizer (up to
exponentially decaying tails) and so picking K and R, large enough we may assume that

Kn,<K,
BR*

The first term on the right on the other hand may be bounded by

R ||at’71<<f’1<011(;gR|’LZ?\_([O,R]XRZ) S _9||’7Kn’<K*
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_R1000_Kx
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and so we obtain
1

Kn,<K, (R,M) 2 2 _R1000_oKx 9
( Z ”XBR* U IOIOgRF ( bounded)||L}L}2(([0’R]XR2)) < (546 +R ||7’]
k

In total we have obtained the following bound

1
| Kn,<K, (RM)(€<K* )”2 2
n. 10log R k bounded’||L) L2([0,R]xR?)

_ R|ooo_2k*

) C9(“ b()unded”S )

< d4e

ClO(“eljaIi*nded“S)'

Combining the cases (i) — (v) and the remarks preceding them, we finally obtain the bound

(” bounded“S) + R41(10gR + K*)%”I]

1

(¢"<K= R) m, " n<K..MR MR (u"’R)m (n) (E<K* R)W 2 2
( Z (=025 o UL -G UG €pounded k)”L} L,%([O,R]))

(7.50) < 64e_R1000_2K*

o llls ) + R¥ (log R + K.
3

Cll(” Eromnded (” bounded“S’ ||M"||S)

+D(|| bounded“S’ |u ” )”77

The bound established thus far in Step 1 of the proof of Lemma 7.21 is not quite enough yet due to the
@R o <K, MR

Kn,<K.,

fact that the terms etc. are not sharply frequency localized on account of the lack of

7,<Ki
frequency localizations of the gauge transformations U (jc ) etc. However, a straightforward Littlewood-

Paley trichotomy reveals that we get the somewhat sharper estimate

1,<Kx n <Kx
2alal(ZHPk+aD(U(¢ R) n<K MR U(<uk,R)Mn,M,R G(n) U(e R) <K.MR )H

i boundedk LILX([0, R]))

(7.51) _R1000_5Kx

N 648 Cll(” bounded“S’ Hun”S) + R41(10gR + K ) ”nKn <k ||S CIO(H bounded”S’ “un”S)

+D(|| hounded”S’”un”S)”n |

forany o < 1.

Step 2 of the proof of Lemma 7.21: The preceding step implies via the basic energy estimate (3.1) that for
M, K, n large enough the following bound holds

1
n,< 2 2
olal <¢ KR ((pKn<K. | <K. MR _ <Ko MR
Z 2 ( Z ||Pk+a U (( b()unded k) ebaunded,k ) S([0,R])
% ,

a
(7.52) < 546_R1000_21<*

Cll(” bounded”S ’ ”un”S) + R41(10gR + K*)% ||77 CIO(” boundedHS ’ ”un”S)

n Kn,<K,||3 Kn,<K,
+ E(” boundedlls* 114 ”S)||'7 sqoRp t crln s
where
lim cg = 0.
R—

This follows essentially from the basic energy inequality (3.1). In fact, the self-interactions of E;OK* inside

unded
n,<K.,M.R (n) U(e<’<* ,R) <K..M.R

¢ €pounded s V12 Observation 1.

are cancelled by G

The self-interactions of " inside ¢” ~KMR are cancelled by US;:’R)M"’M’R via Observation 2. Next, for

o k
n,<K.,M,R

the 1nteract10ns between €, OKun Jog A0 U™ M inside b we use the smallness of " — p,. on the support

of eboun Jeq (1-€. 0on bounded sets {r = O(1)}) provided all perturbative factors are occupied by € boun dod®
while in case that all perturbative factors are occupied by u" we gain smallness by exploiting the frequency
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K.

localization of e ;4 to the range k > u, up to exponential tails. In case that there are perturbative factors

occupied by both u" as well € b imdeqe the smallness also follows from the essentially disjoint frequency
supports (up to exponentially decaying tails) of these functions.

~ : M _<K. Kn.<K. (@"<Kiyt( B 2Kn<K. | -Kn<K,
Furthermore all interactions of 1M s €pondeq OF 11 with 3 Pk((U V(X &1 + &5 ))

as well as all self-interactions of the latter term inside ¢" <KMR are seen to lead to terms vanishing with

respect to [|-|ls(o,ry) as n — oo on account of their pointwise decay. Moreover, all interactions of nKn<Ks with

).

u" are seen to be either vanishing provided we let n — oo using (iv.2), or else of the form 0(”7]

Step 3 of the proof of Lemma 7.21: The preceding bound implies the following:

1
Z ”( Kn, <K* <K* )M,R _ E<K*’M’R “2 2
M €pounded k bounded k1S, ([0,R])

(7.53) < 646_R1000_2K*

Cio([legtr sealls- e"lls ) + R* (log R + K. 2|

+ Fllemmealls 1 I ™ <115 o) + el

In fact, we can use the more general observation that if f( is a family of functions satisfying

S22 S Prsafiollom) <A

N km([O,R])) -
acZ kezZ

C13(|| bounded”S ’ ”un”S)

Kn,<K,

RE

as well as 1
Jim Z 27k Z 1P k*“ﬁ“”im([am))i =0,
acZ k<pt,
then we have

7, <K R 2 1
(Z P ! f(k)]Hsk([o,R]XRz))2 < A+ el |g + o)
kezZ
asn — oo, To see this, we consider the case k = 0 and apply the usual frequency trichotomy to the expression

PO((U(¢n <K R))Tf(()))-

Consider for example the low-high case

~ 7,<K
Po(P<1o(US) ™) Pof).

Then the estimate for those parts of || - [|s, not involving any derivatives is immediate. Next, consider the
part of the norm involving the operator (J; + d,). If it falls on Py f(o), then the estimate is again immediate.
Thus consider now the expression

~ 1n,<Kx a
Po((@, + 0P 10U ) Pofin).
Schematically, this reduces to estimating terms of the form

n,<Ksx R
Po((f)z + 5r)3<¢ 10 P0f<0))
1,<Ks
Call the high-frequency factors in the bilinear expression defining B(f_ 10 ) the “perturbative factors”. Ex-

pandlng out BY <_10 =R using (7.39), we can easily deal with the cases where the perturbative factor is either

u" or a dispersive term
B
~ (¢",<K. T( ~Kn <K, ~Kn,<K*)
Z Pk((U<k ) Ex Tk :
% b=1
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In the former case, we obtain a contribution o(1) due to the diverging frequency supports of f(o) and «", and
the same applies in the latter case, this time due to the vanishing property of the dispersive terms. To see
this latter affirmation, consider a schematic term

B
(7.54) Po((8,+8r) DR ( D g + g ))po f(o)).
k<-10 b=1

Then if there is a low-high frequency interaction inside P(...) and the derivative (9; + d,) falls on the
high-frequency factor, we split the term as follows

B
Po((az +0,) Z U(¢ <Koyt ( Eﬁ’«* N EEZ’«*))Pof(O))

k<=10 b=l
B
:X{r</\}i)0((at +0,) Z ((U(¢ <Koy (Z gf;f S '?Kn <K*))P0f(0))
k<=10 b=1
B
r>A,P0((6, +0,) Z U(¢ <K, ) ( ~£(Z <K, + EIIB(’ZSK*))POJC(O))'
k<=10 b=1

Then we place the first term on the right into the (—)-component, which is easily seen to be o(1) as n — oo
for any A > 0, while we place the second term on the right into the (+)-component depending on the type
of (0, + 8,)"K” <K+ and 0, + E),)J(" <K< If the latter is in the (+)-case, then we gain smallness by using
”X{r>/\}P0 f(O)H 1o S || f(o)” g1+ Similarly one deals with the (—)-case. Since we may let A — oo, these
contributions are o(1). The remaining frequency interactions inside (7.54) are handled similarly.

Kn.<K. then the contribution is seen to be

(¢ R)
<-10 '

Step 4 of the proof of Lemma 7.21: The preceding step implies the following:
[

7, <K
Finally, if the perturbative factor in B(<¢—10 R) happens to be

bounded by cR||77 s with limg_,o cg = 0 due to the R-dependence of B

_R1000_nKx

Cis([lege gealls - "lls ) + R¥ (log R + K. <K
2

(7.55) < d4e S([o,R])C”(” bounded”s’“unlls)

+ £l

bounded S’ ”un”S )”77 + CR’MHU

where
lim ¢ =0.
R.M—oc0 RM

To get this conclusion, we need to pass from

Kn,<K. <K, )M,R <K.,M.R

(77 + ebounded,k - Ebounded k
to 77,15" <K For this it suffices to control
( Kn,<K, <K, )M,R _ L':<K,ﬁ,M,R _ Kn,<K,
77 bounded k bounded k k ’

which consists of cubic terms two of which (the high frequency and differentiated low frequency term) are
“perturbative”. But then, exploiting the precise definition of this expression, we easily see that its square-
sum norm may be bounded by cg y[r<"<K-

s
Finally, we have reached the point where we can get the conclusion of the lemma via a bootstrap argu-
ment:

Step 5 of the proof of Lemma 7.21: Conclusion of the proof via time localization. Observe that we
can choose R larger than any function of ” €mde d“ s and |[u"||s. In particular, all terms on the right hand
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side of (7.55) except the second one are perturbative. However, this term first arose in Step 1 of the
proof of Lemma 7.21 on account of the norms of certain source terms in F®&M with good divisibil-
ity properties, and propagated through the following steps. In particular, we can replace the bad factor

R*(logR + K. )2 C 10(“ Ou*n de d“ S) by a good one, such as R~!, by subdividing the time interval [0, R] into

Ml = CIO(” bounded”S )Rloo(logR + K*)loo
many sub-intervals Iy, I», . .., Iy, say, and replacing [0, R] X R2 by I; X RZ. Doing so then allows us to infer
the better estimate
_RIOOO_zK* A -1
||77 S 646 c 5(” bounded”S’ ”unHS) +R ”77

(7.56)

+ F(” hounded”S ’ ”un”S)”n + CR,M””

from which we infer
_R1000_oKx

< 0q4e

& Cr6([[€pmndealls s 14°1ls )

Progressing inductively through the intervals /;, j = 2,3, ..., M}, and each time using the improved bound
for the previous interval for the initial data, we finally infer the bound

Kn.<K. <5 4eCw(II Ermmdealls 1"lls )R (log R+K.)100 —R1000—2K=

Clg(” bounded s’ ”un”S) < 04 < 03,

if we choose R sufficiently large and 9,4 sufficiently small compared to §3. This then proves Lemma 7.21 up
to establishing Observation 1 and Observation 2, which we now do. O

”’7 S([0.R])

Proof of Observation 1. Write € = elfo[;‘n dog A0 & = #"<K-. We consider the quantity U(fS’R)(U 5% R)) . Differ-

l’ (ﬁ,R l’ €, R (;b,R ¢,R E,R €,R K

¢,R)(U(€ R))

and so since lim;_,_o, U (<S = Id, we get

S
UERUER) = [ UGB - BN a5+ 1a

We shall then simply set
G(") U(¢ R)(l](6 R)) (0 0)

@.R)
U<

To see that this works, note that by our definition of , we get

(U(j;(,R)(U(eR))T _G(n) U(eR) & = f f U(¢>(B(¢R) Bge,R))(UieS:R))T) ds dt)U(;];R)ek
+(UEP0HUEN 0. - 6" U e

Then by expanding the difference (B?’R)

P2 (S el ) < o)+ el

acz keZ

- B(;’R)) one checks that for the first term on the right we have

as n — oo, where limg_,o, cg = 0. Furthermore, split

€ = XBg, € + (1 — xBg, ek
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for some R, > R as in case (v) of Step 1 of the proof of Lemma 7.21 and write

(UEP0.NUE™ 0.0 -G )US Xy @

f f U(¢)(B(¢R) B(fR))(U(fR))T)(O r) del")U(k X Bg, €k-

Then arguing as in (v) of Step 1 of the proof of Lemma 7.21, one gets that the preceding expression satisfies

1
2 D e, ) < ot + pie

acz keZ

for K, n large enough, and the same conclusion applies to the contribution of (1 —x g, )€ for R, large enough
relative to R, K... This proves the first part of Observation I, and the second part is obtained similarly, using
divisibility for FRM(¢). O

Proof of Observation 2. We write
S S
ven = [ usnen g uen < [ g ngen g
whence we get (specializing to frequency k = 0)

0
n R
(U(¢R) U%’R)) n,M,R f U(j;,R)(Bg),R) (uA )) nMRd~

0 [
+ f (UGR — R BU R MR g,

One then reiterates in the second expression on the right, and so it suffices to bound the first term on the right.
Then recalling that u, denotes the frequency dividing between the lowest frequency non-atomic constituent
and the first large frequency atom, then if 0 < yu, we can close by exploiting the exponential decay of all
of the elfo unded.s, €t€- as well as well as the bound in (iv.2) to control r]sk for s; < py. On the other hand, if
0> wy, we split

0 —_— l‘lil —
(9.R) ( p(.R) "R\, MR 5+ _ (@.R) ( p(¢.R) (u",R)y, n,M,R ;=
ﬁ URBER — gL Ry MR g = [ UGRBER — gLRy MR g

0 -
(#.R)  p(#,R) " ,R)\ n,M,R ;~
+f UZ7(B;" — B "), ds.
Hn

The first term on the right is bounded by exploiting the exponential decay of each term in

1<K Kn,<Kx
<K, + Z F,b1 (U(¢ ) If;l;<K + ( ¢ ))T ~Kn,<K, ) + nfln <K,

Eb()unded S1 <s1 <s1 B .S

with respect to s; —p,, while in the second term one loses y,, due to the integration over §, but gains o(1) 277#»
due to the smallness of ;. O

Continuing with the Stage 1 of the proof of Theorem 7.17, we pass to

Step 2: We adjust the decomposition (7.39) slightly and thereby achieve control on the interval [R, 1] — T.].
Specifically, we replace (7.39) by

Q3 s SR V) YA (Sl ) e
k k b=1
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where we let éf”’<K* be the evolution with respect to (7.34) of the initial data

(WGP K e 0(U P e+ UG V0P o Gmngea)]
[~K,00)€ bounded k> Yt [-K,00)€ boundedk t1[-K,00) boundedk

Observe that we have included an extra low frequency cutoff P[_k ., for the data and we absorb the corre-
sponding correction into 77X <K+_ Then it is straightforward to check that

hm lim sup ||V (KK pKn<Koy R ')“LE =0

K- pseo

Now we can formulate the following important

Lemma 7.22. There is T, sufficiently large (depending on the first temporally unbounded profile) such that
if K, R, n are sufficiently large and B = B(||u"||s, 62) is sufficiently large, then we have

7

Furthermore, there exist (not necessarily frequency localized) functions H (1 )(n

(%)(J(" <Ke ¢k and g (K=K eg" <K ¢n<K:) k € Z, which are multtlmear expressions in its fre-

1n,<Ks 7n,<Ksx + .
quency localized inputs as well as in the gauge transformations U (<¢;Z ) and (U(j;l )) , and with

< (52.

Kn,<K, ~§n <K ¢n <K)

1

22 Lo E5 0y ) < ey )

acz

with c(y) = 0asy — 0, as well as with

1

32 S g o) (e )
ac’

Zzglal(Z”Pkwg(k)(ﬂK" <K g gk skm) < o™= 15 + ="

ac’Z

and correction terms Ky, k € Z with

1

> 27k Z||Pk+a/<k||s )* <o)

acz

as R, T.,n — oo, and such that

¢ <K%y _Kn <K, D~Kn<K., ~Kn<K, n<K. 2)~Kn,<K. n,<K. k
(7.58)  Ean(UY 0 05 + guo + ko) = H 5= &g <K <Ky + B <%, ¢K) + o0 (1),

where the error satisfies the relation

=

pAim Z | Z ||Pk+a0(k)(1)||itl LE([R,I’{—T*])) = 0.
a€’ k
Proof. Consider
B
.59 (D BT~ U0 (3 )
b=1

Then on the one hand this equals

- (¢n<K*) Kn <K,
DA"(U<k 10 T +§k)’

87



where (setting & ”K" <Ko ghn<k.

A for simplicity)

_ (¢"<K) " \Tn
&= (U UL ),

<k—10
K. K. B
(¢™=<") (@K T ~Kn,<K, , ~Kn<K, ~Kn<K, , ~Kn<K,
+U 10 P((U<k—1o)(Z€bk tépr )) (Zebk tépy )
b=0 b=0
@ n<K. _Tn_ B (@"<Ko)y i ~Kn <K. | ~Kn<K. ~Kn,<K.
+ Ul 10 (¢k — - Pk((U<k 10) ( t €k )) ~ I )

is of the form «; + g as claimed. In fact, for the first difference term on the right, it is of type «; due to a
small variation on Observation 2 in the preceding step, while for the second difference term on the right, i.e.

B
(7.60) U B Y (D el ) - (Y v el
b=0 b=0
one observes that it coincides with
B
(7.61) ZPk ~Kn,<K, + Pk~gz <K) (Z gflzz <K, + gl[3<’z,<K*)’
b=0

Kn,<K, EKH<K ¢n<K)

up to the sum of a term satisfying the desired bound for i and a term of type g (7 ™

To see this, note that one can write the term (7.60) schematically as

(@Kt ~Kn <K, | Kn<K,
ViUgio) ( tepi )
b=0
)) using th for y¢")
<k-10 g the equation for U, _ ",
iKm<K: and & ~K" <K+ in combination with the factor ~§Z <K+ to be included into the term 8-
The precedlng difference (7.61) also satisfies the desired bound for «; as one easily sees after applying

the operator Py to the equation (7.34). Finally, for the third term in the above formula for £; we note that it

and expanding out V x(U one retains only those terms involving

arises due to the nonlinear interactions inside ¢"’<K", and its contribution to the norm controlling « is easily

seen to be bounded by (” + H 2) in the limit R, T, n — oo .
Getting back to (7.59), on the other hand we can write this as

B
( Zkn.<K. ~Kn,<K*))

bk + €

n,<Ks«\_ . 1
lﬁAn(U(‘b YK _ g o K

<k-10 %k <k10k_
b=0

@K n<k, W n
(U<k 10 ¢ - U<k 104 Z)

(7.62)

(¢"<K) " <K, W " W"NT W n (¢"<K) " n,<K.
(U<k 10 ¢ )_ (U<k 10 Z) U</tn a’l(’W(”n)(Uﬁln) aQ(U<k 10 Z U<k 10 ¢k )

As for the last term on the right, expand it out as

n —_ n,<Kx K.
X P00, U

7, <K*)

=y

<Hn

Aa lnw(un)(U(u ))Taa((U(Jkn)lO U(<¢;< 10 )uk)

n, <K*)

(t,low(un)(Ugtn))Taa(U(j( 10 (¢" gk M_Z))
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Here the first term on the right is easily seen to be of the form

1n,<Ks
ib:z,?ﬂa low(“n)(Ug:zj)Taa((Uiuk)10 - U(<¢;< 10)) )

— U(M

<ftn

(7.63)

KnK)

Mo ton W)U 0 (VG20 - UG

k
<k=10 ~ Y<k-10 )”Z) +0®(D),

where the error 0¥(1) has the claimed vanishing property provided T, R,n — oo, and similarly we have

wWHONT n,<Ksx _
U(<L:1nﬂa IOW(MH)(U(qzj) i 3Q(U(<(i 0 )(¢n <K, u”))
n,<Kx
= U A ion YUY 0 (U 7 )
(764) ( ( ) T (¢ *) (¢n <K*) K K. (¢n <I(*) T K K.
+ U<u a, low(un)(U , ) 6a(U<k 10 P Z (U<k 10 € n ) (U<k 10 ) n ) ))
+ o(k)(l),
Of the preceding two expressions (7.63) and (7.64), the most delicate case appears when the derivative 9*
in (7.63) falls on the term u}, since then smallness has to come from essentially a factor of the form ﬁKI': <1’0(
~Kn,<Kx
arising essentially from U(Mk)lo -U (<uk +1n 0 ) . Dealing with this situation requires an energy-type bound for

nf” <K for frequencies k < u,, analogous to Lemma 7.10. In fact, making a suitable bootstrap hypothesis for

the very low frequency part of nK” <K and proceeding as in the proof of Lemma 7.10, we infer the following
bound
Vet |2 < 01 - 27700,

where o(1) vanishes as n — oco. Using this and, as usual, splitting into the cases k < yu, and k > u,, one
easily infers that as n — oo,

1
KnK) 2

Z 20'“'(2 ||Pk+a(Ug:,,,)ﬂa,low(un)(U(u ))Tad((Ug(_)lo - U(<uk +1770 Ju k))”L (R-T, ])) =o(1)
a€”z k

On the other hand, the first two lines on the right in (7.64) cancel against a corresponding term obtained
when expanding

(@K n<K, (") _ @
O(U 510 8~ ) —0O(U 2 gu ) U<k 10

In fact, we get

)F (¢n <K*V ¢n <K) U<k loFk(u Vtxu )

1,<Ki u
U1 Ful@" 8 V1K) — UG o Fuu”, Vi)
7n,<Kx n,
= UY) A o (UG 0" (U 10) <Koy

(7.65)

1n,<Ksx 1n,<Kx -
+ Uiijﬂa,low(un)(l](u ))Ta"P Z (U(j( 10) ~K” <K. + (U(jc—lo ))T Kn,<K, )

H((]i))(~Kn,<K*’ggn,<K*,¢Kn,<K*) + H((]z))(~Kn,<K*’¢Kn,<K*) + O(k)(l),

where the error 0¥)(1) is again as in the statement of Lemma 7.22. In fact, with the exception of the second
term on the right in (7.65), all terms on the left in (7.65) involving at least one perturbative factor of the form

(¢"<K*) ~Kn <K,
Z(U<k 10

are seen to be of the form 0®(1) by using Lemma 7.20. The same applies for all terms involving at least one

perturbative factor . For the remaining interactions, the terms of the form HU(7Km<K: ghn<K: gKn<K.)
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arise when at least one of the perturbative terms in the source is of the form 775 <K-

bative factors are of the form .
(¢™= *) Kn,<K*
Z P (U<k 10 ,k )’

while the terms of the form H (2)(~K" <K ¢K”’<K*) arise when all perturbative factors are of the form
Z ( ¢n <K*) } Kn <K,
<k— 10 ’

Now a priori in expressions of the latter kind the norm of the expression will also depend on HQSK” <K

while all other pertur-

g pro-

vided a derivative falls on the factor U~ In this case we re- express ¢pX"<K using (7.57). On the other

<k-10

hand, all terms in H (2)(~K" <K , pK<K+) where no derivative lands on v <k 10) are left unchanged. This pro-

cess can be continued, absorbing terms either into H(7Km-<K- f" <K pKn<K+) orinto H(z)(J{” <K gpKn<Ke)

or into 0®(1), unt11 all remaining terms in H(25"<"*, ¥"<K-) in which a derivative can still potentially

fall on a factor ( U )) can be estimated purely in terms of Strichartz norms of its inputs. Then it is easy

(¢n <K*)
<k—10

relation (7.58) and a straightforward bootstrap/divisibility argument then yields the bound

<k-10

to see that it suffices to control ||Vt,x(U )T” [ 2+» Which we do by energy conservation. This proves the
t X

< 07,
I 1. 02
provided we have picked R, T, and n sufficiently large. In fact, to pass from the bound on {U (j;: 1[;* )nf" ke “hez
to the bound for 75<K_ one argues exactly as in Step 3 of the proof of the preceding Lemma 7.21. O

At this point, we have shown that under the hypotheses of Theorem 7.17, we control the solution ¢™<X:
for n sufficiently large on the full interval [0, #{ — T.] for a fixed but sufficiently large T'., and that we in fact

obtain bounds on H *|lg Which are independent of K. and n.

Our aim now is to continue the preceding process on the next large time interval [£] — T, £ — T1.] for T}
sufficiently large.

Stage 2: Control of the solution on [f{ — T, t; — T1.]. Here we want to repeat the method of Stage 1 by
replacing the initial time ¢ = 0 by the initial time # = 77 — T.. A basic technical difficulty we face here

is that we first have to introduce the analogue of ebou* dea> S8Y € b’g ' ndeq» DY suitably modifying the function

(@) T~Kn <K. _ —m i i
>k (U )& , 1.e. the profile with b = 1, which concentrates at time 7 = #{ — T. For this we will also

<k-10
have to take 1nt0 account the perturbation 77X <K+ which, while small in energy, may lead to a significant

effect on the L7’ -norm. To construct the profile, we more or less proceed as in the proof of Lemma 7.14, but
the following lemma simplifies things.

Lemma 7.23. The function V,, (ipKn<K (#] — T, ) vanishes weakly in L)ZC(RZ) asT.,K,n — oo,

Proof. This is a consequence of the identity (7.58) in the preceding Lemma 7.22. Writing the flow of (7.34)
associated with the data (0, f) at ¢ = 0 in the form

Uan(O(f),

we have

(¢"<K*) _Kn,<K, ~Kn<K, =Kn<K. n<K,
( <¢;{_10 nkn< +g(k)(77 n,< EBn< ¢ n< ))

1-T.

71,<Kx K K K K* K K , K*
:SA”(( (<¢k 10)'7kn< + g (@ g 9 ))[0)

11-T.

!

1 ~K K* * 2 “’K» K* i) *

e f Ut = ) <5 2K <) o B (™, ")) (s, 0 s+ (D),
0 17
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where the error vanishes (in the energy sense) upon letting 7., K, n — oo. Consider the principal contribution
to the last integral, which is the expression

t
[ vste= (R )

n,<Kx
Recall that H(%) (~K"’<K* ¢™<K) is a multilinear expression with 3, (U(j{_lo))Jf X<k in its “perturbative

=T

factors”. In turn, eg’z <K can be expanded as a sum of free waves associated to (7.34) up to an arbitrarily
small error f” <K+ and each of these free waves concentrates at a time scale diverging from i — T.. This

means that up to an arbitrarily small error and upon letting n — oo, the function

[ vat- (R e )5 s

converges in the S-norm to a solution of (7.34) concentrating away from ¢ = 7| — T, and in particular we
have

1-T,

!
2)/~ . .
Vi f Un(t - $)(HG) @5 ¢"))(s, 0 ds|, = 0.
0 tl_T*
As for the remaining integral
!
f Unn(t = s)(Hy (75 &<, <K )Gs, )ds|t,,
0 _

inserting the principal term for 775" <K+

!
ﬁ UAn (l _ S)(H((]E))(~Kn <K, n,<K*))(s’ ) dS,

results in a similar term, again vanishing weakly at # = 7] — T’ by the same kind of argument, and one winds
up with another error term stemming from substituting

t
f Ui - (Hg;;(nm <K ke 5K, ) ds

, which equals

and H

for 77X"<K_In light of the smallness of || ¢ this term has much smaller §-norm than

f Unn(t = 5)(H) (75 g™ <5, ¢<5) )(s, ) ds.
0

Repeating this argument a finite number of times leads to a sequence of terms vanishing weakly at 7 = #{ =T,

up to an arbitrarily small error, which yields the claim. O

We now construct a good bounded profile €, blilm deq At ime 7 = ¢/ — T, Departing from (7.57), we get

upon restriction to a suitable subsequence with respect to n,
7n,<Kx K K. .
(Z P, U(¢ ) 1Jl;l,< )+ 77Kn <K. | Pl*)

with the error vanishing as n — oo in the sense of L} . Here py. € S™ may be set equal to lim,,—, u" (] —
T.,0), the limit existing upon passing to a suitable subsequence. In fact, the remaining terms

B
Zpk((U(zpn«*)) ( Z ~£(Z <K, 4 EEZKK*))
k

b=0, b#1

=T,

¢n,<K*

o (1)

11-T.

fn-T.

all converge to zero in L7 as n — oo due to the fact that we have essentially (up to exponentially decaying
tails) localized their frequency supports to compact intervals, and each of them converges weakly to zero at
time ¢{ — T, as n — co.
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Now due to the essentially compact frequency support of the expression, upon letting K, n — co along a

suitable subsequence, we can find €& <K. such that
1bounded

(@"<F) T~Kn <K.\ | ~Kn<K, ~<K,
(Z P (U ) ) 7 " ) €lbounded #n-T

NN

t’f—T*

and also strongly in H, “ , in particular in L;? . In particular, it follows that & &
it is natural to set

1 m
lbounded + p1. maps into S™. Thus

6<K* L 5<K*
lbounded|r}-T., *™ “lbounded

tn—T* + pl*y

=Kn,<K,

and to pass from (7.57) to a new decomposition w1th a new error term 7 , Wwhere now efbls; deq dENOLES

the nonlinear evolution associated with the data 61 bonnded
ounde

o1,
B
(7.66) O = = Pl € pniea * Z P"( v <K*))T( Z YA )) A
k b=0, b#1
This is the analogue of (7.38) which we expect to be valid on a large but finite time interval [#] — T, ] —

T.+R1], say, where R| will now depend on the scattering propertles of e just as R before was chosen

unded’
depending on the scattering properties of the evolution of € K. Also, comparing (7.66) and (7.57), we

b()unded

have

= ¢" <K*) ~Kn <K, ~Kn,<K. _ =<k

n Z ( 1-T th 1-T. lhounded
Then by definition of "]< bonndeq W€ DAVE 1My o ||17 t’f—T* e = 0, which is analogous to the property of
7%%<K< in Lemma 7.14. Also, note that for any R, > 0 we have

=Kn,<K. —
fim V2.7 n-r 2 = O

We further observe that due to Lemma 7.23 and its proof we have the following. Denoting by f]ﬁ')‘:K* the

solution of the approximation to (7.58) given by

71, <K
IjAn(U(¢ )~Kn,<K, + g(k)(ﬁKn,<K ~Kn,<K, ¢n,<K*))

(7.67) <k=10 Ty (1 €p
’ _ (D /~Kn<K, ~Kn <K, n,<1<* 2) ~Kn <K, n,<1<*
= Hy (™ &7 ¢ 0) + Hig (877 )

with the same initial data as 7X"<K+ at t = R, then f](Kl’)’ <K+ obeys the same bound as 77X<K+ and moreover

we have

li \Y =0.
R,T*,}(I,Ir}—)oo “ tx(rl(l) X
We also note that
. ~Kn<K. zKn<K, _
R,Tj}{‘,L ”’7(1) —n 1 = O-

At this point, we briefly pause to make an important

Remark 7.24. Note that at this stage of the proof of Theorem 7.17 we have already introduced three different
perturbation terms nk<Ks pKn<K: " qnd pKn<K: - As we intend to iterate the preceding procedure on each
of the time intervals [tZ — Tpu, tZ Wi Tpr1:), b=1,2,..., B, we have to be careful that this process does not
result in accruing more and more errors, i.e. we have to ensure uniform smallness of these perturbations.
The idea here is that we have the parameters R, T, K, n and analogous ones for the later stages (B in total)
at our disposal, while B will be chosen as already mentioned only depending on an absolute small constant
02 as well as on ||[u"||s. Thus, by eventually picking R, T, K, n etc. sufficienty large, we will be able to ensure
that passing from one error to the next will be small even when re-iterated B times.
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At this stage, we have the tools to address the preceding remark and continue the solution, thus far
constructed locally in time, in a global fashion. In fact, working with the presentation (7.66) on an interval
[#] = T., 1] + Ry] for some very large R; (whose choice will depend on the scattering properties of efblg*;l ded)
and essentially repeating the arguments in the proof of Lemma 7.21, picking n large enough, we can extend
the solution in the form (7.66) such that ||ﬁ < §,. Moreover, we still have the relation

~T..f'+R\])

_ ZKn,<K.

. ~Kn,<K,
lim ”V”X(n . #+R n

RT,K,n—00 M

z7+R1)“L§ =0

Then we construct the solution on the interval [#] + Ry, ) — T1.] for Ry, T, sufficiently large, by repeating
the procedure in Step 2 of Stage 1 before. More precisely, we modify (7.66) to

@K = @" <K*) gKn<K. | -Kn<K. ZKn,<K.
(7.68) =i +ZP(U ( S |
b=0
[¢ + Ry, 2 — Ty.], wh K. hash laced by th ion 3, (U ™) ekr <K wh
on 1, — T1.], where now 51 boundea 1128 been replaced by the expression 3 , where
"]KZ <K solves (7.34) with data at time 7 = 1] + R, given by
gKn.<K. (¢"<K*) <K, (¢™<K+) <K
lk [tl +R ] - ((U Elbounded f+R1’ a’(U lbounded)lt’ll+R1)'
Then repeating the arguments in the proof of Lemma 7.22, we infer the global bound
ZKn,<K.
|7 s ra-Ty) < 02
Moreover, importantly, we also obtain that
: ZKn,<K, _ , _
R,T*,R|,1%?:K,n—>oo |7 Ty PHRLG=TD) 0
Combining this with our earlier considerations, we observe that the error function consisting of 7%<K- on

[R, ] = T.], ikn<K: on (£} =T., 7/ +R1] and nK" <K+ on [£] + Ry, &5 —T1.] differs from nK')‘ <K (which we recall
solves (7.67) and had its data prescrlbed at time ¢t = R) by an error with respect to || - ||s, which vanishes as
the parameters R, T, Ry, T1., K,n — oo.

However, on account of the fact that € ”K" <K+ satisfies uniform S-bounds (its energy being uniformly
~Kn,<K.
ay

interval on which ¢™<X+ is defined, and picking B = B(||u"||s, d») large enough, we can ensure that

bounded), the equation (7.67) can be solved for via a simple divisibility argument on any time

< 03.

” My
We can then repeat the preceding procedure and prolong the solution beyond #; — T'., until after B steps
we have a global solution. Of course at each of the B many steps, we have to adjust the parameters
R, T.,R1, T, K,n etc. to preserve the required smallness of the error. This proves Theorem 7.17. O

7.5. Conclusion of the induction on frequency process. In the previous subsection we established that the
data IT_,1 100(r,)¢"[0] can be globally evolved with uniform §-norm bounds under the assumption that all
profiles have energy strictly less than E,,;;. We may now continue this induction on frequency process and by
proceeding as in Subsection 7.3 obtain that the data TT_ 2_jq,g,)#"[0] can be globally evolved with uniform
§-norm bounds. Then we “add in” the second frequency atom Pp2_joo(r,) 2 +10e(r,)¢" [0] In the sense that
by proceeding analogously to Subsection 7.4 we may establish the global evolution of the corresponding
geometric data IT_ 2,0, ¢"[0] with uniform §-norm bounds under the assumption that the associated
profiles all have energy strictly less than E.,;;.

We may continue this procedure Ay many times and establish the global evolution with uniform S -norm
bounds of the essentially singular sequence of data {¢"[0]},>1, which would however be a contradiction,
unless the sequence {¢"[0]},>1 is composed of exactly one frequency atom that consists of exactly one
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profile of asymptotic energy E.;. Thus, in view of Theorem 7.17, we may assume after rescaling so that
¢"[0] is essentially supported at frequency ~ 1, that we can either write

(769) H<K*¢n [O] — ¢;(f,:ndgd[0] + nn,<l(* [0]

with limK*,n_,oo”n"‘K* [O]”Hle2 = 0, or else we have
X

,<Kx
(7.70) Mk, ¢"[01 = )" (UG )'S ¢ =)@ [0DI0] + 17><5[0]
keZ
with lim,, .« |t,| = +00, where S (-) now simply denotes the free wave propagator associated with the standard
d’ Alembertian on R!*2, and we again have limg, ;- 00 ||17”’<K* [O]“HI.XLZ =0.

In any case we infer that the limits

Droundeal0] = Jim | $pomaeal0) #10] = lim =5[]

K,—
exist and satisfy the “criticality condition”

Elpvoundeal = E[¢] = Ecrir.
We also observe that we have <% — 0 in L. as n — oo after passing to subsequences.

In the next two propositions we infer that we can actually extract a minimal blowup solution from either
scenario.

Proposition 7.25. Assume the situation given by (7.69). Then the wave maps evolution ¢poungea(t, X) with
lifespan I associated with the energy class data ¢poungeal0]: RZ > TS™ satisfies

ms l;f]c, |es0unded ”sqn Ty = T

In particular, Ppounded(t, X) is a minimal blowup solution.
Proof. We must show that it holds that

lim sup = +00.

K—o0 [T\ Tyl ”(pboundedHS([ThTz])

Suppose not. Then all evolutions ¢ boundeq €X15t globally in time and we have that

lun sup ||¢bounded||S[R] < 0.

This uniform bound on the evolutions ¢;0u*n deq 1Mplies by Lemma 7.15 that they have uniform scattering
behavior. Given y > 0, there exists a decomposition

<K —
¢bounded (¢bounded ) 1 (¢b0unded )2
and some R, > 0 such that

||(¢b0unded) ||S[R] <% ||(¢b0unded)2||L;’“L§°[(—°0,—R7]U[Ry,+oo)] <7

We can then show, following Stage 1 in the proof of Theorem 7.17, that we obtain uniform (in large enough
n and K,) bounds on ||77 ’ . This in turn contradicts the fact that for any K, large enough, we must

= 400 on account of Lemma 7.4 and the fact that {¢"},>1 is an essentially singular
sequence which is essentially supported at frequency ~ 1.

In order to obtain the desired control over <K+, we split R!*2 into the regions [-R,, R,]° x R? and
[-R,,R,] X R2. To control 77K+ on the former region, we use a (much simplified) variant of the argument
for Lemma 7.22. To handle the latter region, we argue as in (v) of Step 1 of the proof of Lemma 7.21,

. <K,
replacing €, " . there by ¢b0und€d -
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To conclude, we have

Proposition 7.26. Assume the situation given by (7.70). Then there exists an energy class data pair
#[0]: R? — TS™ with E[$] = E..iy and such that denoting its wave maps evolution with lifespan I by
é(t, x), we have

sup  1Blls(7,,1.1) = +00.
[Tl,Tz]CI

In particular, §(t, x) is a minimal blowup solution.

Proof. Assume without loss of generality that t, — +o0 as n — oco. We reduce to the situation in the
preceding Proposition 7.25. To begin with, using the argument of the proof of Lemma 7.22, we see that
there is a large C > 0 such that the wave maps evolution of the data ¢™><X-[0] = Il.x ¢"[0] exists on
(=00, 1" — C] for any large enough n. Then by a simple compactness argument, exploiting the frequency
localization up to exponentially decaying tails, we have that

¢ = €1 — = [0]
x L2 . We also have that the limit
loc

#[0] = lim $<%:[0]

00

asn — ocoin (H) NLY.

exists in H! x L2. We now claim that this is the desired minimal blowup solution. In fact, we can write
¢}’L,<K* [tn _ C] — (”]S<K* [0] + ﬁn,<1(* [t}’l _ C],

where 77<K«(#" — C) — 0 both in L;° as well as H} , and also 8,77>~%:(" = C) — 0in L} . But then
assuming that the evolutions of the ¢<X+[0] satisfy uniform (in K.) global-in-time S -norm bounds, we obtain

a contradiction exactly as in the proof of the preceding Proposition 7.25. O

Finally, we observe that the minimal blowup solution constructed in the preceding Proposition 7.25,
respectively in Proposition 7.26, has the following crucial compactness property whose proof follows exactly
as in [6,7], see also Corollary 9.36 in [17].

Corollary 7.27. There exists a non-trivial, radially symmetric, energy class, minimal blowup solution
¢°: I xR> = S™ to (WM) of energy E..i; and with maximal interval of existence 1. Moreover, there
exists a continuous function A: I — (0, 00) so that the family of functions

(6™, A0 ™), A0 8,67 A0 ™)z 1€ 1)

is pre-compact in H! x L2.

8. RIGIDITY ARGUMENT

In this last section we rule out the existence of a minimal blowup solution ¢ as in Corollary 7.27. To this
end we closely mimic the rigidity argument of Kenig-Merle [7] as implemented in [17] for energy critical
wave maps with H? target. We emphasize that the momentum vanishing property of the minimal blowup
solution is here an immediate consequence of the hypothesis of radial symmetry.

8.1. Preliminary properties of minimal blowup solutions. We begin by stating some standard properties
of the minimal blowup solution ¢*. As in Corollary 7.27, I denotes the lifespan of ¢ and we set I* :=
I N[0, o). The finite speed of propagation for wave maps gives the following lemma.

Lemma 8.1. For given € > 0, let M > 0 be such that

2
1
(8.1) f = D 102470, )P dx < &.
=M 2 £
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Then
2

1
(8.2) f =) 10,07t X) dx < &.
[x|>M+t 2 aZ()

forallteI*.
Next, we recall the following conservation laws for wave maps.

Proposition 8.2. Let ¢ be an energy class solution to (WM). Then the following conservation laws hold.

e Energy conservation

d 1<
8.3 = =Y 10,0 dx =0
(8.3) dtfﬂwg o dx

o Momentum conservation

d _
(8.4) —f 90 dipdx =0 i=1,2
dt RZ
o Weighted energy
d 2 1
(8.5) & L D ez 0. 0f dx = - [ asiosdxoow) i=1.2
dt R2 2=0 2 R2

o Weighted momentum monotonicity

J 2
(8.6) 7 j}; Z;XM(X/R)&W@:'(MX = - L . 10:¢I dx + O(r(R))

where ¢ is a fixed bump function which is equal to one on {|x| < 1} and
2

FR) := f 026> (0, x)* dx.
[x|>R (120

Proof. For classical solutions to (WM) these identities follow from Stokes’ theorem together with the fact
that the stress-energy tensor is divergence free. By Definition 7.6 one can then pass to the limit and obtain

the result for energy class solutions.

By virtue of Corollary 7.27, the energy class, minimal blowup solution ¢ satisfies some important
properties, which we present in the next lemmas. In the case that I* is finite, we have the following lower

bound for the continuous function A(#) of Corollary 7.27.

Lemma 8.3. Assume that I'* is finite. After suitable rescaling, we may assume that I = [0,1). Let A : It —

(0, 00) be as in Corollary 7.27 and let us denote the pre-compact set in H! x L2 therein by K. Then, there
exists a constant Co(K) > 0 such that
Co(K
o( t) < A()

(8.7 0<

forall0 <t<1.
Proof. The proof follows along the lines of Lemma 10.4 in [17]

In addition, under the same assumptions of Lemma 8.3 we have the following support property of ¢.
Lemma 8.4. Let ¢* as in Corollary 7.27 with finite lifespan. Then there exists xo € R? such that

supp(¢=(1,-)) € B(xo, 1 — 1)

forall0 <t<1.
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Proof. The proof follows as in Lemma 4.8 of [7] by use of Lemmas 8.1 and 8.3. O

We finally state the vanishing momentum property which we get here for free by the very definition of
radially symmetric wave maps.

Proposition 8.5. Let ¢ as in Corollary 7.27. Then
(8.8) f 0,020, dx =0  i=1,2
R2

for all times in I'.

8.2. Rigidity I: Infinite time interval and reduction to the self-similar case for finite time intervals.
The final goal of the rigidity argument consists in proving the following theorem.

Proposition 8.6. Let ¢ as in Corollary 7.27 with lifespan I = (=Ty, T1). Then, one cannot have Ty or T
finite. Moreover, if A(t) > Ao > 0 for all t € R, one necessarily has 0,¢> = 0 fora =0, 1,2.

In this subsection, we will provide the proof of Proposition 8.6 for the infinite time case and then reduce
to the self-similar situation for the finite time case. The proof of Proposition 8.6 in the finite time case will
be concluded in the next subsection.

Proof. [Proposition 8.6: infinite time case] We will first treat the case T = co. Assuming that d,¢> do not
all vanish, we extract a non-trivial finite energy radially symmetric harmonic map into the sphere, leading
to a contradiction. Following the proof of Lemma 10.9 in [17], which crucially hinges on the geometry of
the target, we show that there exists @ € R such that

(8.9) f f 10,6 (t, x)* dxdt > a > 0
I JR?

for all intervals 7 of unit length. Suppose not, then there exists a sequence of intervals I, := [f,, ¢, + 1] with
the property that t, — oo and

1
(8.10) f f 10:6%(t, x)|* dxdt < ~.
I, JR2 n

Then there exists a sequence of times s, € I, such that ||0;¢*(s,, )|l — 0 as n — oco. By the compactness
property of Corollary 7.27, the family of functions

(6™ (s Ay, A5 0,8 (5 As) ™)
is pre-compact in H! x L2. Up to a subsequence, there exist limit functions ®* such that
Asn) ™00 (5, Asn) ") = Be®"()
strongly in L2 for @ = 0, 1, 2. Pre-compactness and standard perturbative arguments ensure that there exists
some non-empty interval /* around zero such that
Asn) ™00 (s + 1(50) ™" Als) ") = B @7 (2,)
inL;s (I"; L*(R?)) with ®* being a radially symmetric weak solution of (WM) on I*xR?. We now distinguish
two cases:

o there exists a sequence of times s, € I, such that {A(s,)} is bounded: since A(t) > Ao > O, there
exists a non-empty time interval I C I* such that s, + A(sp)~'I c I, for each n; then (8.10) implies
that [; [0, 16,®" (¢, x)I* dxdt = 0 whence §,0"(,-) = 0 forall 7 € I.

e {A(s,)} is unbounded for every sequence {s,} with s, € I,: in this case we use a crucial Vitali
covering argument as in [17] to arrive at the same conclusion; we write for each n

I, = U [s - /l(s)_l, s+ /l_l(s)] NI,
sel,
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and by the Vitali covering lemma, we may pick a disjoint subcollection of intervals {/;}s;, with
I, = [s —As)7 L s+ /l‘l(s)] N I, for some subset J, C I,, with the property that

25|1S|z1;

sed,

it follows that, by definition of [,,, we may pick a sequence of times s, € I, with the property that
f,m 10,0 (t, -)||§§ dt = 0(A7'(s,)) and in particular

1
f 1Cez,8:6%) (s + 1A(s) ™, D2, dt = o(1),
-1 x*
but then, passing to a subsequence, we can extract a limiting function ®* from
ACs2) ™' 0,8 (s + 1A(50) ™", ACs) ™)

with the property that 9,0*(¢, -) = 0 for all ¢ in the lifespan of ©*.

Hence, in both cases we have deduced the existence of a radially symmetric weak wave map ®* : R**! — §?
with the following properties

(9;(1)*:0, tEI*

and

2
D 18072, # 0.
a=1 !

This leads to a contradiction since there do not exist non-vanishing finite energy radial harmonic maps into
the sphere, see for instance [31]. We can then conclude that (8.9) holds. The remainder of the argument
hinges upon the weighted momentum monotonicity (8.6) combined with the following property: for any
given & > 0, by pre-compactness of the orbit of ¢* in H! x L2 there exists R(g) > 0 such that for all € I,

f )V, A0 ) dx < s
{Ix=R(£)}
Changing variables and using the key assumption A(¢) > Ap > 0, we can conclude that for all ¢ € I,

f Vg @ 0P dr <e.
(=52

Using the notation R(g) := I%s), then by the weighted momentum monotonicity identity (8.6) integrated over
a sufficiently large time interval [0, T], T > 1, we get for arbitrary € > 0 and corresponding R = R(¢) that

T T T
= - f f 10,6 (t, x)|* dx dt + f O(r(R)) dt,
0 0 R2 0

rR) = f VL (0P dx < &

[xI>R

g1 [ eRiae™) 0,67 dx
R2

where

by our choice of R. But then using (8.9), the right-hand side of (8.11) can be bounded from above by

T T
- f f 10,67 (t, ) dx dt + f O(r(R))dt < —(T — Da + CTe —> —oo
0 R2 0

as T — oo, if we just choose € > 0 sufficiently small so that Ce <« a. At this point € > 0 and correspond-

ingly R are fixed. But then we see that the left-hand side of (8.11) is bounded by RE,,;; and so we get a

contradiction by taking 7' > 1 sufficiently large. O
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Having concluded the infinite time case, we turn now to the proof of Proposition 8.6 in the case 7 < co.
Similarly to [7], [17] and [16], the first step consists in reducing to a self-similar blow-up scenario. As
before, we can assume without loss of generality that 7 = 1. We recall from Lemma 8.3 that

K
(8.12) A > C;O( t), 0<r<1,

and from Lemma 8.4 that
(8.13) supp(¢(1,)) € B0, 1 —1) and  supp(@,¢™(r,)) € B(0, 1 - 1).
Then we may prove the following upper bound for A().

Lemma 8.7. Let ¢™ as above with T, = 1. Then there exists C{(K) > 0 such that
Ci(K)

(8.14) A < ==

forall0 <t < 1.

Proof. We adopt the same strategy as in the proof of Lemma 10.11 in [17] (see also Lemma 8.12 in [16]).
Suppose that (8.14) fails. Define, for 0 < ¢ < 1 the following functional

2
(1) = Z 11;2 x;j(0;9(t, X)) 8,6%(1, x) dx.
=1

The weighted momentum monotonicity (8.6) allows to compute that

() =- f 10,61, 0| dx.
R2

Next by (8.13), we see that z(f) — 0 as t — 1, hence we can write

1
) = f f 10,:6%(s, 0" dxds.
t JR?

At this point, we need to distinguish two cases: either there exists @ > 0 such that

1
f f |06 (s. x)|2 dxds>a(l-1), 0<t<l
t R2

or else, there exists a sequence {¢,},, C [0, 1) with 7, — 1 such that, denoting J,, = (¢,, 1), it holds

IJnlff |6,¢5°°(s,x)|2 dxds —» asn — co.
Jn JR2

In the first case, we get a contradiction by proceeding as in the proof of Lemma 5.6 of [7] and using therein
the vanishing momentum property of Proposition 8.5. In the second case, we argue similarly as in the proof
of Proposition 8.6 for the infinite time case: by a Vitali argument and by pre-compactness one can conclude
the existence of a non-vanishing finite energy radially symmetric harmonic map into the sphere which gives
a contradiction (cf. [31]). O

Combining the previous lemmas we can reduce to the self—similar scenario. Indeed, we have the follow-
ing.

Corollary 8.8. Let ¢ be as above with T = 1, then the set
{(1=00a¢™@.(1=1)) 1€ ], a=0,1,2]
is pre-compact in L2(R?).

Proof. For the proof we refer to the proof of Proposition 5.7 in [7]. O
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8.3. Rigidity II: The self-similar case. In this section we deal with the finite time case and we carry out
the last step of the Kenig-Merle rigidity argument by excluding the possibility of self-similar blow-up. In
particular, we rule out the existence of a minimal blow-up solution ¢ as in Corollary 8.8. For the sake of
simplicity we drop the superscript co and denote the minimal blowup solution from Corollary 8.8 just by ¢.
As in [20], [7], [17], we introduce the self-similar variables
y:lit, s=—log(l—1), 0<t<]1

and

#(5,5,0) = (1, x) = p(1 —e™*,e7%y), 0<s< 0.
By construction, Vs,yg(s, -,0) is supported in {y € R2 : [y| < 1}. Next, for small 6 > 0, we also define

X
= = —log(1 - < 1
y oo 7 s og(l+6-1, 0<t<

and set
(8.15) #(5,9,0) =t x) =p(1 +5—e*,e%y), 0<s< oo

Note that ¢(s, y, ) is defined for —log(1 + 8) < s < —logé. By standard computations, we can write the
wave maps equation in self-similar variables as follows

~ 1 _ _ _ o
B16)  BF =+ (V- p0Vs80) -2 V06~ 9+ (106 +y- v, - |v,0")

where p = (1 — [y[%)~"/2. The following lemma collects some basic properties of ¢ inherited from ¢.
Lemma 8.9. For fixed 6 > 0, we have for all 0 < s < —log ¢ that
o supp(d,h(s,-,6) c{yeR2:y|<1-6} a=0,1,2
. ﬂ% (|Vy5(s w0 +10:8(s,, 5)|2) dy<C
Iy 0& |8[,¢(s y,6)| log(1 e |2) dy < Clog5
o 20 s [0adls.y ) (1-1P) dy < C5V2,
Proof. The properties are obtained by direct calculation. See also [7] and [16]. O

As in [17], we introduce the following Lyapunov functional

E@) =5 [ [0 19 -l w.3] (1-b) " o

which satisfies a suitable monotonicity property stated in the next proposition.
Proposition 8.10. For 0 < 51 < sy < log(1/0), the following identities holds
5l 5l s 10,0
(1) E(¢)(s2) - E (@) s0= L7, Ty s
(2) limy_og(1/5) E (5) (s) < Ecrir.

Proof. For (1) see the proof of Lemma 2.1 in [20], while (2) can be proven as in [7]. O

By direct application of Proposition 8.10 we obtain the following corollary.

|log 4]

Lemma 8.11. For all 6 > 0, there exists 55 € ( ,|log 6|) such that

s&+|10g¢5|2 |8s¢|2 g < Eorir
o2 dyds < T
B (1-1yP) [log 2
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By using once more pre-compactness together with the self-similar behavior, we aim to extract a limit
¢* as 6 — 0 and to show that ¢* is a stationary solution to (8.16) and finally obtain a contradiction as in
previous sections. In order to achieve this, let 75 = 1 + 6 — e~% for 55 as in Lemma 8.11. By Corollary 8.8
we may select 6; — 0 as j — oo such that, foreacha =0, 1,2

(1 = T5)80¢™ 5,5 (1 = T5,)%) = 0o " (x)
strongly in L? as § ; — 0. In fact, we may also achieve that
(8.17) (1 +0; = 15)0a9 (T5;, (1 + 6 — 15,)x) — 9o D" (x)

strongly in L?. Next, we consider the evolution, in the sense of Definition 7.6, of the energy class data given
by the left hand side of (8.17). We denote these evolutions by ¢/ and we remark that, due to pre-compactness
and standard perturbative arguments, these evolutions exist on some joined fixed life-span [0, 7], where we
may assume 0 < T* < 1. Furthermore, on [0, 7*] we have

aa(ﬁj*(l‘, x)=(1+ 5j - t'(;j)aacﬁ""(t_(;j +(1+ 5]‘ - lT(sj)l‘, (1+ 5]‘ - f(sj)x)
and foreacha =0,1,2 A
00’ (t,+) — 0,D(1,)
strongly in L? as j — oo and uniformly for all 0 < ¢ < T*, where ®* is a weak wave map on [0, T*] x R?.
We also remark that, due to the previous identities, it holds

. 1 -1,
supp(¢l*(l‘,.))c{xeR2: x| < —é’t_ -t<1 —t}
J

for 0 <t < T*. Next, we switch to self-similar variables

y=1—. s=-logll-n. 0<i<T"

and define . .
¢l (s,y) = ¢"(1—e,ey)
and analogously for @*. Then, as in [17], we infer that
Do) (5,) = Da®*(s,)
< —log(1 —T*/2) =: T and for @ = 0,1,2.

strongly in L3(R?) as j — oo and uniformly for all 0 < s
Moreover, with 5 as in (8.15), we have
¢7-(5.y) = (S5, + 5..6))
and hence foreacha =0,1,2
(8.18) 0o (35, + $,7,6)) = B @*(s, ")
strongly in L% and uniformly in 0 < s < T as Jj — oo. Therefore, @* is a solution of (8.16) and
supp (9, 9" () C {y e B : I < 1)

and moreover
trace (CD*(-, s)) = const

where “trace” is the L2— trace.
Lemma 8.12. Let ®* be as above. Then we have
D*(s,y) = ®*(y) and @* % const.

Proof. The proof works exactly as in [17]: by (8.18) and Lemma 8.11 one shows that 5*(& y) = (~D*(y) while

the fact that ®* # const follows as in [7]. O
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By this procedure we have obtained a stationary, nonconstant, distributional solution to (8.16) with finite
energy (relative to the y variable). As in [17], the following proposition leads to a contradiction.

Proposition 8.13. Let © be a distributional solution to (8.16) of finite energy

VD) dy < 0.
B

Then ®* = const.

Proof. For the proof we refer the reader to the proof of Proposition 10.17 in [17] where the argument of
Section 7.5.1 in [26] is implemented and the conclusion is reached by Lemaire’s uniqueness theorem [19].
O

Thanks to Proposition 8.13 we can conclude the proof of Proposition 8.6 in the finite time case.

Proof. [Proposition 8.6: finite time case] In the finite time case, thanks to Corollary 8.8 we have been able
to construct a nonconstant self—similar solution ®* of (8.16) of finite energy, but this is in contradiction with
Proposition 8.13 and this completes the proof of Proposition 8.6. O

In order to close the rigidity argument, we notice that we need to justify the additional condition A(¢¥) >
Ao > 0 for all # € R assumed in Proposition 8.6, but this follows as in Lemma 10.18 of [17]. This concludes
the rigidity argument and hence finishes the proof of Theorem 1.1.
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