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Abstract. We consider radially symmetric, energy critical wave maps from (1 + 2)-dimensional Minkowski
space into the unit sphere Sm, m ≥ 1, and prove global regularity and scattering for classical smooth data of
finite energy. In addition, we establish a priori bounds on a suitable scattering norm of the radial wave maps
and exhibit concentration compactness properties of sequences of radial wave maps with uniformly bounded
energies. This extends and complements the beautiful classical work of Christodoulou-Tahvildar-Zadeh [3, 4]
and Struwe [31, 33] as well as of Nahas [22] on radial wave maps in the case of the unit sphere as the target.
The proof is based upon the concentration compactness/rigidity method of Kenig-Merle [6, 7] and a “twisted”
Bahouri-Gérard type profile decomposition [1], following the implementation of this strategy by the second
author and Schlag [17] for energy critical wave maps into the hyperbolic plane as well as by the last two
authors [16] for the energy critical Maxwell-Klein-Gordon equation.
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1. Introduction

We consider wave maps φ : R1+2 → Sm from (1 + 2)-dimensional Minkowski space R1+2 into the m-
dimensional unit sphere Sm ↪→ Rm+1, m ≥ 1, satisfying the equation

(WM) �φ = −φ∂αφ
†∂αφ

for radially symmetric initial data

(φ, ∂tφ)|t=0 = (φ0, φ1) : R2 → TSm.

Here we use the extrinsic formulation of the wave maps equation, viewing the Rm+1-valued function φ as
a column vector and denoting its transpose by φ†. In particular, we note that any initial data (φ0, φ1) must
satisfy the consistency conditions

φ†0φ0 = 1, φ†0φ1 = 0.
Greek indices such as α are implicitly assumed to run from 0 to 2 and we use the standard conventions for
summing and raising/lowering indices with respect to the metric diag(−1,+1,+1) on Minkowski space R1+2.
We denote the d’Alembertian by � = −∂2

t + ∆ and introduce the shorthand notation φ[t] = (φ(t), ∂tφ(t)) for
t ∈ R. An initial data pair (φ0, φ1) : R2 → TSm is called classical if it is smooth and constant in the exterior
of a compact set.
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The wave maps equation (WM) admits a non-negative conserved energy functional

E[φ] :=
1
2

∫
R2

2∑
α=0

|∂αφ|
2 dx,

which is invariant under the scaling of the equation

φ(t, x) 7→ φ(λt, λx), λ > 0.

The Cauchy problem for (WM) on R1+2 is therefore energy critical.

The main result of this article asserts that for radially symmetric, classical initial data, the unique, smooth
solutions to (WM) exist globally in time and scatter to finite energy free waves. Moreover, we establish
a priori bounds on a suitable scattering norm of the solutions and we exhibit concentration compactness
properties of sequences of radially symmetric wave maps into the unit sphere with uniformly bounded
energies.

Theorem 1.1. There exists a non-decreasing function K : [0,∞) → [0,∞) with the following property: Let
(φ0, φ1) be radially symmetric, classical initial data of energy E. Then there exists a global, unique, smooth
solution φ : R1+2 → Sm to (WM) with initial data φ[0] = (φ0, φ1) satisfying the a priori bound

‖φ‖S ≤ K(E),

where the S norm is defined in Section 3 below. In particular, φ scatters to finite energy free waves as
t → ±∞ in the sense that there exist ( f±, g±) ∈ Ḣ1

x × L2
x such that

lim
t→±∞

∥∥∥∇t,xφ − ∇t,xS (t)( f±, g±)
∥∥∥

L2
x

= 0,

where S (t)( f±, g±) = cos(t|∇|) f± +
sin(t|∇|)
|∇|

g± denotes the free wave propagator.

We emphasize that global regularity and scattering for energy critical radial wave maps into arbitrary com-
pact target manifolds has already been established in by now classical works of Christodoulou-Tahvildar-
Zadeh [3,4] and Struwe [31,33] as well as of Nahas [22]. We shall next give a brief overview of the history
of the wave maps problem and motivate why we are revisiting the beautiful classical results on radial wave
maps. Then we conclude this introduction with an overview of the proof of Theorem 1.1.

1.1. History and motivation. We note that the wave maps problem has been the subject of a fascinating
and vast body of literature over the past decades that we cannot adequately review here in its entirety. Our
primary focus shall be on energy critical wave maps from (1 + 2)-dimensional Minkowski space.

The study of energy critical radial wave maps was begun in the seminal work of Christodoulou-Tahvildar-
Zadeh [4] where global regularity is proven for arbitrary compact target manifolds for radially symmetric
initial data with sufficiently small energy. This small energy global regularity result is then strengthened to a
large energy global regularity result by excluding concentration of energy provided the target manifold, un-
like the sphere, satisfies a suitable convexity condition. In a subsequent paper [3], Christodoulou-Tahvildar-
Zadeh also obtain pointwise scattering bounds on the solutions under the same convexity condition on the
target manifold. Struwe [31,33] then established large energy global regularity for radially symmetric wave
maps into arbitrary compact target manifolds by combining the results from [4] with a careful blowup anal-
ysis from [32]. More recently, Nahas [22] also proved scattering for radially symmetric wave maps into
arbitrary compact target manifolds.

For wave maps without any symmetry assumptions the sub-critical local well-posedness theory was de-
veloped by Klainerman-Machedon [8–10] and Klainerman-Selberg [12, 13], making crucial use of the null
structure in the quadratic derivative nonlinearity of the wave maps equation.

A very important step in extending the small energy global regularity result of Christodoulou-Tahvildar-
Zadeh [4] to the non-radial case was achieved by Tataru [38], establishing global regularity for energy critical
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wave maps into arbitrary compact target manifolds for initial data which is small in the scale-invariant ho-
mogeneous Besov space Ḃ1

2,1(R2) × Ḃ0
2,1(R2). This work introduced an important functional framework for

the study of the energy critical wave maps equation, in particular the delicate null frame spaces. The final
breakthrough to prove small energy global regularity for energy critical wave maps into the unit sphere Sm,
m ≥ 1, was achieved by Tao [37] through the key realization that certain non-perturbative terms in the wave
maps nonlinearity can be cast into a better form by exploiting the gauge invariance of the wave maps prob-
lem. Small energy global regularity was then extended to other target manifolds by the second author [15]
for the hyperbolic plane H2 and by Tataru [39] for arbitrary target manifolds that can be isometrically em-
bedded into Euclidean space. The key role that the gauge structure plays in the study of the wave maps
equation at the critical regularity to renormalize the equation into a better form was also further clarified in
the works of Klainerman-Rodnianski [11], Shatah-Struwe [27], Nahmod-Stefanov-Uhlenbeck [23] and the
second author [14] on global regularity for wave maps from higher-dimensional Minkowski space for small
critical Sobolev data.

For large energies, depending on the geometry of the target manifold, blowup can occur for energy critical
wave maps. Indeed, the blowup analysis of Struwe [32] for energy critical equivariant wave maps showed
that singularity formation must be tied to the existence of non-trivial finite energy harmonic maps from R2

into the target manifold. Later, the second author joint with Schlag and Tataru [18], Raphaël-Rodnianski [24]
and Rodnianski-Sterbenz [25] constructed examples of equivariant wave maps into S2 that blow up in finite
time via the concentration of a non-trivial harmonic map.

These developments culminated in the threshold conjecture that for energy critical wave maps global
regularity is expected to hold for initial data with energy less than the energy of any non-trivial harmonic
map into the target manifold. This conjecture was established independently around the same time by the
second author and Schlag [17] for the hyperbolic planeH2 as the target, by Tao [34] for all hyperbolic spaces
Hd, d ≥ 1, and by Sterbenz-Tataru [29, 30] for any target manifold that can be isometrically embedded into
Euclidean space.

Our motivation for this article is essentially twofold. On the one hand we analyze to what extent the
complicated function spaces introduced in the seminal works of Tataru [38] and Tao [37] can be replaced
by a simpler functional framework in the radial context to settle the perturbative theory for the wave maps
equation (WM) similarly to the strategy in Tao [37]. Here our goal was to avoid Fourier localization as
much as possible and apart from a basic spatial frequency localization, our framework in particular avoids
modulation localizations as in [38] and [37]. More specifically, our space S to control the regularity of radial
wave maps is built from dyadic subspaces S k in the sense that

‖φ‖2S :=
∑
k∈Z

‖φk‖
2
S k
.

The dyadic subspace S k is defined entirely in physical space and essentially has three parts of the following
schematic form

‖φ‖S k = ‖φk‖S tr + sup
`∈Z
‖χ{r∼2`}r

− 1
2∇t,xφk‖L2

t L2
x

+
∑
±

‖(∂t ± ∂r)φk‖Z±k
,

see Definition 3.1 for the precise definition. The first part of the S k norm consists of Strichartz-type norms
where we crucially exploit the larger range of admissible Strichartz pairs in the radial context, see for in-
stance Sterbenz [28] and Fang-Wang [5]. The second part is a local energy decay norm which quite naturally
replaces the important Ẋ1, 1

2 ,∞-type space from the non-radial context. Finally, the third part of the S k norm
is formed by certain atomic spaces Z±k . These basically correspond to an “incoming-outgoing” decomposi-
tion of free radial waves and involve L2

t±rL∞t∓r-type norms which naturally replace the more complicated null
frame spaces [38] from the non-radial context.

On the other hand, in this work we go beyond the results of Christodoulou-Tahvildar-Zadeh [3, 4],
Struwe [31, 33] and Nahas [22] in the case of radially symmetric wave maps into the unit sphere Sm,
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m ≥ 1, as the target manifold and prove, in addition to global regularity and scattering, a priori bounds
on the scattering norm S of the solutions to (WM) and we exhibit concentration compactness properties of
sequences of radially symmetric wave maps into the unit sphere with uniformly bounded finite energies.
To this end we use a version of the concentration compactness/rigidity method of Kenig-Merle [6, 7] and a
modified Bahouri-Gérard type profile decomposition [1], following the implementation of this strategy by
the second author and Schlag [17] for (non-radial) energy critical wave maps into the hyperbolic plane H2

and the implementation by the last two authors [16] for the related energy critical Maxwell-Klein-Gordon
equation. Executing the concentration compactness/rigidity strategy in the context of energy critical wave
maps is compounded by the presence of non-perturbative terms in the wave maps nonlinearity, which have
to be dealt with via renormalization, and by certain strong low-high interactions in the wave maps nonlin-
earity. These difficulties will be explained in more detail in the next subsection. However, at this point we
emphasize a key difference between our work for the unit sphere Sm ↪→ Rm+1, m ≥ 1, as the target and the
work of the second author and Schlag [17] for the H2 target regarding the renormalization procedure. The
fact that the gauge group for the target H2 is abelian was exploited heavily in [17] in order to implement a
global-in-frequency gauge change by passing to the Coulomb gauge in the intrinsic setting. The construction
of the Coulomb gauge is elementary and explicit in the abelian case, but it becomes problematic for large
energies in the non-abelian case. Since in our work the gauge group is no longer abelian for the targets Sm

with m ≥ 3, we instead employ a version of the gauge construction of Sterbenz-Tataru [29] in the extrinsic
setting which deals separately with each frequency level. The latter is a refinement and further development
of the microlocal gauge introduced by Tao [36, 37] and is better suited for large energies.

1.2. Overview of the proof of Theorem 1.1. Here we provide an outline of the main ideas of the proof of
Theorem 1.1. Our goal is to show that there exists a non-decreasing function K : [0,∞) → [0,∞) with the
following property: Let (φ0, φ1) : R2 → TSm be radially symmetric, classical initial data of energy E. Then
there exists a global, unique, smooth wave map φ : R1+2 → Sm with initial data φ[0] = (φ0, φ1) satisfying
the a priori bound

‖φ‖S ≤ K(E).

Once we have established this a priori bound, the scattering assertion of Theorem 1.1 is an immediate
consequence.

Following the general philosophy of the concentration compactness/rigidity scheme, we argue by con-
tradiction and assume that Theorem 1.1 fails. Then the existence of the function K(·) yielding the a priori
bounds must fail at some finite energy level. Correspondingly, the following set of energies must be non-
empty

E :=
{
E : sup

{φ : E[φ]≤E}
‖φ‖S [I] = +∞

}
,

where the supremum is taken over all radially symmetric wave maps φ : I ×R2 → Sm with classical radially
symmetric initial data of energy E[φ] ≤ E and defined on some time interval I. We shall prove a small
energy global regularity result together with a priori bounds on the scattering norm S for radial solutions to
(WM) in Theorem 5.4. For this reason the infimum of the set E has to be strictly positive

Ecrit := inf E > 0.

Thus, we may pick a sequence of radial smooth wave maps φn : In×R2 → Sm, n ≥ 1, with maximal intervals
of existence In such that

lim
n→∞

E[φn] = Ecrit, lim
n→∞
‖φn‖S [In] = +∞.

In the following we call such a sequence of wave maps essentially singular. Our goal is now to rule out the
existence of such an essentially singular sequence of wave maps, hence proving Theorem 1.1. This will be
achieved in the following two main steps.
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• Extracting an energy class, radially symmetric, minimal blowup solution φ∞ to (WM) of energy
Ecrit from the essentially singular sequence {φn}n≥1. As a key tool we use a “twisted” profile de-
composition that takes into account the strong low-high interactions in the wave maps nonlinearity.
We develop this modified Bahouri-Gérard type nonlinear profile decomposition for our setting by
following the procedure introduced by the second author and Schlag [17] for energy critical wave
maps into H2. The minimal blowup solution can be thought of as a “minimal counterexample” to
Theorem 1.1 and its orbit must therefore possess a strong compactness property modulo the symme-
tries of the equation. We note that the heart of this paper resides in this extraction procedure which
is carried out in Section 7. All sections leading up to it lay the groundwork.
• Ruling out the minimal blowup solution φ∞ via a version of the Kenig-Merle rigidity argument [7]

as in [17]. Here we utilize the strong compactness property of φ∞ against general properties of
radial wave maps into the unit sphere. In particular, we invoke the non-existence of non-trivial,
finite energy, radial harmonic maps into the unit sphere. This step is accomplished in Section 8.

The severe difficulties with the extraction of a minimal blowup solution to (WM) can be highlighted by
comparing with the situation for the energy critical, defocusing nonlinear wave equation �u = u5 on R1+3. In
this context Bahouri-Gérard [1] introduced a highly influential nonlinear profile decomposition. It basically
asserts that a sequence of solutions to the quintic nonlinear wave equation with uniformly bounded energies
can be decomposed into a sum of nonlinear solutions, which are referred to as the nonlinear profiles and
which are rescaled and translated in space-time according to the non-compact symmetries of the equation,
and an error term, which can be made small in a suitable norm. The ability to extract a minimal blowup
solution ultimately relies on the asymptotic decoupling of different nonlinear profiles. In the quintic non-
linearity, the interactions of two different nonlinear profiles with essential frequency supports at divergent
scales are asymptotically negligible. This reduces to consider diagonal frequency interactions. But then
two different nonlinear profiles living at the same frequency scale must concentrate in divergent regions of
space-time so that their interactions in the quintic nonlinearity again vanish asymptotically.

In contrast, for energy critical wave maps frequency diagonalization appears to partially fail at the critical
regularity due to strong low-high interactions in the wave maps nonlinearity. In order to gain a better
understanding of these difficulties in our context of radial wave maps into the unit sphere, we now take a
closer look at the perturbative theory for the frequency localized wave maps equation (WM).

Renormalization and perturbative theory. More precisely, we study the evolution of a single dyadic fre-
quency block φk, say k = 0, satisfying the equation

�φ0 = −P0
(
φ∂αφ

†∂αφ
)
.

Upon decomposing each input of the nonlinearity into its Littlewood-Paley pieces, the nonlinear wave equa-
tion for φ0 assumes the following form

�φ0 = −2φ≤−10∂αφ
†

≤−10∂
αφ0

−
∑

k2>−10

∑
k3=k2+O(1)

P0
(
φ≤20∂αφ

†

k2
∂αφk3

)
− 2

∑
k2≤−10

φ≤k2−10
(
P0

(
∂αφ

†

k2
∂αφ−5<·<5

)
− ∂αφ

†

k2
∂αφ0

)
+ error,

where we are only listing those interaction terms that are more difficult to deal with and the other relatively
insignificant interaction terms are just denoted by error. The difficulties with the high-high interactions of
the second term and the third term on the right-hand side are a more peculiar feature of our framework.
They are non-perturbative in the sense that they cannot be treated with the multilinear estimates within our
functional framework due to its relevatively elementary but appealing construction - for instance, we cannot
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gain in the high-high interactions in our null form estimates. But we note that these two interaction terms
could be easily handled with the full power of the more sophisticated functional framework from Tao [37].
Fortunately, this feature of our setting can be dealt with quite efficiently by passing to the “nonlinearly
modified variable”

φ0 := φ0 +
1
2

∑
k2>−10

∑
k3=k2+O(1)

P0
(
φ≤20φ

†

k2
φk3

)
+

∑
k2≤−10

φ≤k2−10
(
P0

(
φ†k2

φ−5<·<5
)
− φ†k2

φ0
)
,

which has the effect of either distributing derivatives to different inputs with a better frequency balance or of
turning a trilinear interaction term into an easier quintilinear one upon reinserting the wave maps equation.
The wave equation for the new variable φ0 then takes on the form

�φ0 = −2φ≤−10∂αφ
†

≤−10∂
αφ0 + error

and we are left to treat the more severe low-low-high interaction term on the right-hand side. Following
Tao [36,37] we exploit the geometry of the wave maps problem and use the orthogonality relation φ†∂αφ = 0
which remains approximately preserved upon frequency localization. Then we arrive at a better equation
for φ0, namely

(1.1) �φ0 = −2
(
φ≤−10∂αφ

†

≤−10 − ∂αφ≤−10φ
†

≤−10
)
∂αφ0 + error,

where the matrix
(
φ≤−10∂αφ

†

≤−10 − ∂αφ≤−10φ
†

≤−10
)

is anti-symmetric. Now we have the following trilinear
estimate from Proposition 4.3 at our disposal

(1.2)
∥∥∥φk1∂αφ

†

k2
∂αφ0

∥∥∥
L1

t L2
x
. 2−δ(k1−k2)‖φk1‖S k1

‖φk2‖S k2
‖φ0‖S 0 , k2 + O(1) ≤ k1 ≤ 0,

for some absolute constant δ > 0. The key exponential gain in this estimate allows us to handle those parts
of the low-low-high interaction term where a derivative falls on the lowest frequency. At the same time we
make the fundamental observation that we do not gain exponentially in the largest frequency difference in
this estimate, resulting in the strong low-high interactions alluded to before. We note that the direct analogue
of this estimate for the non-radial setting is due to Tao [37] and is much more difficult to achieve than within
our functional framework for the radial case. In view of (1.2), we split the interaction term on the right-hand
side of (1.1) into two parts

(1.3) �φ0 = 2Aα;≤−10∂
αφ0 − 2

∑
k2≤−10

∑
k2−10<k1≤−10

(
φk1∂αφ

†

k2
− ∂αφk2φ

†

k1

)
∂αφ0 + error,

where we are introducing the connection form

Aα;≤−10 = −
∑

k2≤−10

(
φ≤k2−10∂αφ

†

k2
− ∂αφk2φ

†

≤k2−10
)
.

While in the second interaction term on the right-hand side of (1.3) a derivative falls on the lowest frequency
and this part can therefore be handled with the trilinear estimate, this is not the case for the first interaction
term. Thus, the latter term is non-perturbative and has to be renormalized into a better form. Following the
method first introduced by Tao [36, 37], we define suitable S O(m + 1)-valued gauge transformations U≤−10
and pass to the new variable U≤−10φ0 satisfying the nonlinear wave equation

(1.4)

�
(
U≤−10φ0

)
= U≤−10

(
�φ0 − 2Aα;≤−10∂

αφ0
)

+ 2
(
∂αU≤−10 + U≤−10Aα;≤−10

)
∂αφ0

+ 2∂αU≤−10∂
α(φ0 − φ0)

+
(
�U≤−10

)
φ0,

where the key difficulty now resides in the second interaction term on the right-hand side. More precisely,
we implement a version of the gauge construction due to Sterbenz-Tataru [29], which is better suited for
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large energies, and define the gauge transformations U≤h for h ∈ R as solutions to the ODE

d
dh

U≤h = U≤hBh, lim
h→−∞

U≤h = Id,

where the anti-symmetric matrix Bh is of the schematic form

Bh = φ≤h−10φ
†

h − φhφ
†

≤h−10.

In particular, the anti-symmetry of Bh ensures that the gauge transformations U≤h as solutions to the above
ODE are exactly orthogonal. This choice of gauge transformation effectively transfers a derivative to the
lowest frequency in the key difficult term 2

(
∂αU≤−10 +U≤−10Aα;≤−10

)
∂αφ0 so that it can basically be handled

with the trilinear estimate (1.2). Finally, we will have to transfer the bounds on the variable U≤−10φ0 back
to the frequency localized wave map φ0. In particular, we note that we have to introduce certain frequency
and spatial truncations in the definitions of the gauge transformations and the new variable φ0 in order to
have additional sources of smallness at our disposal in the large energy setting. These modifications will be
explained as we go in the later sections. This essentially settles the perturbative theory for (WM).

We now describe the extraction procedure of the minimal blowup solution φ∞ to (WM) which necessitates
the development of a “twisted” Bahouri-Gérard type profile decomposition to take into account the effect of
the strong low-high interactions described above. This undertaking is additionally compounded by the fact
that we have to work at the level of the gauged variables U≤−10φ0 because only these satisfy a nonlinear wave
equation with good perturbative properties. As in [17] we use a finite induction on frequency procedure to
carefully disentangle the low-high frequency interactions.

Decomposition into frequency atoms and evolving the lowest frequency non-atomic part. The first step
consists in decomposing the essentially singular sequence of data {φn[0]}n≥1 into frequency atoms using the
Métivier-Schochet procedure [21] as in Bahouri-Gérard [1]. Roughly speaking, the basic idea then goes
as follows. Ultimately, we would like to conclude that upon passing to a subsequence, if necessary, the
essentially singular sequence of data {φn[0]}n≥1 consists of exactly one frequency atom wich in turn consists
of exactly one concentration profile (to be defined precisely in Subsection 7.4) of asymptotic energy Ecrit. In
this scenario, the sequence {φn[0]}n≥1 has sufficient compactness properties that allow us to pass to a certain
limit whose wave maps evolution will be the desired minimal blowup solution to (WM). In order to rule out
all other possible scenarios, we seek to prove uniform in n, finite, global S norm bounds on (a subsequence
of) the sequence of wave maps evolutions {φn}n≥1, which would contradict that the sequence is essentially
singular. To this end we first achieve control over the wave maps evolutions of certain low frequency
truncations of the essentially singular sequence of data {φn[0]}n≥1. Using a finite inductive procedure over
the increasing size of the frequency supports of these low frequency truncations, we then conclude uniform
in n, finite, global S norm bounds on the actual essentially singular sequence {φn}n≥1.

Using a version of the Métivier-Schochet procedure [21] we obtain a decomposition into frequency atoms
(of a subsequence) of the essentially singular sequence of data

φn[0] =

Λ∑
a=1

φna[0] + φnΛ[0],

where the frequency atoms φna[0] and the remainder term φnΛ[0] have disjoint frequency supports. The
frequency atoms are sharply localized around frequency scales (λa

n)−1, more precisely they have frequency
support on

{
|ξ| ∈ [(λa

n)−1R−1
n , (λa

n)−1Rn]
}

for some sequence Rn → ∞ growing sufficently slowly. The fre-
quency scales diverge from each other as n→ ∞ in the sense that

lim
n→∞

λa
n

λb
n

+
λb

n

λa
n

= +∞, a , b.
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We may assume that the atoms are ordered in terms of the increasing size of their frequency support
scales (λa

n)−1 and we introdue the notation µa
n = − log(λa

n) for the corresponding dyadic frequency support
scales. Moreover, the remainder term φnΛ[0] satisfies the important Besov norm smallness

lim
Λ→∞

lim sup
n→∞

‖φnΛ[0]‖Ḃ1
2,∞×Ḃ0

2,∞
= 0.

As described above, ultimately we would like to conclude that there is exactly one atom in the decompo-
sition (7.1), i.e. Λ = 1, which is of asymptotic energy Ecrit. If this is the case, we proceed directly to the
next stage below where we consider the evolution of the first “large” frequency atom. Otherwise, we now
start a finite inductive procedure to conclude that the sequence {φn}n≥1 cannot be essentially singular. To this
end we fix an integer Λ0 sufficiently large such that upon passing to a subsequence, if necessary,∑

a>Λ0

lim sup
n→∞

‖φna[0]‖2Ḣ1
x×L2

x
≤ ε0,

where ε0 > 0 is a sufficently small constant that plays the role of a perturbative threshold in the key bootstrap
argument in Proposition 7.9. In particular, ε0 will be chosen sufficently small depending only on the size
of Ecrit and it will be chosen to be less than the small energy global regularity threshold established in
Theorem 5.4. Then we observe that due to the sharp frequency localizations of the atoms φna[0], 1 ≤ a ≤ Λ0,
the remainder term φnΛ0[0] gets split into Λ0 + 1 “frequency shells”

φnΛ0[0] = φnΛ
(0)
0 [0] + φnΛ

(1)
0 [0] + . . . + φnΛ

(Λ0)
0 [0],

where φnΛ
(0)
0 [0] shall denote the lowest frequency component.

Our first step now consists in showing that the lowest frequency “non-atomic” component φnΛ
(0)
0 [0] can be

globally evolved and satisfies finite S norm bounds just in terms of Ecrit uniformly for all sufficiently large n.
Since the component φnΛ

(0)
0 [0] may still have large energy, in order to be able to infer these S norm bounds,

we approximate φnΛ
(0)
0 [0] by a finite number of delicately chosen low frequency truncations P≤bLφ

nΛ
(0)
0 [0].

However, up to this point we have totally ignored that the frequency truncations P≤bLφ
nΛ

(0)
0 [0] = P≤bLφ

n[0]
are not “geometric” in the sense that they are not actual maps R2 → TSm into the unit sphere and therefore
do not constitute suitable initial data for the wave maps equation (WM). To overcome this issue we just
project the frequency truncations back to the sphere, using the normal projection operator, and denote the
resulting initial data by Π≤bLφ

n[0]. This operation is well-defined and the frequency localization properties
are approximately preserved up to exponential tails if around the frequency cut-offs a certain Besov norm
smallness condition is satisfied, see Proposition 7.2. This, in particular, forces us to carry out a further refined
frequency atom decomposition of the lowest frequency non-atomic part φnΛ

(0)
0 [0] to carefully pick these low

frequency cut-offs bL. Using a finite induction procedure we then obtain uniform in n, a priori bounds on
the S norms of the global evolutions of the “geometric” lowest frequency non-atomic parts Π≤µ1

n−log Rn
φn[0]

via an iterative bootstrap argument, which is accomplished in Proposition 7.8 in Subsection 7.3.

Selecting concentration profiles and adding the first large frequency atom. Having established control over
the global evolution of the lowest frequency non-atomic part Π≤µ1

n−log(Rn)φ
n[0] in the previous step, we now

“add in” the first large frequency atom φn1[0] = P[µ1
n−log(Rn),µ1

n+log(Rn)]φ
n[0] in the sense that we now attempt

to globally evolve the geometric initial data

Π≤µ1
n+log(Rn)φ

n[0].

In this paragraph we shall slightly abuse notation and write for simplicity

φn[0] ≡ Π≤µ1
n+log(Rn)φ

n[0],
8



denoting the evolution of this data by φn. By rescaling we may assume that µ1
n ≡ 0 and we shall later

denote by µn = µ1
n − log(Rn) the frequency cut-off delimiting the essential frequency supports of the lowest

frequency non-atomic part and of the first large frequency atom. Moreover, we use the notation

φn[0] ≡ Π≤µ1
n−log(Rn)φ

n[0] +
(
Π≤µ1

n+log(Rn)φ
n − Π≤µ1

n−log(Rn)φ
n)[0] ≡ un[0] + εn[0],

where un denotes the global evolution of the lowest frequency non-atomic part established in the previous
stage. Since only the gauged variables satisfy a nonlinear wave equation with good perturbative properties,
we now enact a Bahouri-Gérard type profile decomposition at the level of the gauged variables U(φn)

<k φn
k ,

which then has to be translated back to the level of the coordinate functions φn. Here, U(φn) denote the gauge
transformations defined by the evolutions φn. In order to take into account the strong coupling between the
very low frequencies coming from un and the high frequencies, we have to extract the concentration profiles
for εn with respect to a suitably modified linear wave operator to match the proper asymptotic evolution
of the variables U(φn)

<k φn
k as t → ±∞. In view of (1.3) and (1.4) we use the following very natural linear

magnetic-type wave equation to select our concentration profiles

(1.5) �ε̃ = 2U(un)
<µn
Aα,low(un)

(
U(un)
<µn

)†∂αε̃
where

Aα,low(un) = −
∑

k2<µn

∑
k2−10<k1<µn

(un
k1

)(∂αun
k2

)† − (∂αun
k2

)(un
k1

)† +
(
U(un)
<µn

)†∂αU(un)
<µn

+ A(un)
α;<µn

.

The gauge transformations U(un)
<µn

and the anti-symmetric matrixAα,low(un) are defined purely in terms of the
low frequency wave maps un over which we already have global control at this stage. Moreover, the anti-
symmetry ofAα,low(un) and the much lower essential frequency support of un are key for proving asymptotic
energy conservation for the flow associated with (1.5), see Lemma 7.15. We note that the linear magnetic-
type wave equation (1.5) is the direct analogue of the linear magnetic wave equation in [17, Definition 9.18]
for the extraction of the concentration profiles in the context of energy critical wave maps into the hyperbolic
plane H2.

A pleasant feature of the linear magnetic-type wave equation (1.5) is that it is in fact independent of the
frequency level k ∈ Z one works at. Rougly speaking, to obtain the profile decomposition at the level of
φn one then evolves the data ε̃k[0] := U(φn)

<k εn
k [0] with respect to the flow of (1.5) for each frequency k ∈ Z,

selecting appropriate concentration times and profiles, and passes back to the level of φn by multiplying with(
U(φn)
<k

)†. Summing over all frequencies k ∈ Z then roughly furnishes the desired profiles, see equation (7.38)
and the remarks following it for the precise definitions. Provided that all concentration profiles have energy
strictly less than Ecrit we may then carefully construct the global evolution of the data Π≤µ1

n+log(Rn)φ
n[0] and

obtain uniform in n, a priori bounds on the S norms, where a lot of work is required to accomplish that the
profile decomposition ansatz is “sufficiently geometric”. This whole step is carried out in Theorem 7.17 in
Subsection 7.4.

Conclusion of the induction on frequency process. We now continue this induction on frequency process
and by proceeding as in Subsection 7.3 obtain that the data Π≤µ2

n−log(Rn)φ
n[0] can be globally evolved with

uniform S norm bounds. Then we “add in” the second frequency atom P[µ2
n−log(Rn),µ2

n+log(Rn)]φ
n[0] in the sense

that by proceeding analogously to Subsection 7.4 we may establish the global evolution of the corresponding
geometric data Π≤µ2

n+log(Rn)φ
n[0] with uniform S norm bounds under the assumption that the associated

profiles all have energy strictly less than Ecrit.
All in all, we may continue this procedure Λ0 many times and establish the global evolution with uniform

in n, a priori S norm bounds of (a subsequence of) the essentially singular sequence of data {φn[0]}n≥1,
which would however be a contradiction, unless (a subsequence of) the sequence {φn[0]}n≥1 is composed of
exactly one frequency atom that consists of exactly one profile of asymptotic energy Ecrit. Thus, we must
be in the latter scenario and (a subsequence of) {φn[0]}n≥1 has sufficent compactness properties that allow us
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to pass to a certain limit whose wave maps evolution will be the desired minimal blowup solution to (WM)
as detailed in Subsection 7.5. Here we note that the minimal blowup solution will merely have energy class
regularity but that a strong local well-posedness theory for (WM) is only available at sub-critical regularities.
For this reason we actually have to introduce a concept of energy class radial wave maps, which we achieve
in Subsection 7.2 by regularization and reduction to the small energy case via finite speed of propagation,
analogously to the procedures in [17] and [16].

The outcome of this last stage is that there exists a non-trivial, energy class, radially symmetric, minimal
blowup solution φ∞ : I × R2 → Sm to (WM) of energy Ecrit and with maximal interval of existence I.
Moreover, there exists a continuous function λ : I → (0,∞) so that the family of functions{(

φ∞(t, λ(t)−1·), λ(t)−1∂tφ
∞(t, λ(t)−1·

)
: t ∈ I

}
is pre-compact in Ḣ1

x × L2
x.

Rigidity argument. Finally, we have to rule out the existence of such a minimal blowup solution φ∞ to
(WM). To this end we closely mimic the Kenig-Merle rigidity argument [7] as implemented in [17]. In
particular, we invoke the non-existence of non-trivial, finite energy, radially symmetric harmonic maps into
the unit sphere. This finishes the outline of the main ideas entering the proof of Theorem 1.1.

We expect that the restriction to the unit sphere Sm, m ≥ 1, as the target manifold in our work is not nec-
essary and that our method extends to arbitrary compact target manifolds since a similar gauge construction
as for the unit sphere works upon establishing additional estimates on the second fundamental form as in
Tataru [39] and Sterbenz-Tataru [29].

Moreover, we point out that neither the gauge construction nor the selection process for the concentration
profiles in our work crucially hinge on the radial symmetry assumption. We therefore suspect that the
method of this article combined with the sophisticated functional framework from Tao [37] ought to allow
for a similar result in the non-radial case upon restricting to energy levels below the energy of any non-trivial
harmonic map from R2 to Sm.

Organization of the paper. In Section 2 we introduce some notation and several basic definitions. In Sec-
tion 3 we present our precise functional framework. In Section 4 we collect the most important multilinear
estimates to handle the wave maps nonlinearity in the radial case. In Section 5 we carefully analyze the struc-
ture of the frequency localized wave maps nonlinearity and introduce the renormalization procedure to deal
with the non-perturbative terms. Moreover, we establish a small energy global regularity result for (WM).
In Section 6 we show that the S norm provides sufficient control on radial wave maps with classical initial
data to infer long time existence and scattering. In Section 7 we begin with the actual proof of Theorem 1.1
and accomplish the most difficult step of extracting a minimal blowup solution with the strong compactness
property. In Section 8 we rule out the existence of the minimal blowup solution and thus finish the proof of
Theorem 1.1.

2. Preliminaries

Notation and conventions. We write A . B to denote A ≤ CB for some absolute constant C > 0 that may
depend on fixed parameters and we shall use the notation A � B to indicate that the implicit constant in
the estimate is small. Moreover, we borrow from Tao [37] a convenient notation to describe multilinear
expressions of product type. For scalar functions φ(1)(t, x), . . . , φ(n)(t, x) we denote by L(φ(1), . . . , φ(n))(t, x)
any multilinear expression of the form

L(φ(1), . . . , φ(n))(t, x) :=
∫

K(y1, . . . , yn)φ(1)(t, x − y1) · · · φ(n)(t, x − yn) dy1 . . . dyn,

where the kernel K is a measure with bounded mass. We extend this notation to the case when φ(1), . . . , φ(n)

take values as (m + 1)-dimensional vectors or as (m + 1) × (m + 1) matrices.
10



Littlewood-Paley projections. We denote by ϕ a non-negative smooth cut-off function satisfying ϕ(y) = 1
for y ≤ 1 and ϕ(y) = 0 for y > 2. Then we set ϕ0(y) = ϕ(y) − ϕ(2y) and ϕk(y) = ϕ0(2−ky) for k ∈ Z. We
define the dyadic Littlewood-Paley projection operators Pk for k ∈ Z by

P̂k f (ξ) = ϕk(|ξ|) f̂ (ξ).

We often write fk = Pk f . Occasionally, we also need to use continuous Littlewood-Paley projections Ph for
h ∈ R. We recall the following Leibniz rule for the Littlewood-Paley projections Pk, see [37, Lemma 2].

Lemma 2.1. It holds that

(2.1) Pk( f g) = f Pkg + L(∇x f , 2−kg).

Spatial cut-offs. We will also make use of cut-off functions for the radial variable r ≡ |x|. For ` ∈ Z we
denote by χ{r∼2`} a smooth non-negative bump function supported in {r ∼ 2`} such that we have a smooth
finite partition of unity ∑

`∈Z

χ{r∼2`}(r) = 1 for r > 0.

Moreover, we denote by χ{r≤2`} a smooth cut-off function to {r . 2`}. Analogously, we define the cut-off

functions χ{r>2`} and χ{2`1≤r≤2`2 }.

Frequency envelopes. We shall use the tool of frequency envelopes from [36] to track the frequency dis-
tribution of certain norms. A sequence {ck}k∈Z ∈ `

2(Z) of positive real numbers is a frequency envelope
if

2−σ|k−k′ |ck′ . ck . 2+σ|k−k′ |ck′

for all k, k′ ∈ Z, where σ > 0 is a small absolute constant. We say that an initial data set φ[0] lies underneath
the envelope {ck}k∈Z if

‖Pkφ[0]‖Ḣ1
x×L2

x
≤ ck

for all k ∈ Z. Given an initial data set φ[0] we may obtain such an envelope by defining

ck :=
∑
`∈Z

2−σ|k−`|‖P`φ[0]‖Ḣ1
x×L2

x
.

3. Function spaces

In this section we introduce the functional framework used for the proof of Theorem 1.1. The space S
containing the radial wave map φ is built from dyadic subspaces S k in the sense that

‖φ‖2S :=
∑
k∈Z

‖φk‖
2
S k
,

where the space S k is defined as follows.

Definition 3.1. Let k ∈ Z and let φ be a radially symmetric function on R1+2 with Fourier support in
{|ξ| ∼ 2k}. Then we define

‖φ‖S k := ‖∇t,xφ‖L∞t L2
x

+ sup
2≤q,p≤∞, 1

q + 1
p<

1
2

2( 1
q + 2

p−1)k
‖∇t,xφ‖Lq

t Lp
x

+ sup
0<λ<1

2( 1
2−λ)k‖χ{r>2−k}r

−λφ‖L2
t L∞x

+ sup
`∈Z
‖χ{r∼2`}r

− 1
2∇t,xφ‖L2

t L2
x

+ ‖(∂t + ∂r)φ‖Z+
k

+ ‖(∂t − ∂r)φ‖Z−k ,

where Z±k are atomic spaces defined below in Definition 3.2.

We note that the space S k scales like free waves with Ḣ1
x × L2

x initial data. The restrictions of the spaces S
and S k to a time interval I are denoted by S [I], respectively S k[I], with the induced norms. Next we provide
the definition of the atomic spaces Z±k .

11



Definition 3.2. Let k ∈ Z and let ψ be a radially symmetric function on R1+2 with Fourier support in
{|ξ| ∼ 2k}. We introduce the auxiliary norm

‖ψ‖Yk := sup
0<λ<1

2−( 1
2 +λ)k‖χ{r>2−k}r

−λψ‖L2
t L∞x + sup

`∈Z
‖χ{r∼2`}r

− 1
2ψ‖L2

t L2
x
.

Then we define

‖ψ‖Z+
k

:= inf
ψ=ψ(+)+ψ(−)

{(
sup

0<λ≤ 1
2

2−( 1
2−λ)k‖rλψ(+)‖L2

t+rL∞t−r
+ ‖ψ(+)‖Yk

)
+

(
sup

2≤q,p≤∞, 1
q + 1

p<
1
2

sup
0<λ<1

2( 1
q + 2

p−1)k2λk
∑
`∈Z

‖χ{r∼2`}r
+λψ(−)‖Lq

t Lp
x

+ ‖ψ(−)‖Yk

)}
and

‖ψ‖Z−k := inf
ψ=ψ(+)+ψ(−)

{(
sup

2≤q,p≤∞, 1
q + 1

p<
1
2

sup
0<λ<1

2( 1
q + 2

p−1)k2λk
∑
`∈Z

‖χ{r∼2`}r
λψ(+)‖Lq

t Lp
x

+ ‖ψ(+)‖Yk

)
+

(
sup

0<λ≤ 1
2

2−( 1
2−λ)k‖r+λψ(−)‖L2

t−rL∞t+r
+ ‖ψ(−)‖Yk

)}
.

We will place the nonlinearities in the simple L1
t L2

x space. The remainder of this section is devoted to the
proof of the following key energy estimate connecting the S k space and the L1

t L2
x space.

Lemma 3.3 (Energy estimate). Let k ∈ Z and let I be any time interval containing 0. For any radially
symmetric function φ on I × R2 with Fourier support in {|ξ| ∼ 2k}, we have

(3.1) ‖φk‖S k[I] . ‖∇t,xφk(0)‖L2
x

+ ‖�φk‖L1
t L2

x[I].

The proof of Lemma 3.3 is an immediate consequence of the next lemmas. Here we first note that in the
radial context a significantly larger range of admissible Strichartz norms is at our disposal, see Sterbenz [28]
and Fang-Wang [5].

Lemma 3.4 (Strichartz estimates). Let 2 ≤ q, p ≤ ∞ with (q, p) , (∞,∞) satisfy 1
q + 1

p <
1
2 . Let k ∈ Z and

let I be any time interval containing 0. For any radially symmetric function φ on I×R2 with Fourier support
in |ξ| ∼ 2k, it holds that

2( 1
q + 2

p−1)k
‖∇t,xφk‖Lq

t Lp
x [I] . ‖∇t,xφ(0)‖L2

x
+ ‖�φ‖L1

t L2
x[I].

Next we prove Strichartz estimates involving a radial weight.

Lemma 3.5 (Weighted Strichartz estimates). Let 2 ≤ p < ∞ and 1
p < λ <

2
p . Let k ∈ Z and let I be any time

interval containing 0. For any radially symmetric function φ on I ×R2 with Fourier support in {|ξ| ∼ 2k}, we
have

2( 1
2 + 2

p−λ)k
‖r−λφ‖L2

t Lp
x [I] . ‖∇t,xφ(0)‖L2

x
+ ‖�φ‖L1

t L2
x[I].

Proof. We adapt the proof of Strichartz estimates under the spherical symmetry assumption by Sterbenz [28]
to incorporate the radial weight r−λ. In view of Duhamel’s formula we may assume without loss of generality
that φ is of the form φ = eit|∇| fk for a radially symmetric function fk with Fourier support on |ξ| ∼ 2k.
Moreover, by scaling invariance it suffices to consider the case k = 0.

First, we recall that for radially symmetric initial data, the free wave propagator in two space dimensions
takes on the specific form

(eit|∇| f0)(x) =

∫
R2

e2πi(t|ξ|+x·ξ) f̂0(ξ) dξ = 2π
∫ ∞

0
e2πitρJ0(2πrρ)ϕ0(ρ) f̂0(ρ)ρ dρ,
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where ϕ0(ρ) is a smooth bump function supported on {ρ ∼ 1} and where

J0(y) =
1

2π

∫ 2π

0
eiy sin(θ) dθ, y ∈ R,

is the Bessel function of order 0. Moreover, we recall the following standard asymptotics for the Bessel
function of order 0, see e.g. [40],

(3.2) J0(y) = y−
1
2 e+iyβ+(y) + y−

1
2 e−iyβ−(y), y ≥ 1,

where the functions β± satisfy the symbol-type bounds

(3.3) |β(n)
± (y)| .n y−n, n ≥ 0, y ≥ 1.

We now distinguish the two regimes r . 1 and r � 1. In the former case, we just use Hölder’s inequality,
the assumption λ < 2

p and a standard TT ∗ estimate to obtain that

∥∥∥χ{r.1}r−λeit|∇| f0
∥∥∥

L2
t Lp

x
.

∥∥∥χ{r.1}r−λ
∥∥∥

Lp
x

∥∥∥χ{r.1}

∫ ∞

0
e2πitρJ0(2πrρ)ϕ0(ρ) f̂0(ρ)ρ dρ

∥∥∥∥
L2

t

.
∥∥∥ f̂0(ρ)ρ

∥∥∥
L2
ρ

. ‖ f0‖L2
x
.

In the latter case r � 1, the asymptotics (3.2) yield that

χ{r�1}r−λ(eit|∇| f0)(r) ∼
∑
±

χ{r�1}r−
1
2−λ

∫ ∞

0
e2πi(t±r)ρβ±(2πrρ)ϕ0(ρ) f̂0(ρ)ρ

1
2 dρ.

Noting that the function ρ 7→ f̂0(ρ)ρ
1
2 is compactly supported in the interval (0, 4), we may consider its

Fourier series

f̂0(ρ)ρ
1
2 =

∑
n∈Z

cnei π2 nρ, ρ ∈ (0, 4),

whose Fourier coefficients satisfy ∑
n∈Z

|cn|
2 ∼

∥∥∥ f̂0(ρ)ρ
1
2
∥∥∥2

L2
ρ
∼ ‖ f0‖2L2

x
.

We can therefore write

χ{r�1}r−λ(eit|∇| f0)(r) ∼
∑
±

r−
1
2−λ

∑
n∈Z

cnψ
±
n (t, r)

with

ψ±n (t, r) = χ{r�1}

∫ ∞

0
e2πi(t±r+ n

4 )ρβ±(2πrρ)ϕ0(ρ) dρ.

From the symbol-type bounds (3.3) we obtain by repeated integration by parts that

|ψn(t, r)| .M
(
1 +

∣∣∣t ± r +
n
4

∣∣∣)−M
.
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Thus, choosing M � 1 sufficiently large, we infer from an application of Hölder’s inequality (in n ∈ Z) and
the embedding `p ↪→ `2 for p ≥ 2 that∥∥∥χ{r�1}r−λeit|∇| f0

∥∥∥
Lp

x
.

∑
±

(∫ ∞

1

(∑
n∈Z

|cn||ψ
±
n (t, r)|

)p
r1−p( 1

2 +λ) dr
) 1

p

.
∑
±

(∫ ∞

1

(∑
n∈Z

|cn|

(1 + |t ± r + n
4 |)

M

)p
r1−p( 1

2 +λ) dr
) 1

p

.
(∫ ∞

1

(∑
n∈Z

|cn|
p

(1 + ||t + n
4 | − r|)(M−2)p

)
r1−p( 1

2 +λ) dr
) 1

p

.
(∑

n∈Z

|cn|
p

(1 + |t + n
4 |)

p( 1
2 +λ)−1

) 1
p

.
(∑

n∈Z

|cn|
2

(1 + |t + n
4 |)

2( 1
2 +λ− 1

p )

) 1
2
.

Since by assumption λ > 1
p , we obtain the desired estimate∥∥∥χ{r�1}r−λeit|∇| f0

∥∥∥
L2

t Lp
x
.

(∑
n∈Z

|cn|
2
) 1

2
∼ ‖ f0‖L2

x
.

�

Now we are in the position to deduce a weighted L2
t L∞x Strichartz estimate.

Lemma 3.6 (Weighted endpoint Strichartz estimate). Let 0 < λ < 1. Let k ∈ Z and let I be any time interval
containing 0. For any radially symmetric function φ on I × R2 with Fourier support in {|ξ| ∼ 2k}, we have

2( 1
2−λ)k‖χ{r≥2−k}r

−λφ‖L2
t L∞x [I] . ‖∇t,xφ(0)‖L2

x
+ ‖�φ‖L1

t L2
x[I].

Proof. We begin by writing

‖χ{r≥2−k}r
−λφ‖L2

t L∞x .
∑
`≥−k

‖χ{2`≤r≤2`+1}r
−λPkφ‖L2

t L∞x .

Since the Littlewood-Paley projection operator Pk lives at spatial scale 2−k, for ` ≥ −k it approximately
preserves the spatial localization enforced by the cutoff χ{2`≤r≤2`+1} up to exponentially decaying tails that
can be dealt with easily. We may therefore replace the right-hand side of the previous line by∑

`≥−k

‖χ{2`≤r≤2`+1}r
−λP̃k

(
χ{2`−2≤r≤2`+3}Pkφ

)
‖L2

t L∞x ,

where P̃k is a fattened Littlewood-Paley projection operator such that P̃kPkφ = Pkφ. Applying Bernstein’s
inequality for some 2 ≤ p < ∞ with 1

p <
λ
2 <

2
p , we arrive at the bound∑

`≥−k

2−λ`2
2
p k
‖χ{2`−2≤r≤2`+3}Pkφ‖L2

t Lp
x
.

∑
`≥−k

2−
λ
2 `2

2
p k
‖r−

λ
2 Pkφ‖L2

t Lp
x
.

Next we invoke the weighted Strichartz estimates from Lemma 3.5 to obtain the bound∑
`≥−k

2−
λ
2 `2

2
p k2−( 1

2 + 2
p−

λ
2 )k(
‖∇t,xφ(0)‖L2

x
+ ‖�φ‖L1

t L2
x

)
. 2−( 1

2−λ)k(‖∇t,xφ(0)‖L2
x

+ ‖�φ‖L1
t L2

x

)
,

which finishes the proof. �

Moreover, we have the following local energy decay estimate.
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Lemma 3.7 (Local energy decay estimate). Let k ∈ Z and let I be any time interval containing 0. For any
radially symmetric function φ on I × R2 with Fourier support in {|ξ| ∼ 2k}, it holds that

sup
`∈Z
‖χ{r∼2`}r

− 1
2∇t,xφ‖L2

t L2
x[I] . ‖∇t,xφ(0)‖L2

x
+ ‖�φ‖L1

t L2
x[I].

Proof. We proceed similarly to the proof of Lemma 3.5. In view of Duhamel’s formula, we may again
assume that φ is of the form φ = eit|∇| fk for a radially symmetric function fk with Fourier support on |ξ| ∼ 2k.
Moreover, by scaling invariance it suffices to consider the case k = 0.

We first prove the local energy decay estimate for the time derivative ∂t(eit|∇| f0). Due to the radial sym-
metry assumption, we have the specific representation formula

∂t(eit|∇| f0)(r) = 4π2i
∫ ∞

0
e2πitρJ0(2πrρ)ϕ0(ρ) f̂0(ρ)ρ2 dρ.

We distinguish the regimes r . 1 and r � 1. Here we only treat the more difficult case r � 1. By the
asymptotics (3.2) we have that

χ{r�1}r−
1
2 ∂t(eit|∇| f0)(r) ∼

∑
±

χ{r�1}r−1
∫ ∞

0
e2πi(t±r)ρβ±(2πrρ)ϕ0(ρ) f̂0(ρ)ρ

3
2 dρ.

The function ρ 7→ f̂0(ρ)ρ
3
2 has compact support in the interval (0, 4) and can therefore be developed into a

Fourier series
f̂0(ρ)ρ

3
2 =

∑
n∈Z

cnei π2 nρ, ρ ∈ (0, 4),

where the Fourier coefficients satisfy ∑
n∈Z

|cn|
2 ∼

∥∥∥ f̂0(ρ)ρ
3
2
∥∥∥2

L2
ρ
. ‖ f0‖2L2

x
.

Now we follow closely the arguments in the proof of Lemma 3.5 to find that

sup
`≥0

∥∥∥χ{r∼2`}r
− 1

2 ∂t(eit|∇| f0)(r)
∥∥∥

L2
t L2

x
. sup

`≥0

(∑
±

∫
R

∫
{r∼2`}

∑
n∈Z

|cn|
2

(1 + |t ± r + n
4 |)

2 r−1 dr dt
) 1

2
.

Changing the order of integration and computing the time integral first, we see that the right-hand side obeys
the desired bound

sup
`≥0

(∫
{r∼2`}

∑
n∈Z

|cn|
2r−1 dr

) 1
2
.

(∑
n∈Z

|cn|
2
) 1

2
. ‖ f0‖L2

x
.

The proof of the local energy decay estimate for the spatial derivatives of eit|∇| f0 proceeds analogously by
noting that the first derivative J′0 of the Bessel function J0 of order 0 satisfies the same asymptotics (3.2) as J0.

�

Finally, we turn to the atomic Z±k spaces.

Lemma 3.8 (The Z±k spaces). Let k ∈ Z and let I be any time interval containing 0. For any radially
symmetric function φ on I × R2 with Fourier support in {|ξ| ∼ 2k}, we have that

‖(∂t + ∂r)φk‖Z+
k [I] . ‖∇t,xφk(0)‖L2

x
+ ‖�φk‖L1

t L2
x[I]

and

‖(∂t − ∂r)φk‖Z−k [I] . ‖∇t,xφk(0)‖L2
x

+ ‖�φk‖L1
t L2

x[I].
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Proof. We only provide the proof of the estimate for the Z+
k space since the case of the Z−k space can be dealt

with analogously. Moreover, in view of Duhamel’s formula we may assume that φk is of the form eit|∇| fk
for a radially symmetric function fk with Fourier support on {|ξ| ∼ 2k}. By scaling invariance it suffices to
consider the case k = 0.

Then we observe that

(∂t + ∂r)(eit|∇| f0)(r) = 4π2
∫ ∞

0
e2πitρ(iJ0(2πrρ) + J′0(2πrρ)

)
ϕ0(ρ) f̂0(ρ)ρ2 dρ.

By stationary phase it is easy to see that we have the asymptotics

(3.4) iJ0(y) + J′0(y) =
i

2π

∫ 2π

0
eiy sin(θ)(1 + sin(θ)) dθ = y−

1
2 e+iyβ+(y) + y−

3
2 e−iyβ−(y), y ≥ 1,

where the functions β± satisfy the symbol-type bounds

|β(n)
± (y)| .n y−n, n ≥ 0, y ≥ 1.

We now distinguish the regimes r . 1 and r � 1. Here we only turn to the more delicate latter case r � 1.
By the asymptotics (3.4) we see that χ{r�1}(∂t + ∂r)(eit|∇| f0) decomposes into two components

(3.5)
χ{r�1}(∂t + ∂r)(eit|∇| f0)(r) ∼ χ{r�1}r−

1
2

∫ ∞

0
e2πi(t+r)ρβ+(2πrρ)ϕ0(ρ) f̂0(ρ)ρ

3
2 dρ

+ χ{r�1}r−
3
2

∫ ∞

0
e2πi(t−r)ρβ−(2πrρ)ϕ0(ρ) f̂0(ρ)ρ

1
2 dρ.

It is easy to see that both components on the right-hand side have finite Y0 norm. Moreover, the first
component on the right-hand side of (3.5) can be placed into the weighted L2

t+rL∞t−r component of the Z+
0

space. More precisely, for any 0 < λ ≤ 1
2 we obtain by a standard TT ∗ argument that∥∥∥∥∥r+λχ{r�1}r−

1
2

∫ ∞

0
e2πi(t+r)ρβ+(2πrρ)ϕ0(ρ) f̂0(ρ)ρ

3
2 dρ

∥∥∥∥∥
L2

t+rL∞t−r

.

∥∥∥∥∥∫ ∞

0
e2πi(t+r)ρχ{r�1}β+(2πrρ)ϕ0(ρ) f̂0(ρ)ρ

3
2 dρ

∥∥∥∥∥
L2

t+rL∞t−r

.
∥∥∥ f̂0(ρ)ρ

3
2
∥∥∥

L2
ρ

. ‖ f0‖L2
x
.

On the other hand, the second component on the right-hand side of (3.5) satisfies for any exponent pair (q, p)
with 2 ≤ q, p ≤ ∞ and 1

q + 1
p <

1
2 and for any 0 < λ < 1 that∑

`∈Z

∥∥∥∥∥ χ{r∼2`}r
+λχ{r�1}r−

3
2

∫ ∞

0
e2πi(t−r)ρβ−(2πrρ)ϕ0(ρ) f̂0(ρ)ρ

1
2 dρ

∥∥∥∥∥
Lq

t Lp
x

.
∑
`�1

2(λ−1)`
∥∥∥∥∥r−

1
2

∫ ∞

0
e2πi(t−r)ρχ{r�1}β−(2πrρ)ϕ0(ρ) f̂0(ρ)ρ

1
2 dρ

∥∥∥∥∥
Lq

t Lp
x

.

∥∥∥∥∥r−
1
2

∫ ∞

0
e2πi(t−r)ρχ{r�1}β−(2πrρ)ϕ0(ρ) f̂0(ρ)ρ

1
2 dρ

∥∥∥∥∥
Lq

t Lp
x

. ‖ f0‖L2
x
,

where in the case of (q, p) = (∞,∞) the last estimate just follows from Hölder’s inequality while for all
other admissible exponent pairs (q, p) the last estimate follows from the proof of Strichartz estimates in the
radial case as in Sterbenz [28]. Putting things together, we conclude that

‖(∂t + ∂r)(eit|∇| f0)‖Z+
0
. ‖ f0‖L2

x
,

which finishes the proof of Lemma 3.8. �
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4. Multilinear estimates

Here we collect several important multilinear estimates that will be of crucial use to estimate the wave
maps nonlinearity. We begin with the following null form estimate.

Proposition 4.1 (Null form estimate). For 3
2 ≤ p ≤ ∞ it holds that

(4.1)
∥∥∥∂αφ(1)

k1
∂αφ(2)

k2

∥∥∥
Lp

t Lp
x
. 2(1− 3

2p )k12(1− 3
2p )k2‖φ(1)

k1
‖S k1
‖φ(2)

k2
‖S k2

.

Proof. The assertion follows by interpolation between the simple L∞t L∞x estimate∥∥∥∂αφ(1)
k1
∂αφ(2)

k2

∥∥∥
L∞t L∞x

. 2k1
∥∥∥∇t,xφk1

∥∥∥
L∞t L2

x
2k2

∥∥∥∇t,xφk2

∥∥∥
L∞t L2

x
. 2k12k2‖φ(1)

k1
‖S k1
‖φ(2)

k2
‖S k2

and the following L
3
2
t L

3
2
x estimate

(4.2)
∥∥∥∂αφ(1)

k1
∂αφ(2)

k2

∥∥∥
L

3
2
t L

3
2
x

. ‖φ(1)
k1
‖S k1
‖φ(2)

k2
‖S k2

,

which we now prove. Since in the radially symmetric setting it holds that

−2∂αφ∂αψ = (∂t + ∂r)φ(∂t − ∂r)ψ + (∂t − ∂r)φ(∂t + ∂r)ψ,

by symmetry it suffices to consider bounding the expression (∂t + ∂r)φ
(1)
k1

(∂t − ∂r)φ
(2)
k2

in L
3
2
t L

3
2
x . To this end

we decompose the two inputs into (+) and (−) components, i.e.

(∂t + ∂r)φ
(1)
k1

= (∂t + ∂r)φ
(1,+)
k1

+ (∂t + ∂r)φ
(1,−)
k1

and

(∂t − ∂r)φ
(2)
k2

= (∂t − ∂r)φ
(2,+)
k2

+ (∂t − ∂r)φ
(2,−)
k2

.

Then we consider all possible interactions. In the case of (+)/(+) interactions we estimate∥∥∥(∂t + ∂r)φ
(1,+)
k1

(∂t − ∂r)φ
(2,+)
k2

∥∥∥
L

3
2
t L

3
2
x

. sup
`∈Z

∥∥∥χ{r∼2`}r
− 1

2 (∂t + ∂r)φ
(1,+)
k1

∥∥∥
L2

t L2
x

∑
`∈Z

∥∥∥χ{r∼2`}r
+ 1

2 (∂t − ∂r)φ
(2,+)
k2

∥∥∥
L6

t L6
x

. ‖φ(1)
k1
‖S k1
‖φ(2)

k2
‖S k2

and the case of (−)/(+) as well as of (−)/(−) interactions can be bounded analogously. We are therefore left
with the treatment of the delicate (+)/(−) interactions. By spherical symmetry, we may write

∥∥∥(∂t + ∂r)φ
(1,+)
k1

(∂t − ∂r)φ
(2,−)
k2

∥∥∥ 3
2

L
3
2
t L

3
2
x

.

"
r−

1
2
∣∣∣r 1

2 (∂t + ∂r)φ
(1,+)
k1

∣∣∣ 3
2
∣∣∣r 1

2 (∂t − ∂r)φ
(2,−)
k2

∣∣∣ 3
2 dr dt.

Changing variables from (t, r) to (t + r, t − r) and noting that r = 1
2 ((t + r) − (t − r)), we can estimate the

previous line by"
|(t + r) − (t − r)|−

1
2
(∥∥∥r

1
2 (∂t + ∂r)φ

(1,+)
k1

∥∥∥ 3
2
L∞t−r

)
(t + r)

(∥∥∥r
1
2 (∂t − ∂r)φ

(2,−)
k2

∥∥∥ 3
2
L∞t+r

)
(t − r) d(t + r) d(t − r).
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Next we apply Hölder’s inequality followed by the Hardy-Littlewood-Sobolev inequality and obtain the
desired bound∥∥∥∥∥∥∥r

1
2 (∂t + ∂r)φ

(1,+)
k1

∥∥∥ 3
2
L∞t−r

∥∥∥∥
L

4
3
t+r

∥∥∥∥∥∫ |(t + r) − (t − r)|−
1
2
(∥∥∥r

1
2 (∂t − ∂r)φ

(2,−)
k2

∥∥∥ 3
2
L∞t+r

)
(t − r) d(t − r)

∥∥∥∥∥
L4

t+r

.
∥∥∥r

1
2 (∂t + ∂r)φ

(1,+)
k1

∥∥∥ 3
2

L2
t+rL∞t−r

∥∥∥∥∥∥∥r
1
2 (∂t − ∂r)φ

(2,−)
k2

∥∥∥ 3
2
L∞t+r

∥∥∥∥
L

4
3
t−r

.
∥∥∥r

1
2 (∂t + ∂r)φ

(1,+)
k1

∥∥∥ 3
2

L2
t+rL∞t−r

∥∥∥r
1
2 (∂t − ∂r)φ

(2,−)
k2

∥∥∥ 3
2

L2
t−rL∞t+r

. ‖φ(1)
k1
‖

3
2
S k1
‖φ(2)

k2
‖

3
2
S k2
.

This finishes the proof of the L
3
2
t L

3
2
x estimate (4.2) and thus concludes the proof of Proposition 4.1. �

We emphasize that the preceding proposition allows to estimate the null form ∂αφ∂
αψ “below” L2

t L2
x, in

fact in L
3
2
t L

3
2
x . This feature will be crucial in the concentration compactness step in Section 7 to gain smallness

for certain multilinear expressions, which is explained in detail in Subsection 7.4.3. It was first pointed out
by Klainerman-Machedon [8] that the null form ∂αφ∂

αψ can be estimated “below” L2
t L2

x provided both
factors are free radial waves. The corresponding improvements without the radiality assumption are due to
Bourgain [2], Wolff [41] and Tao [35]. Next we establish a weighted null form estimate.

Proposition 4.2 (Weighted null form estimate). For 0 < λ ≤ 1
2 it holds that

(4.3)
∥∥∥r+λ∂αφ

(1)
k1
∂αφ(2)

k2

∥∥∥
L2

t L2
x
. 2( 1

2−λ) min{k1,k2}‖φ(1)
k1
‖S k1
‖φ(2)

k2
‖S k2

.

Proof. Without loss of generality we may assume that k1 ≤ k2. Then we can dispense with the case when
the radial variable is restricted to the range r ≤ 2−k1 because here we can just bound by∥∥∥χ{r≤2−k1 }r

+λ∂αφ
(1)
k1
∂αφ(2)

k2

∥∥∥
L2

t L2
x
.

∑
`≤−k1

∥∥∥χ{r∼2`}r
1
2 +λ∂αφ

(1)
k1

∥∥∥
L∞t L∞x

∥∥∥χ{r∼2`}r
− 1

2 ∂αφ(2)
k2

∥∥∥
L2

t L2
x

.
∑
`≤−k1

2( 1
2 +λ)`2k1‖∇t,xφ

(1)
k1
‖L∞t L2

x
sup
`∈Z

∥∥∥χ{r∼2`}r
− 1

2∇t,xφ
(2)
k2

∥∥∥
L2

t L2
x

. 2( 1
2−λ)k1‖φ(1)

k1
‖S k1
‖φ(2)

k2
‖S k2

.

Moreover, since in the radially symmetric setting the null form ∂αφ
(1)
k1
∂αφ(2)

k2
can be written as a linear com-

bination of terms (∂t ± ∂r)φ
(1)
k1

(∂t ∓ ∂r)φ
(2)
k2

, we are left to estimate∥∥∥χ{r>2−k1 }r
+λ(∂t + ∂r)φ

(1)
k1

(∂t − ∂r)φ
(2)
k2

∥∥∥
L2

t L2
x
.

To this end we again decompose the two inputs into (+) and (−) components

(∂t ± ∂r)φ
( j)
k j

= (∂t ± ∂r)φ
( j,+)
k j

+ (∂t ± ∂r)φ
( j,−)
k j

, j = 1, 2

and then estimate all possible interactions. In the case of (+)/(−) interactions, we have that∥∥∥χ{r>2−k1 }r
+λ(∂t + ∂r)φ

(1,+)
k1

(∂t − ∂r)φ
(2,−)
k2

∥∥∥
L2

t L2
x
.

∥∥∥r+λ(∂t + ∂r)φ
(1,+)
k1

∥∥∥
L2

t+rL∞t−r

∥∥∥r+ 1
2 (∂t − ∂r)φ

(2,−)
k2

∥∥∥
L2

t−rL∞t+r

. 2( 1
2−λ)k1‖φ(1)

k1
‖S k1
‖φ(2)

k2
‖S k2

.
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Then we bound the (+)/(+) interactions by∥∥∥χ{r>2−k1 }r
+λ(∂t + ∂r)φ

(1,+)
k1

(∂t − ∂r)φ
(2,−)
k2

∥∥∥
L2

t L2
x

.
∥∥∥χ{r>2−k1 }r

−λ(∂t + ∂r)φ
(+)
k1

∥∥∥
L2

t L∞x

∑
`∈Z

∥∥∥χ{r∼2`}r
+2λ(∂t − ∂r)φ

(+)
k2

∥∥∥
L∞t L2

x

. 2( 1
2 +λ)k1‖φ(1)

k1
‖S k1

2−2λk2‖φ(2)
k2
‖S k2

. 2( 1
2−λ)k1‖φ(1)

k1
‖S k1
‖φ(2)

k2
‖S k2

.

In the case of (−)/(−) interactions we estimate as follows∥∥∥χ{r>2−k1 }r
+λ(∂t + ∂r)φ

(1,−)
k1

(∂t − ∂r)φ
(2,−)
k2

∥∥∥
L2

t L2
x

.
∑
`∈Z

∥∥∥χ{r∼2`}r
1
2 +λ(∂t + ∂r)φ

(1,−)
k1

∥∥∥
L∞t L∞x

sup
`∈Z

∥∥∥χ{r∼2`}r
− 1

2 (∂t − ∂r)φ
(2,+)
k2

∥∥∥
L2

t L2
x

. 2( 1
2−λ)k1‖φ(1)

k1
‖S k1
‖φ(2)

k2
‖S k2

and the remaining case of (−)/(+) interactions can be treated in exactly the same manner. �

We conclude with the following delicate trilinear estimate.

Proposition 4.3 (Trilinear estimate). We have that

(4.4)
∥∥∥L

(
φ(1)

k1
, ∂αφ

(2)
k2
, ∂αφ(3)

k3

)∥∥∥
L1

t L2
x
. 2−

1
4 (k1−min{k2,k3})‖φ(1)

k1
‖S k1
‖φ(2)

k2
‖S k2
‖φ(3)

k3
‖S k3

for k1 ≥ min{k2, k3} + O(1).

Proof. We may assume without loss of generality that k2 ≤ k3. Moreover, we may restrict the radial variable
to the range {r > 2−k2}, because otherwise we can just easily estimate∥∥∥χ{r≤2−k2 }L

(
φ(1)

k1
, ∂αφ

(2)
k2
, ∂αφ(3)

k3

)∥∥∥
L1

t L2
x

. ‖φ(1)
k1
‖L4

t L∞x

∑
`≤−k2

‖χ{r∼2`}r
+ 1

2∇t,xφ
(2)
k2
‖L4

t L∞x sup
`∈Z
‖χ{r∼2`}r

− 1
2∇t,xφ

(3)
k3
‖L2

t L2
x

. 2−
1
4 (k1−k2)‖φ(1)

k1
‖S k1
‖φ(2)

k2
‖S k2
‖φ(3)

k3
‖S k3

.

In the radially symmetric setting we have the identity

−2∂αφ∂αψ = (∂t + ∂r)φ(∂t − ∂r)ψ + (∂t − ∂r)φ(∂t + ∂r)ψ.

By symmetry it therefore suffices to now bound the expression∥∥∥χ{r>2−k2 }L
(
φ(1)

k1
, (∂t + ∂r)φ

(2)
k2
, (∂t − ∂r)φ

(3)
k3

)∥∥∥
L1

t L2
x
.

To this end we decompose (∂t + ∂r)φ
(2)
k2

and (∂t − ∂r)φ
(3)
k3

into (+) and (−) components

(∂t ± ∂t)φ
( j)
k j

= (∂t ± ∂r)φ
( j,+)
k j

+ (∂t ± ∂r)φ
( j,−)
k j

for j = 2, 3

and distinguish all possible interaction scenarios. In the case of (+)/(−) interactions, we estimate∥∥∥χ{r>2−k2 }L
(
φ(1)

k1
, (∂t + ∂r)φ

(2,+)
k2

, (∂t − ∂r)φ
(3,−)
k3

)∥∥∥
L1

t L2
x

.
∥∥∥χ{r>2−k1 }r

− 1
4φ(1)

k1

∥∥∥
L2

t L∞x

∥∥∥r+ 1
4 (∂t + ∂r)φ

(2,+)
k2

∥∥∥
L2

t+rL∞t−r

∥∥∥r+ 1
2 (∂t − ∂r)φ

(3,−)
k3

∥∥∥
L2

t−rL∞t+r

. 2−
1
4 (k1−k2)‖φ(1)

k1
‖S k1
‖φ(2)

k2
‖S k2
‖φ(3)

k3
‖S k3

,
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where we used that k1 ≥ k2 + O(1) by assumption. Then we bound the (−)/(+) interactions by∥∥∥χ{r>2−k2 }L
(
φ(1)

k1
, (∂t + ∂r)φ

(2,−)
k2

, (∂t − ∂r)φ
(3,+)
k3

)∥∥∥
L1

t L2
x

.
∥∥∥χ{r>2−k1 }r

− 1
4φ(1)

k1

∥∥∥
L2

t L∞x

∑
`∈Z

∥∥∥χ{r∼2`}r
+ 3

4 (∂t + ∂r)φ
(2,−)
k2

∥∥∥
L∞t L∞x

sup
`∈Z

∥∥∥χ{r∼2`}r
− 1

2∇t,xφ
(3,+)
k3

∥∥∥
L2

t L2
x

. 2−
1
4 (k1−k2)‖φ(1)

k1
‖S k1
‖φ(2)

k2
‖S k2
‖φ(3)

k3
‖S k3

and the case of (−)/(−) interactions can be treated in exactly the same manner. Finally, we have to consider
the case of (+)/(+) interactions∥∥∥χ{r>2−k2 }L

(
φ(1)

k1
, (∂t + ∂r)φ

(2,+)
k2

, (∂t − ∂r)φ
(3,+)
k3

)∥∥∥
L1

t L2
x

.
∥∥∥χ{r>2−k1 }r

− 1
4φ(1)

k1

∥∥∥
L2

t L∞x

∥∥∥χ{r>2−k2 }r
− 1

4 (∂t + ∂r)φ
(2,+)
k2

∥∥∥
L2

t L∞x

∑
`∈Z

∥∥∥χ{r∼2`}r
+ 1

2 (∂t − ∂r)φ
(3,+)
k3

∥∥∥
L∞t L2

x

. 2−
1
4 (k1−k2)2−

1
2 (k3−k2)‖φ(1)

k1
‖S k1
‖φ(2)

k2
‖S k2
‖φ(3)

k3
‖S k3

,

which finishes the proof. �

5. Decomposition of the nonlinearity and renormalization

In this section we study the structure of the nonlinearity in the frequency localized wave maps equation

(5.1) �φk = −Pk
(
φ∂αφ

†∂αφ
)
, k ∈ Z.

Our main tools to estimate this wave maps nonlinearity are the null form estimate (4.1) and the trilinear
estimate (4.4) from the previous section. However, these will turn out to be far from sufficient, even for
small energies. Accordingly, using Littlewood-Paley theory we will “peel off” the “good” parts from the
nonlinearity to isolate its non-perturbative parts. Then we will introduce the renormalization procedure to
deal with the latter parts of the nonlinearity. For the sake of readability we decided to only introduce a sim-
plified version of our renormalization procedure in this section. This version suffices for small energies, but
in order to handle large energies the construction of our renormalization procedure will, roughly speaking,
involve further frequency and spatial truncations. We will explain the necessary modifications as we go in
the later sections of this paper.

Our starting point is the following decomposition of the wave maps nonlinearity at fixed frequency 2k,

Pk
(
φ∂αφ

†∂αφ
)

= 2
∑

k2≤k−10

φ≤k2−10∂αφ
†

k2
∂αφk(5.2)

+
∑

k2>k−10

∑
k3=k2+O(1)

Pk
(
φ≤k2+20∂αφ

†

k2
∂αφk3

)
(5.3)

+ 2
∑

k2≤k−10

φ≤k2−10
(
Pk

(
∂αφ

†

k2
∂αφk−5<·<k+5

)
− ∂αφ

†

k2
∂αφk

)
.(5.4)

+
∑

k2≤k−10

∑
k3=k+O(1)

PkL
(
φk2−10<·≤k−10, ∂αφk2 , ∂

αφk3

)
(5.5)

+
∑

k2>k−10

∑
k1=k2+O(1)

∑
k3≤k2+O(1)

PkL
(
φk1 , ∂αφk2 , ∂

αφk3

)
(5.6)

+
∑

k2≤k−10

∑
k3=k+O(1)

2−kPkL
(
∇xφ≤k2−10, ∂αφk2 , ∂

αφk3

)
.(5.7)
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In order to arrive at this decomposition, we begin with

Pk
(
φ∂αφ

†∂αφ
)

= Pk
(
φ∂αφ

†

≤k−10∂
αφ≤k−10

)
+ 2Pk

(
φ∂αφ

†

≤k−10∂
αφ>k−10

)
+ Pk

(
φ∂αφ

†

>k−10∂
αφ>k−10

)
and then further decompose into

Pk
(
φ∂αφ

†∂αφ
)

= Pk
(
φ∂αφ

†

≤k−10∂
αφ≤k−10

)
(5.8)

+ 2
∑

k1>k−10

Pk
(
φk1∂αφ

†

≤k−10∂
αφk1+O(1)

)
(5.9)

+ 2
∑

k2≤k−10

Pk
(
φk2−10<·≤k−10∂αφ

†

k2
∂αφk−5<·<k+5

)
(5.10)

+ 2
∑

k2≤k−10

Pk
(
φ≤k2−10∂αφ

†

k2
∂αφk−5<·<k+5

)
(5.11)

+
∑

k2>k−10

Pk
(
φk2−5<·<k2+5∂αφ

†

k2
∂αφ≤k2−10

)
(5.12)

+
∑

k2>k−10

Pk
(
φ≤k2+20∂αφ

†

k2
∂αφk2−10<·≤k2+10

)
(5.13)

+
∑

k2>k−10

∑
k3>k2+10

Pk
(
φk3−5<·<k3+5∂αφ

†

k2
∂αφk3

)
.(5.14)

The first term (5.8) can be estimated in the same manner as the term (5.6) and is therefore not further
included in the decomposition (5.2)–(5.7). The second term (5.9) is of type (5.6), while the third term (5.10)
is of type (5.5). Using the Leibniz rule (2.1) for the projection Pk, we may write the fourth term (5.11) as

(5.15)

2
∑

k2≤k−10

Pk
(
φk2−10<·≤k−10∂αφ

†

k2
∂αφk−5<·<k+5

)
= 2

∑
k2≤k−10

φ≤k2−10∂αφ
†

k2
∂αφk

+ 2
∑

k2≤k−10

2−kPkL
(
∇xφ≤k2−10, ∂αφk2 , ∂

αφk−5<·<k+5
)

+ 2
∑

k2≤k−10

φ≤k2−10
(
Pk(∂αφ

†

k2
∂αφk−5<·<k+5) − ∂αφ

†

k2
∂αφk

)
.

Then the first term on the right-hand side of (5.15) coincides exactly with the term (5.2), the second term on
the right-hand side is of type (5.7) and the third term on the right-hand side coincides with the term (5.4).
Finally, the terms (5.12) and (5.14) are both of the type (5.6), while the high-high interactions term (5.13)
coincides with the term (5.3).

Let us now return to the decomposition (5.2)–(5.7) of the wave maps nonlinearity at fixed frequency.
In order to estimate the term (5.5) we will use the trilinear estimate (4.4), while we will bound the terms
(5.6) and (5.7) using a combination of the null form estimate (4.1) and Strichartz estimates. In contrast,
the first three terms (5.2) – (5.4) are not amenable to good bounds using the null form estimate and the
trilinear estimate. Correspondingly, we have to introduce a renormalization procedure to deal with these
non-perturbative terms. For the term (5.2) we will follow Tao’s idea [36, 37] to apply a suitable gauge
transformation that casts this part of the nonlinearity into a better form, while for the other two terms (5.3)–
(5.4) we will pass to a “nonlinearly modified” version of φk that satisfies a better equation.
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We begin with the latter part of our renormalization procedure. Using the identity

(5.16)
�
(
φ(1)φ(2)†φ(3)) = 2φ(1)∂αφ

(2)†∂αφ(3) + 2∂αφ(1)∂αφ(2)†φ(3) + 2∂αφ(1)φ(2)†∂αφ(3)

+ �φ(1)φ(2)†φ(3) + φ(1)�φ(2)†φ(3) + φ(1)φ(2)†�φ(3),

we may rewrite the high-high interaction term (5.3) into the schematic form

∑
k2>k−10

∑
k3=k2+O(1)

Pk
(
φ≤k2+20∂αφ

†

k2
∂αφk3

)
= �

(1
2

∑
k2>k−10

∑
k3=k2+O(1)

Pk
(
φ≤k2+20φ

†

k2
φk3

))
+

∑
k2>k−10

∑
k3=k2+O(1)

PkL
(
∂αφ≤k2+20, ∂

αφk2 , φk3

)
(5.17)

+
∑

k2>k−10

∑
k3=k2+O(1)

PkL
(
�φ≤k2+20, φk2 , φk3

)
(5.18)

+
∑

k2>k−10

∑
k3=k2+O(1)

PkL
(
φ≤k2+20,�φk2 , φk3

)
.(5.19)

Here we note that all terms apart from the first one on the right-hand side of the previous equation now have
a better structure in that a derivative falls on a lowest frequency or upon reinserting the wave maps equation
these terms become quintilinear and thus easier to estimate. In particular, we note that the term (5.17) is of
the same form as the term (5.6).

Similarly, using the Leibniz rule (2.1) for the projection Pk and the identity (5.16), the other difficult
term (5.4) can be rewritten into the schematic form

2
∑

k2≤k−10

φ≤k2−10
(
Pk

(
∂αφ

†

k2
∂αφk−5<·<k+5

)
− ∂αφ

†

k2
∂αφk

)
= �

( ∑
k2≤k−10

φ≤k2−10
(
Pk(φ†k2

φk−5<·<k+5) − φ†k2
φk

))
+

∑
k2≤k−10

2−kL
(
∂αφ≤k2−10,∇x∂

αφk2 , φk−5<·<k+5
)

(5.20)

+
∑

k2≤k−10

2−kL
(
∂αφ≤k2−10,∇xφk2 , ∂

αφk−5<·<k+5
)

(5.21)

+
∑

k2≤k−10

2−kL
(
�φ≤k2−10,∇xφk2 , φk−5<·<k+5

)
(5.22)

+
∑

k2≤k−10

2−kL
(
φ≤k2−10,∇x�φk2 , φk−5<·<k+5

)
(5.23)

+
∑

k2≤k−10

2−kL
(
φ≤k2−10,∇xφk2 ,�φk−5<·<k+5

)
,(5.24)

where again all terms apart from the first one on the right-hand side are now amenable to better estimates
either because a derivative now falls on the lowest frequency or because upon reinserting the wave maps
equation the term is now quintilinear. We observe that the terms (5.20) and (5.21) are essentially of the
same form as the term (5.7) and can be dealt with in the same manner. Hence, introducing the following
“nonlinearly modified” version of φk,

(5.25) φ̄k := φk +
1
2

∑
k2>k−10

∑
k3=k2+O(1)

Pk
(
φ≤k2+20φ

†

k2
φk3

)
+

∑
k2≤k−10

φ≤k2−10
(
Pk(φ†k2

φk−5<·<k+5) − φ†k2
φk

)
,
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our previous considerations imply that φ̄k satisfies a wave equation of the following schematic form

(5.26)

�φ̄k = −2
∑

k2≤k−10

φ≤k2−10∂αφ
†

k2
∂αφk

+
∑

k2≤k−10

∑
k3=k+O(1)

PkL
(
φk2−10<·≤k−10, ∂αφk2 , ∂

αφk3

)
+

∑
k2>k−10

∑
k1=k2+O(1)

∑
k3≤k2+O(1)

PkL
(
φk1 , ∂αφk2 , ∂

αφk3

)
+

∑
k2≤k−10

∑
k3=k+O(1)

2−kPkL
(
∇xφ≤k2−10, ∂αφk2 , ∂

αφk3

)
+ Qk(φ),

where Qk(φ) comprises all the quintilinear terms (5.18)–(5.19) and (5.22)–(5.24)

Qk(φ) =
∑

k2>k−10

∑
k3=k2+O(1)

PkL
(
P≤k2+20(φ∂αφ†∂αφ), φk2 , φk3

)
+

∑
k2>k−10

∑
k3=k2+O(1)

PkL
(
φ≤k2+20, Pk2(φ∂αφ†∂αφ), φk3

)
+

∑
k2≤k−10

2−kL
(
P≤k2−10(φ∂αφ†∂αφ),∇xφk2 , φk−5<·<k+5

)
+

∑
k2≤k−10

2−kL
(
φ≤k2−10,∇xPk2(φ∂αφ†∂αφ), φk−5<·<k+5

)
+

∑
k2≤k−10

2−kL
(
φ≤k2−10,∇xφk2 , Pk−5<·<k+5(φ∂αφ†∂αφ)

)
.

All the quintilinear terms in Qk(φ) can be easily estimated using just combinations of the null form es-
timate (4.1) and Strichartz estimates as well as the fact that ‖φ‖L∞t L∞x . 1. Thus, we can overcome the
difficulties with the terms (5.3)–(5.4) at the expense of passing from φk to the new variable φ̄k. Note that φ̄k
is also localized to frequency 2k. In the following we will sometimes use the notation φ̄ =

∑
k∈Z φ̄k.

Now we still have to deal with the more severe term (5.2) which comes up as the first term on the
right-hand side of the equation (5.26) for φ̄k. We follow Tao’s idea [36, 37] and apply a renormalization
U≤k−10φ̄k so that �

(
U≤k−10φ̄k

)
takes on a much better form. More specifically, we implement a version of

the gauge construction introduced by Sterbenz-Tataru [29,30]. To this end we pick a smooth cut-off function
η ∈ C∞(R) such that η(y) = 0 for y ≤ −2

3 and η(y) = 1 for y ≥ −1
3 . Then we define for h ∈ R the matrix

(5.27) Bh :=
d
dh

∑
`∈Z

η(h − `)(φ≤`−10φ
†

`
− φ`φ

†

≤`−10) =
∑
`∈Z

η′(h − `)(φ≤`−10φ
†

`
− φ`φ

†

≤`−10).

Now we define the gauge transformations U≤h for h ∈ R via the ODE

(5.28)
d
dh

U≤h = U≤hBh, lim
h→−∞

U≤h = Id.

By the anti-symmetry of Bh, it follows that the gauge transformations U≤h as solutions to the ODE (5.28)
satisfy U†

≤hU≤h = Id and are thus exactly orthogonal. However, they do not have a sharp frequency local-
ization. Fortunately, we will see that the renormalized quantity U≤k−10φ̄k is still approximately localized to
frequency 2k up to exponentially decaying tails.

Next, we compute the equation that the renormalization U≤k−10φ̄k satisfies. Upon defining for k ∈ Z

(5.29) Aα;k = ∂αφkφ
†

≤k−10 − φ≤k−10∂αφ
†

k
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and

(5.30) Aα;≤k =
∑
`≤k

Aα;`,

we find that

(5.31)

�
(
U≤k−10φ̄k

)
= U≤k−10

(
�φ̄k − 2Aα;≤k−10∂

αφk
)

+ 2
(
∂αU≤k−10 + U≤k−10Aα;≤k−10

)
∂αφk

+ 2∂αU≤k−10∂
α(φ̄k − φk)

+
(
�U≤k−10

)
φ̄k.

In the following proposition we carefully analyze the structure of each term in the nonlinearity of the wave
equation (5.31) for U≤k−10φ̄k.

Proposition 5.1. It holds that

(5.32)

�φ̄k − 2Aα;≤k−10∂
αφk =

∑
k2≤k−10

∑
k3=k+O(1)

PkL
(
φk2−10<·≤k−10, ∂αφk2 , ∂

αφk3

)
+

∑
k2>k−10

∑
k1=k2+O(1)

∑
k3≤k2+O(1)

PkL
(
φk1 , ∂αφk2 , ∂

αφk3

)
+

∑
k2≤k−10

∑
k3=k+O(1)

2−kPkL
(
∇xφ≤k2−10, ∂αφk2 , ∂

αφk3

)
+ Qk(φ).

Moreover, we have the following schematic identities(
∂αU≤k−10 + U≤k−10Aα;≤k−10

)
∂αφk =

∑
k2≤k−10

U≤k2−1L
(
φk2−10≤·≤k−10, ∂αφk2 , ∂

αφk
)
,(5.33)

∂αU≤k−10∂
α(φ̄k − φk) =

∑
k1≤k−10

U≤k1−1L
(
∂αL(φ≤k1−10, φk1), ∂α(φ̄k − φk)

)
,(5.34)

(
�U≤k−10

)
φ̄k =

∑
k1≤k−10

U≤k1−1L
(
�L(φ≤k1−10, φk1), φ̄k

)
(5.35)

+
∑

k1≤k2≤k−10

U≤k1−1L
(
∂αL(φ≤k1−10, φk1), ∂αL(φ≤k2−10, φk2), φ̄k

)
.

Proof. We begin with the proof of the first identity (5.32). In view of (5.26) we only have to understand the
structure of the term ∑

k2≤k−10

∂αφk2φ
†

≤k2−10∂
αφk.

But here we can argue as in Tao [37, p. 461] and use the geometric identity φ†∂αφ = 0 to show that this term
is in fact a sum of terms of the schematic forms (5.5)–(5.7). This proves (5.32).

Next we turn to the proof of the schematic identity (5.33). Using the exact orthogonality of the gauge
transformations U≤h, by telescoping we may write U≤k−10 as

U≤k−10 = U≤−M

k−10∏
j=k−M+1

U†
≤ j−1U≤ j

for some M � 1. Applying a derivative ∂α and letting M → ∞, we find that

∂αU≤k−10 =
∑

j≤k−10

U≤ j−1∂α
(
U†
≤ j−1U≤ j

)
U†
≤ jU≤k−10.
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From the defining ODE (5.28) for the gauge transformations we have that

(5.36) U†
≤ j−1U≤ j =

∫ j

j−1
U†
≤ j−1U≤hBh dh + Id

and hence

∂α
(
U†
≤ j−1U≤ j

)
= ∂α

∫ j

j−1
Bh dh + ∂α

∫ j

j−1

(
U†
≤ j−1U≤ j − Id

)
Bh dh.

Thus, we may write

∂αU≤k−10 + U≤k−10Aα;≤k−10 =
∑

j≤k−10

U≤ j−1

(
∂α

∫ j

j−1
Bh dh

)
U†
≤ jU≤k−10

+
∑

j≤k−10

U≤ j−1Aα; j

+
∑

j≤k−10

U≤ j−1
(
U†
≤ j−1U≤k−10 − Id

)
Aα; j

+
∑

j≤k−10

U≤ j−1

(
∂α

∫ j

j−1

(
U†
≤ j−1U≤h − Id

)
Bh dh

)
U†
≤ jU≤k−10.

Now by the definition of Bh (5.27) we have that

∂α

∫ j

j−1
Bh dh = ∂α(φ≤ j−10φ

†

j − φ jφ
†

≤ j−10) = −Aα; j + (∂αφ≤ j−10φ
†

j − φ j∂αφ
†

≤ j−10).

Combining the two previous identities we find that

(5.37)

∂αU≤k−10 + U≤k−10Aα;≤k−10 =
∑

j≤k−10

U≤ j−1Aα; j
(
−U†
≤ jU≤k−10 + Id

)
+

∑
j≤k−10

U≤ j−1
(
∂αφ≤ j−10φ

†

j − φ j∂αφ
†

≤ j−10
)
U†
≤ jU≤k−10

+
∑

j≤k−10

U≤ j−1
(
U†
≤ j−1U≤k−10 − Id

)
Aα; j

+
∑

j≤k−10

U≤ j−1

(
∂α

∫ k

k−1

(
U†
≤ j−1U≤h − Id

)
Bh dh

)
U†
≤ jU≤k−10.

In view of the identity

U†
≤k1

U≤k2 − Id =

∫ k2

k1

U†
≤k1

U≤hBh dh for k1 < k2,

the exact orthogonality of the gauge transformations U≤h, the definition of Bh (5.27) and the fact that
‖φ‖L∞t L∞x . 1, it is now apparent that when it comes to estimates, the first three terms on the right-hand
side of (5.37) are of the schematic form (5.33). To see this also for the last term on the right-hand side
of (5.37), we note that by iteratively inserting the identity (5.36), we obtain that

∂α

∫ k

k−1

(
U†
≤ j−1U≤h − Id

)
Bh dh =

∫ k

k−1

∫ h1

k−1
U†
≤ j−1U≤h2 Bh2∂αBh1 dh2 dh1

+

∞∑
n=1

∫ k

k−1

∫ h1

k−1
· · ·

∫ hn

k−1
U†
≤ j−1U≤hn+1∂αBhn+1 Bhn · · · Bh1 dhn+1 · · · dh1.
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Here the series may seem to diverge at first sight, but the integration over simplices yields the necessary com-
pensating 1

n! decay. Thus, also the last term on the right-hand side of (5.37) is of the schematic form (5.33),
which finishes the proof of (5.33).

Similarly, we can prove (5.34) using the identities

∂αU≤k−10 =
∑

j≤k−10

U≤ j−1∂α
(
U†
≤ j−1U≤ j

)
U†
≤ jU≤k−10

and

∂α
(
U†
≤ j−1U≤ j

)
=

∫ j

j−1
U†
≤ j−1U≤h1∂αBh1 dh1

+

∞∑
n=1

∫ j

j−1

∫ h1

j−1
· · ·

∫ hn

j−1
U†
≤ j−1U≤hn+1∂αBhn+1 Bhn · · · Bh1 dhn+1 · · · dh1.

Finally, we turn to the proof of (5.35). From the telescoping identity

U≤k−10 = U≤−M

k−10∏
j=k−M+1

U†
≤ j−1U≤ j

for M � 1, we obtain that

(5.38)

�U≤k−10 =
∑

j≤k−10

U≤ j−1�
(
U†
≤ j−1U≤ j

)
U†
≤ jU≤k−10

+ 2
∑

j1< j2≤k−10

U≤ j1−1∂α
(
U†
≤ j1−1U≤ j1

)
· · · ∂α

(
U†
≤ j2−1U≤ j2

)
U†
≤ j2

U≤k−10.

Then by iteratively inserting the identities

�
(
U†
≤ j−1U≤ j

)
=

∫ j

j−1
�
(
U†
≤ j−1U≤h

)
Bh dh + 2

∫ j

j−1
∂α

(
U†
≤ j−1U≤h

)
∂αBh dh +

∫ j

j−1

(
U†
≤ j−1U≤h

)
�Bh dh

and

∂α
(
U†
≤ j−1U≤ j

)
=

∫ j

j−1
∂α

(
U†
≤ j−1U≤h

)
Bh dh +

∫ j

j−1

(
U†
≤ j−1U≤h

)
∂αBh dh

into (5.38), we infer by similar arguments as before that
(
�U≤k−10

)
φ̄k is indeed of the schematic form (5.35).

�

Next, we prove several useful bounds on φ̄k and on the gauge transformations that will be needed in the
sequel.

Lemma 5.2. Let φ : I × R2 → Sm be a radial wave map of energy E. Then we have for all k ∈ Z that

(5.39) ‖φ̄k‖L∞t L∞x . 1 + E

and it holds that

(5.40)
∑
k∈Z

‖∇t,xφ̄k‖
2
L2

x
. E + E3.

Proof. We start with the proof of (5.39). Since φ maps into the sphere and the Littlewood-Paley projections
Pk are disposable, we clearly have ‖φk‖L∞t L∞x . 1. Using Bernstein’s inequality, we easily bound the second
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component in the definition (5.25) of φ̄k by∥∥∥∥∥ ∑
k2>k−10

∑
k3=k2+O(1)

Pk
(
φ≤k2+20φ

†

k2
φk3

)∥∥∥∥∥
L∞x
.

∑
k2>k−10

∑
k3=k2+O(1)

22k‖φk2‖L2
x
‖φk3‖L2

x

.
∑

k2>k−10

‖∇xφk2‖
2
L2

x

. E,

while for the third component in the definition (5.25) we additionally use the Leibniz rule (2.1) for Pk to
find that ∥∥∥∥∥ ∑

k2≤k−10

φ≤k2−10
(
Pk(φ†k2

φk−5<·<k+5) − φ†k2
φk

)∥∥∥∥∥
L∞x

=

∥∥∥∥∥ ∑
k2≤k−10

2−kL
(
φ≤k2−10,∇xφk2 , φk+O(1)

)∥∥∥∥∥
L∞x

.
∑

k2≤k−10

2−k+k2‖∇xφk2‖L2
x
‖∇xφk‖L2

x

. E.

The proof of (5.40) follows by analogous estimates. �

Lemma 5.3. Let φ : I ×R2 → Sm be a radial wave map of energy E and let U≤h for h ∈ R be the associated
gauge transformations as defined in (5.28). For 2 < p ≤ ∞ it holds that

(5.41)
∥∥∥∇t,xU≤k

∥∥∥
L∞t Lp

x
. 2(1− 2

p )k(E
1
2 + E).

Moreover, we have for 2 ≤ p ≤ ∞ that

(5.42)
∥∥∥∇x∇t,xU≤k

∥∥∥
L∞t Lp

x
. 2(2− 2

p )k(E
1
2 + E).

Proof. By telescoping as in the proof of Proposition 5.1, we obtain the schematic identity

∇t,xU≤k =
∑
k2≤k

U≤k2−1∇t,xL(φ≤k2−10, φk2)U†
≤k2

U≤k.

Hence we find for 2 < p ≤ ∞ that∥∥∥∇t,xU≤k
∥∥∥

Lp
x
.

∑
k2≤k

∥∥∥L(∇t,xφ≤k2−10, φk2)
∥∥∥

Lp
x

+
∑
k2≤k

∥∥∥L(φ≤k2−10,∇t,xφk2)
∥∥∥

Lp
x

.
∑
k2≤k

∑
k1≤k2−10

‖∇t,xφk1‖L∞x ‖φk2‖Lp
x

+
∑
k2≤k

‖∇t,xφk2‖Lp
x

.
∑
k2≤k

∑
k1≤k2−10

2k12−
2
p k2‖∇t,xφk1‖L2

x
‖∇xφk2‖L2

x
+

∑
k2≤k

2(1− 2
p )k2‖∇t,xφk2‖L2

x

. 2(1− 2
p )k(E + E

1
2 ),

which yields (5.41). The proof of the bound (5.42) proceeds similarly. �

We conclude this section by establishing a small energy global regularity result for the wave maps equa-
tion (WM) for radially symmetric, classical initial data. The proof is a fairly immediate consequence of
the multilinear estimates from the previous section and of the careful decomposition of the wave maps
nonlinearity as well as of the introduction of the renormalization procedure in this section.

Theorem 5.4. There exists an absolute constant ε > 0 such that for any radially symmetric, classical initial
data (φ0, φ1) : R2 → TSm with energy E[φ] < ε, there exists a unique, radially symmetric, classical global
solution φ : R1+2 → Sm to (WM) with initial data φ[0] = (φ0, φ1) satisfying

(5.43) ‖φ‖S [R] . E[φ]
1
2 .
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Proof. It is a standard argument to show that in order to conclude global regularity and the bound (5.43), it
suffices to prove frequency envelope bounds for the local-in-time evolution of a classical radial wave map
with initial data (φ0, φ1), see [36, 37]. Thus, let {ck}k∈Z be a frequency envelope covering the initial data
(φ0, φ1) and denote by φ be the classical wave maps evolution with initial data φ[0] = (φ0, φ1) on a time
interval I = [−T,T ] for some 0 < T < ∞. We shall prove frequency envelope bounds for the evolution by a
bootstrap argument. Making the bootstrap assumption

‖Pkφ‖S k[I] ≤ Cck, k ∈ Z,

for some sufficently large, absolute constant C > 0, we shall now show that this implies the improved bound

‖Pkφ‖S k[I] ≤
C
2

ck, k ∈ Z.

By scaling invariance, it suffices to prove this bound for k = 0. To this end we first deduce a frequency
envelope bound for the renormalized quantity U≤−10φ0. This step is slightly compounded by the fact that
the variable U≤−10φ0 is only approximately localized to frequency ∼ 0 up to exponentially decaying tails.
Correspondingly, we show that for any 0 ≤ α < 1, it holds that

(5.44)
∑
k0∈Z

2α|k0 |
∥∥∥Pk0

(
U≤−10φ0

)∥∥∥
S k0 [I] � Cc0.

From this bound on U≤−10φ0 we can then pass back to φ0 and recover the improved bound

‖P0φ‖S 0[I] ≤
C
2

c0,

as explained in detail in the proof of Proposition 6.3 in the next section. In order to prove the bound (5.44)
we show that for any 0 ≤ α < 1,

(5.45)
∑
k0∈Z

2α|k0 |
∥∥∥Pk0∇t,x

(
U≤−10φ0

)∥∥∥
L2

x
� Cc0

and that

(5.46)
∑
k0∈Z

2α|k0 |
∥∥∥Pk0�

(
U≤−10φ0

)∥∥∥
L1

t L2
x[I] . εCc0.

For sufficently small ε > 0 the energy estimate (3.1) then yields the desired bound (5.44). We note that
the exponential factors 2α|k0 | in (5.45) and (5.46) can be controlled by playing out Bernstein’s inequality
and the bounds on the gauge transformations from Lemma 5.3, see the proof of Proposition 6.3 in the next
section for such an argument. Then the bound (5.45) is straightforward to derive from the definition of
φ0 using the properties of frequency envelopes. Finally, in order to deduce the bound (5.46), we recall
that Proposition 5.1 carefully lists each schematic term arising in the nonlinearity �

(
U≤−10φ0

)
. Using the

properties of frequency envelopes we then prove (5.46) separately for each schematic term. Specifically,
we may bound the first term on the right-hand side of (5.32) as well as the term (5.33) using the trilinear
estimate (4.4), while all other terms on the right-hand side of (5.32) as well as the terms (5.34)–(5.35) can
be estimated by a combination of the null form estimate (4.1) and Strichartz estimates. �

6. Breakdown criterion

Here we show that the S norm introduced in Definition 3.1 provides sufficient control on a radially
symmetric, classical solution to the wave maps equation (WM) in order to infer long time existence and
scattering. The main result is summarized in the following proposition.
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Proposition 6.1. Let I be the maximal time interval of existence of a radially symmetric, classical wave map
φ : I × R2 → Sm. If ‖φ‖S [I] < ∞, then we must have I = R. Moreover, φ then scatters to finite energy free
waves as t → ±∞ in the sense that there exist ( f±, g±) ∈ Ḣ1

x × L2
x such that

lim
t→±∞

∥∥∥∇t,xφ − ∇t,xS (t)( f±, g±)
∥∥∥

L2
x

= 0,

where S (t)( f±, g±) = cos(t|∇|) f± +
sin(t|∇|)
|∇|

g± denotes the free wave propagator.

We will give the proof of Proposition 6.1 at the end of this section. The key ingredient for the proof is the
next proposition which provides frequency envelope bounds for a radially symmetric, classical wave map
φ : I × R2 → Sm with finite S norm.

Proposition 6.2. Let φ : I×R2 → Sm be a radially symmetric, classical wave map defined on a time interval I
containing time t = 0. Let {ck}k∈Z be a frequency envelope covering the initial data φ[0]. If ‖φ‖S [I] < ∞,
then there exists C ≡ C

(
‖φ‖S [I]

)
> 0 such that for all k ∈ Z,

‖Pkφ‖S k[I] ≤ Cck.

The proof of Proposition 6.2 relies on the following weak divisibility property of the S norm.

Proposition 6.3. Let φ : I × R2 → Sm be a radially symmetric, classical wave map of energy E defined on
a time interval I and satisfying ‖φ‖S [I] ≤ K. Then there exists a partition I = ∪N

j=1I j into N ≡ N(K, E)
consecutive time intervals I j such that

(6.1) ‖φ‖S [I j] . C(E) for j = 1, . . . ,N,

where C(E) is an absolute constant that just depends on the size of the energy E.

Proof. The proof proceeds in two steps. First we show that

(6.2) ‖φ̄ − φ‖S [I] . C(E).

Then we prove that the interval I can be partitioned into N(K, E) consecutive subintervals I j such that

(6.3) ‖φ̄‖S [I j] . C(E) for j = 1, . . . ,N.

The assertion (6.1) then is an immediate consequence of the two previous bounds. Their proof, however,
requires the introduction of certain frequency and spatial cutoffs in the definitions of the quantity φ̄ and of
the gauge transformations U≤h which we will explain as we go. We will be able to prove (6.2) directly,
gaining smallness by choosing the frequency and spatial cutoff parameter sufficently large, while we will
establish (6.3) using a suitable divisibility argument.

We begin with the proof of the bound (6.2). To this end we recall that our motivation for the introduction
of the quantity φ̄ =

∑
k∈Z φ̄k was in the first place that the high-high interaction term (5.3)∑

k2>k−10

∑
k3=k2+O(1)

Pk
(
φ≤k2+20∂αφ

†

k2
∂αφk3

)
as well as the term (5.4) ∑

k2≤k−10

φ≤k2−10
(
Pk(∂αφ

†

k2
∂αφk−5<·<k+5) − ∂αφ

†

k2
∂αφk

)
in the wave map nonlinearity localized to frequency ∼ 2k turn out to be non-perturbative due to our choice
to estimate the nonlinearity solely in L1

t L2
x and to build the S norm out of relatively elementary function

spaces. However, we can in fact “peel off” some more good parts from these terms. More precisely, the
following frequency and spatially truncated versions of (5.3)

(6.4)
∑

k−10<k2≤k+m

∑
k3=k2+O(1)

Pk
(
χ{r≤2−k+m}φ≤k2+20∂αφ

†

k2
∂αφk3

)
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and of (5.4)

(6.5) 2
∑

k−m<k2≤k−10

Pk−10<·<k+10
(
χ{r≤2−k+m}φ≤k2+20

(
Pk(∂αφ

†

k2
∂αφk−5<·<k+5) − ∂αφ

†

k2
∂αφk

))
for some large parameter m � 1, can still be suitably estimated, as we will show in detail in the second part
of the proof of this proposition. Correspondingly, within this proof we may also work with the following
modified definition

φ̄k − φk :=
1
2

∑
k−10<k2≤k+m

∑
k3=k2+O(1)

Pk
(
χ{r>2−k+m}φ≤k2+20φ

†

k2
φk3

)
(6.6)

+
1
2

∑
k2>k+m

∑
k3=k2+O(1)

Pk
(
φ≤k2+20φ

†

k2
φk3

)
(6.7)

+
∑

k−m<k2≤k−10

Pk−10<·<k+10
(
χ{r>2−k+m}φ≤k2+20

(
Pk(φ†k2

φk−5<·<k+5) − φ†k2
φk

))
(6.8)

+
∑

k2≤k−m

Pk−10<·<k+10
(
φ≤k2+20

(
Pk(φ†k2

φk−5<·<k+5) − φ†k2
φk

))
.(6.9)

Note that additional error terms will arise here in the equation for �φ̄k when a derivative hits the spatial
cutoffs χ{r>2−k+m}. However, these extra terms can be dealt with easily. We now prove that

(6.10) ‖φ̄ − φ‖S [I] . 2−αm‖φ‖
β
S [I]

for suitable α, β > 0, which immediately implies the desired bound (6.2) upon choosing m � 1 sufficiently
large depending on the size of ‖φ‖S [I]. We start off with the term (6.6) in the expression for φ̄k − φk and seek
to show by direct estimation that

(6.11)
(∑

k∈Z

∥∥∥∥ ∑
k−10<k2≤k+m

∑
k3=k2+O(1)

Pk
(
χ{r>2−k+m}φ≤k2+20φ

†

k2
φk3

)∥∥∥∥2

S k[I]

) 1
2
. 2−αm‖φ‖

β
S [I].

To this end we prove (6.11) separately for each part of the S k norm. We begin with the kinetic energy
component. Suppose ∇t,x hits φ†k2

. Using Strauss’ improved Sobolev embedding in the radial case

(6.12)
∥∥∥r+ 1

2φk
∥∥∥

L∞x
. 2−

1
2 k‖φk‖Ḣ1

x
,

we may estimate (∑
k∈Z

∥∥∥∥ ∑
k−10<k2≤k+m

∑
k3=k2+O(1)

Pk
(
χ{r>2−k+m}φ≤k2+20∇t,xφ

†

k2
φk3

)∥∥∥∥2

L∞t L2
x[I]

) 1
2

.
(∑

k∈Z

( ∑
k−10<k2≤k+m

∑
k3=k2+O(1)

∥∥∥∇t,xφk2

∥∥∥
L∞t L2

x[I]

∥∥∥χ{r>2−k+m}φk3

∥∥∥
L∞t L∞x [I]

)2) 1
2

.
(∑

k∈Z

( ∑
k−10<k2≤k+m

∑
k3=k2+O(1)

‖φk2‖S k2 [I]2−
1
2 m2−

1
2 (k3−k)‖φk3‖S k3 [I]

)2) 1
2

. 2−
1
2 m‖φ‖2S [I].

Analogously, we can deal with the expressions arising when ∇t,x hits φ≤k2+20 or the cutoff χ{r>2−k+m}, which
yields (6.11) for the kinetic energy component of the S k norm. In a very similar fashion we may also prove
(6.11) for the Strichartz, weighted endpoint Strichartz and local energy decay components of the S k norm.
Hence we are left to prove (6.11) for the more delicate atomic space parts Z±k . It suffices to consider the Z+

k
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component. Assume that (∂t + ∂r) hits the input φ†k2
. Then we decompose (∂t + ∂r)φk2 into its (+) and (−)

components
(∂t + ∂r)φk2 = (∂t + ∂r)φ

(+)
k2

+ (∂t + ∂r)φ
(−)
k2
.

We now show that in case of the (∂t + ∂r)φ
(+)
k2

component, we can place the whole expression∑
k−10<k2≤k+m

∑
k3=k2+O(1)

Pk
(
χ{r>2−k+m}φ≤k2+20(∂t + ∂r)φ

(+)†
k2

φk3

)
into the (+) component of the Z+

k norm with the desired bound. Indeed, we have for the L2
t+rL∞t−r part that(∑

k∈Z

(
sup

0<λ≤ 1
2

2−( 1
2−λ)k

∥∥∥∥r+λ
∑

k−10<k2≤k+m

∑
k3=k2+O(1)

Pk
(
χ{r>2−k+m}φ≤k2+20(∂t + ∂r)φ

(+)†
k2

φk3

)∥∥∥∥
L2

t+rL∞t−r[I]

)2) 1
2

.

(∑
k∈Z

(
sup

0<λ≤ 1
2

∑
k−10<k2≤k+m

∑
k3=k2+O(1)

2−( 1
2−λ)k

∥∥∥r+λ(∂t + ∂r)φ
(+)
k2

∥∥∥
L2

t+rL∞t−r

∥∥∥χ{r>2−k+m}φk3

∥∥∥
L∞t L∞x

)2) 1
2

.

(∑
k∈Z

(
sup

0<λ≤ 1
2

∑
k−10<k2≤k+m

∑
k3=k2+O(1)

2−
1
2 m2−λ(k2−k)‖φk2‖S k2

‖φk3‖S k3

)2) 1
2

. 2−
1
2 mm

1
2 ‖φ‖2S [I],

where we again used Strauss’ improved Sobolev embedding (6.12). Similarly, we may bound the Yk norm.
Instead, when we face the (∂t + ∂r)φ

(−)
k2

component, we can suitably place the whole resulting expression
into the (−) component of the Z+

k norm. More precisely, for the weighted Lq
t Lp

x norm we find that

2( 1
q + 2

p−1)k2λk
∑
`∈Z

∥∥∥∥χ{r∼2`}r
+λ

∑
k−10<k2≤k+m

∑
k3=k2+O(1)

Pk
(
χ{r>2−k+m}φ≤k2+20(∂t + ∂r)φ

(−)†
k2

φk3

)∥∥∥∥
Lq

t Lp
x

.
∑

k−10<k2≤k+m

∑
k3=k2+O(1)

2( 1
q + 2

p−1)k2λk
∑
`∈Z

∥∥∥χ{r∼2`}r
+λ(∂t + ∂r)φ

(−)
k2

∥∥∥
Lq

t Lp
x

∥∥∥χ{r>2−k+m}φk3

∥∥∥
L∞t L∞x

. 2−
1
2 m

∑
k−10<k2≤k+m

2( 1
q + 2

p−
1
2 +λ)(k−k2)

‖φk2‖
2
S k2

and in view of the admissible ranges for (q, p) and λ, upon square-summing over k ∈ Z, we may bound
the whole expression by 2−δmm

1
2 ‖φ‖2S [I] for some small δ > 0, which is of the desired form. We proceed

analogously with the Yk norm. When (∂t + ∂r) hits the other inputs, the Z+
k norm can be bounded similarly.

This finishes the proof of (6.11) and hence the proof of (6.10) for the term (6.6).
In order to show (6.10) for the term (6.7) we can proceed analogously only that we have to introduce an

additional splitting∑
k2>k+m

∑
k3=k2+O(1)

Pk
(
φ≤k2+20φ

†

k2
φk3

)
=

∑
k2>k+m

∑
k3=k2+O(1)

Pk
(
χ{r≤2−k}φ≤k2+20φ

†

k2
φk3

)
+

∑
k2>k+m

∑
k3=k2+O(1)

Pk
(
χ{r>2−k}φ≤k2+20φ

†

k2
φk3

)
.

Suppose here that the input φ†k2
is hit by a derivative, then we achieve an exponential gain in −k3 and thus

smallness, either by using Bernstein to place φk3 into L∞t L2
x or by placing φk3 into L∞t L∞x and using Strauss’

improved Sobolev embedding (6.12).
Finally, the proof of (6.10) for the terms (6.8) and (6.9) works similarly to the above estimates and is left

to the reader. This finishes the first part of the proof of Proposition 6.3, namely establishing the bound (6.2).
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We now turn to the proof of the estimate (6.3). This step is slightly compounded by the fact that the renor-
malized variable U≤k−10φ̄k is only approximately frequency localized to frequency 2k up to exponentially
decaying tails. We will first show via a divisibility argument that we can partition the time interval I = ∪ jI j
into N(K, E) consecutive intervals I j = [t j, t j+1] satisfying

(6.13)
(∑

k∈Z

(∑
k0∈Z

2α|k−k0 |
∥∥∥Pk0

(
U≤k−10φ̄k

)∥∥∥
S k0 [I j]

)2) 1
2
. C(E)

for any 0 ≤ α < 1. Then we will infer the desired bound(∑
k∈Z

‖φ̄k‖
2
S k[I j]

) 1
2
. C(E)

by decomposing the product φ̄k = U†
≤k−10

(
U≤k−10φ̄k

)
into a Littlewood-Paley trichotomy and invoking the

bounds (6.13) as well as by introducing a modified version of the gauge transformations U≤h.
We begin with the proof of (6.13). Using the energy estimate (3.1) we find that

(6.14)

(∑
k∈Z

(∑
k0∈Z

2α|k−k0 |
∥∥∥Pk0

(
U≤k−10φ̄k

)∥∥∥
S k0 [I j]

)2) 1
2
.

(∑
k∈Z

(∑
k0∈Z

2α|k−k0 |
∥∥∥∇t,xPk0

(
U≤k−10φ̄k

)
(t j)

∥∥∥
L2

x

)2) 1
2

+

(∑
k∈Z

(∑
k0∈Z

2α|k−k0 |
∥∥∥Pk0�

(
U≤k−10φ̄k

)∥∥∥
L1

t L2
x[I j]

)2) 1
2
.

For the first term on the right-hand side of (6.14), we now show in detail that it is bounded by C(E) in the
case when the derivative ∇t,x falls on φ̄k. The other case when it hits U≤k−10 can be treated similarly. Using
Bernstein’s inequality and the sharp localization of φ̄k to frequency 2k, we obtain that

(6.15)

∑
k∈Z

(∑
k0∈Z

2α|k−k0 |
∥∥∥Pk0

(
U≤k−10∇t,xφ̄k

∥∥∥
L2

x

)2
.

∑
k∈Z

( ∑
k0≤k−10

2α(k−k0)
∥∥∥Pk0

(
(Pk+O(1)U≤k−10)∇t,xφ̄k

∥∥∥
L2

x

)2

+
∑
k∈Z

∥∥∥Pk+O(1)
(
U≤k−10∇t,xφ̄k

)∥∥∥2
L2

x

+
∑
k∈Z

( ∑
k0>k+10

2α(k0−k)
∥∥∥Pk0

(
(Pk0+O(1)U≤k−10)∇t,xφ̄k

)∥∥∥
L2

x

)2

.
∑
k∈Z

( ∑
k0≤k−10

2α(k−k0)2k0−2k
∥∥∥∇2

xU≤k−10
∥∥∥

L2
x
‖∇t,xφ̄k‖L2

x

)2

+
∑
k∈Z

‖∇t,xφ̄k‖
2
L2

x

+
∑
k∈Z

( ∑
k0>k+10

2α(k0−k)2k−2k0
∥∥∥∇2

xU≤k−10
∥∥∥

L2
x
‖∇t,xφ̄k‖L2

x

)2
.

Then the bounds on the gauge transformation from Lemma 5.3, the kinetic energy bounds on φ̄k from
Lemma 5.2 and the fact that α < 1 yield that the right-hand side of the previous line is bounded by

C(E)
( ∑
k0≤k−10

2(α−1)(k−k0) +
∑

k0>k+10

2(α−2)(k0−k)
)∑

k∈Z

‖∇t,xφ̄k‖
2
L2

x
. C(E).

Next we prove by divisibility that on suitable time intervals I j the second term on the right-hand side
of (6.14)

(6.16)
(∑

k∈Z

(∑
k0∈Z

2α|k−k0 |
∥∥∥Pk0�

(
U≤k−10φ̄k

)∥∥∥
L1

t L2
x[I j]

)2) 1
2
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is also bounded by C(E). Here we first recall from (5.31) that the wave equation for the renormalized
variable U≤k−10φ̄k is given by

(6.17)

�
(
U≤k−10φ̄k

)
= U≤k−10

(
�φ̄k − 2Aα;≤k−10∂

αφk
)

+ 2
(
∂αU≤k−10 + U≤k−10Aα;≤k−10

)
∂αφk

+ 2∂αU≤k−10∂
α(φ̄k − φk)

+
(
�U≤k−10

)
φ̄k

and that in Proposition 5.1 we had carefully uncovered the schematic form of each term in the nonlinearity
on the right-hand side of (6.17). In view of these identities we observe that we can treat the exponential
tails in (6.16) by playing out Bernstein’s inequality and the bounds on the gauge transformations from
Lemma 5.3, analogously to how we proceeded in the estimate (6.15). It therefore suffices in the following
to prove by divisibility that we can partition the time interval I = ∪ jI j into N(K, E) consecutive intervals I j
satisfying

(6.18)
∑
k∈Z

∥∥∥�(U≤k−10φ̄k
)∥∥∥2

L1
t L2

x[I j]
. C(E).

We now prove this bound seperately for each type of term appearing on the right-hand side of the wave
equation (6.17) for the renormalized variable U≤k−10φ̄k. We start with the term (�φ̄k − 2Aα;≤k−10∂

αφk
)

and
recall its basic decomposition (5.32). First though, we have to deal with the two extra terms (6.4) and (6.5)
that appear due to our modified definition of φ̄ in this proof. For the term (6.4) we use Bernstein’s inequality
to bound ∑

k∈Z

∥∥∥∥∥ ∑
k−10<k2≤k+m

∑
k3=k2+O(1)

Pk
(
χ{r≤2−k+m}φ≤k2+20∂αφ

†

k2
∂αφk3

)∥∥∥∥∥2

L1
t L2

x

.
∑
k∈Z

( ∑
k−10<k2≤k+m

∑
`≤−k+m

2k+`
∥∥∥χ{r∼2`}r

− 1
2∇t,xφk2

∥∥∥2
L2

t L2
x

)2

. ‖φ‖S

(∑
k∈Z

∑
k−10<k2≤k+m

∑
`≤−k+m

2k+`
∥∥∥χ{r∼2`}r

− 1
2∇t,xφk2

∥∥∥2
L2

t L2
x

)
.

Then we observe that the last factor in the previous line has the divisibility property and satisfies∑
k∈Z

∑
k−10<k2≤k+m

∑
`≤−k+m

2k+`
∥∥∥χ{r∼2`}r

− 1
2∇t,xφk2

∥∥∥2
L2

t L2
x
. C(m)

∑
k∈Z

‖φk‖
2
S k
. C(m)‖φ‖2S .

It can thus be made sufficiently small when restricted to suitable time intervals noting that at this point the
size of the parameter m � 1 has already been fixed. Similarly, we can gain smallness for the other additional
term (6.5) on suitable time intervals. We continue with the first term on the right-hand side of (5.32). Here
we have to distinguish two cases∑

k∈Z

∥∥∥∥∥ ∑
k2≤k−10

∑
k3=k+O(1)

PkL
(
φk2−10<·≤k−10, ∂αφk2 , ∂

αφk3

)∥∥∥∥∥2

L1
t L2

x

.
∑
k∈Z

∥∥∥∥∥ ∑
k2≤k−10

∑
k3=k+O(1)

Pk
(
χ{r≤2−k2 }L

(
φk2−10<·≤k−10, ∂αφk2 , ∂

αφk3

))∥∥∥∥∥2

L1
t L2

x

+
∑
k∈Z

∥∥∥∥∥ ∑
k2≤k−10

∑
k3=k+O(1)

Pk
(
χ{r>2−k2 }L

(
φk2−10<·≤k−10, ∂αφk2 , ∂

αφk3

))∥∥∥∥∥2

L1
t L2

x

.
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In the first case we bound∑
k∈Z

∥∥∥∥∥ ∑
k2≤k−10

∑
k3=k+O(1)

Pk
(
χ{r≤2−k2 }L

(
φk2−10<·≤k−10, ∂αφk2 , ∂

αφk3

))∥∥∥∥∥2

L1
t L2

x

.
∑
k∈Z

∥∥∥∥∥ ∑
k2≤k−10

∑
k1≥k2−10

∑
`≤−k1

χ{r∼2`}r
+ 1

2 |φk1 ||∇t,xφk2 |

∥∥∥∥∥2

L2
t L∞x

sup
`∈Z

∥∥∥χ{r∼2`}r
− 1

2∇t,xφk
∥∥∥2

L2
t L2

x

.

∥∥∥∥∥∑
k2∈Z

∑
k1≥k2−10

∑
`≤−k1

χ{r∼2`}r
+ 1

2 |φk1 ||∇t,xφk2 |

∥∥∥∥∥2

L2
t L∞x
‖φ‖2S

and note that the first factor on the right-hand side of the previous line has the divisibility property∥∥∥∥∥∑
k2∈Z

∑
k1≥k2−10

∑
`≤−k1

χ{r∼2`}r
+ 1

2 |φk1 ||∇t,xφk2 |

∥∥∥∥∥
L2

t L∞x
.

∑
k2∈Z

∑
k1≥k2−10

2−
1
2 k1‖φk1‖L4

t L∞x ‖∇t,xφk2‖L4
t L∞x . ‖φ‖

2
S

and thus yields smallness on suitable time intervals. In the second case we use the trilinear estimate (4.4) to
bound ∑

k∈Z

∥∥∥∥∥ ∑
k2≤k−10

∑
k3=k+O(1)

Pk
(
χ{r>2−k2 }L

(
φk2−10<·≤k−10, ∂αφk2 , ∂

αφk3

))∥∥∥∥∥2

L1
t L2

x

.
∑
k∈Z

( ∑
k2≤k−10

∑
k1≥k2−10

2−
1
4 (k1−k2)2+ 1

4 k1
∥∥∥χ{r>2−k1 }r

− 1
4φk1

∥∥∥
L2

t L∞x
‖φk2‖S k2

‖φk‖S k

)2

.
(∑

k1∈Z

2
1
2 k1

∥∥∥χ{r>2−k1 }r
− 1

4φk1

∥∥∥2
L2

t L∞x

)
‖φ‖4S

and then the first factor on the right-hand side has the divisibility property to gain the desired smallness. Next
we turn to the second term on the right-hand side of (5.32) and seek to achieve smallness for the expression∑

k∈Z

∥∥∥∥∥ ∑
k2>k−10

∑
k1=k2+O(1)

∑
k3≤k2+O(1)

PkL
(
φk1 , ∂αφk2 , ∂

αφk3

)∥∥∥∥∥2

L1
t L2

x

.

To this end we note that by Bernstein’s inequality and the null form estimate (4.1) it holds that∥∥∥∥∥ ∑
k2>k−10

∑
k1=k2+O(1)

∑
k3≤k2+O(1)

PkL
(
φk1 , ∂αφk2 , ∂

αφk3

)∥∥∥∥∥2

L1
t L2

x

.
∑

k2>k−10

∑
k1=k2+O(1)

∑
k3≤k2+O(1)

2
1
5 k

∥∥∥φk1

∥∥∥
L

5
2
t L∞x

∥∥∥∂αφk2∂
αφk3

∥∥∥
L

5
3
t L

5
3
x

.
∑

k2>k−10

∑
k3≤k2+O(1)

2−
1
5 (k2−k)2−

1
10 (k2−k3)‖φk2‖

2
S k2
‖φk3‖S k3

.

Hence, we can exploit the exponential gains in the frequency differences to achieve smallness when the
inputs have disparate frequency supports and reduce to the case where all inputs are at frequency 2k+O(M)

where M � 1 is chosen sufficiently large depending on ‖φ‖S . But then we obtain smallness by divisibility
as in the previous step. The third term on the right-hand side of (5.32) can be treated in exactly the same
manner and all quintilinear terms in the fourth term Qk(φ) on the right-hand side of (5.32) are easier to
control using just Strichartz estimates and the null form estimate (4.1). We leave the details to the reader.

We are left to consider all remaining terms on the right-hand side of the wave equation (6.17) for the
renormalized variable U≤k−10φ̄k. But in view of the schematic identities (5.33)–(5.35) from Proposition 5.1,
these are either of the same type as the first term on the right-hand side of (5.32), which we have already
dealt with above, or they are quintilinear and therefore easier to control.
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Thus, we can partition the time interval I = ∪ jI j into N(K, E) consecutive intervals I j satisfying

(6.19)
(∑

k∈Z

(∑
k0∈Z

2α|k−k0 |
∥∥∥Pk0

(
U≤k−10φ̄k

)∥∥∥
S k0 [I j]

)2) 1
2
. C(E)

for any 0 ≤ α < 1. It now remains to transfer these bounds to φ̄, i.e. to show that on each such interval I j we
have that (∑

k∈Z

‖φ̄k‖
2
S k[I j]

) 1
2
. C(E).

To this end we use the exact orthogonality of the gauge transformations to write

φ̄k = U†
≤k−10U≤k−10φ̄k

and then decompose into a Littlewood-Paley trichotomy in view of the localization of φ̄k to frequency 2k,

(6.20)

φ̄k = P≤k−C
(
U†
≤k−10

)
Pk+O(1)

(
U≤k−10φ̄k

)
+ Pk+O(1)

(
U†
≤k−10

)
P≤k−C

(
U≤k−10φ̄k

)
+

∑
k1>k+O(1)

∑
k2=k1+O(1)

Pk
(
Pk1

(
U†
≤k−10

)
Pk2

(
U†
≤k−10φ̄k

))
≡ (LH)k + (HL)k + (HH)k.

We now estimate (6.20) separately for each part of the S k norm. Here we observe that for those parts of
the S k norm that do not involve a derivative the desired bound follows immediately from (6.19) and the
boundedness of Pk1U†

≤k2
for arbitrary k1, k2 ∈ Z thanks to the exact orthogonality of U†

≤k2
. Similarly, for

all other parts of the S k norm when the derivative falls on the U≤k−10φ̄k term, the desired bound follows
immediately.

Let us therefore begin with the treatment of the Strichartz component of the S k norm when the derivative
∇t,x falls onto the term U†

≤k−10. Noting that the gauge transformation bounds from Lemma 5.3 also hold for
the transpose U†

≤k−10, we find for the (LH)k part that

2( 1
q + 2

p−1)k
∑

k1≤k−C

∥∥∥Pk1∇t,xU†
≤k−10

∥∥∥
L∞t L∞x [I j]

∥∥∥Pk+O(1)
(
U≤k−10φ̄k

)∥∥∥
Lq

t Lp
x [I j]

.
∑

k1≤k+O(1)

2−k2
1
2 k1

∥∥∥Pk1∇t,xU†
≤k−10

∥∥∥
L∞t L4

x[I j]

∥∥∥Pk
(
U≤k−10φ̄k

)∥∥∥
S k[I j]

.
∑

k1≤k+O(1)

2−k2
1
2 k12

1
2 kC(E)

∥∥∥Pk
(
U≤k−10φ̄k

)∥∥∥
S k[I j]

. C(E)
∥∥∥Pk

(
U≤k−10φ̄k

)∥∥∥
S k[I j]

.

Square-summing over k ∈ Z and invoking the previously established bound (6.19), we obtain the desired es-
timate. We proceed analogously with the Strichartz component for the (HL)k and (HH)k parts. The weighted
L2

t L∞x component and the local energy decay component of the S k norm can also be treated similarly so that
we now turn to the more delicate Z+

k norm, the Z−k norm being handled in exactly the same manner. We
consider in detail the high-high part (HH)k for the Z+

k norm, the (LH)k and (HL)k parts being similar.
Here it turns out that we cannot avoid to pick up factors of ‖φ‖S [I j] which would destroy our final goal to

obtain a bound just in terms of the energy E on the interval I j. For this reason we have to slightly modify
the definition of the gauge transformations to introduce another source of smallness to compensate factors
of ‖φ‖S [I j]. At this point we recall that the non-perturbative term (5.2),

(6.21) 2
∑

k2≤k−10

φ≤k2−10∂αφ
†

k2
∂αφk,

35



in the decomposition (5.2)–(5.7) of the wave maps nonlinearity at frequency 2k necessitated the introduction
of the gauge transformations U≤h. However, letting m � 1 be a sufficiently large integer depending only on
the size of the S [I] norm of φ, we can in fact still “peel off” the good term

2
∑

k−m<k2≤k−10

χ{r≤2−k+m}φ≤k2−10∂αφ
†

k2
∂αφk

from (6.21). The latter term can be easily seen to have the divisibility property and can therefore be dealt
with accordingly in the previous parts of this proof of Proposition 6.3. Hence, we only have to use a gauge
transformation that suitably renormalizes the expression

2
∑

k2≤k−m

φ≤k2−10∂αφ
†

k2
∂αφk + 2

∑
k−m<k2≤k−10

χ{r>2−k+m}φ≤k2−10∂αφ
†

k2
∂αφk.

Correspondingly, we modify the definition of the matrix Bh in the construction of the gauge transformations
U≤h in (5.27) to

(6.22)

Bh :=
d
dh

∑
`∈Z

η(h + 10 − m − `)(φ≤`−10φ
†

`
− φ`φ

†

≤`−10)

+
d
dh

∑
`∈Z

(
η(h − `) − η(h + 10 − m − `)

)
χ{r>2−h−10+m}(φ≤`−10φ

†

`
− φ`φ

†

≤`−10).

Then we may conclude as in the proof of Proposition 5.1 that (∂t + ∂r)U
†

≤k−10 is of the schematic form

(∂t + ∂r)U
†

≤k−10 =
∑

k3≤k−m

U≤k3−1(∂t + ∂r)L(φ≤k3−10, φk3)

+
∑

k−m<k3≤k−10

U≤k3−1(∂t + ∂r) χ{r>2−k3+m}L(φ≤k3−10, φk3).

We now estimate in detail the Z+
k norm of the (HH)k part of (6.20) when (∂t + ∂r) falls onto φk3 , the other

case being similar. Thus, we end up having to estimate the Z+
k norm of the following schematic expression

(6.23)

∑
k1>k+O(1)

∑
k2=k1+O(1)

∑
k3≤k−m

Pk
(
Pk1

( ∑
k3≤k−m

U≤k3−1(∂t + ∂r)φk3

)
Pk2

(
U≤k−10φ̄k

))
+

∑
k1>k+O(1)

∑
k2=k1+O(1)

∑
k−m<k3≤k−10

Pk
(
Pk1

(
U≤k3−1χ{r>2−k+m}(∂t + ∂r)φk3

)
Pk2

(
U≤k−10φ̄k

))
and we begin with the first summand in (6.23). We distinguish the cases r ≤ 2−k and r > 2−k. When r ≤ 2−k

we can place the whole output into the (−) component of the Z+
k norm using just Bernstein and Strichartz

estimates. Indeed, for the weighted Lq
t Lp

x norm of the (−) component we have

2( 1
q + 2

p−1)k2λk
∑
`≤−k

∑
k1>k+O(1)

∑
k2=k1+O(1)

∑
k3≤k−m

∥∥∥∥∥χ{r∼2`}r
λPk

(
Pk1

( ∑
k3≤k−m

U≤k3−1(∂t + ∂r)φk3

)
Pk2

(
U≤k−10φ̄k

))∥∥∥∥∥
Lq

t Lp
x [I j]

. 2( 1
q + 2

p−1)k
∑

k2>k+O(1)

∑
k3≤k−m

∥∥∥(∂t + ∂r)φk3

∥∥∥
L∞t Lp

x [I j]

∥∥∥Pk2

(
U≤k−10φ̄k

)∥∥∥
Lq

t L∞x [I j]

.
( ∑

k3≤k−m

2(1− 2
p )(k3−k)

‖φk3‖S k3 [I j]

) ∑
k2>k+O(1)

2
1
q (k−k2)∥∥∥Pk2

(
U≤k−10φ̄k

)∥∥∥
S k2 [I j]

. 2−(1− 2
p )m
‖φ‖S [I]

∑
k2>k+O(1)

2
1
q (k−k2)∥∥∥Pk2

(
U≤k−10φ̄k

)∥∥∥
S k2 [I j]

.

Choosing m � 1 sufficiently large depending on the size of the S [I] norm of φ to compensate the factor
of ‖φ‖S [I] on the right-hand side of the last line, we may then easily square-sum over k ∈ Z and invoke the
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estimate (6.19) to obtain a final bound just in terms of the energy E. Similarly we bound the Yk norm of the
(−) component.

Let us now consider the case when r > 2−k. Here we distinguish whether (∂t + ∂r)φk3 is of (+) type or of
(−) type. If it is of (+) type, we place the whole expression into the (+) component of the Z+

k norm. To this
end we consider the L2

t+rL∞t−r part of the (+) component. For 0 < λ < 1
2 we have

2−( 1
2−λ)k

∥∥∥∥∥rλχ{r>2−k}

∑
k1>k+O(1)

∑
k2=k1+O(1)

∑
k3≤k−m

Pk
(
Pk1

( ∑
k3≤k−m

U≤k3−1(∂t + ∂r)φ
(+)
k3

)
Pk2

(
U≤k−10φ̄k

))∥∥∥∥∥
L2

t+rL∞t−r[I j]

. 2−( 1
2−λ)k

∑
k2>k+O(1)

∑
k3≤k−m

∥∥∥rλ(∂t + ∂r)φ
(+)
k3

∥∥∥
L2

t+rL∞t−r[I j]

∥∥∥Pk2

(
U≤k−10φ̄k

)∥∥∥
L∞t L∞x

.
( ∑

k3≤k−m

2−( 1
2−λ)(k−k3)‖φk3‖S k3 [I]

) ∑
k2∈Z

∥∥∥Pk2

(
U≤k−10φ̄k

)∥∥∥
S k2 [I j]

. 2−( 1
2−λ)m‖φ‖S [I]

∑
k2∈Z

∥∥∥Pk2

(
U≤k−10φ̄k

)∥∥∥
S k2 [I j]

and upon choosing m � 1 sufficiently large, we may easily square-sum in k ∈ Z and obtain a final bound just
in terms of the energy E thanks to (6.19). For λ = 1

2 we unfortunately do not straightaway have summability
in k3 ≤ k − m. In this case we split the weight r

1
2 = r

1
2−δrδ for some small δ > 0 and absorb rδ into the

high-frequency factor Pk2

(
U≤k−10φ̄k

)
via Strauss’ improved Sobolev embedding in the radial case∥∥∥χ{r>2−k}r

δPk2

(
U≤k−10φ̄k

)∥∥∥
L∞t L∞x [I j]

. 2( 1
2−δ)k2−

1
2 k2

∥∥∥Pk2

(
U≤k−10φ̄k

∥∥∥
L∞t L2

x[I j]
.

Then we can again sum over k3 ≤ k−m and gain a smallness factor 2−δm. The Yk norm of the (−) component
of the Z+

k norm is easier to bound. It therefore remains to consider the case when (∂t + ∂r)φk3 is of (−)
type. Here we try to place the whole expression into the (−) component of the Z+

k norm. We start with the
weighted Lq

t Lp
x part

2( 1
q + 2

p−1)k2λk
∑
`>−k

∥∥∥∥∥χ{r∼2`}r
λ

∑
k1>k+O(1)

∑
k2=k+O(1)

∑
k3≤k−m

Pk
(
Pk1

( ∑
k3≤k−m

U≤k3−1(∂t + ∂r)φ
(−)
k3

)
Pk2

(
U≤k−10φ̄k

))∥∥∥∥∥
Lq

t Lp
x [I j]

,

where we aim to estimate (∂t + ∂r)φ
(−)
k3

in Lq
t L∞x , while placing the high-frequency factor Pk2

(
U≤k−10φ̄k

)
into

L∞t Lp
x . In order to ensure summability over the low frequencies k3 ≤ k − m, we exploit that we can absorb a

weight r
1
2−

1
p into Pk2

(
U≤k−10φ̄k

)
via the estimate∥∥∥r

1
2−

1
p Pk2 f

∥∥∥
L∞t Lp

x
. 2−( 1

2 + 1
p )k2‖∇xPk2 f ‖L2

x
,

which follows from interpolating Strauss’ improved Sobolev embedding with the trivial energy estimate.
This yields the following bound on the weighted Lq

t Lp
x part of the (−) component of the Z+

k norm∑
k3≤k−10

2( 1
q−1+λ)k2(1−λ+ 1

2−
1
p−

1
q )k3‖φk3‖S k3 [I j]

∑
k2>k+O(1)

2
2
p k2−( 1

2 + 1
p )k2

∥∥∥Pk2

(
U≤k−10φ̄k

)∥∥∥
S k2 [I j]

. 2−(1−λ+ 1
2−

1
p−

1
q )m

∑
k2>k+O(1)

2−( 1
2 + 1

p )(k2−k)∥∥∥Pk2

(
U≤k−10φ̄k

)∥∥∥
S k2 [I j]

,

which yields a smallness gain 2−δm on account of the fact that 0 < λ < 1 and 1
q + 1

p <
1
2 . Then we can easily

square-sum this bound over k ∈ Z and obtain a final estimate just in terms of E by invoking (6.19). The Yk
norm of the (−) component of the Z+

k norm can again be treated easily.
Finally, we have to estimate the Z+

k norm of the second summand in (6.23). Here we proceed similarly
to the above treatment of the first summand only that we gain smallness using Strauss’ improved Sobolev
embedding and the restriction r > 2−k+m. This finishes the proof of Proposition 6.3. �
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Next, we give the proof of Proposition 6.2 using the weak divisibility of the S norm.

Proof of Proposition 6.2. We may assume that the interval I is of the form I = [0,T ] for some 0 < T ≤ ∞.
Then we first use Proposition 6.3 to partition I = ∪N

j=1I j into N ≡ N(‖φ‖S [I], E) consecutive intervals
I j = [t j−1, t j] with t0 = 0 and tN = T such that ‖φ‖S [I j] ≤ C(E) for j = 1, . . . ,N, where C(E) > 0 is a
constant that depends only on the energy E of the wave map φ. For each interval I j = [t j−1, t j] we introduce
a frequency envelope

c( j)
k :=

∑
`∈Z

2−σ|k−`|
∥∥∥P`φ[t j−1]

∥∥∥
Ḣ1

x×L2
x
, k ∈ Z,

for some small constant σ > 0, and show via an iterative bootstrap argument that

‖Pkφ‖S k[I j] . c( j)
k ,

which then implies the assertion of the proposition. To this end we further partition each interval I j = ∪iI ji
into finitely many consecutive intervals I ji which have suitable divisibility properties. On every interval I ji
we now run a bootstrap argument. Starting with I j1 we make the bootstrap assumption

‖Pkφ‖S k[I j1] ≤ Cc( j)
k

for some sufficently large, absolute constant C > 0 and now show that this implies the improved bound

‖Pkφ‖S k[I j1] ≤
C
2

c( j)
k .

Then we continue analogously on all remaining intervals I ji. Here we again have to use the modified defi-
nition (6.6) of φk and the modified definition (6.22) of the gauge transformations U≤h to have an additional
soure of smallness at our disposal as in the preceding proof of Proposition 6.3. Then it is easy to show that
for any 0 ≤ α < 1, ∑

k0∈Z

2α|k−k0 |
∥∥∥Pk0∇t,x

(
U≤k−10φk(t j)

)∥∥∥
L2

x
� Cc( j)

k .

Moreover, picking the intervals I ji suitably, we may infer by divisibility arguments that for any 0 ≤ α < 1,∑
k0∈Z

2α|k−k0 |
∥∥∥Pk0�

(
U≤k−10φk

)∥∥∥
L1

t L2
x[I j1] � Cc( j)

k

and then the energy estimate (3.1) implies that∑
k0∈Z

2α|k−k0 |
∥∥∥Pk0

(
U≤k−10φk

)∥∥∥
S k0 [I j1] � Cc( j)

k .

Finally, we argue similarly as in the preceding proof of Proposition 6.3 to pass from the last bound back
to φk and recover the improved bound

‖Pkφ‖S k[I j1] ≤
C
2

c( j)
k .

This finishes the proof of Proposition 6.2. �

We are now in a position to provide the proof of the main result of this section.

Proof of Proposition 6.1. Suppose that I , R. Since we have ‖φ‖S [I] < ∞ by assumption, Proposition 6.2
yields frequency envelope bounds for the evolution of φ on its maximal time interval of existence I,

‖Pkφ‖S k[I] ≤ Cck,

where {ck}k∈Z is a frequency envelope covering the initial data φ[0]. Then it is a standard argument to infer
that a subcritical norm of φ[t] must stay finite on I, i.e.

sup
t∈I
‖φ[t]‖Hs

x×Hs−1
x

< ∞
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for some s > 1. But then the local well-posedness theory [8–10, 12, 13] implies that the evolution of φ
extends smoothly beyond the time interval I, contradicting the maximality of I. Thus, we must have I = R
and it remains to prove the scattering assertion. To this end we first note that in the gauged wave equation

�
(
U≤k−10φk

)
≡ Fk, k ∈ Z,

we have that ‖Fk‖L1
t L2

x[R] . ck. Now for k � −1 or k � 1 we already know from the a priori bounds that
‖∇t,xφk‖L∞t L2

x
. ck has very small norm, so it suffices to consider k = O(1). Picking a sufficently large time

T > 0 such that
‖Fk‖L1

t L2
x[[T,∞)) � 1,

we then obtain that for k = O(1),

U≤k−10φk(t) = S (t − T )
(
U≤k−10φk[T ]

)
+ oL∞t Ḣ1

x ([T,∞))(1) for t > T.

In order to infer scattering, it then suffices to show that

lim
t→∞

∥∥∥∇t,x
(
U≤k−10φk(t) − φk(t)

)∥∥∥
L2

x
= 0,

for which in turn it suffices to prove that limt→∞
∥∥∥U≤k−10(t) − Id

∥∥∥
L∞x

= 0 as well as limt→∞ ‖φk(t)‖L∞x = 0.
On the one hand, it is easy to see that

lim
t→∞

∥∥∥S (t − T )
(
U≤k−10φk[T ]

)∥∥∥
L∞x

= 0,

and the localization to frequency k = O(1) also implies that the error oL∞t Ḣ1
x ([T,∞))(1) goes to zero in L∞x .

This then implies that φk(t) converges to zero in L∞x . To pass from here to φk again requires modifying the
definition of φk as in the previous proof of Proposition 6.3 so that the difference φk − φk becomes arbitrarily
small. Having uniform smallness for φk in L∞x , we then obtain that

lim
t→∞

∥∥∥U≤k−10(t) − Id
∥∥∥

L∞x
= 0,

which implies
φk(t) = S (t − T )

(
U≤k−10φk[T ]

)
+ oL∞t Ḣ1

x [[T,∞))(1) for t > T.

Then the modified definition of φ̄k yields that

φk(t) = S (t − T )
(
U≤k−10φk[T ]

)
+ oL∞t Ḣ1

x [[T,∞))(1) for t > T,

which gives scattering. �

7. Concentration compactness step

In this section we begin with the actual proof of Theorem 1.1. We recall that our goal is to show that there
exists a non-decreasing function K : [0,∞) → [0,∞) with the following property: Let (φ0, φ1) : R2 → TSm

be radially symmetric, classical initial data of energy E. Then there exists a unique, classical, global wave
map φ : R1+2 → Sm with initial data φ[0] = (φ0, φ1) satisfying the a priori bound

‖φ‖S ≤ K(E).

Once we have established this a priori bound, the scattering assertion of Theorem 1.1 is an immediate
consequence of Proposition 6.1.

We argue by contradiction and assume that Theorem 1.1 fails. Then the existence of the function K(·)
yielding the a priori bounds must fail at some finite energy level. Correspondingly, the following set of
energies must be non-empty

E :=
{
E : sup

{φ : E[φ]≤E}
‖φ‖S [I] = +∞

}
,
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where the supremum is taken over all radial, classical wave maps φ : I × R2 → Sm defined on some time
interval I and with energy E[φ] ≤ E. By the small energy global regularity result from Theorem 5.4, the
infimum of the set E has to be strictly positive

Ecrit := inf E > 0.

Thus, we may pick a sequence of radially symmetric, classical wave maps φn : In × R2 → Sm, n ≥ 1, with
maximal intervals of existence In such that

lim
n→∞

E[φn] = Ecrit, lim
n→∞
‖φn‖S [In] = +∞.

In the following we call such a sequence of wave maps essentially singular. Moreover, we denote the
associated essentially singular sequence of initial data {φn[0]}n≥1 by {(φn

0, φ
n
1)}n≥1. Here, the subscripts in

(φn
0, φ

n
1) should not to be confused with frequency localizations, but this will always be clear from the context.

Our goal is now to rule out the existence of such an essentially singular sequence of wave maps {φn}n≥1,
hence proving Theorem 1.1. To this end we follow the general philosophy of the concentration compact-
ness/rigidity method introduced by Kenig-Merle [6, 7], but more precisely we shall follow the implemen-
tation of this strategy for energy critical wave maps into the hyperbolic plane as in [17] as well as for the
energy critical Maxwell-Klein-Gordon equation as in [16]. In this section we carry out a “twisted” Bahouri-
Gérard type profile decomposition that takes into account the strong low-high interactions in the wave maps
nonlinearity. It enables us to extract from the essentially singular sequence a non-trivial minimal blowup
solution to (WM) whose orbit satisfies a strong compactness property. Then we exclude the existence of
such a minimal blowup solution in the rigidity argument of the next, and final, section of this paper.

The first step consists in decomposing the essentially singular sequence of data {φn[0]}n≥1 into frequency
atoms using the Métivier-Schochet procedure [21] as in Bahouri-Gérard [1]. Roughly speaking, the basic
idea then goes as follows. Ultimately, we would like to conclude that upon passing to a subsequence, if
necessary, the essentially singular sequence of data {φn[0]}n≥1 consists of exactly one frequency atom wich
in turn consists of exactly one concentration profile (to be defined precisely in Subsection 7.4) of asymptotic
energy Ecrit. In this scenario, the sequence {φn[0]}n≥1 has sufficient compactness properties that allow us to
pass to a certain limit whose wave maps evolution will be the desired minimal blowup solution to (WM)
as detailed in Subsection 7.5. In order to rule out all other possible scenarios, we seek to prove uniform
in n, finite, global S norm bounds on the sequence of wave maps evolutions {φn}n≥1, which would contradict
that the sequence is essentially singular. To this end we first achieve control over the wave maps evolutions
of certain low frequency truncations of the essentially singular sequence of data {φn[0]}n≥1. Using a finite
inductive procedure over the increasing size of the frequency supports of these low frequency truncations,
we then conclude uniform in n, finite, global S norm bounds on the actual essentially singular sequence
{φn}n≥1. This inductive procedure over the increasing size of the frequency supports also enables us to
disentangle the strong low-high frequency interactions in the wave maps nonlinearity.

7.1. Decomposition into frequency atoms. We now turn to the details of the decomposition of the es-
sentially singular sequence of data {φn[0]}n≥1 into frequency atoms. Here we follow relatively closely Sec-
tion 9.1 and Section 9.2 in [17] as well as Section 7.2 in [16], which in turn partially mimic Section III.1 in
Bahouri-Gérard [1]. First, we need to introduce some terminology from [1].

We call a sequence of positive numbers {λn}n≥1 a scale. Two scales {λa
n}n≥1 and {λb

n}n≥1 are orthogonal if

lim
n→∞

λa
n

λb
n

+
λb

n

λa
n

= +∞.
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Let {( f n, gn)}n≥1 be a bounded sequence of functions in Ḣ1
x(R2)× L2

x(R2) and let {λn}n≥1 be a scale. Then the
sequence {( f n, gn)}n≥1 is called λn-oscillatory if

lim
R→∞

lim sup
n→∞

( ∫
{λn |ξ|≤

1
R }

|∇̂x f n(ξ)|2 + |ĝn(ξ)|2 dξ +

∫
{λn |ξ|≥R}

|∇̂x f n(ξ)|2 + |ĝn(ξ)|2 dξ
)

= 0

and we say that the sequence {( f n, gn)}n≥1 is λn-singular if for all 0 < a < b,

lim
n→∞

∫
{a≤λn |ξ|≤b}

|∇̂x f n(ξ)|2 + |ĝn(ξ)|2 dξ = 0.

Using the Métivier-Schochet procedure [21] as implemented in Bahouri-Gérard [1], we start off with a
decomposition

φn[0] =

Λ∑
a=1

φ̃na[0] + φ̃nΛ[0]

of the essentially singular sequence of data {φn[0]}n≥1 into λa
n-oscillatory frequency atoms φ̃na[0], 1 ≤ a ≤ Λ,

for pairwise orthogonal frequency scales {λa
n}n≥1 and into a remainder term φ̃nΛ[0], which is λa

n-singular for
1 ≤ a ≤ Λ and has the smallness property

lim
Λ→∞

lim sup
n→∞

‖φ̃nΛ[0]‖Ḃ1
2,∞×Ḃ0

2,∞
= 0.

Next we achieve a sharp frequency localization of the atoms by picking a sequence Rn → ∞ growing
sufficently slowly and by then setting

φna[0] := P[µa
n−log Rn,µ

a
n+log Rn]φ

n[0] for a = 1, . . . ,Λ

and
φnΛ[0] := P∩Λ

a=1[µa
n−log Rn,µ

a
n+log Rn]cφn[0],

where we use the notation µa
n = − log(λa

n). Then we have the new frequency atom decomposition

(7.1) φn[0] =

Λ∑
a=1

φna[0] + φnΛ[0]

with the same properties as above, but now with the additional sharp frequency localization property of
the atoms. Moreover, we may assume that the atoms are ordered in terms of the increasing size of their
frequency support scales (λa

n)−1.

As described above, ultimately we would like to conclude that there is exactly one atom in the decom-
position (7.1), i.e. Λ = 1, which is of asymptotic energy Ecrit. If this is the case, we proceed directly as
in Subsection 7.4. Otherwise, we now conclude via a finite inductive procedure that the sequence {φn}n≥1
cannot be essentially singular. To this end we fix an integer Λ0 sufficiently large such that upon passing to a
subsequence, if necessary, ∑

a>Λ0

lim sup
n→∞

‖φna[0]‖2Ḣ1
x×L2

x
≤ ε0,

where ε0 > 0 is a sufficently small constant that plays the role of a perturbative threshold in the key bootstrap
argument in Proposition 7.9 in Subsection 7.3. In particular, ε0 will be chosen sufficently small depending
only on the size of Ecrit and it will be chosen to be less than the small energy global regularity threshold
from Theorem 5.4. Then we observe that due to the sharp frequency localizations of the atoms φna[0],
1 ≤ a ≤ Λ0, the remainder term φnΛ0[0] gets split into Λ0 + 1 “frequency shells”

(7.2) φnΛ0[0] = φnΛ
(0)
0 [0] + φnΛ

(1)
0 [0] + . . . + φnΛ

(Λ0)
0 [0],

where φnΛ
(0)
0 [0] shall denote the lowest frequency component.
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Our first step now consists in showing that the lowest frequency “non-atomic” component φnΛ
(0)
0 [0] can

be globally evolved and satisfies finite S norm bounds just in terms of Ecrit uniformly for all sufficiently
large n. Since the component φnΛ

(0)
0 [0] may still have large energy, in order to be able to infer these S norm

bounds by bootstrap, we split φnΛ
(0)
0 [0] into finitely many pieces

φnΛ
(0)
0 [0] =

C1∑
`=1

PJ`φ
nΛ

(0)
0 [0]

by means of frequency localization to consecutive frequency intervals J` = [a`, b`] such that

(−∞, µ1
n − log Rn] = ∪

C1
`=1J`

and such that for ` = 1, . . . ,C1,
‖PJ`φ

nΛ
(0)
0 [0]‖2Ḣ1

x×L2
x
. ε0.

Here we recall that (−∞, µ1
n − log Rn] is the (dyadic) frequency support of φnΛ

(0)
0 [0]. The number C1 of such

frequency intervals is of the order O( Ecrit
ε0

) since ‖φnΛ
(0)
0 [0]‖2

Ḣ1
x×L2

x
. Ecrit.

We now intend to inductively show that if∑
`≤L

PJ`φ
nΛ

(0)
0 [0] = P≤bLφ

nΛ
(0)
0 [0]

can be globally evolved with uniform finite S norm bounds in terms of Ecrit for some L ≥ 1 (for all sufficently
large n), then we may also conclude this for∑

`≤L+1

PJ`φ
nΛ

(0)
0 [0] = P≤bL+1φ

nΛ
(0)
0 [0],

and the induction start for the first piece PJ1φ
nΛ

(0)
0 [0] is provided by the small energy global regularity result

from Theorem 5.4.

However, up to this point we have totally ignored that the frequency truncations P≤bLφ
nΛ

(0)
0 [0] ≡ P≤bLφ

n[0]
are not “geometric” in the sense that they are not actual maps R2 → TSm into the unit sphere and therefore
do not constitute suitable initial data for the wave maps equation (WM). To overcome this issue we just
project the frequency truncations back to the sphere, using the normal projection operator. As we shall see
next, this operation is well-defined and the frequency localization properties are approximately preserved up
to exponential tails if around the frequency cut-offs a certain Besov norm smallness condition is satisfied.

We begin with a general lemma that shows that the frequency truncations P≤αnφ
n
0 of maps φn

0 : R2 → Sm,
n ≥ 1, remain close to the sphere if around the frequency cut-offs {αn}n≥1 a certain Besov norm smallness
holds.

Lemma 7.1. Let {αn}n≥1 be a sequence of real numbers. Given δ1 > 0 one can choose δ0 � δ1 sufficiently
small (depending on Ecrit) so that if we have

(7.3) lim sup
n→∞

∥∥∥P[αn,αn+M]φ
n
0

∥∥∥
Ḃ1

2,∞
≤ δ0

for M ∼ log((1 + Ecrit)δ−1
1 ), then it holds that

lim sup
n→∞

∥∥∥1 − (P≤αnφ
n
0)†(P≤αnφ

n
0)
∥∥∥

L∞x
. δ1.

Proof. By definition we have

(P≤αnφ
n
0 + P>αnφ

n
0)†(P≤αnφ

n
0 + P>αnφ

n
0) = 1

and therefore

1 − (P≤αnφ
n
0)†(P≤αnφ

n
0) = 2P≤αn+10

(
(P≤αnφ

n
0)†(P>αnφ

n
0)
)

+ P≤αn+10
(
(P>αnφ

n
0)†(P>αnφ

n
0)
)
.
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Then we use Bernstein’s inequality and (7.3) to bound

lim sup
n→∞

∥∥∥P≤αn+10
(
(P≤αnφ

n
0)†(P>αnφ

n
0)
)∥∥∥

L∞x
. lim sup

n→∞
‖P≤αnφ

n
0‖L∞x

αn+15∑
k=αn

2k‖Pkφ
n
0‖L2

x

. lim sup
n→∞

αn+15∑
k=αn

‖∇xPkφ
n
0‖L2

x

. δ0 . δ1.

Similarly, we obtain

lim sup
n→∞

∥∥∥P≤αn+10
(
(P>αnφ

n
0)†(P>αnφ

n
0)
)∥∥∥

L∞x
. lim sup

n→∞

∑
k≥αn

22αn‖Pkφ
n
0‖

2
L2

x

. lim sup
n→∞

αn+M∑
k=αn

22αn−2k‖∇xPkφ
n
0‖

2
L2

x
+

∑
k>αn+M

2−2M‖∇xPkφ
n
0‖

2
L2

x

. Mδ0 + 2−2MEcrit

. δ1,

where in the last step we use that M ∼ log((1 + Ecrit)δ−1
1 ) and choose δ0 . δ1 log−1((1 + Ecrit)δ−1

1 ). �

For suitably chosen frequency cut-offs αn, the frequency truncations P≤αnφ
n
0 therefore stay close to the

sphere. In order to recover exact maps into the sphere, we then simply project the frequency truncations
P≤αnφ

n
0 back to the sphere, using the normal projection operator Π. Hence, we set

(7.4) Π≤αnφ
n
0 := Π

(
P≤αnφ

n
0
)

:=
P≤αnφ

n
0

|P≤αnφ
n
0|
.

For the associated frequency truncations P≤αnφ
n
1 of the time derivatives φn

1 in our essentially singular se-
quence of data φn[0] = (φn

0, φ
n
1), we just use linear orthogonal projection onto the respective fiber of the

tangent space and map P≤αnφ
n
1 to

(7.5) Π≤αnφ
n
1 := P≤αnφ

n
1 − 〈Π≤αnφ

n
0, P≤αnφ

n
1〉Π≤αnφ

n
0 ∈ TΠ≤αnφ

n
0
Sm.

Thus, after frequency truncation of the data φn[0] = (φn
0, φ

n
1) : R2 → TSm to dyadic frequencies less than αn,

we may recover the data pair

Π≤αnφ
n[0] := (Π≤αnφ

n
0,Π≤αnφ

n
1) : R2 → TSm.

In the next proposition we prove that this operation approximately preserves the frequency localization if
the data satisfy a Besov norm smallness condition around the frequency cut-offs.

Proposition 7.2. Let {αn}n≥1 be a sequence of real numbers. Given δ1 > 0 one can choose δ0 � δ1
sufficently small depending on the size of Ecrit so that if we have

(7.6) lim sup
n→∞

∥∥∥P[αn−M,αn+M]φ
n[0]

∥∥∥
Ḃ1

2,∞×Ḃ0
2,∞
≤ δ0

for M ∼ log((1 + Ecrit)δ−1
1 ), then for all sufficently large n it holds that

(7.7)
∥∥∥Pk

(
P≤αnφ

n[0] − Π≤αnφ
n[0]

)∥∥∥
Ḣ1

x×L2
x
. δ12−|k−αn | for k ∈ Z.

Proof. We begin with the proof of (7.7) for the component Π≤αnφ
n
0 for the low frequencies k ≤ αn. Using

that φn
0 = Π(φn

0), we may write

φn
0 − Π(P≤αnφ

n
0) =

∫ ∞

αn

d
dh

(
Π(P≤hφ

n
0)
)

dh =

∫ ∞

αn

(Phφ
n
0)Π′(P≤hφ

n
0) dh.
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Thus, we obtain from Bernstein’s inequality that∥∥∥Pk∇x
(
P≤αnφ

n
0 − Π≤αnφ

n
0
)∥∥∥

L2
x

.
∥∥∥∥Pk

∫ ∞

αn

(∇xPhφ
n
0)Π′(P≤hφ

n
0) dh

∥∥∥∥
L2

x
+

∥∥∥∥Pk

∫ ∞

αn

(Phφ
n
0)(∇xP≤hφ

n
0)Π′′(P≤hφ

n
0) dh

∥∥∥∥
L2

x

. 2k
∫ ∞

αn

‖∇xPhφ
n
0‖L2

x
2−h‖∇xP>h−10Π′(P≤hφ

n
0)‖L2

x
dh

+ 2k
∫ ∞

αn

2−h‖∇xPhφ
n
0‖L2

x
‖∇xP≤hφ

n
0‖L2

x
‖Π′′(P≤hφ

n
0)‖L∞x dh

. 2k
∫ ∞

αn

2−h‖∇xPhφ
n
0‖L2

x
‖∇xP≤hφ

n
0‖L2

x
‖Π′′(P≤hφ

n
0)‖L∞x dh.

Using (7.6), we conclude that for all sufficently large n, the previous line is bounded by

2kE
1
2
crit

∫ αn+M

αn

2−h‖∇xPhφ
n
0‖L2

x
dh + 2kE

1
2
crit

∫ ∞

αn+M
2−h‖∇xPhφ

n
0‖L2

x
dh

. 2k−αn E
1
2
crit Mδ0 + 2k−αn Ecrit2−M.

For the high frequencies k > αn, we use that

∇xPkΠ(P≤αnφ
n
0) = ∇xPk

∫ αn

−∞

(Phφ
n
0)Π′(P≤hφ

n
0) dh.

Then we have

(7.8)

∥∥∥∇xPkΠ
(
P≤αnφ

n
0
)∥∥∥

L2
x
. 2−k

∥∥∥∇2
xPkΠ(P≤αnφ

n
0)
∥∥∥

L2
x

. 2−k
∥∥∥∥Pk

∫ αn

−∞

(∇2
xPhφ

n
0)Π′(P≤hφ

n
0) dh

∥∥∥∥
L2

x

+ 2−k
∥∥∥∥Pk

∫ αn

−∞

(∇xPhφ
n
0)(∇xP≤hφ

n
0)Π′′(P≤hφ

n
0) dh

∥∥∥∥
L2

x
.

We bound the first term on the right-hand side of (7.8) by

2−k
∫ αn

−∞

2h‖∇xPhφ
n
0‖L2

x
dh . 2−k

∫ αn

αn−M
2h‖∇xPhφ

n
0‖L2

x
dh + 2−k

∫ αn−M

−∞

2h‖∇xPhφ
n
0‖L2

x
dh

. 2−(k−αn)(Mδ0 + E
1
2
crit2

−M),

while the second term on the right-hand side of (7.8) can be estimated by

2−k
∫ αn

−∞

‖∇xPhφ
n
0‖L2

x
‖∇xP≤hφ

n
0‖L∞x dh . 2−k

∫ αn

αn−M
‖∇xPhφ

n
0‖L2

x
2h‖∇xP≤hφ

n
0‖L2

x
dh

+ 2−k
∫ αn−M

−∞

‖∇xPhφ
n
0‖L2

x
2h‖∇xP≤hφ

n
0‖L2

x
dh

. 2−(k−αn)(1 + Ecrit)(Mδ0 + 2−M).

Thus, we have inferred that∥∥∥∇xPk
(
P≤αnφ

n
0 − Π≤αnφ

n
0
)∥∥∥

L2
x
. (1 + Ecrit)(Mδ0 + 2−M)2−|k−αn |.

Since M ∼ log((1 + Ecrit)δ−1
1 ), we obtain (7.7) for the component Π≤αnφ

n
0 upon choosing δ0 � δ1 sufficently

small depending on the size of Ecrit.
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Finally, we turn to the proof of (7.7) for the time derivative component Π≤αnφ
n
1. For the low frequencies

k ≤ αn we exploit the fact that (φn
0)†φn

1 = 0 to write

(7.9)

P≤αnφ
n
1 − Π≤αnφ

n
1 = −〈Π≤αnφ

n
0, P≤αnφ

n
1〉Π≤αnφ

n
0

=

∫ ∞

αn

d
dh

(
〈Π≤hφ

n
0, P≤hφ

n
1〉Π≤hφ

n
0
)

dh

=

∫ ∞

αn

〈Π≤hφ
n
0, P≤hφ

n
1〉(Phφ

n
0)Π′(P≤hφ

n
0) dh

+

∫ ∞

αn

〈(Phφ
n
0)Π′(P≤hφ

n
0), P≤hφ

n
1〉Π(P≤hφ

n
0) dh

+

∫ ∞

αn

〈Π≤hφ
n
0, Phφ

n
1〉Π≤hφ

n
0 dh.

Then we may bound the first term on the right-hand side of (7.9) by∥∥∥∥Pk

∫ ∞

αn

〈Π≤hφ
n
0, P≤hφ

n
1〉(Phφ

n
0)Π′(P≤hφ

n
0) dh

∥∥∥∥
L2

x

. 2k
∫ ∞

αn

‖Π≤hφ
n
0‖L∞x ‖P≤hφ

n
1‖L2

x
‖Phφ

n
0‖L2

x
‖Π′(P≤hφ

n
0)‖L∞x dh

. 2kE
1
2
crit

∫ ∞

αn

2−h‖∇xPhφ
n
0‖L2

x
dh

. 2k−αn(1 + Ecrit)(Mδ0 + 2−M),

which is of the desired form, while the other two terms on the right-hand side of (7.9) can be dealt with
similarly. Proving (7.7) for Π≤αnφ

n
1 for the high frequencies k > αn is a variant of the previous estimates. �

Remark 7.3. We note that Proposition 7.2 and its proof are reminiscent of Proposition 11.1 in Sterbenz-
Tataru [29] where it is shown that for initial data sets with small “energy dispersion” frequency truncation
followed by normal projection approximately preserves the frequency localization properties up to exponen-
tially decaying tails.

Thus, for the ensuing induction on frequency process, we shall use Π≤bLφ
nΛ

(0)
0 [0] as the actual data for

the wave maps evolution. But in order for this data Π≤bLφ
nΛ

(0)
0 [0] to approximately have the same frequency

localization properties up to exponentially decaying tails as the frequency truncations P≤bLφ
nΛ

(0)
0 [0], Propo-

sition 7.2 requires the Besov norm smallness condition (7.6). This, in particular, forces us to implement the
following delicate selection procedure for the endpoints of the intervals J` = [a`, b`].

We first use the Métivier-Schochet procedure [21] to carry out a further refined decomposition of the
lowest frequency “non-atomic” component φnΛ

(0)
0 [0] into finitely many “smaller” frequency atoms. More

precisely, given any δ0 > 0 we decompose into

φnΛ
(0)
0 [0] =

J(Λ(0)
0 )∑

j=1

φna(0)
j [0] + φnJ(Λ(0)

0 )[0]

such that the “small” atoms φna(0)
j [0] are frequency localized to

|ξ| ∈ [(λ
a(0)

j
n )−1(R(0)

n )−1, (λ
a(0)

j
n )−1R(0)

n ]

for a sequence R(0)
n → ∞ growing sufficently slowly as n→ ∞ and such that

(7.10) lim sup
n→∞

‖φnJ(Λ(0)
0 )[0]‖Ḃ1

2,∞×Ḃ0
2,∞
≤ δ0.
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By the orthogonality of the frequency scales, we may assume that for sufficently large n the frequency
intervals [

(λ
a(0)

j
n )−1(R(0)

n )−1, (λ
a(0)

j
n )−1R(0)

n
]

are disjoint for different a(0)
j .

Then we are in the position to describe how the frequency intervals J` can be chosen inductively. Assume
that the intervals

J1 = [a1, b1], . . . , J`−1 = [a`−1, b`−1]

have already been specified. Then we pick the maximal interval [a`, b̃`] with the property that a` = b`−1 and
such that ∥∥∥P[a`,b̃`]φ

nΛ
(0)
0 [0]

∥∥∥2
Ḣ1

x×L2
x

= ε0.

If it happens that

b̃` ∈ [− log(λ
a(0)

j
n ) − 2 log(R(0)

n ),− log(λ
a(0)

j
n ) + 2 log(R(0)

n )],

then we shift the interval endpoint upwards and take

b` = − log(λ
a(0)

j
n ) + 2 log(R(0)

n ),

otherwise we set b` = b̃`.
The point of this construction is that for ` = 1, . . . ,C1, the frequency intervals J` = [a`, b`] now satisfy∥∥∥PJ`φ

nΛ
(0)
0 [0]

∥∥∥2
Ḣ1

x×L2
x
. ε0

and have the desired key property that for any fixed M > 0, it holds that

(7.11) lim sup
n→∞

∥∥∥P[b`−M,b`+M]φ
nΛ

(0)
0 [0]

∥∥∥
Ḃ1

2,∞×Ḃ0
2,∞
≤ δ0

for all sufficently large n.

7.2. Interlude: A concept of energy class radial wave maps. At the end of the entire concentration
compactness step in this Section 7 we want to extract a minimal blowup solution to the wave maps equation
(WM) that is merely of energy class. However, since the local well-posedness theory [8–10, 12, 13] only
pertains to data of regularity H1+

x (R2) × H0+
x (R2), we first of all have to introduce a notion of the wave

maps evolution of radially symmetric energy class data. We shall achieve this analogously to the procedures
in [17] and [16] by regularization and reduction to the small energy case via finite speed of propagation. We
begin with the following “high-frequency perturbation” lemma.

Lemma 7.4. Let φ : [0,T ] ×R2 → Sm be a wave map which is supported in the frequency interval (−∞,K]
for some K ∈ R up to an exponentially decaying tail, more precisely such that

‖φk‖S k([0,T ]) ≤ δ12−σ(k−K), k ≥ K,

for some positive constants 0 < δ1 � 1 and σ > 0. Suppose that

‖φ‖S ([0,T ]) ≤ C1

for some C1 > 0. Then there exists δ ≡ δ(C1, σ) such that if ε[0] ∈ H1+
x × H0+

x is a data pair such that
(φ + ε)[0] constitutes admissible initial data mapping into TSm and such that∥∥∥ε[0]

∥∥∥
Ḣ1

x×L2
x
≤ δ with δ1 � δ,

and moreover if ε[0] is supported up to exponentially decaying tails at frequencies [K,∞) in the sense that∥∥∥Pkε[0]
∥∥∥

Ḣ1
x×L2

x
≤ δ2−σ(K−k), k < K,
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then the data (φ+ ε)[0] can be evolved on [0,T ]×R2 as a wave map (φ+ ε)(t, x) of class H1+
x ×H0+

x and we
have that

‖ε‖S ([0,T ]) ≤ C2(C1, σ) δ.

Proof. From the basic local existence theory [8–10, 12, 13] we know that the data (φ + ε)[0] can be evolved
locally in time as a wave map of class H1+

x × H0+
x . It remains to show that this evolution extends all the way

up to time t = T . This we do by a bootstrap argument which is a simplified version of the one that will be
used for controlling the lowest frequency “non-atomic” component in Subsection 7.3. In fact, we make the
bootstrap assumption

‖εk‖S k([0,T ]) ≤ C(ck + dk)
for some sufficiently large C > 0, where {ck}k∈Z is such that ck = 0 for k < K and

∑
k∈Z c2

k ≤ δ
2, while {dk}k∈Z

is such that dk = δ2−σ|k−K| for k < K and dk = 0 for k ≥ K. Then we argue as in the bootstrap argument in
the proof of Proposition 7.9 in Subsection 7.3. �

Now assume that we are given a radially symmetric data pair φ[0] : R2 → TSm of energy class φ[0] ∈
(Ḣ1

x ∩ L∞x )× L2
x. Then we can pass to the frequency truncated data Π<Kφ[0] for any K ∈ R. As each of these

data sets are of class H1+
x ×H0+

x we have a canonical evolution for them on some local time intervals, which
may however a priori depend on K. But then we observe

Lemma 7.5. Let φ[0] : R2 → TSm be radially symmetric data of energy class φ[0] ∈ (Ḣ1
x ∩ L∞x ) × L2

x. Then
there exists a time T∗ > 0, T∗ ≡ T∗(φ[0]), and some sufficiently large K0 ∈ R such that for any K ≥ K0, the
wave maps evolution φ(K)(t, x) of the data Π<Kφ[0] exists on [0,T∗] × R2, and moreover, we have a uniform
bound ∥∥∥φ(K)

∥∥∥
S ([0,T∗])

≤ C
(
φ[0]

)
, K ≥ K0.

Proof. The claim will follow from the small energy global regularity result from Theorem 5.4 via Huy-
gen’s principle and a simple partition of unity argument to patch together the global-in-space solution from
spatially localized ones. To this end we define the annuli

CR1,R2 := {x ∈ R2 : R1 ≤ |x| ≤ R2}, 0 ≤ R1 < R2 ≤ +∞

and denote by η > 0 the cutoff for the small energy global regularity theory. Given radially symmetric
data φ[0] : R2 → TSm, there exists a covering of R2 by finitely many annuli CR j−1,R j , j = 1, 2, . . . , J, with
R0 = 0,RJ = +∞, R j ≤ 2R j−1 for j ∈ {2, . . . , J − 1}, and such that φ[0]

∣∣∣
CR j−1 ,R j

coincides with the restriction

to CR j−1,R j of some radially symmetric data φ( j)[0] : R2 → TSm of energy less than η. To see this, pick
finitely many such annuli CR j−1,R j with the property that∥∥∥φ[0]

∣∣∣
C 1

2 R j−1 ,2R j

∥∥∥
Ḣ1

x×L2
x
� η.

Then observe that for any x, y ∈ C 1
2 R j−1,2R j

, j ∈ {2, . . . , J − 1}, with r = |x| and r̃ = |y|, we have that∣∣∣φ(x) − φ(y)
∣∣∣ =

∣∣∣∣∣ ∫ r

r̃
∇rφ(r) dr

∣∣∣∣∣ . ∣∣∣∣ log
(r
r̃

)∣∣∣∣ 1
2
∥∥∥∇xφ

∥∥∥
C 1

2 R j−1 ,2R j

� η.

Then picking x0 ∈ CR j−1,R j arbitrarily and introducing

φ( j) := Π
(
χC 1

2 R j−1 ,2R j
φ +

(
1 − χC 1

2 R j−1 ,2R j

)
φ(x0)

)
, j ∈ {2, . . . , J − 1},

where
{
χC 1

2 R j−1 ,2R j

}
j=1,...,J is a smooth partition of unity of R2 with χC 1

2 R j−1 ,2R j

∣∣∣
CR j−1 ,R j

≡ 1, we obtain∥∥∥∇xφ
( j)

∥∥∥
L2

x(R2) � η

as well as
φ( j)

∣∣∣
CR j−1 ,R j

≡ φ.
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Further, we set

∂tφ
( j) := χC 1

2 R j−1 ,2R j
∂tφ − χC 1

2 R j−1 ,2R j

(
(∂tφ)†φ( j)) φ( j).

Then we have ∂tφ
( j)

∣∣∣
CR j−1 ,R j

= ∂tφ and it is easily seen that∥∥∥∂tφ
( j)

∥∥∥
L2

x(R2) � η.

Importantly, the constructed data pair φ( j)[0] = (φ( j), ∂tφ
( j)) : R2 → TSm is again radially symmetric. It is

also straightforward to modify this construction on C 1
2 R j−1,2R j

for j = 1 and for j = M. Replacing φ[0]
by φ(K)[0] = Π<Kφ[0] results in the data φ( j,K)[0], which satisfy the same bounds (with a slightly different
implied constant) for large enough K. It then follows from the small energy global regularity theory that we
can evolve these data φ( j,K)[0] to global wave maps and a simple application of Huygen’s principle implies
that the evolutions φ(K) exist on a joint time interval [0,T∗] for some 0 < T∗ � 1 for all large enough
K ≥ K0. Moreover, we may infer uniform bounds∥∥∥φ(K)

∥∥∥
S ([0,T∗])

≤ C∗(φ[0]), K ≥ K0.

�

Combining the two preceding lemmas, we can now deduce the desired concept of energy class evolution.
Given radially symmetric energy class data φ[0] : R2 → TSm with φ[0] ∈ (Ḣ1

x ∩ L∞x ) × L2
x, we see that by

Lemma 7.5 there exists T∗(φ[0]) > 0 such that for all sufficiently large K ≥ K0 the wave maps evolutions
φ(K)(t, x) exist on a joint time interval [0,T∗] and moreover, using Lemma 7.4, we see that the sequence
{φ(K)}K≥K0 converges in the sense of ‖ · ‖S ([0,T∗]). It also follows that the limit is canonical, i.e. it does not
depend on the precise choice of regularization. Correspondingly, we introduce

Definition 7.6. Let φ[0] : R2 → TSm be a radially symmetric energy class data pair φ[0] ∈ (Ḣ1
x ∩ L∞x ) × L2

x
and let {φ(K)[0]}K be a sequence of frequency truncated data φ(K)[0] = Π<Kφ[0] such that φ(K)[0] → φ[0]
as K → ∞ in the sense of Ḣ1

x × L2
x. We denote by φ(K) the smooth local wave maps evolutions of the data

φ(K)[0] and define I = (−T0,T1) = ∪Ĩ to be the union of all open time intervals Ĩ 3 0 such that

sup
J⊂Ĩ,J closed

lim inf
K→∞

∥∥∥φ(K)
∥∥∥

S [J] < ∞.

Then we define the wave maps evolution of φ[0] on I × R2 to be

φ[t] := lim
K→∞

φ(K)[t], t ∈ I,

where the limit is taken in the energy topology. We refer to I as the maximal lifespan of φ. For any closed
time interval J ⊂ I, we set

‖φ‖S [J] := lim
K→∞

∥∥∥φ(K)
∥∥∥

S [J].

Our above considerations also imply the following characterization of the maximal lifespan I of an energy
class wave maps evolution.

Lemma 7.7. Let φ, φ(K) and I be as in the preceding Definition 7.6. Suppose that I , R. Then it must hold
that

sup
J⊂I,J closed

lim inf
K→∞

∥∥∥φ(K)
∥∥∥

S [J] = ∞.
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7.3. Evolving the lowest frequency non-atomic part. In this subsection we prove that the lowest fre-
quency non-atomic part φnΛ

(0)
0 [0], more precisely the associated wave map data Π≤µ1

n−log(Rn)φ
n[0], can be

globally evolved for all sufficiently large n with uniform in n bounds on the S norms of the global evolutions
just in terms of Ecrit. The end result is summarized in the following proposition.

Proposition 7.8. Let φnΛ
(0)
0 [0] be defined as in (7.2). Then provided δ0 � δ1 � ε0 are chosen sufficently

small depending on the size of Ecrit, the associated wave map initial data Π≤µ1
n−log(Rn)φ

n[0] can be evolved
globally in time for all sufficently large n and their evolutions denoted by Π≤µ1

n−log(Rn)φ
n obey∥∥∥Π≤µ1

n−log(Rn)φ
n
∥∥∥

S [R] ≤ C(Ecrit)

uniformly for all sufficently large n for some constant C(Ecrit) > 0 that depends only on Ecrit.

We shall prove Proposition 7.8 via a finite inductive procedure over the increasing size of the frequencies,
more precisely we shall inductively conclude that for L = 1, . . . ,C1, the data Π≤bLφ

n[0] can be globally
evolved for all sufficently large n with uniform in n bounds on the S norms of the evolutions. The induction
start is given by the small energy global regularity result from Theorem 5.4 and the induction step is provided
by the following key proposition of this subsection.

Proposition 7.9. Assume that for some 1 ≤ L < C1, the data Π≤bLφ
nΛ

(0)
0 [0] can be evolved globally in time

for all large n and that their evolutions denoted by Π≤bLφ
nΛ

(0)
0 satisfy∥∥∥Π≤bLφ

nΛ
(0)
0
∥∥∥

S [R] ≤ C2.

Then provided δ0 � δ1 and δ1 ≡ δ1(C2, Ecrit) are chosen sufficiently small, there exists C3 ≡ C3(C2) > 0
such that for all sufficently large n, Π≤bL+1φ

nΛ
(0)
0 [0] can be globally evolved and their evolutions denoted by

Π≤bL+1φ
nΛ

(0)
0 satisfy ∥∥∥Π≤bL+1φ

nΛ
(0)
0
∥∥∥

S [R] ≤ C3.

Proof. To simplify the notation in the following proof we shall write

φ ≡ Π≤bLφ
nΛ

(0)
0 , ε = Π≤bL+1φ

nΛ
(0)
0 − Π≤bLφ

nΛ
(0)
0 ,

keeping in mind that φ and ε depend on n. Since by assumption φ exists globally in time with finite S
norm, we have frequency envelope bounds for φ thanks to Proposition 6.2. In particular, due to the Besov
smallness (7.11) around the frequency interval endpoint bL, this implies that for all sufficently large n,

(7.12) ‖Pkφ‖S k[R] . δ12−σ(k−bL) for k > bL.

While φ exists globally in time, ε only exists locally in time and for now, any statement we make about
ε is meant locally in time on some interval I0 around t = 0. In order to prove global existence and finite S
norm bounds for ε, we use Proposition 6.3 to partition the time axis R = ∪N

j=1I j into N ≡ N(C2, Ecrit) many
time intervals I j with the property that

‖φ‖S [I j] . C(Ecrit) for j = 1, . . . ,N.

We tacitly assume that these intervals are intersected with I0 and that the interval I1 contains time t = 0.
Our strategy is to iteratively prove S norm bounds for ε by bootstrap on each interval I j. Here we encounter
the danger that the energy of ε could keep growing as we move to later time intervals and could thereby
leave the perturbative regime before we would have concluded S norm bounds on ε on all time intervals
I1, . . . , IN . However, we will see that the energy transfer between ε and φ is controlled by the underlying
Besov error δ0, which therefore implies approximate energy conservation for ε. We now fix the interval
I1 with the understanding that all the arguments in this step can be carried out for the later time intervals
I2, . . . , IN .
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For the ensuing bootstrap argument we introduce another smallness parameter δ2 > 0 satisfying

0 < δ0 � δ1 � δ2 � ε0 � 1.

Here we recall that δ0 is the underlying Besov error (7.10) of the non-atomic component in the frequency
atom decomposition and that δ1 controls the approximate frequency localization (7.7) of the normal projec-
tion operator. Then we make the following bootstrap assumptions.

Bootstrap assumptions: Suppose that

(7.13) ‖Pkε‖S k[I1] ≤ C(ck + dk) for k ∈ Z,

where C ≡ C(Ecrit) � 1 is a sufficently large constant and where {ck}k∈Z satisfies

(7.14) ck = 0 for k < bL, ck = 0 for k > bL+1,
∑
k∈Z

c2
k . ε0

as well as

(7.15)
∑

bL≤k≤bL+M

c2
k ≤ δ

2
2 for some M � 1 with 2−M ≤ δ3

2.

Moreover, {dk}k∈Z satisfies

(7.16) dk = δ22−σ(bL−k) for k < bL, dk = 0 for bL ≤ k ≤ bL+1, dk = δ22−σ(k−bL+1) for k > bL+1.

The idea here is that {dk}k∈Z incorporates the frequency leakage to ε coming from φ in the difference
equation for ε as well as the approximate frequency localization of the data ε[0] up to exponential tails
coming from application of the normal projection operator Π. Upon writing

(7.17) ε[0] = P[bL,bL+1]φ
nΛ

(0)
0 [0] +

(
Π≤bL+1φ

nΛ
(0)
0 − P≤bL+1φ

nΛ
(0)
0
)
[0] −

(
Π≤bLφ

nΛ
(0)
0 − P≤bLφ

nΛ
(0)
0
)
[0],

it becomes clear that by the choice of the frequency intervals [bL, bL+1], by the Besov smallness (7.11)
around the endpoints of these intervals and by the approximate preservation of the frequency localization by
the normal projection operator Π as established in Proposition 7.2, we have for all sufficiently large n that∥∥∥Pkε[0]

∥∥∥
Ḣ1

x×L2
x
. ck + dk.

In a first step we use a direct energy conservation argument to recover the envelope for the low frequencies
k < bL with respect to the kinetic energy norm. Then we will crucially use this bound and the “renormalized
difference equation” for ε to recover the full bound.

Lemma 7.10. If ε satisfies the assumption (7.13), then for some 1 � D0 � C the following improved bound
for the kinetic energy component for the low frequencies k < bL holds

(7.18) ‖∇t,xPkε‖L∞t L2
x[I1] ≤ D0(ck + dk).

Proof. We may assume that k = 0, so in particular we have bL > 0 in the following. Then we observe that
ε0 satisfies the wave equation

�ε0 = −P0
(
(φ + ε)∂α(φ + ε)†∂α(φ + ε)

)
+ P0

(
φ∂αφ

†∂αφ
)
≡ P0X(φ, ε).

Passing to the corresponding energy identity, we see that we need to show∣∣∣∣∣∫
I1

∫
R2

P0X(φ, ε)†∂tε0 dx dt
∣∣∣∣∣ � C2δ2

22−2σbL .

We now prove this bound separately for each term in

(7.19) −X(φ, ε) = ε∂αφ
†∂αφ + 2φ∂αε†∂αφ + ε∂αε

†∂αε + 2ε∂αε†∂αφ + φ∂αε
†∂αε.

(i) Contribution of P0
(
ε∂αφ

†∂αφ
)
. We split into

(7.20) P0
(
ε∂αφ

†∂αφ
)

= P0
(
P>bLε∂αφ

†∂αφ
)

+ P0
(
P[−10,bL]ε∂αφ

†∂αφ
)

+ P0
(
P≤−10ε∂αφ

†∂αφ
)
.
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Then we have for the first term∣∣∣∣∣∫
I1

∫
R2

P0
(
P>bLε∂αφ

†∂αφ
)†∂tε0 dx dt

∣∣∣∣∣ . ∑
k1>bL

∑
k2=k1+O(1)

∣∣∣∣∣∫
I1

∫
R2

P0
(
Pk1εPk2

(
∂αφ

†∂αφ
))†∂tε0 dx dt

∣∣∣∣∣.
In case of high-high interactions, we place Pk2

(
∂αφ

†∂αφ
)

into L
3
2
t L

3
2
x , while in case of low-high and high-

low interactions, we put Pk2

(
∂αφ

†∂αφ
)

into L
5
3
t L

5
3
x . Thus, in the former case we obtain from the null form

estimate (4.1), the bootstrap assumptions (7.13) and the exponential decay (7.12) of the S k norms of φ for
k > bL the bound

.
∑

k1>bL

∑
k3>k1

∥∥∥Pk1ε
∥∥∥

L3
t L∞x [I1]

∥∥∥Pk3φ
∥∥∥2

S k3 [I1]

∥∥∥∂tε0
∥∥∥

L∞t L3
x[I1]

.
∑

k1>bL

∑
k3>k1

2−
1
3 k1ε0δ

2
12−2σ(k3−bL)Cδ22−σbL

� C2δ2
22−2σbL

for δ1 > 0 sufficiently small. In the latter case, we similarly infer the estimate

.
∑

k1>bL

∑
k3≤k1+O(1)

∥∥∥Pk1ε
∥∥∥

L
5
2
t L∞x [I1]

2
1
10 k12

1
10 k3

∥∥∥Pk1φ
∥∥∥

S k1 [I1]

∥∥∥Pk3φ
∥∥∥

S k3 [I1]

∥∥∥∂tε0
∥∥∥

L∞t L
5
2
x [I1]

.
∑

k1>bL

∑
k3≤k1+O(1)

2−
1
5 k1ε02

1
10 k12

1
10 k3δ12−σ(k1−bL)‖Pk3φ‖S k3 [I1]Cδ22−σbL

.
∑

k1>bL

2−
1
5 k1ε0δ12−σ(k1−bL)C(Ecrit)Cδ22−σbL

� C2δ2
22−2σbL .

Next, for the contribution of the second term in (7.20)∣∣∣∣∣∫
I1

∫
R2

P0
(
P[−10,bL]ε∂αφ

†∂αφ
)†∂tε0 dx dt

∣∣∣∣∣,
we argue similarly and use that ∥∥∥Pk1ε

∥∥∥
Lq

t L∞x
. Cδ22−

1
q k1−σ(bL−k1) for k1 < bL

and a divisibility argument (from ∂αφ
†∂αφ) to force smallness. Finally, in order to treat the third term

in (7.20), for each frequency k ≤ −10 we consider the expression∣∣∣∣∣∫
I1

∫
R2

P0
(
PkεP0(∂αφ†∂αφ)

)†∂tε0 dx dt
∣∣∣∣∣

and now further distinguish for the radial variable the cases r ≤ 1 and r > 1.
When r ≤ 1 in case of low-high and high-low interactions in P0

(
∂αφ

†∂αφ
)

we easily estimate∣∣∣∣∣∫
I1

∫
R2
χ{r≤1}P0

(
PkεP0(∂αφ†∂αφ)

)†∂tε0 dx dt
∣∣∣∣∣

.
∑
`<0

∥∥∥χ{r∼2`}r
+ 1

2
∥∥∥

L6
x
‖Pkε‖L∞t L∞x [I1]

∥∥∥P0
(
∂αφ∂

αφ
)∥∥∥

L2
t L3

x[I1] sup
`∈Z

∥∥∥χ{r∼2`}r
− 1

2 ∂tε0
∥∥∥

L2
t L2

x[I1]

. ‖Pkε‖S k[I1]
∥∥∥P0

(
∂αφ∂

αφ
)∥∥∥

L2
t L3

x[I1]‖ε0‖S 0[I1]

. 2σkC2δ2
22−2σbL

∥∥∥P0
(
∂αφ∂

αφ
)∥∥∥

L2
t L3

x[I1].

Then one can sum over k ≤ −10 and smallness is obtained from divisibility of the
∥∥∥P0

(
∂αφ∂

αφ
)∥∥∥

L2
t L3

x[I1] norm.

In case of high-high interactions in P0
(
∂αφ

†∂αφ
)
, we use Hölder’s inequality to place Pkε into L∞t L∞x [I1],
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the null form P0
(
∂αφ

†∂αφ
)

into L
3
2
t L

3
2
x [I1] and ∂tε0 into L3

t L∞x [I1], gaining smallness from divisibility of the

L
3
2
t L

3
2
x [I1] norm in this case.

We can therefore now turn to the more subtle case when r > 1. We first treat the high-high interactions in
P0

(
∂αφ

†∂αφ
)
. Here we use Strauss’ improved Sobolev embedding to estimate∣∣∣∣∣∫
I1

∫
R2
χ{r>1}P0

(
Pkε

∑
k1>0

P0(∂αφ
†

k1
∂αφk1+O(1))

)†∂tε0 dx dt
∣∣∣∣∣

.
∑
`>0

∥∥∥χ{r∼2`}Pkε
∥∥∥

L∞t L∞x

∥∥∥∥∑
k1>0

r+ 1
2 (∂αφ

†

k1
∂αφk1+O(1))

∥∥∥∥
L2

t L2
x[I1]

sup
`∈Z

∥∥∥χ{r∼2`}r
− 1

2 ∂tε0
∥∥∥

L2
t L2

x[I1]

.
∑
`>0

min{2−
1
2 (`+k), 1}‖Pkε‖S k[I1]‖ε0‖S 0[I1]

∥∥∥∥∑
k1>0

r+ 1
2 (∂αφ

†

k1
∂αφk1+O(1))

∥∥∥∥
L2

t L2
x[I1]

. (1 + |k|)2σkC2δ2
22−2σbL

∥∥∥∥∑
k1>0

r+ 1
2 (∂αφ

†

k1
∂αφk1+O(1))

∥∥∥∥
L2

t L2
x[I1]

.

This bound can be summed over k ≤ −10 and we obtain smallness since the L2
t L2

x[I1] norm here has the
divisibility property thanks to the weighted null form estimate (4.3). In case of low-high interactions in
P0

(
∂αφ

†∂αφ
)

(and then analogously for high-low interactions), we write∫
I1

∫
R2
χ{r>1}P0

(
Pkε

∑
k1<O(1)

P0(∂αφ
†

k1
∂αφ0)

)†∂tε0 dx dt

=

∫
I1

∫
R2
χ{r>1}P0

(
Pkε

∑
k<k1<O(1)

P0(∂αφ
†

k1
∂αφ0)

)†∂tε0 dx dt

+
∑
k1≤k

∫
I1

∫
R2
χ{r>1}P0

(
PkεP0(∂αφ

†

k1
∂αφ0)

)†∂tε0 dx dt.

Then we can bound the first term on the right-hand side exactly as in the high-high case only that we pay
a price of |k|2, which can still be absorbed by the gain 2σk and then summed over k ≤ −10. For the second
term on the right-hand side we distribute the weight differently, more precisely for some 0 < λ < 1

2 we again
use Strauss’ improved Sobolev embedding and estimate by∑

`>0

∑
k1≤k

∥∥∥χ{r∼2`}r
1
2−λPkε

∥∥∥
L∞t L∞x [I1]

∥∥∥r+λ∂αφ
†

k1
∂αφ0

∥∥∥
L2

t L2
x[I1] sup

`∈Z

∥∥∥χ{r∼2`}r
− 1

2 ∂tε0
∥∥∥

L2
t L2

x

.
∑
k1≤k

∑
`>0

min{2−λ(`+k), 1}2−( 1
2−λ)k‖Pkε‖S k[I1]

∥∥∥r+λ∂αφ
†

k1
∂αφ0

∥∥∥
L2

t L2
x[I1]‖ε0‖S 0[I1]

.
∑
k1≤k

(1 + |k|)2−( 1
2−λ)(k−k1)‖Pkε‖S k[I1]2−( 1

2−λ)k1
∥∥∥r+λ∂αφ

†

k1
∂αφ0

∥∥∥
L2

t L2
x[I1]‖ε0‖S 0[I1]

. (1 + |k|)2σkC2δ2
22−2σbL

(∑
k1≤0

2−2( 1
2−λ)k1

∥∥∥r+λ∂αφ
†

k1
∂αφ0

∥∥∥2
L2

t L2
x[I1]

) 1
2
.

The last line can then be summed over k ≤ −10 and by the weighted null form estimate (4.3) the last factor
here has the divisibility property yielding smallness.

(ii) Contribution of P0
(
φ∂αε

†∂αφ
)
. Here we split into∫

I1

∫
R2

P0
(
φ∂αε

†∂αφ
)†∂tε0 dx dt =

∫
I1

∫
R2

P0
(
φ≤−10∂αε

†∂αφ
)†∂tε0 dx dt

+

∫
I1

∫
R2

P0
(
φ>−10∂αε

†∂αφ
)†∂tε0 dx dt.
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Since the second term is truly quadrilinear and thus easier to treat, we only turn to the details of the estimate
of the first term, which we may schematically write as

(7.21)
∫

I1

∫
R2

P0
(
∂αε

†∂αφ
)
φ†
≤−10∂tε0 dx dt.

Since φ + ε and φ are wave maps into the sphere, we have the following geometric identity at our disposal

0 = (φ + ε)†∂t(φ + ε) = φ†∂tε + ε†∂tφ + ε†∂tε.

Upon applying the projection P0 and decomposing P0(φ†∂tε) into a Littlewood-Paley trichotomy, we find
that we can schematically rewrite the term (7.21) as∫

I1

∫
R2

P0
(
∂αε

†∂αφ
)(
−φ†0∂tε≤−10 −

∑
k1>0

P0
(
φ†k1

∂tεk1

)
− P0(ε†∂tφ) − P0(ε†∂tε)

)
dx dt.

This leads to four contributions, which we now estimate separately.
(ii.1) We begin with the term ∫

I1

∫
R2

P0
(
∂αε

†∂αφ
)
φ†0∂tε≤−10 dx dt.

In case of high-low or low-high interactions in P0
(
∂αε

†∂αφ
)
, we use the null form estimate (4.1) to place

P0
(
∂αε

†∂αφ
)

into L
5
3
t L

5
3
x and put φ0 as well as ∂tε≤−10 into L5

t L5
x, gaining smallness from divisibility of

‖φ0‖L5
t L5

x
. In case of high-high interactions in P0

(
∂αε

†∂αφ
)

we integrate by parts to move a derivative ∂α
away from ε, which leads to the terms∫

I1

∫
R2

P0
(
ε†�φ

)
φ†0∂tε≤−10 dx dt+

∫
I1

∫
R2

P0
(
ε†∂αφ

)
∂αφ

†

0∂tε≤−10 dx dt+
∫

I1

∫
R2

P0
(
ε†∂αφ

)
φ†0∂α∂tε≤−10 dx dt,

where in the first term we have to reinsert the wave maps equation for φ. Then one can essentially argue as
in (i) to bound these terms.
(ii.2) Next, we consider the term∫

I1

∫
R2

P0
(
∂αε

†∂αφ
) ∑

k1>0

P0
(
φ†k1

∂tεk1

)
dx dt.

In case of high-low interactions in P0
(
∂αε

†∂αφ
)

(and then analogously for low-high interactions), we split
into ∑

0<k1≤bL

∫
I1

∫
R2

P0
(
∂αε

†

0∂
αφ≤−10

)
P0

(
φ†k1

∂tεk1

)
dx dt +

∑
k1>bL

∫
I1

∫
R2

P0
(
∂αε

†

0∂
αφ≤−10

)
P0

(
φ†k1

∂tεk1

)
dx dt.

Then it is easy to see that in the first summand we can restrict to r > 1, which allows us to estimate via the
weighted null form estimate (4.3) for some 0 < λ < 1

2 ,∣∣∣∣∣ ∑
0<k1≤bL

∫
I1

∫
R2

P0
(
∂αε

†

0∂
αφ≤−10

)
χ{r>1}P0

(
φ†k1

∂tεk1

)
dx dt

∣∣∣∣∣
.

∥∥∥r+λP0
(
∂αε

†

0∂
αφ≤−10

)∥∥∥
L2

t L2
x[I1]

∑
0≤k1<bL

∥∥∥χ{r>2−k1 }r
−λφk1

∥∥∥
L2

t L∞x [I1]‖∂tεk1‖L∞t L2
x[I1]

. ‖ε0‖S 0[I1]‖φ‖S [I1]

( ∑
0<k1≤bL

22( 1
2−λ)k1

∥∥∥χ{r>2−k1 }r
−λφk1

∥∥∥2
L2

t L∞x [I1]

) 1
2
( ∑

0<k1≤bL

2−2( 1
2−λ)k1C2δ2

22−2σ(bL−k1)
) 1

2

. C2δ2
22−2σbL

( ∑
0<k1≤bL

22( 1
2−λ)k1

∥∥∥χ{r>2−k1 }r
−λφk1

∥∥∥2
L2

t L∞x [I1]

) 1
2
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and here the last factor has the divisibility property yielding smallness. For the second summand we use
Bernstein and the null form estimate (4.1) to bound by∣∣∣∣∣ ∑

k1>bL

∫
I1

∫
R2

P0
(
∂αε

†

0∂
αφ≤−10

)
P0

(
φ†k1

∂tεk1

)
dx dt

∣∣∣∣∣
.

∥∥∥∂αε†0∂αφ≤−10
∥∥∥

L
5
3
t L

5
3
x [I1]

∑
k1>bL

‖φk1‖
L

5
2
t L∞x [I1]

‖∂tεk1‖L∞t L2
x[I1]

. ‖ε0‖S 0[I1]‖φ‖S [I1]

∑
k1>bL

2−
5
2 k1δ12−σ(k1−bL)‖εk1‖S k1 [I1]

. Cδ22−σbLC(Ecrit)δ12−
5
2 bLε

1
2
0

� C2δ2
22−2σbL .

In case of high-high interactions in P0
(
∂αε

†∂αφ
)

we have to integrate by parts to move a derivative ∂α away
from ε and then one can argue essentially as in (i).
(ii.3) Here we further decompose the term P0

(
ε†∂tφ

)
into a Littlewood-Paley trichotomy so that we schemat-

ically have

(7.22)

∫
I1

∫
R2

P0
(
∂αε

†∂αφ
)
P0

(
ε†∂tφ

)
dx dt =

∫
I1

∫
R2

P0
(
∂αε

†∂αφ
)
P0

(
ε†
≤−10∂tφ0

)
dx dt

+

∫
I1

∫
R2

P0
(
∂αε

†∂αφ
)
P0

(
ε†0∂tφ≤−10

)
dx dt

+
∑
k1>0

∫
I1

∫
R2

P0
(
∂αε

†∂αφ
)
P0

(
ε†k1
∂tφk1

)
dx dt.

For the first term on the right-hand side of (7.22) for high-low interactions in P0
(
∂αε

†∂αφ
)

(and similarly
for low-high interactions) we can proceed as we did for the third term in (7.20), where now ∂αε

†∂αφ replaces
∂αφ

†∂αφ. Correspondingly, the divisibility part to achieve smallness has to be modified a bit, and in fact has
to come from the last factor ∂tφ0 which we place in the local energy decay space. Specifically, we arrive at
the expression (∑

`∈Z

(1 + `2)−1
∥∥∥χ{r∼2`}r

− 1
2 ∂tφ0

∥∥∥2
L2

t L2
x[I1]

) 1
2
,

which has the divisibility property here. For high-high interactions in P0
(
∂αε

†∂αφ
)

one again has to integrate
by parts to move a derivative ∂α away from ε.

The second term on the right-hand side of (7.22) can be treated easily using the null form estimate (4.1)
and Strichartz estimates in case of high-low and low-high interactions in P0

(
∂αε

†∂αφ
)
, while for high-high

interactions one has to integrate by parts again.
Finally, the third term on the right-hand side of (7.22) can be dealt with analogously to (ii.2).

(ii.4) In this case we can essentially proceed as in (ii.3) only that it is easier to achieve smallness thanks to
the extra factor ε.

(iii) Contribution of P0
(
ε∂αε

†∂αε
)
. As usual we split into∫

I1

∫
R2

P0
(
ε∂αε

†∂αε
)†∂tε0 dx dt =

∫
I1

∫
R2

P0
(
ε≤−10∂αε

†∂αε
)†∂tε0 dx dt

+
∑

k1>−10

∑
k2=k1+O(1)

∫
I1

∫
R2

P0
(
Pk1εPk2(∂αε†∂αε)

)†∂tε0 dx dt.

For the first term on the right-hand side we may proceed as at the end of (i) to infer the desired bound. For the
second term we distinguish high-high interactions in Pk2(∂αε†∂αε) from high-low and low-high interactions.
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In the former case we place Pk2(∂αε†∂αε) into L
3
2
t L

3
2
x and use the null form estimate (4.1) to infer∣∣∣∣∣ ∑

k1>−10

∑
k2=k1+O(1)

∫
I1

∫
R2

P0
(
Pk1εPk2(∂αε†∂αε)

)†∂tε0 dx dt
∣∣∣∣∣

.
∑

k3>−10

‖Pk3ε‖
2
S k1 [I1]

∑
k1>−10

‖Pk1ε‖L3
t L∞x [I1]‖∂tε0‖L∞t L3

x[I1]

. ε0

∑
k1>−10

2−
1
3 k1‖Pk1ε‖S k1 [I1]‖∂tε0‖S 0[I1].

By further distinguishing the frequency regimes and exploiting the smallness and decay properties (7.14)–
(7.16) of {ck}k∈Z and {dk}k∈Z, we find that∑

k1>−10

2−
1
3 k1‖Pk1ε‖S k1 [I1]‖∂tε0‖S 0[I1]

.
∑

−10<k1≤bL

2−( 1
3−σ)k1C2δ2

22−2σbL +
∑

bL<k1≤bL+M

2−
1
3 k1ck1Cδ22−σbL +

∑
k1>bL+M

2−
1
3 k1ck1Cδ22−σbL

. C2δ2
22−2σbL +

( ∑
bL<k1≤bL+M

c2
k1

) 1
2
δ22−(σ+ 1

3 )bL + 2−
1
3 Mε0Cδ22−(σ+ 1

3 )bL

. C2δ2
22−2σbL .

In total, for sufficiently small ε0 > 0 we obtain the desired bound∣∣∣∣∣ ∑
k1>−10

∑
k2=k1+O(1)

∫
I1

∫
R2

P0
(
Pk1εPk2(∂αε†∂αε)

)†∂tε0 dx dt
∣∣∣∣∣ . ε0C2δ2

22−2σbL � C2δ2
22−2σbL .

In the case of high-low or low-high interactions, we place Pk2(∂αε†∂αε) into L
3
2 +

t L
3
2 +
x and then proceed

similarly as above.

(iv) Contributions of P0
(
ε∂αε

†∂αφ
)

and P0
(
φ∂αε

†∂αε
)
: These terms do not offer anything new and can be

treated similarly as above, which finishes the proof of Lemma 7.10. �

Next, we recover the full envelope bound. We may assume that k = 0 and now want to infer the improved
bound ‖ε0‖S 0[I1] ≤

C
2 (c0 + d0). To this end we will use the “renormalized difference equation” for ε0 given

by

�
(
U(φ+ε)
≤−10

¯(φ + ε)0
)
− �

(
U(φ)
≤−10φ̄0

)
≡ F(φ+ε)

0 − F(ε)
0 ,

where U(φ+ε)
≤h and U(φ)

≤h denote the gauge transformations defined by φ + ε, respectively φ. We will proceed
in several steps which we briefly sketch before we turn to the details.

(a) First we show that for some D1 � 1 with 1 � D0 � D1 � C, we have for any 0 ≤ α < 1 that

(7.23)
∑
k0∈Z

2α|k0 |
∥∥∥Pk0�

(
U(φ+ε)
≤−10

¯(φ + ε)0 − U(φ)
≤−10φ̄0

)∥∥∥
L1

t L2
x[I1] ≤ D1(c0 + d0).

Note that here it is again necessary to control the above weighted sum over all frequency outputs
since the frequency localizations of ¯(φ + ε)0 and φ̄0 to frequency ∼ 1 are only approximately pre-
served by the gauge transformations up to exponentially decaying tails. By the energy estimate (3.1)
we can then conclude that

(7.24)
∑
k0∈Z

2α|k0 |
∥∥∥Pk0

(
U(φ+ε)
≤−10

¯(φ + ε)0 − U(φ)
≤−10φ̄0

)∥∥∥
S k0 [I1] . D1(c0 + d0).
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(b) Next we show that we have

(7.25)
∑
k0∈Z

2α|k0 |
∥∥∥Pk0

(
U(φ+ε)
≤−10 − U(φ)

≤−10
)
φ̄0

∥∥∥
S k0 [I1] . D1(c0 + d0).

This step crucially relies on the improved bounds on the kinetic energy of εk for the low frequencies
k < bL, which we have already established in Lemma 7.10.

(c) Combining (7.24) and (7.25) we immediately obtain

(7.26)
∑
k0∈Z

2α|k0 |
∥∥∥Pk0U(φ+ε)

≤−10
( ¯(φ + ε)0 − φ̄0

)∥∥∥
S k0 [I1] . D1(c0 + d0).

(d) Then we write
¯(φ + ε)0 − φ̄0 =

(
U(φ+ε)
≤−10

)†U(φ+ε)
≤−10

( ¯(φ + ε)0 − φ̄0
)

and decompose into a Littlewood-Paley trichotomy. Using the bound (7.26) we may then proceed
as in the proof of Proposition 6.3 to infer that for some D2 � 1 with 1 � D0 � D1 � D2 � C,

(7.27)
∥∥∥ ¯(φ + ε)0 − φ̄0

∥∥∥
S 0[I1] ≤ D2(c0 + d0).

Here we do not have to work with the modified version of the gauge transformations as introduced
in Proposition 6.3 because we already have that ‖φ‖S [I1] ≤ C(Ecrit). We will correspondingly not
provide further details on this step.

(e) Finally, we invoke the bound (7.27) and exploit the inherently multilinear structure of

¯(φ + ε)0 − φ̄0 − ε0

to conclude the desired improved bound

‖ε0‖S 0[I1] ≤
C
2

(c0 + d0).

We now provide the details of the key steps (a), (b) and (e) in separate lemmas, starting with (a).

Lemma 7.11. If ε satisfies the bootstrap assumption (7.13) for some C ≡ C(Ecrit) � 1 sufficiently large,
then we have for some 1 � D1 � C that for all 0 ≤ α < 1,

(7.28)
∑
k0∈Z

2α|k0 |
∥∥∥Pk0�

(
U(φ+ε)
≤−10

¯(φ + ε)0 − U(φ)
≤−10φ̄0

)∥∥∥
L1

t L2
x[I1] ≤ D1(c0 + d0).

Proof. We begin by observing that it suffices to prove

(7.29)
∥∥∥�(U(φ+ε)

≤−10
¯(φ + ε)0 − U(φ)

≤−10φ̄0
)∥∥∥

L1
t L2

x[I1] ≤ D1(c0 + d0).

Then the bound on the weighted sum (7.28) over all output frequencies can be established as in the proof of
Proposition 6.3.

For each characteristic component of the renormalized wave maps nonlinearity as summarized in Propo-
sition 5.1, we now have to establish the estimate (7.29) for the difference of the corresponding expression
for φ + ε and φ. Here we show this in detail for the first term on the right-hand side of (5.32), namely when
a derivative falls on the lowest frequency; for all other terms one has to proceed similarly. We are therefore
now facing a difference term of the schematic form

U(φ+ε)
≤−10

∑
k2≤−10

(φ + ε)k2−10<·≤−10∂α(φ + ε)†k2
∂α(φ + ε)0 − U(φ)

≤−10

∑
k2≤−10

φk2−10<·≤−10∂αφ
†

k2
∂αφ0.

This leads to a number of expressions which we are now estimating separately.

(i) Contribution of
(
U(φ+ε)
≤−10 − U(φ)

≤−10
)∑

k2≤−10 φk2−10<·≤−10∂αφ
†

k2
∂αφ0. We distinguish further between the

relation of the frequency scale 0 to bL, which is the upper endpoint of the “essential” frequency support of φ.
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(i.1) 0 ≥ bL. This case is straightforward on account of the smallness ‖Pkφ‖S k . δ12−σ(k−bL) for k > bL. We
simply use the exact orthogonality of the gauge transformations and the trilinear estimate (4.4) to bound∥∥∥∥(U(φ+ε)

≤−10 − U(φ)
≤−10

) ∑
k2≤−10

φk2−10<·≤−10∂αφ
†

k2
∂αφ0

∥∥∥∥
L1

t L2
x[I1]
.

∑
k2≤−10

‖φk2‖
2
S k2 [I1]‖φ0‖S 0[I1]

. C(Ecrit)δ12+σbL

� δ22+σbL .

(i.2) 0 < bL. Here we have to argue more carefully, since we now have to gain smallness from the difference
of the gauge transformations U(φ+ε)

≤−10 − U(φ)
≤−10. By the defining ODE (5.28) for the gauge transformations we

have that

U(φ+ε)
≤−10 − U(φ)

≤−10 =

∫ −10

−∞

U(φ+ε)
≤h

(
B(φ+ε)

h − B(φ)
h

)
dh +

∫ −10

−∞

(
U(φ+ε)
≤h − U(φ)

≤h
)
B(φ)

h dh.

By further expanding the second term on the right-hand side, we obtain an expansion containing only terms
involving differences B(φ+ε)

h − B(φ)
h , namely

(7.30) U(φ+ε)
≤−10 − U(φ)

≤−10 =

∞∑
n=1

∫ −10

−∞

∫ h1

−∞

· · ·

∫ hn−1

−∞

U(φ+ε)
≤hn

(
B(φ+ε)

hn
− B(φ)

hn

)
B(φ)

hn−1
· · · B(φ)

h1
dhn . . . dh1.

Since the repeated expansion leads to difference terms of lower and lower frequencies, this infinite sum is
convergent due to the assumed exponential decay of dk for k < bL. In view of the definition (5.27) of B(φ+ε)

h
and B(φ)

h , we may therefore replace (7.30) by the schematic expression∑
k1≤−10

L(φ≤k1−10, εk1) + L(ε≤k1−10, φk1) + L(ε≤k1−10, εk1).

Noting that by a simple divisibility argument we may assume that∥∥∥∥ ∑
k2≤−10

φk2−10<·≤−10∂αφ
†

k2
∂αφ0

∥∥∥∥
L1

t L2
x[I1]
� 1,

we find that∥∥∥∥(U(φ+ε)
≤−10 − U(φ)

≤−10
) ∑

k2≤−10

φk2−10<·≤−10∂αφ
†

k2
∂αφ0

∥∥∥∥
L1

t L2
x[I1]

.
∥∥∥∥( ∑

k1≤−10

L(φ≤k1−10, εk1) + L(ε≤k1−10, φk1) + L(ε≤k1−10, εk1)
) ∑

k2≤−10

φk2−10<·≤−10∂αφ
†

k2
∂αφ0

∥∥∥∥
L1

t L2
x[I1]

.
∑

k1≤−10

‖εk1‖L∞t L∞x [I1]

∥∥∥∥ ∑
k2≤−10

φk2−10<·≤−10∂αφ
†

k2
∂αφ0

∥∥∥∥
L1

t L2
x[I1]

.
∑

k1≤−10

δ22−σ(bL−k1)
∥∥∥∥ ∑

k2≤−10

φk2−10<·≤−10∂αφ
†

k2
∂αφ0

∥∥∥∥
L1

t L2
x[I1]

� δ22−σbL .

(ii) Contribution of U(φ+ε)
≤−10

∑
k2≤−10 εk2−10<·≤−10∂αφ

†

k2
∂αφ0. Again we further distinguish between the relation

of the frequency scale 0 and bL.
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(ii.1) 0 ≥ bL. Here we immediately obtain from the smallness ‖φk‖S k . δ12−σ(k−bL) for k > bL and the
trilinear estimate (4.4) the desired bound∥∥∥∥U(φ+ε)

≤−10

∑
k2≤−10

εk2−10<·≤−10∂αφ
†

k2
∂αφ0

∥∥∥∥
L1

t L2
x[I1]
.

(∑
k1

‖εk1‖
2
S k1 [I1]

) 1
2
(∑

k2

‖φk2‖
2
S k2 [I1]

) 1
2
‖φ0‖S 0[I1]

. ε
1
2
0 C(Ecrit)δ12+σbL

� δ22+σbL .

(ii.2) 0 < bL. By the trilinear estimate (4.4) here we have∥∥∥∥U(φ+ε)
≤−10

∑
k2≤−10

εk2−10<·≤−10∂αφ
†

k2
∂αφ0

∥∥∥∥
L1

t L2
x[I1]
.

∑
k2≤−10

∑
k2−10<k1≤−10

2−
1
4 (k1−k2)‖εk1‖S k1 [I1]‖φk2‖S k2 [I1]‖φ0‖S 0[I1]

. δ22−σbLC(Ecrit)

and then one forces smallness via a divisibility argument.

(iii) Contribution of U(φ+ε)
≤−10

∑
k2≤−10 εk2−10<·≤−10∂αε

†

k2
∂αε0. In this case the smallness comes from the bound∑

k∈Z c2
k . ε0. Indeed, by the trilinear estimate we obtain∥∥∥∥U(φ+ε)

≤−10

∑
k2≤−10

εk2−10<·≤−10∂αε
†

k2
∂αε0

∥∥∥∥
L1

t L2
x[I1]
.

( ∑
k2≤−10

‖εk2‖
2
S k2 [I1]

)
‖ε0‖S 0[I1]

. ε0C(c0 + d0)
≤ D1(c0 + d0).

(iv) All other contributions can be estimated similarly to the above cases. �

We proceed with step (b).

Lemma 7.12. If ε satisfies the bootstrap assumption (7.13) for some C ≡ C(Ecrit) � 1 sufficently large,
then we have for some 1 � D0 � D1 � C that for all 0 ≤ α < 1

(7.31)
∑
k0∈Z

2α|k0 |
∥∥∥Pk0

((
U(φ+ε)
≤−10 − U(φ)

≤−10
)
φ̄0

)∥∥∥
S k0 [I1] . D1(c0 + d0).

Proof. We have to prove the bound (7.31) separately for each component of our S norm. To this end we
distinguish again between the relationship of the frequency scale 0 to bL. In case that bL < 0, we exploit the
smallness ‖φk‖S k . δ12−σ(k−bL) for k > bL. Instead when bL ≥ 0, we have to invoke the already improved
estimate (7.18) on the kinetic energy of εk for the low frequencies k < bL. Moreover, we achieve control
over the weighted sum over all frequencies k0 ∈ Z in (7.31) by essentially playing out the frequencies using
Bernstein’s inequality. �

Finally, we turn to step (e). Having established that
∥∥∥ ¯(φ + ε)0 − φ̄0

∥∥∥
S 0[I1] ≤ D2(c0 + d0) for some D2 � C,

we may now quickly infer the desired improved bound

‖ε0‖S 0[I1] ≤
C
2

(c0 + d0)

and thus close our bootstrap argument by exploiting the inherently multilinear structure of ¯(φ + ε)0− φ̄0− ε0.
Indeed, recalling the definition (5.25) of φ̄, we see that each multilinear expression in ¯(φ + ε)0 − φ̄0 − ε0
contains at least one factor of ε. Then we again distinguish the relationship between the frequency scale 0
and bL and either exploit the smallness ‖φk‖S k . δ12−σ(k−bL) for k ≥ bL or the already improved bound on
the kinetic energy of εk for k < bL, which completes the final step (e).
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At this point we have thus achieved that for C ≡ C(Ecrit) � 1 sufficently large, we may infer by bootstrap
on the time interval I1 the improved bound

(7.32) ‖Pkε‖S k[I1] ≤
C
2

(ck + dk) for k ∈ Z.

We would now like to repeat the above bootstrap argument on the remaining time intervals I2, . . . , IN in
order to conclude that ε exists globally in time and satisfies uniform in n global-in-time S norm bounds. As
alluded to before, here we encounter the danger that the energy of ε could keep growing as we move to later
time intervals. However, by (7.32) the frequency profile of ε is essentially preserved along the evolution
on the time interval I1. For this reason there cannot actually be much energy transfer between ε and φ,
since φ is exponentially decaying for frequencies k > bL. The next lemma indeed shows that the energy of
ε is approximately preserved along the evolution on the interval I1. More precisely, the energy transfer is
controlled by the smallness parameter δ2, which can be chosen arbitrarily small.

Lemma 7.13. Assuming the bounds (7.32) on the evolution of ε on I1, it holds that

(7.33) ‖∇t,xε(t)‖2L2
x
≤ ‖∇t,xε(0)‖2L2

x
+ C(Ecrit) δ2 for t ∈ I1.

Proof. By energy conservation for the wave maps evolutions φ + ε and φ on I1, we have that
2∑
α=0

‖∂α(φ + ε)(t)‖2L2
x

= const. for t ∈ I1

and
2∑
α=0

‖∂αφ(t)‖2L2
x

= const. for t ∈ I1.

Moreover, since it holds that
2∑
α=0

‖∂αε(t)‖2L2
x

=

2∑
α=0

‖∂α(φ + ε)(t)‖2L2
x
−

2∑
α=0

‖∂αφ(t)‖2L2
x
− 2

2∑
α=0

∫
R2

(∂αε†∂αφ)(t, x) dx,

it suffices to estimate on the time interval I1,
2∑
α=0

∫
R2
∂αε

†∂αφ dx =
∑
k∈Z

2∑
α=0

∫
R2

Pk∂αε
† P̃k∂αφ dx,

where P̃k is a slightly fattened Littlewood-Paley projection such that P̃kPk = Pk. Using the bounds (7.32)
on ε as well as the exponential decay (7.12) of φ for frequencies k ≥ bL, we therefore obtain on I1 that∣∣∣∣∣ 2∑

α=0

∫
R2
∂αε

†∂αφ dx
∣∣∣∣∣ .∑

k∈Z

‖Pk∇t,xε‖L∞t L2
x[I1]‖P̃k∇t,xφ‖L∞t L2

x[I1]

.
∑

k∈(−∞,bL)∩Z

δ22−σ(bL−k)‖P̃k∇t,xφ‖L∞t L2
x[I1] +

∑
k∈[bL,+∞)∩Z

(ck + dk)δ12−σ(k−bL)

.Ecrit δ2 + δ1

.Ecrit δ2.

�

Since the number of time intervals N ≡ N(C2, Ecrit) is controlled by the size of C2 and Ecrit, we can a
priori ensure to choose the underlying Besov error δ0 so small that the energy of ε never leaves the perturba-
tive regime, i.e. it stays less than, say, 2ε0. Hence, we can carry out the above bootstrap argument to infer S
norm bounds on ε on all remaining time intervals I2, . . . , IN . This finishes the proof of Proposition 7.9. �

7.4. Selecting concentration profiles and adding the first large frequency atom.
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7.4.1. Setting up a profile decomposition. Having established control over the global evolution of the lowest
frequency non-atomic part Π≤µ1

n−log(Rn)φ
n[0] in the previous subsection, we now “add in” the first large

frequency atom φn1[0] = P[µ1
n−log(Rn),µ1

n+log(Rn)]φ
n[0] in the sense that we now attempt to evolve the data

Π≤µ1
n+log(Rn)φ

n[0].

In this subsection we shall slightly abuse notation and write for simplicity

φn[0] ≡ Π≤µ1
n+log(Rn)φ

n[0].

Moreover, we denote by
un[0] ≡ Π≤µ1

n−log(Rn)φ
n[0]

the data of the lowest frequency non-atomic part and by

µn ≡ µ
1
n − log(Rn)

the upper frequency cut-off delimiting the lowest frequency non-atomic part. Finally, we shall write

εn[0] ≡ Π≤µ1
n+log(Rn)φ

n[0] − Π≤µ1
n−log(Rn)φ

n[0].

By rescaling we may assume that µ1
n ≡ 0.

In fact, we shall first attempt to evolve a sequence of slightly modified data

φn,<K∗[0] ≡ Π<K∗φ
n[0],

which have better frequency localization properties, and thence infer bounds on the evolutions of the original
data Π≤µ1

n+log(Rn)φ
n[0]. Correspondingly, we also introduce the notation

εn,<K∗[0] ≡ φn,<K∗[0] − un[0].

In order to obtain these bounds, we shall have to take advantage of a suitable profile decomposition, which
however is quite delicate to achieve on account of the poor perturbative properties of the wave maps equation
expressed in terms of the coordinate functions.

The very first step to pick the concentration profiles is to correctly identify their asymptotic behavior.
To guess the correct ansatz, we shall throughout assume that the evolutions φn of the data φn[0] exist on
some large time interval I. In particular, this means that the gauge transformations U(φn)

<k associated with
the evolutions φn are a priori well-defined. At this point it is important to observe that in the trilinear
estimate (4.4) we do not gain exponentially in the difference of the largest to the smallest frequency present.
For this reason the low frequencies will exert a non-negligible influence on the high frequencies for large
times, which we have to take into account by the correct choice of the concentration profiles. At frequency
k = 0 we arrive at the equation

�
(
U(φn)
<0 φn

0
)

= �
(
U(φn)
<0 (un + εn)0

)
=: 2U(φn)

<0 Aα,low(un)∂αεn
0 + U(φn)

<0 F0(un, εn),

where Aα,low(un) incorporates all (perturbative) low frequency terms stemming purely from un for which
there are no exponential frequency gains in the corresponding interactions in the wave maps nonlinearity. In
view of the structure of the wave maps nonlinearity as detailed in Proposition 5.1, we arrive at the expression

Aα,low(un) = −
∑

k2<µn

∑
k2−10<k1<µn

(un
k1

)(∂αun
k2

)† − (∂αun
k2

)(un
k1

)† +
(
U(un)
<µn

)†∂αU(un)
<µn

+ A(un)
α;<µn

,

where U(un)
<µn

is the gauge transformation defined by un and A(un)
α;<µn

is the connection form (5.30) defined by un.
Then we may write

U(φn)
<0 Aα,low(un)∂αεn

0 = U(φn)
<0 Aα,low(un)(U(φn)

<0 )†∂α(U(φn)
<0 εn

0 ) + error,

where we expect error to be a better term with a derivative on a low frequency term. Furthermore, we expect
the high-frequency contribution to U(φn)

<0 coming from εn to be negligible, and so we replace the first term
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on the right by U(un)
<0 Aα,low(un)(U(un)

<0 )†∂α(U(φn)
<0 εn

0 ). In fact, due to the rapid decay of un at large frequencies
k > µn, where we recall that µn denotes the frequency cutoff delimiting the frequency atom εn from below,
we shall replace this by the even more natural U(un)

<µn
Aα,low(un)(U(un)

<µn
)†∂α(U(φn)

<0 εn
0 ). Importantly, note that

this is now no longer dependent on the choice of a specific frequency k = 0. Moreover, we observe that to
formulate the right equation we have to pass to the variable ε̃n

0 := U(φn)
<0 εn

0 , and more generally ε̃n
k := U(φn)

<k εn
k .

Then we shall use the following very natural equation to select our concentration profiles (which in effect
is the same for all frequencies and so we shall not indicate a localization here)

(7.34) �ε̃ = 2U(un)
<µn
Aα,low(un)

(
U(un)
<µn

)†∂αε̃.
Observe that the anti-symmetric matrix U(un)

<µn
Aα,low(un)

(
U(un)
<µn

)† is defined purely in terms of the low fre-
quency constituent un, over which we already have control.

After these heuristics, we now proceed with the actual selection of the concentration profiles. Here
we shall proceed naturally in two steps, first picking the profile at time t = 0 for which of course the
flow associated with (7.34) is irrelevant, and then picking the temporally unbounded profiles, using the
terminology of [16] and [17]. A technical difficulty here consists in identifying a profile which actually
maps into the target sphere Sm. Also, since functions in Ḣ1

x(R2) are not even distributions, we start by
carefully implementing a frequency cutoff away from −∞, and more precisely to the frequency interval
[−K,∞) for some K � 1. The number K will later on play the role of a parameter which we need to fine
tune. Furthermore, we also need to restrict the frequencies from above, below some threshold K∗. This we
do by passing to the truncated data φn,<K∗[0]. Once we obtain bounds for the S norms of the evolution that
are uniform in K∗, we shall be able to invoke a simpler perturbative argument just as in the control of the
lowest frequency non-atomic part to infer the desired bound.

The following lemma provides a first version of a decomposition into a bounded and an unbounded
profile.

Lemma 7.14. Writing φn,<K∗ = un + εn,<K∗ and passing to a suitable subsequence with respect to n, there
exists p∗ ∈ Sm and for each K ≥ K0 and n sufficiently large, a decomposition (all at time t = 0)

εn,<K∗ + p∗ = εKn,<K∗
bounded + εKn,<K∗

unbounded + ηKn,<K∗ ,

∂tε
n,<K∗ = γKn,<K∗

bounded + γKn,<K∗
unbounded + ζKn,<K∗ ,

where we have

lim sup
K→∞

lim sup
n→∞

(∥∥∥∇xε
Kn,<K∗
bounded

∥∥∥2
L2

x
+

∥∥∥γKn,<K∗
bounded

∥∥∥2
L2

x

)
≤ lim sup

n→∞

∥∥∥∇t,xε
n,<K∗

∥∥∥
L2

x
,

lim
K→∞

lim sup
n→∞

∥∥∥∇xη
Kn,<K∗

∥∥∥
L2

x
= 0,

lim
K→∞

lim sup
n→∞

∥∥∥ζKn,<K∗
∥∥∥

L2
x

= 0,

as well as the asymptotic orthogonality relations

lim
n→∞

∫
R2

(
∇xε

Kn,<K∗
bounded

)†
· ∇xε

Kn,<K∗
unbounded(x) dx = 0,

lim
n→∞

∫
R2

(
γKn,<K∗

bounded
)†
· γKn,<K∗

unbounded(x) dx = 0.

The components εKn,<K∗
bounded map into Sm and the data pair (εKn,<K∗

bounded, γ
Kn,<K∗
bounded) is admissible in the sense that(

εKn,<K∗
bounded

)†
· γKn,<K∗

bounded = 0
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poinwise. Moreover, the limits limK→∞ ∇xε
Kn,<K∗
bounded =: ∇xε

<K∗
bounded and limK→∞ γ

Kn,<K∗
bounded =: γ<K∗

bounded exist in L2
x

independently of n with
ε<K∗

bounded ∈ L∞x ∩ Ḣ1
x , γ<K∗

bounded ∈ L2
x.

We also have the compatibility relation
(
ε<K∗

bounded
)†
· γ<K∗

bounded = 0 pointwise. Furthermore, it holds that
εKn,<K∗

unbounded → 0 in L∞loc as n → ∞. Finally, we have that un − p∗ → 0 in L∞loc as n → ∞ and for any R0 > 0,
we have

lim
K→∞

lim sup
n→∞

∥∥∥χBR0
ηKn,<K∗

∥∥∥
L∞x ∩Ḣ1

x
= 0,

lim
K→∞

lim sup
n→∞

∥∥∥χBR0
ζKn,<K∗

∥∥∥
L2

x
= 0.

Proof. The extra parameter K here plays the role of an additional frequency cutoff. Write

εn,<K∗ = P[−K,∞)ε
n,<K∗ + P(−∞,−K)ε

n,<K∗ .

The sequence
{
P[−K,∞)ε

n}
n being bounded in H1

x(R2), passing to a subsequence we may pick a weak limit
εK,<K∗

bounded, which is either zero or non-zero. Then upon passing to the subsequence,

P[−K,∞)ε
n,<K∗ − εK,<K∗

bounded

converges weakly toward zero as n → ∞, and in particular, it converges pointwise toward zero (due to the
essentially sharp frequency localization). By letting K run through all positive integers and implementing
a Cantor diagonal argument to successive subsequences, we can arrange that P[−K,∞)ε

K̃,<K∗
bounded = εK,<K∗

bounded for
K̃ > K, and thence that ∇xε

K,<K∗
bounded converges in L2

x as K → ∞ to, say, ∇xε
<K∗
bounded with ε<K∗

bounded ∈ Ḣ1
x ∩ L∞x .

Similarly, we may assume that limK∗→∞ ∇xε
<K∗
bounded exists in L2

x. Now write

φn,<K∗ = un + εK,<K∗
bounded + P(−∞,−K]ε

n,<K∗ +
(
P[−K,∞)ε

n,<K∗ − εK,<K∗
bounded

)
.

Localizing to a large ball BR around the origin, notice that (with the error vanishing as n→ ∞)

un
∣∣∣
BR

= pn + oL∞x (1),

χBR

(
P[−K,∞)ε

n,<K∗ − εK,<K∗
bounded

)
= oL∞x (1).

It follows that
(
εK,<K∗

bounded + P(−∞,−K]ε
n,<K∗)∣∣∣

BR
+ pn is within a oL∞x (1) neighborhood of Sm. Passing to a

subsequence, we may suppose pn → p∗ for some p∗ ∈ Sm, whence
(
εK,<K∗

bounded + P(−∞,−K]ε
n,<K∗)∣∣∣

BR
+ p∗ is

arbitrarily close to Sm provided n is sufficiently large. Further, observe that∥∥∥εK,<K∗
bounded

∥∥∥
L∞x ({R∼R∗})

. (2KR∗)−1 +
∥∥∥∇εK,<K∗

bounded

∥∥∥
L2

x({R∼R∗})
.

Now for a suitable quantity δ(K) → 0 as K → ∞, put R∗ ≥ 2−Kδ(K)−
1
2 . By convergence of ∇εK,<K∗

bounded in L2
x

as K → ∞, we get from this ∥∥∥εK,<K∗
bounded

∥∥∥
L∞x ({R>2−Kδ(K)−

1
2 })
→ 0

as K → ∞. Also, putting
δ(K,K∗) := lim sup

n→∞

∥∥∥∇P(−∞,−K]ε
n,<K∗

∥∥∥
L2

x
,

then indeed we have limK→∞ δ(K,K∗) = 0, and passing to a subsequence as K → ∞ we can find p1 ∈ R
m+1

such that
P(−∞,−K]ε

n,<K∗
∣∣∣
BR∗K \B 1

2 R∗K

= p1 + oL∞x (1)

as n,K → ∞, where R∗K := 2−Kδ(K,K∗)−
1
2 , since the variation of the function P(−∞,−K]ε

n,<K∗ on BR∗K\B 1
2 R∗K

is . δ(K,K∗)
1
2 as n is very large.
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It follows that choosing χBR∗K
as before, the expression

χBR∗K
εK,<K∗

bounded + χBR∗K
P(−∞,−K]ε

n,<K∗ + (1 − χBR∗K
) · p1 + p∗

converges toward Sm as n,K → ∞. Letting Π be the normal projection onto Sm and labelling

ε̃Kn,<K∗
bounded := Π

(
χBR∗K

εK,<K∗
bounded + χBR∗K

P(−∞,−K]ε
n,<K∗ + (1 − χBR∗K

) · p1 + p∗
)
,

εKn,<K∗
unbounded := P[−K,∞)ε

n,<K∗ − εK,<K∗
bounded,

ηnK,<K∗ := (1 − Π)
(
χBR∗K

εK,<K∗
bounded + χBR∗K

P(−∞,−K]ε
n,<K∗ + (1 − χBR∗K

) · p1 + p∗
)

+ (1 − χBR∗K
)(P(−∞,−K]ε

n1,<K∗ − p1) + (1 − χBR∗K
)εK,<K∗

bounded,

we infer a representation
εn,<K∗ + p∗ = ε̃Kn,<K∗

bounded + εKn,<K∗
unbounded + ηKn,<K∗

with all the properties of the lemma (but with ε̃Kn,<K∗
bounded in place of εKn,<K∗

bounded). We carefully observe that

(1 − χBR∗K
)
(
P(−∞,−K]ε

n,<K∗ − p1) + (1 − χBR∗K

)
εK,<K∗

bounded

is supported outside of BR0 for K large enough, and that

(1 − Π)
(
χBR∗K

εK,<K∗
bounded + χBR∗K

P(−∞,−K]ε
n,<K∗ + (1 − χBR∗K

) · p1 + p∗
)

converges toward zero in the L∞x -norm as n,K → ∞. It remains to show smallness of the term

(1 − Π)
(
χBR∗K

εK,<K∗
bounded + χBR∗K

P(−∞,−K]ε
n,<K∗ + (1 − χBR∗K

) · p1 + p∗
)
.

with respect to Ḣ1
x . This is clear by an argument as above, provided we include a cutoff χ 1

2 Bc
R∗K

in front.
Thus, consider now the term

χ 1
2 BR∗K

(1 − Π)
(
χBR∗K

εK,<K∗
bounded + χBR∗K

P(−∞,−K]ε
n,<K∗ + (1 − χBR∗K

) · p1 + p∗
)

= χ 1
2 BR∗K

(1 − Π)
(
εK,<K∗

bounded + P(−∞,−K]ε
n,<K∗ + p∗

)
= χ 1

2 BR∗K
(1 − Π)

(
φn,<K∗ − (un − p∗) − (P[−K,∞)ε

n1,<K∗ − εK,<K∗
bounded)

)
.

Extending (1 − Π) smoothly to all of Rm+1 and using the same notation for the global operator, we get on
account of

(1 − Π)
(
φn,<K∗) = 0

the following∥∥∥∥∇t,xχ 1
2 BR∗K

(1 − Π)
(
φn,<K∗ − (un − p∗) −

(
P[−K,∞)ε

n,<K∗ − εK,<K∗
bounded

))∥∥∥∥
L2

x

=
∥∥∥∥∇t,x

∫ 1

0
χ 1

2 BR∗K
∂s(1 − Π)

(
φn,<K∗ − s(un − p∗) − s

(
P[−K,∞)ε

n,<K∗ − εK,<K∗
bounded

))
ds

∥∥∥∥
L2

x

.
∥∥∥∇t,x

(
χ 1

2 BR∗K
(un − p∗)

)∥∥∥
L2

x
+

∥∥∥∇t,x
(
χ 1

2 BR∗K

(
P[−K,∞)ε

n,<K∗ − εK,<K∗
bounded)

)∥∥∥
L2

x

+
∥∥∥(χ 1

2 BR∗K
(un − p∗)

)∥∥∥
L∞x

+
∥∥∥(χ 1

2 BR∗K
(P[−K,∞)ε

n,<K∗ − εK,<K∗
bounded)

)∥∥∥
L∞x
.

All terms at the end are easily seen to converge to 0 as n→ ∞. To see this for the second term, use that∥∥∥∇x(χ 1
2 BR∗K

)(P[−K,∞)ε
n,<K∗ − εK,<K∗

bounded)
)∥∥∥

L2
x
→ 0

as n→ ∞ since P[−K,∞)ε
n,<K∗ − εK,<K∗

bounded ⇀ 0 weakly as n→ ∞. Also we have∥∥∥χ 1
2 BR∗K

∇x(P[−K,∞)ε
n,<K∗ − εK,<K∗

bounded)
)∥∥∥

L2
x
≤

∥∥∥χ 1
2 BR∗K

∇x(P[−K,K]ε
n,<K∗ − P(−∞,K]ε

K,<K∗
bounded

)∥∥∥
L2

x

+
∥∥∥χ 1

2 BR∗K
∇x

(
P(K,∞)ε

n,<K∗ − P(K,∞)ε
K,<K∗
bounded

)∥∥∥
L2

x
.
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Then the first term on the right-hand side converges to 0 as n→ ∞ and the second converges to 0 as K → ∞
uniformly in n. For the term ∥∥∥∇t,x

(
χ 1

2 BR∗K
(un − p∗)

)∥∥∥
L2

x
,

use the fact that limn→∞ χ 1
2 BR∗K

(un − p∗) = 0 as well as the evacuation to extremely low frequencies for un

as n→ ∞. We also observe here that since ∇xε̃
Kn,<K∗
bounded → ∇xε

<K∗
bounded for any large enough n and K → ∞, we

may indeed pick ε<K∗
bounded to map into Sm.

As for decomposing the time derivative, let γK,<K∗
bounded be a weak limit of P[−K,∞)∂tε

n,<K∗ as n → ∞, and
then let

γKn,<K∗
unbounded := P[−K,∞)∂tε

n,<K∗ − γK,<K∗
bounded,

ζKn,<K∗ := P(−∞,−K]∂tε
n,<K∗ .

We have

0 =
(
un − p∗ + εKn,<K∗

bounded + εKn,<K∗
unbounded + ηKn,<K∗)† · (∂tun + γK,<K∗

bounded + γKn,<K∗
unbounded + ζKn,<K∗).

But then on any bounded set D we have in the pointwise sense that

lim
n→∞

(
un − p∗ + εKn,<K∗

unbounded
)†
·
(
∂tun + γK,<K∗

bounded + γKn,<K∗
unbounded + ζKn,<K∗) = 0

and similarly (on a bounded set D) we have the pointwise limit

lim
K→∞

(
ηKn,<K∗)† · (∂tun + γK,<K∗

bounded + γKn,<K∗
unbounded + ζKn,<K∗) = 0.

Also, again exploiting the frequency localization, we get

lim
n→∞

(
εKn,<K∗

bounded
)†(γKn,<K∗

unbounded + ζKn,<K∗) = 0.

Finally, we conclude that if we put

γ̃Kn,<K∗
bounded := γK,<K∗

bounded − ε
Kn,<K∗
bounded

(
εKn,<K∗

bounded
)†
· γK,<K∗

bounded

and then write

∂tε
n,<K∗ = γ̃Kn,<K∗

bounded + γKn,<K∗
unbounded + ζ̃Kn,<K∗

with
ζ̃Kn,<K∗ = ζKn,<K∗ + εKn,<K∗

bounded
(
εKn,<K∗

bounded
)†
· γK,<K∗

bounded.

Then we have found the desired representation with γ̃Kn,<K∗
bounded in place of γKn,<K∗

bounded and ζ̃Kn,<K∗ in place of
ζKn,<K∗ . �

Note from the preceding proof that setting now

εKn,<K∗
bounded = Π

(
χBR∗K

εK,<K∗
bounded + χBR∗K

P(−∞,−K]ε
n,<K∗ + (1 − χBR∗K

) · p1 + p∗
)
,

the implied frequency localization from above (up to exponential tails) allows us to conclude the more
precise local convergence statement that on any bounded set D we have

lim
K→∞

∥∥∥εKn,<K∗
bounded − ε

<K∗
bounded

∥∥∥
L∞x ∩Ḣ1

x (D) = 0

uniformly for all sufficiently large n. Similarly, upon passing to a subsequence if necessary, we have that for
any such D

lim
K→∞

∥∥∥γKn,<K∗
bounded − γ

<K∗
bounded

∥∥∥
L2

x(D) = 0

for a suitable limit function γ<K∗
bounded ∈ L2

x.
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In the preceding we have always kept the upper frequency bound K∗ fixed. However, we may now
increase K∗ and only consider subsequences of the sequence of n considered previously. Doing this we may
achieve that actually

lim
K∗→∞

(
∇xε

<K∗
bounded, γ

<K∗
bounded

)
exists in L2

x. In what follows we shall use the notation ε<K∗
bounded[0] :=

(
ε<K∗

bounded, γ
<K∗
bounded

)
.

It now remains to reveal the fine structure of the data pair
(
εKn,<K∗

unbounded, γ
Kn,<K∗
unbounded

)
, i.e. to resolve it into

profiles. To this end we shall use the key equation (7.34). As we have to work with the gauged variables for
each frequency block, we use for each dyadic frequency k ∈ Z the data pair

(7.35) ε̃Kn,<K∗
unbounded,k[0] :=

(
U(φn,<K∗ )
<k εKn,<K∗

unbounded,k,U
(φn,<K∗ )
<k γKn,<K∗

unbounded + ∂t(U
(φn,<K∗ )
<k )εKn,<K∗

unbounded,k

)
.

To state the decomposition into concentration profiles for the linear evolution, we first need a precise de-
scription of solutions to (7.34).

Lemma 7.15. Given ε̃[0] ∈ Ḣ1
x × L2

x(R2;Rm+1), there exists a unique solution ε̃(n)(t, ·) ∈ C0(R; Ḣ1
x ×

L2
x(R2;Rm+1)) to (7.34) satisfying uniform bounds

‖ε̃(n)‖S [R] ≤ C
(
‖un‖S [R]

)∥∥∥ε̃[0]
∥∥∥

Ḣ1
x×L2

x(R2;Rm+1).

The solution ε̃(n)(t, ·) vanishes asymptotically in the sense that given γ > 0, there exists a decomposition

ε̃(n) = ε̃(n)
1 + ε̃(n)

2

and a time t0(γ, ‖un‖S , ε̃[0]) > 0 such that for all n,∥∥∥ε̃(n)
1

∥∥∥
S [R] < γ,

∥∥∥ε̃(n)
2

∥∥∥
L∞t L∞x [(−∞,−t0]∪[t0,∞)] < γ.

Finally, we have asymptotic energy conservation in the sense that

lim
n→∞

sup
t∈R

∣∣∣∣∥∥∥∇t,xε̃
(n)(t, ·)

∥∥∥
L2

x
−

∥∥∥ε̃[0]
∥∥∥

Ḣ1
x×L2

x

∣∣∣∣ = 0.

Proof. The a priori bounds follow from the divisibility argument used in the proof of Proposition 6.3. More-
over, we can infer that if {ck}k∈Z is a sufficiently flat frequency envelope covering the data ε̃[0], then we
obtain

‖ε̃(n)
k ‖S k[R] ≤ D(‖un‖S [R])ck.

The asymptotic decay follows as in the proof of Proposition 9.20 in [17]. Correspondingly, we only turn
to the details of the proof of the asymptotic energy conservation. Our reasoning will be closely related to
but in certain aspects a much simplified version of the proof of Proposition 9.14 in [17]. Thus, let Pk be
slightly modified Littlewood-Paley projections with the property that the corresponding cutoffs χk(ξ) on the
frequency side satisfy for all ξ , 0 that ∑

k∈Z

χk(ξ)2 = 1.

In particular, we then have (setting ε̃k = Pkε̃)∑
k∈Z

∥∥∥∇t,xε̃k(0, ·)
∥∥∥2

L2
x

=
∥∥∥∇t,xε̃(0, ·)

∥∥∥2
L2

x
.

In particular, it suffices to prove asymptotic energy conservation for the frequency localized functions ε̃k. To
simplify the notation within this proof, we shall write

Aα ≡ U(un)
<µn
Aα,low(un)

(
U(un)
<µn

)†.
Then on localizing (7.34) to dyadic frequency k ∈ Z, we obtain

�ε̃(n)
k = 2Aα,<k∂

αε̃(n)
k + F(n)

k ,
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where we have limn→∞
∑

k

∥∥∥F(n)
k

∥∥∥2
L1

t L2
x

= 0. We shall now consider the quantity

E(n)
k (t) :=

1
2

∫
R2

(∣∣∣∂t ε̃
(n)
k −A0,<kε̃

(n)
k

∣∣∣2 +
∑
j=1,2

∣∣∣∂ jε̃
(n)
k −A j,<kε̃

(n)
k

∣∣∣2) dx

and show that uniformly for all t ∈ R,

(7.36) lim
n→∞

E(n)
k (t) =

∥∥∥∇t,xε̃k(0, ·)
∥∥∥2

L2
x
.

Then on account of the fact that uniformly for all t ∈ R,

lim
n→∞

∑
k∈Z

∥∥∥Aα,<kε̃
(n)
k

∥∥∥2
L2

x
= 0,

the final conclusion of the lemma follows. In order to show (7.36), we differentiate E(n)
k (t) and find

(E(n)
k )′(t) =

∫
R2

(
∂tt ε̃

(n)
k −A0,<k∂t ε̃

(n)
k − ∂tA0,<kε̃

(n)
k

)†
·
(
∂t ε̃

(n)
k −A0,<kε̃

(n)
k

)
dx

+
∑
j=1,2

∫
R2

(
∂t jε̃

(n)
k −A j,<k∂t ε̃

(n)
k − ∂tA j,<kε̃

(n)
k

)†
·
(
∂ jε̃

(n)
k −A j,<kε̃

(n)
k

)
dx

≡ I + II.

To simplify things below, we first observe the following schematic vanishing relations

lim
n→∞

∫
R1+2

∂αAα,<k∇t,xε̃
(n)
k ε̃(n)

k dx dt = 0,

lim
n→∞

∫
R1+2

(∂tA j,<k − ∂ jA0,<k)∇t,xε̃
(n)
k ε̃(n)

k dx dt = 0,

lim
n→∞

∫
R1+2

(A<k)2∇t,xε̃
(n)
k ε̃(n)

k dx dt = 0,

lim
n→∞

∫
R1+2

(∇t,xA<k)A<k(ε̃(n)
k )2 dx dt = 0.

Here one may replace R1+2 by I × R2 for any time interval I, the vanishing relations being uniform in I. To
see the first of these relations, we write schematically

∂αAα,<k = P<k
(
U(un)
<µn

∂αun∂αun(U(un)
<µn

)†)
+ cubic terms,

where the cubic terms arise upon differentiating U(un)
<µn

or re-expanding �un using the wave maps equation.
Then it is straightforward to place the cubic terms into L1

t LM
x using the Strichartz type norms in our S space

in conjunction with Bernstein’s inequality. In fact, from the definition of un, the cubic terms live at fre-
quency < µn up to asymptotically vanishing terms with respect to L1

t LM
x . Then one closes by observing

that ∥∥∥Pl
(
∇t,xε̃

(n)
k ε̃(n)

k
)∥∥∥

L∞t L1+
x
. 2−σ|l−k|2−(1−)k

∥∥∥ε̃(n)
k

∥∥∥2
S k
. 2−σ|l−k|2−(1−)kck,

where {ck}k∈Z is a sufficiently flat frequency envelope covering the data ε̃[0]. On the other hand, owing to
the null structure, the principal term

P<k
(
U(un)
<µn

∂αun∂αun(U(un)
<µn

)†)
can be placed into L

3
2 +

t,x , again essentially reduced to frequencies < µn, while one uses∥∥∥Pl
(
∇t,xε̃

(n)
k ε̃(n)

k
)∥∥∥

L3−
t,x
. 2−σ|l−k|2−(0+)kck.
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The second null form ∫
R2

(∂tA j,<k − ∂ jA0,<k)∇t,xε̃
(n)
k ε̃(n)

k dx

is handled similarly, and since we can similarly bound
∥∥∥(A<k)2

∥∥∥
L

3
2 +

t,x

and
∥∥∥(∇t,xA<k)A<k

∥∥∥
L

3
2 +

t,x

, we also get the

remaining vanishing relations.
It now remains to reduce (E(n)

k )′(t) to the expressions in the preceding vanishing relations. To this end we
first observe that by the anti-symmetry ofAα it holds that(

A0,<k∂t ε̃
(n)
k

)†
· ∂t ε̃

(n)
k = 0,

and thus for the term I we have

I =

∫
R2

(
∂tt ε̃

(n)
k − 2A0,<k∂t ε̃

(n)
k − ∂tA0,<kε̃

(n)
k

)†
·
(
∂t ε̃

(n)
k −A0,<kε̃

(n)
k

)
dx + error,

where error refers to terms satisfying the above vanishing relations. Next, we integrate by parts in term II
to find that

II =
∑
j=1,2

∫
R2

(
∂t jε̃

(n)
k −A j,<k∂t ε̃

(n)
k − ∂tA j,<kε̃

(n)
k

)†
·
(
∂ jε̃

(n)
k −A j,<kε̃

(n)
k

)
dx

= −
∑
j=1,2

∫
R2

(
∂t ε̃

(n)
k

)†
·
(
∂ j jε̃

(n)
k −A j,<k∂ jε̃

(n)
k − ∂ jA j,<kε̃

(n)
k

)
dx

−
∑
j=1,2

∫
R2

(
A j,<k∂t ε̃

(n)
k + ∂tA j,<kε̃

(n)
k

)†
·
(
∂ jε̃

(n)
k −A j,<kε̃

(n)
k

)
dx.

Then by the anti-symmetry of Aα we have the relation
(
A j,<k∂t ε̃

(n)
k

)†
· ∂ jε̃

(n)
k = −

(
∂t ε̃

(n)
k

)†
· A j,<k∂ jε̃

(n)
k , and

may write the preceding further as

II = −
∑
j=1,2

∫
R2

(
∂t ε̃

(n)
k

)†
·
(
∂ j jε̃

(n)
k − 2A j,<k∂ jε̃

(n)
k − ∂ jA j,<kε̃

(n)
k

)
dx

−
∑
j=1,2

∫
R2

(
∂tA j,<kε̃

(n)
k

)†
· ∂ jε̃

(n)
k dx + error.

We further modify the first term on the right-hand side above to obtain

II = −
∑
j=1,2

∫
R2

(
∂t ε̃

(n)
k −A0,<kε̃

(n)
k

)†
·
(
∂ j jε̃

(n)
k − 2A j,<k∂ jε̃

(n)
k − ∂ jA j,<kε̃

(n)
k

)
dx

−
∑
j=1,2

∫
R2

(
A0,<kε̃

(n)
k

)†
· ∂ j jε̃

(n)
k dx −

∑
j=1,2

∫
R2

(
∂tA j,<kε̃

(n)
k

)†
· ∂ jε̃

(n)
k dx + error

= −
∑
j=1,2

∫
R2

(
∂t ε̃

(n)
k −A0,<kε̃

(n)
k

)†
·
(
∂ j jε̃

(n)
k − 2A j,<k∂ jε̃

(n)
k − ∂ jA j,<kε̃

(n)
k

)
dx

+
∑
j=1,2

∫
R2

(
∂ jA0,<kε̃

(n)
k

)†
· ∂ jε̃

(n)
k dx −

∑
j=1,2

∫
R2

(
∂tA j,<kε̃

(n)
k

)†
· ∂ jε̃

(n)
k dx + error,

where we also used that
(
A0,<k∂ jε̃

(n)
k

)†
· ∂ jε̃

(n)
k = 0. Putting things together, we find that

(E(n)
k )′(t) =

∫
R2

(
− �ε̃(n)

k + 2Aα,<k∂
αε̃(n)

k + ∂αAα,<kε̃
(n)
k

)†
·
(
∂t ε̃

(n)
k −A0,<kε̃

(n)
k

)
dx

+
∑
j=1,2

∫
R2

(
(∂ jA0,<k − ∂tA j,<k)ε̃(n)

k
)†
· ∂ jε̃

(n)
k dx + error
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and the asymptotic energy conservation follows by using the equation satisfied by ε̃(n)
k as well as the above

vanishing relations. �

We now turn to the process of extracting linear concentration profiles with respect to the wave operator

�̃An := � − 2U(un)
<µn
Aα,low(un)

(
U(un)
<µn

)†∂α.
In the following we use notation borrowed from [1], [17] and [16]. We denote by S An the wave propagator
associated with �̃An and shall say that a sequence of data pairs ε̃n[0] : R2 → Rm+1 × Rm+1 is essentially
supported at frequency ∼ 1, provided it holds that

lim
R→∞

lim sup
n→∞

∥∥∥P[−R,R]c ε̃n[0]
∥∥∥

Ḣ1
x×L2

x
= 0.

Given a sequence of data {ε̃n[0]}n≥1 essentially supported at frequency ∼ 1 and uniformly bounded in
Ḣ1

x(R2;Rm+1) × L2
x(R2;Rm+1), we introduce the set

UAn(ε̃n[0]) :=
{
V ∈ L2

t,locH1
x(R1+2;Rm+1) ∩C1

t L2
x(R1+2;Rm+1) : ∃{(tn, xn)}n≥1 ⊂ R × R

2 s.t.

S An
(
ε̃n[0]

)
(t + tn, x + xn) ⇀ V

}
.

Here the weak limit is in the sense of L2
t,locH1

x and we observe that each such weak limit V(t, x) solves
�V = 0 in the sense of distributions. We define

ηAn
(
ε̃n[0]

)
:= sup

{
E(V) =

∫
R2

∣∣∣∇t,xV
∣∣∣2 dx : V ∈ UAn(ε̃n[0])

}
.

Then the extraction process of the linear concentration profiles is summarized in the following proposition,
which we formulate in the context of general data which have the weak frequency localization properties
of εn[0].

Proposition 7.16. Let {ε̃n[0]}n≥1 be a sequence of radially symmetric data pairs R2 → Rm+1 × Rm+1, which
are essentially supported at frequency ∼ 1 and satisfy a uniform energy bound

sup
n≥1

∥∥∥ε̃n[0]
∥∥∥

Ḣ1
x×L2

x
. 1.

Upon passing to a suitable subsequence, there exists a sequence of profiles ε̃b[0], b ≥ 1, as well as sequences
of time shifts {tn

b}n≥1, b ≥ 1, satisfying the divergence relation

lim
n→∞

∣∣∣tn
b − tn

b′
∣∣∣ = +∞, b , b′,

so that we have for any B ≥ 1,

S An
(
ε̃n[0]

)
(t, x) =

B∑
b=1

S An(t+tnb ,·)
(
ε̃b[0]

)
(t − tn

b, x) + ε̃n
B(t, x)

and such that
lim

B→∞
lim sup

n→∞
ηAn(ε̃n

B[0]) = 0.

If the data ε̃Kn,<K∗[0] also depend on two parameters K and K∗ such that

lim
K1,2→∞

lim sup
K∗→∞

lim sup
n→∞

∥∥∥ε̃K1n,<K∗[0] − ε̃K2n,<K∗[0]
∥∥∥

Ḣ1
x×L2

x
= 0

and similarly for K∗, then constructing the corresponding profiles ε̃K,<K∗
b and the remainder term ε̃Kn,<K∗

B ,
we may assume that the limits

lim
K→∞

lim
K∗→∞

ε̃K,<K∗
b [0]
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exist in Ḣ1
x × L2

x, and also that limK→∞ limK∗→∞ ηAn
(
ε̃Kn,<K∗

B [0]
)

exists. Finally, we have asymptotic energy
conservation

lim
n→∞

∥∥∥∇t,x
(
S An(t+tnb ,·)(ε̃b[0])

)
(0 − tn

b, ·)
∥∥∥

L2
x

=
∥∥∥ε̃b[0]

∥∥∥
Ḣ1

x×L2
x
, b ≥ 1,

as well as the asymptotic orthogonality relation∥∥∥ε̃n[0]
∥∥∥2

Ḣ1
x×L2

x
=

B∑
b=1

∥∥∥ε̃b[0]
∥∥∥2

Ḣ1
x×L2

x
+

∥∥∥ε̃n
B[0]

∥∥∥2
Ḣ1

x×L2
x

+ o(1) as n→ ∞.

Proof. Using Lemma 7.15, the proof proceeds in direct analogy to the proof of Proposition 7.11 in [17] or
to the proof of Lemma 9.23 in [16]. �

For each dyadic frequency k ∈ Z we now consider the sequence
{
ε̃Kn,<K∗

unbounded,k[0]
}
n≥1 defined further above

in (7.35) and extract concentration profiles ε̃K,<K∗
b,k [0], b ≥ 1. Applying Proposition 7.16 each time and

passing to a suitable subsequence, we may assume that we obtain the same time scales {tn
b}n≥1. Importantly,

by the construction of
{
ε̃Kn,<K∗

unbounded,k[0]
}
n≥1 in Lemma 7.14, the extracted concentration profiles ε̃K,<K∗

b,k [0],
b ≥ 1, must all be temporally unbounded, i.e. we have limn→∞ |tn

b | = +∞ for every b ≥ 1. In order to
simplify the notation we set

ε̃Kn,<K∗
b,k (t, ·) := S An(t+tnb ,·)

(
ε̃K,<K∗

b,k [0]
)
(t − tn

b, ·).

Moreover, for later reference, we observe that due to our definition (7.35) and simple frequency considera-
tions, we have that ε̃Kn,<K∗

b,k is essentially supported at frequency ∼ 2k in the sense that∑
a∈Z

2σ|a|
(∑

k∈Z

∥∥∥Pk+aε̃
Kn,<K∗
b,k

∥∥∥2
S k+a

) 1
2 .

∥∥∥ε̃K,<K∗
b [0]

∥∥∥
Ḣ1

x×L2
x

for an absolute constant σ > 0.

Then it is natural to make the following ansatz for each dyadic frequency k ∈ Z,

(7.37) φn,<K∗
k = un

k + ε<K∗
bounded,k +

(
U(φn,<K∗ )
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

)
+ ηKn,<K∗

(k)

and without the frequency localization

(7.38) φn,<K∗ = un − p∗ + ε<K∗
bounded +

∑
k∈Z

(
U(φn,<K∗ )
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

)
+ ηKn,<K∗ .

Here, ε<K∗
bounded of course refers to the wave maps evolution of the data ε<K∗

bounded[0] = (ε<K∗
bounded, γ

<K∗
bounded) con-

structed in the preceding Lemma 7.14.

There is a small subtlety in (7.37) on account of the fact that the expression

(
U(φn,<K∗ )
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

)
is not necessarily localized to frequency ∼ 2k but only up to exponentially decaying tails, and hence the
same applies to ηKn,<K∗

(k) , whence the different notation. Note, however, that by definition we have

(
U(φn,<K∗ )
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

)
+ ηKn,<K∗

(k) = P̃k

((
U(φn,<K∗ )
<k )†

( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

)
+ ηKn,<K∗

(k)

)
= P̃k

((
U(φn,<K∗ )
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
+ P̃kη

Kn,<K∗
(k)
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for a suitable localizer P̃k, and this is what we shall substitute in frequency localized terms. Then we can
also replace (7.38) by

(7.39) φn,<K∗ = un − p∗ + ε<K∗
bounded +

∑
k∈Z

P̃k

((
U(φn,<K∗ )
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
+

∑
k∈Z

P̃kη
Kn,<K∗
(k) .

More precisely, this ansatz is natural to make as long as we are in the regime where the ε<K∗
bounded is truly

nonlinear, while in its asymptotic regime we would want to replace it by a solution to (7.34). Unfortunately,
by comparison to [17] and [16], it appears harder here to make a good global ansatz for the solution, as the
previous Lemma 7.14 has already indicated how delicate the correct choice of the bounded profile at time
t = 0 was. In fact, we expect the correct choice of bounded profile at the next concentration time t = tn

1
(assuming, as we may, that tn

1 � tn
2 � . . .) to delicately hinge on φn,<K∗ at that time. Our way out of this

shall be a careful inductive procedure, first controlling the solution (in terms of the ηKn,<K∗) on the time
slice [0, tn

1 − T1∗] for some sufficiently large but finite T1∗ (and as usual picking n large enough), and then
delicately modifying the ansatz (7.39) to track the solution on [tn

1 − T1∗, tn
2 − T2∗] and so on. Here a crucial

point shall be that our choice of B shall be rather simple, and in fact only hinge on ‖un‖S [R]. This should
be compared with the cruder arguments in [17] and [16], where the choice of B hinges on fine properties
such as S norm bounds of the profiles and their scattering behavior. In our situation, in light of the poor
perturbation theory and the fact that we do not even know the later nonlinear profiles, we could not possibly
define B in this manner.

We call the expressions

ε<K∗
bounded[0],

∑
k∈Z

P̃k
((

U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
b,k

)
[0], b ≥ 1,

the profiles (all evaluated at time t = 0). We note that the energy of these expressions as n → ∞ is well-
defined. Also, it follows from Lemma 7.14 that we have the asymptotic orthogonality relation

(7.40)

∥∥∥∇t,xφ
n,<K∗(0, ·)

∥∥∥2
L2

x

=
∥∥∥∇t,xun(0, ·)

∥∥∥2
L2

x
+

∥∥∥∇t,xε
<K∗
bounded(0, ·)

∥∥∥2
L2

x
+

B∑
b=1

∥∥∥∇t,x

∑
k∈Z

P̃k
((

U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
b,k

)
(0, ·)

∥∥∥2
L2

x

+
∥∥∥∇t,x

∑
k∈Z

P̃k
((

U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
B,k

)
(0, ·)

∥∥∥2
L2

x
+ o(1),

where the error vanishes asymptotically as K, n → ∞. The following theorem is the key result of this
subsection.

Theorem 7.17. Assume that the profiles all have asymptotically (as K,K∗ → ∞) energy strictly less than
Ecrit. In particular, this is the case when there are at least two profiles present for K,K∗ large enough. Then
the data φn,<K∗[0] can be evolved globally in time and the resulting solution φn,<K∗ satisfies uniformly for
large K∗ and n the bound

(7.41)
∥∥∥φn,<K∗

∥∥∥
S < ∞.

In fact, given δ2 > 0, there exists B = B(‖un‖S , δ2) such that there are profiles ˜̃εn,<K∗
bounded and ˜̃εKn,<K∗

b , b ≥ 1,
satisfying for K,K∗, n sufficiently large

E[ ˜̃εn,<K∗
bounded] < E[ε<K∗

bounded] + δ2, E[ ˜̃εKn,<K∗
b ] < E[ε̃Kn,<K∗

b ] + δ2, b ≥ 1,

and also ∥∥∥ ˜̃εn,<K∗
bounded

∥∥∥
S < ∞,

∥∥∥ ˜̃εKn,<K∗
b

∥∥∥
S < ∞, b ≥ 1,
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uniformly for n,K∗ large and such that

φn,<K∗ = un + ˜̃εn,<K∗
bounded +

B∑
b=1

˜̃εKn,<K∗
b +

∑
k∈Z

(
U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
B,k + ˜̃ηKn,<K∗

with
∥∥∥ ˜̃ηKn,<K∗

∥∥∥
S < δ2. The profiles ˜̃εn,<K∗

bounded and ˜̃εKn,<K∗
b coincide with the nonlinear profile ε<K∗

bounded, respec-
tively certain nonlinear profiles ˜̃ε<K∗

b near t = 0, respectively near t = tn
b, and are of the form

˜̃εKn,<K∗
b =

∑
k∈Z

(
U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
b,k ,

where the ε̃Kn,<K∗
b,k are solutions to (7.34) far away from these times. Also, ε̃Kn,<K∗

B,k is a solution to (7.34).

Remark 7.18. We emphasize that the bound (7.41) on the S norms of the evolutions φn,<K∗ , which holds
uniformly for all sufficently large K∗ and n, implies via the high-frequency perturbation Lemma 7.4 that the
data Π≤µ1

n+log(Rn)φ
n[0] can be globally evolved with uniform S norm bounds for all sufficently large n. This

conclusion is key for the next step in our induction on frequency process in the next subsection.

Before we begin with the proof of Theorem 7.17 we first address some technical issues.

7.4.2. Technical remarks about multilinear estimates using the decomposition (7.39). In the sequel, we
shall estimate the terms on the right hand side of the basic gauged wave equation

(7.42) �
(
U(φn,<K∗ )
<k φn,<K∗

k
)

= U(φn,<K∗ )
<k Fk(φn,<K∗ ,∇t,xφ

n,<K∗)

or minor variations thereof by inserting the decompositions (7.39) and exploiting a priori bounds on un,
ε<K∗

bounded, ε̃Kn,<K∗
b,k and ε̃Kn,<K∗

B,k , where for the last two expressions we of course need control over all frequen-
cies k ∈ Z.

We recall that the structure of the renormalized nonlinearity Fk(·, ·) was carefully analyzed in Propo-
sition 5.1. For what follows it will be useful to introduce the notion of “perturbative factors” and “non-
perturbative factors” in the multilinear expressions constituting the nonlinearity Fk(·, ·). We call an input of
a multilinear expression in Fk(·, ·) a “non-perturbative factor” if it can only be estimated in L∞t L∞x in order
to place the whole multilinear expression into L1

t L2
x. These “non-perturbative factors” can only occur in the

quintilinear expressions1 Qk(φ) in (5.32) as well as in (5.34) and in (5.35). All other inputs of any multilinear
term in Fk(·, ·) will be referred to as “perturbative factors”.

Then we will be facing the technical difficulty that the “gauged terms”(
U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
b,k ,

(
U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
B,k

again involve the a priori uncontrolled function φn,<K∗ , although we of course have a priori control over∥∥∥(U(φn,<K∗ )
<k

)†∥∥∥
L∞t,x

. Also, observe that the two preceding expressions actually are not localized sharply to

frequency ∼ 2k, but only up to exponentially decaying tails. To deal with these issues we formulate

Lemma 7.19. Let {c(b)
k }k∈Z be a sufficiently flat frequency envelope covering

∑
k̃ 2σ|k−k̃|

∥∥∥Pk
(
ε̃Kn,<K∗

b,k̃

)∥∥∥
S k

for
some small σ > 0. Then substituting ∑

k̃

Pk̃
((

U(φn,<K∗ )
<k̃

)†ε̃Kn,<K∗
b,k̃

)
1An example of a “non-perturbative factor” is the input φ(1)

≤k−10 in the following quintilinear expression

Pk

(
φ(1)
≤k−10

∑
k1=k2+O(1) Pk1

(
φ(2)
≤k1−10

∑
k3=k4+O(1)(∂αφ

(3)
k3

)†∂αφ(4)
k4

)†
φ(5)

k2

)
arising in the term Qk(φ) in (5.32).
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for φn,<K∗ for the “perturbative factors” in the terms Fk(φn,<K∗ ,∇t,xφ
n,<K∗), and calling the resulting func-

tions Gk, we get under the bootstrap assumption
∥∥∥∑

k P̃kη
Kn,<K∗
(k)

∥∥∥
S . 1 the bound∥∥∥Gk

∥∥∥
L1

t L2
x
≤ C

(
‖un‖S ,

∥∥∥ε<K∗
bounded

∥∥∥
S ,

∑
k

(∑
b̃

c(b̃)
k

)2
,
∑

k

(∑
k̃

2σ|k−k̃|
∥∥∥Pkε̃

Kn,<K∗
B,k̃

∥∥∥
S

)2)
c(b)

k .

Thus, one can estimate Gk as if the factors were just Pk
∑

k̃ ε̃
Kn,<K∗
b,k̃

. Similar inequalities can be obtained

when one or more of the “perturbative factors” in Fk(·, ·) are occupied by
∑

k̃ Pk̃
((

U(φn,<K∗ )
<k̃

)†ε̃Kn,<K∗
b,k̃

)
while

other “perturbative factors” are occupied by one or more of the remaining terms in (7.39).

Proof. We illustrate it by considering the specific term

Fk(φ,∇t,xφ) =
∑
k1<k

∑
k2<k1−10

φk1∂αφ
†

k2
∂αφk.

Thus we have to bound the expression

(7.43)
∑
k1<k

∑
k2<k1−10

Pk1

((
U(φn,<K∗ )
<k1

)†ε̃Kn,<K∗
b,k1

)
∂αPk2

((
U(φn,<K∗ )
<k2

)†ε̃Kn,<K∗
b,k2

)† ∂αPk
((

U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
b,k

)
.

As usual, to simplify things, we reduce as we may to the case k = 0. To begin with, we infer the general
bound

(7.44) 2
k
3
∥∥∥Pk

((
U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
b,k

)∥∥∥
L3

t L∞x
. c(b)

k ,

where the implied constant on the right is like the constant C(·) in the statement of the lemma. To see this,
write

Pk
((

U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
b,k

)
= Pk

(
P<k−10

(
U(φn,<K∗ )
<k

)†P[k−10,k+10]ε̃
Kn,<K∗
b,k

)
+ Pk

(
P[k−10,k+10]

(
U(φn,<K∗ )
<k

)†P<k−10ε̃
Kn,<K∗
b,k

)
+ Pk

(
P≥k−10

(
U(φn,<K∗ )
<k

)†P≥k−10ε̃
Kn,<K∗
b,k

)
.

(7.45)

The desired bound for the first term on the right is immediate. The bound for the third term on the right is
also immediate, using ∥∥∥P≥k−10

(
U(φn,<K∗ )
<k

)†∥∥∥
L∞t L2

x
. 2−k

∥∥∥∇t,xφ
n,<K∗

∥∥∥
L∞t L2

x

and Bernstein’s inequality∥∥∥Pk
(
P≥k−10

(
U(φn,<K∗ )
<k

)†P≥k−10ε̃
Kn,<K∗
b,k

)∥∥∥
L3

t L∞x
.

∑
k1>k−10

2k
∥∥∥Pk1

(
U(φn,<K∗ )
<k

)†∥∥∥
L∞t L2

x

∥∥∥Pk1 ε̃
Kn,<K∗
b,k

∥∥∥
L3

t L∞x

. 2k
∑

k1>k−10

2−
4
3 k12−σ|k−k1 |c(b)

k . 2−
k
3 c(b)

k .

For the second term on the right, we expand P[k−10,k+10]
(
U(φn,<K∗ )
<k

)† schematically into

−2−kPk
((

U(φn,<K∗ )
<k

)† ∑
k1<k

∇x
(
φ<k1φ

†

k1
− φk1φ

†

<k1

)(
U(φn,<K∗ )
<k

)†).
Then, depending on where the derivative ∇x lands, re-expand either ∇xφ<k1 or ∇xφk1 using (7.39), and repeat
application of the above trichotomy. Then using that∥∥∥P<k−10ε̃

Kn,<K∗
b,k

∥∥∥
LM

t L∞x
. 2−

k
M c(b)

k

for M large enough, one obtains the desired bound (7.44) after finitely many steps, using Hölder’s inequality.
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Now back to (7.43), consider first the case where all derivatives fall on a ε̃-factor, which is the expression∑
k1<0

∑
k2<k1−10

Pk1

((
U(φn,<K∗ )
<k1

)†ε̃Kn,<K∗
b,k1

)
Pk2

((
U(φn,<K∗ )
<k2

)†∂αε̃Kn,<K∗
b,k2

)† P0
((

U(φn,<K∗ )
<0

)†∂αε̃Kn,<K∗
b,0

)
.(7.46)

Then if in each of the expressions Pki

(
. . .

)
, i = 1, 2 and P0

(
. . .

)
, we have a low-high interaction, we can

simply bound the factors
(
U(φn,<K∗ )
<·

)† in L∞t,x and the estimate follows. On the other hand, if at least one of
the first two of these expressions has a high-low or high-high interaction, we place both factors inside it
into L3

t L∞x , using the observation before, and then also place the remaining low frequency term Pk j

(
. . .

)
into L3

t L∞x , while we simply place P0
(
. . .

)
into L∞t L2

x. In case of a high-low or high-high interaction inside
P0

(
. . .

)
, we place the lower frequency term into L3

t L∞x and the remaining low frequency terms Pk j

(
. . .

)
,

j = 1, 2, into L3
t L∞x , while the high frequency term inside P0

(
. . .

)
gets placed into L∞t L2

x.
If at least one derivative ∂α falls on a term (U(φn,<K∗ )

<· )†, say inside Pk2

(
. . .

)
, one can again close by placing

three low frequency terms into L3
t L∞x as long as there is a low-high or high-high interaction inside Pk2

(
. . .

)
.

In case of a high-low interaction, one uses re-expansion of ∂α
(
U(φn,<K∗ )
<k2

)†, using the equation for U(φn,<K∗ )
<k2

and
(7.39), similar to the proof of (7.44). �

7.4.3. An important bilinear estimate. In the proof of Theorem 7.17, an important role shall be played by the
fact that certain source terms which are multilinear expressions whose factors are all essentially supported at
frequency ∼ 1, but which enjoy smallness of their L∞x -norm, have small square-summed (over frequencies)
L1

t L2
x-norm. This smallness can be gained on account of our delicate bilinear null form estimate (4.1)

which allows us to estimate the null form ∂αφ∂
αψ “below” the L2

t,x-space, in fact in L
3
2
t,x. This crucial

fact was first pointed out by Klainerman-Machedon [8] provided both factors are free waves. We note that
the corresponding improvements without the radiality assumption are due to Bourgain [2], Wolff [41] and
Tao [35] and played an important role in [17]. We quickly illustrate how to use this result with the following

Lemma 7.20. Let {ε(n)}n≥1 be a family of functions essentially localized to frequency ∼ 1 and with uniform
bounds

sup
n≥1
‖ε(n)‖S . 1

as well as the pointwise decay limn→∞
∥∥∥Pk∇t,xε

(n)
∥∥∥

L∞t,x
= 0 for all k ∈ Z. Then denoting by Fk(ε(n),∇t,xε

(n))
any one of the source terms occurring in our equation

�
(
U(φ)
<k φ̄k

)
= U(φ)

<k Fk(φ,∇t,xφ),

we have
lim
n→∞

∑
k∈Z

∥∥∥Fk(ε(n),∇t,xε
(n))

∥∥∥2
L1

t L2
x

= 0.

Proof. First, we may reduce the output frequency k as well as the frequencies of all perturbative factors in
Fk(·, ·) to size O(1) due to the essential frequency localization of ε(n). Then we consider a generic expression

ε(n)
k1
∂αε

(n)
k2
∂αε(n)

k3
, k j = O(1).

We have ∥∥∥ε(n)
k1
∂αε

(n)
k2
∂αε(n)

k3

∥∥∥
L1

t L2
x
.

∥∥∥ε(n)
k1

∥∥∥
L2+

t L∞x

∥∥∥∂αε(n)
k2
∂αε(n)

k3

∥∥∥
L2−

t,x
,

where the implied constant depends on k1,2,3 and we used Bernstein’s inequality to pass from L1
t L2

x to L1
t L2−

x .
Further, by interpolation and the null form estimate (4.1) we have∥∥∥∂αε(n)

k2
∂αε(n)

k3

∥∥∥
L2−

t,x
.

∥∥∥∂αε(n)
k2
∂αε(n)

k3

∥∥∥ 3
4−

L
3
2
t,x

∥∥∥∂αε(n)
k2
∂αε(n)

k3

∥∥∥ 1
4+

L∞t,x
.

∏
j=2,3

∥∥∥ε(n)
k j

∥∥∥ 3
4−
S k j

∥∥∥∂αε(n)
k2
∂αε(n)

k3

∥∥∥ 1
4+

L∞t,x
.

Then the last factor at the end vanishes asymptotically due to our assumption, which yields the claim. �
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The preceding lemma, or simple variations thereof, will play an important role in Step 2 of Stage 1 of
the proof of Theorem 7.17 below, and more specifically, in the proof of Lemma 7.22 on an “essentially
unbounded” time interval. Working on a bounded time interval as in Step 1 below, one can use much cruder
bounds, as for example in (ii) of Step 1 below.

7.4.4. The proof of Theorem 7.17. We now use the preceding preparations to provide

Proof of Theorem 7.17. The strategy shall be to understand the bound as well as the profile decomposition
on the interval [0, tn

1 − T∗] and then reveal in a second step how to adjust the profile decomposition to cover
also the interval [tn

1 −T∗, tn
2 −T1∗] for sufficiently large T∗ and T1∗ as well as for sufficiently large parameters

K and n. This will reveal that ensuring ηAn
(
εKn,<K∗

B [0]
)
< δ∗(‖un‖S , δ2) is indeed enough to hold the error

term ˜̃ηKn,<K∗ < δ2 even as the process gets continued beyond time tn
2. At every step, the values of K and n

may have to be increased, but since there is only an a priori bounded number of steps, this process will not
diverge. Finally, by their construction, the profiles ˜̃εn,<K∗

bounded and ˜̃εKn,<K∗
b will satisfy uniform S norm bounds

with respect to n, K and K∗ sufficiently large. We now proceed in two stages:

Stage 1: Control of the solution on the first time slice [0, tn
1 − T∗] for sufficiently large T∗. In turn, we

distinguish between the region where ε<K∗
bounded is nonlinear and the region where it scatters:

Step 1: Here we control the solution on any sufficiently large but fixed finite time interval starting at t = 0:

Lemma 7.21. Given any R > 0 (which we will eventually choose depending on the properties of ε<K∗
bounded)

and arbitrary δ3 > 0, there are K and n sufficiently large such that defining
∑

k P̃kη
Kn,<K∗
(k) via (7.39) for a

fixed choice of B, we have uniformly for all large K∗ that

∥∥∥∥∑
k

P̃kη
Kn,<K∗
(k)

∥∥∥∥
S ([0,R])

< δ3.

In particular, we can achieve that
∥∥∥∑

k P̃kη
Kn,<K∗
(k)

∥∥∥
S ([0,R]) � δ2, where δ2 > 0 is the constant prescribed in

the statement of Theorem 7.17.

Observe that this holds independently of the B chosen in (7.38). The choice of B will be important for
the control later on and will be done depending only on the size of ‖un‖S and δ2. For simplicity of notation,
we shall from now on write ηKn,<K∗ ≡

∑
k P̃kη

Kn,<K∗
(k) and ηKn,<K∗

k ≡ Pk
∑

k̃ P̃k̃η
Kn,<K∗
(k̃)

.

Proof of Lemma 7.21. We recall the frequency localized wave equation for φn,<K∗ , written schematically as

�
(
U(φn,<K∗ )
<k φn,<K∗

k

)
= U(φn,<K∗ )

<k Fk
(
φn,<K∗ ,∇t,xφ

n,<K∗).
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For technical reasons, specifically the ability to pass from φn,<K∗
k to φn,<K∗

k , we shall in fact replace the former
quantity by

φn,<K∗,R,M
k := φn,<K∗

k + Pk
(
φn,<K∗
<k−10

∑
k1,2>k+log R

(
φn,<K∗

k1

)†φn,<K∗
k2

)
+ Pk

(
φn,<K∗
<k−10 log R

∑
k1,2∈[k+log M,k+log R]

(
φn,<K∗

k1

)†φn,<K∗
k2

)
+ Pk

(
φn,<K∗
<k−10 log R

∑
k<k1,2≤k+log M

χ{r≥2−k M}
(
φn,<K∗

k1

)†φn,<K∗
k2

)
+ Pk

( ∑
k1<k−log R]

φn,<K∗
k1−10∇

(
φn,<K∗

k1

)†φn,<K∗
k

)
+ Pk

( ∑
k1∈[k−log R,k−log M]

φn,<K∗
k1−10 log R∇

(
φn,<K∗

k1

)†φn,<K∗
k

)
+ Pk

( ∑
k1∈[k−log M,k]

χ{r≥2−k M}φ
n,<K∗
k1−10 log R∇

(
φn,<K∗

k1

)†φn,<K∗
k

)
.

Here the parameter M will be chosen large depending on the size of
∥∥∥ε<K∗

bounded

∥∥∥
S and ‖un‖S , while the param-

eter R shall be chosen large depending on more subtle properties of ε<K∗
bounded such as its energy distribution

among frequencies. In particular, we may assume R � M. We also need to modify the matrices U(φn,<K∗ )
<k

in order to render them “less dependent” on ηKn,<K∗ . Specifically, we replace them by U(φn,<K∗ ,R)
<k , which is

constructed analogously to U(φn,<K∗ )
<k but with the matrix Bh in its construction (5.27) modified to

B(R)
h :=

d
dh

∑
`∈Z

η(h − 10 log R − `)
(
φ≤`−10φ

†

`
− φ`φ

†

≤`−10
)

+
d
dh

∑
`∈Z

χ{r≥2−`R40}

(
η(h − `) − η(h − 10 log R − `

)(
φ≤`−10φ

†

`
− φ`φ

†

≤`−10
)
.

This results in the new equation

�
(
U(φn,<K∗ ,R)
<k φn,<K∗,R,M

k

)
= U(φn,<K∗ ,R)

<k F(R,M)
k

(
φn,<K∗ ,∇t,xφ

n,<K∗).
In order to pass to an equation for ηKn,<K∗ , we need to subtract off the bulk terms. This is straightforward
for the low frequency term un as well as the asymptotic terms

∑
k

P̃k

((
U(φn,<K∗ )
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
,

but more delicate for the bulk term ε<K∗
bounded. Here we make the following

Observation 1: For any fixed k and n there exists a (constant) matrix G(n)
k ∈ S O(m + 1) with the property

that as n→ ∞∑
a∈Z

2σ|a|
(∑

k

∥∥∥Pk+a
(
U(φn,<K∗ ,R)
<k ε<K∗,R,M

bounded,k −G(n)
k · U

(ε<K∗
bounded ,R)

<k ε<K∗,R,M
bounded,k

)∥∥∥2
S k+a([0,R])

) 1
2

= o(1) + cR
∥∥∥ηKn,<K∗

∥∥∥
S ([0,R]×R2) + δ4e−R1000−2K∗
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for suitable σ > 0. Also, there is a partition of [0,R] into O(R100 + K100
∗ ) many time intervals I j such that

we have for all j(∑
k

∥∥∥U(φn,<K∗ ,R)
<k F(R,M)

k (ε<K∗
bounded,∇ε

<K∗
bounded) −G(n)

k · U
(ε<K∗

bounded ,R)
<k F(R,M)

k (ε<K∗
bounded,∇ε

<K∗
bounded)

)∥∥∥2
L1

t L2
x[I j]

) 1
2

= o(1) + cR
∥∥∥ηKn,<K∗

∥∥∥
S + δ4e−R1000−2K∗

,

where the error o(1) is in the sense as n → ∞. Also, cR is a coefficient with limR→∞ cR = 0. In fact, the
matrix G(n)

k does not depend on M but it may implicitly depend on R,K∗.

We observe here that the factors G(n)
k are analogous to the exponential corrections eiγδ2nab in Proposi-

tion 9.24 in [17]. We complement this with the following observation of a similar flavor:

Observation 2: We have the asymptotic relations as n→ ∞∑
a∈Z

2σ|a|
(∑

k

∥∥∥Pk+a
(
U(φn,<K∗ ,R)
<k un,R,M

k − U(un,R)
<k un,R,M

k
)∥∥∥2

S

) 1
2

= o(1),

∑
a∈Z

2σ|a|
(∑

k

∥∥∥Pk+a
(
U(φn,<K∗ ,R)
<k F(R,M)

k (un,∇un) − U(un,R)
<k F(R,M)

k (un,∇un)
)∥∥∥2

L1
t L2

x

) 1
2

= o(1),

where un,R,M
k is defined in analogy to φn,<K∗,R,M

k .

We leave the proofs of these observations for later. Then the proof of Lemma 7.21 shall follow from the
following steps:

Step 1 of proof of Lemma 7.21: Fix a time slice [0,R] × R2. Given δ4 > 0 (which we will later choose
sufficiently small depending on δ3, ‖ε

<K∗
bounded‖S , ‖u

n‖S ), then we have for K sufficiently large that

lim sup
n→∞

(∑
k

∥∥∥∥�(U(φn,<K∗ ,R)
<k φn,<K∗,R,M

k − U(un,R)
<k un,R,M

k −G(n)
k · U

(ε<K∗ ,R)
<k ε<K∗,R,M

bounded,k
)∥∥∥∥2

L1
t L2

x([0,R])

) 1
2

≤ δ4e−R1000−2K∗C11
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)

+ R41(log R + K∗)
1
2
∥∥∥ηKn,<K∗

∥∥∥
S ([0,R])C10

(∥∥∥ε<K∗
bounded

∥∥∥
S , ‖u

n‖S
)

+ D
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)∥∥∥ηKn,<K∗

∥∥∥3
S ([0,R]).

To see this, we start by observing the identity

�
(
G(n)

k · U
(ε<K∗

bounded ,R)
<k ε<K∗,R,M

bounded,k
)

= G(n)
k · U

(ε<K∗
bounded ,R)

<k F(R,M)
k (ε<K∗

bounded,∇ε
<K∗
bounded),

and so

�
(
U(φn,<K∗ ,R)
<k φn,<K∗,R,M

k − U(un,R)
<k un,R,M

k −G(n)
k · U

(ε<K∗
bounded ,R)

<k ε<K∗,R,M
bounded,k

)
= U(φn,<K∗ ,R)

<k F(R,M)
k (φn,<K∗ ,∇φn,<K∗) −G(n)

k · U
(ε<K∗

bounded ,R)
<k F(R,M)

k (ε<K∗
bounded,∇ε

<K∗
bounded) − U(un,R)

<k F(R,M)
k (un,∇un)

= U(φn,<K∗ ,R)
<k

(
F(R,M)

k (φn,<K∗ ,∇φn,<K∗) − F(R,M)
k (ε<K∗

bounded,∇ε
<K∗
bounded) − F(R,M)

k (un,∇un)
)

+ A(R,M,n)
k ,

where Observations 1 and 2 imply that after restriction to any one of O(R100 + K100
∗ ) many time intervals I j

we get

lim
R,n→∞

(∑
k

∥∥∥A(R,M,n)
k

∥∥∥2
L1

t L2
x

) 1
2

= 0.

This time restriction step will be carried out explicitly in Step 5 below.
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Thus, it now remains to bound the term

(7.47) U(φn,<K∗ ,R)
<k

(
F(R,M)

k (φn,<K∗ ,∇φn,<K∗) − F(R,M)
k (ε<K∗

bounded,∇ε
<K∗
bounded) − F(R,M)

k (un,∇un)
)
.

Here we distinguish between different interaction terms, first amongst the bulk terms in the decomposi-
tion (7.39). Before doing so, we quickly comment on the fact that the nonlinearity F(R,M)

k (φn,<K∗ ,∇φn,<K∗)

now involves some additional terms on account of the fact that we modified φn,<K∗ to φn,<K∗,R,M as well as
U(φn,<K∗ )
<k to U(φn,<K∗ ,R)

<k . For the former modification these terms are schematically of the form

(7.48)

Pk
(
φ[k−10 log R,k]

∑
k1=k2+O(1)∈[k,k+log R]

∂αφ
†

k1
∂αφk2

)
,

∑
k1∈[k−10 log M,k]

Pk
(
χ{r≤2−k M}φ<k1−10∇∂αφ

†

k1
∂αφk

)
Pk

(
φ<k

∑
k<k1=k2+O(1)<k+log M

χ{r≤2−k M}∂αφ
†

k1
∂αφk2

)
, Pk

(
φ<k

∑
k<k1=k2+O(1)<k+log M

χ′
{r≤2−k M}φ

†

k1
∇t,xφk2

)
Pk

( ∑
k1∈[k−10 log M,k]

χ′
{r≤2−k M}φ<k1−10∇φ

†

k1
∂αφk

)
as well as additional terms where χ′ is replaced by χ′′ at the expense of the operator ∇t,x. For the latter
modification we get additional terms of the schematic form∑

k1∈[k−10 log R,k]

φ<k1−10χ{r≤2−k1 R40}∂αφ
†

k1
∂αφk,

∑
k1∈[k−10 log R,k]

φ<k1−10χ
′

{r≤2−k1 R40}
φ†k1
∇t,xφk∑

k1∈[k−log R,k]

φ<k1−10χ
′′

{r≤2−k1 R40}
φ†k1

φk.

We claim that all of these terms admit good bounds in terms of the frequency square-summed L1
t L2

x-
norm, albeit possibly at the expense of a power of R or M, and that they all have the important divisibility
property. By this of course we mean that if one of the factors φk j is replaced by ηk j , then we can divide time
into O(MK + RK) many intervals for some explicit K such that the corresponding square sum L1

t L2
x-norm

restricted to such a time slice is bounded by � ‖η‖S . The implicit constant in O(MK + RK) depends only
on ‖φ‖S . We quickly explain this for the first term in (7.48), the others being handled similarly. Thus write

(7.49)

Pk
(
φ[k−10 log R,k]

∑
k1=k2+O(1)∈[k,k+log R]

∂αφ
†

k1
∂αφk2

)
= Pk

(
χ{r≤R402−k}φ[k−10 log R,k]

∑
k1=k2+O(1)∈[k,k+log R]

∂αφ
†

k1
∂αφk2

)
+ Pk

(
χ{r>R402−k}φ[k−10 log R,k]

∑
k1=k2+O(1)∈[k,k+log R]

∂αφ
†

k1
∂αφk2

)
.

Then to estimate the second term on the right-hand side we use the null form estimate (4.1) to infer that∥∥∥Pk
(
χ{r>R402−k}φ[k−10 log R,k]

∑
k1=k2+O(1)∈[k,k+log R]

∂αφ
†

k1
∂αφk2

)∥∥∥
L1

t L2
x

. 2
k
3
∥∥∥χ{r>R402−k}φ[k−10 log R,k]

∥∥∥
L3

t L∞x

∥∥∥ ∑
k1=k2+O(1)∈[k,k+log R]

∂αφ
†

k1
∂αφk2

∥∥∥
L

3
2
t,x

. R−1
( ∑
`∈[k−10 log R,k]

‖φ`‖
2
S `

) 1
2
∑
k1

‖φk1‖
2
S k1
.

Here we have used an interpolate between the improved L∞x -bound∥∥∥χ{r≥2−kR}Pkφ
∥∥∥

L∞t,x
. R−

1
2 ‖Pkφ‖Ḣ1

x
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and the L2+
t L∞x Strichartz estimate to get improved control over

∥∥∥χ{r≥2−kR}Pkφ
∥∥∥

L3
t L∞x

. Finally, square-summing
over k ∈ Z, we get(∑

k∈Z

∥∥∥Pk
(
χ{r>R402−k}φ[k−10 log R,k]

∑
k1=k2+O(1)∈[k,k+log R]

∂αφ
†

k1
∂αφk2

)∥∥∥2
L1

t L2
x

) 1
2 . R−1 log(R) ‖φ‖3S ,

which of course gains smallness for R � 1. To bound the first term on the right-hand side of (7.49) further
above, we use the local energy decay norm∥∥∥Pk

(
χ{r≤R402−k}φ[k−10 log R,k]

∑
k1=k2+O(1)∈[k,k+log R]

∂αφ
†

k1
∂αφk2

)∥∥∥
L1

t L2
x

. R40
∥∥∥φ[k−10 log R,k]

∥∥∥
L∞t,x

( ∑
k+log R>k1>k

∑
`<40 log R−k

(
2

k1+`

2 R−20
∥∥∥χ{r∼2`}r

− 1
2∇t,xφk1

∥∥∥
L2

t,x

)2
)

. R40
∥∥∥φ[k−10 log R,k]

∥∥∥
L∞t,x

( ∑
k+log R>k1>k

∑
`<40 log R−k1

(
2

k1+`

2 R−20
∥∥∥χ{r∼2`}∇t,xφk1

∥∥∥
L2

t,x

)2
)
.

Then square summing over k ∈ Z results in the bound(∑
k∈Z

∥∥∥Pk
(
χ{r≤R402−k}φ[k−10 log R,k]

∑
k1=k2+O(1)>k

∂αφk1∂
αφk2

)∥∥∥2
L1

t L2
x

) 1
2 . R40 log(R)‖φ‖3S .

Moreover, the quantity∑
k1

∑
`<40 log R−k1

(
2

k1+`

2 R−20
∥∥∥χ{r∼2`}r

− 1
2∇t,xφk1

∥∥∥
L2

t,x

)2
.

∑
k1

sup
`∈Z

∥∥∥χ{r∼2`}r
− 1

2∇t,xφk1

∥∥∥2
L2

t,x
. ‖φ‖2S

is easily seen to have the divisibility property.

Back to controlling (7.47), we now discuss how to bound the various interactions:

(i) Interactions between un and ε<K∗
bounded. These are either terms in which un appears in one of the lowest

frequency “non-perturbative” factors such as

Pk

(
(un
<k−10 − p∗)

∑
k1,2>k+10

Pk1

(
P<k1−10ε

<K∗
bounded

∑
k4=k5+O(1)

(
∂αε

<K∗
bounded,k4

)†∂αε<K∗
bounded,k5

)†
Pk2ε

<K∗
bounded

)
,

where one can only place (un
<k−10 − p∗) into L∞t,x or else they are terms where un appears in a “perturbative

factor” such as

Pk

(
ε<K∗

bounded,<k−10

∑
k1,2>k+10

Pk1

(
P<k1−10ε

<K∗
bounded

∑
k4=k5+O(1)

∂α(un
k4

)†∂αun
k5

)†
Pk2un

<k−10

)
.

For the former type of term one gets smallness for the square-summed L1
t L2

x norm from the smallness of
un
<k−10 − p∗ on the support of Pkε

<K∗
bounded for k ∈ Z of moderate size, while for extremely small or large k

one exploits the smallness of Pkε
<K∗
bounded. For the second type of term, one may assume that the frequencies

2k2 , 2k4 , 2k5 applied to un are extremely small, in which case one gains by placing the nonlinearity into L∞t L2
x

instead of L1
t L2

x and making up by multiplying with R (which is held fixed) and then letting n→ ∞.

(ii) Interactions between un and
∑

k P̃k
((

U(φn,<K∗ )
<k

)†(∑B
b=1 ε̃

Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
. Here, if un appears in a “non-

perturbative factor” and not in a “perturbative factor”, then we exploit the pointwise decay of the expression∑
k P̃k

((
U(φn,<K∗ )
<k

)†(∑B
b=1 ε̃

Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
. In fact, observe that due to the essential frequency localization

(up to exponentially decaying tails) we infer

lim
n→∞

∥∥∥∥∥∑
k

(
U(φn,<K∗ )
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k

)∥∥∥∥∥
L∞t,x([0,R]×R2)

= 0.
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The same holds for the remainder term
∑

k
(
U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
B,k since ε̃Kn,<K∗

B,k (0, ·) converges weakly to zero
for all k ∈ Z. To close the case in which all “perturbative factors” are of the form∑

k

P̃k

((
U(φn,<K∗ )
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
,

we achieve L1
t L2

x for the product by placing it into L∞t L2
x and multiplying with R, and the former norm

can be bounded by placing all factors into L∞t L6
x (for cubic terms, and similarly for higher order terms) by

interpolating between L∞t L2
x and L∞t,x, with the latter norm being asymptotically vanishing (as n → ∞) due

to the preceding remarks.
If un appears in at least one “perturbative factor” while

∑
k P̃k

((
U(φn,<K∗ )
<k

)†(∑B
b=1 ε̃

Kn,<K∗
b,k +ε̃Kn,<K∗

B,k
))

appears
in the “non-perturbative factor”, we close again by using the asymptotic vanishing of this term in L∞t,x if not
all “perturbative factors” are un. If all “perturbative factors” are frequency localized versions of un, we gain
smallness on account of the frequency localization of∑

k

P̃k

((
U(φn,<K∗ )
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
to frequencies ≥ µn up to exponentially decaying errors.

(iii) Interactions between ε<K∗
bounded and

∑
k P̃k

((
U(φn,<K∗ )
<k

)†(∑B
b=1 ε̃

Kn,<K∗
b,k + ε̃Kn,<K∗

B,k
))

as well as pure self-

interactions of
∑

k P̃k
((

U(φn,<K∗ )
<k

)†(∑B
b=1 ε̃

Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
. These are handled exactly like the preceding

case.

We emphasize that the discussion up to this point applies to all terms occurring inside F(R,M)
k , also to the

additional terms stemming from modifying Fk to F(R,M)
k , in light of the discussion preceding (i).

(iv) Interactions involving ηKn,<K∗ . These are the most delicate ones, but we can again get rid of most terms:

(iv.1) Interactions involving ηKn,<K∗ and at least one factor un. Assume that the factor un is in a non-
perturbative position, and all other perturbative factors are occupied by (frequency localizations of) ηKn,<K∗ .
Write this term schematically as (un

<k−10 − p∗)F
(R,M)
k (ηKn,<K∗). Then we get(∑

k

∥∥∥(un
<k−10 − p∗)F

(R,M)
k (ηKn,<K∗)

∥∥∥2
L1

t L2
x([0,R])

) 1
2
.

∥∥∥ηKn,<K∗
∥∥∥3

S .

On the other hand, if at least one of the other perturbative factors is occupied by a ε<K∗
bounded or an asymptoti-

cally vanishing term
∑

k P̃k
((

U(φn,<K∗ )
<k

)†(∑B
b=1 ε̃

Kn,<K∗
b,k + ε̃Kn,<K∗

B,k
))

, we estimate it by(∑
k

∥∥∥∥un
<k−10F(R,M)

k (ηKn,<K∗ , ε<K∗
bounded,

∑
k
(
U(φn,<K∗ )
<k

)†(∑B
b=1 ε̃

Kn,<K∗
b,k + ε̃Kn,<K∗

B,k
))∥∥∥∥2

L1
t L2

x([0,R])

) 1
2

≤ C1
∥∥∥ηKn,<K∗

∥∥∥2
S + C2

∥∥∥ηKn,<K∗
∥∥∥

S ,

where C1,2 depend only on
∥∥∥ε<K∗

bounded

∥∥∥
S provided n is sufficiently large to kill the effect of the asymptotically

vanishing terms.
Next, consider the terms where at least one perturbative factor is occupied by un and where there is at

least one factor ηKn,<K∗ . If this latter factor is in a perturbative position, then we bound the term by

. C3
(
‖un‖S ,

∥∥∥ε<K∗
bounded

∥∥∥
S

)∥∥∥ηKn,<K∗
∥∥∥2

S + C4
(
‖un‖S ,

∥∥∥ε<K∗
bounded

∥∥∥
S

)∥∥∥ηKn,<K∗
∥∥∥

S .

On the other hand, if the factor ηKn,<K∗ is in a non perturbative position and all perturbative factors are
occupied by un, then we have to complement this argument with a pure energy type bound just as in the
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proof of the bound for the lowest frequency non-atomic part in Proposition 7.9. We provide this in the next
item:

(iv.2) Choosing K and n large enough, we have for all k < µn that∥∥∥Pkη
Kn,<K∗

∥∥∥
L∞t L2

x([0,R])

� δ4e−R1000−2K∗2−σ|k−bL | + R 2k
(
C5

(
‖un‖S ,

∥∥∥ε<K∗
bounded

∥∥∥
S

)∥∥∥ηnK
∥∥∥

S + C6
(
‖un‖S ,

∥∥∥ε<K∗
bounded

∥∥∥
S

)∥∥∥ηnK
∥∥∥3

S

)
� δ4e−R1000−2K∗2−σ|k−bL |

for a suitable absolute constant σ > 0. Here δ4 will be determined in terms of δ3 as well as ‖un‖S . In fact,
this is much simpler than the proof of the corresponding bound for the lowest frequency non-atomic part in
Lemma 7.10. Replacing ε by ηKn,<K∗ there and φ by

u = un − p∗ + ε<K∗
bounded +

∑
k

(
U(φn,<K∗ )
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

)
,

then fixing a very low frequency k < µn we have to bound integrals of the form∫ R

0

∫
R2

Pk
(
ηKn,<K∗∂αu†∂αu

)†∂tPkη
Kn,<K∗ dx dt

as well as other, similar ones. But the preceding expression is bounded by∣∣∣∣∣ ∫ R

0

∫
R2

Pk
(
ηKn,<K∗∂αu†∂αu

)†∂tPkη
Kn,<K∗ dx dt

∣∣∣∣∣
≤ R

∥∥∥ηKn,<K∗
∥∥∥

L∞t,x([0,R])

∥∥∥∂αu∂αu
∥∥∥

L∞t L1+
x ([0,R])

∥∥∥∂tPkη
Kn,<K∗

∥∥∥
L∞t L∞−x ([0,R])

and this in turn is bounded by the expression further above. Indeed, observe that the terms∑
k

(
U(φn,<K∗ )
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

)
asymptotically do not contribute, on account of their asymptotic vanishing property. The term δ4e−R1000−2K∗2−σ|k−bL |

comes from the initial data ηKn,<K∗[0] at time t = 0, which can be made small by picking K large enough on
account of Lemma 7.14. The other integrals in the energy identity are handled similarly.

We can now close case (iv.1):

(iv.3) Conclusion of case (iv.1). Consider now a term of the schematic form ηKn,<K∗
<k−10 F(R,M)

k (un,∇un). We
bound this by (∑

k

∥∥∥ηKn,<K∗
<k−10 F(R,M)

k (un,∇un)
∥∥∥2

L1
t L2

x

) 1
2
.

( ∑
k≥µn

∥∥∥ηKn,<K∗
<k−10 F(R,M)

k (un,∇un)
∥∥∥2

L1
t L2

x

) 1
2

+

( ∑
k<µn

∥∥∥ηKn,<K∗
<k−10 F(R,M)

k (un,∇un)
∥∥∥2

L1
t L2

x

) 1
2
.

Then for the first term on the right we have

lim
n→∞

( ∑
k≥µn

∥∥∥ηKn,<K∗
<k−10 F(R,M)

k (un,∇un)
∥∥∥2

L1
t L2

x

) 1
2

= 0,
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while for the second term on the right, we use (iv.2) to bound it by

lim sup
n→∞

( ∑
k<µn

∥∥∥ηKn,<K∗
<k−10 F(R,M)

k (un,∇un)
∥∥∥2

L1
t L2

x

) 1
2
. δ4e−R1000−2K∗

‖un‖3S .

(v) Interactions between ηKn,<K∗ and ε<K∗
bounded. This is the most delicate case on account of the situations

where ηKn,<K∗ is in a non-perturbative position while the perturbative factors are all ε<K∗
bounded. In fact, it is in

this situation where the very precise information about ηKn,<K∗ at t = 0 from Lemma 7.14 becomes really
important. The basic idea is to partition the time slice [0,R] × R2 into a cylinder [0,R] × BR∗ for some
very large R∗ chosen such that ε<K∗

bounded is small in the complement of BR∗ , and the set [0,R] × Bc
R∗

. More
specifically, R∗ will be chosen depending on R and δ3, and R will then later be chosen to control the solution
on all of [0, tn

1 − T∗].
Now given R and δ3 > 0, pick R∗ sufficiently large such that(∑

k

∥∥∥χBc
R∗

F(R,M)
k (ε<K∗

bounded)
∥∥∥2

L1
t L2

x([0,R]×R2)

) 1
2
� δ4e−R1000−2K∗

,

where ηKn,<K∗
<k−10 F(R,M)

k (ε<K∗
bounded) is a schematically written term in which ηKn,<K∗

<k−10 is a non-perturbative factor
while all the perturbative positions are occupied by ε<K∗

bounded. Then due to the simple L∞t,x-bound
∥∥∥ηKn,<K∗

∥∥∥
L∞t,x
. 1

provided K, n are sufficiently large, we get the bound(∑
k

∥∥∥χBc
R∗
ηKn,<K∗
<k−10 F(R,M)

k (ε<K∗
bounded)

∥∥∥2
L1

t L2
x([0,R]×R2)

) 1
2
� δ4e−R1000−2K∗

.

Thus, consider now the region [0,R] × BR∗ where ηKn,<K∗ and ε<K∗
bounded interact strongly. Then the smallness

will have to come from the factor ηKn,<K∗
<k−10 . In fact, use the splitting

χBR∗
ηKn,<K∗
<k−10 F(R,M)

k (ε<K∗
bounded) = χBR∗

ηKn,<K∗
[−10 log R,k−10]F

(R,M)
k (ε<K∗

bounded) + χBR∗
ηKn,<K∗
<−10 log RF(R,M)

k (ε<K∗
bounded).

Then we control the first term on the right with the estimate(∑
k

∥∥∥χBR∗
ηKn,<K∗

[−10 log R,k−10]F
(R,M)
k (ε<K∗

bounded)
∥∥∥2

L1
t L2

x([0,R]×R2)

) 1
2

. R41(log R + K∗)
1
2
∥∥∥ηKn,<K∗

∥∥∥
S C7

(∥∥∥ε<K∗
bounded

∥∥∥
S

)
+

( ∑
k>K∗

∥∥∥χBR∗
ηKn,<K∗

[−10 log R,k−10]F
(R,M)
k (ε<K∗

bounded)
∥∥∥2

L1
t L2

x([0,R]×R2)

) 1
2

. R41(log R + K∗)
1
2
∥∥∥ηKn,<K∗

∥∥∥
S C8

(∥∥∥ε<K∗
bounded

∥∥∥
S

)
on account of the fact that the norms

∥∥∥F(R,M)
k (ε<K∗

bounded)
∥∥∥

L1
t L2

x([0,R]×R2) are exponentially decreasing for k ≥ K∗
by our enforced frequency localization. For the second term on the right we use that for t ∈ [0,R]∣∣∣χBR∗

ηKn,<K∗
<−10 log R(t, ·)

∣∣∣ ≤ R
∥∥∥∂tη

Kn,<K∗
<−10 log R

∥∥∥
L∞t,x([0,R]×R2) +

∥∥∥χBR∗
ηKn,<K∗
<−10 log R(0, ·)

∥∥∥
L∞x
.

Since we may choose R∗ � R10 we may essentially move the cutoff χBR∗
past the frequency localizer (up to

exponentially decaying tails) and so picking K and R∗ large enough we may assume that∥∥∥χBR∗
ηKn,<K∗
<−10 log R(0, ·)

∥∥∥
L∞x
� δ4e−R1000−2K∗

.

The first term on the right on the other hand may be bounded by

R
∥∥∥∂tη

Kn,<K∗
<−10 log R

∥∥∥
L∞t,x([0,R]×R2) . R−9

∥∥∥ηKn,<K∗
∥∥∥

S ,
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and so we obtain(∑
k

∥∥∥χBR∗
ηKn,<K∗
<−10 log RF(R,M)

k (ε<K∗
bounded)

∥∥∥2
L1

t L2
x([0,R]×R2)

) 1
2
.

(
δ4e−R1000−2K∗

+ R−9
∥∥∥ηKn,<K∗

∥∥∥
S

)
C9

(∥∥∥ε<K∗
bounded

∥∥∥
S

)
.

In total we have obtained the following bound(∑
k

∥∥∥ηKn,<K∗
<−10 log RF(R,M)

k (ε<K∗
bounded)

∥∥∥2
L1

t L2
x([0,R]×R2)

) 1
2

. δ4e−R1000−2K∗C9
(∥∥∥ε<K∗

bounded

∥∥∥
S

)
+ R41(log R + K∗)

1
2
∥∥∥ηKn,<K∗

∥∥∥
S C10

(∥∥∥ε<K∗
bounded

∥∥∥
S

)
.

Combining the cases (i) – (v) and the remarks preceding them, we finally obtain the bound

(7.50)

(∑
k

∥∥∥�(U(φn,<K∗ ,R)
<k φn,<K∗,M,R

k − U(un,R)
<k un,M,R

k −G(n)
k · U

(ε<K∗ ,R)
<k ε<K∗,M,R

bounded,k
)∥∥∥2

L1
t L2

x([0,R])

) 1
2

. δ4e−R1000−2K∗C11
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)

+ R41(log R + K∗)
1
2
∥∥∥ηKn,<K∗

∥∥∥
S C10

(∥∥∥ε<K∗
bounded

∥∥∥
S , ‖u

n‖S
)

+ D
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)∥∥∥ηKn,<K∗

∥∥∥3
S .

The bound established thus far in Step 1 of the proof of Lemma 7.21 is not quite enough yet due to the

fact that the terms U(φn,<K∗ ,R)
<k φn,<K∗,M,R

k etc. are not sharply frequency localized on account of the lack of

frequency localizations of the gauge transformations U(φn,<K∗ ,R)
<k etc. However, a straightforward Littlewood-

Paley trichotomy reveals that we get the somewhat sharper estimate

(7.51)

∑
a

2σ|a|
(∑

k

∥∥∥∥Pk+a�
(
U(φn,<K∗ ,R)
<k φn,<K∗,M,R

k − U(un,R)
<k un,M,R

k −G(n)
k · U

(ε<K∗ ,R)
<k ε<K∗,M,R

bounded,k
)∥∥∥∥2

L1
t L2

x([0,R])

) 1
2

. δ4e−R1000−2K∗C11
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)

+ R41(log R + K∗)
1
2
∥∥∥ηKn,<K∗

∥∥∥
S C10

(∥∥∥ε<K∗
bounded

∥∥∥
S , ‖u

n‖S
)

+ D
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)∥∥∥ηKn,<K∗

∥∥∥3
S

for any σ < 1.

Step 2 of the proof of Lemma 7.21: The preceding step implies via the basic energy estimate (3.1) that for
M,K, n large enough the following bound holds

(7.52)

∑
a

2σ|a|
(∑

k

∥∥∥∥Pk+a
(
U(φn,<K∗ ,R)
<k

(
(ηKn,<K∗

k + ε<K∗
bounded,k)M,R − ε<K∗,M,R

bounded,k
))∥∥∥∥2

S ([0,R])

) 1
2

. δ4e−R1000−2K∗C11
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)

+ R41(log R + K∗)
1
2
∥∥∥ηKn,<K∗

∥∥∥
S ([0,R])C10

(∥∥∥ε<K∗
bounded

∥∥∥
S , ‖u

n‖S
)

+ E
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)∥∥∥ηKn,<K∗

∥∥∥3
S ([0,R]) + cR

∥∥∥ηKn,<K∗
∥∥∥

S ,

where
lim

R→∞
cR = 0.

This follows essentially from the basic energy inequality (3.1). In fact, the self-interactions of ε<K∗
bounded inside

φn,<K∗,M,R
k are cancelled by G(n)

k · U
(ε<K∗ ,R)
<k ε<K∗,M,R

bounded,k via Observation 1.

The self-interactions of un inside φn,<K∗,M,R
k are cancelled by U(un,R)

<k un,M,R
k via Observation 2. Next, for

the interactions between ε<K∗
bounded and un,M inside φn,<K∗,M,R

k we use the smallness of un − p∗ on the support
of ε<K∗

bounded (i.e. on bounded sets {r = O(1)}) provided all perturbative factors are occupied by ε<K∗
bounded,

while in case that all perturbative factors are occupied by un we gain smallness by exploiting the frequency
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localization of ε<K∗
bounded to the range k ≥ µn up to exponential tails. In case that there are perturbative factors

occupied by both un as well ε<K∗
bounded, the smallness also follows from the essentially disjoint frequency

supports (up to exponentially decaying tails) of these functions.

Furthermore all interactions of un,M, ε<K∗
bounded or ηKn,<K∗ with

∑
k P̃k

((
U(φn,<K∗
<k

)†(∑B
b=1 ε̃

Kn,<K∗
b,k + ε̃Kn,<K∗

B,k
))

as well as all self-interactions of the latter term inside φn,<K∗,M,R
k are seen to lead to terms vanishing with

respect to ‖·‖S ([0,R]) as n→ ∞ on account of their pointwise decay. Moreover, all interactions of ηKn,<K∗ with
un are seen to be either vanishing provided we let n→ ∞ using (iv.2), or else of the form O

(∥∥∥ηKn,<K∗
∥∥∥2

S

)
.

Step 3 of the proof of Lemma 7.21: The preceding bound implies the following:

(7.53)

(∑
k

∥∥∥(ηKn,<K∗
k + ε<K∗

bounded,k)M,R − ε<K∗,M,R
bounded,k

∥∥∥2
S k([0,R])

) 1
2

. δ4e−R1000−2K∗C12
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)

+ R41(log R + K∗)
1
2
∥∥∥ηKn,<K∗

∥∥∥
S ([0,R])C13

(∥∥∥ε<K∗
bounded

∥∥∥
S , ‖u

n‖S
)

+ F
(∥∥∥ε<K∗

bounded

∥∥∥
S ,

∥∥∥un
∥∥∥

S

)∥∥∥ηKn,<K∗
∥∥∥3

S ([0,R]) + cR
∥∥∥ηKn,<K∗

∥∥∥
S .

In fact, we can use the more general observation that if f(k) is a family of functions satisfying∑
a∈Z

2σ|a|
(∑

k∈Z

∥∥∥Pk+a f(k)
∥∥∥2

S k+a([0,R])

) 1
2
≤ A

as well as

lim
n→∞

∑
a∈Z

2σ|a|
( ∑

k<µn

∥∥∥Pk+a f(k)
∥∥∥2

S k+a([0,R])

) 1
2

= 0,

then we have (∑
k∈Z

∥∥∥P̃k
[(

U(φn,<K∗ ,R)
<k

)† f(k)
]∥∥∥2

S k([0,R]×R2)
) 1

2 . A + cR
∥∥∥ηKn,<K∗

∥∥∥
S + o(1)

as n→ ∞. To see this, we consider the case k = 0 and apply the usual frequency trichotomy to the expression

P̃0
((

U(φn,<K∗ ,R)
<0

)† f(0)
)
.

Consider for example the low-high case

P̃0
(
P<−10

(
U(φn,<K∗ ,R)
<0

)†P0 f(0)
)
.

Then the estimate for those parts of ‖ · ‖S 0 not involving any derivatives is immediate. Next, consider the
part of the norm involving the operator (∂t + ∂r). If it falls on P0 f(0), then the estimate is again immediate.
Thus consider now the expression

P̃0
(
(∂t + ∂r)P<−10

(
U(φn,<K∗ ,R)
<0

)†P0 f(0)
)
.

Schematically, this reduces to estimating terms of the form

P̃0
(
(∂t + ∂r)B

(φn,<K∗ ,R)
<−10 P0 f(0)

)
.

Call the high-frequency factors in the bilinear expression defining B(φn,<K∗ ,R)
<−10 the “perturbative factors”. Ex-

panding out B(φn,<K∗ ,R)
<−10 using (7.39), we can easily deal with the cases where the perturbative factor is either

un or a dispersive term ∑
k

P̃k

((
U(φn,<K∗
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
.
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In the former case, we obtain a contribution o(1) due to the diverging frequency supports of f(0) and un, and
the same applies in the latter case, this time due to the vanishing property of the dispersive terms. To see
this latter affirmation, consider a schematic term

(7.54) P̃0

(
(∂t + ∂r)

∑
k<−10

P̃k
((

U(φn,<K∗
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
P0 f(0)

)
.

Then if there is a low-high frequency interaction inside P̃k
(
. . .

)
and the derivative (∂t + ∂r) falls on the

high-frequency factor, we split the term as follows

P̃0

(
(∂t + ∂r)

∑
k<−10

P̃k
((

U(φn,<K∗
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
P0 f(0)

)
= χ{r<Λ}P̃0

(
(∂t + ∂r)

∑
k<−10

P̃k
((

U(φn,<K∗
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
P0 f(0)

)
+ χ{r≥Λ}P̃0

(
(∂t + ∂r)

∑
k<−10

P̃k
((

U(φn,<K∗
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
P0 f(0)

)
.

Then we place the first term on the right into the (−)-component, which is easily seen to be o(1) as n → ∞
for any Λ > 0, while we place the second term on the right into the (±)-component depending on the type
of (∂t + ∂r)ε̃

Kn,<K∗
b,k and (∂t + ∂r)ε̃

Kn,<K∗
b,B . If the latter is in the (+)-case, then we gain smallness by using∥∥∥χ{r>Λ}P0 f(0)

∥∥∥
L∞t,x
. Λ−

1
2
∥∥∥ f(0)

∥∥∥
L∞t Ḣ1

x
. Similarly one deals with the (−)-case. Since we may let Λ → ∞, these

contributions are o(1). The remaining frequency interactions inside (7.54) are handled similarly.

Finally, if the perturbative factor in B(φn,<K∗ ,R)
<−10 happens to be ηKn,<K∗ , then the contribution is seen to be

bounded by cR
∥∥∥ηKn,<K∗

∥∥∥
S with limR→∞ cR = 0 due to the R-dependence of B(φn,<K∗ ,R)

<−10 .

Step 4 of the proof of Lemma 7.21: The preceding step implies the following:

(7.55)

∥∥∥ηKn,<K∗
∥∥∥

S ([0,R])

. δ4e−R1000−2K∗C13
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)

+ R41(log R + K∗)
1
2
∥∥∥ηKn,<K∗

∥∥∥
S ([0,R])C14

(∥∥∥ε<K∗
bounded

∥∥∥
S , ‖u

n‖S
)

+ E
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)∥∥∥ηKn,<K∗

∥∥∥2
S ([0,R]) + cR,M

∥∥∥ηKn,<K∗
∥∥∥

S ([0,R]),

where
lim

R,M→∞
cR,M = 0.

To get this conclusion, we need to pass from

(ηKn,<K∗
k + ε<K∗

bounded,k)M,R − ε<K∗,M,R
bounded,k

to ηKn,<K∗
k . For this it suffices to control

(ηKn,<K∗
k + ε<K∗

bounded,k)M,R − ε<K∗,M,R
bounded,k − η

Kn,<K∗
k ,

which consists of cubic terms two of which (the high frequency and differentiated low frequency term) are
“perturbative”. But then, exploiting the precise definition of this expression, we easily see that its square-
sum norm may be bounded by cR,M

∥∥∥ηKn,<K∗
∥∥∥

S .

Finally, we have reached the point where we can get the conclusion of the lemma via a bootstrap argu-
ment:

Step 5 of the proof of Lemma 7.21: Conclusion of the proof via time localization. Observe that we
can choose R larger than any function of

∥∥∥ε<K∗
bounded

∥∥∥
S and ‖un‖S . In particular, all terms on the right hand
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side of (7.55) except the second one are perturbative. However, this term first arose in Step 1 of the
proof of Lemma 7.21 on account of the norms of certain source terms in F(R,M) with good divisibil-
ity properties, and propagated through the following steps. In particular, we can replace the bad factor
R41(log R + K∗)

1
2 C10

(∥∥∥ε<K∗
bounded

∥∥∥
S

)
by a good one, such as R−1, by subdividing the time interval [0,R] into

M1 := C10
(∥∥∥ε<K∗

bounded

∥∥∥
S

)
R100(log R + K∗)100

many sub-intervals I1, I2, . . . , IM1 , say, and replacing [0,R]×R2 by I j ×R
2. Doing so then allows us to infer

the better estimate

(7.56)

∥∥∥ηKn,<K∗
∥∥∥

S [I1] . δ4e−R1000−2K∗C15
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)

+ R−1
∥∥∥ηKn,<K∗

∥∥∥
S [I1]

+ F
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)∥∥∥ηKn,<K∗

∥∥∥2
S [I1] + cR,M

∥∥∥ηKn,<K∗
∥∥∥

S [I1],

from which we infer ∥∥∥ηKn,<K∗
∥∥∥

S [I1] . δ4e−R1000−2K∗C16
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)
.

Progressing inductively through the intervals I j, j = 2, 3, . . . ,M1, and each time using the improved bound
for the previous interval for the initial data, we finally infer the bound∥∥∥ηKn,<K∗

∥∥∥
S ([0,R]) . δ4eC17

(
‖ε<K∗

bounded‖S ,‖u
n‖S

)
R100(log R+K∗)100

e−R1000−2K∗C18
(∥∥∥ε<K∗

bounded

∥∥∥
S , ‖u

n‖S
)
. δ4 � δ3,

if we choose R sufficiently large and δ4 sufficiently small compared to δ3. This then proves Lemma 7.21 up
to establishing Observation 1 and Observation 2, which we now do. �

Proof of Observation 1. Write ε ≡ ε<K∗
bounded and φ ≡ φn,<K∗ . We consider the quantity U(φ,R)

<s
(
U(ε,R)
<s

)†. Differ-
entiating it with respect to s, we find

∂s
(
U(φ,R)
<s

(
U(ε,R)
<s

)†)
= U(φ,R)

<s (B(φ,R)
s − B(ε,R)

s )
(
U(ε,R)
<s

)†
and so since lims→−∞U(φ,R)

<s
(
U(ε,R)
<s

)†
= Id, we get

U(φ,R)
<s

(
U(ε,R)
<s

)†
=

∫ s

−∞

U(φ)
<s̃ (B(φ,R)

s̃ − B(ε,R)
s̃ )

(
U(ε,R)
<s̃

)† ds̃ + Id.

We shall then simply set

G(n)
k := U(φ,R)

<k
(
U(ε,R)
<k

)†(0, 0).

To see that this works, note that by our definition of U(φ,R)
<k , we get(

U(φ,R)
<k

(
U(ε,R)
<k

)†
−G(n)

k

)
U(ε,R)
<k εk =

( ∫ R

0

∫ k

−∞

∂t
(
U(φ)
<s̃ (B(φ,R)

s̃ − B(ε,R)
s̃ )

(
U(ε,R)
<s̃

)†) ds̃ dt
)
U(ε,R)
<k εk

+
(
U(φ,R)
<k (0, ·)

(
U(ε,R)
<k

)†(0, ·) −G(n)
k

)
U(ε,R)
<k εk.

Then by expanding the difference (B(φ,R)
s̃ − B(ε,R)

s̃ ) one checks that for the first term on the right we have∑
a∈Z

2σ|a|
(∑

k∈Z

∥∥∥Pk+a(·)
∥∥∥2

S k+a

) 1
2
≤ o(1) + cR

∥∥∥ηKn,<K∗
∥∥∥

S

as n→ ∞, where limR→∞ cR = 0. Furthermore, split

εk = χBR∗
εk + (1 − χBR∗

)εk
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for some R∗ � R as in case (v) of Step 1 of the proof of Lemma 7.21 and write(
U(φ,R)
<k (0, r)

(
U(ε,R)
<k

)†(0, r) −G(n)
k

)
U(ε,R)
<k χBR∗

εk

=

( ∫ r

0

∫ k

−∞

∂r̃
(
U(φ)
<s̃ (B(φ,R)

s̃ − B(ε,R)
s̃ )

(
U(ε,R)
<s̃

)†)(0, r̃) ds̃ dr̃
)
U(ε,R)
<k χBR∗

εk.

Then arguing as in (v) of Step 1 of the proof of Lemma 7.21, one gets that the preceding expression satisfies∑
a∈Z

2σ|a|
(∑

k∈Z

∥∥∥Pk+a(·)
∥∥∥2

S k+a

) 1
2
≤ o(1) + δ4e−R1000−2K∗

for K, n large enough, and the same conclusion applies to the contribution of (1−χBR∗
)εk for R∗ large enough

relative to R,K∗. This proves the first part of Observation 1, and the second part is obtained similarly, using
divisibility for F(R,M)(ε). �

Proof of Observation 2. We write

U(φ,R)
<s =

∫ s

−∞

U(φ,R)
<s̃ B(φ,R)

s̃ ds̃, U(un,R)
<s =

∫ s

−∞

U(un,R)
<s̃ B(un,R)

s̃ ds̃,

whence we get (specializing to frequency k = 0)(
U(φ,R)
<0 − U(un,R)

<0
)
un,M,R

0 =

∫ 0

−∞

U(φ,R)
<s̃ (B(φ,R)

s̃ − B
(un

Λ
,R)

s̃ )un,M,R
0 ds̃

+

∫ 0

−∞

(
U(φ,R)
<s̃ − U(un,R)

<s̃
)
B(un,R)

s̃ un,M,R
0 ds̃.

One then reiterates in the second expression on the right, and so it suffices to bound the first term on the right.
Then recalling that µn denotes the frequency dividing between the lowest frequency non-atomic constituent
and the first large frequency atom, then if 0 < µn we can close by exploiting the exponential decay of all
of the εK

bounded,s1
etc. as well as well as the bound in (iv.2) to control ηnK

s1
for s1 < µn. On the other hand, if

0 ≥ µn, we split∫ 0

−∞

U(φ,R)
<s̃ (B(φ,R)

s̃ − B(un,R)
s̃ )un,M,R

0 ds̃ =

∫ µn

−∞

U(φ,R)
<s̃ (B(φ,R)

s̃ − B(un,R)
s̃ )un,M,R

0 ds̃

+

∫ 0

µn

U(φ,R)
<s̃ (B(φ,R)

s̃ − B(un,R)
s̃ )un,M,R

0 ds̃.

The first term on the right is bounded by exploiting the exponential decay of each term in

ε<K∗
bounded,s1

+

B∑
b=1

P̃s1

((
U(φn,<K∗ )
<s1

)†ε̃Kn,<K∗
b,s1

+
(
U(φKn,<K∗ )
<s1

)†ε̃Kn,<K∗
B,s1

)
+ ηKn,<K∗

s1

with respect to s1−µn, while in the second term one loses µn due to the integration over s̃, but gains o(1) 2−σµn

due to the smallness of un
0. �

Continuing with the Stage 1 of the proof of Theorem 7.17, we pass to

Step 2: We adjust the decomposition (7.39) slightly and thereby achieve control on the interval [R, tn
1 − T∗].

Specifically, we replace (7.39) by

(7.57) φn,<K∗ = un +
∑

k

P̃k

(
(U(φn,<K∗ )

<k
)†ε̃Kn,<K∗

k

)
+

∑
k

P̃k

((
U(φn,<K∗ )
<k

)†( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
+ η̃Kn,<K∗ ,
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where we let ε̃Kn,<K∗
k be the evolution with respect to (7.34) of the initial data((

U(φn,<K∗ )
<k

)
P[−K,∞)ε

<K∗
bounded,k, ∂t

(
U(φn,<K∗ )
<k

)
P[−K,∞)ε

<K∗
bounded,k +

(
U(φn,<K∗ )
<k

)
∂tP[−K,∞)ε

<K∗
bounded,k

)∣∣∣∣
t=R
.

Observe that we have included an extra low frequency cutoff P[−K,∞) for the data and we absorb the corre-
sponding correction into η̃Kn,<K∗ . Then it is straightforward to check that

lim
K→∞

lim sup
n→∞

∥∥∥∇t,x
(
η̃Kn,<K∗ − ηKn,<K∗)(R, ·)∥∥∥L2

x
= 0.

Now we can formulate the following important

Lemma 7.22. There is T∗ sufficiently large (depending on the first temporally unbounded profile) such that
if K,R, n are sufficiently large and B = B

(
‖un‖S , δ2

)
is sufficiently large, then we have∥∥∥η̃Kn,<K∗

∥∥∥
S ([R,tn1−T∗])

< δ2.

Furthermore, there exist (not necessarily frequency localized) functions H(1)
(k)

(
η̃Kn,<K∗ , ε̃Kn,<K∗

B , φn,<K∗),
H(2)

(k)
(
ε̃Kn,<K∗

B , φn,<K∗) and g(k)
(
η̃Kn,<K∗ , ε̃Kn,<K∗

B , φn,<K∗), k ∈ Z, which are multilinear expressions in its fre-

quency localized inputs as well as in the gauge transformations U(φn,<K∗ )
<h and

(
U(φn,<K∗ )
<h

)†, and with∑
a∈Z

2σ|a|
(∑

k

∥∥∥Pk+aH(2)
(k)

(
ε̃Kn,<K∗

B , φn,<K∗ , un)∥∥∥2
L1

t L2
x

) 1
2
≤ c

(
ηAn(ε̃Kn,<K∗

B )
)

with c(γ)→ 0 as γ → 0, as well as with∑
a∈Z

2σ|a|
(∑

k

∥∥∥Pk+aH(1)
(k)

(
η̃Kn,<K∗ , ε̃Kn,<K∗

B , φn,<K∗)∥∥∥2
L1

t L2
x

) 1
2
.

(∥∥∥η̃Kn,<K∗
∥∥∥

S +
∥∥∥η̃Kn,<K∗

∥∥∥100
S

)
F
(∥∥∥ε̃Kn,<K∗

B

∥∥∥
S

)
,

∑
a∈Z

2σ|a|
(∑

k

∥∥∥Pk+ag(k)
(
η̃Kn,<K∗ , ε̃Kn,<K∗

B , φn,<K∗)∥∥∥2
S k+a

) 1
2
.

∥∥∥ε̃Kn,<K∗
B

∥∥∥2
S +

∥∥∥η̃Kn,<K∗
∥∥∥2
,

and correction terms κk, k ∈ Z with ∑
a∈Z

2σ|a|
(∑

k

∥∥∥Pk+aκk
∥∥∥2

S

) 1
2
≤ o(1)

as R,T∗, n→ ∞, and such that

(7.58) �̃An
(
U(φn,<K∗ )
<k−10 η̃Kn,<K∗

k + g(k) + κk
)

= H(1)
(k)

(
η̃Kn,<K∗ , ε̃Kn,<K∗

B , φn,<K∗) + H(2)
(k)

(
ε̃Kn,<K∗

B , φn,<K∗) + o(k)(1),

where the error satisfies the relation

lim
R,T∗,n→∞

∑
a∈Z

2σ|a|
(∑

k

∥∥∥Pk+ao(k)(1)
∥∥∥2

L1
t L2

x([R,tn1−T∗])

) 1
2

= 0.

Proof. Consider

(7.59) �̃An

(
U(φn,<K∗ )
<k−10 φn,<K∗

k − U(un)
<k−10un

k − ε̃
Kn,<K∗
k −

( B∑
b=1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
.

Then on the one hand this equals

�̃An

(
U(φn,<K∗ )
<k−10 η̃Kn,<K∗

k + ζk
)
,
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where (setting ε̃Kn,<K∗
0,k := ε̃Kn,<K∗

k for simplicity)

ζk =
(
U(φn,<K∗ )
<k−10 − U(un)

<k−10
)
un

k

+ U(φn,<K∗ )
<k−10 P̃k

((
U(φn,<K∗ )
<k−10

)†( B∑
b=0

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
−

( B∑
b=0

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

)
+ U(φn,<K∗ )

<k−10

(
φn,<K∗

k − un
k − P̃k

((
U(φn,<K∗ )
<k−10

)†( B∑
b=0

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
− η̃Kn,<K∗

k

)
,

is of the form κk + g(k) as claimed. In fact, for the first difference term on the right, it is of type κk due to a
small variation on Observation 2 in the preceding step, while for the second difference term on the right, i.e.

(7.60) U(φn,<K∗ )
<k−10 P̃k

((
U(φn,<K∗ )
<k−10

)†( B∑
b=0

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
−

( B∑
b=0

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

)
,

one observes that it coincides with

(7.61)
( B∑

b=0

P̃kε̃
Kn,<K∗
b,k + P̃kε̃

Kn,<K∗
B,k

)
−

( B∑
b=0

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

)
,

up to the sum of a term satisfying the desired bound for κk and a term of type g(k)
(
η̃Kn,<K∗ , ε̃Kn,<K∗

B , φn,<K∗).
To see this, note that one can write the term (7.60) schematically as

∇x
(
U(φn,<K∗ )
<k−10

)†( B∑
b=0

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

)
and expanding out ∇x

(
U(φn,<K∗ )
<k−10

)† using the equation for U(φn,<K∗ )
<k−10 , one retains only those terms involving

η̃Kn,<K∗ and ε̃Kn,<K∗
B in combination with the factor ε̃Kn,<K∗

B,k to be included into the term g(k).
The preceding difference (7.61) also satisfies the desired bound for κk as one easily sees after applying

the operator P̃k to the equation (7.34). Finally, for the third term in the above formula for ζk we note that it

arises due to the nonlinear interactions inside φn,<K∗
k , and its contribution to the norm controlling κk is easily

seen to be bounded by O
(∥∥∥η̃Kn,<K∗

∥∥∥2
S +

∥∥∥ε̃Kn,<K∗
B

∥∥∥2
S

)
in the limit R,T, n→ ∞ .

Getting back to (7.59), on the other hand we can write this as

(7.62)

�̃An

(
U(φn,<K∗ )
<k−10 φn,<K∗

k − U(un)
<k−10un

k −
( B∑

b=0

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
= �̃An

(
U(φn,<K∗ )
<k−10 φn,<K∗

k − U(un)
<k−10un

k

)
= �

(
U(φn,<K∗ )
<k−10 φn,<K∗

k

)
− �

(
U(un)
<k−10un

k

)
+ U(un)

<µn
Aα,low(un)

(
U(un)
<µn

)†∂α(U(un)
<k−10un

k − U(φn,<K∗ )
<k−10 φn,<K∗

k

)
.

As for the last term on the right, expand it out as

U(un)
<µn
Aα,low(un)

(
U(un)
<µn

)†∂α(U(un)
<k−10un

k − U(φn,<K∗ )
<k−10 φn,<K∗

k

)
= U(un)

<µn
Aα,low(un)

(
U(un)
<µn

)†∂α((U(un)
<k−10 − U(φn,<K∗ )

<k−10
)
un

k

)
− U(un)

<µn
Aα,low(un)

(
U(un)
<µn

)†∂α(U(φn,<K∗ )
<k−10

(
φn,<K∗

k − un
k
))
.
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Here the first term on the right is easily seen to be of the form

(7.63)
U(un)
<µn
Aα,low(un)

(
U(un)
<µn

)†∂α((U(un)
<k−10 − U(φn,<K∗ )

<k−10
)
un

k

)
= U(un)

<µn
Aα,low(un)

(
U(un)
<µn

)†∂α((U(un)
<k−10 − U(un+η̃Kn,<K∗ )

<k−10
)
un

k

)
+ o(k)(1),

where the error o(k)(1) has the claimed vanishing property provided T∗,R, n→ ∞, and similarly we have

(7.64)

U(un)
<µn
Aα,low(un)

(
U(un)
<µn

)†∂α(U(φn,<K∗ )
<k−10

(
φn,<K∗

k − un))
= U(un)

<µn
Aα,low(un)

(
U(un)
<µn

)†∂α(U(φn,<K∗ )
<k−10 η̃Kn,<K∗

k

)
+ U(un)

<µn
Aα,low(un)

(
U(un)
<µn

)†∂α(U(φn,<K∗ )
<k−10 Pk

( B∑
b=0

(
U(φn,<K∗ )
<k−10

)†ε̃Kn,<K∗
b,k +

(
U(φn,<K∗ )
<k−10

)†ε̃Kn,<K∗
B,k

))
+ o(k)(1).

Of the preceding two expressions (7.63) and (7.64), the most delicate case appears when the derivative ∂α

in (7.63) falls on the term un
k , since then smallness has to come from essentially a factor of the form η̃Kn,<K∗

<k−10

arising essentially from U(un)
<k−10 −U(un+η̃Kn,<K∗ )

<k−10 . Dealing with this situation requires an energy-type bound for
η̃Kn,<K∗

k for frequencies k ≤ µn, analogous to Lemma 7.10. In fact, making a suitable bootstrap hypothesis for
the very low frequency part of η̃Kn,<K∗

k and proceeding as in the proof of Lemma 7.10, we infer the following
bound ∥∥∥∇t,xη̃

Kn,<K∗
k

∥∥∥
L∞t L2

x
≤ o(1) · 2−σ|k−µn |,

where o(1) vanishes as n → ∞. Using this and, as usual, splitting into the cases k ≤ µn and k > µn, one
easily infers that as n→ ∞,∑

a∈Z

2σ|a|
(∑

k

∥∥∥∥Pk+a
(
U(un)
<µn
Aα,low(un)

(
U(un)
<µn

)†∂α((U(un)
<k−10 − U(un+η̃Kn,<K∗ )

<k−10
)
un

k
))∥∥∥∥2

L1
t L2

x([R,tn1−T∗])

) 1
2

= o(1)

On the other hand, the first two lines on the right in (7.64) cancel against a corresponding term obtained
when expanding

�
(
U(φn,<K∗ )
<k−10 φn,<K∗

k
)
− �

(
U(un)
<k−10un

k
)

= U(φn,<K∗ )
<k−10 Fk

(
φn,<K∗∇t,xφ

n,<K∗) − U(un)
<k−10Fk

(
un,∇t,xun).

In fact, we get

(7.65)

U(φn,<K∗ )
<k−10 Fk

(
φn,<K∗ ,∇t,xφ

n,<K∗) − U(un)
<k−10Fk

(
un,∇t,xun)

= U(un)
<µn
Aα,low(un)

(
U(un)
<µn

)†∂α(U(φn,<K∗ )
<k−10 η̃Kn,<K∗

k
)

+ U(un)
<µn
Aα,low(un)

(
U(un)
<µn

)†∂αPk
( B∑

b=0

(
U(φn,<K∗ )
<k−10

)†ε̃Kn,<K∗
b,k +

(
U(φn,<K∗ )
<k−10

)†ε̃Kn,<K∗
B,k

)
+ H(1)

(k)
(
η̃Kn,<K∗ , ε̃Kn,<K∗

B , φKn,<K∗) + H(2)
(k)

(
ε̃Kn,<K∗

B , φKn,<K∗) + o(k)(1),

where the error o(k)(1) is again as in the statement of Lemma 7.22. In fact, with the exception of the second
term on the right in (7.65), all terms on the left in (7.65) involving at least one perturbative factor of the form

B∑
b=0

(
U(φn,<K∗ )
<k−10

)†ε̃Kn,<K∗
b,k

are seen to be of the form o(k)(1) by using Lemma 7.20. The same applies for all terms involving at least one
perturbative factor un. For the remaining interactions, the terms of the form H(1)(η̃Kn,<K∗ , ε̃Kn,<K∗

B , φKn,<K∗)
89



arise when at least one of the perturbative terms in the source is of the form η̃Kn,<K∗ while all other pertur-
bative factors are of the form ∑

k

P̃k
((

U(φn,<K∗ )
<k−10

)†ε̃Kn,<K∗
B,k

)
,

while the terms of the form H(2)(ε̃Kn,<K∗
B , φKn,<K∗) arise when all perturbative factors are of the form∑

k

(
U(φn,<K∗ )
<k−10

)†ε̃Kn,<K∗
Bk .

Now a priori in expressions of the latter kind the norm of the expression will also depend on
∥∥∥φKn,<K∗

∥∥∥
S , pro-

vided a derivative falls on the factor U(φn,<K∗ )
<k−10 . In this case we re-express φKn,<K∗ using (7.57). On the other

hand, all terms in H(2)(ε̃Kn,<K∗
B , φKn,<K∗) where no derivative lands on U(φn,<K∗ )

<k−10 are left unchanged. This pro-
cess can be continued, absorbing terms either into H(1)(η̃Kn,<K∗ , ε̃Kn,<K∗

B , φKn,<K∗) or into H(2)(ε̃Kn,<K∗
B , φKn,<K∗)

or into o(k)(1), until all remaining terms in H(2)(ε̃Kn,<K∗
B , φKn,<K∗) in which a derivative can still potentially

fall on a factor
(
U(φn,<K∗ )
<k−10

)† can be estimated purely in terms of Strichartz norms of its inputs. Then it is easy

to see that it suffices to control
∥∥∥∇t,x

(
U(φn,<K∗ )
<k−10

)†∥∥∥
L∞t L2+

x
, which we do by energy conservation. This proves the

relation (7.58) and a straightforward bootstrap/divisibility argument then yields the bound∥∥∥η̃Kn,<K∗
∥∥∥

S ([R,tn1−T∗])
< δ2,

provided we have picked R,T∗, and n sufficiently large. In fact, to pass from the bound on
{
U(φn,<K∗ )
<k−10 η̃Kn,<K∗

k
}
k∈Z

to the bound for η̃Kn,<K∗ , one argues exactly as in Step 3 of the proof of the preceding Lemma 7.21. �

At this point, we have shown that under the hypotheses of Theorem 7.17, we control the solution φn,<K∗

for n sufficiently large on the full interval [0, tn
1 − T∗] for a fixed but sufficiently large T∗, and that we in fact

obtain bounds on
∥∥∥φn,<K∗

∥∥∥
S which are independent of K∗ and n.

Our aim now is to continue the preceding process on the next large time interval [tn
1 −T∗, tn

2 −T1∗] for T1∗
sufficiently large.

Stage 2: Control of the solution on [tn
1 − T∗, tn

2 − T1∗]. Here we want to repeat the method of Stage 1 by
replacing the initial time t = 0 by the initial time t = tn

1 − T∗. A basic technical difficulty we face here
is that we first have to introduce the analogue of ε<K∗

bounded, say ε<K∗
1bounded, by suitably modifying the function∑

k
(
U(φn,<K∗ )
<k−10

)†ε̃Kn,<K∗
1,k , i.e. the profile with b = 1, which concentrates at time t = tn

1−T∗. For this we will also
have to take into account the perturbation η̃Kn,<K∗ , which, while small in energy, may lead to a significant
effect on the L∞x -norm. To construct the profile, we more or less proceed as in the proof of Lemma 7.14, but
the following lemma simplifies things.

Lemma 7.23. The function ∇t,xη̃
Kn,<K∗(tn

1 − T∗, ·) vanishes weakly in L2
x(R2) as T∗,K, n→ ∞.

Proof. This is a consequence of the identity (7.58) in the preceding Lemma 7.22. Writing the flow of (7.34)
associated with the data (0, f ) at t = 0 in the form

UAn(t)( f ),

we have(
U(φn,<K∗ )
<k−10 η̃Kn,<K∗

k + g(k)
(
η̃Kn,<K∗ , ε̃Kn,<K∗

B , φn,<K∗))∣∣∣∣
tn1−T∗

= S An

((
U(φn,<K∗ )
<k−10 η̃Kn,<K∗

k + g(k)
(
η̃Kn,<K∗ , ε̃Kn,<K∗

B , φn,<K∗))[0]
)∣∣∣∣

tn1−T∗

+

∫ t

0
UAn(t − s)

(
H(1)

(k)
(
η̃Kn,<K∗ , ε̃Kn,<K∗

B , φn,<K∗) + H(2)
(k)

(
ε̃Kn,<K∗

B , φn,<K∗))(s, ·) ds
∣∣∣∣
tn1−T∗

+ o(1),
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where the error vanishes (in the energy sense) upon letting T∗,K, n→ ∞. Consider the principal contribution
to the last integral, which is the expression∫ t

0
UAn(t − s)

(
H(2)

(k)
(
ε̃Kn,<K∗

B , φn,<K∗))(s, ·) ds
∣∣∣∣
tn1−T∗

.

Recall that H(2)
(k)

(
ε̃Kn,<K∗

B , φn,<K∗) is a multilinear expression with
∑

k
(
U(φn,<K∗ )
<k−10

)†ε̃Kn,<K∗
B,k in its “perturbative

factors”. In turn, ε̃Kn,<K∗
B,k can be expanded as a sum of free waves associated to (7.34) up to an arbitrarily

small error ε̃Kn,<K∗
B1

and each of these free waves concentrates at a time scale diverging from tn
1 − T∗. This

means that up to an arbitrarily small error and upon letting n→ ∞, the function∫ t

0
UAn(t − s)

(
H(2)

(k)
(
ε̃Kn,<K∗

B , φn,<K∗))(s, ·) ds
∣∣∣∣
tn1−T∗

converges in the S -norm to a solution of (7.34) concentrating away from t = tn
1 − T∗, and in particular we

have

∇t,x

∫ t

0
UAn(t − s)

(
H(2)

(k)
(
ε̃Kn,<K∗

B , φn,<K∗))(s, ·) ds
∣∣∣∣
tn1−T∗

⇀ 0.

As for the remaining integral∫ t

0
UAn(t − s)

(
H(1)

(k)
(
η̃Kn,<K∗ , ε̃Kn,<K∗

B , φn,<K∗))(s, ·) ds
∣∣∣∣
tn1−T∗

,

inserting the principal term for η̃Kn,<K∗ , which equals∫ t

0
UAn(t − s)

(
H(2)

(k)
(
ε̃Kn,<K∗

B , φn,<K∗))(s, ·) ds,

results in a similar term, again vanishing weakly at t = tn
1 − T∗ by the same kind of argument, and one winds

up with another error term stemming from substituting∫ t

0
UAn(t − s)

(
H(1)

(k)
(
η̃Kn,<K∗ , ε̃Kn,<K∗

B , φn,<K∗))(s, ·) ds

for η̃Kn,<K∗ . In light of the smallness of
∥∥∥ε̃Kn,<K∗

B

∥∥∥
S and

∥∥∥η̃Kn,<K∗
∥∥∥

S , this term has much smaller S -norm than∫ t

0
UAn(t − s)

(
H(1)

(k)
(
η̃Kn,<K∗ , ε̃Kn,<K∗

B , φn,<K∗))(s, ·) ds.

Repeating this argument a finite number of times leads to a sequence of terms vanishing weakly at t = tn
1−T∗

up to an arbitrarily small error, which yields the claim. �

We now construct a good bounded profile ε<K∗
1bounded at time t = tn

1 − T∗. Departing from (7.57), we get
upon restriction to a suitable subsequence with respect to n,(∑

k

P̃k
((

U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
1,k

)
+ η̃Kn,<K∗ + p1∗

)∣∣∣∣∣
tn1−T∗

= φn,<K∗
∣∣∣
tn1−T∗

+ oL∞loc
(1)

with the error vanishing as n → ∞ in the sense of L∞loc. Here p1∗ ∈ S
m may be set equal to limn→∞ un(tn

1 −

T∗, 0), the limit existing upon passing to a suitable subsequence. In fact, the remaining terms∑
k

P̃k

((
U(φn,<K∗ )
<k

)†( B∑
b=0, b,1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))∣∣∣∣∣
tn1−T∗

all converge to zero in L∞loc as n → ∞ due to the fact that we have essentially (up to exponentially decaying
tails) localized their frequency supports to compact intervals, and each of them converges weakly to zero at
time tn

1 − T∗ as n→ ∞.
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Now due to the essentially compact frequency support of the expression, upon letting K, n → ∞ along a
suitable subsequence, we can find ε̃<K∗

1bounded such that(∑
k

P̃k
((

U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
1,k

)
+ η̃Kn,<K∗

)∣∣∣∣∣
tn1−T∗

⇀ ε̃<K∗
1bounded

∣∣∣
tn1−T∗

and also strongly in H1+
loc, in particular in L∞loc. In particular, it follows that ε̃<K∗

1bounded + p1∗ maps into Sm. Thus
it is natural to set

ε<K∗
1bounded

∣∣∣
tn1−T∗

:= ε̃<K∗
1bounded

∣∣∣
tn1−T∗

+ p1∗,

and to pass from (7.57) to a new decomposition with a new error term ˜̃ηKn,<K∗ , where now ε<K∗
1bounded denotes

the nonlinear evolution associated with the data ε<K∗
1bounded

∣∣∣
tn1−T∗

,

(7.66) φn,<K∗ = un − p1∗ + ε<K∗
1bounded +

∑
k

P̃k

((
U(φn,<K∗ )
<k

)†( B∑
b=0, b,1

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
+ ˜̃ηKn,<K∗ .

This is the analogue of (7.38) which we expect to be valid on a large but finite time interval [tn
1 − T∗, tn

1 −

T∗+R1], say, where R1 will now depend on the scattering properties of ε<K∗
1bounded, just as R before was chosen

depending on the scattering properties of the evolution of ε<K∗
bounded. Also, comparing (7.66) and (7.57), we

have
˜̃ηKn,<K∗

∣∣∣
tn1−T∗

=
∑

k

(
U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
1,k

∣∣∣
tn1−T∗

+ η̃Kn,<K∗
∣∣∣
tn1−T∗

− ε̃<K∗
1bounded.

Then by definition of ε̃<K∗
1bounded we have limn→∞

∥∥∥ ˜̃ηKn,<K∗
∣∣∣
tn1−T∗

∥∥∥
L∞loc

= 0, which is analogous to the property of

ηKn,<K∗ in Lemma 7.14. Also, note that for any R∗ > 0 we have

lim
n→∞

∥∥∥∇t,x ˜̃ηKn,<K∗
∣∣∣
tn1−T∗

∥∥∥
L2

x(BR∗ )
= 0.

We further observe that due to Lemma 7.23 and its proof we have the following. Denoting by η̃Kn,<K∗
(1)k the

solution of the approximation to (7.58) given by

(7.67)
�̃An

(
U(φn,<K∗ )
<k−10 η̃Kn,<K∗

(1)k + g(k)
(
η̃Kn,<K∗

(1) , ε̃Kn,<K∗
B , φn,<K∗))

= H(1)
(k)

(
η̃Kn,<K∗

(1) , ε̃Kn,<K∗
B , φn,<K∗) + H(2)

(k)
(
ε̃Kn,<K∗

B , φn,<K∗)
with the same initial data as η̃Kn,<K∗ at t = R, then η̃Kn,<K∗

(1) obeys the same bound as η̃Kn,<K∗ , and moreover
we have

lim
R,T∗,K,n→∞

∥∥∥∇t,x
(
η̃Kn,<K∗

(1)

∣∣∣
tn1−T∗

− ˜̃ηKn,<K∗
∣∣∣
tn1−T∗

)∥∥∥
L2

x
= 0.

We also note that
lim

R,T∗,K,n→∞

∥∥∥η̃Kn,<K∗
(1) − ˜̃ηKn,<K∗)

∥∥∥
S ([R,tn1−T∗])

= 0.

At this point, we briefly pause to make an important

Remark 7.24. Note that at this stage of the proof of Theorem 7.17 we have already introduced three different
perturbation terms ηKn,<K∗ , η̃Kn,<K∗ , and ˜̃ηKn,<K∗ . As we intend to iterate the preceding procedure on each
of the time intervals [tn

b − Tb∗, tn
b+1 − Tb+1∗], b = 1, 2, . . . , B, we have to be careful that this process does not

result in accruing more and more errors, i.e. we have to ensure uniform smallness of these perturbations.
The idea here is that we have the parameters R,T∗,K, n and analogous ones for the later stages (B in total)
at our disposal, while B will be chosen as already mentioned only depending on an absolute small constant
δ2 as well as on ‖un‖S . Thus, by eventually picking R,T∗,K, n etc. sufficienty large, we will be able to ensure
that passing from one error to the next will be small even when re-iterated B times.
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At this stage, we have the tools to address the preceding remark and continue the solution, thus far
constructed locally in time, in a global fashion. In fact, working with the presentation (7.66) on an interval
[tn

1 − T∗, tn
1 + R1] for some very large R1 (whose choice will depend on the scattering properties of ε<K∗

1bounded)
and essentially repeating the arguments in the proof of Lemma 7.21, picking n large enough, we can extend
the solution in the form (7.66) such that

∥∥∥ ˜̃ηKn,<K∗
∥∥∥

S ([tn1−T∗,tn1+R1]) � δ2. Moreover, we still have the relation

lim
R,T∗,K,n→∞

∥∥∥∇t,x
(
η̃Kn,<K∗

(1)

∣∣∣
tn1+R1

− ˜̃ηKn,<K∗
∣∣∣
tn1+R1

)∥∥∥
L2

x
= 0.

Then we construct the solution on the interval [tn
1 + R1, tn

2 −T1∗] for R1,T1∗ sufficiently large, by repeating
the procedure in Step 2 of Stage 1 before. More precisely, we modify (7.66) to

(7.68) φn,<K∗ = un +
∑

k

P̃k

((
U(φn,<K∗ )
<k

)†( B∑
b=0

ε̃Kn,<K∗
b,k + ε̃Kn,<K∗

B,k

))
+ ˜̃̃ηKn,<K∗

on [tn
1 + R1, tn

2 − T1∗], where now ε<K∗
1bounded has been replaced by the expression

∑
k
(
U(φn,<K∗ )
<k

)†ε̃Kn,<K∗
1,k , where

ε̃Kn,<K∗
1,k solves (7.34) with data at time t = tn

1 + R1 given by

ε̃Kn,<K∗
1,k [tn

1 + R1] =
((

U(φn,<K∗ )
<k ε<K∗

1bounded
)∣∣∣

tn1+R1
, ∂t

(
U(φn,<K∗ )
<k ε<K∗

1bounded
)∣∣∣

tn1+R1

)
.

Then repeating the arguments in the proof of Lemma 7.22, we infer the global bound∥∥∥ ˜̃̃ηKn,<K∗
∥∥∥

S ([tn1+R1,tn2−T1∗])
� δ2.

Moreover, importantly, we also obtain that

lim
R,T∗,R1,T1∗,K,n→∞

∥∥∥ ˜̃̃ηKn,<K∗ − η̃Kn,<K∗
(1)

∥∥∥
S ([tn1+R1,tn2−T1∗])

= 0.

Combining this with our earlier considerations, we observe that the error function consisting of η̃Kn,<K∗ on
[R, tn

1−T∗], ˜̃ηKn,<K∗ on [tn
1−T∗, tn

1 +R1] and ˜̃̃ηKn,<K∗ on [tn
1 +R1, tn

2−T1∗] differs from η̃Kn,<K∗
(1) (which we recall

solves (7.67) and had its data prescribed at time t = R) by an error with respect to ‖ · ‖S , which vanishes as
the parameters R,T∗,R1,T1∗,K, n→ ∞.

However, on account of the fact that ε̃Kn,<K∗
B satisfies uniform S -bounds (its energy being uniformly

bounded), the equation (7.67) can be solved for η̃Kn,<K∗
(1) via a simple divisibility argument on any time

interval on which φn,<K∗ is defined, and picking B = B
(
‖un‖S , δ2

)
large enough, we can ensure that∥∥∥η̃Kn,<K∗

(1)

∥∥∥
S � δ2.

We can then repeat the preceding procedure and prolong the solution beyond tn
2 − T1∗, until after B steps

we have a global solution. Of course at each of the B many steps, we have to adjust the parameters
R,T∗,R1,T1∗,K, n etc. to preserve the required smallness of the error. This proves Theorem 7.17. �

7.5. Conclusion of the induction on frequency process. In the previous subsection we established that the
data Π≤µ1

n+log(Rn)φ
n[0] can be globally evolved with uniform S -norm bounds under the assumption that all

profiles have energy strictly less than Ecrit. We may now continue this induction on frequency process and by
proceeding as in Subsection 7.3 obtain that the data Π≤µ2

n−log(Rn)φ
n[0] can be globally evolved with uniform

S -norm bounds. Then we “add in” the second frequency atom P[µ2
n−log(Rn),µ2

n+log(Rn)]φ
n[0] in the sense that

by proceeding analogously to Subsection 7.4 we may establish the global evolution of the corresponding
geometric data Π≤µ2

n+log(Rn)φ
n[0] with uniform S -norm bounds under the assumption that the associated

profiles all have energy strictly less than Ecrit.
We may continue this procedure Λ0 many times and establish the global evolution with uniform S -norm

bounds of the essentially singular sequence of data {φn[0]}n≥1, which would however be a contradiction,
unless the sequence {φn[0]}n≥1 is composed of exactly one frequency atom that consists of exactly one
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profile of asymptotic energy Ecrit. Thus, in view of Theorem 7.17, we may assume after rescaling so that
φn[0] is essentially supported at frequency ∼ 1, that we can either write

(7.69) Π<K∗φ
n[0] = φ<K∗

bounded[0] + ηn,<K∗[0]

with limK∗,n→∞
∥∥∥ηn,<K∗[0]

∥∥∥
Ḣ1

x×L2
x

= 0, or else we have

(7.70) Π<K∗φ
n[0] =

∑
k∈Z

(
U(φn,<K∗ )
<k

)†S (· − tn)
(
φ<K∗

k [0]
)
[0] + ηn,<K∗[0]

with limn→∞ |tn| = +∞, where S (·) now simply denotes the free wave propagator associated with the standard
d’Alembertian on R1+2, and we again have limK∗,n→∞

∥∥∥ηn,<K∗[0]
∥∥∥

Ḣ1
x×L2

x
= 0.

In any case we infer that the limits

φbounded[0] = lim
K∗→∞

φ<K∗
bounded[0], φ[0] = lim

K∗→∞
φ<K∗[0]

exist and satisfy the “criticality condition”

E[φbounded] = E[φ] = Ecrit.

We also observe that we have ηn,<K∗ → 0 in L∞loc as n→ ∞ after passing to subsequences.

In the next two propositions we infer that we can actually extract a minimal blowup solution from either
scenario.

Proposition 7.25. Assume the situation given by (7.69). Then the wave maps evolution φbounded(t, x) with
lifespan I associated with the energy class data φbounded[0] : R2 → TSm satisfies

sup
[T1,T2]⊂I

∥∥∥φbounded
∥∥∥

S ([T1,T2]) = +∞.

In particular, φbounded(t, x) is a minimal blowup solution.

Proof. We must show that it holds that

lim
K→∞

sup
[T1,T2]⊂I

∥∥∥φ<K∗
bounded

∥∥∥
S ([T1,T2]) = +∞.

Suppose not. Then all evolutions φ<K∗
bounded exist globally in time and we have that

lim sup
K∗→∞

∥∥∥φ<K∗
bounded

∥∥∥
S [R] < ∞.

This uniform bound on the evolutions φ<K∗
bounded implies by Lemma 7.15 that they have uniform scattering

behavior. Given γ > 0, there exists a decomposition

φ<K∗
bounded =

(
φ<K∗

bounded
)
1 +

(
φ<K∗

bounded
)
2

and some Rγ > 0 such that∥∥∥(φ<K∗
bounded

)
1

∥∥∥
S [R] < γ,

∥∥∥(φ<K∗
bounded

)
2

∥∥∥
L∞t L∞x [(−∞,−Rγ]∪[Rγ,+∞)] < γ.

We can then show, following Stage 1 in the proof of Theorem 7.17, that we obtain uniform (in large enough
n and K∗) bounds on

∥∥∥ηn,<K∗
∥∥∥

S [R]. This in turn contradicts the fact that for any K∗ large enough, we must
have limn→∞

∥∥∥φn,<K∗
∥∥∥

S [R] = +∞ on account of Lemma 7.4 and the fact that {φn}n≥1 is an essentially singular
sequence which is essentially supported at frequency ∼ 1.

In order to obtain the desired control over ηn,<K∗ , we split R1+2 into the regions [−Rγ,Rγ]c × R2 and
[−Rγ,Rγ] × R2. To control ηn,<K∗ on the former region, we use a (much simplified) variant of the argument
for Lemma 7.22. To handle the latter region, we argue as in (v) of Step 1 of the proof of Lemma 7.21,
replacing ε<K∗

bounded there by φ<K∗
bounded. �
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To conclude, we have

Proposition 7.26. Assume the situation given by (7.70). Then there exists an energy class data pair
φ̃[0] : R2 → TSm with E[φ̃] = Ecrit and such that denoting its wave maps evolution with lifespan I by
φ̃(t, x), we have

sup
[T1,T2]⊂I

‖φ̃‖S ([T1,T2]) = +∞.

In particular, φ̃(t, x) is a minimal blowup solution.

Proof. Assume without loss of generality that tn → +∞ as n → ∞. We reduce to the situation in the
preceding Proposition 7.25. To begin with, using the argument of the proof of Lemma 7.22, we see that
there is a large C > 0 such that the wave maps evolution of the data φn,<K∗[0] ≡ Π<K∗φ

n[0] exists on
(−∞, tn − C] for any large enough n. Then by a simple compactness argument, exploiting the frequency
localization up to exponentially decaying tails, we have that

φn,<K∗[tn −C] −→ φ̃<K∗[0]

as n→ ∞ in
(
Ḣ1

loc ∩ L∞loc
)
× L2

loc. We also have that the limit

φ̃[0] = lim
K∗→∞

φ̃<K∗[0]

exists in Ḣ1
x × L2

x. We now claim that this is the desired minimal blowup solution. In fact, we can write

φn,<K∗[tn −C] = φ̃<K∗[0] + η̃n,<K∗[tn −C],

where η̃n,<K∗(tn − C) → 0 both in L∞loc as well as Ḣ1
loc, and also ∂tη̃

n,<K∗(tn − C) → 0 in L2
loc. But then

assuming that the evolutions of the φ̃<K∗[0] satisfy uniform (in K∗) global-in-time S -norm bounds, we obtain
a contradiction exactly as in the proof of the preceding Proposition 7.25. �

Finally, we observe that the minimal blowup solution constructed in the preceding Proposition 7.25,
respectively in Proposition 7.26, has the following crucial compactness property whose proof follows exactly
as in [6, 7], see also Corollary 9.36 in [17].

Corollary 7.27. There exists a non-trivial, radially symmetric, energy class, minimal blowup solution
φ∞ : I × R2 → Sm to (WM) of energy Ecrit and with maximal interval of existence I. Moreover, there
exists a continuous function λ : I → (0,∞) so that the family of functions{(

φ∞(t, λ(t)−1·), λ(t)−1∂tφ
∞(t, λ(t)−1·

)
: t ∈ I

}
is pre-compact in Ḣ1

x × L2
x.

8. Rigidity argument

In this last section we rule out the existence of a minimal blowup solution φ∞ as in Corollary 7.27. To this
end we closely mimic the rigidity argument of Kenig-Merle [7] as implemented in [17] for energy critical
wave maps with H2 target. We emphasize that the momentum vanishing property of the minimal blowup
solution is here an immediate consequence of the hypothesis of radial symmetry.

8.1. Preliminary properties of minimal blowup solutions. We begin by stating some standard properties
of the minimal blowup solution φ∞. As in Corollary 7.27, I denotes the lifespan of φ∞ and we set I+ :=
I ∩ [0,∞). The finite speed of propagation for wave maps gives the following lemma.

Lemma 8.1. For given ε > 0, let M > 0 be such that

(8.1)
∫
|x|≥M

1
2

2∑
α=0

|∂αφ
∞(0, x)|2 dx < ε.
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Then

(8.2)
∫
|x|≥M+t

1
2

2∑
α=0

|∂αφ
∞(t, x)|2 dx < ε.

for all t ∈ I+.

Next, we recall the following conservation laws for wave maps.

Proposition 8.2. Let φ be an energy class solution to (WM). Then the following conservation laws hold.
• Energy conservation

(8.3)
d
dt

∫
R2

1
2

2∑
α=0

|∂αφ|
2 dx = 0

• Momentum conservation

(8.4)
d
dt

∫
R2
∂tφ
†∂iφ dx = 0 i = 1, 2

• Weighted energy

(8.5)
d
dt

∫
R2

2∑
α=0

xiϕ(x/R)
1
2
|∂αφ(t, x)|2 dx = −

∫
R2
∂tφ
†∂iφ dx + O(r(R)) i = 1, 2

• Weighted momentum monotonicity

(8.6)
d
dt

∫
R2

2∑
i=1

xiϕ(x/R)∂tφ
†∂iφ dx = −

∫
R2
|∂tφ|

2 dx + O(r(R))

where ϕ is a fixed bump function which is equal to one on {|x| ≤ 1} and

r(R) :=
∫
|x|≥R

2∑
α=0

|∂αφ
∞(0, x)|2 dx.

Proof. For classical solutions to (WM) these identities follow from Stokes’ theorem together with the fact
that the stress-energy tensor is divergence free. By Definition 7.6 one can then pass to the limit and obtain
the result for energy class solutions. �

By virtue of Corollary 7.27, the energy class, minimal blowup solution φ∞ satisfies some important
properties, which we present in the next lemmas. In the case that I+ is finite, we have the following lower
bound for the continuous function λ(t) of Corollary 7.27.

Lemma 8.3. Assume that I+ is finite. After suitable rescaling, we may assume that I+ = [0, 1). Let λ : I+ →

(0,∞) be as in Corollary 7.27 and let us denote the pre-compact set in Ḣ1
x × L2

x therein by K. Then, there
exists a constant C0(K) > 0 such that

(8.7) 0 <
C0(K)
1 − t

≤ λ(t)

for all 0 ≤ t < 1.

Proof. The proof follows along the lines of Lemma 10.4 in [17] �

In addition, under the same assumptions of Lemma 8.3 we have the following support property of φ∞.

Lemma 8.4. Let φ∞ as in Corollary 7.27 with finite lifespan. Then there exists x0 ∈ R
2 such that

supp(φ∞(t, ·)) ⊂ B(x0, 1 − t)

for all 0 ≤ t < 1.
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Proof. The proof follows as in Lemma 4.8 of [7] by use of Lemmas 8.1 and 8.3. �

We finally state the vanishing momentum property which we get here for free by the very definition of
radially symmetric wave maps.

Proposition 8.5. Let φ∞ as in Corollary 7.27. Then

(8.8)
∫
R2
∂tφ
∞†∂iφ

∞ dx = 0 i = 1, 2

for all times in I+.

8.2. Rigidity I: Infinite time interval and reduction to the self-similar case for finite time intervals.
The final goal of the rigidity argument consists in proving the following theorem.

Proposition 8.6. Let φ∞ as in Corollary 7.27 with lifespan I = (−T0,T1). Then, one cannot have T1 or T0
finite. Moreover, if λ(t) ≥ λ0 > 0 for all t ∈ R, one necessarily has ∂αφ∞ = 0 for α = 0, 1, 2.

In this subsection, we will provide the proof of Proposition 8.6 for the infinite time case and then reduce
to the self-similar situation for the finite time case. The proof of Proposition 8.6 in the finite time case will
be concluded in the next subsection.

Proof. [Proposition 8.6: infinite time case] We will first treat the case T1 = ∞. Assuming that ∂αφ∞ do not
all vanish, we extract a non-trivial finite energy radially symmetric harmonic map into the sphere, leading
to a contradiction. Following the proof of Lemma 10.9 in [17], which crucially hinges on the geometry of
the target, we show that there exists α ∈ R such that

(8.9)
∫

I

∫
R2
|∂tφ

∞(t, x)|2 dx dt ≥ α > 0

for all intervals I of unit length. Suppose not, then there exists a sequence of intervals In := [tn, tn + 1] with
the property that tn → ∞ and

(8.10)
∫

In

∫
R2
|∂tφ

∞(t, x)|2 dx dt ≤
1
n
.

Then there exists a sequence of times sn ∈ In such that ||∂tφ
∞(sn, ·)||2 → 0 as n → ∞. By the compactness

property of Corollary 7.27, the family of functions{(
φ∞(sn, λ(sn)−1·), λ(sn)−1∂tφ

∞(sn, λ(sn)−1·
)}∞

n=0

is pre-compact in Ḣ1
x × L2

x. Up to a subsequence, there exist limit functions Φ∗ such that

λ(sn)−1∂αφ
∞(sn, λ(sn)−1·

)
→ ∂αΦ∗(·)

strongly in L2
x for α = 0, 1, 2. Pre-compactness and standard perturbative arguments ensure that there exists

some non-empty interval I∗ around zero such that

λ(sn)−1∂αφ
∞(sn + tλ(sn)−1, λ(sn)−1·

)
→ ∂αΦ∗(t, ·)

in L∞loc(I∗; L2(R2)) with Φ∗ being a radially symmetric weak solution of (WM) on I∗×R2. We now distinguish
two cases:

• there exists a sequence of times sn ∈ In such that {λ(sn)} is bounded: since λ(t) ≥ λ0 > 0, there
exists a non-empty time interval Ĩ ⊂ I∗ such that sn + λ(sn)−1 Ĩ ⊂ In for each n; then (8.10) implies
that

∫
Ĩ

∫
R2 |∂tΦ

∗(t, x)|2 dx dt = 0 whence ∂tΦ
∗(t, ·) = 0 for all t ∈ Ĩ.

• {λ(sn)} is unbounded for every sequence {sn} with sn ∈ In: in this case we use a crucial Vitali
covering argument as in [17] to arrive at the same conclusion; we write for each n

In =
⋃
s∈In

[
s − λ(s)−1, s + λ−1(s)

]
∩ In
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and by the Vitali covering lemma, we may pick a disjoint subcollection of intervals {Is}s∈Jn with
Is :=

[
s − λ(s)−1, s + λ−1(s)

]
∩ In for some subset Jn ⊂ In with the property that∑

s∈Jn

5 |Is| ≥ 1;

it follows that, by definition of In, we may pick a sequence of times sn ∈ In with the property that∫
Isn
‖∂tφ

∞(t, ·)‖2
L2

x
dt = o(λ−1(sn)) and in particular∫ 1

−1
‖
(
χIn∂tφ

∞)
(sn + tλ(sn)−1, ·)‖2L2

x
dt = o(1),

but then, passing to a subsequence, we can extract a limiting function Φ∗ from

λ(sn)−1∂tφ
∞(sn + tλ(sn)−1, λ(sn)−1·)

with the property that ∂tΦ
∗(t, ·) = 0 for all t in the lifespan of Φ∗.

Hence, in both cases we have deduced the existence of a radially symmetric weak wave map Φ∗ : R2+1 → S2

with the following properties
∂tΦ

∗ = 0, t ∈ I∗

and
2∑
α=1

‖∂αΦ∗‖2L2
x
, 0.

This leads to a contradiction since there do not exist non-vanishing finite energy radial harmonic maps into
the sphere, see for instance [31]. We can then conclude that (8.9) holds. The remainder of the argument
hinges upon the weighted momentum monotonicity (8.6) combined with the following property: for any
given ε > 0, by pre-compactness of the orbit of φ∞ in Ḣ1

x × L2
x there exists R(ε) > 0 such that for all t ∈ I,∫

{|x|≥R(ε)}

∣∣∣λ(t)−1∇t,xφ
∞(t, λ(t)−1x)

∣∣∣2 dx ≤ ε.

Changing variables and using the key assumption λ(t) ≥ λ0 > 0, we can conclude that for all t ∈ I,∫
{|x|≥ R(ε)

λ0
}

|∇t,xφ
∞(t, x)|2 dx ≤ ε.

Using the notation R̃(ε) := R(ε)
λ0

, then by the weighted momentum monotonicity identity (8.6) integrated over
a sufficiently large time interval [0,T ], T � 1, we get for arbitrary ε > 0 and corresponding R̃ ≡ R̃(ε) that

(8.11)
∫
R2

x jϕ(x/R̃)(∂tφ
∞)†∂ jφ

∞ dx
∣∣∣∣∣T
0

= −

∫ T

0

∫
R2
|∂tφ

∞(t, x)|2 dx dt +

∫ T

0
O(r(R̃)) dt,

where

r(R̃) =

∫
|x|≥R̃
|∇t,xφ

∞(t, x)|2 dx ≤ ε

by our choice of R̃. But then using (8.9), the right-hand side of (8.11) can be bounded from above by

−

∫ T

0

∫
R2
|∂tφ

∞(t, x)|2 dx dt +

∫ T

0
O(r(R̃)) dt ≤ −(T − 1)α + CTε −→ −∞

as T → ∞, if we just choose ε > 0 sufficiently small so that Cε � α. At this point ε > 0 and correspond-
ingly R̃ are fixed. But then we see that the left-hand side of (8.11) is bounded by R̃Ecrit and so we get a
contradiction by taking T � 1 sufficiently large. �
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Having concluded the infinite time case, we turn now to the proof of Proposition 8.6 in the case T1 < ∞.
Similarly to [7], [17] and [16], the first step consists in reducing to a self-similar blow-up scenario. As
before, we can assume without loss of generality that T1 = 1. We recall from Lemma 8.3 that

(8.12) λ(t) ≥
C0(K)
1 − t

, 0 < t < 1,

and from Lemma 8.4 that

(8.13) supp(φ∞(t, ·)) ⊂ B(0, 1 − t) and supp(∂tφ
∞(t, ·)) ⊂ B(0, 1 − t).

Then we may prove the following upper bound for λ(t).

Lemma 8.7. Let φ∞ as above with T1 = 1. Then there exists C1(K) > 0 such that

(8.14) λ(t) ≤
C1(K)
1 − t

for all 0 ≤ t < 1.

Proof. We adopt the same strategy as in the proof of Lemma 10.11 in [17] (see also Lemma 8.12 in [16]).
Suppose that (8.14) fails. Define, for 0 ≤ t < 1 the following functional

z(t) :=
2∑

j=1

∫
R2

x j(∂ jφ
∞(t, x))†∂tφ

∞(t, x) dx.

The weighted momentum monotonicity (8.6) allows to compute that

z′(t) = −

∫
R2

∣∣∣∂tφ
∞(t, x)

∣∣∣2 dx.

Next by (8.13), we see that z(t)→ 0 as t → 1, hence we can write

z(t) =

∫ 1

t

∫
R2

∣∣∣∂tφ
∞(s, x)

∣∣∣2 dx ds.

At this point, we need to distinguish two cases: either there exists α > 0 such that∫ 1

t

∫
R2

∣∣∣∂tφ
∞(s, x)

∣∣∣2 dx ds ≥ α(1 − t), 0 ≤ t < 1

or else, there exists a sequence {tn}n ⊂ [0, 1) with tn → 1 such that, denoting Jn = (tn, 1), it holds

|Jn|

∫
Jn

∫
R2

∣∣∣∂tφ
∞(s, x)

∣∣∣2 dx ds→ as n→ ∞.

In the first case, we get a contradiction by proceeding as in the proof of Lemma 5.6 of [7] and using therein
the vanishing momentum property of Proposition 8.5. In the second case, we argue similarly as in the proof
of Proposition 8.6 for the infinite time case: by a Vitali argument and by pre-compactness one can conclude
the existence of a non-vanishing finite energy radially symmetric harmonic map into the sphere which gives
a contradiction (cf. [31]). �

Combining the previous lemmas we can reduce to the self–similar scenario. Indeed, we have the follow-
ing.

Corollary 8.8. Let φ∞ be as above with T1 = 1, then the set{
(1 − t)∂αφ∞(t, (1 − t)·

)
: t ∈ I, α = 0, 1, 2

}
is pre-compact in L2

x(R2).

Proof. For the proof we refer to the proof of Proposition 5.7 in [7]. �
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8.3. Rigidity II: The self-similar case. In this section we deal with the finite time case and we carry out
the last step of the Kenig-Merle rigidity argument by excluding the possibility of self-similar blow-up. In
particular, we rule out the existence of a minimal blow-up solution φ∞ as in Corollary 8.8. For the sake of
simplicity we drop the superscript∞ and denote the minimal blowup solution from Corollary 8.8 just by φ.
As in [20], [7], [17], we introduce the self-similar variables

y =
x

1 − t
, s = − log(1 − t), 0 ≤ t < 1

and
φ̃(s, y, 0) := φ(t, x) = φ(1 − e−s, e−sy), 0 ≤ s < ∞.

By construction, ∇s,yφ̃(s, ·, 0) is supported in {y ∈ R2 : |y| ≤ 1}. Next, for small δ > 0, we also define

y =
x

1 + δ − t
, s = − log(1 + δ − t), 0 ≤ t < 1

and set

(8.15) φ̃(s, y, δ) := φ(t, x) = φ(1 + δ − e−s, e−sy), 0 ≤ s < ∞.

Note that φ̃(s, y, δ) is defined for − log(1 + δ) ≤ s < − log δ. By standard computations, we can write the
wave maps equation in self-similar variables as follows

(8.16) ∂2
s φ̃ =

1
ρ
÷

(
ρ∇yφ̃ − ρ(y · ∇yφ̃)y

)
− 2y · ∇y∂sφ̃ − ∂sφ̃ + φ̃

(∣∣∣∂sφ̃ + y · ∇yφ̃
∣∣∣2 − ∣∣∣∇yφ̃

∣∣∣2)
where ρ = (1 − |y|2)−1/2. The following lemma collects some basic properties of φ̃ inherited from φ.

Lemma 8.9. For fixed δ > 0, we have for all 0 ≤ s < − log δ that
• supp(∂αφ̃(s, ·, δ)) ⊂ {y ∈ R2 : |y| ≤ 1 − δ} α = 0, 1, 2

•
∫
R2

(∣∣∣∇yφ̃(s, y, δ)
∣∣∣2 +

∣∣∣∂sφ̃(s, y, δ)
∣∣∣2) dy ≤ C

•
∑2
α=0

∫
R2

∣∣∣∂αφ̃(s, y, δ)
∣∣∣2 log

(
1

1−|y|2

)
dy ≤ C log 1

δ

•
∑2
α=0

∫
R2

∣∣∣∂αφ̃(s, y, δ)
∣∣∣2 (

1 − |y|2
)− 1

2 dy ≤ Cδ−1/2.

Proof. The properties are obtained by direct calculation. See also [7] and [16]. �

As in [17], we introduce the following Lyapunov functional

Ẽ
(
φ̃
)

(s) :=
1
2

∫
B1

[∣∣∣∂sφ̃
∣∣∣2 +

∣∣∣∇yφ̃
∣∣∣2 − ∣∣∣y · ∇yφ̃

∣∣∣2] (1 − |y|2)− 1
2 dy,

which satisfies a suitable monotonicity property stated in the next proposition.

Proposition 8.10. For 0 ≤ s1 < s2 < log(1/δ), the following identities holds

(1) Ẽ
(
φ̃
)

(s2) − Ẽ
(
φ̃
)

(s1) =
∫ s2

s1

∫
B1

|∂sφ̃|
2

(1−|y|2)3/2 dy ds,

(2) lims→log(1/δ) Ẽ
(
φ̃
)

(s) ≤ Ecrit.

Proof. For (1) see the proof of Lemma 2.1 in [20], while (2) can be proven as in [7]. �

By direct application of Proposition 8.10 we obtain the following corollary.

Lemma 8.11. For all δ > 0, there exists s̄δ ∈
(
| log δ|

2 , | log δ|
)

such that∫ s̄δ+| log δ|
1
2

s̄δ

∫
B1

|∂sφ̃|
2(

1 − |y|2
)3/2 dy ds ≤

Ecrit

| log δ|
1
2

.
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By using once more pre-compactness together with the self-similar behavior, we aim to extract a limit
φ∗ as δ → 0 and to show that φ∗ is a stationary solution to (8.16) and finally obtain a contradiction as in
previous sections. In order to achieve this, let t̄δ = 1 + δ − e−s̄δ for s̄δ as in Lemma 8.11. By Corollary 8.8
we may select δ j → 0 as j→ ∞ such that, for each α = 0, 1, 2

(1 − t̄δ j)∂αφ
∞(t̄δ j , (1 − t̄δ j)x)→ ∂αΦ∗(x)

strongly in L2 as δ j → 0. In fact, we may also achieve that

(8.17) (1 + δ j − t̄δ j)∂αφ
∞(t̄δ j , (1 + δ j − t̄δ j)x)→ ∂αΦ∗(x)

strongly in L2. Next, we consider the evolution, in the sense of Definition 7.6, of the energy class data given
by the left hand side of (8.17). We denote these evolutions by φ j∗ and we remark that, due to pre-compactness
and standard perturbative arguments, these evolutions exist on some joined fixed life-span [0,T ∗], where we
may assume 0 < T ∗ < 1. Furthermore, on [0,T ∗] we have

∂αφ
j∗(t, x) = (1 + δ j − t̄δ j)∂αφ

∞(t̄δ j + (1 + δ j − t̄δ j)t, (1 + δ j − t̄δ j)x)

and for each α = 0, 1, 2
∂αφ

j∗(t, ·)→ ∂αΦ∗(t, ·)
strongly in L2 as j → ∞ and uniformly for all 0 ≤ t ≤ T ∗, where Φ∗ is a weak wave map on [0,T ∗] × R2.
We also remark that, due to the previous identities, it holds

supp
(
φ j∗(t, ·)

)
⊂

{
x ∈ R2 : |x| ≤

1 − t̄δ j

1 + δ j − t̄δ j

− t < 1 − t
}

for 0 ≤ t ≤ T ∗. Next, we switch to self-similar variables

y =
x

1 − t
, s = − log(1 − t), 0 ≤ t ≤ T ∗,

and define
φ̃ j∗(s, y) := φ j∗(1 − e−s, e−sy)

and analogously for Φ̃∗. Then, as in [17], we infer that

∂αφ̃ j∗(s, ·)→ ∂αΦ̃∗(s, ·)

strongly in L2
y(R2) as j → ∞ and uniformly for all 0 ≤ s ≤ − log(1 − T ∗/2) =: T̃ and for α = 0, 1, 2.

Moreover, with φ̃ as in (8.15), we have

φ̃ j∗(s, y) = φ̃(s̄δ j + s, y, δ j)

and hence for each α = 0, 1, 2

(8.18) ∂αφ̃(s̄δ j + s, y, δ j)→ ∂αΦ̃∗(s, ·)

strongly in L2
y and uniformly in 0 ≤ s ≤ T̃ as j→ ∞. Therefore, Φ∗ is a solution of (8.16) and

supp
(
∂αΦ̃∗(·, s)

)
⊂ {y ∈ R2 : |y| ≤ 1}

and moreover
trace

(
Φ̃∗(·, s)

)
= const

where “trace” is the L2− trace.

Lemma 8.12. Let Φ̃∗ be as above. Then we have

Φ̃∗(s, y) = Φ̃∗(y) and Φ̃∗ . const.

Proof. The proof works exactly as in [17]: by (8.18) and Lemma 8.11 one shows that Φ̃∗(s, y) = Φ̃∗(y) while
the fact that Φ̃∗ . const follows as in [7]. �
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By this procedure we have obtained a stationary, nonconstant, distributional solution to (8.16) with finite
energy (relative to the y variable). As in [17], the following proposition leads to a contradiction.

Proposition 8.13. Let Φ be a distributional solution to (8.16) of finite energy∫
B1

|∇Φ(y)|2 dy < ∞.

Then Φ∗ = const.

Proof. For the proof we refer the reader to the proof of Proposition 10.17 in [17] where the argument of
Section 7.5.1 in [26] is implemented and the conclusion is reached by Lemaire’s uniqueness theorem [19].

�

Thanks to Proposition 8.13 we can conclude the proof of Proposition 8.6 in the finite time case.

Proof. [Proposition 8.6: finite time case] In the finite time case, thanks to Corollary 8.8 we have been able
to construct a nonconstant self–similar solution Φ∗ of (8.16) of finite energy, but this is in contradiction with
Proposition 8.13 and this completes the proof of Proposition 8.6. �

In order to close the rigidity argument, we notice that we need to justify the additional condition λ(t) ≥
λ0 > 0 for all t ∈ R assumed in Proposition 8.6, but this follows as in Lemma 10.18 of [17]. This concludes
the rigidity argument and hence finishes the proof of Theorem 1.1.
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Bâtiment desMathématiques, EPFL, Station 8, 1015 Lausanne, Switzerland
E-mail address: elisabetta.chiodaroli@epfl.ch
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