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Abstract

We prove that for a suitable class of metric measure spaces, the abstract notion of

tangent module as defined by the first author can be isometrically identified with the

space of L2-sections of the ‘Gromov-Hausdorff tangent bundle’.

The class of spaces (X, d,m) we consider are those that for every ε > 0 admit a count-

able collection of Borel sets (Ui) covering m-a.e. X and corresponding (1 + ε)-biLipschitz

maps ϕi : Ui → Rki such that (ϕi)∗(m|Ui
) � Lki . For technical reasons we shall also

require a priori that the Sobolev space W 1,2(X) is reflexive (a posteriori such space is

proved to be Hilbert). Notice that RCD∗(K,N) spaces fit in our framework.

Part of the work we carry out is that to give a meaning to the notion of L2-sections of

the Gromov-Hausdorff tangent bundle, in particular explaining what it means to have a

measurable map assigning to m-a.e. x ∈ X an element of the pointed-Gromov-Hausdorff

limit of the blow-up of X at x.

With respect to a previous version of the paper, we removed the assumption that the

given space is doubling and supports a Poincaré inequality.
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Introduction

In the context of metric geometry there is a well established notion of tangent space at a point:

the pointed-Gromov-Hausdorff limit of the blow-up of the space at the chosen point, whenever

such limit exists. More recently, the first author proposed in [9] an abstract definition of

tangent bundle to a generic metric measure space, such notion being based on the concepts

of L∞-module and Sobolev functions.

It is then natural to ask whether there is any relation between these two notions and pretty

easy to realize that without some regularity assumption on the space there is no hope to find

any: on one hand in general the study of Sobolev functions might lead to no information about

the metric structure of the space under consideration (this is the case, for instance, of spaces

admitting no non-constant Lipschitz curves), on the other the pointed-Gromov-Hausdorff

limits of the blow-ups can fail to exist at every point.

We restrict the attention to the class of strongly m-rectifiable spaces (X, d,m), defined

as those spaces whose associated Sobolev space W 1,2(X) is reflexive and such that for every

ε > 0 there exist a sequence of Borel sets (Ui) covering m-a.e. X and maps ϕi : Ui → Rki such

that for every i

ϕi is (1 + ε)-biLipschitz with its image and (ϕi)∗(m|Ui)� Lki |ϕi(Ui).

We notice that from this latter assumption only one would expect W 1,2(X) to be Hilbert,

and thus in particular reflexive. Yet for technical reasons we will need to assume reflexivity a

priori in order to make proper use of such charts (see Theorem 2.5). The fact that W 1,2(X)

is Hilbert will be obtained in Corollary 5.2. We also recall that a sufficient condition for

W 1,2(X) to be reflexive is that the metric space (X, d) is doubling (as proved in [1]).

The main result of this paper, Theorem 5.1, states that for this class of spaces the two

notions of tangent spaces mentioned above are intimately connected, in the sense that the

pointed-Gromov-Hausdorff limits of rescaled spaces are Euclidean spaces for m-a.e. x ∈ X and
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the space of measurable sections of the bundle formed by the collection of these blow-ups is

in isometric bijection with the elements of the tangent module.

Looking for an analogy, one might think at this result as a kind of Rademacher’s theorem:

in either case when defining a notion of differentiability/tangent space there is on one side a

‘concrete’ and ‘geometric’ notion obtained by ‘blow-ups’ and on the other an ‘abstract’ and

‘analytic’ notion obtained by looking at ‘weak’ derivatives. For general functions/spaces these

might be very different, but under appropriate regularity assumptions (Lipschitz/strongly m-

rectifiable) they a.e. coincide.

The motivating example of strongly m-rectifiable space are RCD∗(K,N) spaces. The

existence of (1 + ε)-biLipschitz charts was obtained by Mondino-Naber in [16] and the fact

that those maps send the reference measure into something absolutely continuous w.r.t. the

Lebesgue one has been independently proved by Kell-Mondino in [15] and by the authors in

[13] (in both cases relying on the recent powerful results of De Philippis-Rindler [8]).

Finally, we remark that part of our efforts here are made to give a meaning to the concept

of ‘measurable sections of the bundle formed by the collection of blow-ups’. Let us illustrate

the point with an example.

Suppose that we have a metric space (X, d) such that for every x ∈ X the tangent space

at x in the sense of pointed-Gromov-Hausdorff limit is the Euclidean space of a certain fixed

dimension k. Then obviously all such tangent spaces would be isometric and we might want

to identify all of them with a given, fixed Rk. Once this identifications are chosen, given

x ∈ X and v ∈ Rk we might think at v as an element of the tangent space at x and thus

a vector field should be thought of as a map from X to Rk. However, the choice of the

identifications/isometries of the abstract tangent spaces with the fixed Rk is highly arbitrary

and affects the structure that one is building: this is better seen if one wonders what it is, say,

a Lipschitz vector field, or a continuous, or a measurable one. In fact, in general there is no

answer to such questions, in the sense that there is no canonical choice of these identifications:

the problem is that, by the very definition, a pointed-Gromov-Hausdorff limit is the isometric

class of a metric space, rather than a ‘concrete’ one.

As we shall see, the situation changes if one works on a strongly m-rectifiable metric mea-

sure space: much like in the smooth setting the charts of a manifold are used to give structure

to the tangent bundle, in this case the presence of charts allows for a canonical identification

of the tangent spaces while also ensuring existence and uniqueness of a measurable struc-

ture on the resulting bundle (and in general nothing more than this, so that we still can’t

define continuous vector fields). The construction of such measurable bundle, which we call

Gromov-Hausdorff tangent bundle and denote by TGHX, is done in Section 4.2, while in Sec-

tion 6 we show that its fibres are the pointed-Gromov-Hausdorff limits of the rescaled spaces,

thus justifying the terminology. Let us remark that while the initial definition of the Gromov-

Hausdorff tangent bundle - and in particular its measurable structure - is simply given by a

product, in fact we shall show in Section 6 that such measurable structure is natural, because
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it is compatible with ‘taking all the pGH-limits at the same time’, see Theorem 6.6.
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1 Preliminaries

1.1 Metric Measure Spaces

For the purpose of this paper, a metric measure space is a triple (X, d,m), where

(X, d) is a complete and separable metric space,

m 6= 0 is a non-negative Borel measure on X, finite on balls.
(1.1)

Given two metric measure spaces (X, dX,mX) and (Y, dY,mY), we will always implicitly endow

the product space X×Y with the product distance dX × dY given by

(dX × dY)
(
(x1, y1), (x2, y2)

)2
:= dX(x1, x2)2 + dY(y1, y2)2

and the product measure mX ⊗mY. The notation B(X) denotes the Borel σ-algebra on X.

Given a metric measure space (X, d,m) and a point x ∈ spt(m), we say that the reference

measure m is pointwise doubling at x if

lim
r→0

m
(
B2r(x)

)
m
(
Br(x)

) < +∞. (1.2)

A metric measure space (X, d,m) is said to be doubling provided there exists C > 0 such that

m
(
B2r(x)

)
≤ C m

(
Br(x)

)
for every x ∈ X and r > 0 (1.3)

and the least such constant C is called the doubling constant of the space. It is clear that the

reference measure of a doubling space is pointwise doubling at all points.

Definition 1.1 (Vitali space) Let (X, d,m) be a metric measure space. Then X is said to

be a Vitali space provided the following condition is satisfied: given a Borel set A ⊆ X and a

family F of closed balls in X such that inf
{
r > 0 : Br(x) ∈ F

}
= 0 holds for m-a.e. x ∈ A,

there exists a countable family G ⊆ F of pairwise disjoint balls such that m
(
A \

⋃
B∈GB

)
= 0.

By slightly modifying the arguments contained in the proof of [14, Theorem 1.6], one can

readily prove that

m is pointwise doubling at m-a.e. x ∈ X =⇒ (X, d,m) is a Vitali space. (1.4)

A fundamental property of the Vitali spaces is the Lebesgue differentiation theorem, whose

proof can be found e.g. in [14]:
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Theorem 1.2 (Lebesgue differentiation theorem) Let (X, d,m) be a Vitali space. Fix a

function f ∈ L1
loc(X). Then

f(x) = lim
r→0

1

m
(
Br(x)

) ∫
Br(x)

f dm for m-a.e. x ∈ X. (1.5)

Given a point x ∈ X and a Borel subset E of X, we say that x is of density λ ∈ [0, 1] for E if

DE(x) := lim
r→0

m
(
E ∩Br(x)

)
m
(
Br(x)

) = λ. (1.6)

By applying Theorem 1.2 to the function χE , we deduce that

DE(x) = 1 for m-a.e. x ∈ E. (1.7)

In the sequel, the following class of metric measure spaces will play a fundamental role:

(X, d,m) is a metric measure space with the following property:

for every Borel set E ⊆ X and for m-a.e. x̄ ∈ E, it holds that

∀ε > 0 ∃ r > 0 : ∀x ∈ Br(x̄) ∃ y ∈ E : d(x, y) < ε d(x, x̄).

(1.8)

A sufficient condition for satisfying the previous property is given by the next result.

Lemma 1.3 Let (X, d,m) be a metric measure space. Fix A ∈ B(X). Suppose that there

exist constants r̄, C > 0 such that m
(
B2r(x)

)
≤ C m

(
Br(x)

)
for every 0 < r < r̄ and x ∈ A.

Then the metric measure space
(
A, d|A×A,m|A

)
satisfies (1.8).

In particular, any doubling metric measure space (X, d,m) satisfies (1.8).

Proof. We argue by contradiction: assume the existence of ε > 0 and of points {xr}r>0 ⊆ A

with d(xr, x̄) < r for every r > 0, such that

E ∩Bε d(xr,x̄)(xr) = ∅ for every r > 0. (1.9)

Fix n ∈ N such that 2n ε ≥ 2 + ε. Thus Bε d(xr,x̄)(xr) ⊆ B(1+ε) d(xr,x̄)(x̄) ⊆ B2n ε d(xr,x̄)(xr) for

every r > 0, hence in particular it holds that

m
(
Bε d(xr,x̄)(xr)

)
≥

m
(
B2nε d(xr,x̄)(xr)

)
Cn

≥
m
(
B(1+ε) d(xr,x̄)(x̄)

)
Cn

if 0 < r <
r̄

2n−1 ε
. (1.10)

Therefore

DE(x̄) = lim
r→0

m
(
B(1+ε) d(xr,x̄)(x̄) ∩ E

)
m
(
B(1+ε) d(xr,x̄)(x̄)

)
(by (1.9)) ≤ lim

r→0

m
(
B(1+ε) d(xr,x̄)(x̄) \Bε d(xr,x̄)(xr)

)
m
(
B(1+ε) d(xr,x̄)(x̄)

)
= lim

r→0

m
(
B(1+ε) d(xr,x̄)(x̄)

)
−m

(
Bε d(xr,x̄)(xr)

)
m
(
B(1+ε) d(xr,x̄)(x̄)

)
(by (1.10)) ≤ 1− 1

Cn
< 1,

which contradicts our assumption DE(x̄) = 1. �
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1.2 Lipschitz Functions

Let (X, dX) and (Y, dY) be metric spaces. A function f : X → Y is said to be Lipschitz

(or, more precisely, λ-Lipschitz) if there exists λ ≥ 0 such that dY

(
f(x), f(y)

)
≤ λ dX(x, y)

for every x, y ∈ X. The smallest λ ≥ 0 such that f is λ-Lipschitz is denoted by Lip(f) and

is called Lipschitz constant of f . Given any subset E of X, we indicate by Lip(f ;E) the

Lipschitz constant of f |E . The family of all the Lipschitz functions from X to Y is denoted

by LIP(X,Y). For the sake of brevity, we shall write LIP(X) instead of LIP(X,R). We say

that a function f : X→ Y is λ-biLipschitz if it is invertible and f , f−1 are λ-Lipschitz.

Definition 1.4 (Local Lipschitz constant) Let (X, d) be a metric space. Let f ∈ LIP(X).

Then the local Lipschitz constant of f is the function lip(f) : X→ [0,+∞), which is defined

by lip(f)(x) := 0 if x ∈ X is an isolated point and by

lip(f)(x) := lim
y→x

y∈X\{x}

∣∣f(y)− f(x)
∣∣

d(y, x)
if x ∈ X is an accumulation point. (1.11)

Definition 1.5 (Asymptotic Lipschitz constant) Let (X, d) be a metric space and let

f ∈ LIP(X). Then the asymptotic Lipschitz constant of f is the map lipa(f) : X→ [0,+∞),

which is defined by

lipa(f)(x) := inf
r>0

Lip
(
f ;Br(x)

)
for every x ∈ X. (1.12)

One can easily prove that lip(f) ≤ lipa(f) ≤ Lip(f) and that

lip(f ◦ ϕ) ≤ Lip(ϕ) lip(f) ◦ ϕ (1.13)

for any couple of metric spaces (X, dX), (Y, dY) and functions ϕ ∈ LIP(X,Y) and f ∈ LIP(Y).

Given a metric space (X, d), a Lipschitz function f ∈ LIP(X) and a Borel set E ∈ B(X),

we have that lip
(
f |E
)
(x) ≤ lip(f)(x) is satisfied for every x ∈ X, where lip

(
f |E
)

is taken in

the metric space
(
E, d|E×E

)
. Simple examples show that in general equality does not hold;

however, if we restrict to the case of a doubling metric measure space, then Lemma 1.3 grants

that equality holds at least on density points of E:

Proposition 1.6 Let (X, d,m) be a doubling metric measure space. Fix a Borel set E ∈ B(X)

and a Lipschitz function f ∈ LIP(X). Then

lip
(
f |E
)
(x) = lip(f)(x) for m-a.e. x ∈ E. (1.14)

Proof. It suffices to prove that lip(f)(x) ≤ lip
(
f |E
)
(x) for every point x ∈ E of density 1. Thus

fix x ∈ E with DE(x) = 1. If x is an isolated point in X, then lip(f)(x) = lip
(
f |E
)
(x) = 0.

If x is an accumulation point, then take a sequence (xn)n ⊆ X \ {x} converging to x. Up

to passing to a suitable subsequence, we can assume that limn

∣∣f(xn) − f(x)
∣∣/d(xn, x) is

actually a limit. Moreover, possibly passing to a further subsequence, Lemma 1.3 provides
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the existence of a sequence (yn)n ⊆ E satisfying d(xn, yn) < d(xn, x)/n for every n ≥ 1. In

particular, limn yn = x and yn 6= x for every n ≥ 1. Therefore

lim
n→∞

∣∣f(xn)− f(x)
∣∣

d(xn, x)
≤ lim

n→∞

∣∣f(xn)− f(yn)
∣∣

d(xn, yn)

d(xn, yn)

d(xn, x)
+ lim
n→∞

∣∣f(yn)− f(x)
∣∣

d(yn, x)

d(yn, x)

d(xn, x)

≤ Lip(f) lim
n→∞

1

n
+ lim
n→∞

∣∣f(yn)− f(x)
∣∣

d(yn, x)
lim
n→∞

(
1 +

1

n

)
≤ lip

(
f |E
)
(x).

The arbitrariness of (xn)n gives the conclusion. �

In what follows we shall frequently use the following fact:

Given a metric space (X, d), a subset E of X and f ∈ LIP(E),

there exists f̄ ∈ LIP(X) such that f̄ |E = f and Lip(f̄) = Lip(f).
(1.15)

An explicit expression - called McShane extension - for such a function f̄ is given by the

formula f̄(x) := inf
{
f(y) + Lip(f) d(x, y)

∣∣ y ∈ E}, x ∈ X.

Arguing componentwise, from this fact we also directly deduce that:

Given a metric space (X, d), a subset E of X and f ∈ LIP(E,Rn),

there exists f̄ ∈ LIP(X,Rn) such that f̄ |E = f and Lip(f̄) ≤
√
nLip(f).

Let us briefly discuss the case of Lipschitz functions from Rk into itself. Let End(Rk) be

the set of linear maps from Rk to itself, E ⊂ Rk be Borel and f : E → Rk be a Lipschitz

function. Find a Lipschitz extension f̃ of f to the whole Rk and use Rademacher theorem to

obtain that f̃ is differentiable Lk-a.e.. Call df̃(x) ∈ End(Rk) such differential at the point x,

whenever it is defined. Then it is not hard to check, for instance following the same arguments

used for the proof of Proposition 1.6, that for Lk-a.e. x ∈ E, the value of df̃(x) does not

depend on the chosen extension f̃ , so that the formula

df(x) := df̃(x) for Lk-a.e. x ∈ E,

is well-posed and defines a bounded strongly measurable map from E to End(Rk) satisfying∥∥df(x)
∥∥ ≤ Lip(f) for Lk-a.e. x ∈ E.

1.3 Hausdorff Measures

Given a metric space (X, d) and k ∈ N, we denote by Hk the k-dimensional Hausdorff measure

on X. We recall that, taken two metric spaces (X, dX) and (Y, dY), it holds that

Hk
(
f(A)

)
≤ Lip(f)k Hk(A) for every f ∈ LIP(X,Y) and A ⊆ X. (1.16)

Another important property of the Hausdorff measures is the following, for whose proof we

refer to [6, Theorem 2.4.3].
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Proposition 1.7 Let (X, d, µ) be a metric measure space and k ∈ N. Let A ⊆ X be a Borel

set and λ ∈ (0,+∞). Then

lim
r→0

µ
(
Br(x)

)
ωk rk

≥ λ for every x ∈ A =⇒ λHk(A) ≤ µ(A), (1.17)

where ωk denotes the Lebesgue measure of the unit ball in Rk.

Given a metric space (X, d), we say that a Borel set A ⊆ X is countably Hk-rectifiable provided

there exist a sequence of Borel sets (Bn)n ⊆ B(Rk) and Lipschitz maps fn : Bn → X such

that Hk
(
A \

⋃
n fn(Bn)

)
= 0.

We recall a fundamental property of countably Hk-rectifiable sets, see [5, Theorem 5.4]:

Theorem 1.8 (Spherical density) Let (X, d) be a metric space and k ∈ N. Let A ⊆ X be

a countably Hk-rectifiable set and θ : A → (0,+∞) a Borel map. Define µ := θHk|A and

suppose that µ is a finite measure. Then

lim
r→0

µ
(
Br(x)

)
ωk rk

= θ(x) holds for Hk-a.e. x ∈ A. (1.18)

1.4 Sobolev Calculus

The scope of this section is to recall how to build the Sobolev space W 1,2(X) on a metric

measure space. The following definitions and results are taken from [4] and [10].

Let (X, d,m) be a metric measure space, which will be fixed for the whole section. We say

that a curve γ ∈ C
(
[0, 1],X

)
is absolutely continuous if there exists f ∈ L1(0, 1) such that

d(γt, γs) ≤
∫ s

t
f(r) dr for every t, s ∈ [0, 1] with t < s. (1.19)

We will denote by AC
(
[0, 1],X

)
the set of all the absolutely continuous curves in X. Given

any curve γ ∈ AC
(
[0, 1],X

)
, the limit

|γ̇t| := lim
h→0

d(γt+h, γt)

|h|
(1.20)

exists for L1-a.e. t ∈ [0, 1] and defines an L1-function. Such map, called metric speed of γ, is

the minimal (in the a.e. sense) L1-function which can be chosen as f in the right hand side

of (1.19). For a proof of these results, we refer to Theorem 1.1.2 of [2].

For every t ∈ [0, 1], we denote by et : C
(
[0, 1],X

)
→ X the evaluation map at time t, namely

et(γ) := γt for every γ ∈ C
(
[0, 1],X

)
. (1.21)

Recall that C
(
[0, 1],X

)
is a metric space, with respect to the sup distance. Hence we can

consider a Borel probability measure π on C
(
[0, 1],X

)
. We say that π is a test plan provided

(et)]π ≤ C m for every t ∈ [0, 1], for some constant C > 0,∫∫ 1

0
|γ̇t|2 dtdπ(γ) < +∞, where

∫ 1

0
|γ̇t|2 dt := +∞ if γ /∈ AC

(
[0, 1],X

)
.

(1.22)

In particular, any test plan must be necessarily concentrated on AC
(
[0, 1],X

)
.
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Definition 1.9 (Sobolev class) The Sobolev class S2(X) (resp. S2
loc(X)) is the space of all

the Borel maps f : X→ R such that there exists G ∈ L2(m) (resp. G ∈ L2
loc(m)) satisfying∫ ∣∣f(γ1)− f(γ0)

∣∣ dπ(γ) ≤
∫∫ 1

0
G(γt) |γ̇t| dt dπ(γ) for every test plan π. (1.23)

Here and in what follows, L2
loc(m) is the space of functions which for every x ∈ X coincide

with some function in L2(m) on some neighbourhood of x. Similarly for other spaces.

Given f ∈ S2(X), it is possible to prove that there exists a minimal function |Df | in

the m-a.e. sense which can be chosen as G in (1.23). We call |Df | the minimal weak upper

gradient of f .

The main calculus properties of minimal weak upper gradients are the following:

Locality. If f, g ∈ S2
loc(X) and N ∈ B(R) satisfies L1(N) = 0, then

|Df | = 0

|Df | = |Dg|
m-a.e. in f−1(N),

m-a.e. in {f = g}.
(1.24)

Lower semicontinuity. Let (fn)n ⊆ S2(X) satisfy limn fn(x) = f(x) for m-a.e. x ∈ X, for

some f : X→ R. Assume that |Dfn|⇀ G weakly in L2(m) as n→∞, for some G ∈ L2(m).

Then f ∈ S2(X) and

|Df | ≤ G m-a.e. in X. (1.25)

Subadditivity. If f, g ∈ S2
loc(X) and α, β ∈ R, then αf + βg ∈ S2

loc(X) and∣∣D(αf + βg)
∣∣ ≤ |α||Df |+ |β||Dg| m-a.e. in X. (1.26)

Leibniz rule. If f, g ∈ S2
loc(X) ∩ L∞loc(m), then fg ∈ S2

loc(X) ∩ L∞loc(m) and∣∣D(fg)
∣∣ ≤ |f ||Dg|+ |g||Df | m-a.e. in X. (1.27)

Chain rule. Let f ∈ S2
loc(X) and ϕ ∈ LIP(R). Then ϕ ◦ f ∈ S2

loc(X) and∣∣D(ϕ ◦ f)
∣∣ = |ϕ′| ◦ f |Df | m-a.e. in X, (1.28)

where |ϕ′| ◦ f is arbitrarily defined at the non-differentiability points of ϕ. Notice that for

f ∈ LIP(X), we trivially have that (1.23) is satisfied for G := lip(f), so that f ∈ S2
loc(X) and

|Df | ≤ lip(f) m-a.e. in X. (1.29)

The Sobolev space W 1,2(X) is defined as

W 1,2(X) := S2(X) ∩ L2(m). (1.30)

Whenever ambiguities may arise, we write W 1,2
m (X) and |Df |m in place of W 1,2(X) and |Df |,

respectively. It turns out that W 1,2(X) is a Banach space if endowed with the norm

‖f‖W 1,2(X) :=
√
‖f‖2L2(m) +

∥∥|Df |∥∥2

L2(m)
for every f ∈W 1,2(X). (1.31)

However, in general W 1,2(X) is not a Hilbert space. We then give the following definition:
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Definition 1.10 (Infinitesimally Hilbertian) The metric measure space (X, d,m) is said

to be infinitesimally Hilbertian provided W 1,2(X) is a Hilbert space.

It has been proved in [3] that Sobolev functions can be approximated by Lipschitz ones:

Theorem 1.11 (Density in energy of Lipschitz functions) Let (X, d,m) be any metric

measure space. Then for any function f ∈ W 1,2(X) there exists a sequence (fn)n ⊆ LIPc(X)

such that fn → f and lipa(fn)→ |Df | in L2(m).

Moreover, if W 1,2(X) is reflexive then (fn)n can be chosen so that
∣∣D(fn− f)

∣∣→ 0 in L2(m),

in other words LIPc(X) is dense in W 1,2(X) with respect to the W 1,2(X)-norm.

We conclude recalling that

(X, d,m) doubling =⇒ W 1,2(X) is a reflexive space. (1.32)

This non-trivial result, which in fact only requires the doubling property of the distance, has

been proved in [1].

1.5 Cotangent and Tangent Modules

Here we recall some definitions and concepts introduced by the first author in [9], referring

to [9] and [11] for a more detailed discussion.

Let (X, d,m) be a metric measure space, which will be fixed throughout the whole section.

We first give the definition of L2(m)-normed L∞(m)-module:

Definition 1.12 (L2(m)-normed L∞(m)-module) Let M be a Banach space. Then M

is said to be an L2(m)-normed L∞(m)-module provided it is endowed with a bilinear map

L∞(m) ×M 3 (f, v) 7→ fv ∈M , called multiplication, and a function | · | : M → L2(m)+,

called pointwise norm, which satisfy the following properties:

(i) (fg)v = f(gv) for every v ∈M and f, g ∈ L∞(m).

(ii) 1v = v for every v ∈M , where 1 ∈ L∞(m) is the function identically 1.

(iii)
∥∥|v|∥∥

L2(m)
= ‖v‖M for every v ∈M .

(iv) |fv| = |f | |v| m-a.e. in X, for every v ∈M and f ∈ L∞(m).

Given a Borel set A ∈ B(X), we define the ‘restriction’ M |A of M to A as

M |A :=
{
v ∈M

∣∣χAc · v = 0
}

. (1.33)

Notice that M |A inherits the structure of L2(m)-normed L∞(m)-module.

Given two L2(m)-normed L∞(m)-modules M and N , we say that a map T : M → N

is a module morphism provided it is linear continuous and it satisfies

T (fv) = f T (v) for every v ∈M and f ∈ L∞(m). (1.34)
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An important class of L2(m)-normed L∞(m)-modules is that of Hilbert modules, namely those

modules H that are Hilbert spaces when seen as normed spaces. It turns out that a given

normed module H is a Hilbert module if and only if its pointwise norm satisfies the pointwise

parallelogram identity

|v + w|2 + |v − w|2 = 2 |v|2 + 2 |w|2 m-a.e. in X (1.35)

for any couple of elements v, w ∈H .

Definition 1.13 (Dual module) Let M be an L2(m)-normed L∞(m)-module. Then we

define the dual module M ∗ of M as the family of all linear continuous maps T : M → L1(m)

such that T (fv) = f T (v) holds m-a.e. in X for any v ∈M and f ∈ L∞(m).

The space M ∗ naturally comes with the structure of L2(m)-normed L∞(m)-module: it is a

Banach space with respect to the pointwise vector operations and the operator norm, while

the multiplication fT between f ∈ L∞(m) and T ∈M ∗ is defined as

(fT )(v) := f T (v) m-a.e. in X, for every v ∈M (1.36)

and the pointwise norm |T | of T ∈M ∗ is given by

|T | := ess sup
v∈M ,

|v|≤1 m-a.e.

∣∣T (v)
∣∣ for every T ∈M ∗. (1.37)

We recall the notion of local dimension:

Definition 1.14 (Local dimension of normed modules) Let M be an L2(m)-normed

L∞(m)-module. Let A ∈ B(X) be such that m(A) > 0. Then:

(i) Finitely many elements v1, . . . , vn ∈ M are said to be independent on A provided for

any f1, . . . , fn ∈ L∞(m) it holds that

χA

n∑
i=1

fivi = 0 ⇐⇒ fi = 0 m-a.e. in A, for every i = 1, . . . , n. (1.38)

(ii) We say that a set S ⊂ M generates M |A provided M |A is the closure of the set of

finite sums of objects of the form χAfv for f ∈ L∞(m) and v ∈ S.

(iii) We say that some elements v1, . . . , vn ∈ M constitute a basis for M |A if they are

independent on A and generate M |A.

(iv) The local dimension of M on A is defined to be equal to n ∈ N if M admits a basis of

cardinality n on A.

Observe that the notion of local dimension is well-defined, in the sense that two different

bases for M on A must necessarily have the same cardinality.

By using the language of L2(m)-normed L∞(m)-modules described so far, we can now

introduce the cotangent module L2(T ∗X) associated to (X, d,m). Its definition is based upon

the following result, whose proof can be found in [11]:
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Theorem 1.15 There exists (up to unique isomorphism) a unique couple (M , d), where M

is an L2(m)-normed L∞(m)-module and d : W1,2(X)→M is a linear map, such that

(i) |df | = |Df | holds m-a.e. in X, for every f ∈W 1,2(X),

(ii)
{

df : f ∈W 1,2(X)
}

generates M on X.

Namely, if two couples (M ,d) and (M ′,d′) as above fulfill both (i) and (ii), then there exists

a unique module isomorphism Φ : M →M ′ such that Φ ◦ d = d′.

Definition 1.16 (Cotangent module and differential) The module provided by the pre-

vious theorem is called cotangent module and denoted by L2(T ∗X); its elements are called

1-forms on X. The map d will be called differential.

The tangent module is then introduced by duality:

Definition 1.17 (Tangent module) We call tangent module the dual of L2(T ∗X) and de-

note it by L2(TX). Its elements are called vector fields on X.

In case of ambiguity, we shall make use of the notation L2
m(T ∗X), dmf and L2

m(TX) instead

of L2(T ∗X), df and L2(TX), respectively.

It can be proved that the space (X, d,m) is infinitesimally Hilbertian if and only if

L2(T ∗X) and L2(TX) are Hilbert modules. (1.39)

For this and other equivalent characterizations, we refer to [9, Proposition 2.3.17].

Remark 1.18 (Localisation of the cotangent module) Let (X, d,m) be a metric mea-

sure space. Fix an open set Ω ⊆ X and define m̃ := m|Ω. Then the cotangent module L2
m̃(T ∗X)

can be canonically identified with L2
m(T ∗X)|Ω, in the following sense: there exists a (unique)

linear isomorphism ι : L2
m̃(T ∗X)→ L2

m(T ∗X)|Ω such that∣∣ι(v)
∣∣ = |v| m̃-a.e. for every v ∈ L2

m̃(T ∗X),

ι(dm̃f) = dmf for every f ∈W 1,2
m (X) with dist

(
spt(f),X \ Ω

)
> 0.

(1.40)

First of all, observe that the second line in (1.40) makes sense, because any map f ∈W 1,2
m (X)

with dist
(
spt(f),X \ Ω

)
> 0 belongs to W 1,2

m̃
(X) and satisfies |Df |m̃ = |Df |m m̃-a.e.. Such

fact can be readily proved by arguing as in [4, Theorem 4.19] and [10, Proposition 2.6].

Let us denote by F the family of all maps f as above. Then the set F is dense in W 1,2
m̃

(X),

as follows by a standard cut-off argument, so that accordingly L2
m̃(T ∗X) is generated by the

1-forms dm̃f with f ∈ F. Analogously, the set {dmf : f ∈ F} generates L2
m(T ∗X)|Ω. Now let

us define ι
(∑n

i=1
χAi dm̃fi

)
:=
∑n

i=1
χAi dmfi for every 1-form

∑n
i=1

χAi dm̃fi, where (Ai)
n
i=1

is a Borel partition of Ω and f1, . . . , fn ∈ F. Hence ι can be uniquely extended to a linear

isomorphism ι : L2
m̃(T ∗X)→ L2

m(T ∗X)|Ω satisfying (1.40), which proves the above claim.
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Therefore it immediately follows that there exists a (uniquely determined) linear and

continuous isomorphism ι : L2
m̃(TX)→ L2

m(TX)|Ω such that

ι(ω)
(
ι(v)

)
= ω(v) holds m̃-a.e. in X, for every ω ∈ L2

m̃(T ∗X) and v ∈ L2
m̃(TX). (1.41)

In particular, the equality
∣∣ι(v)

∣∣ = |v| is satisfied m̃-a.e. in X for every v ∈ L2
m̃(TX). �

We conclude the section discussing the case of X = Rk. Let us denote by L2(Rk,Rk) the

standard space of L2 vector fields on Rk and by L2(Rk, (Rk)∗) its dual, i.e. the space of L2

1-forms. Notice that the dual of L2(Rk, (Rk)∗) is L2(Rk,Rk).
We know that the Sobolev space W 1,2(Rk) as defined here coincides with the classically

defined one via distributional derivatives and that for f ∈ W 1,2(Rk) if we consider its dis-

tributional differential, which for a moment we denote d̂f and which naturally belongs to

L2(Rk, (Rk)∗), we have that its norm |d̂f | coincides with the minimal weak upper gradient

|Df | (see [3]). Also, it is readily verified that 1-forms of the kind
∑n

i=1
χAi d̂fi, for n ∈ N,

(Ai) a partition of Rk and (fi) ⊂ W 1,2(Rk), are dense in L2(Rk, (Rk)∗). Thanks to Theorem

1.15, these facts are sufficient to conclude that the ‘concrete’ space of L2 1-forms L2(Rk, (Rk)∗)
and the abstract cotangent module L2(T ∗Rk) can be canonically identified by an isomorphism

which sends d̂f to df .

Once this identification is done, it follows that also the space of L2 vector fields L2(Rk,Rk)
can be canonically identified with the tangent module L2(TRk). Such identification allows us

to identify, for a given Borel set E ⊂ Rk, the restricted module L2(TRk)|E with L2(E,Rk).
Finally, we point out that for every function f ∈ LIP(Rk) ∩W 1,2(Rk) it holds that

|df | = lip(f) is satisfied Lk-a.e. in Rk, (1.42)

which represents a reinforcement of property (1.29).

2 Maps of Bounded Deformation

Fix two metric measure spaces (X, dX,mX) and (Y, dY,mY). We report here some definitions

and results that are taken from [9] and [11], where it is described how the notions of pullback

of 1-forms and of differential can be built for a special class of mappings between X and Y,

which are said to be of bounded deformation.

We start by recalling what it means for a map ϕ : X→ Y to be of bounded deformation:

Definition 2.1 (Map of bounded compression/deformation) A map ϕ : X → Y is

said to be of bounded compression if it satisfies

ϕ∗mX ≤ C mY for a suitable constant C > 0. (2.1)

The least such C is called compression constant and is denoted by Comp(ϕ).

Moreover, the map ϕ is said to be of bounded deformation provided it is both Lipschitz

and of bounded compression.
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For maps of bounded compression/deformation, we have at disposal two notions of pullback :

i) Suppose that ϕ : X → Y is a map of bounded compression. Given any L2(mY)-

normed L∞(mY)-module M , there exists (up to unique isomorphism) a unique couple(
ϕ∗M , [ϕ∗]

)
, where ϕ∗M is an L2(mX)-normed L∞(mX)-module and [ϕ∗] : M → ϕ∗M

is a linear and continuous operator, such that∣∣[ϕ∗]v∣∣ = |v| ◦ ϕ holds mX-a.e., for every v ∈M ,{
[ϕ∗]v : v ∈M

}
generates the whole ϕ∗M .

(2.2)

We say that ϕ∗M is the pullback module of M and that [ϕ∗] is the pullback map. We

shall sometimes write [ϕ∗v] instead of [ϕ∗]v.

In general, ϕ∗M ∗ is only isometrically embedded into (ϕ∗M )∗, but the two modules

are actually isomorphic provided, for example, the space M ∗ is separable.

ii) Suppose that ϕ : X→ Y is a map of bounded deformation. One has that f◦ϕ ∈W 1,2(X)

whenever f ∈W 1,2(Y) and that
∣∣d(f ◦ ϕ)

∣∣ ≤ Lip(ϕ) |df | ◦ ϕ holds mX-a.e.. Then there

exists a unique linear and continuous operator ϕ∗ : L2(T ∗Y)→ L2(T ∗X), called pullback

of 1-forms, such that

ϕ∗df = d(f ◦ ϕ) for every f ∈W 1,2(Y),

ϕ∗(hω) = h ◦ ϕϕ∗ω for every ω ∈ L2(T ∗Y) and h ∈ L∞(mY).
(2.3)

Moreover, it holds that

|ϕ∗ω| ≤ Lip(ϕ) |ω| ◦ ϕ mX-a.e., for every ω ∈ L2(T ∗Y). (2.4)

With this said, we are in a position to introduce the differential dϕ of a map of bounded

deformation ϕ : X→ Y.

Theorem 2.2 (Differential of a map of bounded deformation) Let ϕ : X → Y be a

map of bounded deformation. Assume that L2(TY) is separable. Then there exists a unique

linear and continuous operator dϕ : L2(TX)→ ϕ∗L2(TY), called differential of ϕ, such that

[ϕ∗ω]
(
dϕ(v)

)
= ϕ∗ω(v) for every ω ∈ L2(T ∗Y) and v ∈ L2(TX). (2.5)

In particular, the map dϕ is L∞(mX)-linear and satisfies∣∣dϕ(v)
∣∣ ≤ Lip(ϕ) |v| mX-a.e., for every v ∈ L2(TX). (2.6)

In order to continue our analysis, we now need to show that the differential of a map of

bounded deformation is a local object, as explained in the following two results.

Lemma 2.3 Let ϕ : X→ Y be a map of bounded deformation. Fix a Borel set E ⊆ X. Then

χE
∣∣d(f ◦ ϕ)

∣∣ ≤ Lip(ϕ;E)χE |df | ◦ ϕ holds mX-a.e., for every f ∈W 1,2(Y). (2.7)
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Proof. Choose a sequence (fn)n ⊆ LIPc(Y) such that fn → f and lipa(fn)→ |df | in L2(mY).

Let n ∈ N be fixed. Given any x ∈ E and r > 0, there exists a Lipschitz map g ∈ LIP(X)

such that Lip(g) = Lip
(
fn ◦ϕ;E∩Br(x)

)
and g|E∩Br(x)

= fn ◦ϕ|E∩Br(x)
. Since ϕ

(
E∩Br(x)

)
is contained in the ball BLip(ϕ)r

(
ϕ(x)

)
, we have that

χE∩Br(x)

∣∣d(fn ◦ ϕ)
∣∣ = χE∩Br(x) |dg| ≤ Lip(g) ≤ Lip(ϕ;E) Lip

(
fn;BLip(ϕ)r

(
ϕ(x)

))
(2.8)

holds mX-a.e.. Given that BLip(ϕ)r

(
ϕ(x)

)
⊆ B2Lip(ϕ)r

(
ϕ(y)

)
is satisfied for every y ∈ Br(x),

we deduce from (2.8) and Lindelöf lemma that∣∣d(fn ◦ ϕ)
∣∣(x) ≤ Lip(ϕ;E) Lip

(
fn;B2Lip(ϕ)r

(
ϕ(x)

))
for mX-a.e. x ∈ E. (2.9)

By letting r → 0 in the above inequality (2.9), we thus obtain that

χE
∣∣d(fn ◦ ϕ)

∣∣ ≤ Lip(ϕ;E)χE lipa(fn) ◦ ϕ holds mX-a.e., for every n ∈ N. (2.10)

Notice that
∣∣d(fn ◦ ϕ)

∣∣ ≤ Lip(ϕ) |dfn| ◦ ϕ ≤ Lip(ϕ) lipa(fn) ◦ ϕ is satisfied mX-a.e., thus

accordingly the set of all functions
∣∣d(fn ◦ ϕ)

∣∣, with n ∈ N, is norm bounded in L2(mX). In

particular, possibly passing to a (not relabeled) subsequence, one has that
∣∣d(fn ◦ ϕ)

∣∣ ⇀ h

weakly in L2(mX) for a suitable map h ∈ L2(mX). By lower semicontinuity of minimal weak

upper gradients, we deduce that
∣∣d(f ◦ ϕ)

∣∣ ≤ h holds mX-a.e.. Since lipa(fn) ◦ ϕ ⇀ |df | ◦ ϕ
weakly in L2(mX), we finally conclude by recalling (2.10) that

χE
∣∣d(f ◦ ϕ)

∣∣ ≤ χE h ≤ Lip(ϕ;E)χE |df | ◦ ϕ holds mX-a.e.,

yielding (2.7) and accordingly the thesis. �

Corollary 2.4 Let (X, dX,mX), (Y, dY,mY) be metric measure spaces such that L2(TY) is

separable. Let ϕ : X→ Y be a map of bounded deformation. Fix a Borel set E ⊆ X. Then∣∣dϕ(v)
∣∣ ≤ Lip(ϕ;E) |v| holds mX-a.e., for every v ∈ L2(TX)|E . (2.11)

Proof. Given any simple form ω =
∑n

i=1
χAi dfi ∈ L2(T ∗Y), with (Ai)

n
i=1 ⊆ B(Y) disjoint

and (fi)
n
i=1 ⊆W 1,2(Y), one has mX-a.e. that

χE |ϕ∗ω| =
n∑
i=1

χϕ−1(Ai)∩E
∣∣d(fi◦ϕ)

∣∣ (2.7)

≤ Lip(ϕ;E)

n∑
i=1

χE
(
χAi |dfi|

)
◦ϕ = Lip(ϕ;E)χE |ω|◦ϕ,

which grants that χE |ϕ∗ω| ≤ Lip(ϕ;E)χE |ω| ◦ ϕ mX-a.e. for every ω ∈ L2(T ∗Y). Hence

χE

∣∣∣[ϕ∗ω]
(
dϕ(v)

)∣∣∣ = χE
∣∣ϕ∗ω(v)

∣∣ ≤ χE |ϕ∗ω| |v| ≤ Lip(ϕ;E)χE |ω| ◦ ϕ |v|

= Lip(ϕ;E)χE
∣∣[ϕ∗ω]

∣∣|v| holds mX-a.e.,

which implies that
∣∣dϕ(v)

∣∣ ≤ Lip(ϕ;E) |v| is satisfied mX-a.e. in E. �
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In the next section we will deal with functions ϕ defined on some Borel set E ⊆ X and taking

values into the Euclidean space Rk. In addition, the map ϕ : E → ϕ(E) under consideration

will be of bounded deformation, invertible and with inverse of bounded deformation.

Thanks to the high regularity of the target space Rk and to the invertibility of ϕ, it

will be possible to associate to any element v ∈ L2(TX)|E a ‘concrete’ vector field dϕ(v)

in L2
(
ϕ(E),Rk

)
. Such new notion of differential dϕ, tailored for this kind of maps ϕ, is

described in the following result.

Theorem 2.5 Let (X, d,m) be a metric measure space such that W 1,2(X) is a reflexive space.

Let E ⊆ X be a Borel set and let ϕ : E → Rk be a Lipschitz map. Suppose that there exist

constants L,C > 1 such that

ϕ : E → ϕ(E) is L-biLipschitz,

C−1 Lk|ϕ(E)
≤ ϕ∗

(
m|E

)
≤ CLk|ϕ(E)

.
(2.12)

Then there exists a unique linear and continuous operator dϕ : L2(TX)|E → L2
(
ϕ(E),Rk

)
,

called differential of ϕ, which satisfies the following conditions for any v ∈ L2(TX)|E:

dg
(
dϕ(v)

)
=
(
d(g ◦ ϕ)(v)

)
◦ ϕ−1 for every g ∈ LIPc(Rk),

dϕ(fv) = f ◦ ϕ−1 dϕ(v) for every f ∈ L∞(m),
(2.13)

where ϕ : X→ Rk is any Lipschitz extension of ϕ. Moreover, we have that

L−1 |v| ◦ ϕ−1 ≤
∣∣dϕ(v)

∣∣ ≤ L |v| ◦ ϕ−1 holds Lk-a.e. in ϕ(E), (2.14)

for every vector field v ∈ L2(TX)|E.

Proof. Fix any Lipschitz extension ϕ : X→ Rk of ϕ. We divide the proof into several steps:

Step 1. We claim that it is enough to prove the statement for m finite. Indeed, suppose the

thesis holds for finite measures and consider any (not necessarily finite) reference measure m

on X. There is a sequence (Kn)n of disjoint compact subsets of E with m
(
E \

⋃
nKn

)
= 0,

by inner regularity of m. Given that m is also outer regular, we can find a sequence (Ωn)n
of open subsets of X such that Kn ⊆ Ωn and m(Ωn) < +∞ for every n ∈ N. Fix any n ∈ N
and call mn := m|Ωn . Hence we can apply the theorem to the map ϕ|Kn , thus obtaining a

linear and continuous operator Tn : L2
mn(TX)|Kn → L2

(
ϕ(Kn),Rk

)
such that the following

conditions are satisfied Lk-a.e. in ϕ(Kn) for any v ∈ L2
mn(TX)|Kn :

dg
(
Tn(v)

)
=
(
d(g ◦ ϕ)(v)

)
◦
(
ϕ|Kn

)−1
for every g ∈ LIPc(Rk),

Tn(fv) = f ◦
(
ϕ|Kn

)−1
Tn(v) for every f ∈ L∞(mn),

L−1 |v| ◦
(
ϕ|Kn

)−1 ≤
∣∣Tn(v)

∣∣ ≤ L |v| ◦
(
ϕ|Kn

)−1
.

(2.15)

Denote by ιn : L2
mn(TX)→ L2

m(TX)|Ωn the isomorphism built in Remark 1.18. Therefore we

can ‘glue’ together the functions Tn obtained above (by the third line in (2.15)), in the sense

that there exists a unique map dϕ : L2
m(TX)|E → L2

(
ϕ(E),Rk

)
such that

χϕ(Kn) dϕ(v) = Tn
(
ι−1
n (χΩnv)

)
holds Lk-a.e. in ϕ(Kn), for every v ∈ L2

m(TX)|E and n ∈ N.
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We then deduce from (2.15) that dϕ is a linear and continuous operator satisfying both (2.13)

and (2.14), as required.

Step 2. From now on, let us suppose that m is a finite measure. Define µ := ϕ∗m, so that µ is

a finite Borel measure on Rk. In particular, we have that LIPc(Rk) ⊆W 1,2
µ (Rk). The tangent

module L2
µ(TRk) turns out to be isometrically embedded into the space L2(Rk,Rk;µ) of all

the L2(µ)-vector fields from Rk to itself, as proved in [13, Proposition 2.10], thus L2
µ(TRk)

is separable. Since ϕ is of bounded deformation when viewed as a function from (X, d,m)

to
(
Rk, | · |, µ

)
, we can then consider its differential dϕ : L2(TX) → ϕ∗L2

µ(TRk). Now fix

a vector field v ∈ L2(TX)|E . The family of all finite sums
∑n

i=1
χAi dgi, where (Ai)

n
i=1 is a

Borel partition of ϕ(E) and (gi)
n
i=1 ⊆ LIPc(Rk), is a dense vector subspace of L2

(
ϕ(E), (Rk)∗

)
.

Given any such simple 1-form ω =
∑n

i=1
χAi dgi ∈ L2

(
ϕ(E), (Rk)∗

)
, let us define

Tv(ω) :=
n∑
i=1

χAi [ϕ∗dµgi]
(
dϕ(v)

)
◦ ϕ−1 ∈ L1

(
ϕ(E)

)
. (2.16)

The operator Tv is well-defined, as granted by the following Lk|ϕ(E)
-a.e. inequalities:

∣∣Tv(ω)
∣∣ =

n∑
i=1

χAi

∣∣∣[ϕ∗dµgi](dϕ(v)
)∣∣∣ ◦ ϕ−1 ≤

∣∣dϕ(v)
∣∣ ◦ ϕ−1

n∑
i=1

χAi |dµgi| ◦ ϕ ◦ ϕ−1

≤
∣∣dϕ(v)

∣∣ ◦ ϕ−1
n∑
i=1

χAi lip(gi) =
∣∣dϕ(v)

∣∣ ◦ ϕ−1 |ω|.
(2.17)

Another consequence of property (2.17) is that the operator Tv can be uniquely extended to

a vector field dϕ(v) ∈ L2
(
ϕ(E),Rk

)
, for which

∣∣dϕ(v)
∣∣ ≤ ∣∣dϕ(v)

∣∣◦ϕ−1 holds Lk-a.e. in ϕ(E).

Furthermore, it can be readily verified that dϕ is the unique operator satisfying (2.13).

Step 3. In order to conclude the proof, it only remains to show (2.14). Then let v ∈ L2(TX)|E
be fixed. It directly follows from Corollary 2.4 that

∣∣dϕ(v)
∣∣ ≤ L |v|◦ϕ−1 holds Lk-a.e. in ϕ(E).

To prove the other inequality in (2.14), we need a more refined argument: fix any ε > 0. Given

that |v| = ess sup ω(v), where the essential supremum is taken among all the ω ∈ L2(T ∗X)

with |ω| ≤ 1 mX-a.e., there exists ω ∈ L2(T ∗X)|E such that |ω| = 1 and ω(v) ≥ (1− ε) |v| are

verified mX-a.e. in E. Since the simple forms
∑

i
χAi dfi ∈ L2(T ∗X) are dense in L2(T ∗X), we

can apply Egorov theorem to obtain a partition (Kn)n∈N of E (up to mX-negligible sets) into

compact sets and a sequence (fn)n ⊆ W 1,2(X) such that |dfn| < 1 and dfn(v) ≥ (1− ε)2 |v|
hold mX-a.e. in Kn for every n ∈ N. By using the assumption about reflexivity of W 1,2(X),

applying Theorem 1.11 and Egorov theorem, we can find a partition (Kn
m)m∈N of Kn (up to

mX-negligible sets) into compact sets and a sequence of maps (fnm)m ⊆ LIP(X) ∩W 1,2(X)

such that lipa(f
n
m) ≤ 1 and dfnm(v) ≥ (1− ε)3 |v| are satisfied mX-a.e. in Kn

m for every m ∈ N.

Denote by ψnm the inverse of ϕ|Kn
m

: Kn
m → ϕ(Kn

m) and pick a compactly supported Lipschitz

map hnm ∈ LIPc(Rk) such that hnm|ϕ(Kn
m)

= fnm ◦ ψnm. Observe that the following statement

holds Lk-a.e. in ϕ(Kn
m):

|dhnm|
(1.42)

= lip(hnm)
(1.14)

= lip
(
hnm|ϕ(Kn

m)

) (1.13)

≤ Lip(ψnm) lip(fnm) ◦ ψnm ≤ L. (2.18)
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Moreover, the fact that fnm|Kn
m

= hnm ◦ ϕ|Kn
m

yields χKn
m

dfnm = χKn
m

d(hnm ◦ ϕ), so that∣∣∣(χϕ(Kn
m) dhnm

)(
dϕ(v)

)∣∣∣ = χϕ(Kn
m)

∣∣∣[ϕ∗dµhnm]
(
dϕ(v)

)∣∣∣ ◦ ϕ−1 ≥ χϕ(Kn
m)

(
ϕ∗dµh

n
m(v)

)
◦ ϕ−1

= χϕ(Kn
m)

(
d(hnm ◦ ϕ)(v)

)
◦ ϕ−1 = χϕ(Kn

m)

(
dfnm(v)

)
◦ ϕ−1

≥ (1− ε)3 χϕ(Kn
m) |v| ◦ ϕ−1 holds Lk-a.e. in ϕ(Kn

m).

In particular, (2.18) grants that
∣∣dϕ(v)

∣∣ ≥ (1− ε)3 L−1 |v| ◦ϕ−1 is satisfied L k-a.e. in ϕ(Kn
m)

for any n,m ∈ N, hence also L k-a.e. in all of ϕ(E). By letting ε↘ 0, we finally obtain that

the inequality
∣∣dϕ(v)

∣∣ ≥ L−1 |v| ◦ ϕ−1 holds L k-a.e. in ϕ(E), concluding the proof of (2.14).

Therefore the thesis is achieved. �

3 Strongly m-Rectifiable Spaces

We introduce a new class of metric measure spaces, called strongly m-rectifiable spaces.

Roughly speaking, these spaces can be partitioned (up to negligible sets) into countably

many Borel sets, which are biLipschitz equivalent to suitable subsets of the Euclidean space,

by means of maps that also keep under control the measure.

For the sake of simplicity, it is convenient to use the following notation: given a measured

space (S,M, µ), we say that (Ei)i∈N ⊆M is a µ-partition of E ∈M provided it is a partition

of some F ∈ M such that F ⊆ E and µ(E \ F ) = 0. Moreover, given two µ-partitions (Ei)i

and (Fj)j of E, we say that (Fj)j is a refinement of (Ei)i if for every j ∈ N with Fj 6= ∅ there

exists (a unique) i ∈ N such that Fj ⊆ Ei.

Definition 3.1 (Strongly m-rectifiable space) A metric measure space (X, d,m) is said

to be m-rectifiable provided it is a disjoint union X =
⋃
k∈NAk of suitable (Ak)k ⊂ B(X),

such that the following condition is satisfied: given any k ∈ N, there exists an m-partition

(Ui)i∈N ⊆ B(X) of Ak and a sequence (ϕi)i∈N of maps ϕi : Ui → Rk such that

ϕi : Ui → ϕi(Ui) is biLipschitz and (ϕi)∗(m|Ui)� Lk for every i ∈ N. (3.1)

The partition X =
⋃
k∈NAk - which is clearly unique up to modification of negligible sets - is

called dimensional decomposition of X.

The space (X, d,m) is said to be strongly m-rectifiable provided for every ε > 0 the (Ui, ϕi)

can be chosen so that the ϕi are (1 + ε)-biLipschitz.

Remark 3.2 Given an m-rectifiable space (X, d,m) with dimensional decomposition (Ak)k,

we have that each set Ak is countably Hk-rectifiable. Moreover, it follows from (1.16) and

(3.1) that there exists a sequence (Nk)k of Borel sets Nk ⊆ Ak with m(Nk) = 0 such that

m|Ak\Nk = θkH
k
|Ak\Nk for every k ∈ N, (3.2)

where the density θk is a suitable Borel map θk : Ak \Nk → (0,+∞). �
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When working on m-rectifiable spaces, it is natural to adopt the following terminology, which

is inspired by the language of differential geometry:

Definition 3.3 (Charts and atlases) Let (X, d,m) be an m-rectifiable metric measure

space. A chart on X is a couple (U,ϕ), where U ∈ B(Ak) for some k ∈ N and ϕ : U → Rk

satisfies

ϕ : U → ϕ(U) is biLipschitz,

C−1 Lk|ϕ(U)
≤ ϕ∗

(
m|U

)
≤ C Lk|ϕ(U)

,
(3.3)

for a suitable constant C ≥ 1. An atlas on (X, d,m) is a family A =
⋃
k∈N

{
(Uki , ϕ

k
i )
}
i∈N of

charts on (X, d,m) such that (Uki )i∈N is an m-partition of Ak for every k ∈ N.

The chart (U,ϕ) is said to be an ε-chart provided ϕ : U → ϕ(U) is (1 + ε)-biLipschitz and

an atlas is said to be an ε-atlas provided all of its charts are ε-charts.

We collect few simple facts about atlases which we shall frequently use in what follows:

i) Any m-rectifiable space admits an atlas and any strongly m-rectifiable space admits an

ε-atlas for every ε > 0. Indeed, for (Ui, ϕi) as in (3.1) we can consider the density ρi

of ϕ∗
(
m|Ui

)
w.r.t. the Lebesgue measure and the sets Ui,j := ϕ−1

i

(
{2j ≤ ρi < 2j+1}

)
,

j ∈ Z. It is clear that
(
Ui,j , ϕi|Ui,j

)
is a chart for every j and that the Ui,j ’s provide an

m-partition of Ui, so that repeating the construction for every i yields the desired atlas.

ii) Let (Ui, ϕi)i∈N be an atlas and, for every i, let (Ui,j)j∈N an m-partition of Ui. Then(
Ui,j , ϕi|Ui,j

)
i,j∈N is also an atlas. In particular, by inner regularity of m, every m-

rectifiable space admits an atlas whose charts are defined on compact sets.

A first property of m-rectifiable spaces, whose proof is based upon the notion of differential

introduced in Theorem 2.5, is the following:

Theorem 3.4 (Dimensional decomposition of the tangent module) Let (X, d,m) be

an m-rectifiable space, with W 1,2(X) reflexive. Let (Ak)k be its dimensional decomposition.

Then for every k ∈ N such that m(Ak) > 0 we have that L2(TX) has dimension k on Ak.

Proof. Let A =
{

(Uki , ϕ
k
i )
}
k,i

be an atlas on X. The claim is equivalent to the fact that

for every Uki with m(Uki ) > 0 the dimension of L2(TX) on Uki is k. For such Uki , consider

the differential dϕki : L2(TX)|Uki
→ L2

(
ϕki (U

k
i ),Rk

)
as in Theorem 2.5, which is continuous,

invertible, with continuous inverse and sends hv to h◦ (ϕki )
−1 dϕki (v). It is then clear that the

dimensions of L2(TX)|Uki
and L2

(
ϕki (U

k
i ),Rk

)
coincide and, since the latter has dimension k,

the conclusion follows. �

Remark 3.5 Using the finite dimensionality results obtained by Cheeger in [7] it is not hard

to see that the dimensional decomposition (Ak)k of a PI space (i.e. a doubling metric measure

space supporting a weak (1, 2)-Poincaré inequality) which is also m-rectifiable must be so that

m(Ak) = 0 for all k sufficiently large. Yet, our discussion is independent on this specific result

and thus we won’t insist on this point. �
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Proposition 3.6 Let (X, d,m) be an m-rectifiable space. Then X is a Vitali space.

In particular, given any Borel subset E of X it holds that m-a.e. x ∈ E is of density 1 for E.

Proof. By recalling (1.4), it is sufficient to prove that m is pointwise doubling at m-almost

every point of X. To this aim, call (Ak)k the dimensional decomposition of X and fix k ∈ N.

Let (Nk)k be as in Remark 3.2 and call A′k := Ak \Nk for all k ∈ N. We claim that

lim
r→0

m
(
B2r(x) \A′k

)
ωk 2k rk

= 0 holds for Hk-a.e. x ∈ A′k. (3.4)

We argue by contradiction: if not, there exist a Borel set P ⊆ A′k with Hk(P ) > 0 and a

constant λ > 0 such that limr→0 m
(
B2r(x) \ A′k

)
/(ωk 2k rk) ≥ λ holds for any point x ∈ P .

Hence (1.17) with µ := m|X\A′k
yields λHk(P ) ≤ m(P\A′k) = 0, which leads to a contradiction.

Therefore (1.18) and (3.4) grant that for Hk-a.e. (thus also m-a.e.) point x ∈ A′k it holds

lim
r→0

m
(
B2r(x)

)
m
(
Br(x)

) ≤ lim
r→0

m
(
B2r(x) ∩A′k

)
m
(
Br(x) ∩A′k

) + lim
r→0

m
(
B2r(x) \A′k

)
m
(
Br(x) ∩A′k

) = 2k,

getting the thesis. �

When we restrict our attention to the smaller class of strongly m-rectifiable spaces, we have a

stronger geometric characterization of the tangent module. Section 5 will be entirely devoted

to describe such result. In order to further develop our theory in that direction, we need to

provide any strongly m-rectifiable space (X, d,m) with a special sequence of atlases, which are

aligned in a suitable sense.

Definition 3.7 (Aligned family of atlases) Let (X, d,m) be a strongly m-rectifiable space.

Let εn ↓ 0 and δn ↓ 0. Let (An)n∈N be a sequence of atlases on X. Then we say that (An)n

is an aligned family of atlases of parameters εn and δn provided the following conditions are

satisfied:

(i) Each An =
{

(Uk,ni , ϕk,ni )
}
k,i

is an εn-atlas and the domains Uk,ni are compact.

(ii) The family (Uk,ni )k,i is a refinement of (Uk,n−1
j )k,j for any n ∈ N+.

(iii) If n ∈ N+, k ∈ N and i, j ∈ N satisfy Uk,ni ⊆ Uk,n−1
j , then∥∥∥∥d

(
idRk − ϕ

k,n−1
j ◦

(
ϕk,ni

)−1
)

(y)

∥∥∥∥ ≤ δn for Lk-a.e. y ∈ ϕk,ni (Uk,ni ). (3.5)

The discussions made before grant that any strongly m-rectifiable space admits atlases sati-

sfying (i), (ii) above. In fact, as we shall see in a moment, also (iii) can be fulfilled by an

appropriate choice of atlases, but in order to show this we need a small digression.

Recall that O(Rk) denotes the group of linear isometries of Rk and for ε > 0 let us

introduce

Oε(Rk) :=
{
T : Rk → Rk linear, invertible and such that ‖T‖, ‖T−1‖ ≤ 1 + ε

}
.
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Notice that Oε(Rk) - being closed and bounded - is compact for every ε > 0 and that

O(Rk) =
⋂
ε>0O

ε(Rk). Then we have the following simple result:

Proposition 3.8 Let k ∈ N and δ > 0. Then there exist ε > 0 and a Borel function

R : Oε(Rk)→ O(Rk) with finite image such that∥∥T −R(T )
∥∥ ≤ δ for every T ∈ Oε(Rk).

Proof. From the compactness of O(Rk) we know that there are T1, . . . , Tn ∈ O(Rk) such that

O(Rk) ⊂ Uδ :=
⋃
iBδ(Ti). We claim that there exists ε > 0 such that Oε(Rk) ⊂ Uδ and

argue by contradiction. If not, the compact set Kε := Oε(Rk) \ Uδ would be not empty for

every ε > 0. Since clearly Kε ⊂ Kε′ for ε ≤ ε′, the family Kε has the finite intersection

property, but on the other hand the identity O(Rk) =
⋂
ε>0O

ε(Rk) yields
⋂
ε>0K

ε = ∅,
which is a contradiction. Thus there exists ε > 0 such that Oε(Rk) ⊂ Uδ. For such ε we

define R : Oε(Rk) → O(Rk) to be equal to T1 on Bδ(T1) and then recursively to be equal to

Tn on Bδ(Tn) \
⋃
i<nBδ(Ti). �

Using Proposition 3.8 it is possible to show that any strongly m-rectifiable space admits an

aligned family of atlases:

Theorem 3.9 Let (X, d,m) be a strongly m-rectifiable metric measure space. Let εn ↓ 0 and

δn ↓ 0 be two given sequences. Then X admits an aligned family (An)n of atlases of parameters

εn and δn.

Proof. Let (Ak)k be the dimensional decomposition of X and notice that to conclude it is

sufficient to build, for every k ∈ N, aligned charts as in (iii) of Definition 3.7 covering m-

almost all Ak. For k, n ∈ N, let ε′n,k be associated to δn and k as in Proposition 3.8 and

choose ε̄n,k > 0 such that

ε̄n,k ≤ εn and (1 + ε̄n−1,k)(1 + ε̄n,k) ≤ 1 + ε′n,k for every k, n ∈ N. (3.6)

We now construct the required aligned family (An)n of atlases by recursion: start observing

that since (X, d,m) is strongly m-rectifiable, there exists an atlas A0 such that the charts with

domain included in Ak are ε̄0,k-biLipschitz. Now assume that for some n ∈ N we have already

defined A0, . . . ,An−1 satisfying the alignment conditions and say that An−1 =
{

(Uki , ϕ
k
i )
}
k,i

.

Again using the strong m-rectifiability of X, find an atlas
{

(V k
j , ψ

k
j )
}
k,j

whose domains (V k
j )k,j

constitute a refinement of the domains (Uki )k,i of An−1 and such that those charts with domain

included in Ak are ε̄n,k-biLipschitz.

Fix k, j ∈ N and let i ∈ N be the unique index such that V k
j ⊆ Uki . For the sake of brevity,

let us denote by τ the transition map ϕki ◦ (ψkj )−1 : ψkj (V k
j )→ ϕki (V

k
j ) and observe that it is

(1+ε′n,k)-biLipschitz by (3.6). Hence its differential dτ satisfies
∥∥dτ(y)

∥∥,∥∥dτ(y)−1
∥∥ ≤ 1+ε′n,k,

or equivalently dτ(y) ∈ Oε
′
n,k(Rk), for Lk-a.e. y ∈ ψkj (V k

j ).

Let R : Oε
′
n,k(Rk) → O(Rk) be given by Proposition 3.8 with δ := δn and denote by

F kj ⊂ O(Rk) its finite image. For T ∈ F kj let PT := (R ◦ dτ)−1(T ) ⊂ Rk, so that (PT )T∈Fkj
is
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a Lk-partition of ψkj (V k
j ). For Lk-a.e. y ∈ T (PT ) ⊂ Rk we have∥∥∥d

(
ϕki ◦

(
T ◦ ψkj

)−1 − idRk
)
(y)
∥∥∥ =

∥∥∥d
(
τ ◦ T−1 − idRk

)
(y)
∥∥∥

=
∥∥∥d
(
(τ − T ) ◦ T−1

)
(y)
∥∥∥

≤
∥∥dτ(T−1(y))− T

∥∥∥∥T−1
∥∥

=
∥∥dτ(T−1(y))− T

∥∥
(because T−1(y) ∈ PT ) =

∥∥dτ(T−1(y))−R
(
dτ(T−1(y))

)∥∥
(by definition of R) ≤ δn.

(3.7)

We therefore define

Ūkj,T := (ψkj )−1(PT ) and ϕ̄kj,T := T ◦ ψkj |Ūkj,T
for every T ∈ F kj , (3.8)

so that accordingly

An :=
{(
Ūkj,T , ϕ̄

k
j,T

)
: k, j ∈ N, T ∈ F kj

}
(3.9)

is an atlas on (X, d,m), which fulfills (ii), (iii) of Definition 3.7 and such that the charts with

domain included in Ak are ε̄n,k-biLipschitz.

Up to a further refining we can assume that the charts in An have compact domains and,

since ε̄n,k ≤ εn for every k, n ∈ N, the thesis is proved. �

4 Gromov-Hausdorff Tangent Module

4.1 Measurable Banach Bundle

Let (X, d,m) be a fixed metric measure space. We propose a notion of measurable Banach

bundle:

Definition 4.1 (Measurable Banach bundle) The quadruplet T :=
(
T,M, π,n

)
is said

to be a measurable Banach bundle over (X, d,m) provided:

i) M is a σ-algebra over the set T .

ii) π is a measurable map from (T,M) to
(
X,B(X)

)
which we shall call projection and

Tx := π−1
(
{x}
)

is an R-vector space for m-a.e. x ∈ X. (4.1)

iii) n : T → [0,+∞) is a measurable map which we shall call norm such that for m-a.e.

x ∈ X it holds:

n|Tx is a norm on Tx,(
Tx,n|Tx

)
is a Banach space,

B(Tx) = M|Tx :=
{
E ∩ Tx : E ∈M

}
.

(4.2)
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iv) The sections of T, i.e. those measurable maps v : X → T for which π ◦ v = idX holds

m-a.e. in X, satisfy the following properties:

a) Let v,w be sections of T and let α, β ∈ R. Then the pointwise linear combination

α v + β w : X → T , given by (α v + β w)(x) := α v(x) + β w(x) ∈ Tx for m-a.e.

x ∈ X, is a section of T as well.

b) Let (vn)n be a sequence of sections of T. Suppose the limit v(x) := limn vn(x) ∈ Tx
exists for m-a.e. x ∈ X. Then v : X→ T is a section of T as well.

Given two measurable Banach bundles Ti =
(
Ti,Mi, πi,ni

)
, i = 1, 2, a bundle morphism

is a measurable map ϕ : T1 → T2 such that for m-a.e. x ∈ X it holds

ϕ maps (T1)x into (T2)x,

ϕ|(T1)x
is linear and 1-Lipschitz from

(
(T1)x,n1|(T1)x

)
to
(
(T2)x,n2|(T2)x

)
.

(4.3)

Two bundle morphisms ϕ,ψ : T1 → T2 are declared to be equivalent provided

ϕ|(T1)x
= ψ|(T1)x

for m-a.e. x ∈ X (4.4)

and accordingly two measurable Banach bundles Ti =
(
Ti,Mi, πi,ni

)
, i = 1, 2 are declared to

be isomorphic provided there are bundle morphisms ϕ : T1 → T2 and ψ : T2 → T1 such that

ϕ ◦ ψ ∼ idT2 and ψ ◦ ϕ ∼ idT1 , which is the same as to say that

ψ ◦ ϕ|(T1)x
= id(T1)x and ϕ ◦ ψ|(T2)x

= id(T2)x for m-a.e. x ∈ X,

ϕ|(T1)x
: (T1)x → (T2)x is an isometric isomorphism for m-a.e. x ∈ X.

Let T =
(
T,M, π,n

)
be a measurable Banach bundle over X. We denote by [v] the equivalence

class of any section v of T with respect to m-a.e. equality and introduce the space L2(T) as

L2(T) :=

{
[v]

∣∣∣∣ v is a section of T with

∫
X
n
(
v(x)

)2
dm(x) < +∞

}
. (4.5)

With a (common) slight abuse of notation, the elements of L2(T) will be tipically denoted by

v instead of [v].

Notice that L2(T) has a canonical structure of L2(m)-normed L∞(m)-module on X: for

v ∈ L2(T) and h ∈ L∞(m) define

(hv)(x) := h(x) v(x) ∈ Tx,

|v|(x) := n
(
v(x)

)
,

(4.6)

for m-a.e. x ∈ X. The fact that hv ∈ L2(T) follows from the following observations: item a) of

Definition 4.1 grants that hv is a section of T whenever h is a simple function, whence also for

any other h ∈ L∞(m) by an approximation argument together with item b) of Definition 4.1;

finally, we have hv ∈ L2(T) since
∫

X n
(
(hv)(x)

)2
dm(x) ≤ ‖h‖2L∞(m)

∫
X n
(
v(x)

)2
dm(x) < +∞.

23



Remark 4.2 The collection of measurable Banach bundles on X and of isomorphism classes

of bundle morphisms form a category, which we shall denote by MBB(X).

Similarly, the collection of L2(m)-normed L∞(m)-modules on X and of 1-Lipschitz module

morphisms between them form a category, which we denote by Mod2−L∞(X).

The map which sends each measurable Banach bundle T to the space of its L2-sections

L2(T) and each bundle morphism ϕ : T1 → T2 to the map L2(T1) 3 v 7→ ϕ ◦ v ∈ L2(T2),

is easily seen to be a fully faithful functor, so that MBB(X) can be thought of as a full

subcategory of Mod2−L∞(X). �

4.2 Gromov-Hausdorff Tangent Bundle

Recall that given a measurable space (S,M), a set S′ and a function f : S → S′, the push-

forward f∗M of M via f is the σ-algebra on S′ defined by

f∗M :=
{
E ⊆ S′ : f−1(E) ∈M

}
. (4.7)

Notice that f∗M is the greatest σ-algebra M′ on S′ for which the function f is measurable

from (S,M) to (S′,M′).

With this said, let (X, d,m) be a strongly m-rectifiable metric measure space, (Ak) its

dimensional decomposition and define the following objects:

i) The set TGHX is defined as

TGHX :=
⊔
k∈N

Ak × Rk (4.8)

and the σ-algebra MGH(X) is given by

MGH(X) :=
⋂
k∈N

(ιk)∗B(Ak × Rk), (4.9)

where ιk : Ak × Rk ↪→ TGHX is the natural inclusion, for every k ∈ N.

In other words, a subset E of TGHX belongs to MGH(X) if and only if E ∩ (Ak ×Rk) is

a Borel subset of Ak × Rk for every k ∈ N.

ii) The projection π : TGHX→ X of TGHX is given by

π(x, v) := x for every (x, v) ∈ TGHX. (4.10)

iii) The norm n : TGHX→ [0,+∞) on TGHX is given by

n(x, v) := |v|Rk for every k ∈ N and (x, v) ∈ Ak × Rk ⊆ TGHX. (4.11)

Definition 4.3 (Gromov-Hausdorff tangent bundle) The Gromov-Hausdorff tangent

bundle of (X, d,m) is the measurable Banach bundle(
TGHX,MGH(X), π,n

)
. (4.12)

The space of the L2-sections of such bundle is called Gromov-Hausdorff tangent module and

is denoted by L2(TGHX).
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The choice of this measurable structure on TGHX could seem to be näıve, but we now prove

that it is the only one coherent with some (thus any) atlas on (X, d,m), in the sense which

we now describe.

Let us fix an ε-atlas A =
{

(Uki , ϕ
k
i )
}
k,i

on (X, d,m). For every k, i ∈ N, choose a constant

Cki ≥ 1 such that

(Cki )−1 Lk|ϕki (Uki )
≤ (ϕki )∗

(
m|Uki

)
≤ Cki Lk|ϕki (Uki )

. (4.13)

Fix a sequence of radii rj ↓ 0 and define ϕ̂kij : Uki × Uki → Ak × Rk as

ϕ̂kij(x̄, x) :=

(
x̄ ,

ϕki (x)− ϕki (x̄)

rj

)
for every (x̄, x) ∈ Uki × Uki . (4.14)

For the sake of brevity, for k, i, j ∈ N let us call

W k
ij := ϕ̂kij(U

k
i × Uki ),

W k :=
⋃

i,j∈N
W k
ij

(4.15)

and notice that simple computations yield

ϕ̂kij : Uki × Uki →W k
ij is

√
1 + (1 + ε)2/(rj)2 -biLipschitz,

(rj)
k

Cki
(m⊗ Lk)|Wk

ij

≤
(
ϕ̂kij
)
∗
(
(m⊗m)|Uki ×Uki

)
≤ (rj)

kCki (m⊗ Lk)|Wk
ij

.
(4.16)

In particular, W k
ij ∈ B(Ak × Rk) for every k, i, j, thus accordingly also W k ∈ B(Ak × Rk).

Put Nk := (Ak × Rk) \W k.

Lemma 4.4 With the notation just introduced, for every k ∈ N we have

(m⊗ Lk)(Nk) = 0.

Proof. For k ∈ N put

Dk :=
⋃
i∈N

{
x ∈ Uki : ϕki (x) is a point of density 1 for ϕki (U

k
i )
}
.

From (4.13) and (1.7) we see that m(Ak \Dk) = 0, therefore for every i,m, h ∈ N and x̄ ∈ Dk,

there is j ∈ N such that

1 ≥
Lk
(
ϕki (Uki )−ϕki (x̄)

rj
∩Bm(0)

)
Lk
(
Bm(0)

) =
Lk
(
ϕki (U

k
i ) ∩Bmrj

(
ϕki (x̄)

))
Lk
(
Bmrj

(
ϕki (x̄)

)) > 1− 1

h
,

whence Lk
(
Bm(0) \

⋃
j

(
ϕki (U

k
i )− ϕki (x̄)

)
/rj

)
= 0 for all i,m ∈ N and x̄ ∈ Dk. Therefore by

Fubini’s theorem we deduce

(m⊗ Lk)
((
Ak ×Bm(0)

)
\W k

)
=
∑
i∈N

(m⊗ Lk)
((
Uki ×Bm(0)

)
\W k

)
≤
∑
i∈N

∫
Dk

Lk
(
Bm(0) \

⋃
j

(
ϕki (U

k
i )− ϕki (x̄)

)
/rj

)
dm(x̄) = 0,

so that (m⊗ Lk)(Nk) = limm(m⊗ Lk)
((
Ak ×Bm(0)

)
\W k

)
= 0. �
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We now endow TGHX with a new σ-algebra M
(
A , (rj)

)
, depending on the atlas A and the

sequence (rj). Let ῑk : Nk ↪→ TGHX be the inclusion maps, then define

M
(
A , (rj)

)
:=
⋂
k∈N

(
(ῑk)∗B(Nk) ∩

⋂
i,j∈N

(ιk ◦ ϕ̂kij)∗B(Uki × Uki )

)
. (4.17)

Equivalently, a subset E of TGHX belongs to M
(
A , (rj)

)
if and only if E ∩Nk ∈ B(Nk) for

every k ∈ N and (ϕ̂kij)
−1
(
E ∩ (Ak × Rk)

)
∈ B(Uki × Uki ) for every k, i, j.

The fact that our choice of the σ-algebra MGH(X) on TGHX is canonical is encoded in the

following proposition:

Proposition 4.5 Let (X, d,m) be a strongly m-rectifiable metric measure space, A an ε-atlas

and rj ↓ 0 a given sequence. Then

MGH(X) = M
(
A , (rj)

)
. (4.18)

Proof. If E ∈ MGH(X) then ι−1
k (E) ∈ B(Ak × Rk) for every k ∈ N, so accordingly E ∩ Nk

belongs to B(Nk) and (ϕ̂kij)
−1
(
ι−1
k (E)

)
belongs to B(Uki ×Uki ) for every k, i, j, which proves

that E ∈M
(
A , (rj)

)
.

Conversely, let E ∈ M
(
A , (rj)

)
. Hence E ∩ Nk ∈ B(Nk) ⊆ B(Ak × Rk), while F kij :=

(ϕ̂kij)
−1
(
ι−1
k (E)

)
∈ B(Uki × Uki ) implies that E ∩ W k

ij = ϕ̂kij(F
k
ij) ∈ B(Ak × Rk). Thus

ι−1
k (E) = (E ∩ Nk) ∪

⋃
i,j(E ∩W k

ij) ∈ B(Ak × Rk) for every k ∈ N, which is equivalent to

saying that E ∈MGH(X). �

Remark 4.6 This last proposition does not use the strong m-rectifiability of the space but

only the m-rectifiability, as seen by the fact that we didn’t consider a sequence of εn-atlases.

We chose this presentation because the reason for the introduction of the Gromov-Hausdorff

tangent module is in the statement contained in the next section, which grants that the space

of its sections is isometric to the abstract tangent module L2(TX), a result which we have

only for strongly m-rectifiable spaces. �

5 Equivalence of L2(TX) and L2(TGHX)

The main result of this article is the following: the two different notions of tangent modules

described so far, namely the “analytic” tangent module L2(TX) and the “geometric” Gromov-

Hausdorff tangent module L2(TGHX), can be actually identified. More precisely, given a

strongly m-rectifiable space X whose associated Sobolev space is reflexive, there exists an

isomorphism between L2(TX) and L2(TGHX) which preserves the pointwise norm and, as the

construction, such isomorphism can be canonically chosen once an aligned sequence of atlases

is given.

Notice that Theorem 3.4 (which is valid on more general m-rectifiable spaces) is equivalent

to the fact that there exists a morphism of L2(TX) into L2(TGHX) with continuous inverse,

thus in particular changing the pointwise norm of a bounded factor. Thus Theorem 5.1 below
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can be seen as the improvement of Theorem 3.4 which shows that for strongly m-rectifiable

spaces such factor can be taken to be 1.

Theorem 5.1 (Equivalence of L2(TX) and L2(TGHX)) Let (X, d,m) be a strongly m-

rectifiable space such that W 1,2(X) is reflexive. Then there exists an isometric isomorphism

of modules I : L2(TX)→ L2(TGHX), so that in particular it holds∣∣I (v)
∣∣ = |v| m-a.e. in X, for every v ∈ L2(TX). (5.1)

Proof. Consider an aligned family (An)n of atlases An =
{

(Uk,ni , ϕk,ni )
}
k,i

on (X, d,m), of

parameters εn := 1/2n and δn := 1/2n, whose existence is guaranteed by Theorem 3.9. Now

let v ∈ L2(TX) and n ∈ N be fixed. For k, i ∈ N put V k,n
i := ϕk,ni

(
Uk,ni

)
∈ B(Rk) and recall

that ϕk,ni : Uk,ni → V k,n
i and its inverse are maps of bounded deformation. Thus it makes

sense to consider dϕk,ni
(
χ
Uk,ni

v
)
∈ L2(V k,n

i ,Rk) and we can define

wk,ni (x) :=

{ (
dϕk,ni

(
χ
Uk,ni

v
))(

ϕk,ni (x)
)

0

for m-a.e. x ∈ Uk,ni ,

for m-a.e. x ∈ X \ Uk,ni .

The bound (2.14) gives∣∣wk,ni ∣∣(x) ≤ Lip(ϕk,ni ) |v|(x) for m-a.e. x ∈ Uk,ni , (5.2)

so that
∥∥wk,ni ∥∥

L2(TGHX)
≤ (1 + 2−n)

∥∥|v|∥∥
L2(Uk,ni )

. In particular, the series
∑

i,k w
k,n
i converges

in L2(TGHX) to some vector field In(v) whose norm is bounded by (1 + 2−n)
∥∥|v|∥∥

L2(X)
and

which satisfies

χ
Uk,ni

In(v) = wk,ni for every k, i ∈ N. (5.3)

It is then clear that In : L2(TX) → L2(TGHX) is L∞-linear, continuous and satisfying∣∣In(v)
∣∣ ≤ (1 + 2−n

)
|v| m-a.e. for every v ∈ L2(TX). We now claim that

the sequence (In)n is Cauchy w.r.t. the operator norm. (5.4)

To prove this, let v ∈ L2(TX), k, i, j ∈ N with Uk,n+1
i ⊆ Uk,nj . For m-a.e. point x ∈ Uk,n+1

i ,

putting for brevity y := ϕk,n+1
i (x), it holds that∣∣In+1(v)−In(v)

∣∣(x) =

∣∣∣∣(dϕk,n+1
i

(
χ
Uk,n+1
i

v
))(

ϕk,n+1
i (x)

)
−
(

dϕk,nj
(
χ
Uk,n+1
i

v
))(

ϕk,nj (x)
)∣∣∣∣

((2.13), (2.14)) ≤
∥∥∥∥d
(

id
V k,n+1
i

− ϕk,nj ◦
(
ϕk,n+1
i

)−1
)

(y)

∥∥∥∥ ∣∣∣dϕk,n+1
i

(
χ
Uk,n+1
i

v
)∣∣∣(y)

(δn+1 = 2−n−1) ≤ 1

2n+1

∣∣∣dϕk,n+1
i

(
χ
Uk,n+1
i

v
)∣∣∣(ϕk,n+1

i (x)
)

(εn+1 = 2−n−1) ≤ 1

2n+1

(
1 +

1

2n+1

)
|v|(x) ≤ 1

2n
|v|(x).

It follows that
∥∥In+1(v)−In(v)

∥∥
L2(TGHX)

≤ 2−n ‖v‖L2(TX) which by the arbitrariness of v

means that ∥∥In+1 −In

∥∥ ≤ 1

2n
,
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where the norm in the left hand side is the operator one. Hence
∑∞

n=0

∥∥In+1 −In

∥∥ < +∞
and the claim (5.4) is proved.

Let I : L2(TX) → L2(TGHX) be the limit of (In)n and notice that being the limit of

L∞-linear maps, it is also L∞-linear. Moreover, the fact that In(v) → I (v) in L2(TGHX)

implies that
∣∣In(v)

∣∣→ ∣∣I (v)
∣∣ in L2(X), hence - up to subsequences - we have∣∣I (v)

∣∣(x) = lim
n→∞

∣∣In(v)
∣∣(x) ≤ lim

n→∞

(
1 +

1

2n

)
|v|(x) = |v|(x) for m-a.e. x ∈ X. (5.5)

In order to prove that I is actually an isometric isomorphism that preserves the pointwise

norm, we explicitly exhibit its inverse functional J . In analogy with the construction just

done, for any w ∈ L2(TGHX) and n ∈ N one can build a unique Jn(w) ∈ L2(TX) such that

χ
Uk,ni

Jn(w) =
(
dϕk,ni

)−1
(
w ◦

(
ϕk,ni

)−1
)

for every k, i ∈ N. (5.6)

By means of the same arguments used above, we can prove that Jn : L2(TGHX)→ L2(TX)

is L∞-linear and continuous and converges to a limit functional J : L2(TGHX)→ L2(TX) in

the operator norm as n→∞. The operator J is L∞-linear and satisfies∣∣J (w)
∣∣ ≤ |w| m-a.e., for every w ∈ L2(TGHX). (5.7)

Our aim is now to prove that I , J are one the inverse of the other.

Let v ∈ L2(TX) and n ∈ N be fixed. For any k, i ∈ N, we have that (5.3) and (5.6) give

χ
Uk,ni

Jn

(
In(v)

)
= χ

Uk,ni
Jn

(
χ
Uk,ni

In(v)
)

= χ
Uk,ni

Jn

(
dϕk,ni

(
χ
Uk,ni

v
)
◦ ϕk,ni

)
=
(
dϕk,ni

)−1
(

dϕk,ni
(
χ
Uk,ni

v
))

= χ
Uk,ni

v,

therefore Jn ◦ In = idL2(TX). In an analogous way, also In ◦Jn = idL2(TGHX). Thus for

every n ∈ N we have∥∥J ◦I − idL2(TX)

∥∥ =
∥∥J ◦I −Jn ◦In

∥∥
≤
∥∥J ◦

(
I −In

)∥∥+
∥∥(J −Jn

)
◦In

∥∥
≤‖J ‖

∥∥I −In

∥∥+
∥∥J −Jn

∥∥ sup
n
‖In‖,

so that letting n → ∞ we see that J ◦ I = idL2(TX). A symmetric argument yields

I ◦J = idL2(TGHX). To conclude, notice that for every v ∈ L2(TX) we have

|v| =
∣∣J (

I (v)
)∣∣ (5.7)

≤
∣∣I (v)

∣∣ (5.5)

≤ |v| m-a.e. in X.

Hence the inequalities are equalities, yielding (5.1) and the conclusion. �

Corollary 5.2 Let (X, d,m) be a strongly m-rectifiable space such that W 1,2(X) is reflexive.

Then (X, d,m) is infinitesimally Hilbertian.

Proof. One can readily show that any couple of vector fields v, w ∈ L2(TGHX) satisfies (1.35).

Hence the space L2(TX) is a Hilbert module, as a consequence of Theorem 5.1. This grants

that L2(T ∗X) is a Hilbert module, thus (X, d,m) is infinitesimally Hilbertian by 1.39. �
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6 Geometric Interpretation of TGHX

6.1 Gromov-Hausdorff Convergence

The aim of this conclusive section is to discuss in which sense for strongly m-rectifiable spaces

the space TGHX can be obtained by looking at the pointed measured Gromov limits of the

rescalings of X around (almost) all of its points.

Since we are dealing with possibly non-compact and non-doubling spaces, we shall work

with the notion of pointed measured Gromov convergence that had been proposed in [12]. In

order to introduce it, we first need to give some preliminary definitions.

We say that (X, d,m, x̄) is a pointed metric measure space provided (X, d,m) is a metric

measure space and the reference point x̄ ∈ X belongs to spt(m). Two pointed metric measure

spaces (X, dX,mX, ȳ) and (Y, dY,mY, ȳ) are said to be isomorphic if there exists an isometric

embedding ι : spt(mX) → Y such that ι∗mX = mY and ι(x̄) = ȳ. The equivalence class of a

given space (X, d,m, x̄) under this isomorphism relation will be denoted by [X, d,m, x̄].

Finally, given a complete and separable metric space (X, d) and a sequence (µn)n∈N∪{∞}
of non-negative Borel measures on X that are finite on bounded sets, we say that µn weakly

converges to µ∞ as n→∞, briefly µn ⇀ µ∞, provided

lim
n→∞

∫
f dµn =

∫
f dµ∞ for every f ∈ Cbs(X), (6.1)

where Cbs(X) denotes the space of all bounded continuous maps on X having bounded support.

We can now give the definition of pointed measured Gromov convergence. It is convenient

for our purposes to follow the so-called ‘extrinsic approach’, cf. [12, Definition 3.9]:

Definition 6.1 (Pointed measured Gromov convergence) Fix a sequence of pointed

metric measure spaces (Xn, dn,mn, x̄n), n ∈ N ∪ {∞}. Then we say that the sequence of

classes [Xn, dn,mn, x̄n] converges to [X∞, d∞,m∞, x̄∞] in the pointed measured Gromov sense,

or briefly pmG-sense, provided there exist a complete and separable metric space (W, dW) and

a sequence of isometric embeddings ιn : Xn →W, for n ∈ N ∪ {∞}, such that

lim
n→∞

ιn(x̄n) = ι∞(x̄∞) ∈ spt
(
(ι∞)∗m∞

)
,

(ιn)∗mn ⇀ (ι∞)∗m∞ as n→∞.
(6.2)

Let us fix a shorthand notation: given a pointed metric measure space (X, d,m, x̄) and a

radius r > 0, we define the normalized measure mx̄
r on X as

mx̄
r :=

m

m
(
Br(x̄)

) . (6.3)

We can now introduce the notion of tangent cone to a pointed metric measure space:

Definition 6.2 (Tangent cone) Let (X, d,m, x̄) be a pointed metric measure space. Then

we denote by Tan[X, d,m, x̄] the family of all the classes [Y, dY,mY, ȳ] that are obtained as

pmG-limits of
[
X, d/rn,m

x̄
rn , x̄

]
, for a suitable sequence rn ↘ 0. We will call Tan[X, d,m, x̄]

the tangent cone of [X, d,m, x̄].
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Proposition 6.3 (Locality of the tangent cone) Fix a metric measure space (X, d,m)

and a Borel set A ⊆ X. Let x̄ ∈ A be a point of density 1 for A such that m is pointwise

doubling at x̄. Then

Tan[X, d,m, x̄] = Tan
[
A, d|A×A,m|A, x̄

]
. (6.4)

Proof. For the sake of simplicity, let us denote d′ := d|A×A and m′ := m|A. Suppose that the

class [Y, dY,mY, ȳ] is the pmG-limit of
[
X, d/rn,m

x̄
rn , x̄] for some rn ↘ 0. Then there exist

a complete and separable metric space (Z, dZ), an isometric embedding ιY : Y → Z and a

sequence (ιn)n of isometries ιn :
(
X, d/rn

)
→ (Z, dZ) such that ιn(x̄)→ ιY(ȳ) ∈ spt

(
(ιY)∗mY

)
and (ιn)∗m

x̄
rn ⇀ (ιY)∗mY. Hence let us define ι′n := ιn|A for every n ∈ N. Clearly each map ι′n

is an isometry from
(
A, d′/rn

)
to (Z, dZ). To conclude that [Y, dY,mY, ȳ] ∈ Tan[A, d′,m′, x̄],

it is enough to show that (ι′n)∗(m
′)x̄rn ⇀ (ιY)∗mY. Thus fix f ∈ Cbs(Z). Choose R > 0 such

that spt(f) ⊆ BR
(
ιY(ȳ)

)
, whence spt(f ◦ ιn) ⊆ B2Rrn(x̄) for n big enough. Then∫

f d(ι′n)∗(m
′)x̄rn =

m
(
Brn(x̄)

)
m
(
Brn(x̄) ∩A

) ∫ f d(ιn)∗m
x̄
rn −

1

m
(
Brn(x̄) ∩A

) ∫
B2Rrn (x̄)\A

f ◦ ιn dm.

Since DA(x̄) = 1 and m is pointwise doubling at x̄, one has∣∣∣∫B2Rrn (x̄)\A f ◦ ιn dm
∣∣∣

m
(
Brn(x̄) ∩A

) ≤
m
(
B2Rrn(x̄) \A

)
m
(
B2Rrn(x̄)

) m
(
Brn(x̄)

)
m
(
Brn(x̄) ∩A

) m
(
B2Rrn(x̄)

)
m
(
Brn(x̄)

) max
Z
|f | n−→ 0,

which grants that
∫
f d(ι′n)∗(m

′)x̄rn →
∫
f d(ιn)∗mY, as required.

Conversely, let [Y, dY,mY, ȳ] be the pmG-limit of
[
A, d′/rn, (m

′)x̄rn , x̄
]

for some rn ↘ 0.

Then take a complete separable metric space (W, dW), an isometric embedding ι′Y : Y →W

and a sequence of maps ι′n : A → W, which are isometries from
(
A, d′/rn

)
to (W, dW),

such that ι′n(x̄n) → ι′Y(ȳ) ∈ spt
(
(ι′Y)∗mY

)
and (ι′n)∗(m

′)x̄rn ⇀ (ι′Y)∗mY. Hence there exist a

complete separable metric space (Z,mZ), an isometric embedding ιW : W→ Z and a sequence

of maps ιn : X→ Z, which are isometries from
(
X, d/rn

)
to (Z, dZ), such that ιn|A = ιW ◦ ι′n

holds for every n ∈ N, see for instance [12, Proposition 3.10]. Denote ιY := ιW ◦ ι′Y. We

clearly have that ιn(x̄) = ιW
(
ι′n(x̄)

)
→ ιY(ȳ) ∈ spt

(
(ιY)∗mY

)
as n→∞, thus it only remains

to prove that (ιn)∗m
x̄
rn ⇀ (ιY)∗mY as n→∞. To this aim, fix f ∈ Cbs(Z). Observe that∫

f d(ιn)∗m
x̄
rn =

m
(
A ∩Brn(x̄)

)
m
(
Brn(x̄)

) ∫
f ◦ ιW d(ι′n)∗(m

′)x̄rn +
1

m
(
Brn(x̄)

) ∫
X\A

f ◦ ιn dm.

The first addendum in the right hand side of the previous equation tends to
∫
f ◦ιW d(ι′Y)∗mY,

because DA(x̄) = 1 and f ◦ ιW ∈ Cbs(W). To estimate the second one, take any R > 0 such

that spt(f) ⊆ BR
(
ιY(ȳ)

)
, so that spt(f ◦ ιn) ⊆ B2Rrn(x̄) for n sufficiently big. Then∣∣∣∣∣ 1

m
(
Brn(x̄)

) ∫
X\A

f ◦ ιn dm

∣∣∣∣∣ ≤ m
(
B2Rrn(x̄) \A

)
m
(
B2Rrn(x̄)

) m
(
B2Rrn(x̄)

)
m
(
Brn(x̄)

) max
Z
|f | −→ 0.

Therefore
∫
f d(ιn)∗m

x̄
rn →

∫
f d(ιY)∗mY, proving that [Y, dY,mY, ȳ] ∈ Tan[X, d,m, x̄] and

accordingly the thesis. �
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The previous result will allow us to concentrate our attention only on spaces that satisfy (1.8).

In such context, it is easier to study the blow-ups of the space by means of a different

notion of convergence (see [12, Definition 3.24]):

Definition 6.4 (Pointed measured Gromov-Hausdorff convergence) Fix a sequence

of pointed metric measure spaces (Xn, dn,mn, x̄n), n ∈ N ∪ {∞}. Then we say that the

sequence of spaces (Xn, dn,mn, x̄n) converges to (X∞, d∞,m∞, x̄∞) in the pointed measured

Gromov-Hausdorff sense, or briefly pmGH-sense, provided for any fixed ε,R > 0 with ε < R

there exist n̄ ∈ N and a sequence of Borel maps fn : BR(x̄n)→ X∞, for n ≥ n̄, such that

i) fn(x̄n) = x̄∞ for every n ≥ n̄,

ii)
∣∣∣d∞(fn(x), fn(y)

)
− dn(x, y)

∣∣∣ ≤ ε for every n ≥ n̄ and x, y ∈ BR(x̄n),

iii) the ε-neighbourhood of fn
(
BR(x̄n)

)
contains BR−ε(x̄∞) for every n ≥ n̄,

iv) (fn)∗
(
mn|BR(x̄n)

)
⇀ m∞|BR(x̄∞)

as n→∞, for a.e. R > 0.

As shown in [12, Proposition 3.30], the relation between the two notions of convergence for

pointed metric measure spaces introduced so far is the following:

Proposition 6.5 (From pmGH to pmG) Let (Xn, dn,mn, x̄n) be a sequence of pointed

metric measure spaces that converges to some (X∞, d∞,m∞, x̄∞) in the pmGH-sense. Then

the sequence of classes [Xn, dn,mn, x̄n] pmG-converges to [X∞, d∞,m∞, x̄∞].

6.2 Limits of the Rescaled Spaces

Let us now focus on metric measure spaces (X, d,m) satisfying the following properties:

(X, d,m) is a strongly m-rectifiable space which satisfies (1.8),

having constant dimension k ∈ N and whose reference measure is

given by m = θHk, for some continuous density θ : X→ (0,+∞).

(6.5)

Consider a family An =
{

(Uni , ϕ
n
i )
}
i∈N of εn-atlases on (X, d,m), with compact domains Uni .

We can use the atlases to build Borel maps Ψn : X×
(

1
rn

X
)
→ TGHX which are ‘bundle maps’,

i.e. which fix the first coordinate, and that are approximate isometries as maps on the second

variable in the following way. We first recall that for any closed subset U of X there exists a

Borel map PU : X→ U such that

d
(
x, PU (x)

)
≤ 2d(x, U) for every x ∈ X.

This can be built by first considering a countable dense subset (xn)n of U and then by

declaring PU (x) := x for x ∈ U and for x /∈ U defining

PU (x) := xn, where n is the least number such that d(x, xn) ≤ 2d(x, U).
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Then given a sequence rn ↓ 0 we put

Φn(x, y) :=
ϕni
(
PUni (y)

)
− ϕni (x)

rn
∈ Rk for every x ∈ Uni and y ∈ X, (6.6)

while Φn(x, y) := 0Rk if x /∈
⋃
i U

n
i . Finally we define

Ψn(x, y) :=
(
x,Φn(x, y)

)
for every x, y ∈ X.

Notice that the function Ψn is Borel for every n ∈ N. In the next theorem we show that

for m-a.e. x ∈ X the maps y 7→ Φn(x, y) provide approximate measured isometries from X

rescaled by a factor 1
rn

to Rk, thus showing not only that the tangent space of X at x is Rk,
but also that there is a ‘compatible’ choice of approximate isometries making the resulting

global maps, i.e. Ψn, Borel.

Theorem 6.6 Let (X, d,m) be a space satisfying (6.5). Let εn ↓ 0 and let An =
{

(Uni , ϕ
n
i )
}
i

be a family of εn-atlases with compact domains Uni . Then there exists a sequence rn ↓ 0 such

that, defining Φn as in (6.6), for m-a.e. x ∈ X the following holds: for every R > ε > 0 there

is n̄ ∈ N so that for every n ≥ n̄ we have∣∣∣∣∣∣Φn(x, y0)− Φn(x, y1)
∣∣
Rk −

d(y0, y1)

rn

∣∣∣∣ ≤ ε for every y0, y1 ∈ BrnR(x),

BR−ε(0Rk) ⊂ ε-neighbourhood of
{

Φn(x, y) : y ∈ BrnR(x)
}
,

Φn(x, ·)∗
(
mx
rn |BrnR(x)

)
⇀ ω−1

k Lk|BR(0)
as n→∞.

(6.7)

In particular, the space
(
X, d/rn,m

x
rn , x

)
pmGH-converges to

(
Rk, dRk ,Lk/ωk, 0

)
as n→∞.

Proof. For any i, n ∈ N put V n
i := ϕni (Uni ). Note that from (3.3) we see that for m-a.e. x ∈ Uni

the point ϕni (x) is of density 1 for V n
i . Let us call D′ the set of all the points x ∈ X that

satisfy Hk
(
Br(x) ∩ Uni(n)

)
/(ωk r

k) → 1 as r ↘ 0 for every n ∈ N, where i(n) ∈ N is chosen

so that x ∈ Uni(n). Since each domain Uni is countably Hk-rectifiable, we thus deduce from

Theorem 1.8 that Hk(X \D′) = 0. Hence the set

D := D′ ∩
⋂
n

⋃
i

{
x ∈ Uni : x, ϕni (x) are points of density 1 for Uni , V

n
i , respectively

}
is Borel and m(X \D) = 0. Fix x̄ ∈ D and R > ε > 0. Let i(n) ∈ N be such that x̄ ∈ Uni(n).

For brevity, call Bn := BrnR(x̄), Un := Uni(n), Vn := V n
i(n) and ϕn := ϕni(n). Let us denote

avgn :=
1

Hk(Bn ∩ Un)

∫
Bn∩Un

θ dHk for every n ∈ N.

Step 1. Fix ε̄ < ε/max{4R,R − ε} positive and repeatedly apply property (1.8) to x̄, Un

and to ϕn(x̄), Vn, with ε̄ in place of ε, to find a sequence rn ↓ 0 such that for n ∈ N it holds

d
(
y, PUn(y)

)
≤ 2 ε̄ rnR for every y ∈ Bn,

dRk(z, Vn) ≤ ε̄
∣∣z − ϕn(x̄)

∣∣ for every z ∈ BrnR
(
ϕn(x̄)

)
.

(6.8)
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Furthermore, since x̄ ∈ D and the map θ is continuous, we can also require that

lim
n→∞

Hk(Bn ∩ Un)

ωk rknR
k

= lim
n→∞

(1 + εn)k Lk
(
Vn ∩BrnR/(1+εn)

(
ϕn(x̄)

))
ωk rknR

k
= 1,∣∣θ(x)− avgn

∣∣ ≤ 1

n
for every n ∈ N+ and x ∈ Bn ∩ Un,

lim
n→∞

m(Bn ∩ Un)

m
(
Brn(x̄)

) = Rk.

(6.9)

From the fact that ϕn is (1 + εn)-biLipschitz we see that for any y0, y1 ∈ Bn it holds that∣∣Φn(x̄, y0)− Φn(x̄, y1)
∣∣
Rk ≤

1 + εn
rn

d
(
PUn(y0), PUn(y1)

)
(by (6.8)) ≤ 1 + εn

rn

(
d(y0, y1) + 4 ε̄ rnR

)
.

Similarly we get
∣∣Φn(x̄, y0)− Φn(x̄, y1)

∣∣
Rk ≥

1
(1+εn)rn

(
d(y0, y1)− 4 ε̄ rnR

)
, thus∣∣∣∣∣∣Φn(x̄, y0)− Φn(x̄, y1)

∣∣− d(y0, y1)

rn

∣∣∣∣ ≤ 2Rmax

{
2(1 + εn)ε̄+ εn,

2ε̄+ εn
1 + εn

}
for every y0, y1 ∈ BrnR(x̄). Since ε̄ < ε/(4R), this is sufficient to show that the first in (6.7)

is fulfilled for n large enough.

Step 2. For the second in (6.7), let w ∈ Rk be with |w| < R− ε and put zn := ϕn(x̄) + rnw.

Thus the point zn belongs to BrnR
(
ϕn(x̄)

)
. From the second in (6.8) and the compactness of

Un, we deduce that there exists yn ∈ Un such that∣∣zn − ϕn(yn)
∣∣ ≤ ε̄ rn|w|. (6.10)

Since the right hand side is bounded from above by ε̄ rnR, for n sufficiently large it is bounded

above by ε, so that to conclude it suffices to show that, independently on the choice of w,

for all n sufficiently large it holds that yn ∈ Bn. To see this, recall that the inverse of the

function ϕn is (1 + εn)-Lipschitz to get that

d(x̄, yn) ≤ (1 + εn)
∣∣ϕn(x̄)− ϕn(yn)

∣∣ ≤ (1 + εn)
(∣∣ϕn(x̄)− zn

∣∣+
∣∣zn − ϕn(yn)

∣∣)
by (6.10) ≤ rn(1 + εn)(1 + ε̄) |w| ≤ rn(1 + εn)(1 + ε̄)(R− ε).

Since ε̄ < ε/(R− ε) we have that (1 + ε̄)(R− ε) < R, therefore for n sufficiently large we have

that rn(1 + εn)(1 + ε̄)(R− ε) < rnR, which concludes the proof of the second in (6.7).

Step 3. Let us now denote ψn := ϕn ◦ PUn − ϕn(x̄), so that Φn(x̄, ·) = ψn/rn. We have that

Lk
(
ψn(Bn ∩ Un)

rn
∆BR(0)

)
−→ 0 when n→∞, (6.11)

as one can easily prove by using (6.9), which grants that Hk(Bn ∩ Un)/Hk(Bn)→ 1.
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To prove the third in (6.7), fix f ∈ Cc(Rk). Observe that
∫
f dΦn(x̄, ·)∗

(
mx̄
rn |Bn

)
can be

written as Q1(n)m(Bn ∩ Un)/m
(
Brn(x̄)

)
+Q2(n) +Q3(n), where

Q1(n) :=
1

Hk(Bn ∩ Un)

∫
f( · /rn) d(ψn)∗

(
Hk
|Bn∩Un

)
,

Q2(n) :=
1

m
(
Brn(x̄)

) ∫
Bn∩Un

f ◦ Φn(x̄, ·)
(
θ − avgn

)
dHk,

Q3(n) :=
1

m
(
Brn(x̄)

) ∫
Bn\Un

f ◦ Φn(x̄, ·) dm.

First of all, it directly follows from the last two statements in (6.9) that

∣∣Q2(n)
∣∣ ≤ 1

n

m(Bn ∩ Un)

m
(
Brn(x̄)

) max
Rk
|f | −→ 0,

∣∣Q3(n)
∣∣ ≤ m(Bn \ Un)

m
(
Brn(x̄)

) max
Rk
|f | −→ 0.

(6.12)

Moreover, (1.16) yields (1+εn)−k Lk|ψn(Bn∩Un)
≤ (ψn)∗

(
Hk|Bn∩Un

)
≤ (1+εn)k Lk|ψn(Bn∩Un)

,

thus accordingly it holds that

(1 + εn)−k rkn
Hk(Bn ∩ Un)

∫
ψn(Bn∩Un)

rn

f dLk ≤ Q1(n) ≤ (1 + εn)k rkn
Hk(Bn ∩ Un)

∫
ψn(Bn∩Un)

rn

f dLk. (6.13)

Finally, by recalling (6.11) we can immediately deduce that∣∣∣∣ ∫ψn(Bn∩Un)
rn

f dLk −
∫
BR(0)

f dLk
∣∣∣∣ ≤ Lk

(
ψn(Bn ∩ Un)

rn
∆BR(0)

)
max
Rk
|f | −→ 0.

Therefore the first in (6.9) gives Q1(n)→ (ωk R
k)−1

∫
BR(0) f dLk, which together with (6.12)

and the third in (6.9) grant that ω−1
k

∫
BR(0) f dLk = limn

∫
f dΦn(x̄, ·)∗

(
mx̄
rn |Bn

)
. This means

that Φn(x, ·)∗
(
mx̄
rn |Bn

)
⇀ ω−1

k Lk|BR(0)
, which proves the thesis. �

By putting together several results obtained so far, it is then easy to prove the following:

Theorem 6.7 (Euclidean tangent cone) Let (X, d,m) be a strongly m-rectifiable space,

whose dimensional decomposition is denoted by (Ak)k. Then for every k ∈ N it holds that

Tan[X, d,m, x] =
{[

Rk, dRk ,Lk/ωk, 0
]}

for m-a.e. x ∈ Ak. (6.14)

Proof. Let the sequence (Nk)k be as in Remark 3.2 and define A′k := Ak \Nk for every k ∈ N.

Fix k ∈ N and write m|A′k
= θkH

k|A′k
for a suitable Borel density θk : A′k → (0,+∞). Let

Aik :=
{
x ∈ A′k : 2i ≤ θk(x) < 2i+1

}
for every i ∈ Z,

then (Aik)i constitutes a Borel partition of A′k. Thus fix i ∈ Z. By arguing as in the proof

of Proposition 3.6, one can see that limr→0 m
(
Br(x)

)
/(ωk r

k) = θk(x) for m-a.e. x ∈ Aik. By
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applying Lusin theorem and Egorov theorem, we can cover m-a.a. of Aik with countably many

compact sets Aijk ⊆ A
i
k, where j ∈ N, in such a way that the maps θk|

Aijk
are continuous and

∣∣∣∣∣m
(
Br(x)

)
ωk rk

− θk(x)

∣∣∣∣∣ < 2i−1 for every x ∈ Aijk and r > 0 smaller than some rijk > 0.

In particular, it holds that

ωk r
k 2i−1 < m

(
Br(x)

)
< 5ωk r

k 2i−1 for every x ∈ Aijk and r < rijk .

Therefore Aijk fulfills the hypotheses of Lemma 1.3, so accordingly each space Aijk (with the

restricted distance and measure) satisfies (6.5). Hence Theorem 6.6 and Proposition 6.5 give

Tan
[
Aijk , d|Aijk ×Aijk

,m|
Aijk
, x
]

=
{[

Rk, dRk ,Lk/ωk, 0
]}

for m-a.e. x ∈ Aijk ,

since rn ↓ 0 in Theorem 6.6 can be actually chosen among the subsequences of any fixed

sequence converging to 0 and the pmG topology is metrizable, cf. [12, Theorem 3.15]. Given

that m-a.e. point of Aijk is of density 1 for Aijk itself and m is pointwise doubling at m-a.e point

by Proposition 3.6, we deduce from Proposition 6.3 that
[
Rk, dRk ,Lk/ωk, 0

]
is the unique

element of Tan[X, d,m, x] for m-a.e. x ∈ Aijk . By arbitrariness of i and j, we finally conclude

that (6.14) is satisfied, proving the statement. �
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