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Abstract. We study a family of spheres with constant mean curvature (CMC)

in the Riemannian Heisenberg group H1. These spheres are conjectured to be the

isoperimetric sets of H1. We prove several results supporting this conjecture. We

also focus our attention on the sub-Riemannian limit.
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1. Introduction

In this paper, we study a family of spheres with constant mean curvature (CMC) in

the Riemannian Heisenberg group H1. We introduce in H1 two real parameters that

can be used to deform H1 to the sub-Riemannian Heisenberg group, on the one hand,

and to the Euclidean space, on the other hand. Even though we are not able to prove

that these CMC spheres are in fact isoperimetric sets, we obtain several partial results

in this direction. Our motivation comes from the sub-Riemannian Heisenberg group,

where it is conjectured that the solution of the isoperimetric problem is obtained

rotating a Carnot-Carathéodory geodesic around the center of the group, see [19].

This set is known as Pansu’s sphere. The conjecture is proved only assuming some

regularity (C2-regularity, convexity) or symmetry, see [4, 10, 16, 17, 20, 21].
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Given a real parameter τ ∈ R, let h = span{X, Y, T} be the three-dimensional real

Lie algebra spanned by three elements X, Y, T satisfying the relations [X, Y ] = −2τT

and [X,T ] = [Y, T ] = 0. When τ 6= 0, this is the Heisenberg Lie algebra and we

denote by H1 the corresponding Lie group. We will omit reference to the parameter

τ 6= 0 in our notation. In suitable coordinates, we can identify H1 with C × R and

assume that X, Y, T are left-invariant vector fields in H1 of the form

X =
1

ε

( ∂
∂x

+ σy
∂

∂t

)
, Y =

1

ε

( ∂
∂y
− σx ∂

∂t

)
, and T = ε2 ∂

∂t
, (1.1)

where (z, t) ∈ C× R and z = x + iy. The real parameters ε > 0 and σ 6= 0 are such

that

τε4 = σ. (1.2)

Let 〈·, ·〉 be the scalar product on h making X, Y, T orthonormal, that is extended to

a left-invariant Riemannian metric g = 〈·, ·〉 in H1. The Riemannian volume of H1

induced by this metric coincides with the Lebesgue measure L 3 on C×R and, in fact,

it turns out to be independent of ε and σ (and hence of τ). When ε = 1 and σ → 0,

the Riemannian manifold (H1, g) converges to the Euclidean space. When σ 6= 0 and

ε→ 0+, then H1 endowed with the distance function induced by the rescaled metric

ε−2〈·, ·〉 converges to the sub-Riemannian Heisenberg group.

The boundary of an isoperimetric region is a surface with constant mean curvature.

In this paper, we study a family of CMC spheres ΣR ⊂ H1, with R > 0, that foliate

H1
∗ = H1 \ {0}, where 0 is the neutral element of H1. Each sphere ΣR is centered at

0 and can be described by an explicit formula that was first obtained by Tomter [22].

We conjecture that, within its volume class and up to left translations, the sphere ΣR

is the unique solution of the isoperimetric problem in H1. When ε = 1 and σ → 0,

the spheres ΣR converge to the standard sphere of the Euclidean space. When σ 6= 0

is fixed and ε→ 0+, the spheres ΣR converge to the Pansu’s sphere.

In Section 3, we study some preliminary properties of ΣR, its second fundamental

form and principal curvatures. A central object in this setting is the left-invariant

1-form ϑ ∈ Γ(T ∗H1) defined by

ϑ(V ) = 〈V, T 〉 for any V ∈ Γ(TH1). (1.3)

The kernel of ϑ is the horizontal distribution. Let N be the north pole of ΣR and

S = −N its south pole. In Σ∗R = ΣR \ {±N} there is an orthonormal frame of vector

fields X1, X2 ∈ Γ(TΣ∗R) such that ϑ(X1) = 0, i.e., X1 is a linear combination of X

and Y . In Theorem 3.1, we compute the second fundamental form of ΣR in this

frame. We show that the principal directions of ΣR are given by a rotation of the

frame X1, X2 by a constant angle depending on the mean curvature of ΣR.

In Section 4, we link in a continuous fashion the foliation property of the Pansu’s

sphere with the foliation by meridians of the round sphere in the Euclidean space.
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The foliation H1
∗ =

⋃
R>0 ΣR determines a unit vector field N ∈ Γ(TH1

∗ ) such that

N (p) ⊥ TpΣR for any p ∈ ΣR and R > 0. The covariant derivative ∇N N , where

∇ denotes the Levi-Civita connection induced by the metric g, measures how far the

integral lines of N are from being geodesics of H1 (i.e., how far the CMC spheres ΣR

are from being metric spheres). In space forms, we would have∇N N = 0, identically.

Instead, in H1 the normalized vector field

M (z, t) = sgn(t)
∇N N

|∇N N |
, (z, t) ∈ Σ∗R,

is well-defined and smooth outside the center of H1. In Theorem 4.3, we prove that

for any R > 0 we have

∇ΣR
M M = 0 on Σ∗R,

where ∇ΣR denotes the restriction of ∇ to ΣR. This means that the integral lines of

M are Riemannian geodesics of ΣR. In the coordinates associated with the frame

(1.1), when ε = 1 and τ = σ → 0 the integral lines of M converge to the meridians of

the Euclidean sphere. When σ 6= 0 is fixed and ε→ 0+, the vector field M properly

normalized converges to the line flow of the geodesic foliation of the Pansu’s sphere,

see Remark 4.5.

In Section 5, we prove a stability result for the spheres ΣR. Let ER ⊂ H1 be the

region bounded by ΣR and let Σ ⊂ H1 be the boundary of a smooth open set E ⊂ H1,

Σ = ∂E, such that L 3(E) = L 3(ER). Denoting by A (Σ) the Riemannian area of

Σ, we conjecture that

A (Σ)−A (ΣR) ≥ 0. (1.4)

We also conjecture that a set E is isoperimetric (i.e., equality holds in (1.4)) if and

only if it is a left translation of ER. If isoperimetric sets are topological spheres, this

statement would follow from Theorem A.10.

Isoperimetric sets are stable for perturbations fixing the volume: the second vari-

ation of the area is nonnegative. The spheres ΣR are in fact stable, this is proved in

[24, Theorem 2.3] using Koiso’s stability criterium [14]. The stability of ΣR in the

northern and southern hemispheres can be obtained in a more elementary way using

Jacobi fields arising from right-invariant vector fields of H1. In these hemispheres,

we can actually prove a stronger form of stability.

Using the coordinates associated with the frame (1.1), for R > 0 and 0 < δ < R

we consider the cylinder

Cδ,R =
{

(z, t) ∈ H1 : |z| < R, t > f(R− δ;R)
}
,

where f(·;R) is the profile function of ΣR, see (2.1). Assume that the closure of

E∆ER = ER \ E ∪ E \ ER is a compact subset of Cδ,R. In Theorem 5.1, we prove
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that there exists a positive constant CRτε > 0 such that the following quantitative

isoperimetric inequality holds:

A (Σ)−A (ΣR) ≥
√
δCRτεL

3(E∆ER)2. (1.5)

The proof relies on a sub-calibration argument. This provides further evidence on the

conjecture that isoperimetric sets are precisely left translations of ΣR. When ε = 1

and σ → 0, inequality (1.5) becomes a restricted form of the quantitative isoperimetric

inequality in [11]. For fixed σ 6= 0 and ε→ 0+ the rescaled area εA converges to the

sub-Riemannian Heisenberg perimeter and εCRτε converges to a positive constant.

Thus inequality (1.5) reduces to the isoperimetric inequality proved in [10].

In Appendix A, we give a self-contained proof of a known result that is announced in

[2, Theorem 6] in the setting of three-dimensional homogeneous spaces with at least

4-dimensional isometry group. Namely, we show that any topological sphere with

constant mean curvature in H1 is isometric to a CMC sphere ΣR. This result can be

deduced by combining [1] and Daniel’s correspondence theorem [6]. An alternative

proof can be implicitly obtained collecting various results spread in the literature,

starting from the Abresch-Rosenberg differential computed in [23], [8, Theorem 2.3],

or [3] and then using the rigidity theorem of [6, Theorem 4.3]. A more self-contained

proof can be found in [7, Lemma 6.1]. We remark that our proof, that follows the

scheme of the fundamental paper [1], does not rely on the fact that the isometry

group of H1 is four-dimensional.

2. Foliation of H1
∗ by concentric stationary spheres

We start by recalling a result by Tomter [22, Theorem 3]. In what follows, we work

in the coordinates associated with the frame (1.1), where the parameters ε > 0 and

σ ∈ R are related by (1.2). For any point (z, t) ∈ H1, we set r = |z| =
√
x2 + y2.

Theorem 2.1 (Tomter). For any R > 0 there exists a unique compact smooth em-

bedded surface ΣR ⊂ H1 that is area stationary under volume constraint and such

that

ΣR = {(z, t) ∈ H1 : |t| = f(|z|;R)}

for a function f(·;R) ∈ C∞([0, R)) continuous at r = R with f(R) = 0. Namely, for

any 0 ≤ r ≤ R the function is given by

f(r;R) = ε3

∫ R

r

√
1 + τ 2ε2s2

R2 − s2
sds =

ε2

2τ

[
ω(R)2 arctan(p(r;R))+ω(r)2p(r;R)

]
, (2.1)

where

ω(r) =
√

1 + τ 2ε2r2 and p(r;R) = τε

√
R2 − r2

ω(r)
.

For a proof of Theorem 2.1, we refer to [22, Theorem 3].
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Remark 2.2. The function f(·;R) = f(·;R; τ ; ε) depends also on the parameters τ

and ε, that are omitted in our notation. With ε = 1, we find

lim
τ→0

f(r;R; τ ; 1) =
√
R2 − r2.

When τ → 0, the spheres ΣR converge to Euclidean spheres with radius R > 0 in the

three-dimensional space.

With τ = σ/ε4 as in (1.2), we find the asymptotic

lim
ε→0

f(r;R;σ/ε4; ε) =
σ

2

[
R2 arctan

(√R2 − r2

r

)
+ r
√
R2 − r2

]
=
σ

2

[
R2 arccos

( r
R

)
+ r
√
R2 − r2

]
,

which gives the profile function of the Pansu’s sphere, the conjectured solution to the

sub-Riemannian Heisenberg isoperimetric problem, see e.g. [17] or [16], with R = 1

and σ = 2.

Remark 2.3. Starting from formula (2.1), we can compute the derivatives of f(·;R)

in the variable R. The first order derivative is given by

fR(r;R) = τε4R
[

arctan
(
p(r;R)

)
+

1

p(r;R)

]
=

σR

p(r;R)`(p(r;R))
, (2.2)

where ` : [0,∞)→ R is the function defined as

`(p) =
1

1 + p arctan(p)
. (2.3)

The geometric meaning of ` will be clear in formula (4.1).

We now show that H1
∗ = H1 \ {0} is foliated by the family {ΣR}R>0, i.e.,

H1
∗ =

⋃
R>0

ΣR. (2.4)

Proposition 2.4. For any nonzero (z, t) ∈ H1 there exists a unique R > 0 such that

(z, t) ∈ ΣR.

Proof. Without loss of generality we can assume that t ≥ 0. After an integration by

parts in (2.1), we obtain the formula

f(r;R) = ε3

{
√
R2 − r2ω(r) +

∫ R

r

√
R2 − s2ωr(s)ds

}
, 0 ≤ r ≤ R.

Since ωr(r) > 0 for r > 0, we deduce that the function R 7→ f(r;R) is strictly

increasing for R ≥ r. Moreover, we have

lim
R→∞

f(r;R) =∞,

and hence for any r ≥ 0 there exists a unique R ≥ r such that f(r;R) = t. �
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Remark 2.5. By Proposition 2.4, we can define the function R : H1 → [0,∞) by

letting R(0) = 0 and R(z, t) = R if and only if (z, t) ∈ ΣR for R > 0. The function

R(z, t), in fact, depends on r = |z| and thus we may consider R(z, t) = R(r, t)

as a function of r and t. This function is implicitly defined by the equation |t| =

f(r;R(r, t)). Differentiating this equation, we find the derivatives of R, i.e.,

Rr = − fr
fR

and Rt =
sgn(t)

fR
, (2.5)

where fR is given by (2.2).

3. Second fundamental form of ΣR

In this section, we compute the second fundamental form of the spheres ΣR. In fact,

we will see that H = 1/(εR) is the mean curvature of ΣR. Let N = (0, f(0;R)) ∈ ΣR

be the north pole of ΣR and let S = −N = (0,−f(0;R)) be its south pole. In

Σ∗R = ΣR \{±N} there is a frame of tangent vector fields X1, X2 ∈ Γ(TΣ∗R) such that

|X1| = |X2| = 1, 〈X1, X2〉 = 0, ϑ(X1) = 0, (3.1)

where ϑ is the left-invariant 1-form introduced in (1.3). Explicit expressions for X1

and X2 are given in formula (3.9) below. This frame is unique up to the sign ±X1 and

±X2. Here and in the rest of the paper, we denote by N the exterior unit normal to

the spheres ΣR.

The second fundamental form h of ΣR with respect to the frame X1, X2 is given by

h = (hij)i,j=1,2, hij = 〈∇XiN , Xj〉, i, j = 1, 2,

where ∇ denotes the Levi-Civita connection of H1 endowed with the left-invariant

metric g. The linear connection ∇ is represented by the linear mapping h × h 7→ h,

(V,W ) 7→ ∇VW . Using the fact that the connection is torsion free and metric, it can

be seen that ∇ is characterized by the following relations:

∇XX = ∇Y Y = ∇TT = 0,

∇YX = τT and ∇XY = −τT,

∇TX = ∇XT = τY,

∇TY = ∇Y T = −τX.

(3.2)

Here and in the rest of the paper, we use the coordinates associated with the frame

(1.1). For (z, t) ∈ H1, we set r = |z| and use the short notation

% = τεr. (3.3)
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Theorem 3.1. For any R > 0, the second fundamental form h of ΣR with respect to

the frame X1, X2 in (3.1) at the point (z, t) ∈ ΣR is given by

h =
1

1 + %2

(
H(1 + 2%2) τ%2

τ%2 H

)
, (3.4)

where R = 1/Hε and H is the mean curvature of ΣR. The principal curvatures of

ΣR are given by

κ1 = H +
%2

1 + %2

√
H2 + τ 2,

κ2 = H − %2

1 + %2

√
H2 + τ 2.

(3.5)

Outside the north and south poles, principal directions are given by

K1 = cos βX1 + sin βX2,

K2 = − sin βX1 + cos βX2,
(3.6)

where β = βH ∈ (−π/4, π/4) is the angle

βH = arctan

(
τ

H +
√
H2 + τ 2

)
. (3.7)

Proof. Let a, b : Σ∗R → R and c, p : ΣR → R be the following functions depending on

the radial coordinate r = |z|:

a = a(r;R) =
ω(r)

rω(R)
, b = b(r;R) = ±

√
R2 − r2

rRω(R)
,

c = c(r;R) =
rω(R)

Rω(r)
, p = p(r;R) = ±τε

√
R2 − r2

ω(r)
.

(3.8)

In fact, b and p also depend on the sign of t. Namely, in b and p we choose the sign

+ in the northern hemisphere, that is for t ≥ 0, while we choose the sign − in the

southern hemisphere, where t ≤ 0. Our computations are in the case t ≥ 0.

One can check that the vector fields

X1 = −a
(
(y − xp)X − (x+ yp)Y

)
,

X2 = −b
(
(x+ yp)X + (y − xp)Y

)
+ cT

(3.9)

form an orthonormal frame for TΣ∗R satisfying (3.1). The the outer unit normal to

ΣR is given by the following formula (which is well defined also at the poles):

N =
1

R

{
(x+ yp)X + (y − xp)Y +

p

τε
T
}
. (3.10)
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We compute the entries h11 and h12. Using X1R = 0, we find

∇X1N =
1

R

{
X1(x+ yp)X +X1(y − xp)Y +X1

( p
τε

)
T

+ (x+ yp)∇X1X + (y − xp)∇X1Y +
p

τε
∇X1T

}
.

(3.11)

Using the formulasX1x = −a(y−xp)/ε andX1y = a(x+yp), /ε we find the derivatives

X1(x+ yp) =
a

ε

(
2xp+ y(p2 − 1)

)
+ yX1p,

X1(y − xp) =
a

ε

(
2yp+ x(1− p2)

)
− xX1p.

(3.12)

Inserting the latter into (3.11), together with the fundamental relations (3.2), we

obtain

∇X1N =
1

R

{[
− a

ε
(y − xp) + yX1p

]
X +

[a
ε

(x+ yp)− xX1p
]
Y

+
[X1p

τε
+ τr2a(p2 + 1)

]
T
}
,

(3.13)

thus implying

h11 = 〈∇X1N , X1〉 =
r2a

Rε

{
a(p2 + 1)− εX1p

}
,

where p2 + 1 = ω(R)2/ω(r)2 and X1p can be computed starting from

pr(r;R) = −τεr ω(R)2

√
R2 − r2ω(r)3

. (3.14)

Namely, also using the formula for a and p in (3.8), we have

X1p =
ra

ε
ppr = −τ 2εr

ω(R)

ω(r)3
.

By (3.3) and the fact that εHR = 1, we finally find

h11 =
1

Rε

(
1 +

τ 2ε2r2

ω(r)2

)
= H

(
1 +

%2

1 + %2

)
.

From (3.13) we also deduce

h12 = 〈∇X1N , X2〉 = − b

R
r2pX1p+

c

R

{X1p

τε
+ τr2a(1 + p2)

}
,

and using the formula for X1p and the formulas in (3.8) we obtain

h12 =
τ%2

1 + %2
.

To compute the entry h22, we proceed in an equivalent way, starting from

∇X2N =
1

R

{
X2(x+ yp)X +X2(y − xp)Y +

X2(p)

τε
T

+ (x+ yp)∇X2X + (y − xp)∇X2Y +
p

τε
∇X2T

}
,

yielding h22 = H/(1 + %2).
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The principal curvatures κ1, κ2 of ΣR are the solutions to the system κ1 + κ2 = tr(h) = 2H

κ1κ2 = det(h) =
H2(1 + 2%2)− τ 2%4

(1 + %2)2
.

They are given explicitly by the formulas (3.5).

Now letK1, K2 be tangent vectors as in (3.6). We identify h with the shape operator

h ∈ Hom(TpΣR;TpΣR), h(K) = ∇KN , at any point p ∈ ΣR and K ∈ TpΣR. When

% 6= 0 (i.e., outside the north and south poles), the system of equations

h(K1) = κ1K1 and h(K2) = κ2K2

is satisfied if and only if the angle β = βH is chosen as in (3.7). The argument of

arctan in (3.7) is in the interval (−1, 1) and thus βH ∈ (−π/4, π/4). �

Remark 3.2. The convergence of the Riemannian second fundamental form towards

its sub-Riemannian counterpart is studied in [5], in the setting of Carnot groups. See

also [18].

4. Geodesic foliation of ΣR

We prove that each CMC sphere ΣR is foliated by a family of geodesics of ΣR

joining the north to the south pole. In fact, we show that the foliation is governed

by the normal N to the foliation H1
∗ =

⋃
R>0 ΣR. In the sub-Riemannian limit, we

recover the foliation property of the Pansu’s sphere. In the Euclidean limit, we find

the foliation of the round sphere with meridians.

We need two preliminary lemmas. We define a function R : H1 → [0,∞) by letting

R(0) = 0 and R(z, t) = R if and only if (z, t) ∈ ΣR. In fact, R(z, t) depends on r = |z|
and t. The function p in (3.8) is of the form p = p(r, R(r, t)).

Now, we compute the derivative of these functions in the normal direction N .

Lemma 4.1. The derivative along N of the functions R and p are, respectively,

N R =
`(p)

ε
, (4.1)

and

N p = ετ 2R
2ω(r)2`(p)− r2ω(R)2

Rω(r)4p
, (4.2)

where `(p) = (1 + p arctan p)−1, as in (2.3).

Proof. We start from the following expression for the unit normal (in the coordinates

(x, y, t)):

N =
1

R

{r
ε
∂r +

p

ε
(y∂x − x∂y) + sgn(t)ε2ω(r)

√
R2 − r2∂t

}
.
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We just consider the case t ≥ 0. Using (2.5), we obtain

N R =
1

R

{r
ε
Rr + ε2ω(r)

√
R2 − r2Rt

}
=

1

RfR

{
ε2ω(r)

√
R2 − r2 − r

ε
fr

}
.

Inserting into this formula the expression for fr computed from (2.1), we get

N R =
ε2Rω(r)

fR
√
R2 − r2

,

and using formula (2.2) for fR, namely,

fR = τε4R
[

arctan(p) +
1

p

]
=
τε4R

p`(p)
,

we obtain formula (4.1).

To compute the derivatives of p in r and t, we have to consider p = p(r;R) and

R = R(r, t). Using the formula in (3.8) for p and the expression (2.5) for Rr yields

pr = − τεrω(R)2

ω(r)3
√
R2 − r2

, pR =
τεR

ω(r)
√
R2 − r2

, Rr = − fr
fR

=
ε3rω(r)√
R2 − r2fR

,

and thus

∂

∂r
p(r, R(r, t)) = pr(r, R(r, t)) + pR(r, R(r, t))Rr(r, t)

=
τεr

ω(r)3
√
R2 − r2

[
ω(r)2`(p)− ω(R)2

]
.

Similarly, we compute

∂

∂t
p(r;R(r, t)) = pR(r;R(r, t))Rt(r, t) =

τ`(p)

ε2ω(r)2
.

The derivative of p along N is thus as in (4.2), when t ≥ 0. The case t < 0 is

analogous.

�

In the next lemma, we compute the covariant derivative ∇N N . The resulting

vector field in H1
∗ is tangent to each CMC sphere ΣR, for any R > 0.

Lemma 4.2. At any point in (z, t) ∈ H1
∗ we have

∇N N (z, t) = N
( p
R

)[
(y + xΦ)X − (x− yΦ)Y +

1

τε
T
]
, (4.3)

where Φ = Φ(r;R) is the function defined as

Φ = −ω(r)2p

τ 2ε2r2
,

and the derivative N (p/R) is given by

N
( p
R

)
= −

ετ 2r2
(
ω(R)2 − `(p)ω(r)2

)
R2ω(r)4p

,

with ` as in (2.3).
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Proof. Starting from formula (3.10) for N , we find that

∇N N = N
(x+ yp

R

)
X + N

(y − xp
R

)
Y + N

( p

τεR

)
T

+
1

R

(
(x+ yp)∇N X + (y − xp)∇N Y +

p

τε
∇N T

)
,

(4.4)

where, by the fundamental relations (3.2), we have

(x+ yp)∇N X + (y − xp)∇N Y +
p

τε
∇N T =

2p

εR

(
− (y − xp)X + (x+ yp)Y

)
. (4.5)

From the elementary formulas

N x =
1

Rε
(x+ yp) and N y =

1

Rε
(y − xp),

we find

N (x+ yp) =
1

εR

(
x(1− p2) + 2yp

)
+ yN p,

N (y − xp) =
1

εR

(
y(1− p2)− 2xp

)
− xN p.

(4.6)

Inserting (4.5) and (4.6) into (4.4) we obtain the following expression

∇N N =
1

R2

[{
x(ε−1(1 + p2)−N R) + y(RN p− pN R)

}
X

+
{
y(ε−1(1 + p2)−N R)− x(RN p− pN R)

}
Y

+
1

τε
(RN p− pN R)T

]
.

(4.7)

From (4.1) and (4.2) we compute

RN p− pN R = − ετ 2r2

ω(r)4p

[
ω(R)2 − `(p)ω(r)2

]
.

Inserting this formula into (4.7) and using 1 +p2 = ω(R)2/ω(r)2 yields the claim. �

Let N ∈ Γ(TH1
∗ ) be the exterior unit normal to the family of CMC spheres ΣR

centered at 0 ∈ H1. The vector field ∇N N is tangent to ΣR for any R > 0, and for

(z, t) ∈ ΣR we have

∇N N (z, t) = 0 if and only if z = 0 or t = 0.

However, it can be checked that the normalized vector field

M (z, t) = sgn(t)
∇N N

|∇N N |
∈ Γ(TΣ∗R)

is smoothly defined also at points (z, t) ∈ ΣR at the equator, where t = 0. We denote

by ∇ΣR the restriction of the Levi-Civita connection ∇ to ΣR.
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Figure 1. The plotted curve is an integral curve of the vector field M

for R = 2, ε = 0.5, and σ = 0.5.

Theorem 4.3. Let ΣR ⊂ H1 be the CMC sphere with mean curvature H > 0. Then

the vector field ∇M M is smoothly defined on ΣR and for any (z, t) ∈ ΣR we have

∇M M (z, t) = − H

ω(r)2
N . (4.8)

In particular, ∇ΣR
M M = 0 and the integral curves of M are Riemannian geodesics of

ΣR joining the north pole N to the south pole S. (See Figure 1.)

Proof. From (4.3) we obtain the following formula for M :

M = (xλ− yµ)X + (yλ+ xµ)Y − µ

τε
T, (4.9)

where λ, µ : Σ∗R → R are the functions

λ = λ(r) = ±
√
R2 − r2

rR
and µ = µ(r) =

τεr

Rω(r)
, (4.10)

with r = |z| and R = 1/(εH). The functions λ and µ are radially symmetric in z.

In defining λ we choose the sign +, when t ≥ 0, and the sign −, when t < 0. In the

coordinates (x, y, t), the vector field M has the following expression

M =
1

ε

(
λr∂r + µ(x∂y − y∂x)− µ

ε2ω(r)2

τ
∂t

)
, (4.11)

where r∂r = x∂x + y∂y, and so we have

∇M M =(xλ− yµ)∇MX + (yλ+ xµ)∇MY − µ

τε
∇MT

+ M (xλ− yµ)X + M (yλ+ xµ)Y −M
( µ
τε

)
T.

(4.12)

Using (4.11), we compute

Mx =
1

ε
(xλ− yµ) and M y =

1

ε
(yλ+ xµ), (4.13)
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and so we find

M (xλ− yµ) =
1

ε
(xλ− yµ)λ+ xMλ− 1

ε
(yλ+ xµ)µ− yMµ,

M (yλ+ xµ) =
1

ε
(yλ+ xµ)λ+ yMλ+

1

ε
(xλ− yµ)µ+ xMµ.

(4.14)

Now, inserting (4.13) and (4.14) into (4.12), we get

∇M M =
(x
ε

(λ2 + µ2) + xMλ− yMµ
)
X

+
(y
ε

(λ2 + µ2) + yMλ+ xMµ
)
Y − 1

τε
MµT.

The next computations are for the case t ≥ 0. Again from (4.11), we get

Mλ =
λr

ε
∂rλ = − Rλ

εr
√
R2 − r2

, and Mµ =
λr

ε
∂rµ =

τrλ

Rω(r)3
. (4.15)

From (4.10) and (4.15) we have

1

ε
(λ2 + µ2) + Mλ = − 1

εR2ω(r)2
,

and so we finally obtain

∇M M = (xΛ− yM)X + (yΛ + xM)Y − M

τε
T, (4.16)

where we have set

Λ = − 1

εR2ω(r)2
, M = τ

√
R2 − r2

R2ω(r)3
. (4.17)

Comparing with (3.10), we deduce that

∇M M = − 1

εRω(r)2
N .

The claim ∇ΣR
M M = 0 easily follows from the last formula.

�

Remark 4.4. We compute the pointwise limit of M in (4.9) when σ → 0, for t ≥ 0.

In the southern hemisphere the situation is analogous. By (4.11), the vector field M

is given by

M =
1

εR

(√R2 − r2

r
(x∂x + y∂y) +

σr√
ε6 + σ2r2

(x∂y − y∂x)− r
√
ε6 + σ2r2∂t

)
.

With ε = 1 we have

M̂ = lim
σ→0

M =

√
R2 − r2

rR
(x∂x + y∂y)−

r

R
∂t.

Clearly, the vector field M̂ is tangent to the round sphere of radius R > 0 in the

three-dimensional Euclidean space and its integral lines turn out to be the meridians

from the north to the south pole.
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Remark 4.5. We study the limit of εM when ε→ 0, in the northern hemisphere.

The frame of left-invariant vector fields X̄ = εX, Ȳ = εY and T̄ = ε−2T is

independent of ε. Moreover, the linear connection ∇ restricted to the horizontal

distribution spanned by X̄ and Ȳ is independent of the parameter ε. Indeed, from

the fundamental relations (3.2) and from (1.2) we find

∇X̄X̄ = ∇Ȳ Ȳ = 0,

∇X̄ Ȳ = −σT̄ and ∇Ȳ X̄ = σT̄ .

Now, it turns out that

M̄ = lim
ε→0

εM =
1

R

[(
x

√
R2 − r2

r
− y
)
∂x +

(
y

√
R2 − r2

r
+ x
)
∂y − σr2∂t

]
= (xλ̄− yµ̄)X̄ + (yλ̄+ xµ̄)Ȳ ,

where

λ̄ = λ =

√
R2 − r2

rR
, µ̄ =

1

R
.

The vector field M̄ is horizontal and tangent to the Pansu’s sphere.

We denote by J the complex structure J(X̄) = Ȳ and J(Ȳ ) = −X̄. A computation

similar to the one in the proof of Theorem 4.3 shows that

∇M̄ M̄ =
2

R
J(M̄ ). (4.18)

This is the equation for Carnot-Carathéodory geodesics in H1 for the sub-Riemannian

metric making X̄ and Ȳ orthonormal, see [21, Proposition 3.1].

Thus, we reached the following conclusion. The integral curves of M are Riemann-

ian geodesics of ΣR and converge to the integral curves of M̄ . These curves foliate

the Pansu’s sphere and are Carnot-Carathéodory geodesics (not only of the Pansu’s

sphere but also) of H1.

Using (4.18) we can pass to the limit as ε → 0 in equation (4.8), properly scaled.

An inspection of the right hand side in (4.16) shows that the right hand side of (4.8)

is asymptotic to ε4. In fact, starting from (4.17) we get

− lim
ε→0

H

ε4ω(r)2
N =

1

Rσ2r2

[
− (xµ̄+ yλ̄)X̄ + (xλ̄− yµ̄)Ȳ

]
=

1

Rσ2r2
J(M̄ ). (4.19)

From (4.8), (4.18), and (4.19) we deduce that

lim
ε→0

ε−4∇M M =
1

2σ2r2
∇M̄ M̄ .

5. Quantitative stability of ΣR in vertical cylinders

In this section, we prove a quantitative isoperimetric inequality for the CMC spheres

ΣR with respect to compact perturbations in vertical cylinders, see Theorem 5.1. This

is a strong form of stability of ΣR in the northern and southern hemispheres.
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A CMC surface Σ in H1 with normal N is stable in an open region A ⊂ Σ if for

any function g ∈ C∞c (A) with
∫

Σ
gdA = 0, where A is the Riemannian area measure

of Σ, we have

S (g) =

∫
Σ

{
|∇g|2 −

(
|h|2 + Ric(N )

)
g2
}
dA ≥ 0.

The functional S (g) is the second variation, with fixed volume, of the area of Σ

with respect to the infinitesimal deformation of Σ in the direction gN . Above, |∇g|
is the length of the tangential gradient of g, |h|2 is the squared norm of the second

fundamental form of Σ and Ric(N ) is the Ricci curvature of H1 in the direction N .

The Jacobi operator associated with the second variation functional S is

L g = ∆g + (|h|2 + Ric(N ))g,

where ∆ is the Laplace-Beltrami operator of Σ. As a consequence of Theorem 1 in

[9], if there exists a strictly positive solution g ∈ C∞(A) to equation L g = 0 on A,

then Σ is stable in A (even without the restriction
∫
A
gdA = 0).

Now consider in H1 the right-invariant vector fields

X̂ =
1

ε

( ∂
∂x
− σy ∂

∂t

)
, Ŷ =

1

ε

( ∂
∂y

+ σx
∂

∂t

)
, and T̂ = ε2 ∂

∂t
.

These are generators of left-translations in H1, and the functions

gX̂ = 〈X̂,N 〉, gŶ = 〈Ŷ ,N 〉, gT̂ = 〈T̂ ,N 〉

are solutions to L g = 0. By the previous discussion, the CMC sphere ΣR is stable

in the hemispheres

AX̂ =
{

(z, t) ∈ ΣR : gX̂ > 0
}
,

AŶ =
{

(z, t) ∈ ΣR : gŶ > 0
}
,

AT̂ =
{

(z, t) ∈ ΣR : gT̂ > 0
}
.

In particular, ΣR is stable in the northern hemisphere AT̂ = {(z, t) ∈ ΣR : t > 0}.
In fact, the whole ΣR is stable. This is shown in [24] producing a function v un

ΣR orthogonal to the kernel of L , solving L v = 1, and with nonnegative integral on

ΣR.

In the case of the northern hemisphere, we can prove the following quantitative

stability. For R > 0, let ER ⊂ H1 be the open domain bounded by the CMC sphere

ΣR,

ER = {(z, t) ∈ H1 : |t| < f(|z|;R), |z| < R},

where f(·;R) is the profile function of ΣR in (2.1). For 0 ≤ δ < R, we define the

half-cylinder

CR,δ = {(z, t) ∈ H1 : |z| < R and t > tR,δ},
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where tR,δ = f(rR,δ;R) and rR,δ = R− δ. In the following, we use the short notation

kRετ = ε3ω(R)
√
R,

CRετ =
1

4πεR3(RkRετ + f(0;R))
,

DRετ =
1

12επ2R5(4Rk2
Rετ + f(0;R)2)

.

(5.1)

We denote by A the Riemannian surface-area measure in H1.

Theorem 5.1. Let R > 0, 0 ≤ δ < R, ε > 0, and τ ∈ R be as in (1.2). Let E ⊂ H1

be a smooth open set such that L 3(E) = L 3(ER) and Σ = ∂E.

(i) If E∆ER ⊂⊂ CR,δ with 0 < δ < R then we have

A (Σ)−A (ΣR) ≥
√
δCRετL

3(E∆ER)2. (5.2)

(ii) If E∆ER ⊂⊂ CR,0 then we have

A (Σ)−A (ΣR) ≥ DRετL
3(E∆ER)3. (5.3)

The proof of Theorem 5.1 is based on the foliation of the cylinder CR,δ by a fam-

ily of CMC surfaces (see Proposition 2.4) with quantitative estimates on the mean

curvature.

Theorem 5.2. For any R > 0 and 0 ≤ δ < R, there exists a continuous function

u : CR,δ → R with level sets Sλ =
{

(z, t) ∈ CR,δ : u(z, t) = λ
}

, λ ∈ R, such that the

following claims hold:

(i) u ∈ C1(CR,δ ∩ ER) ∩ C1(CR,δ \ ER) and the normalized Riemannian gradient

∇u/|∇u| is continuously defined on CR,δ.

(ii)
⋃
λ>R Sλ = CR,δ ∩ ER and

⋃
λ≤R Sλ = CR,δ \ ER.

(iii) Each Sλ is a smooth surface with constant mean curvature Hλ = 1/(ελ) for

λ > R and Hλ = 1/(εR) for λ ≤ R.

(iv) For any point (z, f(|z|;R)− t) ∈ Sλ with λ > R we have

1− εRHλ(z, f(|z|;R)− t) ≥ t2

4Rk2
Rετ + f(0;R)2

, when δ = 0, (5.4)

and

1− εRHλ(z, f(|z|;R)− t) ≥
√
δt

RkRετ + f(0;R)
, when 0 < δ < R. (5.5)

Proof of Theorem 5.2. For points (z, t) ∈ CR,δ \ ER we let

u(z, t) = f(|z|;R)− t+R.
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Then u satisfies u(z, t) ≤ R for t ≥ f(|z|;R) and u(z, t) = R if t = f(|z|;R). In order

to define u in the set CR,δ ∩ ER, for 0 ≤ r < rR,δ, tR,δ < t < f(r;R), and λ > R we

consider the function

F (r, t, λ) = f(r;λ)− f(rR,δ;λ) + tR,δ − t. (5.6)

The function F also depends on δ. We claim that for any point (z, t) ∈ CR,δ ∩ ER
there exists a unique λ > R such that F (|z|, t, λ) = 0. In this case, we can define

u(z, t) = λ if and only if F (|z|, t, λ) = 0. (5.7)

We prove the previous claim. Let (z, t) ∈ CR,δ ∩ ER and use the notation r = |z|.
First of all, we have

lim
λ→R+

F (r, t, λ) = f(r;R)− t > 0. (5.8)

We claim that we also have

lim
λ→∞

F (r, t, λ) = tR,δ − t < 0. (5.9)

To prove this, we let f(r;λ)− f(rR,δ;λ) = ε2

2τ
[f1(λ) + f2(λ)], where

f1(λ) = ω(λ)2
[

arctan(p(r;λ))− arctan(p(rR,δ;λ))
]
,

f2(λ) = ω(r)2
(
p(r;λ)− p(rR,δ;λ)

)
.

Using the asymptotic approximation

arctan(s) =
π

2
− 1

s
+

1

3s3
+ o
( 1

s3

)
, as s→∞,

we obtain for λ→∞
f1(λ) = λετ(ω(rR,δ)− ω(r))) + o(1),

f2(λ) = λετ(ω(r)− ω(rR,δ)) + o(1),

and thus f(r;λ)− f(rR,δ;λ) = o(1), where o(1)→ 0 as λ→∞. Since λ 7→ F (r, t, λ)

is continuous, (5.8) and (5.9) imply the existence of a solution λ of F (r, t, λ) = 0.

The uniqueness follows from ∂λF (r, t, λ) < 0. This inequality can be proved starting

from (2.2) and we skip the details. This finishes the proof of our initial claim.

Claims (i) and (ii) can be checked from the construction of u. Claim (iii) follows,

by Theorem 3.1, from the fact that Sλ for λ > R is a vertical translation (this is an

isometry of H1) of the t-graph of z 7→ f(z;λ).

We prove Claim (iv). For any (z, t) ∈ H1 such that r = |z| < rR,δ and 0 ≤ t <

f(r;R)− tR,δ, we define

gz(t) = u(z, f(r;R)− t) = λ, (5.10)

where λ ≥ R is uniquely determined by the condition (z, f(r;R)−t) ∈ Sλ. Notice that

gz(0) = u(z, f(r;R)) = R. We estimate the derivative of the function t 7→ gz(t). From
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the identity F (r, t, u(z, t)) = 0, see (5.7), we compute ∂tu(z, t) = (∂λF (r, t, u(z, t)))−1

and so, also using (5.6), we find

g′z(t) = −∂tu(z, f(r;R)− t) =
−1

∂λF (r, f(r;R)− t, gz(t))
. (5.11)

Now from (2.1) we compute

∂λF (r, t, λ) = −ε3λ

∫ rR,δ

r

sω(s)

(λ2 − s2)3/2
ds

≥ −ε3λω(rR,δ)

∫ rR,δ

0

s

(λ2 − s2)3/2
ds

= −ε3ω(rR,δ)

 λ√
λ2 − r2

R,δ

− 1


≥ −ε3ω(R)

√
R√

λ− rR,δ
.

(5.12)

In the last inequality, we used rR,δ < R ≤ λ. From (5.11), (5.12) and with kRετ as in

(5.1), we deduce that

g′z(t) ≥
1

kRετ

√
gz(t)− rR,δ. (5.13)

In the case δ = 0, (5.13) reads g′z(t) ≥
√
gz(t)−R/kRετ . Integrating this differential

inequality we obtain gz(t) ≥ R + t2/(4k2
Rετ ), and thus

1− εRHλ(z, f(r;R)− t) = 1− R

gz(t)
≥ t2

4Rk2
Rετ + f(0;R)2

,

that is Claim (5.4).

If 0 < δ < R, (5.13) implies g′z(t) ≥
√
δ/kRετ and an integration gives gz(t) ≥√

δ t+R/kRετ . Then we obtain

1− εRHλ(z, f(r;R)− t) = 1− R

gz(t)
≥

√
δ

RkRετ + f(0;R)
t,

that is Claim (5.5).

�

We can now prove Theorem 5.1.

Proof of Theorem 5.1. Let u : CR,δ → R, 0 ≤ δ < 1, be the function constructed in

Theorem 5.2 and let Sλ = {(z, t) ∈ CR,δ : u(z, t) = λ}, λ ∈ R, be the leaves of the

foliation. Let ∇u be the Riemannian gradient of u. The vector field

V (z, t) = − ∇u(z, t)

|∇u(z, t)|
, (z, t) ∈ CR,δ,

satisfies the following properties:

i) |V | = 1.
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ii) For (z, t) ∈ ΣR ∩ CR,δ we have V (z, t) = νΣR(z, t), where νΣR = N is the

exterior unit normal to ΣR.

iii) For any point (z, t) ∈ Sλ, λ ∈ R, the Riemannian divergence of V satisfies

1

2
divV (z, t) = Hλ(z, t) ≤

1

εR
for λ > R,

1

2
divV (z, t) = Hλ(z, t) =

1

εR
for 0 < λ ≤ R.

(5.14)

Let νΣ be the exterior unit normal to the surface Σ = ∂E. By the Gauss-Green

formula and (5.14) it follows that

L 3(ER \ E) ≥ εR

2

∫
ER\E

divV dL 3

=
εR

2

(∫
ΣR\Ē
〈V, νΣR〉 dA −

∫
Σ∩ER

〈V, νΣ〉 dA
)

≥ εR

2

(
A (ΣR \ Ē)−A (Σ ∩ ER)

)
.

In the last inequality we used the Cauchy-Schwarz inequality and the fact that

〈V, νΣR〉 = 1 on ΣR \ Ē. By a similar computation we also have

L 3(E \ ER) =
εR

2

∫
E\ER

divV dL 3

=
εR

2

{∫
Σ\ĒR
〈V, νΣ〉dA −

∫
ΣR∩E

〈V, νΣR〉dA
}

≤ εR

2

(
A (Σ \ ĒR)−A (ΣR ∩ E)

)
.

Using the inequalities above and the fact that L 3(E) = L 3(ER), it follows that:

εR

2

(
A (ΣR \ Ē)−A (Σ ∩ ER)

)
≤ εR

2

∫
ER\E

divV dL 3

= L 3(E \ ER)−
∫
ER\E

(
1− εR

2
divV

)
dL 3

≤ εR

2

(
A (Σ \ ĒR)−A (ΣR ∩ E)

)
− G (ER \ E),

where we let

G (ER \ E) =

∫
ER\E

(
1− εR

2
divV

)
dL 3.

Hence, we obtain

A (Σ)−A (ΣR) ≥ 2

εR
G (ER \ E). (5.15)

For any z with |z| < R−δ, we define the vertical sections Ez
R = {t ∈ R : (z, t) ∈ ER}

and Ez = {t ∈ R : (z, t) ∈ E}. By Fubini-Tonelli theorem, we have

G (ER \ E) =

∫
{|z|<R}

∫
EzR\Ez

(
1− εR

2
divV (z, t)

)
dt dz.
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The function t 7→ divV (z, t) is increasing, and thus letting m(z) = L 1(Ez
R \ Ez), by

monotonicity we obtain

G (ER \ E) ≥
∫
{|z|<1}

∫ f(|z|;R)

f(|z|;R)−m(z)

(
1− εR

2
divV (z, t)

)
dt dz

=

∫
{|z|<1}

∫ m(z)

0

(
1− R

gz(t)

)
dt dz,

where gz(t) = u(z, f(|z|;R)− t) is the function introduced in (5.10).

When δ = 0, by the inequality (5.4) and by Hölder inequality we find

G (ER \ E) ≥ 1

4Rk2
Rετ + f(0;R)2

∫
{|z|<R}

∫ m(z)

0

t2dt dz

≥ 1

24π2R4(4Rk2
Rετ + f(0;R)2)

L 3(E∆ER)3.

(5.16)

From (5.16) and (5.15) we obtain (5.3).

By (5.5), when 0 < δ < 1 the function gz satisfies the estimate 1 − 1/gz(t) ≥
(
√
δ/(kRετ + f(0;R)))t and we find

G (ER \ E) ≥
√
δ

RkRετ + f(0;R)

∫
{|z|<R}

∫ m(z)

0

t dt dz

≥
√
δ

8πR2(RkRετ + f(0;R))
L 3(E∆ER)2.

(5.17)

From (5.17) and (5.15) we obtain Claim (5.2).

�

Appendix A. Topological CMC spheres are left translations of ΣR

In this Appendix we give a self-contained proof of the rotational symmetry of CMC

spheres in the Heisenberg group. Our proof follows the scheme of the fundamental

paper [1]. We remark that the same result can be obtained, for instance by combining

[1] and Daniel’s correspondence theorem [6, Theorem 5.2] applied to the Heisenberg

case [6, Example 5.7]. Nonetheless, our proof does not rely on the fact that the

isometry group of H1 is 4-dimensional.

We introduce the following notation. For an oriented surface Σ in H1 with unit

normal vector N , we denote by h ∈ Hom(TpΣ;TpΣ) the shape operator h(W ) =

∇WN , at any point p ∈ Σ. The 1-form ϑ in H1, defined by ϑ(W ) = 〈W,T 〉 for

W ∈ Γ(TH1), can be restricted to the tangent bundle TΣ. The tensor product

ϑ⊗ ϑ ∈ Hom(TpΣ;TpΣ) is defined, as a linear operator, by the formula

(ϑ⊗ ϑ)(W ) = ϑ(W )(ϑ(X1)X1 + ϑ(X2)X2), W ∈ Γ(TΣ),
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where X1, X2 is any (local) orthonormal frame of TΣ. Finally, for any H ∈ R with

H 6= 0, let αH ∈ (−π/4, π/4) be the angle

αH =
1

2
arctan

( τ
H

)
, (A.1)

and let qH ∈ Hom(TpΣ;TpΣ) be the (counterclockwise) rotation by the angle αH of

each tangent plane TpΣ with p ∈ Σ.

Definition A.1. Let Σ be an (immersed) surface in H1 with constant mean curvature

H 6= 0. At any point p ∈ Σ, we define the linear operator k ∈ Hom(TpΣ;TpΣ) by

k = h+
2τ 2

√
H2 + τ 2

qH ◦ (ϑ⊗ ϑ) ◦ q−1
H . (A.2)

The operator k is symmetric, i.e., 〈k(V ),W 〉 = 〈V, k(W )〉. The trace-free part of

k is k0 = k − 1
2
tr(k)Id. In fact, we have

k0 = h0 +
2τ 2

√
H2 + τ 2

qH ◦ (ϑ⊗ ϑ)0 ◦ q−1
H . (A.3)

In the following, we identify the linear operators h, k, ϑ⊗ϑ with the corresponding

bilinear forms (V,W ) 7→ h(V,W ) = 〈h(V ),W 〉, and so on.

The structure of k in (A.2) can be established in the following way. Let ΣR be the

CMC sphere with R = 1/εH. From the formula (3.4), we deduce that, in the frame

X1, X2 in (3.1), the trace-free shape operator at the point (z, t) ∈ ΣR is given by

h0 =
%2

1 + %2

(
H τ

τ −H

)
,

where % = τε|z|. On the other hand, from (3.9) and (3.8), we get

ϑ(X1) = 0 and ϑ(X2) =
%
√
τ 2 +H2

τ
√

1 + %2
,

and we therefore obtain the following formula for the trace-free tensor (ϑ⊗ϑ)0 in the

frame X1, X2:

(ϑ⊗ ϑ)0 = −(τ 2 +H2)

2τ 2

%2

1 + %2

(
1 0

0 −1

)
.

Now, in the unknowns c ∈ R and q (that is a rotation by an angle β), the system

of equations h0 + cq(ϑ ⊗ ϑ)0q
−1 = 0 holds independently of % if and only if c =

2τ 2/
√
H2 + τ 2 and β is the angle in (A.1). We record this fact in the next:

Proposition A.2. The linear operator k on the sphere ΣR with mean curvature H,

at the point (z, t) ∈ ΣR, is given by

k =
(
H +

%2

1 + %2

√
τ 2 +H2

)
Id.

In particular, ΣR has vanishing k0 (i.e., k0 = 0).
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Remark A.3. Formula (A.2) is analogous to the one discovered in the product spaces

S2 × R and H2 × R in [1]. In conformal parameters, the trace-less part of (A.2)

coincides, up to the sign, with the formula in [8].

In Theorem A.8, we prove that any topological sphere in H1 with constant mean

curvature has vanishing k0. We need to work in a conformal frame of tangent vector

fields to the surface.

Let z = x1 + ix2 be the complex variable. Let D ⊂ C be an open set and, for a

given map F ∈ C∞(D;H1), consider the immersed surface Σ = F (D) ⊂ H1. The

parametrization F is conformal if there exists a positive function E ∈ C∞(D) such

that, at any point in D, the vector fields V1 = F∗
∂
∂x1

and V2 = F∗
∂
∂x2

satisfy:

|V1|2 = |V2|2 = E, 〈V1, V2〉 = 0. (A.4)

We call V1, V2 a conformal frame for Σ and we denote by N the normal vector field

to Σ such that triple V1, V2,N forms a positively oriented frame, i.e.,

N =
1

E
V1 ∧ V2. (A.5)

The second fundamental form of Σ in the frame V1, V2 is denoted by

h = (hij)i,j=1,2 =

(
L M

M N

)
, hij = 〈∇iN , Vj〉, (A.6)

where ∇i = ∇Vi for i = 1, 2. This notation differs from (3.4), where the fixed frame

is X1, X2,N . Finally, the mean curvature of Σ is

H =
L+N

2E
=
h11 + h22

2E
. (A.7)

By Hopf’s technique on holomorphic quadratic differentials, the validity of the

equation k0 = 0 follows from the Codazzi’s equations, which involve curvature terms.

An interesting relation between the 1-form ϑ and the Riemann curvature operator,

defined as

R(U, V )W = ∇U∇VW −∇V∇UW −∇[U,V ]W

for any U, V,W ∈ Γ(TH1), is described in the following:

Lemma A.4. Let V1, V2 be a conformal frame of an immersed surface Σ in H1 with

conformal factor E and unit normal N . Then, we have

〈R(V2, V1)N , V2〉 = 4τ 2Eϑ(V1)ϑ(N ). (A.8)

Proof. We use the notation

Vi = V X
i X + V Y

i Y + V T
i T, i = 1, 2,

N = N XX + N Y Y + N TT.
(A.9)
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Using the fundamental relations (3.2) to write 〈R(V2, V1)N , V2〉, a direct computation

based on the fact that 〈V1,N 〉 = 〈V2,N 〉 = 〈V1, V2〉 = 0, and 〈V2, V2〉 = E yields the

claim. �

For an immersed surface with conformal frame V1, V2, we use the notation ViE = Ei,

ViH = Hi, ViN = Ni, ViM = Mi, ViL = Li, i = 1, 2.

Theorem A.5 (Codazzi’s Equations). Let Σ = F (D) be an immersed surface in H1

with conformal frame V1, V2, conformal factor E and unit normal N . Then, we have

H1 =
1

E

{L1 −N1

2
+M2 − 4τ 2Eϑ(V1)ϑ(N )

}
, (A.10)

H2 =
1

E

{N2 − L2

2
+M1 − 4τ 2Eϑ(V2)ϑ(N )

}
, (A.11)

where L,M,N,H are as in (A.6) and (A.7).

Proof. We start from the following well-known formulas

H1 =
1

E

{L1 −N1

2
+M2 + 〈R(V1, V2)N , V2〉

}
, (A.12)

H2 =
1

E

{N2 − L2

2
+M1 + 〈R(V2, V1)N , V1〉

}
. (A.13)

Our claims (A.10) and (A.11) follow from these formulas and Lemma A.4, see e.g. [13]

for the flat case. �

Now we switch to the complex variable z = x1 + ix2 ∈ D and define the complex

vector fields

Z =
1

2
(V1 − iV2) = F∗

( ∂
∂z

)
,

Z̄ =
1

2
(V1 + iV2) = F∗

( ∂
∂z̄

)
.

Equations (A.10)-(A.11) can be transformed into one single equation:

E(ZH) = Z̄
(L−N

2
− iM

)
− 4τ 2Eϑ(N )ϑ(Z). (A.14)

Consider the trace-free part of b = k − h, i.e.,

b0 =
2τ 2

√
H2 + τ 2

qH ◦ (ϑ⊗ ϑ)0 ◦ q−1
H

The entries of b0 as a quadratic form in the conformal frame V1, V2, with ϑi = ϑ(Vi)

and cH = 2τ2

H2+τ2
, are given by

A = b0(V1, V1) = cH

(
H
ϑ2

1 − ϑ2
2

2
− τϑ1ϑ2

)
,

B = b0(V1, V2) = cH

(
Hϑ1ϑ2 + τ

ϑ2
1 − ϑ2

2

2

)
.

(A.15)
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These entries can be computed starting from qH(ϑ⊗ ϑ)0q
−1
H = q2

H(ϑ⊗ ϑ)0, where q2
H

is the rotation by the angle 2αH that, by (A.1), satisfies cos(2αH) = H/
√
H2 + τ 2

and sin(2αH) = τ/
√
H2 + τ 2.

Lemma A.6. Let Σ be an immersed surface in H1 with constant mean curvature H

and unit normal N such that V1, V2,N is positively oriented. Then, on Σ we have

Z̄(A− iB) = −4τ 2Eϑ(N )ϑ(Z). (A.16)

Proof. The complex equation (A.16) is equivalent to the system of real equations

A1 +B2 = −4τ 2Eϑ(N )ϑ(V1),

A2 −B1 = 4τ 2Eϑ(N )ϑ(V2),
(A.17)

where Ai = ViA and Bi = ViB, i = 1, 2. In order to verify (A.17), we proceed by

direct computations. �

Let Σ be an immersed surface in H1 defined in terms of a conformal parametrization

F ∈ C∞(D;H1). Let f ∈ C∞(D;C) be the function of the complex variable z ∈ D
given by

f(z) =
L−N

2
− iM + A− iB, (A.18)

where L,M,M,A,B are defined as in (A.6) and (A.15) via the conformal frame V1, V2

and are evaluated at the point F (z).

Proposition A.7. If Σ has constant mean curvature H then the function f in (A.18)

is holomorphic in D.

Proof. From (A.14) with ZH = 0 and (A.16), we obtain the equation on Σ = F (D)

Z̄
(L−N

2
− iM + A− iB

)
= 0,

that is equivalent to ∂z̄f = 0 in D. �

Now, by a standard argument of Hopf, see [12] Chapter VI, for topological spheres

the function f is identically zero. By Liouville’s theorem, this follows from the esti-

mate

|f(z)| ≤ C

|z|4
, z ∈ C,

that can be obtained expressing the second fundamental forms in two different charts

without the north and south pole, respectively. We skip the details of the proof of

the next:

Theorem A.8. A topological sphere Σ immersed in H1 with constant mean curvature

has vanishing k0.
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In the rest of this section, we show how to deduce from the equation k0 = 0 that

any topological sphere is congruent to a sphere ΣR. In fact, unlike the theory of

holomorphic quadratic differentials in three-dimensional manifolds, we do not use the

fact that the isometry group of H1 is four-dimensional.

Let h be the Lie algebra of H1 and let 〈·, ·〉 be the scalar product making X, Y, T

orthonormal. We denote by S2 = {ν ∈ h : |ν| =
√
〈ν, ν〉 = 1} the unit sphere in

h. For any p ∈ H1, let τ p : H1 → H1 be the left-translation τ p(q) = p−1 · q by the

inverse of p, where · is the group law of H1, and denote by τ p∗ ∈ Hom(TpH
1; h) its

differential.

For any point (p, ν) ∈ H1×S2 there is a unique N ∈ TpH1 such that ν = τ p∗N and

we define T νpH
1 = {W ∈ TpH1 : 〈W,N 〉 = 0}. Depending on the point (p, ν) and

on the parameters H, τ ∈ R, with H2 + τ 2 6= 0, below we define the linear operator

LH ∈ Hom(T νpH
1;TνS

2). The definition is motivated by the proof of Proposition

A.9. For any W ∈ T νpM , we let

LHW = τ p∗

(
HW − 2τ 2

√
H2 + τ 2

qH(ϑ⊗ ϑ)0q
−1
H W

)
+ (∇W τ

p
∗ )(N ),

where ∇W τ
p
∗ ∈ Hom(TpH

1; h) is the covariant derivative of τ p∗ in the direction W and

the trace-free operator (ϑ⊗ ϑ)0 ∈ Hom(T νpH
1;T νpH

1) is

(ϑ⊗ ϑ)0 = ϑ⊗ ϑ− 1

2
tr(ϑ⊗ ϑ)Id.

The operator qH ∈ Hom(T νpH
1;T νpH

1) is the rotation by the angle αH in (A.1). The

operator LH is well-defined, i.e., LHW ∈ h and 〈LHW, ν〉 = 0 for any W ∈ T νpH1.

This can be checked using the identity |N | = 1 and working with the formula

(∇W τ
p
∗ )(N ) =

3∑
i=1

〈N ,∇WYi〉Yi(0),

where Y1, Y2, Y3 is any frame of orthonormal left-invariant vector fields.

Finally, for any point (p, ν) ∈ H1 × S2, define

EH(p, ν) =
{

(W,LHW ) : W ∈ T νpH1
}
⊂ TpH

1 × TνS2.

Then (p, ν) 7→ EH(p, ν) is a distribution of two-dimensional planes in H1 × S2. The

distribution EH origins from CMC surfaces with mean curvature H and vanishing k0.

Let Σ be a smooth oriented surface immersed in H1 given by a parameterization

F ∈ C∞(D;H1) where D ⊂ C is an open set. We denote by N (F (z)) ∈ TpH1, with

p = F (z), the unit normal of Σ at the point z ∈ D. The normal section is given by

the mapping G : D → S2 defined by G(z) = τ
F (z)
∗ N (F (z)), and we can define the

Gauss section Φ : D → H1 × S2 letting Φ(z) = (F (z), G(z)). Then Σ = Φ(D) is a

two-dimensional immersed surface in H1 × S2, called the Gauss extension of Σ.
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Proposition A.9. Let Σ be an oriented surface immersed in H1 with constant mean

curvature H and vanishing k0. Then the Gauss extension Σ is an integral surface of

the distribution EH in H1 × S2.

Proof. Let N be the unit normal to Σ. For any tangent section W ∈ Γ(TΣ), we have

W (τF∗ (N )) = τF∗ (∇WN ) + (∇W τ
F
∗ )(N )

= τF∗ (h(W )) + (∇W τ
F
∗ )(N ),

where h(W ) = ∇WN is the shape operator. Therefore, the set of all sections of the

tangent bundle of Σ is

Γ(TΣ) =
{(
W, τF∗ (h(W )) + (∇W τ

F
∗ )(N )

)
: W ∈ Γ(TΣ)

}
.

The equation k0 = 0 is equivalent to h = HId− b0 where, by (A.3),

b0 =
2τ 2

√
H2 + τ 2

qH

(
ϑ⊗ ϑ− tr(ϑ⊗ ϑ)

2
Id
)
q−1
H ,

and thus the sections of Σ are of the form

(W,LHW ) ∈ Γ(TΣ) with W ∈ Γ(TΣ).

This concludes the proof. �

The proof of the next theorem follows the argument in [1, Proposition 4.3] with

two minor differences. First, the construction of the distribution EH is easier thanks

to the Lie group structure of H1. Moreover, we do not use the fact that the isometry

group of H1 is four dimensional. We instead observe that any topological sphere has

T as normal vector at some point.

Theorem A.10. Let Σ be a topological sphere in H1 with constant mean curvature

H. Then there exist a left translation ι and R > 0 such that ι(Σ) = ΣR.

Proof. Let H > 0 be the mean curvature of Σ, let R = 1/Hε, and recall that the

sphere ΣR has mean curvature H.

Let TΣ(p) ∈ TpΣ be the orthogonal projection of the vertical vector field T onto

TpΣ. Since Σ is a topological sphere, there exists a point p ∈ Σ such that TΣ(p) = 0.

This implies that either T = N or T = −N at the point p, where N is the outer

normal to Σ at p. Assume that T = N .

Let ι be the left translation such that ι(p) = N , where N is the north pole of ΣR.

At the point N the vector T is the outer normal to ΣR. Since ι∗T = T (this holds for

any isometry), we deduce that ΣR and ι(Σ) are two surfaces such that:

i) They have both constant mean curvature H.

ii) They have both vanishing k0, by Proposition A.2 and Theorem A.8.

iii) N ∈ ΣR ∩ ι(Σ) with the same (outer) normal at N .
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Let M1 = ΣR and M2 = ι(Σ) be the Gauss extensions of ΣR and ι(Σ), respectively.

Let ν = τN∗ N ∈ S2. From i), ii) and Proposition A.9 it follows that M1 and M2

are both integral surfaces of the distribution EH . From iii), it follows that (N, ν) ∈
M1 ∩ M2. Being the two surfaces complete, this implies that M1 = M2 and thus

ΣR = ι(Σ).

�
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