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Abstract. By virtue of barrier arguments we prove Cα-regularity up to the boundary for the weak

solutions of a non-local, non-linear problem driven by the fractional p-Laplacian operator. The

equation is boundedly inhomogeneous and the boundary conditions are of Dirichlet type. We employ

different methods according to the singular (p < 2) of degenerate (p > 2) case.

Contents

1. Introduction and main result 1
2. Preliminaries 4
2.1. Notations and function spaces 4
2.2. Some elementary inequalities 6
2.3. Weak and strong solutions 6
2.4. Some basic properties of (−∆)sp 8
2.5. (−∆)sp on smooth functions 10
3. Distance functions 12
4. Barriers 18
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1. Introduction and main result

We study Hölder regularity up to the boundary for the weak solutions of the Dirichlet problem

(1.1)

{
(−∆)spu = f in Ω,

u = 0 in Ωc.

Here Ω ⊂ RN (N > 1) is a bounded domain with a C1,1 boundary ∂Ω, Ωc = RN \ Ω, s ∈ (0, 1) and
p ∈ (1,∞) are real numbers and f ∈ L∞(Ω). The s-fractional p-Laplacian operator is the gradient of
the functional

J(u) :=
1

p

∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy,

defined on

W s,p
0 (Ω) := {u ∈ Lp(RN ) : J(u) <∞, u = 0 in Ωc},
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which is a Banach space with respect to the norm J(u)1/p. Under suitable smoothness conditions on u
the operator can be written as

(−∆)sp u(x) = 2 lim
ε↘0

∫
Bcε(x)

|u(x)− u(y)|p−2 (u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN .

A weak solution u ∈W s,p
0 (Ω) of problem (1.1) satisfies, for every ϕ ∈W s,p

0 (Ω),∫
RN×RN

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy =

∫
Ω

f(x)ϕ(x) dx.

Problem (1.1) is thus well posed and, in the case p = 2, it corresponds to an inhomogeneous fractional
Laplacian equation with Dirichlet boundary condition. For the sake of completeness we recall that in
the literature the fractional Laplacian is often defined by

〈(−∆)su, ϕ〉 =
c(N, s)

2

∫
RN×RN

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dx dy, ϕ ∈W s,2

0 (Ω),

where c(N, s) = s22s Γ((N + 2s)/2)/(πN/2Γ(1− s)), in order to be coherent with the Fourier definition
of (−∆)s (see [4, Remark 3.11]). We point out that, in the current literature, there are several notions
of fractional Laplacian, all of which agree when the problems are set on the whole RN , but some of
them disagree in a bounded domain. We refer the reader to [22] for a discussion on the comparison
between the integral fractional laplacian and the regional (or spectral) notion obtained by taking the
s-powers of the Laplacian operator −∆ with zero Dirichlet boundary conditions.

In the case p 6= 2, problem (1.1) is a non-local and non-linear one. Its leading term (−∆)sp is furthermore
degenerate when p > 2 and singular when 1 < p < 2. Determining sufficiently good regularity estimates
up to the boundary is not only relevant by itself, but it also has useful applications in obtaining
multiplicity results for more general non-linear and non-local equations, such as those investigated
in [10] in the framework of topological methods and Morse theory. To this regard, this contribution
provides a first step in order to obtain the results of [11] in the general case p 6= 2.

The regularity up to the boundary of fractional problems in the case p = 2 is now rather well understood,
even when more general kernels and nonlinearities are considered. Using a viscosity solution approach,
the model linear case gives regularity for fully non-linear equations which are “uniformly elliptic” in a
suitable sense. Regarding the viscosity approach to fully non-linear, elliptic non-local equation, see [5,6]
for interior regularity theory with smooth kernels, and [21] for rough kernels; regarding boundary
regularity, see [19] for nearly optimal results and a detailed discussion on the delicate role that the
kernel’s regularity class plays in such problems.

Equation (1.1), however, does not fall in the category of non-local non-linear equations treated in the
aforementioned works. This is not surprising, due to the degenerate/singular nature of the nonlinearity,
and the s-fractional p-Laplacian is the non-local analogue of a degenerate/singular non-linear divergence
form equation, rather than of a uniformly elliptic fully non-linear one. Local Hölder continuity has
been addressed in [7, 8] using methods á la De Giorgi, and in [15] with a Krylov-Safanov approach
for p > 1/(1− s). In [3] the fully non-linear approach is used to study the non-local analogue of the
p-Laplacian equation in non-divergence form

∆u+ (p− 2)
∇u
|∇u|

D2u
∇u
|∇u|

= 0,

arising from non-local ‘tug of war’ games. Interior C1,α estimates and Hölder continuity up to the
boundary is proved under rather general assumptions.

Our main result is the following:
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Theorem 1.1. There exist α ∈ (0, s] and CΩ > 0, depending only on N , p, s, with CΩ also depending
on Ω, such that, for all weak solution u ∈W s,p

0 (Ω) of problem (1.1), u ∈ Cα(Ω) and

(1.2) ‖u‖Cα(Ω) ≤ CΩ‖f‖
1
p−1

L∞(Ω).

Notice that, regarding regularity up to the boundary, one cannot expect more than s-Hölder continuity
due to explicit examples (see Section 3 below). On the other hand, the optimal Hölder exponent up to
the boundary seems to be s for any p > 1, while we prove Cα regularity for an unspecified small α, the
issue being a lack of higher (at least Cs) regularity results in the interior of the domain.

Let us describe the main features and techniques to prove Theorem 1.1. We choose to use the notion of
weak rather than viscosity solution, since we feel that the equation is more naturally seen as a variational
one. However, we will frequently use barrier arguments, rather than De Giorgi-Nash-Moser techniques.
Indeed, the proof of Theorem 1.1 is performed in the spirit of Krylov’s approach to boundary regularity,
see [13], and uses two main ingredients:

(a) a uniform Hölder control (see Theorem 4.4) on how u reaches its boundary values, which amounts
to

(1.3) |u(x)| ≤ C‖f‖
1
p−1
∞ dists(x,Ωc);

(b) a local regularity estimate (see Theorem 5.4) in terms of quantities which may blow up in general
when reaching the boundary, but remain bounded for functions satisfying (1.3).

Point (a) is obtained through a barrier argument, and stems from the fact that (−∆)sp(x+)s = 0 in the
half line R+. Notice that for p 6= 2 we do not have at our disposal the fractional Kelvin transform, and
the concrete calculus of the s-fractional p-Laplacian even on smooth functions is a prohibitive task, in
general. Thus constructing upper barriers can be quite technical, and is done as following:

• Consider uN (x) = (xN )s+: explicit calculus shows that (−∆)spuN = 0 in the half-space RN+ . We
locally deform the half-space to Ωc by a diffeomorphism Φ close to the identity, and obtain a function
uN ◦ Φ with small s-fractional p-Laplacian in a small ball B̂ centered at a point of ∂Ω.

• The resulting function uN ◦Φ can be controlled in B̂∩Ω by distance-like functions from the boundary,
and we can modify it to globalize the controls, while keeping the smallness of (−∆)sp(uN ◦ Φ) in

B̂ ∩ Ω.
• We exploit the non-local nature of the equation to add a fixed positive quantity to (−∆)sp(uN ◦ Φ)

in B̂ ∩ Ω, by truncation away from B̂. Since (−∆)sp(uN ◦ Φ) is arbitrarily small, its truncation has

therefore s-fractional p-Laplacian bounded from below by a positive constant in B̂ ∩Ω, and provides
the local upper barrier.

Point (b) is a generalization, in the whole range p > 1, to non-homogeneous equations of [7, Theorem
1.2], and it could be deduced in the case p > 2 − s/N using the results of [14] and in the case
p > 1/(1− s) using [15]. However we choose to prove it with a different approach. Much in the spirit
of [20], rather than considering the non-locality of the equation as an additional technical difficulty to
the implementation of the De Giorgi-Moser regularity theory, we use it at our advantage to construct
a more elementary proof. It should be noted that we do not employ Caccioppoli-like inequalities,
or estimates on log u (which are the elementary counterpart of John-Nirenberg’s lemma). Actually
we don’t even need a Poincaré or Sobolev inequality, which are usually looked at as basic tools for
(variational) regularity theory. This feature seems typical of the non-local framework and it should be
noted that the proof doesn’t seem to immediately “pass to the limit to local equations” as the obtained
estimates blow up for s→ 1.

Regarding possible developments and generalizations, a first remark regards the choice of the kernel in
the non-local operator

L(u) = PV

∫
RN
|u(x)− u(y)|p−2(u(x)− u(y))K(x, y) dy.
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Regarding interior regularity, a bound from above and below in terms of the model kernels |x−y|−N−ps
seems to suffice to obtain Hölder regularity, due to the results of [7, 14]. For non-local, fully non-linear,
uniformly elliptic equation, higher interior regularity (up to C2,α) is proved in [5,6,21] when the kernel
satisfies additional structural and regularity assumption, but no such result is known for the s-fractional
p-Laplacian. Regarding regularity up to the boundary things are more subtle. In the uniformly elliptic
case (p = 2), the optimal regularity is Cs(Ω) due to the results of [19], but only for a subclass of rough
symmetric kernels arising from stable Lévy processes, of the form

K(x, y) = H(x− y), H(z) =
a
(
z/|z|

)
|z|N+2s

, 0 < λ ≤ a ≤ Λ.

Counterexamples show that this is the largest kernel’s class where to expect such regularity up to the
boundary. However, for any p > 1, one still expects Cα(Ω) regularity for arbitrarily rough symmetric
kernels, for a small α < s.

Another point of interest is the Hölder regularity up to the boundary of u/dists(x,Ωc), when (−∆)spu

is bounded in Ω. This is proven in [18] for the fractional Laplacian, and in [19] for the Lévy stable fully
non-linear, uniformly elliptic non-local equations. While undoubtedly being relevant in light of the
applications depicted in [10], we do not treat this problem here.

The structure of the paper is as follows:

• In Section 2 we discuss the relationship between weak and strong (i.e., in a suitable principal value
sense) solutions of (1.1). In doing so we clarify how barrier arguments (which are more suited
to viscosity solutions) can be applied in the framework of weak solutions of non-linear non-local
problems.

• In Section 3 we study the s-fractional p-Laplacian of distance-related functions, and consider their
stability with respect to local diffeomorphisms of the domain.

• In Section 4 we construct some upper barriers, derive L∞-bounds for solutions of (1.1) and prove
estimate (1.3).

• In Section 5 we tackle the local regularity through a weak Harnack inequality. Then we couple it
with (1.3) to prove Theorem 1.1.

A short version of this result can be found in [12].

2. Preliminaries

2.1. Notations and function spaces. Given a subset A ⊆ RN we will set Ac = RN \ A and for
A,B ⊆ RN ,

dist(A,B) = inf
x∈A, y∈B

|x− y|, δA(x) = dist(x,Ac),

distH(A,B) = max
{

sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)
}
.

For all x ∈ RN , r > 0 we denote by Br(x), Br(x), and ∂Br(x), respectively, the open ball, the closed
ball and the sphere centered at x with radius r. When the center is not specified, we will understand
that it’s the origin, e.g. B1 = B1(0). For all measurable A ⊂ RN we denote by |A| the N -dimensional
Lebesgue measure of A. If u is a measurable function and A is a measurable subset of RN , we will set
for brevity

inf
A
u = ess inf

A
u, sup

A
u = ess inf

A
u.

For all measurable u : RN → R we define

[u]s,p =
(∫

RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

) 1
p

,

‖u‖W s,p(Ω) = ‖u‖Lp(Ω) +
(∫

Ω×Ω

|u(x)− u(y)|p

|x− y|N+ps
dx dy

) 1
p
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and we will consider the following spaces (see [9] for details):

W s,p(Ω) =
{
u ∈ Lp(Ω) : ‖u‖W s,p(Ω) <∞

}
,

W s,p
0 (Ω) =

{
u ∈W s,p(RN ) : u = 0 in Ωc

}
,

W−s,p
′
(Ω) = (W s,p

0 (Ω))∗,

where the last one is the Banach dual, whose pairing with W s,p
0 (Ω) will be denoted by 〈·, ·〉s,p,Ω. We

will extensively make use of the following space:

Definition 2.1. Let Ω ⊆ RN be bounded. We set

W̃ s,p(Ω) :=
{
u ∈ Lploc(RN ) : ∃U c Ω such that ‖u‖W s,p(U) +

∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx <∞

}
.

If Ω is unbounded, we set

W̃ s,p
loc (Ω) :=

{
u ∈ Lploc(RN ) : u ∈ W̃ s,p(Ω′) for any bounded Ω′ ⊆ Ω

}
.

We notice that the condition ∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx <∞

holds if u ∈ L∞(RN ) or [u]Cs(RN ) < ∞. The spaces W̃ s,p(Ω), W̃ s,p
loc (Ω) can be endowed with a

topological vector space structure as inductive limit, but we will not use it. For all α ∈ (0, 1] and all
measurable u : Ω→ R we set

[u]Cα(Ω) = sup
x,y∈Ω, x 6=y

|u(x)− u(y)|
|x− y|α

,

Cα(Ω) =
{
u ∈ C(Ω) : [u]Cα(Ω) <∞

}
,

the latter being a Banach space under the norm ‖u‖Cα(Ω) = ‖u‖L∞(Ω) + [u]Cα(Ω). A similar definition

is given for C1,α(Ω). When no misunderstanding is possible, we set for all measurable D ⊂ RN , x ∈ D,
and all measurable ψ : D ×D → R

PV

∫
D

ψ(x, y) dy = lim
ε→0+

∫
D\Bε(x)

ψ(x, y) dy.

For all measurable u : RN → R we recall that the non-local tail centered at x ∈ RN with radius R > 0,
introduced in [7], is defined as

(2.1) Tail(u;x,R) =
(
Rps

∫
BcR(x)

|u(y)|p−1

|x− y|N+ps
dy
) 1
p−1

.

We will also set Tail(u; 0, R) = Tail(u;R). Unless otherwise stated, the numbers p > 1 and s ∈ (0, 1) will
be fixed as the order of summability and the order of differentiability. By a universal constant we mean
a constant C = C(N, p, s). This dependence will always be omitted, even when other dependencies are
present, in which case they are the only ones explicitly stated: for example CΩ will denote a constant
depending on N, p, s, and Ω. During chains of inequalities, universal constants will be denoted by the
same letter C even if their numerical value may change from line to line. The same treatment will be
used for constants which retain their dependencies from line to line. When needed, we will denote a
specific universal constant with a number, e.g. C1, C2 et cetera.
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2.2. Some elementary inequalities. For all a ∈ R, q > 0, we set

aq = |a|q−1a.

This notation has great advantages in readability and, for future reference, we recall here some more or
less known elementary inequalities about the function a 7→ aq. We will provide a sketch of proof for the
less frequent ones.

We begin with the well known inequalities

(2.2) (a+ b)q ≤ 2q−1(aq + bq) a, b ≥ 0, q ≥ 1;

(2.3) (a+ b)q ≤ aq + bq a, b ≥ 0, q ∈ (0, 1];

(2.4) |aq − bq| ≤ q(|a|q−1 + |b|q−1)|a− b| a, b ∈ R, q ≥ 1,

the last one being a trivial consequence of Taylor’s formula. We will also use

(2.5) aq − (a− b)q ≤ CM max{b, bq} |a| ≤M, b ≥ 0, q > 0,

which follows immediately from (2.3) if q ∈ (0, 1]. If q > 1 we can prove it distinguishing the cases
b ≤M , where we use (2.4), and the case b ≥M , where we use aq − (a− b)q ≤Mq + 2Mq ≤ 3bq. We
now prove

(2.6) (a+ b)q − aq ≤ θaq + Cθb
q a, b ≥ 0, q ≥ 1, Cθ →∞ as θ → 0+.

Letting Cq = 1 if q ≤ 1 and Cq = 2q−1 if q ≥ 1, (2.2) and (2.3) can be written as

(a+ b)q ≤ Cq(aq + bq) a, b ≥ 0, q > 0.

Now (2.6) can be proved using Taylor’s formula and Young’s inequality:

(a+ b)q − aq ≤ Cq(aq−1 + bq−1)b = (θq′a)q−1 Cqb

(θq′)q−1
+ Cqb

q

≤ θaq +
1

q

( Cq
(θq′)q−1

)q
bq + Cqb

q.

We prove the following inequality

(2.7) aq − (a− b)q ≥ 21−qbq a ∈ R, b ≥ 0, q ≥ 1.

We can suppose b > 0 and consider the function

f(t) = tq − (t− b)q, f ′(t) = q(|t|q−1 − |t− b|q−1).

Therefore f is positive, increasing for t > b and decreasing for t < −b and thus it’s coercive. Since
f ′(t) = 0 if and only if t = b/2, its global minimum is f(b/2) = 21−qbq.

Finally, we will use the inequality

(2.8) |x− y| ≥ C(A,B)(1 + |y|), for all x ∈ A, y ∈ Bc, A bounded and dist(A,Bc) = d > 0.

2.3. Weak and strong solutions. We compare in the following different notions of solutions for
equations driven by (−∆)sp.

Definition 2.2. Let Ω be bounded, u ∈ W̃ s,p(Ω) and f ∈W−s,p′(Ω). We say that u is a weak solution
of (−∆)spu = f in Ω if for all ϕ ∈W s,p

0 (Ω)∫
RN×RN

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy = 〈f, ϕ〉s,p,Ω

If Ω is unbounded, we say that u ∈ W̃ s,p
loc (Ω) solves (−∆)spu = f (with f ∈W−s,p′(Ω)) weakly in Ω if it

does so in any bounded open set Ω′ ⊆ Ω.
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The inequality (−∆)spu ≤ f weakly in Ω will mean that∫
RN×RN

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy ≤ 〈f, ϕ〉s,p,Ω

for all ϕ ∈ W s,p
0 (Ω), ϕ ≥ 0, and similarly for (−∆)spu ≥ f . Noticing that ±K ∈ W−s,p′(Ω) for any

K > 0 and any bounded Ω, by |(−∆)spu| ≤ K weakly in Ω we mean that both −K ≤ (−∆)spu ≤ K
weakly in Ω.

In the following proposition we will prove that (−∆)spu ∈W−s,p
′
(Ω) if u ∈ W̃ s,p(Ω), which implies that

the previous definition makes sense.

Lemma 2.3. Let Ω be bounded and u ∈ W̃ s,p(Ω). Then the functional

W s,p
0 (Ω) 3 ϕ 7→ (u, ϕ) :=

∫
RN×RN

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy

is finite and belongs to W−s,p
′
(Ω).

Proof. Let U c Ω be such that

(2.9) ‖u‖W s,p(U) +

∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx <∞

and write

(u, ϕ) =

∫
U×U

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy

+

∫
U×Uc

(u(x)− u(y))p−1ϕ(x)

|x− y|N+ps
dx dy −

∫
Uc×U

(u(x)− u(y))p−1ϕ(y)

|x− y|N+ps
dx dy

=

∫
U×U

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy + 2

∫
Ω×Uc

(u(x)− u(y))p−1ϕ(x)

|x− y|N+ps
dx dy.

(2.10)

since supp(ϕ) ⊂ Ω. The integral in U × U is finite and continuous with respect to strong convergence
of ϕ ∈W s,p

0 (Ω) since u ∈W s,p(U). For the second term, observe that for a.e. x ∈ Ω it holds∫
Uc

|u(x)− u(y)|p−1

|x− y|N+ps
dy ≤ C

(
|u(x)|p−1

∫
Uc

1

|x− y|N+ps
dy +

∫
Uc

|u(y)|p−1

(|x− y|)N+ps
dy
)

≤ C
(
|u(x)|p−1 +

∫
RN

|u(y)|p−1

(1 + |y|)N+ps
dy
)(2.11)

where we used (2.8) with A = Ω and B = U . The right hand side of (2.11) belongs to Lp
′
(Ω)

since Ω is bounded and u ∈ Lp(Ω). Thus the second term in (2.10) is continuous with respect to
Lp(Ω)-convergence of ϕ. Therefore it is also continuous in W s,p

0 (Ω). �

Definition 2.4 (Point-wise and strong solutions). Let u ∈ W̃ s,p
loc (Ω) and f : Ω→ R be measurable. We

say that u is an a.e. point-wise solution of (−∆)spu = f in Ω if for a.a. Lebesgue point x ∈ Ω of u it
holds

(2.12) 2 PV

∫
RN

(u(x)− u(y))p−1

|x− y|N+ps
dy = f(x).

Moreover, for f ∈ L1
loc(Ω) we say that u is a strong solution of (−∆)spu = f if

(2.13) 2

∫
Bcε(x)

(u(x)− u(y))p−1

|x− y|N+ps
dy → f strongly in L1

loc(Ω), as ε→ 0+.

Similar definitions are given for sub- and supersolutions.

Now we prove that a strong solution is also a weak solution. First, we introduce a more general result,
which will be used in the following: we denote by D the diagonal of RN × RN .
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Lemma 2.5. Let u ∈ W̃ s,p
loc (Ω). For all ε > 0 let Aε ⊂ RN ×RN be a neighborhood of D which satisfies

(i) (x, y) ∈ Aε for all (y, x) ∈ Aε;
(ii) distH(Aε,D)→ 0 as ε→ 0+.

For all x ∈ RN we set Aε(x) = {y ∈ RN : (x, y) ∈ Aε} and

gε(x) =

∫
Acε(x)

(u(x)− u(y))p−1

|x− y|N+ps
dy.

If 2gε → f in L1
loc(Ω), then u is a weak solution of (−∆)spu = f in Ω.

Proof. We can suppose that Ω is bounded and let U c Ω be such that (2.9) holds for u, fix ϕ ∈ C∞c (Ω)
and let K = supp(ϕ). First we prove that gε ∈ L1(K). For all x ∈ K there exists ρ > 0 such that
Bρ(x) ⊂ Aε(x), and by a covering argument we may choose ρ independent of x (while ρ depends on ε).
Moreover, for all x ∈ K and y ∈ Acε(x) we have |x− y| ≥ C(1 + |y|) (see (2.8)). So we can compute∫

K

|gε(x)| dx ≤ C
∫
K

∫
Acε(x)

|u(x)|p−1

|x− y|N+ps
dy dx+ C

∫
K

∫
Acε(x)

|u(y)|p−1

|x− y|N+ps
dy dx

≤ C
∫
K

|u(x)|p−1 dx

∫
Bcρ

1

|z|N+ps
dz + C

∫
K

∫
Acε(x)

|u(y)|p−1

(1 + |y|)N+ps
dy

≤ Cε
∫
U

|u(x)|p−1 dx+ C|K|
∫
RN

|u(y)|p−1

(1 + |y|)N+ps
dy <∞.

Lemma 2.3 shows that

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
∈ L1(RN × RN )

and thus, through (i), (ii), and Fubini’s theorem we have∫
RN×RN

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy =

(ii)
lim
ε→0+

∫
Acε

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dy dx

=
(i)

lim
ε→0+

2

∫
K

∫
Acε(x)

(u(x)− u(y))p−1

|x− y|N+ps
ϕ(x) dx dy

= lim
ε→0+

2

∫
K

gε(x)ϕ(x) dx.

Since 2gε → f in L1(K), the density of C∞c (Ω) in W s,p
0 (Ω) and Lemma 2.3 give the assertion. �

Remark 2.6. As the proof shows, it suffices to assume that the convergence in (2.13) be in L1
loc(Ω)

weakly. We deliberately choose to assume strong L1
loc-convergence since in all subsequent applications

this is enough.

Corollary 2.7. Let u ∈ W̃ s,p
loc (Ω) be a strong solution of (−∆)spu = f in Ω, with f ∈ L1

loc(Ω). Then u
is a weak solution of (−∆)spu = f in Ω.

Proof. It follows from Lemma 2.5 with Aε = {(x, y) ∈ RN × RN : |x− y| < ε}. �

2.4. Some basic properties of (−∆)sp. The following result describes a fundamental non-local feature
of (−∆)sp.

Lemma 2.8 (Non-local behavior of (−∆)sp). Suppose u ∈ W̃ s,p
loc (Ω) solves (−∆)spu = f weakly, strongly

or point-wisely in Ω for some f ∈ L1
loc(Ω). Let v ∈ L1

loc(RN ) be such that

(2.14) dist(supp(v),Ω) > 0,

∫
Ωc

|v(x)|p−1

(1 + |x|)N+ps
dx <∞,
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and define for a.e. Lebesgue point x ∈ Ω of u

h(x) = 2

∫
supp(v)

(u(x)− u(y)− v(y))p−1 − (u(x)− u(y))p−1

|x− y|N+ps
dy.

Then u+ v ∈ W̃ s,p
loc (Ω) and it solves (−∆)sp(u+ v) = f + h weakly, strongly or pointwisely respectively

in Ω.

Proof. As usual, it suffices to consider the case Ω bounded, and we first prove that u+ v ∈ W̃ s,p(Ω).
Let K = supp(v) and U be such that (2.9) holds for u, and suppose without loss of generality that
Ω b U b Kc. Clearly u+ v = u in U , and thus it belongs to W s,p(U). Moreover∫

RN

|u(x) + v(x)|p−1

(1 + |x|)N+ps
dx ≤ C

(∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx+

∫
K

|v(x)|p−1

(1 + |x|)N+ps
dx
)

and the last term is finite due to (2.14). With a similar estimate, we see that the integral defining
h is finite (due also to (2.14) and (2.8)). Consider now the case where (−∆)spu = f weakly. Choose
ϕ ∈ C∞c (Ω) and compute∫

RN×RN

(u(x) + v(x)− u(y)− v(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy

=

∫
Ω×Ω

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy

+

∫
Ω×Ωc

(u(x)− u(y)− v(y))p−1ϕ(x)

|x− y|N+ps
dx dy −

∫
Ωc×Ω

(u(x) + v(x)− u(y))p−1ϕ(y)

|x− y|N+ps
dx dy

=

∫
RN×RN

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy −

∫
Ω×Ωc

(u(x)− u(y))p−1ϕ(x)

|x− y|N+ps
dx dy

+

∫
Ωc×Ω

(u(x)− u(y))p−1ϕ(y)

|x− y|N+ps
dx dy + 2

∫
Ω×Ωc

(u(x)− u(y)− v(y))p−1ϕ(x)

|x− y|N+ps
dx dy

=

∫
Ω

f(x)ϕ(x) dx+ 2

∫
Ω×Ωc

(u(x)− u(y)− v(y))p−1 − (u(x)− u(y)))p−1

|x− y|N+ps
ϕ(x) dx dy

=

∫
Ω

(f(x) + h(x))ϕdx,

where in the end we have used Fubini’s theorem. The density of C∞c (Ω) in W s,p
0 (Ω) allows to conclude.

Suppose now that (−∆)spu = f strongly or pointwisely in Ω. Let for x ∈ V b Ω and ε < dist(V,Ωc)

gε(x) =

∫
Bcε(x)

(u(x) + v(x)− u(y)− v(y))p−1

|x− y|N+ps
dy.

Using (2.14) we get

gε(x) =

∫
Ω\Bε(x)

(u(x)− u(y))p−1

|x− y|N+ps
dy +

∫
Ωc

(u(x)− u(y)− v(y))p−1

|x− y|N+ps
dy

=

∫
Bcε(x)

(u(x)− u(y))p−1

|x− y|N+ps
dy +

∫
K

(u(x)− u(y)− v(y))p−1 − (u(x)− u(y))p−1

|x− y|N+ps
dy.

Taking the limit for ε→ 0+ gives the claim in the pointwise case. To show that (−∆)sp(u+ v) = f + h
strongly it suffices to show that

x 7→
∫
K

(u(x)− u(y)− v(y))p−1 − (u(x)− u(y))p−1

|x− y|N+ps
dy

belongs to L1(K), which can be done proceeding as in (2.11) and using (2.14) for the term involving
v. �
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We also recall the well known homogeneity, scaling, and rotational invariance properties of (−∆)sp. For

all ρ > 0, M ∈ ON (the orthogonal group), v measurable, Ω ⊆ RN , set

vρ(x) = v(ρx), ρ−1Ω = {x/ρ : x ∈ Ω},
vM (x) = v(Mx), M−1Ω = {M−1x : x ∈ Ω}.

Lemma 2.9. Let u ∈ W̃ s,p
loc (Ω) satisfy (−∆)spu = f weakly in Ω for some f ∈ L1

loc(Ω). Then we have

(i) for all h > 0, (−∆)sp(hu) = hp−1f weakly in Ω;

(ii) for all ρ > 0, uρ ∈ W̃ s,p(ρ−1Ω) and (−∆)spuρ = ρpsfρ weakly in ρ−1Ω;

(iii) for all M ∈ ON , uM ∈ W̃ s,p(M−1Ω) and (−∆)spuM = fM weakly in M−1Ω.

Finally, from [16, Lemma 9] we have the following comparison principle for (−∆)sp.

Proposition 2.10 (Comparison Principle). Let Ω be bounded, u, v ∈ W̃ s,p(Ω) satisfy u ≤ v in Ωc and,
for all ϕ ∈W s,p

0 (Ω), ϕ ≥ 0 in Ω,∫
RN×RN

(u(x)− u(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy ≤

∫
RN×RN

(v(x)− v(y))p−1(ϕ(x)− ϕ(y))

|x− y|N+ps
dx dy.

Then u ≤ v in Ω.

Proof. The proof follows by the arguments of [16, Lemma 9]. It is sufficient to know that both sides of
the inequality are finite and (u− v)+ ∈W s,p

0 (Ω), which is used there as a test function. By Lemma 2.3,
both sides are finite. We claim that w := (u− v)+ ∈W s,p

0 (Ω). Let U c Ω be as in Definition 2.1 for
both u and v. We split the Gagliardo norm in RN as∫

RN×RN

|w(x)− w(y)|p

|x− y|N+ps
dx dy =

∫
U×U

|w(x)− w(y)|p

|x− y|N+ps
dx dy + 2

∫
Ω×Uc

|w(x)|p

|x− y|N+ps
dx dy

where we used that w = 0 in Ωc by assumption. The first term is bounded since u, v ∈W s,p(U), which
is a lattice. The second term is non-singular since dist(Ω, U c) > 0 and using (2.8) we get∫

Ω×Uc

|w(x)|p

|x− y|N+ps
dx dy ≤ CΩ,U

∫
Ω

(|u(x)|p + |v(x)|p) dx
∫
RN

1

(1 + |y|)N+ps
dy

≤ CΩ,U

∫
Ω

(|u(x)|p + |v(x)|p) dx,

which proves the claim. �

2.5. (−∆)sp on smooth functions. Next we show that in the class of sufficiently smooth functions,
the s-fractional p-Laplacian exists strongly (and thus weakly) and is locally bounded. First we recall
the following definition of (−∆)sp, equivalent to (2.12) (by a simple change of variable):

(2.15) (−∆)spu(x) = PV

∫
RN

(u(x)− u(x+ z))p−1 + (u(x)− u(x− z))p−1

|z|N+ps
dz.

Our first lemma displays an estimate which allows us to remove the singularity at 0, when u is smooth
enough:

Lemma 2.11. If u ∈ C1,γ
loc (Ω), γ ∈ [0, 1], and K ⊂ Ω is compact, then there exist CK,u, RK > 0 such

that for all x ∈ K, z ∈ BRK∣∣(u(x)− u(x+ z))p−1 + (u(x)− u(x− z))p−1
∣∣ ≤ {CK,u|z|γ+p−1 if p ≥ 2,

CK,u|z|(γ+1)(p−1) if p < 2.



GLOBAL HÖLDER REGULARITY FOR THE FRACTIONAL p-LAPLACIAN 11

Proof. Since K is compact, we can find RK > 0 such that

ΩK := {x ∈ RN : dist(x,K) ≤ RK} ⊂ Ω.

Consider first the case p ≥ 2. Since u ∈ C1,γ(ΩK), for all x ∈ K, z ∈ BRK there exist τ1, τ2 ∈ [0, 1]
with∣∣(u(x)− u(x+ z))p−1 + (u(x)− u(x− z))p−1

∣∣ =
∣∣(Du(x+ τ1z) · z)p−1 − (Du(x− τ2z) · z)p−1

∣∣
≤ (p− 1) sup

BRK (x)

|Du|p−2|z|p−2
∣∣(Du(x+ τ1z)−Du(x− τ2z)

)
· z
∣∣

≤ C‖Du‖p−1
C0,γ(ΩK)|z|

γ+p−1.

If 1 < p < 2 then t 7→ tp−1 is globally (p− 1)-Hölder continuous and in this case we directly have, with
the same notation as before∣∣(u(x)− u(x+ z))p−1 + (u(x)− u(x− z))p−1

∣∣ ≤ C∣∣Du(x+ τ1z) · z −Du(x− τ2z) · z
∣∣p−1

≤ C‖Du‖p−1
C0,γ(ΩK)|z|

γ(p−1)|z|p−1

which concludes the proof. �

Proposition 2.12 ((−∆)sp on C1,γ functions). Suppose Ω is bounded, u ∈ W̃ s,p(Ω) ∩ C1,γ
loc (Ω), with

γ ∈ [0, 1] such that

(2.16) γ >

1− p(1− s) if p ≥ 2,
1− p(1− s)

p− 1
if p < 2.

Then (−∆)spu = f strongly in Ω for some f ∈ L∞loc(Ω)

Proof. Let U be as in Definition 2.1 for u, fix a compact set K ⊂ Ω and let RK , CK > 0 be as in
Lemma 2.11. Define, for x ∈ K, ε > 0,

gε(x) :=

∫
Bcε

(u(x)− u(x+ z))p−1 + (u(x)− u(x− z))p−1

|z|N+ps
dz = 2

∫
Bcε

(u(x)− u(x− z))p−1

|z|N+ps
dz.

We claim that gε converges as ε→ 0+ in a dominated way to some f ∈ L∞(K). We split the integral
in one for z ∈ BRK and one over BcRK . For the first one, the previous lemma gives∣∣∣ (u(x)− u(x+ z))p−1 + (u(x)− u(x− z))p−1

|z|N+ps

∣∣∣ ≤ CK,u
|z|N+ps−σ ,

where σ = γ + p− 1 if p ≥ 2 and σ = (γ + 1)(p− 1) if 1 < p < 2. Notice that, in both cases, we have
ps− σ < 0. Due to assumptions (2.16), the integral is thus non-singular, and it holds

lim
ε→0

∫
BRK \Bε

(u(x)− u(x+ z))p−1 + (u(x)− u(x− z))p−1

|z|N+ps
dz =: f1(x),

∣∣∣ ∫
BRK \Bε

(u(x)− u(x+ z))p−1 + (u(x)− u(x− z))p−1

|z|N+ps
dz
∣∣∣ ≤ ∫

BRK

CK,u
|z|N+ps−σ dz,

which is a bound independent of x ∈ K and ε > 0. For the integral over z ∈ BcRK we have, as in (2.11)

|f2(x)| :=
∣∣∣2 ∫

BcRK

(u(x)− u(x+ z))p−1

|z|N+ps
dz
∣∣∣ ≤ CK,U(‖u‖p−1

L∞(K) +

∫
RN

|u(y)|p−1

(1 + |y|)N+ps
dy
)
.

Gathering togheter the two estimates, we get

|gε(x)| ≤ CK,u,U ∀x ∈ K, ε > 0, lim
ε→0+

gε(x) = f1(x) + f2(x) ∀x ∈ K

and thus by the dominated convergence theorem gε → f1 + f2 in L1(K). �
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Remark 2.13. It is useful to outline the dependance of ‖(−∆)spu‖∞ on s in the previous proposition.

Suppose, to fix ideas, that p ≥ 2 and u ∈ C∞c (RN ), so that the domain Ω has no role. Then, following
the proof, we can find a constant cN depending only on N such that

‖(−∆)spu‖∞ ≤ cN
‖u‖p−1

C2(RN )

1− s
.

This is in accordance with the well known fact that (1− s)(−∆)sp → −∆p as s→ 1− (see e.g. [17]).

Remark 2.14. Consider the class of functions

L(Ω) = {u ∈ W̃ s,p(Ω) : (−∆)spu = f in the strong sense for some f ∈ L∞loc(Ω)}.

The previous theorem asserts that if p ≥ 2, then C2(Ω) ⊆ L(Ω). However, if 1 < p < 2, it may be
difficult to find smooth functions (e.g., smooth cut-offs) belonging to L(Ω), since the second condition
in (2.16) coupled with γ ≤ 1 forces s < 2(p− 1)/p. One may think that this is just a technical limit of
the proof, or that requiring higher regularity than C2 could solve the issue. Unfortunately, due to the
singular nature of the operator for 1 < p < 2, this is not the case: there are smooth functions u such
that (−∆)spu (in the strong sense) cannot be pointwise bounded. Consider for example u(x) = x2η(x),
where η ∈ C∞c (R) and η = 1 on [−1, 1]. Calculating (−∆)spu(0) as a principal value gives

|(−∆)spu(0)| <∞ ↔ s < 2
p− 1

p
.

3. Distance functions

In this section we produce some explicit solutions for (−∆)sp in special domains. Then we prove that
(−∆)spδ

s is bounded in a neighborhood of ∂Ω (here we define δ = δΩ as in Section 2). We begin by
getting a solution of (−∆)spu = 0 on the half-line R+.

Lemma 3.1. Set u1(x) = xs+ for all x ∈ R. Then u1 ∈ W̃ s,p
loc (R) and it solves (−∆)spu1 = 0 strongly

and weakly in R+.

Proof. Let K ⊆ (ρ, ρ−1) for some ρ ∈ (0, 1). For x ∈ K, ε > 0 consider the function

(3.1) g(1)
ε (x) =

∫
Bcε(x)

(xs − ys+)p−1

|x− y|1+ps
dy.

We claim that g
(1)
ε → 0 uniformly on K, as ε→ 0+. Note that for any ε < x it holds

0 < x− ε < x+ ε <
x2

x− ε
.

We split the integral accordingly, namely

g(1)
ε (x) =

∫ 0

−∞

(xs − ys+)p−1

|x− y|1+ps
dy +

∫ x2

x−ε

x+ε

(xs − ys+)p−1

|x− y|1+ps
dy

+
(∫ x−ε

0

(xs − ys+)p−1

|x− y|1+ps
dy +

∫ ∞
x2

x−ε

(xs − ys+)p−1

|x− y|1+ps
dy
)

= I1(x) + I2(x, ε) + I3(x, ε).

Let us estimate the three terms separately. It holds

I1(x) =

∫ 0

−∞

(xs − ys+)p−1

|x− y|1+ps
dy =

x−s

ps
.

Regarding the integral between x+ ε and x2

x−ε , since ξ 7→ ξs is globally s-Hölder, we have

|I2(x, ε)| ≤ C
∫ x2

x−ε

x+ε

|x− y|s(p−1)

|x− y|1+ps
dy =

Cx−s

s

xs − (x− ε)s

εs
.
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Finally

I3(x, ε) =
xs(p−1)

x1+ps

(∫ x−ε

0

(1− (y/x)s)p−1

(1− y/x)1+ps
dy −

∫ ∞
x2/(x−ε)

((y/x)s − 1)p−1

(y/x− 1)1+ps
dy
)

=
t= y

x=ξ
x−s

(∫ 1−ε/x

0

(1− ts)p−1

(1− t)1+ps
dt−

∫ ∞
(1−ε/x)−1

(ξs − 1)p−1

(ξ − 1)1+ps
dξ
)

=
ξ=t−1

x−s
(∫ 1−ε/x

0

(1− ts)p−1

(1− t)1+ps
dt−

∫ 1−ε/x

0

(t−s − 1)p−1

(t−1 − 1)1+ps

dt

t2

)
= x−s

∫ 1−ε/x

0

(1− ts)p−1

(1− t)1+ps
(1− ts−1) dt

= x−s
[ 1

ps

(1− ts)p

(1− t)ps
]1−ε/x

0
=
x−s

ps

((xs − (x− ε)s

εs

)p
− 1
)
.

Let for ε < x

(3.2) ψ(x, ε) =
xs − (x− ε)s

εs
,

and notice that from the subadditivity of x 7→ xs we get ψ(x, ε) ≤ 1. Gathering together the three
previous estimates we get

(3.3) |g(1)
ε (x)| ≤ Cx−s(ψ(x, ε) + ψp(x, ε)) ≤ Cx−sψ(x, ε) ∀x > ε > 0,

where C is a universal constant. Since ψ(x, ε) → 0 uniformly on [ρ, ρ−1] ⊇ K, as ε → 0+, the claim

follows. Finally we prove that u1 ∈ W̃ s,p(a, b) for any a < 0 < b. We have∫
[a,b]×[a,b]

|u1(x)− u1(y)|p

|x− y|1+ps
dx dy = 2

∫ b

0

∫ x

0

|xs − ys|p

|x− y|1+ps
dy dx+ 2

∫ b

0

xsp
∫ 0

a

1

|x− y|1+ps
dy dx

=
t=y/x

2

∫ b

0

∫ 1

0

|1− ts|p

|1− t|1+ps
dt dx+

2

ps

∫ b

0

xsp
( 1

xps
− 1

|x− a|ps
)
dx,

which is readily checked to be finite. The assertion follows through Lemma 2.3 and Corollary 2.7. �

Now we study the solution u(x) = u1(xN ) in the half-space RN+ = {x ∈ RN : xN > 0}.

Lemma 3.2. Set for any A ∈ GLN and x ∈ RN+ ,

gε(x,A) =

∫
Bcε

(u1(xN )− u1(xN + zN ))p−1

|Az|N+ps
dz

and u(x) = u1(xN ). Then gε → 0 uniformly in any compact K ⊆ RN+ ×GLN and u ∈ W̃ s,p
loc (RN ) solves

(−∆)spu = 0 strongly and weakly in RN+ .

Proof. It suffices to prove the statement for K = H ×H ′, where H ⊆ RN+ and H ′ ⊆ GLN are compact

(recall that GLN is open in RN2

). To estimate gε we use elliptic coordinates. A consequence of the
singular value decomposition is that ASN−1 is an ellipsoid whose semiaxes are the singular values of A,
and thus its diameter is 2‖A‖2, where the latter is the spectral norm of A. The corresponding elliptic
coordinates are uniquely defined by

y = ρω, ω ∈ ASN−1, ρ > 0,

for y ∈ RN \ {0}. It holds dy = ρN−1dω dρ where dω is the surface element of ASN−1. Setting

eA := A−1eN , EA := {x ∈ RN : x · eA ≥ 0},
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we compute, through the change of variable z = A−1y,

gε(x,A) =

∫
Bcε

(u(x)− u(x+ z))p−1

|Az|N+ps
dz = |detA|−1

∫
ABcε

(u(x)− u(x+A−1y))p−1

|y|N+ps
dy

=

∫
ASN−1

1

|detA||ω|N+ps

∫ ∞
ε

(u1(xN )− u1(xN + ω · eAρ))p−1

ρ1+ps
dρ dω

=

∫
ASN−1∩EA

|ω · eA|1+ps

|detA||ω|N+ps

∫
(−ε,ε)c

(u1(xN )− u1(xN + ω · eAρ))p−1

|ω · eAρ|1+ps
d(ω · eAρ) dω

=

∫
ASN−1∩EA

|ω · eA|1+ps

|detA||ω|N+ps
g

(1)
ω·eAε(xN ) dω

where g
(1)
ω·eAε is defined as in (3.1). Since |ω · eA| ≤ ‖A‖2‖A−1‖2, the condition

ω · eAε < xN

holds for ε ≤ ε̄ where ε̄ depends only on H and H ′. For any such ε we can apply (3.3) to obtain

|gε(x,A)| ≤ Cx−sN
∫
ASN−1∩EA

|ω · eA|1+ps

|detA||ω|N+ps
ψ(xN , ω · eAε) dω,

where ψ is defined in (3.2). Since ξ 7→ ξs is concave for 0 < s < 1, we have

s(xN − t)s−1t ≥ xsN − (xN − t)s,

and being 1 > s > 0 it follows

∂ψ(xN , t)

∂t
= s

(xN − t)s−1t− xsN + (xN − t)s

t1+s
≥ 0, for 0 < t ≤ xN .

Therefore ψ(xN , t) is non-decreasing in t, thus we get

|gε(x,A)| ≤ Cx−sN ψ(xN , ‖A‖2‖A−1‖2ε)
∫
ASN−1

|ω · eA|1+ps

|detA||ω|N+ps
dω

≤ Cx−sN ψ(xN , ‖A‖2‖A−1‖2ε)
∫
SN−1

|ω · eN |1+ps

|Aω|N+ps
dω

≤ Cx−sN ψ(xN , ‖A‖2‖A−1‖2ε)‖A−1‖N+ps
2 .

Now ‖A‖2 and ‖A−1‖2 are bounded on H ′ from below and above, as well as xN on H, and the uniform

convergence follows. As in the previous proof, it is readily checked that u ∈ W̃ s,p(V ) for any bounded
V , and the second statement follows as before. �

Remark 3.3. Due to rotational invariance, Lemma 3.2 easily extends to any half-space

He = {x ∈ RN : x · e ≥ 0} (e ∈ SN−1),

simply considering the solution u(x) = (x · e)s+.

The following lemma gives a control on the behaviour of (−∆)sp(xN )s+ under a smooth change of
variables.

Lemma 3.4 (Change of variables). Let Φ be a C1,1 diffeomorphism of RN such that Φ = I in Bcr,

r > 0. Then the function v(x) = (Φ−1(x) · eN )s+ belongs to W̃ s,p
loc (RN ) and is a weak solution of

(−∆)spv = f in Φ(RN+ ), with

(3.4) ‖f‖∞ ≤ C(‖DΦ‖∞, ‖DΦ−1‖∞, r)‖D2Φ‖∞.
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Proof. First we recall that, since DΦ is globally Lipschitz in RN with constant L > 0, then D2Φ(x)
exists in the classical sense for a.a. x ∈ RN , and ‖D2Φ‖L∞(RN ) ≤ L. Let JΦ(·) = |detDΦ(·)|, u1(t) = ts+.

Due to Lemma 2.5, applied with Aε = {|Φ−1(x)− Φ−1(y)| < ε} it suffices to show that

gε(x) =

∫
{|Φ−1(x)−Φ−1(y)|≥ε}

(v(x)− v(y))p−1

|x− y|N+ps
dy

converges in L1(K) for any compact K ⊆ Φ(RN+ ). Changing variables x = Φ(X), this is the same as
the following claim:

(3.5) X 7→
∫
Bcε(X)

(u1(XN )− u1(YN ))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY, converges as ε→ 0 in L1

loc(RN+ ).

To prove this claim, we write

(3.6) gε(x) =

∫
Bcε(X)

(u1(XN )− u1(YN ))p−1

|DΦ(X)(X − Y )|N+ps
h(X,Y ) dY +

∫
Bcε(X)

JΦ(X)
(u1(XN )− u1(YN ))p−1

|DΦ(X)(X − Y )|N+ps
dY,

where

h(X,Y ) =
|DΦ(X)(X − Y )|N+ps

|Φ(X)− Φ(Y )|N+ps
JΦ(Y )− JΦ(X), X 6= Y.

We will now prove the following estimate, from which claim (3.5) will follow:

(3.7) |h(X,Y )| ≤ CΦ‖D2Φ‖∞min{|X − Y |, 1},
where CΦ depends on N , p, s as well as on ‖DΦ‖∞, ‖DΦ−1‖∞ and r. Write

h(X,Y ) =
|DΦ(X)(X − Y )|N+ps

|Φ(X)− Φ(Y )|N+ps
(JΦ(Y )− JΦ(X)) + JΦ(X)

( |DΦ(X)(X − Y )|N+ps

|Φ(X)− Φ(Y )|N+ps
− 1
)

=: J1 + J2.

First observe that using Taylor formula yields

|DΦ(X)(X − Y )|
|Φ(X)− Φ(Y )|

≤ C‖DΦ‖∞‖DΦ−1‖∞,

therefore

|J1| ≤ C̃‖D2Φ‖L∞(RN )|X − Y |.
To estimate J2, we note that the mapping t 7→ t(N+ps)/2 is smooth in a neighborhood of 1 and that

lim
Y→X

|DΦ(X)(X − Y )|2

|Φ(X)− Φ(Y )|2
= 1,

hence

(3.8) |J2| ≤ CΦ

( |DΦ(X)(X − Y )|2

|Φ(X)− Φ(Y )|2
− 1
)
.

Besides, for all Y ∈ RN there exist τ1, . . . , τN ∈ [0, 1] such that

Φi(X)− Φi(Y ) = DΦi(τiX + (1− τi)Y ) · (X − Y ), i = 1, . . . , N,

where Φi denotes the i-th component of Φ. So we have (still allowing CΦ > 0 to depend on ‖DΦ‖L∞(RN ))∣∣|Φ(X)− Φ(Y )|2 − |DΦ(X)(X − Y )|2
∣∣

=
∣∣(Φ(X)− Φ(Y ) +DΦ(X)(X − Y )) · (Φ(X)− Φ(Y )−DΦ(X)(X − Y ))

∣∣
≤ CΦ|X − Y |

N∑
i=1

|Φi(X)− Φi(Y )−DΦi(X)(X − Y )|

≤ CΦ|X − Y |2
N∑
i=1

|DΦi(τiX + (1− τi)Y )−DΦi(X)|

≤ CΦ‖D2Φ‖∞|X − Y |3.
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Inserting into (3.8) we obtain

|J2| ≤ CΦ

∣∣|DΦ(X)(X − Y )|2 − |Φ(X)− Φ(Y )|2
∣∣

|Φ(X)− Φ(Y )|2
≤ CΦ‖D2Φ‖∞|X − Y |,

which yields

|h(X,Y )| ≤ CΦ‖D2Φ‖L∞(RN )|X − Y |, for all X,Y ∈ RN ,
and thus (3.7) for |X − Y | ≤ 2r. Assume now |X − Y | > 2r, then at least one of X, Y lies in B

c

r.

Clearly, if X,Y ∈ Bcr, then h(X,Y ) = 0. If X ∈ Br, Y ∈ B
c

r, then for any 1 ≤ i ≤ N we define a
mapping ηi ∈ C1,1([0, 1]) by setting

ηi(t) = Φi(X + t(Y −X)).

It is readily checked that |η′′i | ≤ C‖D2Φ‖∞|X − Y |2 for a.e. t ∈ (0, 1). Moreover, if t ≥ 2r/|X − Y |
then X + t(Y −X) ∈ Bcr , and since Φ = I outside Br it holds

ηi(t) = (X + t(Y −X)) · ei, for t ≥ 2r

|X − Y |
.

Therefore η′′i (t) ≡ 0 for t ≥ 2r/|X − Y | and applying the Taylor formula with integral remainder we
have

|Φi(Y )− Φi(X) +DΦi(X)(X − Y )| = |ηi(1)− ηi(0)− η′i(0)| ≤
∫ 1

0

|η′′i (t)|(1− t) dt

≤
∫ 2r/|X−Y |

0

|η′′i (t)|(1− t) dt ≤ CΦ‖D2Φ‖∞|X − Y |.

So we have

|h(X,Y )| ≤
∣∣∣ |DΦ(X)(X − Y )|N+ps

|Φ(X)− Φ(Y )|N+ps
− 1
∣∣∣+ |1− JΦ(X)|

≤ CΦ

∣∣∣ |DΦ(X)(X − Y )|2 − |Φ(X)− Φ(Y )|2

|Φ(X)− Φ(Y )|2
∣∣∣+ CΦ‖D2Φ‖∞

≤ CΦ

∣∣DΦ(X)(X − Y ) + Φ(X)− Φ(Y )
∣∣

|Φ(X)− Φ(Y )|2
∣∣DΦ(X)(X − Y )− Φ(X) + Φ(Y )

∣∣+ CΦ‖D2Φ‖∞

≤ CΦ

|X − Y |

N∑
i=1

∣∣DΦi(X)(X − Y )− Φi(X) + Φi(Y )
∣∣+ CΦ‖D2Φ‖∞

≤ CΦ‖D2Φ‖∞.

If X ∈ Bcr, Y ∈ Br, we argue in a similar way. Thus (3.7) is achieved for all X,Y ∈ RN .

Let us go back to (3.6). The first integral can be estimated as follows∫
Bcε(X)

∣∣∣ (u1(XN )− u1(YN ))p−1

|DΦ(X)(X − Y )|N+ps
h(X,Y )

∣∣∣ dY ≤ CΦ‖D2Φ‖∞
∫
Bcε(X)

min{|X − Y |, 1}
|X − Y |N+s

dY

≤ CΦ‖D2Φ‖∞
(∫ 1

ε

1

ts
dt+

∫ ∞
1

1

t1+s
dt
)

≤ CΦ‖D2Φ‖∞(ε1−s + 1).

(3.9)

The second integral in (3.6) vanishes for ε→ 0, and is estimated through Lemma 3.2: since DΦ(RN ) is
a compact subset of GLN , the integral vanishes uniformly in any compact Φ−1(K) ⊆ RN+ , and therefore

uniformly in any compact K ⊆ Φ(RN+ ). Lemma 2.5 thus gives that (−∆)spv = f weakly in any open

bounded U ⊆ Φ(RN+ ), where

f(x) := 2 lim
ε→0

gε(x).

Taking the limit for ε→ 0 in estimate (3.9) gives (3.4). �
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Ω

x2

Bρ(x2)

Bρ(x1)

x1

x0

Figure 1. The interior and exterior balls at x0 ∈ ∂Ω. For all x ∈ [x0, x1] it holds
δ(x) = |x− x0|.

Finally, we consider a general bounded domain Ω with a C1,1 boundary. First we recall some geometrical
properties, which can be found e.g. in [1] (see figure 1):

Lemma 3.5. Let Ω ⊂ RN be a bounded domain with a C1,1 boundary ∂Ω. Then, there exists ρ > 0
such that for all x0 ∈ ∂Ω there exist x1, x2 ∈ RN on the normal line to ∂Ω at x0, with the following
properties:

(i) Bρ(x1) ⊂ Ω, Bρ(x2) ⊂ Ωc;

(ii) Bρ(x1) ∩Bρ(x2) = {x0};
(iii) δ(x) = |x− x0| for all x ∈ [x0, x1].

As a byproduct, we prove that (−∆)spδ
s is bounded in a neighborhood of the boundary.

Theorem 3.6. Let Ω ⊂ RN be a bounded domain with a C1,1 boundary. There exists ρ = ρ(N, p, s,Ω)
such that (−∆)spδ

s = f weakly in

Ωρ := {x ∈ Ω : δ(x) < ρ},

for some f ∈ L∞(Ωρ).

Proof. Suppose that ρ is smaller than the one given in Lemma 3.5. We choose a finite covering of
Ωρ made of balls of radius 2ρ and center xi ∈ ∂Ω. Using a partition of unity, it suffices to prove the
statement in any set Ω ∩ B2ρ(xi). To do so, we flatten the boundary near the point xi, which we
can suppose without loss of generality to be the origin. Choosing a smaller ρ (depending only on the
geometry of ∂Ω) if necessary, there exists a diffeomorphism Φ ∈ C1,1(RN ,RN ), Φ(X) = x such that
Φ = I in Bc4ρ and

(3.10) Ω ∩B2ρ b Φ(B3ρ ∩ RN+ ) δ(Φ(X)) = (XN )+, ∀X ∈ B3ρ.

We claim that

gε(x) =

∫
{|Φ−1(x)−Φ−1(y)|≥ε}

(δs(x)− δs(y))p−1

|x− y|N+ps
dy → f(x) in L1

loc(Ω ∩B2ρ).
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We change variables as X = Φ−1(x), noting that X ∈ B3ρ ∩ RN+ for any x ∈ Ω ∩B2ρ, and compute

gε(x) =

∫
{|X−Y |≥ε}

(δs(Φ(X))− δs(Φ(Y )))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY

=

∫
Bcε(X)∩B3ρ

(δs(Φ(X))− δs(Φ(Y )))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY +

∫
Bc3ρ

(δs(Φ(X))− δs(Φ(Y )))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY

=

∫
Bcε(X)

(u1(XN )− u1(YN ))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY

+

∫
Bc3ρ

(δs(Φ(X))− δs(Φ(Y )))p−1 − (u1(XN )− u1(YN ))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY

= f1,ε(X) + f2(X),

for sufficiently small ε, where we used the fact that

δs(Φ(Z)) = u1(ZN ) for all Z ∈ B3ρ

thanks to (3.10). Clearly f2 ◦ Φ−1 ∈ L1(Ω ∩B2ρ), and to estimate its L∞-norm we observe that, due
to (3.10),

dist(Φ−1(Ω ∩B2ρ), B
c
3ρ) > θΦ,ρ > 0.

Then, using the s-Hölder regularity of δs ◦ Φ and u1, and recalling that Φ−1 ∈ Lip(RN ) and (2.8), we
obtain

|f2(X)| ≤ CΦ,ρ

∫
Bc3ρ

|X − Y |s(p−1)

|X − Y |N+ps
dY ≤ CΦ,ρ

∫
RN

1

(1 + |Y |)N+s
dY ≤ CΦ,ρ, ∀X ∈ Φ−1(Ω ∩B2ρ).

Regarding f1,ε, it coincides with the gε of (3.6). Therefore claim (3.5) of Lemma 3.4 shows that the
limit

f1(X) := lim
ε→0

∫
Bcε(X)

(u1(XN )− u1(YN ))p−1

|Φ(X)− Φ(Y )|N+ps
JΦ(Y ) dY,

holds in L1
loc(RN+ ), and ‖f1‖∞ ≤ CΦ,ρ. Therefore gε → f1 ◦ Φ−1 + f2 ◦ Φ−1 in L1

loc(Ω ∩B2ρ), and both
are bounded. Lemma 2.5 finally gives the conclusion. �

4. Barriers

In this section we provide some barrier-type functions and prove a priori bounds for the bounded weak
solutions of problem (1.1). We begin by considering the simple problem

(4.1)

{
(−∆)spv = 1 in B1,

v = 0 in Bc1.

The following lemma displays some properties of the solution of (4.1):

Lemma 4.1. Let v ∈ W s,p
0 (B1) be a weak solution of (4.1). Then, v ∈ L∞(RN ) is unique, radially

non-increasing, and for all r ∈ (0, 1) it holds infBr v > 0.

Proof. First we prove uniqueness. Let the functional J : W s,p
0 (B1)→ R be defined by

J(u) =
1

p

∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy −

∫
B1

u(x) dx.

J is strictly convex and coercive, hence it admits a unique global minimizer v ∈ W s,p
0 (B1), which

is the only weak solution of (4.1). By Lemma 2.9 (iii) we see that v is radially symmetric, that is,
v(x) = ψ(|x|) for all x ∈ RN , where ψ : R+ → R+ is a mapping vanishing in [1,∞). Let v# be the
symmetric non-increasing rearrangement of v. By the fractional Pólya-Szegö inequality (see [2, Theorem
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3]) we have J(v#) ≤ J(v), so by uniqueness v = v#, that is, ψ is non-increasing and continuous from
the right in R+. Now let

r0 = inf{r ∈ (0, 1] : ψ(r) = 0}.
Clearly r0 ∈ (0, 1]. Arguing by contradiction, assume r0 ∈ (0, 1). Then v ∈ W s,p

0 (Br0) and it solves
weakly {

(−∆)spv = 1 in Br0 ,

v = 0 in Bcr0 .

Reasoning as above and using uniqueness and Lemma 2.9 (ii), we see that v(x) = r−ps0 v(rps0 x) in Br0 ,
so

ψ(r2
0) = rps0 ψ(r0) = 0,

with r2
0 < r0, against the definition of r0. So, for all r ∈ (0, 1) we have

inf
Br
v = ψ(r) > 0.

Finally, we prove that v ∈ L∞(RN ). Let w ∈ Cs(RN ) ∩ W̃ s,p(B1) be defined by

w(x) = min{(2− xN )s+, 5
s}.

Notice that w(x) = (2− xN )s+ = u1(2− xN ) for all x ∈ B2. Thus we can apply Lemma 2.8 in B3/2 to

w(x) = u1(2− xN )− (u1(2− xN )− 5s)+

to get, by Lemma 3.2

(−∆)spw(x) = 2

∫
{yN≤−3}

((2− xN )s+ − 5s)p−1 − ((2− xN )s+ − (2− yN )s+)p−1

|x− y|N+ps
dy =: I(x)

weakly in B1. The function I : B̄1 → R is continuous and positive, so there exists α > 0 such that

(−∆)spw(x) ≥ α weakly in B1.

We set w̃ = α−1/(p−1)w, so we have{
(−∆)spv = 1 ≤ (−∆)spw̃ weakly in B1,

v = 0 ≤ w̃ in Bc1,

and Proposition 2.10 yelds

0 ≤ v ≤ w̃ ≤ 5s

α
1
p−1

, in RN ,

so v ∈ L∞(RN ), concluding the proof. �

Next we introduce a priori bounds for functions with bounded fractional p-Laplacian.

Corollary 4.2 (L∞-bound). Let u ∈ W s,p
0 (Ω) satisfy |(−∆)spu| ≤ K weakly in Ω for some K > 0.

Then
‖u‖∞ ≤ (CdK)

1
p−1 ,

for some Cd = C(N, p, s, d), d = diam(Ω).

Proof. Let v ∈W s,p
0 (B1) be as in Lemma 4.1, x0 such that Ω b Bd(x0), and set

ṽ(x) = (Kdps)
1
p−1 v

(x− x0

d

)
.

By Lemma 2.9 (i), (ii) we have weakly{
(−∆)spu ≤ K = (−∆)spṽ in Ω

u = 0 ≤ ṽ in Ωc,

which, by Proposition 2.10, implies u ≤ ṽ in RN . A similar argument, applied to −u, gives the lower
bound. �
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ϕ

x̃R

R

2

B1(x̄R)
U+

x̄R

Figure 2. The balls BR(x̃R) and B1(x̄R). The thick line is the graph of ϕ, whose
epigraph is U+.

We can now produce (local) upper barriers on the complement of balls.

Lemma 4.3 (Local upper barrier). There exist w ∈ Cs(RN ), and universal r > 0, a ∈ (0, 1), c > 1
with {

(−∆)spw ≥ a weakly in Br(eN ) \B1

c−1(|x| − 1)s ≤ w(x) ≤ c(|x| − 1)s in RN .

Proof. By translation, rotation invariance and scaling (Lemma 2.9), it suffices to prove the statement
for any fixed ball of radius R > 2, at any fixed point x̄R of its boundary. To fix ideas, we set
x̃R = (0,−(R2 − 4)1/2) and x̄R = x̃R +ReN , so that BR(x̃R) intersects the hyperplane RN−1 × {0} in
the (N − 1)-ball {|x′| < 2} (we use the notation x = (x′, xN ) ∈ RN−1 × R).

In the following we will choose R large enough, depending only on N, p, s. If R > 2, we can find
ϕ ∈ C1,1(RN−1) such that ‖ϕ‖C1,1(RN−1) ≤ C/R and

ϕ(x′) =
(
(R2 − |x′|2)1/2 − (R2 − 4)1/2

)
+

for all |x′| ∈ [0, 1] ∪ [3,∞).

We set

U+ = {x ∈ RN : ϕ(x′) < xN}.
We claim that for any sufficiently large R there exists a diffeomorphism Φ ∈ C1,1(RN ,RN ) such that
Φ(0) = x̄R and

(4.2) Φ = I in Bc4, ‖Φ− I‖C1,1(RN ,RN ) + ‖Φ−1 − I‖C1,1(RN ,RN ) ≤
C

R
, Φ(RN+ ) = U+.

Indeed, let η ∈ C2(R) satisfy η ∈ [0, 1], η(0) = 1, supp η ⊆ (−1, 1). Set for all X = (X ′, XN ) ∈ RN−1×R

Φ(X) = X + ϕ(X ′)η(XN )eN .

Then, for sufficiently large R, Φ ∈ C1,1(RN ,RN ) is a bijection since Φ(X1) = Φ(X2) implies X ′1 = X ′2,
and the map t 7→ t+ ϕ(X ′)η(t) is increasing whenever

sup
X∈RN

ϕ(X ′)|η′(XN )| = 4 supR |η′|
R+
√
R2 − 4

< 1.

Its inverse mapping satisfies

(4.3) Φ−1(x) = x− ϕ(x′)η(Φ−1(x) · eN )eN for all x ∈ RN ,

besides Φ(0) = x̄R. Moreover, for all X ∈ Bc4 we have either |X ′| ≥ 3 or |XN | ≥ 1, in both cases
Φ(X) = X. The C1,1-bounds on ϕ, η and (4.3) yield the required C1,1-bounds on Φ− I and Φ−1 − I.
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Finally, reasoning as above, the monotonicity of t 7→ t+ ϕ(X ′)η(t) implies that Φ(RN+ ) = U+, and (4.2)
is proved.

Let v1(x) = u1(Φ−1(x) · eN ). Lemma 3.4 ensures that v1 ∈ W̃ s,p
loc (RN ) and

(4.4) (−∆)spv1 = f weakly in U+, with ‖f‖∞ ≤ C/R.

Define

v(x) = min{v1(x), 5s},

which belongs to W̃ s,p(B4). From Φ = I in Bc4 we infer Φ−1(B4) = B4 and thus

v1(x) = u1(xN ) in Bc4, v1 ≤ 4s in B4.

Hence

v1(x)− v(x) = (xN )s+ − 5s in {xN ≥ 5}, v1 − v = 0 in {xN ≤ 5} c B4.

Thus the function v − v1 satisfies conditions (2.14) in B4, and Lemma 2.8 provides weakly in B4

(−∆)spv = (−∆)sp(v1 + (v − v1)) = f + g,

where

g(x) = 2

∫
Bc4

(v1(x)− v(y))p−1 − (v1(x)− v1(y))p−1

|x− y|N+ps
dy

≥ 2

∫
{yN≥5}

((xN )s+ − 5s)p−1 − ((xN )s+ − (yN )s+)p−1

|x− y|N+ps
dy

for any x ∈ B4. As in the proof of Lemma 4.1, there is a universal α > 0 such that g(x) ≥ α for all
x ∈ B4, and therefore using (4.4) we have

(−∆)spv ≥ f + g ≥ α− C

R
weakly in U+ ∩B4.

Taking R big enough we thus find B2(x̄R) b B4 and

(4.5) (−∆)spv ≥
α

2
> 0, weakly in U+ ∩B2(x̄R).

Set for all x ∈ RN

dR(x) = (|x− x̃R| −R)+.

We can estimate v by multiples of dsR globally from above but only locally from below. Indeed, since
v = 0 in U c+, BR(x̃R) ⊂ U c+, and v ∈ Cs(RN ), there exists c̃ > 1 such that

(4.6) v(x) ≤ c̃dist(x, U c+)s ≤ c̃ dsR(x), for all x ∈ RN .

On the other hand, for all x ∈ B1(x̄R) it holds either x ∈ B1(x̄R) \ U+ ⊆ BR(x̃R), in which case
dsR(x) = 0 = c̃v(x), or x ∈ B1(x̄R) ∩ U+ ⊆ BcR(x̃R). In the latter case let X = (X ′, XN ) be such that
x = Φ(X), Z = (X ′, 0) and z = Φ(Z). It holds |X ′| ≤ 1 and by the construction of Φ, it follows that
z ∈ ∂BR(x̃R), therefore

dsR(x) ≤ |x− z|s ≤ c̃|X − Z|s = c̃Xs
N = c̃v(x).

Thus we have (taking c̃ > 1 bigger if necessary)

(4.7) v ≥ 1

c̃
dsR in B1(x̄R).

We aim at extending (4.7) to the whole RN , while retaining (4.5) and (4.6). For any ε ∈ (0, 1/c̃) set

vε = max{v, εdsR}.



22 A. IANNIZZOTTO, S. MOSCONI, AND M. SQUASSINA

Clearly vε satisfies estimates like (4.6) and (4.7) in RN with a constant c̃ε = max{c̃+ ε, ε−1}. Besides
v ≤ vε ≤ v+ εdsR in RN , being ε < 1/c̃, vε − v = 0 in B1(x̄R). So, by (4.5), Lemma 2.8 and (2.5) (with
M = 5s and q = p− 1)

(−∆)spvε(x) = (−∆)spv(x)− 2

∫
Bc

1/2
(x̄R)

(v(x)− v(y))p−1 − (v(x)− vε(y))p−1

|x− y|N+ps
dy

≥ α

2
− C

∫
Bc1(x̄R)

max{εdsR(y), (εdsR(y))p−1}
|x̄R − y|N+ps

dy

≥ α

2
− CJ(ε)

weakly in B1/2(x̄R)∩U+ (in the end we have used the inequality |x−y| ≥ 1/2|x̄R−y| for all x ∈ B1/2(x̄R),

y ∈ Bc1(x̄R)). Notice that J(ε)→ 0 as ε→ 0+ independently of x, thus, for ε > 0 small enough we have

(−∆)spvε(x) ≥ α

4
> 0 weakly in B1/2(x̄R) \BR(x̃R).

To obtain the barrier of the thesis, we set w(x) = vε(x̃ + Rx) and using Lemma 2.9 we reach the
conclusion for r = 1/(2R), a = α/(4Rps), c = Rs max{c̃+ ε, ε−1}. �

Finally, we prove that any bounded weak solution of (1.1) can be estimated by means of a multiple of
δs.

Theorem 4.4. Let u ∈W s,p
0 (Ω) satisfy |(−∆)spu| ≤ K weakly in Ω for some K > 0. Then

(4.8) |u| ≤ (CΩK)
1
p−1 δs a.e. in Ω,

for some CΩ = C(N, p, s,Ω).

Proof. Considering u/K1/(p−1) and using homogeneity, we can prove (4.8) in the case K = 1. Thanks
to Corollary 4.2 we may focus on a neighborhood of ∂Ω. Let ρ > 0 be as in Lemma 3.5, and let r ∈ (0, 1)
be defined in Lemma 4.3. Set

U =
{
x ∈ Ω : δ(x) < r

ρ

2

}
,

x̄ ∈ U and x0 = Π(x̄) ∈ ∂Ω its point of minimal distance from Ωc. There exists two balls Bρ/2(x1)
and Bρ(x2) exteriorly tangent to ∂Ω at x0, and (by scaling and translating the supersolution of the
previous Lemma 4.3) a function w ∈ Cs such that

(4.9) (−∆)spw ≥ a weakly in Brρ/2(x0) \Bρ/2(x1),

(4.10) c−1ds(x) ≤ w(x) ≤ cds(x) in RN .

where we have set

d(x) = dist(x,Bcρ/2(x1)).

Notice that the constants in (4.9) (4.10) depend only on ρ, N , p and s, and we will suppose henceforth
that a, r, c−1 ∈ (0, 1). By Lemma 3.5 it holds

(4.11) d(x̄) = δ(x̄) = |x̄− x0|,

moreover

d(x) ≥ θ > 0, in Bcρ(x2) \Brρ/2(x0).

for a constant θ which depends only on ρ and r (and thus on Ω alone). Since Ω ⊆ Bcρ(x2), the latter
inequality together with (4.10) provides

(4.12) w ≥ c−1θs =: α > 0, in Ω \Brρ/2(x0).

We define the open set

V = Ω ∩Br ρ2 (x0) ⊆ Br ρ2 (x0) \Bρ/2(x1),
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where we will apply the comparison principle. Suppose without loss of generality that in (4.12) α ∈ (0, 1)
and let Cd > 1 be as in Corollary 4.2. Set

M =
1

α

(Cd
a

) 1
p−1

, w̄ = Mw.

By (4.9) and Cd/α
p−1 ≥ 1 we have

(−∆)spw̄ = Mp−1(−∆)spw ≥
Cd
αp−1

≥ 1 ≥ (−∆)spu, weakly in V .

Moreover u = 0 ≤ w̄ in Ωc, while (4.12), a < 1 and Corollary 4.2 give

w̄ ≥Mα =
(Cd
a

) 1
p−1 ≥ sup

Ω
u, in Ω \Brρ/2(x0).

Therefore w̄ ≥ u in the whole V c, and Proposition 2.10 together with (4.10) yelds

u(x) ≤ w̄(x) ≤ cMds(x) for a.e. x ∈ RN .

Recalling (4.11) we get

u(x̄) ≤ cMds(x̄) = cMδs(x̄), for all x̄ = x0 − tnx0
, t ∈

[
0, r

ρ

2

]
,

where nx0 is the exterior normal to ∂Ω at x0, which gives the thesis since cM depends only on N, p, s,
ρ, r, and Ω. A similar argument applied to −u yields the lower bound. �

5. Hölder regularity

In this section we will obtain the Hölder regularity of solutions.

5.1. Interior Hölder regularity. We now study the behavior of a weak supersolution in a ball,
proving a weak Harnack inequality. Then we will obtain an estimate of the oscillation of a bounded
weak solution in a ball (this can be interpreted as a first interior Hölder regularity result). All balls
are meant to be centered at 0, as translation invariance of (−∆)sp allows to extend the results to balls
centered at any point.

We begin with a curious Jensen-type inequality:

Lemma 5.1. Let E ⊂ RN be a set of finite measure and let u ∈ L1(E) satisfy

−
∫
E

u dx = 1.

Then, for all r ≥ 1 and λ ≥ 0, it holds

−
∫
E

(ur − λr) 1
r dx ≥ 1− 2

r−1
r λ.

Proof. Avoiding trivial cases, we assume r > 1 and λ > 0. Set, for all t ∈ R,

g(t) = (tr − λr) 1
r .

Then, for all t ∈ R \ {0, λ}, we have

g′(t) = |tr − λr|
1−r
r |t|r−1.

In particular, tλ = 2−1/rλ is the only solution of g′(t) = 1. Elementary calculus shows that for all t ∈ R

g(t) ≥ g(tλ) + g′(tλ)(t− tλ) = t− 2tλ.

So we have

−
∫
E

(g ◦ u) dx ≥ −
∫
E

(u− 2tλ) dx = 1− 2
r−1
r λ,

which concludes the proof. �

Now we prove a weak Harnack-type inequality for non-negative supersolutions:
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σLϕ

R
4

R R
2

χBR\BR/2u χBR\BR/2u

Figure 3. The lower barrier w

Theorem 5.2 (Weak Harnack inequality). There exist universal σ ∈ (0, 1), C̄ > 0 with the following

property: if u ∈ W̃ s,p(BR/3) satisfies weakly{
(−∆)spu ≥ −K in BR/3

u ≥ 0 in RN ,

for some K ≥ 0, then

inf
BR/4

u ≥ σ
(
−
∫
BR\BR/2

up−1 dx
) 1
p−1 − C̄(KRps)

1
p−1 .

Proof. We first consider the case p ≥ 2. Let ϕ ∈ C∞(RN ) be such that 0 ≤ ϕ ≤ 1 in RN , ϕ = 1
in B3/4, ϕ = 0 in Bc1, and by Proposition 2.12 |(−∆)spϕ| ≤ C1 weakly in B1. We rescale by setting

ϕR(x) = ϕ(3x/R), so ϕR ∈ C∞(RN ), 0 ≤ ϕR ≤ 1 in RN , ϕR = 1 in BR/4, ϕR = 0 in BcR/3, and

|(−∆)spϕR| ≤ C1R
−ps weakly in BR/3 (taking C1 bigger).

For all σ ∈ (0, 1) we set (see figure 3)

L =
(
−
∫
BR\BR/2

up−1 dx
) 1
p−1

, w = σLϕR + χBR\BR/2u.

So w ∈ W̃ s,p(BR/3) and by Lemma 2.8 and (2.7) we have, weakly in BR/3,

(−∆)spw(x) = (−∆)sp(σLϕR)(x) + 2

∫
BR\BR/2

(σLϕR(x)− u(y))p−1 − (σLϕR(x))p−1

|x− y|N+ps
dy

≤ C1(σL)p−1

Rps
− 23−p

∫
BR\BR/2

up−1(y)

|x− y|N+ps
dy

≤ C1(σL)p−1

Rps
− C2L

p−1

Rps
.

If we assume

σ < min
{

1,
( C2

2C1

) 1
p−1
}
,

we get the upper estimate

(5.1) (−∆)spw(x) ≤ −C2L
p−1

2Rps
weakly in BR/3.

We set C̄ = (2/C2)1/(p−1) and distinguish two cases:
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• if L ≤ C̄(KRps)1/(p−1), then clearly

inf
BR/4

u ≥ 0 ≥ σL− C̄(KRps)
1
p−1 ;

• if L > C̄(KRps)1/(p−1), then we use (5.1) to have{
(−∆)spw ≤ −K ≤ (−∆)spu weakly in BR/3

w = χBR\BR/2u ≤ u in BcR/3,

which by Proposition 2.10 implies w ≤ u in RN , in particular

inf
BR/4

u ≥ σL.

In any case we have

inf
BR/4

u ≥ σL− C̄(KRps)
1
p−1 ,

which is the conclusion.

Now we consider the case p ∈ (1, 2). Due to Remark 2.14, in this case we cannot use the cut-off function
ϕ as before to construct the barrier w. We use instead the weak solution v of (4.1) introduced in
Lemma 4.1, recalling that infB3/4

v > 0, and we set

ϕR(x) =
(

inf
B3/4

v
)−1

v
(3x

R

)
,

so that 0 ≤ ϕR ≤ α (for some universal α > 0) in RN , ϕR ≥ 1 in BR/4, ϕR = 0 in BcR/3, and

(−∆)spϕR = C1R
−ps weakly in BR/3. Accordingly, to obtain the estimate (5.1) we apply Lemma 5.1 to

the function (u/L)p−1 with E = BR \BR/2, r = 1/(p− 1), and λ = (σϕR(x))p−1, so that

−
∫
BR\BR/2

(u(y)

L
− σϕR(x)

)p−1

dy ≥ 1− 22−p(σϕR(x))p−1,

for a.e. x ∈ BR/3. This, in turn, implies that for a.e. x ∈ BR/3

2

∫
BR\BR/2

(σLϕR(x)− u(y))p−1 − (σLϕR(x))p−1

|x− y|N+ps
dy ≤ C2

Rps
−
∫
BR\BR/2

(σLϕR(x)− u(y))p−1 dy

≤ C2

Rps
(
22−p(σLϕR(x))p−1 − Lp−1

)
≤ −C2L

p−1

2Rps
,

where we have chosen σ < 2
p−3
p−1α−1. Then, by taking σ even smaller if necessary, we get (5.1) and the

rest of the proof follows verbatim. �

We need to extend Theorem 5.2 to supersolutions which are only non-negative in a ball. To do so, we
introduce a tail term defined as in (2.1):

Lemma 5.3. There exist σ ∈ (0, 1), C̃ > 0, and for all ε > 0 a constant Cε > 0 with the following

property: if u ∈ W̃ s,p(BR/3) satisfies weakly{
(−∆)spu ≥ −K in BR/3

u ≥ 0 in BR,

for some K ≥ 0, then

(5.2) inf
BR/4

u ≥ σ
(
−
∫
BR\BR/2

up−1 dx
) 1
p−1 − C̃(KRps)

1
p−1 − CεTail(u−;R)− ε sup

BR

u.
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Proof. First we consider the case p ≥ 2. We apply Lemma 2.8 to the functions u and v = u−, so that
u+ v = u+, and Ω = BR/3: we have in a weak sense in BR/3

(−∆)spu+(x) = (−∆)spu(x) + 2

∫
Bc
R/3

(u(x)− u(y)− u−(y))p−1 − (u(x)− u(y))p−1

|x− y|N+ps
dy

≥ −K + 2

∫
{u<0}

u(x)p−1 − (u(x)− u(y))p−1

|x− y|N+ps
dy

≥ −K + C

∫
{u<0}

u(x)p−1 − (u(x)− u(y))p−1

|y|N+ps
dy,

where in the end we have used that |x− y| ≥ 2/3|y|. By (2.6), for any θ > 0 there exists Cθ > 0 such
that weakly in BR/3

(−∆)spu+(x) ≥ −K − θ
(

sup
BR

u
)p−1

∫
BcR

1

|y|N+ps
dy − Cθ

Rps
Tail(u−;R)p−1

≥ −K − Cθ

Rps
(

sup
BR

u
)p−1 − Cθ

Rps
Tail(u−;R)p−1 =: −K̃.

Now, by applying Theorem 5.2 to u+ we have for any ε > 0 and θ < (ε/C̄)p−1,

inf
BR/4

u ≥ σ
(
−
∫
BR\BR/2

up−1 dx
) 1
p−1 − C̄(K̃Rps)

1
p−1

≥ σ
(
−
∫
BR\BR/2

up−1 dx
) 1
p−1 − C̃(KRps)

1
p−1 − CεTail(u−;R)− ε sup

BR

u

for some universal constant C̃ > 0 and a convenient Cε > 0 depending also on ε.

Now we turn to the case p ∈ (1, 2). The argument in this case is in fact easier, as by (2.3) we have∫
{u<0}

u(x)p−1 − (u(x)− u(y))p−1

|y|N+ps
dy ≤ 1

Rps
Tail(u−;R)p−1 for a.e. x ∈ BR/3,

then we argue as above using (2.2) instead of (2.7) when required. �

Clearly, symmetric versions of Theorem 5.2 and Lemma 5.3 also hold. Now we use the above results to
produce an estimate of the oscillation of a bounded function u such that (−∆)spu is locally bounded.

We set for all R > 0, x0 ∈ RN

Q(u;x0, R) = ‖u‖L∞(BR(x0)) + Tail(u;x0, R), Q(u;R) = Q(u; 0, R).

Our result is as follows:

Theorem 5.4. There exist universal α ∈ (0, 1), C > 0 with the following property: if u ∈ W̃ s,p(BR0
)∩

L∞(BR0
) satisfies |(−∆)spu| ≤ K weakly in BR0

for some R0 > 0, then for all r ∈ (0, R0)

osc
Br

u ≤ C
[
(KRps0 )

1
p−1 +Q(u;R0)

] rα
Rα0

.

Proof. First we consider the case p ≥ 2. For all integer j ≥ 0 we set Rj = R0/4
j , Bj = BRj , and

1
2Bj = BRj/2. We put forward the following

Claim. There exist a universal α ∈ (0, 1) and a real λ > 0 (depending on all the data), a non-decreasing
sequence (mj), and a non-increasing sequence (Mj), such that for all j ≥ 0

mj ≤ inf
Bj
u ≤ sup

Bj

u ≤Mj , Mj −mj = λRαj .
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We argue by induction on j. Step zero: we set M0 = supB0
u and m0 = M0 − λRα0 , where λ > 0

satisfies

(5.3) λ ≥
2‖u‖L∞(B0)

Rα0
,

which clearly implies

inf
B0

u ≥ m0.

Inductive step: assume that sequences (mj), (Mj) are constructed up to the index j. Then

(5.4) Mj −mj = −
∫
Bj\ 1

2Bj

(Mj − u) dx+−
∫
Bj\ 1

2Bj

(u−mj) dx

≤
(
−
∫
Bj\ 1

2Bj

(Mj − u)p−1 dx
) 1
p−1

+
(
−
∫
Bj\ 1

2Bj

(u−mj)
p−1 dx

) 1
p−1

.

Let σ ∈ (0, 1), C̃ > 0 be as in Lemma 5.3, and multiply the previous inequality by σ to obtain, via
(5.2),

σ(Mj −mj) ≤ inf
Bj+1

(Mj − u) + inf
Bj+1

(u−mj) + 2C̃(KRps0 )
1
p−1

+ Cε
[
Tail((Mj − u)−;Rj) + Tail((u−mj)−;Rj)

]
+ ε
[

sup
Bj

(Mj − u) + sup
Bj

(u−mj)
]
.

(5.5)

Setting universally ε = σ/4, C = max{2C̃, Cε} and rearranging, we have

(5.6) osc
Bj+1

u ≤
(

1− σ

2

)
(Mj −mj) + C

[
(KRps0 )

1
p−1 + Tail((Mj − u)−;Rj) + Tail((u−mj)−;Rj)

]
.

Now we provide an estimate of both non-local tails, firstly noting that

(5.7) Tail((u−mj)−;Rj)
p−1 = Rpsj

j−1∑
k=0

∫
Bk\Bk+1

(u(y)−mj)
p−1
−

|y|N+ps
dy +Rpsj

∫
Bc0

(u(y)−mj)
p−1
−

|y|N+ps
dy.

We consider the first term: by the inductive hypothesis, for all 0 ≤ k ≤ j − 1 we have in Bk \Bk+1

(u−mj)− ≤ mj −mk ≤ (mj −Mj) + (Mk −mk) = λ(Rαk −Rαj ),

hence

j−1∑
k=0

∫
Bk\Bk+1

(u(y)−mj)
p−1
−

|y|N+ps
dy ≤ λp−1R

α(p−1)
j

j−1∑
k=0

∫
Bk\Bk+1

(4α(j−k) − 1)p−1

|y|N+ps
dy

≤ Cλp−1S(α)R
α(p−1)−ps
j ,

where we have set for all α ∈ (0, 1)

S(α) =

∞∑
h=1

(4αh − 1)p−1

4psh
,

noting that S(α)→ 0 as α→ 0+. Regarding the second term, by the inductive hypothesis we have

mj ≤ inf
Bj
u ≤ sup

Bj

u ≤ ‖u‖L∞(B0),

hence ∫
Bc0

(u(y)−mj)
p−1
−

|y|N+ps
dy ≤

∫
Bc0

(‖u‖L∞(B0) + |u(y)|)p−1

|y|N+ps
dy ≤ CQ(u;R0)p−1

Rps0

.
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Choosing α < ps/(p− 1) and plugging the above inequalities in (5.7), we get

Tail((u−mj)−;Rj) ≤ C
[
λp−1S(α)R

α(p−1)
j +

Q(u;R0)p−1Rpsj
Rps0

] 1
p−1

≤ C
[
λS(α)

1
p−1 +

Q(u;R0)

Rα0

]
Rαj .

An analogous estimate holds for Tail((Mj − u)−;Rj), so from (5.6) we have

(5.8) osc
Bj+1

u ≤
(

1− σ

2

)
λRαj + C

[
(KRps0 )

1
p−1 + λS(α)

1
p−1Rαj +

Q(u;R0)Rαj
Rα0

]
≤ 4α

[(
1− σ

2

)
+ CS(α)

1
p−1

]
λRαj+1 + 4αC

[
K

1
p−1R

ps
p−1−α
0 +

Q(u;R0)

Rα0

]
Rαj+1.

Now we choose α ∈ (0, ps/(p− 1)) universally such that

4α
[(

1− σ

2

)
+ CS(α)

1
p−1

]
≤ 1− σ

4
,

and we set

(5.9) λ =
4α+1

σ
C
[
K

1
p−1R

ps
p−1−α
0 +

Q(u;R0)

Rα0

]
,

which implies (5.3) as 4α+1C/σ > 2. So, (5.8) forces

osc
Bj+1

u ≤ λRαj+1.

We may pick mj+1, Mj+1 such that

mj ≤ mj+1 ≤ inf
Bj+1

u ≤ sup
Bj+1

u ≤Mj+1 ≤Mj , Mj+1 −mj+1 = λRαj+1,

which completes the induction and proves the claim.

Now fix r ∈ (0, R0) and find an integer j ≥ 0 such that Rj+1 ≤ r < Rj , thus Rj ≤ 4r. Hence, by the
claim and (5.9), we have

osc
Br

u ≤ osc
Bj

u ≤ λRαj ≤ C[(KRps0 )
1
p−1 +Q(u;R0)

] rα
Rα0

,

which concludes the argument.

Now we consider the case p ∈ (1, 2). The only major difference is in (5.6): instead of (5.4) we use the
inductive hypothesis to see that

Mj − u ≤ (Mj −mj)
2−p(Mj − u)p−1, in Bj ,

and similarly for u−mj . Hence

Mj −mj ≤ (Mj −mj)
2−p
[
−
∫
Bj\ 1

2Bj

(Mj − u)p−1 dx+−
∫
Bj\ 1

2Bj

(u−mj)
p−1 dx

]
,

which in turn implies through (2.2)

Mj −mj ≤
[
−
∫
Bj\ 1

2Bj

(Mj − u)p−1 dx+−
∫
Bj\ 1

2Bj

(u−mj)
p−1 dx

] 1
p−1

≤ 2
2−p
p−1

[(
−
∫
Bj\ 1

2Bj

(Mj − u)p−1 dx
) 1
p−1

+
(
−
∫
Bj\ 1

2Bj

(u−mj)
p−1 dx

) 1
p−1
]
.

Multiplying by σ/2
2−p
p−1 and applying Lemma 5.3 we obtain (5.5) with σ̃ = σ/2

2−p
p−1 , and the proof follows

verbatim. �

The next corollary of Theorem 5.4 follows from standard arguments.
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Corollary 5.5. There exists universal C > 0 and α ∈ (0, 1) with the following property: for all

u ∈ W̃ s,p(B2R0
(x0)) ∩ L∞(B2R0

(x0)) such that |(−∆)spu| ≤ K weakly in B2R0
(x0),

(5.10) [u]Cα(BR0
(x0)) ≤ C

[
(KRps0 )

1
p−1 +Q(u;x0, 2R0)

]
R−α0 .

Proof. Given x, y in BR0
(x0), let r = |x− y|. It suffices to apply Theorem 5.4 to the ball BR0

(x) ⊆
B2R0

(x0). Clearly ‖u‖L∞(BR0
(x)) ≤ ‖u‖L∞(B2R0

(x0)) and

Tail(u;x,R0)p−1 = Rps0

∫
BcR0

(x)

|u(y)|p−1

|x− y|N+ps
dy

≤ CRps0

[ ∫
B2R0

(x0)\BR0
(x)

‖u‖p−1
L∞(B2R0

(x0))

|x− y|N+ps
dy +

∫
Bc2R0

(x0)

|u(y)|p−1

|x− y|N+ps
dy
]

≤ C‖u‖p−1
L∞(B2R0

(x0)) + CRps0

∫
Bc2R0

(x0)

|u(y)|p−1

|x0 − y|N+ps
dy

for a universal C, where as usual we used |x − y| ≥ |x0 − y|/2 for y ∈ Bc2R0
(x0), x ∈ BR0

(x0). This
implies that

Q(u;x,R0) ≤ CQ(u;x0, 2R0),

and thus the desired estimate on the Hölder seminorm. �

5.2. Global Hölder regularity. We finally prove the stated Hölder regularity result up to the
boundary.

Proof of Theorem 1.1. We set K = ‖f‖L∞(Ω). Corollary 4.2 already provides the desired estimate
for the sup-norm, namely

‖u‖L∞(Ω) ≤ CK
1
p−1 ,

so we can focus on the Hölder seminorm.

Let α be the one given in Corollary 5.5. We can assume α ∈ (0, s]. Through a covering argument,

(5.10) implies that u ∈ Cαloc(Ω
′
) for all Ω′ b Ω, with a bound of the form

‖u‖Cα(Ω
′
) ≤ CΩ′K

1
p−1 , CΩ′ = C(N, p, s,Ω,Ω′).

Hence it suffices to prove (1.2) in the closure of a fixed ρ-neighbourhood of ∂Ω. We will suppose that
ρ > 0 is so small (depending only on Ω) that Lemma 3.5 holds, and thus the metric projection

Π : V → ∂Ω, Π(x) = Argmin
y∈Ωc

|x− y|

is well defined on V := {x ∈ Ω : δ(x) ≤ ρ}. We claim that

(5.11) [u]Cα(Br/2(x)) ≤ CΩK
1
p−1 , for all x ∈ V and r = δ(x)

for some constant CΩ = C(N, p, s,Ω), independent on x ∈ V . We recall (5.10), which in the present
case rephrases (up to a universal constant) as

[u]Cα(Br/2(x)) ≤ C
[
(Krps)

1
p−1 + ‖u‖L∞(Br(x)) + Tail(u;x, r)

]
r−α.

To prove (5.11), it suffices to bound the three terms on the right hand side of the above inequality. The
first one it trivially dealt with since α ≤ s ≤ ps/(p− 1), and thus

r−α(Krps)
1
p−1 ≤ K

1
p−1 ρ

ps
p−1−α.

For the second one we use Theorem 4.4 and α ≤ s to get

‖u‖L∞(Br(x)) ≤ CK
1
p−1 (δ(x) + r)s ≤ CK

1
p−1 ρs−αrα,

and thus the claimed bound. Similarly for the last term we employ again (4.8), together with

δ(y) ≤ |y −Π(x)| ≤ |y − x|+ |x−Π(x)| ≤ |y − x|+ r ≤ 2|x− y|, ∀y ∈ Bcr(x),
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to get

Tail(u;x, r)p−1 ≤ CKrps
∫
Bcr(x)

δs(p−1)(y)

|x− y|N+ps
dy ≤ CKrps

∫
Bcr(x)

|x− y|s(p−1)

|x− y|N+ps
dy ≤ CKrs(p−1).

Again due to α ≤ s we obtain the claimed bound, and the proof of (5.11) is completed. To prove the
theorem, pick x, y ∈ V and suppose without loss of generality that |x−Π(x)| ≥ |y −Π(y)|. Two cases
may occur: either 2|x− y| < |x−Π(x)|, in which case we set r = δ(x) and apply (5.11) in Br/2(x), to
obtain

|u(x)− u(y)| ≤ CK
1
p−1 |x− y|α;

or 2|x− y| ≥ |x−Π(x)| ≥ |y −Π(y)|, in which case (4.8) ensures

|u(x)− u(y)| ≤ |u(x)|+ |u(y)| ≤ CK
1
p−1 (δs(x) + δs(y)) = CK

1
p−1 (|x−Π(x)|s + |y −Π(y)|s)

≤ CK
1
p−1 |x− y|s ≤ CK

1
p−1 ρs−α|x− y|α.

Thus in both cases the α-Hölder seminorm is bounded in V and the proof is completed. �

Remark 5.6. As the proofs above show, interior regularity (Theorem 5.4) forces in particular α <
ps/(p − 1), while in order to control the behavior of weak solutions near the boundary we need the
more restrictive bound α ≤ s. Anyway, our Hölder exponent remains not explicitly determined.
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[4] X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian
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Poincaré Anal. Non Linéaire, DOI:10.1026/j.anihpc.2015.04.003. 2, 3, 4, 5

[8] A. Di Castro, T. Kuusi, G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal. 267 (2014), 1807–1836. 2

[9] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math.

136 (2012), 521–573. 5

[10] A. Iannizzotto, S. Liu, K. Perera, M. Squassina, Existence results for fractional p-Laplacian problems via Morse

theory, to appear in Adv. Calc. Var., DOI: 10.1515/acv-2014-0024. 2, 4

[11] A. Iannizzotto, S. Mosconi, M. Squassina, Hs versus C0-weighted minimizers, NoDEA Nonlinear Differential

Equations Appl. 22 (2015), 477–497. 2

[12] A. Iannizzotto, S. Mosconi, M. Squassina, A note on global regularity for the weak solutions of fractional

p-Laplacian equations, to appear in Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., arXiv:1504.01006. 4

[13] N.V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser.

Mat. 47 (1983), 75–108. 3

[14] T. Kuusi, G. Mingione, Y. Sire, Nonlocal equations with measure data, Comm. Math. Phys. 337 (2015), 1317–1368.

3, 4
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