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Abstract. We deal with a class of equations driven by nonlocal, pos-
sibly degenerate, integro-differential operators of differentiability order
s ∈ (0, 1) and summability growth p > 1, whose model is the fractional
p-Laplacian with measurable coefficients. We prove that the minimum
of the corresponding weak supersolutions is a weak supersolution as well.

1. Introduction

In this note we are interested in a very general class of nonlinear nonlocal

equations, which include as a particular case some fractional Laplacian-

type equations; that is, those related to the operator L defined on suitable

fractional Sobolev functions by

(1.1)

Lu(x) = P. V.

∫
Rn

K(x, y)|u(x)− u(y)|p−2
(
u(x)− u(y)

)
dy, x ∈ Rn.

The nonlinear nonlocal operator L in the display above is driven by its

symmetric kernel K : Rn ×Rn → [0,∞), which is a measurable function of

differentiability order s ∈ (0, 1) and summability exponent p > 1,

Λ−1 ≤ K(x, y)|x− y|n+sp ≤ Λ for a. e. x, y ∈ Rn,
for some Λ ≥ 1. In order to simplify, one can just keep in mind the model

case when the kernel K = K(x, y) does coincide with the Gagliardo kernel

|x− y|−n−sp; that is, when the corresponding equation reduces to

(−∆)sp u = 0 in Rn,

where the symbol (−∆)sp denotes the usual fractional p-Laplacian operator,

though in such a case the difficulties arising from having merely measurable

coefficients disappear.

We prove the following basic result which concerns the minimum of two

fractional weak supersolutions, and constitutes a natural and fundamental

result for approaching the development of a fractional nonlinear Potential

Theory.
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Theorem 1.1. Suppose that u and v are fractional weak supersolutions in

Ω. Then the function w := min{u, v} is a fractional weak supersolution in

Ω as well.

In contrast with respect to the classic local case of the p-Laplace equation(
that is, when s = 1; see for instance Theorem 3.23 in [10]

)
, here the proof

that the function w := min{u, v} is a weak supersolution tangles up sig-

nificantly in the nonlocality of the involved operators L. Indeed, the main

difficulty into the treatment of the operators L in (1.1) lies in their very

definition, which combines the typical issues given by its nonlocal feature

together with the ones given by its nonlinear growth behavior; also, further

efforts are needed due to the presence of merely measurable coefficients in

the kernel K. For this, some very important tools recently introduced in

the nonlocal theory, as the by-now classic s-harmonic extension ([4]), the

strong three-term commutators estimates to deduce the regularity of weak

fractional harmonic maps ([5]), the pseudo-differential commutator compact-

ness in [20, 21, 22], the energy density estimates in [23, 24], and many other

successful tricks seem not to be trivially adaptable to the nonlinear frame-

work considered here. Moreover, increased difficulties are due to the non-

Hilbertian structure of the involved fractional Sobolev spaces W s,p when

p 6= 2. In spite of that, some related regularity results have been very re-

cently achieved in this context, in [9, 17, 18, 25, 15, 2, 1, 3] and many others,

where often a fundamental role to understand the nonlocality of the nonlin-

ear operators L has been played by the nonlocal tail defined by forthcoming

formula (2.1) in order to obtain fine quantitative controls on the long-range

interactions.

2. Preliminaries

In this section, we recall the definition of weak supersolutions to nonlinear

integro-differential equations driven by the operator L in (1.1). For this,

we need first to recall the definition of the nonlocal tail Tail(f ; z, r) of a

function f in the ball of radius r > 0 centered in z ∈ Rn; see [6, 7]. For any

function f initially defined in Lp−1
loc (Rn),

(2.1) Tail(f ; z, r) :=

(
rsp
∫
Rn\Br(z)

|f(x)|p−1|x− z|−n−sp dx

) 1
p−1

.

In accordance, we recall the definition of the corresponding tail space Lp−1
sp (Rn),

Lp−1
sp (Rn) :=

{
f ∈ Lp−1

loc (Rn) : Tail(f ; z, r) <∞ ∀z ∈ Rn, ∀r ∈ (0,∞)
}

;

see [15], and also [13, Section 2] for an equivalent definition and related

properties. As expected, one can check that L∞(Rn) ⊂ Lp−1
sp (Rn) and
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W s,p(Rn) ⊂ Lp−1
sp (Rn), where we denoted by W s,p(Rn) the usual fractional

Sobolev space of order (s, p), defined by the norm

‖v‖W s,p(Rn) := ‖v‖Lp(Rn) + [v]W s,p(Rn)

=

(∫
Rn

|v|p dx

) 1
p

+

(∫
Rn

∫
Rn

|v(x)− v(y)|p

|x− y|n+sp
dxdy

) 1
p

.

Similarly, one can define the fractional Sobolev spaces W s,p(Ω) in a domain

Ω ⊂ Rn. By W s,p
0 (Ω) we denote the closure of C∞0 (Ω) in W s,p(Rn). For the

basic properties of these spaces and some related topics, we refer the reader

to [8] and the references therein.

Let us denote the negative part of a real valued function u by u− :=

max{−u, 0}. We are now ready to provide the definitions of sub- and su-

persolutions u to

(2.2) Lu = 0 in Rn.

Definition 2.1. A function u ∈W s,p
loc (Ω) such that u− belongs to Lp−1

sp (Rn)

is a fractional weak p-supersolution of (2.2) if

∫
Rn

∫
Rn

|u(x)− u(y)|p−2
(
u(x)− u(y)

)(
η(x)− η(y)

)
K(x, y) dxdy ≥ 0

(2.3)

for every nonnegative η ∈ C∞0 (Ω). A function u is a fractional weak p-

subsolution1 if −u is a fractional weak p-supersolution; and u is a fractional

weak p-solution if it is both fractional weak p-sub- and p-supersolution.

Remark 2.2. The function η ∈ C∞0 (Ω) in the definition above can be replaced

by η ∈ W s,p
0 (D) with every D b Ω. Furthermore, it can be extended

to a W s,p-function in the whole Rn (see, e. g., Section 5 in [8]). We also

notice that the summability assumption of u− belonging to the tail space

Lp−1
sp (Rn) is what one expects in the general nonlocal framework considered

here. This is one of the novelty with respect to the analog of the definition

of supersolutions in the local case (i. e., when s = 1), and it is necessary

since here one has to use in a precise way the definition of nonlocal tail

given in (2.1) in order to deal with the interactions coming from far; see [13,

Remark 2.3], and also, the regularity estimates in [6, 7, 12, 15, 16].

1In the rest of the paper we suppress p from notation, by simply say that u is a weak
supersolution in Ω. For related properties in the linear case without coefficients when the
operator in (1.1) does reduce to the usual fractional Laplacian operator (−∆)s we refer
to [27, 26, 19].
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3. Proof of Theorem 1.1

Firstly, in order to simplify the notation in the weak formulation (2.3),

from now on we denote by

(3.1) L(a, b) := |a− b|p−2(a− b), a, b ∈ R.
Notice that L(a, b) is increasing with respect to a and decreasing with respect

to b.

Take a nonnegative test function φ ∈ C∞0 (Ω). For any 0 < ε < 1/4 we

consider the marker function θε defined by

θε := min

{
1,

(u− v)+

ε

}
.

We now choose η1 = (1 − θε)φ as a test function in the formulation

in (2.3) for u, and η2 = θεφ for v, respectively. Then, by summing up the

corresponding integrals for u and v, we obtain

0 ≤
∫
Rn

∫
Rn

|u(x)− u(y)|p−2
(
u(x)− u(y)

)(
η1(x)− η1(y)

)
K(x, y) dxdy

+

∫
Rn

∫
Rn

|v(x)− v(y)|p−2
(
v(x)− v(y)

)(
η2(x)− η2(y)

)
K(x, y) dxdy

=

∫
Rn

∫
Rn

L(u(x), u(y))
(
(1− θε(x))φ(x)− (1− θε(y))φ(y)

)
K(x, y) dxdy

+

∫
Rn

∫
Rn

L(v(x), v(y))
(
θε(x)φ(x)− θε(y)φ(y)

)
K(x, y) dxdy

=:

∫
Rn

∫
Rn

Ψ(x, y)K(x, y) dxdy,

(3.2)

where we denoted by L the function defined in (3.1), and by Ψ = Ψ(x, y)

the function defined as follows:

Ψ(x, y) := L(u(x), u(y))
(
(1− θε(x))φ(x)− (1− θε(y))φ(y)

)
+ L(v(x), v(y))

(
θε(x)φ(x)− θε(y)φ(y)

)
, x, y ∈ Rn.

Our goal is now to provide some suitable estimates in order to control the

function Ψ,

(3.3) Ψ(x, y) ≤ L(w(x), w(y))
(
φ(x)− φ(y)

)
in the limit as ε goes to 0. The latter estimate together with (3.2) will give

us the desired result.

We start by noticing that the presence of the marker function θε in the

definition of the function Ψ suggests us to consider separately the following

three cases, θε = 0, 0 < θε < 1, and θε = 1, which actually reduce to the

cases when u ≤ v, v < u < v + ε, and u ≥ v + ε, respectively. Also,



A NOTE ON FRACTIONAL SUPERSOLUTIONS 5

we have to take into account the nonlocality of the involved integrals, by

considering the cases above with respect to both x ∈ Rn and y ∈ Rn. As

a consequence, we will have to deal with nine different cases, each of them

corresponding to the set Ai,j , i, j = 1, 2, 3, as shown in the table below.

u(y) ≤ v(y) v(y) < u(y) < v(y) + ε u(y) ≥ v(y) + ε
u(x) ≤ v(x) A1,1 A1,2 A1,3

v(x) < u(x) < v(x) + ε A2,1 A2,2 A2,3

u(x) ≥ v(x) + ε A3,1 A3,2 A3,3

In the set A1,1 :=
{
u(x) ≤ v(x), u(y) ≤ v(y)

}
, we can use the fact that

θε(x) = θε(y) = 0, which plainly yields

(3.4) Ψ(x, y) = L(u(x), u(y))
(
φ(x)− φ(y)

)
= L(w(x), w(y))

(
φ(x)− φ(y)

)
.

In the set A1,2 :=
{
u(x) ≤ v(x), v(y) < u(y) < v(y) + ε

}
, the situation

is more delicate and one has to precisely estimate each of the contributions

in (3.2). First of all, we can use that θε(x) = 0 yields

Ψ(x, y) = L(u(x), u(y))
(
φ(x)− (1− θε(y))φ(y)

)
− L(v(x), v(y))θε(y)φ(y)

= L(u(x), u(y))
(
φ(x)− φ(y)

)
+
(
L(u(x), u(y))− L(v(x), v(y))

)
θε(y)φ(y)

≤ L(w(x), w(y))
(
φ(x)− φ(y)

)
(3.5)

+ |L(u(x), u(y))− L(u(x), v(y))||φ(x)− φ(y)|.

Then, we estimate the second term in the right-hand side of (3.5) by dis-

tinguishing two complementary cases; i. e., when |u(x) − u(y)| ≥ ε1/2 and

|u(x)− u(y)| < ε1/2. In the former case, we denote by

f(t) = L
(
u(x), tu(y) + (1− t)v(y)

)
, 0 ≤ t ≤ 1,

so that, by the chain rule and by the fact that

∂bL(a, b) = −(p− 1)|a− b|p−2, ∀a, b ∈ R,

we obtain∣∣L(u(x), u(y))− L(u(x), v(y))
∣∣ = |f(1)− f(0)| =

∣∣∣ ∫ 1

0
f ′(t) dt

∣∣∣
= (p− 1)|u(y)− v(y)|

∫ 1

0
|u(x)− u(y) + (1− t)(u(y)− v(y))|p−2 dt

≤ (p− 1)εmax
{(1

2

)p−2
,
(3

2

)p−2}
|u(x)− u(y)|p−2

≤ c ε1/2|u(x)− u(y)|p−1,
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where we also used the inequalities

|u(y)− v(y)| < ε ≤ 1

2
ε1/2 ≤ 1

2
|u(x)− u(y)|.

Hence, the contribution from the term

|L(u(x), u(y))− L(u(x), v(y))||φ(x)− φ(y)|

vanishes by the dominated convergence theorem as ε→ 0.

Let us move to the remaining case, that is, when |u(x)− u(y)| < ε1/2. In

this case the second term in the right-hand side of (3.5) can be estimated

from above as follows

|L(u(x), u(y))− L(u(x), v(y))||φ(x)− φ(y)|

≤ |L(u(x), u(y))||φ(x)− φ(y)|+ |L(w(x), w(y))||φ(x)− φ(y)|.(3.6)

Now, notice that both the terms in the right-hand side of the preceding

inequality can be treated in the same way because w ∈ W s,p
loc (Ω) as the

minimum of two supersolutions and

|w(x)−w(y)| = |u(x)−v(y)| ≤ |u(x)−u(y)|+|u(y)−v(y)| ≤ ε1/2+ε ≤ 2 ε1/2.

For this, we focus only on the first term. Denote by

Uε :=
{

(x, y) ∈ Rn ×Rn : |u(x)− u(y)| < ε1/2
}

and let Ω′ be an open set satisfying suppφ ⊂ Ω′ b Ω with

d := dist(suppφ, ∂Ω′) > 0.

We have ∫∫
Uε

|L(u(x), u(y))||φ(x)− φ(y)|K(x, y) dxdy

=

∫∫
Uε∩(Ω′×Ω′)

|u(x)− u(y)|p−1|φ(x)− φ(y)|K(x, y) dxdy

+ 2

∫∫
Uε∩(Ω′×Rn\Ω′)

|u(x)− u(y)|p−1φ(x)K(x, y) dxdy

=: I1 + 2I2.(3.7)

Denoting by

σ := min

{
1− s

2s
,
p− 1

2

}
> 0,

we can estimate by Hölder’s Inequality

I1 ≤ Λ‖Dφ‖∞
∫∫

Uε∩(Ω′×Ω′)

|u(x)− u(y)|p−1

|x− y|n+sp
|x− y|dxdy
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≤ c εσ/2
∫

Ω′

∫
Ω′

|u(x)− u(y)|p−1−σ

|x− y|s(p−1−σ)
|x− y|1−s(1+σ) dxdy

|x− y|n

≤ c εσ/2
(∫

Ω′

∫
Ω′

|u(x)− u(y)|p

|x− y|n+sp
dxdy

)(p−1−σ)/p

(3.8)

×
(∫

Ω′

∫
Ω′
|x− y|p(1−s(1+σ))/(1+σ) dxdy

|x− y|n

)(1+σ)/p

.

The former integral is finite since u ∈ W s,p
loc (Ω), whereas the latter is finite

by the choice of σ and boundedness of Ω′. Hence, I1 → 0 as ε → 0. Now,

we estimate I2. Take z ∈ suppφ. By Hölder’s Inequality, and using the

definition of the set Uε, we can write

I2 ≤ Λ

∫∫
Uε∩(Ω′×Rn\Ω′)

|u(x)− u(y)|p−1

|x− y|n+sp
φ(x) dxdy

≤ Λ‖φ‖∞
(

diam(Ω′)

d

)n+sp ∫∫
Uε∩(Ω′×Rn\Ω′)

|u(x)− u(y)|p−1

|z − y|n+sp
dxdy

≤ c ε(p−1)/2

∫
Rn\Ω′

∫
Ω′

1

|z − y|n+sp
dxdy

≤ c |Ω′|ε(p−1)/2,(3.9)

which goes to 0 as ε→ 0. As a consequence, the contributions of

(3.10) |L(u(x), u(y))− L(u(x), v(y))||φ(x)− φ(y)|

in (3.5) vanish as ε→ 0 also in the case when |u(x)−u(y)| < ε1/2, completing

the estimates for the whole A1,2 case and, in addition, for the case A2,1 :={
v(x) < u(x) < v(x) + ε, u(y) ≤ v(y)

}
, which can be treated analogously

by exchanging the roles of x and y.

Consider now the set A1,3 :=
{
u(x) ≤ v(x), u(y) ≥ v(y) + ε

}
. Since

θε(x) = 0 and θε(y) = 1, one can plainly write

Ψ(x, y) = L(u(x), u(y))φ(x)− L(v(x), v(y))φ(y)

≤ L(u(x), v(y))φ(x)− L(u(x), v(y))φ(y)

= L(w(x), w(y))(φ(x)− φ(y)),

(3.11)

and the same occurs for the case A3,1 :=
{
u(x) ≥ v(x) + ε, u(y) ≤ v(y)

}
.
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In the set A2,2 :=
{
v(x) < u(x) < v(x) + ε, v(y) < u(y) < v(y) + ε

}
, we

have

Ψ(x, y) =
(
L(u(x), u(y))− L(v(x), v(y))

)(
(1− θε(x))φ(x)− (1− θε(y))φ(y)

)
+ L(v(x), v(y))

(
φ(x)− φ(y)

)
=
(
L(u(x), u(y))− L(v(x), v(y))

)(
1− θε(x)

)(
φ(x)− φ(y)

)(3.12)

+
(
L(u(x), u(y))− L(v(x), v(y))

)(
θε(y)− θε(x)

)
φ(y)

+ L(w(x), w(y))
(
φ(x)− φ(y)

)
.

The contribution from the first term in the right-hand side of (3.12) vanishes

as ε → 0 by the dominated convergence theorem since θε(x) → 1. In turn,

the second term reduces to

−1

ε

(
L(u(x), u(y))− L(v(x), v(y))

)(
(u(x)− u(y))− (v(x)− v(y))

)
φ(y),

which is nonpositive by the very definition of L, and the following algebraic

inequality (
|a|p−2a− |b|p−2b

)
(a− b) ≥ 0, ∀a, b ∈ R.

Thus, in the limit ε→ 0, we have

(3.13) Ψ(x, y) ≤ L(w(x), w(y))
(
φ(x)− φ(y)

)
.

In the set A2,3 :=
{
v(x) < u(x) < v(x) + ε, u(y) ≥ v(y) + ε

}
, we use the

fact that θε(y) = 1 and we get

Ψ(x, y) = L(u(x), u(y))
(
1− θε(x)

)
φ(x) + L(v(x), v(y))

(
θε(x)φ(x)− φ(y)

)
=
(
L(u(x), u(y))− L(v(x), v(y))

)(
1− θε(x)

)
φ(x)

+ L(v(x), v(y))
(
φ(x)− φ(y)

)
≤
(
L(v(x) + ε, v(y) + ε)− L(v(x), v(y))

)(
1− θε(x)

)
φ(x)(3.14)

+ L(v(x), v(y))
(
φ(x)− φ(y)

)
= L(w(x), w(y))

(
φ(x)− φ(y)

)
.

Analogously, we can obtain the same estimate as in (3.14) holding in the

case A3,2 :=
{
u(x) ≥ v(x) + ε, v(y) < u(y) < v(y) + ε

}
.

In the set A3,3 :=
{
u(x) ≥ v(x) + ε, u(y) ≥ v(y) + ε

}
, θε(x) = θε(y) = 1

yield

(3.15) Ψ(x, y) = L(v(x), v(y))
(
φ(x)−φ(y)

)
= L(w(x), w(y))

(
φ(x)−φ(y)

)
.
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All in all, putting together the estimates in (3.4), (3.5), (3.10), (3.11),

(3.13), (3.14), and (3.15), and letting ε→ 0, we obtain the estimate in (3.3)

and thus ∫
Rn

∫
Rn

L(w(x), w(y))
(
φ(x)− φ(y)

)
K(x, y) dxdy ≥ 0,

in turn implying that w is a weak supersolution in Ω. 2

Remark 3.1. We finally observe that the assumptions on K can be weakened

as follows

(3.16) Λ−1 ≤ K(x, y)|x− y|n+sp ≤ Λ for a. e. x, y ∈ Rn s. t. |x− y| ≤ 1,

(3.17) 0 ≤ K(x, y)|x− y|n+η ≤M for a. e. x, y ∈ Rn s. t. |x− y| > 1,

for some s, p, Λ as above, η > 0 and M ≥ 1, as seen, e.g., in the recent series

of papers by Kassmann (see for instance the more general assumptions in

the important paper [11]). In the same sake of generalizing, one can also

consider the operator L = LΦ defined by

(3.18) LΦu(x) = P.V.

∫
Rn

K(x, y)Φ(u(x)− u(y)) dy, x ∈ Ω,

where the real function Φ is assumed to be continuous, satisfying Φ(0) = 0

together with the monotonicity property

λ−1|t|p ≤ Φ(t)t ≤ λ|t|p for every t ∈ R \ {0},
for some λ > 1, and some p as above (see, for instance, [15]).

However, for the sake of simplicity, we took Φ(t) = |t|p−2t and we worked

under the assumptions given in the introduction, since the assumptions

in (3.16)–(3.18) would have brought no relevant differences in the proof.

Moreover, let us remark that we assumed that the kernel K is symmet-

ric, and once again this is not restrictive, in view of the weak formulation

presented in Definition 2.1, since one may always define the corresponding

symmetric kernel Ksym given by

Ksym(x, y) :=
1

2

(
K(x, y) +K(y, x)

)
.

On the contrary, such a symmetry may be restrictive in other frameworks, as

in viscosity for nondivergence form equations, where for instance K(x, y) =

K(x,−y) is a common assumption; see [14].
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