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Abstract. In this paper, we prove the continuity of the monotone optimal mapping
of the Monge mass transfer problem in two dimensions under certain conditions on the
domains and the mass distributions.

1. Introduction

Let Ω and Ω∗ be two bounded domains in the Euclidean space R2. Let % ∈ L1(Ω) and

%∗ ∈ L1(Ω∗) be two densities satisfying the mass balance condition

(1.1)

∫
Ω

%(x)dx =

∫
Ω∗
%∗(y)dy.

The Monge mass transfer problem [23] consists in finding a mapping s : Ω→ Ω∗ which

minimises the cost functional

(1.2) s 7→ C(s) =

∫
Ω

%(x)|s(x)− x|dx

among all mappings satisfying the measure-preserving condition s#% = %∗, namely

(1.3)

∫
s−1(E)

%(x)dx =

∫
E

%∗(y)dy for all Borel sets E ⊂ Ω.

Since the original work of Monge, this problem has been extensively studied (see [24, 26]

for monographs on the subject). Major advances include the introduction of duality by

Kantorovich [15, 16], the existence of optimal mappings by Evans and Gangbo [11] for

Lipschitz continuous densities %, %∗ with disjoint supports, and by Caffarelli, Feldman

and McCann [6], Trudinger and the third author [27] for general densities. An earlier

proof using probability theory was given by Sudakov [25], in which a gap was filled up

by Ambrosio [1]. When the Euclidean norm in (1.2) is replaced by more general norms,

the existence of optimal mappings has also been obtained in [2, 8, 9].
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Though the optimal mappings can be obtained by different ways, all of them lead

to a mapping satisfying a monotonicity condition, and it was proved by Feldman and

McCann that this mapping is indeed unique [12] (we only cite [10] for an example where

a different transport mapping is selected through a regularization procedure). Naturally

one would like to study the regularity of the monotone optimal mapping.

However, the regularity turns out to be a difficult and delicate problem. A first ob-

servation is that in general the optimal mapping fails to be more regular than the two

densities %, %∗ (examples can be found for instance in [7], but the construction is clas-

sical). Yet, there can also be a (strong) loss of regularity: in [17] we constructed a

counter-example in which the monotone optimal mapping fails to be Lipschitz contin-

uous, even though the densities are positive and smooth and the domains are convex.

Further examples are presented in [7], including examples where the Hölder exponent

of the mapping is stricyly smaller than that of %, %∗. On the positive side, in [17]

we were able to prove that the eigenvalues of the matrix Dsε are locally uniformly

bounded as ε → 0, where sε is the optimal mapping associated with the cost function

cε(x, y) =
√
ε2 + |x− y|2. Note that the cost function cε satisfies the conditions in [22]

and so the mapping sε is smooth, if the densities and domains satisfy proper conditions.

The regularity of optimal mappings for general cost functions has been studied by sev-

eral authors [4, 5, 13, 18, 19, 20, 21, 28], in particular sharp conditions on cost functions

were found in [22].

In view of the above discussion, an interesting question is the continuity of the mono-

tone optimal mapping s in Monge’s problem. It is known that for any x ∈ Ω, if s(x) 6= x,

then the segment from x to s(x) is contained in a transport segment. Hence the set

{x ∈ Ω | x 6= s(x)} is contained in the transport set T [6, 11, 27]. The continuity of the

monotone optimal mapping was studied by Fragalà, Gelli, Pratelli in [14]. They proved

the continuity of the monotone optimal mapping in T o provided the densities % and %∗

are continuous and have compact, convex, and strictly separated supports in R2. Here

we denote by T the union of all transport segments, and by T o the subset of T by taking

away all the endpoints of transport segments.

In this paper we remove the strict separation assumption, and prove a continuity result

under a different geometric set of assumptions than the ones in [14]. The most natural

framework in our case requires that the supports of the two measures %, %∗ coincide

or, at least, that the support of % is included in that of %∗. In this case, under certain

conditions, we obtain the continuity of the optimal mapping in T and hence in the whole

domain Ω as well. To the best of our knowledge, even if restricted to strong geometric
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assumptions, this is the first full continuity result for the monotone mapping, while the

result of [14] can be considered as a partial regularity result (the mapping is continuous

outside a negligible set).

Theorem 1.1. Let Ω and Ω∗ be two bounded, convex domains in R2. Assume that

% ∈ C(Ω) and %∗ ∈ C(Ω
∗
) are strictly positive and satisfy the mass balance condition

(1.1). Assume also that Ω ⊂ Ω∗ and one of the sets {% > %∗}, {%∗ > %} is convex. Then

the monotone optimal mapping for Monge’s problem (1.2) is continuous on Ω.

The convexity of Ω and Ω∗ is needed for the continuity of the monotone optimal

mapping [17, 22]. This condition may be relaxed but cannot be completely dropped.

The convexity condition for one of the sets {% > %∗}, {%∗ > %} is such that a transport

segment does not cross their boundary multiple times. This seems to be a technical

condition but, without it, it is difficult to analyse the geometry of transport segments.

The main ingredient in proving Theorem 1.1 is the study of curves, that we call D-curves

(we refer the reader to Section 3 for precise definitions), composed of double points, i.e.

of points which are endpoints of two different transport segments. In particular we will

use the following lemma, where the length of a D-curve is actually defined as its diameter

(maximal Euclidean distance between two of its points, and not length along the curve).

Lemma 1.2. For any given ε > 0, there are at most finitely many disjoint D-curves

with length greater than ε in T .

Once the continuity of the optimal mapping s is proved, the uniform continuity of s

with respect to the densities %, %∗ and domains Ω,Ω∗ also follows if the densities and

domains satisfy the conditions in Theorem 1.1 in a uniform way. For fixed domains

Ω ⊂ Ω∗, the conditions includes the modulus of continuity of %, %∗ and the convexity

of one of the sets {% > %∗}, {%∗ > %}. From the proof of Theorem 1.1, one sees that

to obtain the uniform continuity of s, we also need uniform positivity bounds on the

function f =: % − %∗, at least on its support and away from the boundary of {% > %∗};
and the same for g =: %∗− % in the domain {%∗ > %}. As was pointed out above, by the

examples in [7], one cannot expect the modulus of continuity of the optimal mapping is

better than that of the densities, and so in general the optimal mapping is not Hölder

continuous.
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For convenience we give some examples of the densities in Figure 1 below which satisfy

conditions in Theorem 1.1.

{%∗ > %}

{% = %∗}

{% > %∗}

{%∗ > %}

{% = %∗}

{% > %∗}

{% > %∗} {%∗ > %}

{% > %∗}

{% = %∗}

{%∗ > %}

Figure 1. Some examples

Our proof uses a similar strategy as that in [14], where the authors proved the conti-

nuity of the monotone optimal mapping in T o. From [6, 27] it is known that the optimal

mapping is determined by transport segments. Hence the key ingredient is to understand

the distribution of double points. Though not explicitly stated in their paper, they also

obtained the result in Lemma 1.2, under the assumption that the densities % and %∗ are

continuous and have compact, convex, and strictly separated supports in R2. In this

paper we assume that Ω ⊂ Ω∗. For the sake of transport segments and double points, the

minimisation problem (2.1) is equivalent to (2.4). Hence to understand the distribution

of double points, we consider the optimal transportation from Ω to Ω∗ with densities

f = (% − %∗)+ and g = (%∗ − %)+. The difference in our case is that the supports of f

and g are not strictly separated, and that causes the main difficulty for this problem.

Once Lemma 1.2 is proved, the continuity of the monotone optimal mapping follows.

Therefore in this paper we will focus on the most difficult part of proving the technical

Lemma 1.2. The rest of the argument is more or less based on the same idea as that in

[14], namely on a thin strip bounded by two transport segments, the monotone optimal

mapping can be given by a formula which is essentially one dimensional. We refer the

readers to [14] for more detailed discussions on this part.
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This paper is arranged as follows. In Section 2 we recall the existence of a monotone

optimal mapping and the concepts of transport segment and transport set. In Section 3

we introduce D-curves and discuss their properties. In Section 4 we prove the key point

in our argument, i.e. Lemma 4.5. This is the main technical part of the proof. Finally

we prove Theorem 1.1 in Section 5.

2. Preliminaries

Let Ω and Ω∗ be two bounded convex domains in R2, and %, %∗ be two densities in Ω

and Ω∗, satisfying the mass balance condition (1.1). Extend % and %∗ to the whole space

R2 such that they are equal to 0 outside Ω and Ω∗. Denote

(2.1) K[φ] =

∫
R2

φ(x)
(
%(x)− %∗(x)

)
dx,

and

Lip1(R2) =
{
φ ∈ C(R2) | |φ(x)− φ(y)| ≤ |x− y| ∀ x, y ∈ R2

}
.

We have the following well-known result.

Theorem 2.1. There exists a Lipschitz function u that maximises Kantorovich’s dual

functional (2.1) among functions in Lip1(R2). Moreover, u satisfies

u(x) = inf
y∈Ω∗

{
u(y) + |x− y|

}
for any x ∈ Ω,(2.2)

u(y) = sup
x∈Ω

{
u(x)− |x− y|

}
for any y ∈ Ω∗.(2.3)

A maximiser in the above theorem is called a potential function of the Monge mass

transfer problem, or Kantorovich potential.

For convenience we collect some notations below.

• A transport segment ` is a maximal line segment xy, with x ∈ Ω, y ∈ Ω
∗

and

x 6= y, such that

|u(x)− u(y)| = |x− y|
(which is equivalent to u being affine with slope equal to 1 on the segment xy)

where the maximality means that ` is not a proper subset of any line segment

with the same property. We will sometimes refer to transport segments as “non-

trivial transport segments”, with the idea that singletons which are not contained

in any transport segment are “trivial” transport segments.

• Denote by ` = `xy the transport segment with endpoints x, y such that u(x) >

u(y), and call x and y the upper and lower endpoints of `, respectively.
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• Set
f = (%− %∗)+ = max{%− %∗, 0},
g = (%∗ − %)+ = max{%∗ − %, 0}.

Denote by Sf and Sg the supports of f and g, respectively, and byH the boundary

of Sg.
• Note that (2.1) can also be re-written as

(2.4) K[φ] =

∫
R2

φ(x)(f − g)dx,

since f−g = %−%∗. Hence the minimisation problem (2.1) has the same potential

function and the transport segments as the problem (2.4), and to prove Lemma

1.2, it suffices to consider the problem (2.4).

• By approximation (for instance replacing (f, g) with (fε, gε) with fε(x) = f(x) +

εd(x,Sg) and gε = (1+cε)g for a suitably chosen constant c so that the masses of

fε and gε are equal) we can produce a Kantorovich potential u with the following

property: every point of Ω∗ \ H belongs to at least one non-trivial transport

segment, which goes from Ω \ Sg to Sg.
• After the approximation procedure, it is possible that some of the above transport

segments ` do not enter the region {g > 0}. In this case the optimal mapping

is the identity mapping on them. Such kind of transport segment will be called

degenerate transport segments, and we will denote by T the set of points on non-

degenerate transport segments (those which have non-empty intersection with

{g > 0}).

In [6, 11, 27] the following existence for optimal mappings was established.

Theorem 2.2. There exists a measure-preserving mapping s which minimises (1.2).

Moreover

(2.5) u(x)− u(s(x)) = |x− s(x)| for a.e. x ∈ Ω.

We point out that in the region {% 6= %∗}, the potential function u is uniquely de-

termined (up to a constant). But in the region {% = %∗}, u is not necessarily unique.

However, by the approximation that we mentioned above, we have selected a particular

potential function satisfying Theorems 2.1 and 2.2, and such that every point (outside

H) belongs to a non-trivial transport segment.

The optimal transport mapping s obtained in [6, 11, 27] is monotone. This means that,

restricted to every transport segment, once an orientation is fixed on such a segment,

the mapping s is monotone increasing. Note that such a monotone mapping is unique
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[12] and satisfies s(T ) ⊂ T . Another way of writing the monotonicity condition is the

following: the mapping s satisfies

(2.6)
x− x′

|x− x′|
+

s(x)− s(x′)
|s(x)− s(x′)|

6= 0

for all x 6= x′ with distinct images s(x) 6= s(x′). Note that, when x and x′ belong to a

same transport segment, this condition boils down to monotonicity, and when x and x′

do not belong to a same transport segment, it is not difficult to see that, should we have

equality in (2.6), then the corresponding transport segments would meet in an internal

point, which is impossible thanks to the following theorem.

Theorem 2.3. We have the following properties of transport segments and transport

sets:

(i) If `k = `xkyk is a sequence of transport segments with xk → x and yk → y, and

x 6= y, then xy is contained in some transport segment `.

(ii) Let `1 and `2 be two distinct transport segments, then they do not intersect at

interior point, namely if `1 ∩ `2 6= ∅, then `1 ∩ `2 must be an endpoint of both

segments.

(iii) Sof ⊂ T and Sog ⊂ T , namely an interior point in Sf or Sg is either an interior

point or endpoint of a transport segment, where Sof and Sog denote the regions

{f > 0} and {g > 0}, respectively.

Properties in Theorem 2.3 follow from Theorems 2.1 and 2.2 immediately.

To fix notations and in order to present the strategy to prove our continuity result, let

us give some names to some important sets. We will set X := Ω\Sog and call the support

of g indifferently Sg or Y . We will denote by Z0 the set of points which do not belong to a

non-trivial transport segment: we have Z0 ⊂ H (with our notation we have H = X∩Y ).

Also, we will denote by Z1 the union of all the degenerate transport segments, i.e. the

union of all the transport segments which have empty intersection with Sog . Finally, we

call E the set of endpoints of non-trivial transport segments (degenerate or not). With

our notations, Ω∗ is composed of three parts, which are T , Z0 and Z1, and we have

T ∩ (Z0∪Z1) = T ∩Z1 ⊂ E (the only possible intersection of T with Z0∪Z1 is made of

endpoints belonging to more than one transport segment, one which is degenerate and

one which is not).

The strategy to prove Theorem 1.1 can be sketched as follows.

• We will prove that Z0 ∪ Z1 is closed. The only difficulties arise in the following

cases: either a sequence of transport segments in Z1 converges to a part of a longer
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transport segment, which intersects Sog , or a sequence of points in Z0 converges

to a point on H which belongs to a point on a longer transport segment, also

intersecting Sog . Yet, in both cases the longer segment also enters Sof and we will

find a contradiction thanks to Lemma 1.2.

• Inside T the situation will be described clearly in Section 5. We will show that,

close to a point in T \ E, the maps associating with every point the upper

and lower endpoints of the (unique) transport segment which contains it are

continuous, and deduce from this that the set T \E is open and that the optimal

mapping is continuous on it.

• The optimal transport mapping is the identity on Z0 and points of Z0 can only

be approximated by segments whose length tends to 0 (because of point (i) in

Lemma 2.3), so that the map is continuous on Z0.

• The optimal transport mapping s is also the identity on Z1, but on Z1 we have f =

g = 0, i.e. % = %∗. Thanks to this and the continuity of % and %∗, we will prove

that for any sequence xn → x with x ∈ Z1 we necessarily have |s(xn)− xn| → 0,

which proves the continuity at x ∈ Z1.

• Finally, we are left to prove continuity of s on E. In order to do this, and using

the lower bound on %∗, we will prove that for any sequence xn → x with x an

endpoint of a transport segment, the distance between xn and the endpoint of

the transport segment on which it lies must necessarily tend to 0, and deduce

from this that we also have |s(xn)− xn| → 0.

In Theorem 1.1, we assume that either Sof or Sog is convex. This convexity condition

is essentially used so as to guarantee that any transport segment does not cross Sof or Sog
multiple times. In the following let us assume that Sog is convex. The argument below

also applies to the case when Sof is convex with very minor changes (in particular, if

Sof is supposed to be convex instead of Sog , then it would be more convenient to define

H := ∂Sf instead of H := ∂Sg). Indeed, the reader can check that most of what we

prove in Sections 3 and 4 is completely symmetric in Sf and Sg, and the arguments

could be reversed. When differences between the roles are important, we will underline

it. In Section 5, where we prove continuity of the mapping, the role of the two measures

is different, but in such a section the key assumption is the convexity of the two domains

Ω and Ω∗, with Ω ⊂ Ω∗.

In Sections 3 and 4 we will investigate properties of transport segments for the func-

tional (2.4). In Section 5 we use these properties to prove the continuity of the monotone

optimal mapping for the original problem (1.2). Note that the optimal mapping for the
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densities f and g is not continuous in general, as f and g have disjoint supports and the

optimal mapping will not be continuous at double points.

3. The set of double points

As in [14], a point is called a double point if there are at least two transport segments

sharing this point as the common endpoint.

Denote by DX and DY the sets of double points in X and in Y , and denote by EX

and EY the set of endpoints of transport segments in X and in Y , respectively. We have

E = EX ∪ EY .

Lemma 3.1. Let p ∈ EX be an interior point of X, which is the upper endpoint of a

transport segment `0. Let pj ∈ X be a sequence of points converging to p, and `j be a

transport segment containing pj. If p is not a double point, then `j ∩ X converges to

`0 ∩X. If p is a double point, then `j ∩X converges, up to subsequences, to `∩X for a

transport segment ` having p as an upper endpoint (but not necessarily `0).

Proof. Since p is an interior point of X, the length |`j| has a uniform positive lower

bound. Hence we may assume by passing to a subsequence that `j converges to a

segment `′. Obviously, p ∈ `′. If p is not a double point, then by Theorem 2.3 (ii), we

must have `′ = `0. �

We will also say that a double point is an oriented double point whenever all the

transport segments sharing it as an endpoint lie in a same half-space at such a point,

with no pair of transport segments forming an angle π. Equivalently, this means that

p is an oriented double point if there exists a vector v such that for every transport

segment ` with endpoint p and for every x ∈ ` \ {p} we have v · (x − p) > 0. Hence

v gives an orientation to all the transport segments at p. With the assumption that Y

is convex, all points in DX are automatically oriented double points. Note that double

points cannot belong to H, namely DX ∩ H = ∅, otherwise the monotonicity of the

optimal mapping (or the measure-preserving property) would be violated. Moreover, if

p ∈ X and Y is convex, then the angles between two transport segments sharing p as

an endpoint is uniformly far from π as soon as we stay away from Y .

On the contrary, non-oriented double points could exist in DY . A typical case of non-

oriented double point is the point p = 0 whenever the Kantorovich potential is given by

u(x) = |x|.
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For any point p ∈ R2 and two line segments `1 and `2 which do not lie on a same

straight line and share the endpoint p, we denote by ∠p;`1,`2 the convex region bounded

by the two rays determined by `1 and `2. The angle between `1 and `2 is then less than

π. We will often apply this to the case where p is a double point and `1 and `2 are

transport segments from this point.

Denote
Xp;`1,`2 = X ∩ ∠p;`1,`2 ,
Yp;`1,`2 = Y ∩ ∠p;`1,`2 .

The following statement shows that any interior double point belongs to a D-curve.

See also Lemma 5.8 in [14].

Lemma 3.2. Let `1, `2 be two transport segments with the same upper endpoint p. Let

q ∈ Xp;`1,`2 be an upper endpoint of a transport segment or a point in Z0 ⊂ H. Then

there is a continuous curve of double points in Xp;`1,`2 which connects p and q. Moreover,

the curve is locally Lipschitz continuous.

Proof. Denote ~rθ = (cos θ, sin θ) a unit vector in R2. Choosing the coordinates properly,

we assume that p = 0, `1 = {t~r−α | t ∈ (0, a1)}, and `2 = {(t~rα | t ∈ (0, a2)}, for some

α ∈ (0, 1
2
π). Then q = (y1, y2) with y1 > 0 and − tanα < y2/y1 < tanα.

Let φ(θ) be a function, where θ ∈ (−α, α), such that the radial graph of φ, Gφ :=

{φ(θ)~rθ | θ ∈ (−α, α)}, is a smooth curve passing through the point q and Gφ is contained

in Xp;`1,`2 .

For any t ∈ (0, 1) and any θ ∈ (−α, α), there is a transport segment `θ containing

the point tφ(θ)~rθ. When θ is very close to −α or α, `θ ∩ X is also very close to `1 or

`2, respectively. If there is no double point on Gtφ, then `θ depends continuously on θ.

Hence when we move the point θ from −α to α, there must be a point pt = tφ(θ)~rθ ∈ Gtφ

such that q ∈ `pt . But q is an endpoint point of a transport segment, or a point not

belonging to a non-trivial transport segment, and this is impossible by Theorem 2.3 (ii).

Hence there must be a point pt ∈ Gtφ such that pt is a double point and there exist

two transport segments `1,t and `2,t such that q ∈ Xpt;`1,t,`2,t . The property q ∈ Xpt;`1,t,`2,t

implies a bound on the slopes of the chords between the points of {pt | t ∈ (0, y1)} and

implies that this set is a Lipschitz curve. �

Remark 3.1. The same construction can be applied for points p, q ∈ Y , whenever q is

not a double point, or is an oriented double point.

By Lemma 3.2, we can give the following definition of D-curves.
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Definition 3.1. A D-curve γ in X is a Lipschitz continuous curve such that for any

two points p1, p2 ∈ γ with pi = γ(ti) and t1 < t2, we have p2 ∈ Xp1;`+,`−, where `±

are transport segments with upper endpoint p1. Note that this implies that u(γ(t)) is a

decreasing function of t (see Remark 3.4). We will also say that a D-curve γ ends at p2

if it is parametrised on [t1, t2] and p2 = γ(t2) (without imposing that [t1, t2] is a maximal

parametrisation interval, however).

Similarly one can define a D-curve in Y .

Note that whenever a D-curve γ ends at p2, it is not necessary that p2 is a double

point. However, we can prove the following:

Lemma 3.3. If p ∈ EX is an interior point of X, then there exists a D-curve ending at

p. In particular, p ∈ DX , the closure of the set DX ,

Proof. If p is not a double point, there is a unique transport segment `0 with upper

endpoint p, otherwise let us select two transport segments with maximal angle between

them, having p as an upper endpoint. This angle is necessarily smaller than π because

of the convexity assumption on Y . We will call `± these two transport segments, and

set `+ = `− = `0 in case p is not a double point.

Choose the coordinates such that p = 0, `+ = {(t, 0) | t ∈ [0, a]} for some a > 0, and

`− lies below `+ (i.e. in the half-space {x2 ≤ 0}).
First we prove that, for sufficiently small ε > 0, a (uniqueness is not important)

transport segment passing through (ε, ε2) lies above `+ (we mean that the part of this

segment between (ε, ε2) and its lower endpoint stays in the quadrant R+ × R+). If it is

not the case, then a part of this segment stays in the half-space R− × R. This cannot

occur for small ε, otherwise at the limit we would have a transport segment lying in

R− × R and starting from p, which contradicts either the fact that p is not a double

point, or the maximality of the angle between the selected transport segments. Let us

call p+ the point (ε, ε2) that we find in this way, such that a transport segment through

it lies above `+.

We now repeat the same construction by looking at transport segments lying below

`−. For this it is enough to repeat the same construction using the segment `− instead

of `+, and we orientate the coordinate so as to find a point p− with a transport segment

passing through p− and lying below `−.

If we connect p+ to p− with a curve C, staying inside X, and disjoint from `+ and

`−, then, as in the proof of Lemma 3.2, there is a double point p̃ ∈ C and two transport
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segments ˜̀+ and ˜̀− such that p ∈ Xp̃;˜̀+,˜̀− . Lemma 3.2 then implies that there is a

D-curve connecting p̃ to p and p ∈ DX . �

Remark 3.2. The same construction applies in Y , provided p is not a double point, or

is an oriented double point.

isolated double point

transport segment

Y

X
D-curves D-curve

X Y H

Figure 2. Double points and D-curves

We now give a key proposition, valid as usual in the case where Y is convex.

Proposition 3.4. Every D-curve in X must connect to ∂X ∩ ∂Ω.

Proof. From Lemma 3.3 we know that any D-curve starting from a double point p in

the interior of X can be extended “behind” p. Consider now a maximal D-curve, which

cannot be extended. Either it has a starting point which is not in the interior of X

(in which case the claim is proved), or it has no starting point, i.e. it is parametrized

over an open integral. We can see that this last case is not possible, as it is always

possible to extend a D-curve parametrized over ]a, b] to the whole [a, b]. For this, if

γ is a parametrization of this curve, it is enough to see that limt→a+ γ(t) exists, and

that this limit is a double point. If the limit does not exists, then there are at least

two accumulation points p0 6= p1. But in this case one would have an infinity of double

points pn0 → p0 and pn1 → p1 such that pn0 is contained in the cone determined by the

transport segments at pn1 and pn+1
1 in the cone at pn0 . But this is impossible, as the

transport segments would meet.

Hence a limit p = limt→a+ γ(t) exists, and it is a double point, as the transport

segments `±t at the double points γ(t) converge to two transport segments `± passing

through p, and these two segments cannot coincide as the angle between `+
t and `−t is

bounded from below. �

Remark 3.3. The situation is slightly different in Y . Indeed, we can say: every D-curve

in Y connects either to ∂Y ∩ ∂Ω∗, or to a non-oriented double point in Y .
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Remark 3.4. Note that, whenever p is the upper endpoint of two transport segments

`± with lower endpoints q±, then we have u(x) < u(p) for every x 6= p belonging to

the triangle with vertices p, q+ and q−. This implies that the potential u is monotone

decreasing along D-curves, starting from the boundary. Analogously, u is monotone

increasing along D-curves in Y , starting from the boundary or from non-oriented double

points. Also note that the set of non-oriented double points is exactly composed of the set

of local minimum points for u in the interior of Y . Indeed, every local minimum point

p for u must be an endpoint of a transport segment (otherwise u is affine on a segment

containing p in its relative interior) and must be a non-oriented double point otherwise

there would be a D-curve ending at p on which the value of u would be strictly less than

u(p). On the other hand, if p is a non-oriented double point, then a neighbourhood of

p could be covered with triangles bounded by transport segments, and u would be strictly

larger than u(p) in such a neighbourhood. Finally, the neighbourhood Vp of a non-oriented

double point p on which p is minimal has a size which is at least comparable to d(p,H).

Remark 3.5. Note that it is not true in general that non-oriented double points are all

global minima for u, as one can see from the following example of potential u. Consider

the strip {|x2| ≤ 2} in R2, divided into four regions: T+ is the triangle with vertices

p1 = (−2, 0), p2 = (1, 0) and p3 = (0, 2), T− is the triangle with vertices p1, p2 and

p4 = (0,−2), A is the part of the strip on the left of T+ ∪ T−, and B the part on

the right. Consider u(x) = |x − p1| for x ∈ A, u(x) = 2
√

2 − |x − p3| for x ∈ T+,

u(x) = 2
√

2 − |x − p4| for x ∈ T−, and u(x) = 2
√

2 −
√

5 + |x − p2| for x ∈ B. This

is a Lip1 function, where p1 and p2 are non-oriented double points but u(p1) < u(p2).

One can take Y = {|x2| ≤ 1} and X = {1 ≤ |x2| ≤ 2}. On the other hand, it does not

seem possible to put on X and Y continuous densities such that this function u is their

Kantorovich potential.

Note that a D-curve can start from a point on another D-curve, as shown in Figure 2

above.

4. Proof of Lemma 1.2

In this section we prove Lemma 1.2 under the assumptions of Theorem 1.1. Our idea

is as follows. If there exists a sequence of D-curves in T whose lengths are greater than a

given positive constant, then there exists a pair of transport segments in a narrow strip.

We will show that there is a sequence of transport segment pairs in the strip such that

the angles between these segment pairs increase exponentially. But this is impossible as
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all these segments fall in a narrow strip and the angles between them cannot exceed a

given, small, value.

Let p0 ∈ X be a double point, `+ and `− in T be two transport segments from p0

with lower endpoints q+ and q−, respectively. We denote by |`+| and |`−| the length of

the segments `+ and `−, and by θ[`+, `−] the angle between the segments `+ and `−.

Choose a coordinate system such that `+ lies on the x1-axis, `− in {x2 ≤ 0}, p0 =

(−a, 0), q+ = (b, 0), and the origin 0 ∈ H, where a, b > 0. Then `+ ∩X is contained in

{x1 ≤ 0}, `+ ∩ Y in {x1 ≥ 0}. Moreover, `− is given by x2 = η(x1 + a), where the slope

η is given by η = − tan θ. For the proof of Lemma 1.2, it suffices to consider the case

when θ < π
2

is small.

We also denote

Lc = {(x1, x2) ∈ R2 | x1 = c},
which is the straight line parallel to the x2-axis with abscissa c.

Lemma 4.1. Assume that |`+| ≤ |`−|. Then

(4.1) b = κ+ + o(1),

where o(1)→ 0 when θ = θ[`+, `−]→ 0. The constant κ+ is determined by

(4.2)

∫ 0

−a
(x1 + a)f(x1, 0)dx1 =

∫ κ+

0

(x1 + a)g(x1, 0)dx1.

Proof. Let us divide our argument into two steps: (i) b ≤ κ+ + o(1); (ii) b ≥ κ+. Our

idea is to find suitable subsets of T on which f and g are of mass balance, and then use

the continuity of f and g to conclude some one dimensional integral identities with small

error terms depending on θ. These identities together with (4.2) consequently imply (i)

and (ii).

Step 1: Let us first show that b ≤ κ+ + o(1) as θ → 0.

Denote 4 = Xp0;`+,`− , Sd = ∠p0;`+,`− ∩ {0 < x1 < d}. Then as θ → 0, we have

(4.3)

∫
4
f = θ

∫ 0

−a
(x1 + a)f(x1, 0)dx1 + o(θ),

(4.4)

∫
Sκ+

g = θ

∫ κ+

0

(x1 + a)g(x1, 0)dx1 + o(θ).

The term o(θ) above is because4 and Sκ+ lies in a narrow trip {(x1, x2) | −Cθ ≤ x2 ≤ 0},
and f, g are continuous on X and Y (hence uniformly continuous). Here C is a positive

constant only depending on the diameter of Ω∗. One also easily verifies that o(θ) in (4.3)
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(4.4) can be controlled by Cθωf (Cθ) and Cθωg(Cθ) respectively, where ωf and ωg are

the modulus of continuity of f and g.

Assume to the contrary that b ≥ κ+ + 2ε0 for some ε0 > 0 (independent of θ). We

claim that, for sufficiently small θ, we have

(4.5) Sg ∩ Sκ++ε0 ⊂ s(4),

where s is the unique monotone optimal mapping sending the density f onto g.

Indeed, if (4.5) is not true, then there is a point q∗ ∈ Lκ++ε0 ∩ ∠p0;`+,`− such that

q∗ 6∈ s(4), namely there is a Lebesgue point p∗ ∈ X \4 of s such that s(p∗) = q∗. Then

`∗ := p∗q∗ is contained in a transport segment. Considering that this transport segment

cannot cross `+ or `−, the only possibility, when θ[`+, `−] is sufficiently small, is that the

transport segment `∗ is in a direction opposite to `+ (namely (p∗ − q∗) · (p0 − q+) < 0).

Yet, this means that s is not a monotone mapping. Hence (4.5) holds.

By (4.5) and the mass balance condition we then have

∫
4
f =

∫
s(4)

g

≥
∫
Sκ+

g + C0ε0θ

for some C0 > 0 independent of θ. The constant C0 depends on the value of g at the

point (0, κ+). Notice that we can assume that this point belongs to the open set {g > 0}
(which is convex), otherwise the inequality b ≤ κ+ + o(1) is automatically satisfied (as

a consequence of (0, b) ∈ Sg). Yet, the dependence of C0 on g is not important in what

follows.

By (4.3) and (4.4), we obtain from the above inequality,

(4.6)

∫ 0

−a
(x1 + a)f(x1, 0)dx1 ≥

∫ κ+

0

(x1 + a)g(x1, 0)dx1 + C0ε0 + o(1),

which is in contradiction with (4.2) when θ is sufficiently small.
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H

p0 = (−a, 0) q+ = (b, 0)

q−

α

`−ε

4ε Rε

β

`+

`−

{x1 = 0}

Figure 3.

Step 2: We have proved that b ≤ κ+ + o(1) as θ → 0. Now we prove that b ≥ κ+.

First observe that for any sequence of transport segments `j with upper endpoint pj ∈
Xp0;`+,`− and lower endpoint qj ∈ Y , such that the point zj → 0, where zj = `j∩{x1 = 0}
is the intersection of `j with the x2-axis, we have, by Theorem 2.3 (i),

(4.7) qj ∈ {x1 < b+ o(1)} when j →∞.

Set

Tε = {(x1, x2) ∈ `t | − ε < t < 0},

where `t is the transport segment with upper endpoint in Xp0;`+,`− and lower endpoint

in Y such that the intersection of `t with the x2-axis is the point (0, t), namely `t∩{x1 =

0} = (0, t). In other words, Tε is the area occupied by the transport segments `t with

−ε < t < 0.

The boundary of Tε consists of four parts: the upper one is the transport segment

`+, the lower one is the transport segment `−ε with `−ε ∩ {x1 = 0} = (0,−ε), the left

one is a D-curve α ⊂ Xp0;`+,`− (by Lemma 3.2, there is a D-curve connecting the upper

endpoint of `−ε to p0) and the right one is contained in Y , which we denote by β. Here

one of α and β may be a single point. By Lemma 3.2 and (4.7), we may choose ε small

such that

(4.8)
α ⊂ {−a ≤ x1 < −a+ δ},
β ⊂ {x1 < b+ δ},

where δ → 0 as ε→ 0. More precisely, we do not claim that this happens for all ε small,

but, for given ε, we can always choose a point in Tε very close to p0 and use as a segment

`−ε′ the transport segment passing though such a point (and we wil have ε′ < ε). See
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Figure 3. On the other hand, it is not sure that such a segment arrives close to x1 = b.

Suppose hence that we have a sequence of transport segments `−ε with ε→ 0 such that,

calling pε = (p1,ε, p2,ε) and qε = (q1,ε, q2,ε) their upper and lower endpoints, respectively,

we have limε→0 p1,ε = −a and limε→0 q1,ε = b′. We can choose the minimal b′ for which

we can construct such a sequence (hence b′ is defined as a lim infε→0). In general, we

only know b′ ≤ b).

The boundary H divides the region Tε into two parts, the left part 4ε and the right

part Rε. By the mass balance condition we have∫
4ε
f =

∫
Rε
g.

By the first inclusion in (4.8) we have∫
4ε
f ≥

∫ 0

−a
|x2|f(x1, 0)dx1 − o(ε),

where x2 is a function of x1 which denotes the second coordinate component of the

straight line that contains the transport segment `−ε, see (4.11) below. Using again the

first inclusion in (4.8) we see that Rε ∩ {x1 < b} is contained in the region{
(x1, x2) ∈ R2

∣∣ − a < x1 < b,−[
ε

a
+ o(ε)](x1 + a) < x2 < 0

}
.

Also, we will call Qε the subset or Rε contained in the region {x1 > b′}. Therefore we

obtain

(4.9)

∫ 0

−a
|x2|f(x1, 0)dx1 ≤

∫ b′

0

|x2|g(x1, 0)dx1 +

∫
Qε
g + o(ε),

where the term o(ε) also appears because 4ε and Rε ∩ {x1 < b′} are contained in the

strip {(x1, x2) ∈ R2 | − Cε ≤ x2 ≤ 0}. We want now to estimate the term
∫
Qε g, which

is a sort of error term. To do so, let us fix a number δ0 and consider the area bounded

by `+, by {x1 = b′ − δ0}, by {x1 = b′}, and by `−ε and call it A. Two kind of points are

contained in Qε: those whose inverse images through s are contained in A (denote by

Q1
ε the set of such points) and those who have at least one inverse image outside of A.

Note that, if A∩∆ε = ∅, then the first class of points is empty. Anyway, for this points,

by using the fact that s transports f onto g, we have
∫
Q1
ε
g ≤

∫
A∩∆ε

f ≤ Cεδ̂0. For the

other points, we notice that they must belong to a transport segment whose slope is at

most Cε/δ0, and that, by the second inclusion in (4.8), the measure of Qε \ s(A) is at

most C(ε/δ0)(b− b′) + o(ε). Hence we get∫ 0

−a
|x2|f(x1, 0)dx1 ≤

∫ b′

0

|x2|g(x1, 0)dx1 + Cεδ0 + C
ε

δ 0
(b− b′) + o(ε).
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We can decide to choose δ0 =
√
b− b′, thus getting

(4.10)

∫ 0

−a
|x2|f(x1, 0)dx1 ≤

∫ b′

0

|x2|g(x1, 0)dx1 + Cε
√
b− b′ + o(ε).

In our coordinates, `−ε can be expressed in the form

(4.11) `−ε =
{

(x1, x2) ∈ R2| x2 = ηεx1 − ε, −aε ≤ x1 ≤ bε
}
,

where aε = a+ o(1), bε ≤ b+ o(1) and o(1)→ 0 as ε→ 0. Since `−ε ⊂ ∠p0;`+,`− , we have

x2 = ηεx1 − ε ≤ 0 for x1 ∈ (−aε, 0). In particular −ηεaε − ε ≤ 0, namely −ηε/ε ≤ 1/aε.

Hence when x1 < 0, we have

|x2| = ε(−ηε
ε
x1 + 1) ≥ ε(

1

aε
x1 + 1).

Divide (4.10) by ε. For the left hand side we can write

≥
∫ 0

−a
(
1

a
x1 + 1)f(x1, 0)dx1 + o(1).

Similarly, for the right hand side we have

≤
∫ b′

0

(
1

a
x1 + 1)g(x1, 0)dx1 + C

√
b− b′ + o(1).

Summarizing, and sending ε→ 0, we get

(4.12)

∫ 0

−a
(
1

a
x1 + 1)f(x1, 0)dx1 ≤

∫ b′

0

(
1

a
x1 + 1)g(x1, 0)dx1 + C

√
b− b′.

In the case b′ = b, this means

(4.13)

∫ 0

−a
(
1

a
x1 + 1)f(x1, 0)dx1 ≤

∫ b

0

(
1

a
x1 + 1)g(x1, 0)dx1.

Hence by the definition of κ+ in (4.2), we obtain b ≥ κ+.

In case b′ < b, the claim is proven if we prove b′ ≥ κ+. To do so, consider a sequence

εn → 0 such that the lower endpoints of `−εn converge to (b′, 0) and first apply the

same argument to the segments `−εn instead of `+. For each n we will have a number

b(n) corresponding to the lower endpoint of `−εn , and a number b′(n) corresponding

to the length that can be reached by segments approximating `−εn . Note that 0 ≤
b(n)− b′(n)→ 0, because of the definition of b′ as the minimal reachable length (hence,

lim infn b
′(n) ≥ b′, while b′(n) ≤ b(n) and limn b(n) = b′).

Formula (4.12), applied for each n, gives

(4.14)

∫ 0

−a
(
1

a
x1 + 1)f(x1, 0)dx1 ≤

∫ b′(n)

0

(
1

a
x1 + 1)g(x1, 0)dx1 +C

√
b(n)− b′(n) + o(1),
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where the o(1) tends to 0 as n → ∞, and is due to the change in the reference system

passing from `+ to `−εn , and to the difference in the upper endpoint of the segments

`−εn , which are not equal to (−a, 0) but converge to such a point.

Letting n→∞ and using b(n)− b′(n)→ 0, we get now

(4.15)

∫ 0

−a
(
1

a
x1 + 1)f(x1, 0)dx1 ≤

∫ b′

0

(
1

a
x1 + 1)g(x1, 0)dx1,

which proveds b′ ≥ κ+. �

We remark that κ+ is uniquely determined by (4.2), as Y is convex and g > 0 in Y .

Note that at the end of Section 2, we define the set X = Ω \ Y , which allows that f = 0

in a subset of X. But f 6≡ 0 in Xp0;`+,`− , because of the mass balance condition∫
Xp0;`+,`−

f =

∫
s(Xp0;`+,`−

)

g,

and the right hand side does not vanish.

From the proof of Lemma 4.1, we have

Corollary 4.2. Denote as above Sκ+ = ∠p0;`+,`−∩{0 < x1 < κ+}. We have the estimate,

(4.16)
∣∣(Sκ+ \ s(Xp0;`+,`−)) ∪ (s(Xp0;`+,`−) \ Sκ+)

∣∣ = o(θ)

as θ = θ[`+, `−]→ 0, where s is the monotone optimal mapping transferring mass from

f to g, and | · | denotes the Lebesgue measure on R2.

Proof. The conclusions b ≥ κ+ and b ≤ κ+ + o(1) imply respectively that the sets

Sκ+\s(Xp0;`+,`−) and s(Xp0;`+,`−)\Sκ+ have small Lebesgue measure in the sense indicated

in the statement. �

The way Corollary 4.2 will be used is essentially the following: most of the set ∠p0;`+,`−

after the end of the shortest between the segments `+ and `− will be out of s(Xp0;`+,`−),

and this implies that the transport segments passing through the points of ∠p0;`+,`− \Sκ+
should be directed out of the set s(Xp0;`+,`−). The use of this fact will be clear from

Lemma 4.4.

The following corollary, altough not crucial for the sequel, could be helpful for the

readers to understand the geometry of the D-curves.

Corollary 4.3. If p0 is a double point, upper endpoint of two transport segments `± ⊂ T ,

and there is another double point p1 6= p0 in Xp0;`+,`− and the angle θ between `+ and

`− is small enough, then there is a D-curve in Yp0;`+,`−. Moreover, the length of the
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D-curve in Yp0;`+,`− is greater than c1 for some positive constant c1 depending on the

distance |p0 − p1| and on d(p1,H).

Proof. By Lemma 3.2, there is a D-curve connecting p1 to p0. We can suppose that the

transport segments from p1 enter Sog , otherwise, if they stop on the boundary of Y , there

is nothing to prove since in this case their lower endpoints are connected to the opposite

boundary of Y . Let κ+
1 be the positive number relative to p1 defined in Lemma 4.1 (just

as κ+ is the corresponding number relative to p0, see for example (4.20) below). Let `+
1

and `−1 be transport segments with upper endpoint at p1. Note that Yp1;`+1 ,`
−
1

is a proper

subset of Yp0;`+,`− . We see that κ+
1 is strictly less than κ+.

Indeed, under the coordinate system in Lemma 4.1, we have, by (4.16),∫
X
p0;`

+
1 ,`
−
1

f∫
s(X

p0;`
+
1 ,`
−
1

)
g

=

∫ 0

−a(
1
a
x1 + 1)f(x1, 0)dx1∫ κ+

0
( 1
a
x1 + 1)g(x1, 0)dx1

+ o(1)

and ∫
X
p1;`

+
1 ,`
−
1

f∫
s(X

p1;`
+
1 ,`
−
1

)
g

=

∫ 0

−a1(
1
a1
x1 + 1)f(x1, 0)dx1∫ κ+1

0
( 1
a1
x1 + 1)g(x1, 0)dx1

+ o(1)

where−a1 (with 0 < a1 < a) is the x1-coordinate of p1, and o(1)→ 0 as θ = θ[`+, `−]→ 0

. Since a1 < a, if κ+
1 ≥ κ+, we infer that∫ 0

−a
(
1

a
x1 + 1)f(x1, 0)dx1 >

∫ 0

−a1
(

1

a1

x1 + 1)f(x1, 0)dx1,∫ κ+

0

(
1

a
x1 + 1)g(x1, 0)dx1 ≤

∫ κ+1

0

(
1

a1

x1 + 1)g(x1, 0)dx1.

Hence ∫
X
p1;`

+
1 ,`
−
1

f∫
s(X

p1;`
+
1 ,`
−
1

)
g
<

∫
Xp0;`+,`−

f∫
s(Xp0;`+,`−

)
g
.

But the ratios on both sides are equal to 1, by the mass balance condition.

Hence there is a transport segment whose lower endpoint q0 lies in ∠p0;`+,`−∩Y o, where

Y o is the interior of Y . If θ is small enough, this endpoint cannot be a non-oriented

double point. Indeed, for small θ the directions of the transport segments should be

almost aligned with that of `+ or `−, which prevents from having non-oriented double

points. Hence by Remark 3.2, there is a D-curve in ∠p0;`+,`− ∩ Y , which connects q0 to

either the boundary of Y or a non-oriented double point. The length of the D-curve is
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greater than κ+ − κ+
1 or than d(q0,H), which is close to κ+

1 . Both these quantities can

be estimated from below in terms of |p0 − p1| or d(p1,H). �

Denote

Tp0;`+,`− = Xp0;`+,`− ∪ s(Xp0;`+,`−).

The boundary of Tp0;`+,`− consists of three parts, `+, `− and a part in Y . We point

out that the part in Y can be a D-curve which connects the lower endpoints of `+, `−

to a non-oriented double point, and therefore strictly contained in the interior of Y .

Analogously, we use the same notation when we fix a point q0 in Y , with two transport

segments r+ and r−: we set Tq0;r+,r− = Yq0;r+,r− ∪ s−1(Yq0;r+,r−) and this set has a

boundary composed by three parts: r+, r−, and a part in X.

Lemma 4.4. Let p0, `
+, `− be as above. Assume at least one of q+ and q− is an interior

point of Y . Then there is a transport segment r 6⊂ Tp0;`+,`− such that

(4.17) θ[`+, r] ≥ Nθ[`+, `−],

where N > 1 is as large as we want, provided θ[`+, `−] is sufficiently small.

Namely for any large constant N , there is a positive θ0 depending on N , d(p0,H), f

and g, such that if θ[`+, `−] < θ0, then (4.17) holds.

Proof. First let us assume that q+ is an interior point of Y and q− is not. Then there is a

D-curve β0 connecting q+ to a point q∗ on ∂Y (or to a non-oriented double point) which

composes a part of the boundary of Tp0;`+,`− . As θ[`+, `−] is small, we have |`+| < |`−|
in this case. To fix the ideas and the coordinate system, we suppose that `+ is on the

x1 axes and `− lies below it, as in Figure 4.

By (4.5) we have Sκ+−ε0 ⊂ Tp0;`+,`− for ε0 > 0 small. As β0 is part of the boundary

of Tp0;`+,`− , we see that for any point q ∈ β0, there is a transport segment from q, which

does not lie in Tp0;`+,`− . Let

L = {q+ − te2 = (q+
1 , q

+
2 − t) | 0 < t < t0}

be the line segment parallel to the x2-axis, with one endpoint q+ and the other q̃ =

q+ − t0e2 on `−, where e2 = (0, 1) is a unit vector. Since Tp0;`+,`− is in a very thin area,

from the proof of Lemma 3.2, β0 is a Lipschitz graph. Hence by the area condition in

(4.16), we see that for any point qt = q+−te2, where t ∈ (0, 9
10
t0), there is a point q′t ∈ β0

on the horizontal line {x2 = q+
2 − t} and q′t is very close to qt.

Let t∗ = 1
2
t0 and let r be the transport segment with lower endpoint q′t∗ ∈ β0, which

does not lie in Tp0;`+,`− , but lies above β0 and also above the point q+.
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We claim that (4.17) holds for the transport segment r. Indeed, it suffices to observe

that (4.17) is invariant under the coordinate change x′1 = x1 and x′2 = x2/h, where

h = θ[`+, `−]. After the change, θ[`+, `−] ' 1 but θ[`+, r] can be as large as we want as

the segment r is almost vertical after the change.

From Figure 4, one also easily verifies that

N ≥ |q+ − p0|
4|q′t∗ − qt∗|

.

By Lemma 4.1 and Corollary 4.2, one can see that for any small ε > 0, there is a constant

θ∗ depending on the modulus of continuity of f, g, and local lower bound of g, such that

|q′t∗ − qt∗| < ε, provided θ[`+, `−] < θ∗. Hence N can be arbitrarily large if the angle

between `+ and `− is sufficiently small.

H

p0 q+

q−

`+

`−
L

{x2 = q+
2 − t∗}

qt∗
q′t∗

r

Tp0;`+,`−

β0 β1

Figure 4.

Next we consider the case when both q+ and q− are interior points of Y . In this case

there are D-curves β0 and β1 connecting q+ and q− respectively to either the boundary

∂Y or non-oriented double points. There is no loss of generality in assuming that

|`+| ≤ |`−|, so that we can introduce the segment L as above, which connects a point on

`+ to a point on `−. Then by (4.16), we see that for almost all t ∈ (0, t0) (except a very

small subset of (0, t0)), there is a point q′t ∈ β0 ∪β1 on the horizontal line {x2 = q+
2 − t},

and q′t is very close qt = q+ − te2. In particular there exists t∗ ∈ (1
3
t0,

2
3
t0) such that

q′t∗ ∈ β0 ∪ β1 and q′t∗ is very close to qt∗ .
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Since q′t∗ is a double point and a boundary point of Tp0;`+,`− , there is a transport

segment r with lower endpoint q′t∗ which does not lie in Tp0;`+,`− . As above one sees that

(4.17) holds for the transport segment r. �

Note that (4.17) is equivalent to

(4.18) θ[`−, r] ≥ Nθ[`+, `−],

for large N , because the angle θ[`+, `−] is much smaller than θ[`+, r].

Assume that q′t∗ ∈ β0. Then for any point q ∈ β0 between q′t∗ and q∗, there is a

transport segment rq with lower endpoint q, lying above the segment r. From Lemma

4.1, the length |rq ∩X| has a uniform positive lower bound. Hence by (4.17), we have

(4.19) θ[`+, rq] ≥ N1θ[`
+, `−],

with N1 ≥ κ+

diam(T )
N .

Lemma 1.2 will follow from the following lemma immediately.

Lemma 4.5. Let p0, p1 ∈ Ω \ Z1 be two double points with p1 ∈ Xp0;`+,`− and the length

|p0 − p1| ≥ c0 for some positive constant c0. Then the angle θ[`+, `−] ≥ c1 for some

c1 > 0, which depends on c0, d(p0,H), diam(Ω∗), f and g.

Proof. Since p1 is a double point, there exist transport segments `+
1 , `

−
1 with the common

upper endpoint p1, and lower endpoints q+
1 , q

−
1 ∈ Tp0;`+,`− .

Corresponding to p1 and `+
1 , we can introduce κ+

1 as in Lemma 4.1, namely

(4.20)

∫ 0

−a1
(x1 + a1)f(x1, 0)dx1 =

∫ κ+1

0

(x1 + a1)g(x1, 0)dx1.

where a1 = a − |p0 − p1|. Since Yp1;`+1 ,`
−
1

is a proper subset of Yp0;`+,`− and g is positive

in Y , we have κ+
1 < κ+.

Denote L = {(x1, x2) ∈ R2 | x1 = −a1} and L∗ = {(x1, x2) ∈ R2 | x1 = b1}, where

b1 = κ+
1 + δ0 for some small δ0 > 0 such that b1 < κ+.

Since κ+
1 < κ+, at least one of q+

1 and q−1 is an interior point of Y . Hence by (4.19),

there is a double point q1 ∈ L∗, which is on a D-curve from either q+
1 or q−1 to either the

boundary ∂Y or a non-oriented double point, and a transport segment r+
1 with lower

endpoint q1 (r+
1 not in Tp1;`+1 ,`

−
1

) such that

(4.21) θ[`+
1 , r

+
1 ] ≥ Nθ[`+

1 , `
−
1 ],

where N can be as large as we want, provided θ[`+
1 , `

−
1 ] is sufficiently small. Since q1 is

a double point, there is another transport segment r−1 with lower endpoint at q1, which
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lies in Tp1;`+1 ,`
−
1

. Hence (4.21) implies

(4.22) θ[r+
1 , r

−
1 ] ≥ Nθ[`+

1 , `
−
1 ].

Note that the segment r+
1 is in ∠p0;`+,`− . Hence both r+

1 and r−1 are located in the set

Tp0;`+,`− .

Let p+
2 , p

−
2 ∈ Xp0;`+,`− be the upper endpoints of the transport segments r+

1 , r
−
1 . For

the triple (q1, r
+
1 , r

−
1 ), we can define κ−1 as in Lemma 4.1, namely

(4.23)

∫ 0

−κ−1
(b1 − x1)f(x1, 0)dx1 =

∫ b1

0

(b1 − x1)g(x1, 0)dx1.

As f may vanish in a subset of X, the constant κ−1 may not be unique. However, we can

apply the same argument of this proof to another point p′1 in the D-curve connecting p0

and p1 such that |p0 − p′1| ' 1
2
|p0 − p1|. By doing so, we can enlarge b1 a little bit so

that there is a unique κ−1 satisfying (4.23). By (4.20) and (4.23), one easily verifies that

κ−1 < a1, provided δ0 is small. Therefore by (4.19), there exists a double point p2 ∈ L,

which is on a D-curve from either p+
2 or p−2 to p0 (by Lemma 3.2), and a transport

segment `+
2 with upper endpoint p2 (`+

2 not in Tq1;r+1 ,r
−
1

) such that

(4.24) θ[`+
2 , r

+
1 ] ≥ Nθ[r+

1 , r
−
1 ],

for some N as large as we want, provided θ[r+
1 , r

−
1 ] is sufficiently small. Since p2 is a

double point, there is another transport segment `−2 with upper endpoint p2, which lies

in Tq1;r+1 ,r
−
1

. Hence (4.24) implies

(4.25) θ[`+
2 , `

−
2 ] ≥ Nθ[r+

1 , r
−
1 ].

Repeating the above procedure, we obtain a sequence of points pk (all of them lie

on the line L) and transport segments `+
k , `

−
k with upper endpoints pk, and a sequence

of points qk (all of them lie on the line L∗) and transport segments r+
k , r

−
k with lower

endpoints qk, such that

(4.26)
θ[r+

k , r
−
k ] ≥ Nθ[`+

k , `
−
k ],

θ[`+
k+1, `

−
k+1] ≥ Nθ[r+

k , r
−
k ],

provided the quantities on the right hand side are sufficiently small, where N can be as

large as we want. Moreover, `+
k , `

−
k , r

+
k , r

−
k ⊂ Tp0;`+,`− for all k ≥ 1.

From the above argument, the segments `+
k , `

−
k , r

+
k , r

−
k go across the region bounded by

L and L∗, so their lengths are uniformly bounded from below by a positive number. It

is easy to verify that there is a constant C > 0 depending only on a, a1, b1 and diam(Ω∗)
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such that

θ[`+
k , `

−
k ] ≤ Cθ[`+, `−],

θ[r+
k , r

−
k ] ≤ Cθ[`+, `−].

Note that a, a1, b1 are in fact determined by c0, d(p0,H), and densities f, g. Hence by

Lemma 4.4, there is a positive constant c1 depending on c0, d(p0,H), diam(Ω∗), f and g,

such that if θ[`+, `−] < c1 then (4.26) holds for a large, fixed constantN > 1 (independent

of k). Therefore for some large k∗, we have a pair of transport segments (`+
k∗ , `

−
k∗) or

(r+
k∗ , r

−
k∗) such that either

(4.27) θ[`+
k∗ , `

−
k∗ ] > Nθ[`+, `−]

or

(4.28) θ[r+
k∗ , r

−
k∗ ] > Nθ[`+, `−],

where N is a constant as large as we want. But since the segments `+
k∗ , `

−
k∗ , r

+
k∗ , r

−
k∗ are

contained in Tp0;`+,`− and their lengths are greater than the distance between the lines L
and L∗, one easily sees that (4.27) and (4.28) are impossible. Hence the angle θ[`+, `−]

cannot be too small, namely θ[`+, `−] > c1. This completes the proof. �

We can now obtain:

Proof of Lemma 1.2. Take a family of disjoint D-curves in T of length larger than a

given ε > 0. For each of these curves we can apply Lemma 4.5 to two points p1, p0 in

the curve, with |p1 − p0| ≥ ε, thus obtaining the existence of a triangle bounded by

transport segments, whose area is bounded from below by a given positive number and

which contains the curve. These triangles are disjoint, because transport segments do

not meet internally. Hence there can only be a finite number of them. �

5. Proof of Theorem 1.1

In this section we denote by s the monotone optimal mapping which sends the density

% to the density %∗ (and not any more f to g). Note that, in order to prove the continuity

of s, we need to choose a precise representative of s. We will see in a while how to define

s on T . As for points of Z0 and Z1 (see Section 2 for the definitions of these sets), we

define s to be the identity on them.

We first prove some of the properties which have been announced in Section 2.

Lemma 5.1. The set Z0 ∪ Z1 is closed.
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Proof. First, suppose that a sequence of points xn ∈ Z0∪Z1 converges to a point outside

Z0 ∪ Z1, i.e. a point x ∈ T . First we suppose that all the points xn belong to Z0. From

xn ∈ H we deduce x ∈ H; the point x is in the middle of a non-degenerate transport

segment `, which meets Sof . We can also suppose that the points xn stay on a same side

of `. We can take a point x′ ∈ Sof on ` with |x′ − x| ≥ ε > 0 and, taking a sequence of

points x′k → x′ staying on the same side and the corresponding transport segments they

belong to, we have a sequence of transport segments approaching `, and a subsequence

xnk of the points xn which are located between them. But the condition xnk ∈ Z0 implies

that there exist D-curves connecting them to ∂X ∩ ∂Ω and staying between the same

transport segments. These curves are disjoint and have length larger than ε, which is a

contradiction to Lemma 1.2.

We now suppose that all the points xn belong to Z1. They belong to some transport

segments `n on which % = %∗. The limit of the segments `n (which could be a singleton)

is contained in a transport segment `. If ` is a singleton, then x ∈ Z0 which contradicts

x /∈ Z0 ∪ Z1. If % = %∗ on `, then x ∈ Z1, which is also a contradiction. If ` meets the

set Sof , then this means that the uppr endpoints pn of `n converge to a point p ∈ ` which

is not an endpoint, and the part of ` where f > 0 is between p and the upper endpoint

of `. If we denote by ε the distance of p to the upper endpoint of `, then we are in a

situation as the one above, with a sequence of disjoint D-curves with length at least ε,

and we find again a contradiction to Lemma 1.2. �

Once we know that Z0 ∪ Z1 is closed, we now consider the set T .

Let ` be a transport segment in T . We consider a neighbourhood of a point in the

relative interior of `. Choose a coordinate system such that ` = {(x1, x2) | x2 = 0,−h ≤
x1 ≤ h} for some constant h > 0. For small δ > 0 and t ∈ (−δ, δ), let `t denote the

transport segment whose intersection with x2-axis is the point (0, t). Denote

Tδ = {(x1, x2) ∈ `t | − δ < t < δ},

which is the area occupied by the transport segments `t with |t| < δ. In our coordinates,

`t can be expressed as

`t =
{

(x1, x2) ∈ R2 | x2 = η(t)x1 + t, x1 ∈ [a(t), b(t)]
}
,

where a and b are respectively the x1-coordinate values of the upper and lower endpoints

of `t, and η is the slope of `t.

Lemma 5.2. For sufficiently small δ > 0, we have a, b ∈ C0(−δ, δ).
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Proof. We just need to prove the continuity at t = 0. By Theorem 2.3 (i) we know that

a is upper semi-continuous, namely limt→0a(t) ≥ a(0). Assume to the contrary that

limt→0a(t) = a(0) + ε for some ε > 0. Then by the convexity of Ω, there is a sequence

tk → 0 such that the upper endpoints pk of `tk are interior points of Ω and we have

pk → p ∈ `0.

By Lemma 3.3, there is a D-curve connecting pk to ∂X∩∂Ω. This in particular means

that, possibly reducing the value of ε, we can also suppose that the points pk stay far

away from the boundary H (if not, just follow back this D-curve and choose another

double point).

Moreover, for every k there is also a double point p′k with two transport segments (`′)+
k

and (`′)−k and such that pk ∈ Xp′k;(`′)+,(`′)− and the length |pk − p′k| ≥ ε. In order to have

pk → p ∈ `0 there should be infinitely many of these triangles Xp′k;(`′)+,(`′)− , pairwise

disjoint. But this means an infinity of disjoint D-curves with length larger than ε, which

is a contradiction to Lemma 1.2.

Hence a is continuous. Similarly one can prove that b is continuous once we note that

also in this case the length of the D-curves arriving at the lower endpoints of `tk would

be bounded from below. Indeed, if this was not the case, there would be non-oriented

double points arbitrarily close to the relative interior of the transport segment `0, which

is impossible. �

Lemma 5.3. We have η ∈ C1(−δ, δ).

Proof. First we show η ∈ C0,1(−δ, δ). By Lemma 5.2, the length |`t| satisfies |`t| =

2h + o(1) as t → 0. As the transport segments do not intersect with each other at

interior points, we see that |η(t) − η(t′)| ≤ |t − t′|/h + o(|t − t′|). Hence η is Lipschitz

continuous.

Denote

Tt,ε = {(x1, x2) ∈ `t′ | t− ε < t′ < t+ ε},

and denote a point on `t by pt,r = (r, η(t)r+ t). The optimal mapping s sends the point

pt,r to pt,st(r), where st(r) is determined by [6, 27]

(5.1) lim
ε→0

1

ε

∫
Tt,ε∩{x1<r}

%(x1, x2)dx1dx2 = lim
ε→0

1

ε

∫
Tt,ε∩{x1<st(r)}

%∗(x1, x2)dx1dx2.

That is

(5.2)

∫ r

a(t)

(
η′(t)x1 + 1

)
%dx1 =

∫ st(r)

a(t)

(
η′(t)x1 + 1

)
%∗dx1,
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where %, %∗ take values at (x1, η(t)x1 + t). Letting r = b(t), we obtain

(5.3) η′(t) =

∫ b(t)
a(t)

(%∗ − %)dx1∫ b(t)
a(t)

x1(%− %∗)dx1

.

Note that the denominator in (5.3) cannot be zero. For, if it is, then the numerator

must be zero as well (since we know that η is Lipschitz continuous), and it implies

(5.4)

∫ b(t)

a(t)

(x1 − c)%dx1 =

∫ b(t)

a(t)

(x1 − c)%∗dx1

for any constant c. But (5.4) cannot hold if we choose c such that % ≥ %∗ when x1 < c,

while % ≤ %∗ when x1 ≥ c. Here, again, we use our geometric assumption on {f > 0} =

{% > %∗} and {g > 0} = {% < %∗}. Since a(t), b(t) ∈ C0, we deduce from (5.3) that

η′ ∈ C0(−δ, δ). �

The formula (5.2) and the considerations above allow to deduce the following fact:

on each transport segment `, the mapping s is defined by taking the 1D monotone

increasing map which transports %J onto %∗J , where J is an affine function of the form

x1 7→ η′(t)x1 + 1. This will be the precise representative of s that we choose. Note in

particular that s is the identity on endpoints.

On this kind of transport maps, we need to prove the following lemma.

Lemma 5.4. Suppose we have a sequence of intervals [an, bn] ⊂ R, two densities %n and

%∗n on these intervals, which are equicontinuous and bounded from below and above by

uniform constants, a sequence of non-negative affine functions Jn : [an, bn]→ R, and the

corresponding monotone transport maps sn : [an, bn] → [an, bn] transporting Jn%n onto

Jn%
∗
n. Then we have

(1) for any sequence xn with |xn − an| → 0, we have |sn(xn)− xn| → 0

(2) if ||%n − %∗n||∞ → 0 then ||sn − id||∞ → 0

Proof. Both part of the statements can be proven by contradiction. Up to normalizing

by a multiplicative factor, we can assume max[an,bn] Jn = 1 for every n and, up to

translations, we can suppose an = 0 for every n. Up to subsequences, we can suppose,

using the Ascoli-Arzelà theorem, that bn → b and that %n and %∗n uniformly converge to

some densities % and %∗, as well as the affine factors Jn converge to a limit affine function

J (which will also have maximal value equal to 1 and hence be strictly positive on ]0, b[)

For (1), suppose by contradiction |sn(xn) − xn| ≥ ε, together with xn → 0 (this is a

consequence of the assumption |xn− an| → 0) and sn(xn)→ s̄, which implies s̄ ≥ ε. We
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have

(5.5)

∫ xn

0

%nJn =

∫ sn(xn)

0

%∗nJn.

Passing to the limit, we have
∫ xn

0
%nJn → 0 because of xn → 0 and, using pointwise

dominated convergence, we have∫ sn(xn)

0

%∗nJn →
∫ s̄

0

%∗J.

The lower bounds on %∗ (a consequence of the lower bounds on %∗n) and the strict

positivity of J imply s̄ = 0, which is a contradiction.

For (2) suppose by contradiction that there exists a sequence xn with |sn(xn)−xn| ≥ ε.

Passing again to the limit in (5.5) we have∫ x

0

%J =

∫ s̄

0

%∗J.

Yet, in this case we have % = %∗ > 0, and this implies s̄ = x, which provides again a

contradiction. �

We are now able to prove our main result.

Proof of Theorem 1.1. First, we prove the continuity of s at a point x ∈ T \ E. This

point is in the interior of T thanks to Lemma 5.1 and to Lemma 5.2. Then, we consider

Tδ to be the set defined at the beginning of this section. Once we know the continuity

of a, b and η′, the continuity of s in Tδ, and hence at x, follows from (5.2).

We now need to prove continuity at points of Z0, at points of Z1 and at endpoints. In

all these points the map s is the identity. For Z0 we already noticed in Section 2 that

the continuity is easy: points of Z0 can only be approximated by segments whose length

tends to 0 (because of point (i) in Lemma 2.3), so that if xn → x ∈ Z0 we necessarily

have |s(xn)− xn| → 0, and s is continuous on Z0.

For points of Z1, we use part (2) of Lemma 5.4: indeed, if xn → x ∈ Z1 and `n are

the transport segments to which belong the points xn, we necessarily have % = %∗ on

the transport segment of x, and ||%− %∗||L∞(`n) → 0. This implies |s(xn)− xn| → 0 and

proves the continuity of s at x.

For endpoints, we use part (1) of Lemma 5.4. Consider a sequence xn → x, where x

is an upper endpoint of a transport segment. If an denotes the upper endpoint of the

transport segment of xn, we must have |xn−an| → 0 (otherwise x cannot be an endpoint).
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Then, part (1) of Lemma 5.4 implies |s(xn)− xn| → 0 and proves the continuity of s at

x. The proof for lower endpoints is analogous.

Therefore Theorem 1.1 is proved. �

Conflict of Interest: The authors declare that they have no conflict of interest.

References

[1] Ambrosio, L.: Lecture notes on optimal transport problems, Mathematical Aspects of Evolving
Interfaces, Lecture Notes in Math. 1812 (2003), pp.1–52.

[2] Ambrosio, L.; Kirchheim, B.; Pratelli, A.: Existence of optimal transport maps for crystalline
norms, Duke Math. J. 125 (2004), 207–241.

[3] Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions, Comm.
Pure Appl. Math. 44 (1991), 375–417.

[4] Caffarelli, L.: The regularity of mappings with a convex potential, J. Amer. Math. Soc. 5 (1992),
99–104.

[5] Caffarelli, L.: Boundary regularity of maps with convex potentials II, Ann. of Math. 144 (1996),
453–496.

[6] Caffarelli, L.; Feldman, M.; McCann, R.: Constructing optimal maps for Monge’s transport prob-
lem as a limit of strictly convex costs, J. Amer. Math. Soc. 15 (2002), 1–26.

[7] Colombo, M.; Indrei, E.: Obstructions to regularity in the classical Monge problem, Math. Res.
Lett. 21 (2014), 697–712.

[8] Champion, T.; De Pascale, L.: The Monge problem for strictly convex norms in Rd, J. Eur. Math.
Soc. 12 (2010), 1355–1369.

[9] Champion, T.; De Pascale, L.: The Monge problem in Rd, Duke Math. J. 157 (2011), 551–572.
[10] De Pascale, L.; Louet, J.; Santambrogio, F.: The Monge problem with vanishing gradient penal-

ization: vortices and asymptotical profile, J. Math. Pures and Appl., 106 (2016), no. 2, 237–279.
[11] Evans, L.C.; Gangbo, W.: Differential equations methods for the Monge-Kantorovich mass transfer

problem, Mem. Amer. Math. Soc. 137 (1999), no. 653, viii+66 pp.
[12] Feldman, M.; McCann, R.: Uniqueness and transport density in Monge’s mass transportation

problem, Calc. Var. PDE 15(2002), 81–113.
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