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ABSTRACT. We consider solutions to singular parabolic equations with measurable de-
pendence on the (x, t) variables and having on the right-hand side a measure satisfying a
density condition. We prove that the less the measure is concentrated, the more the gra-
dient is regular, in the Marcinkiewicz scale. We provide local estimates and recover some
classic results.

To Nicola Fusco, on the occasion of his 60th birthday,
with admiration and respect.

1. INTRODUCTION, ASSUMPTIONS, STATEMENTS

The aim of this paper is to give a natural integrability result for solutions to singular
parabolic equations with measure data: we consider problems of the type

ut − div a(x, t,Du) = µ in ΩT := Ω× (−T, 0), (1.1)

where Ω is a bounded open set in Rn, n ≥ 2, and the vector field a(·) satisfies only minimal
growth and monotonicity assumptions:〈a(x, t, ξ1)− a(x, t, ξ2), ξ1 − ξ2〉 ≥ ν

(
|ξ1|+ |ξ2|

)p−2|ξ1 − ξ2|2,

|a(x, t, ξ)| ≤ L |ξ|p−1,
(1.2)

for almost every (x, t) ∈ ΩT , every ξ1, ξ2, ξ ∈ Rn, with 0 < ν ≤ 1 ≤ L. The most
prominent model we have in mind for (1.1) is the singular parabolic p-Laplacian equation
with measurable coefficients. Being N := n + 2 the parabolic dimension, the exponent p
is assumed to satisfy

2− 1

N − 1
< p < 2; (1.3)

we are hence considering singular parabolic equations, following DiBenedetto [17, Chap-
ters IV, VII, VIII]. In this note µ will be a signed Borel measure with finite total mass, in
general not belonging to the dual of the energy space naturally associated to the operator
on the left-hand side: in view of this fact the lower bound in (1.3) is natural in the whole
theory (see [12, 13, 22, 25]) since it ensures the existence of a solution withDu ∈ L1(ΩT ).

The phenomenon object of this investigation is the improvement of integrability for
the gradient of solutions of (1.1) in the case the measure on the right-hand side satisfies
certain density-type conditions. This is a general fact and it was first noted in [30] in the
elliptic case, see the forthcoming lines for a detailed presentation of these results. The
analog results in the parabolic direction can be found in [7, 6, 4]; the first two contributions
include results in the non-degenerate case (that is, for vector fields satisfying (1.2) with
p = 2) while the last contribution deals with the more difficult degenerate parabolic case
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(p > 2), which needs very different techniques with respect to both the elliptic and the
non-degenerate cases. To be more specific, for a signed Borel measure µ of finite total
mass, one is lead to consider a Morrey-type condition on standard parabolic cylinders as
follows:

sup
QR(z0)⊂ΩT

|µ|(QR(z0))

RN−ϑ
≤ cd <∞, (1.4)

where QR(z0) = BR(x0)× (t0−R2, t0 +R2): note that |QR| = c(n)RN . This condition
can be naturally extended to L1 functions by setting |µ|(A) :=

∫
A
|µ| dx when A is a

measurable set.
The improved integrability of the gradient is formulated in terms of Marcinkiewicz

spaces, which are the optimal ones to be used when dealing with measure data problems
(this is natural in view of the behavior of the fundamental solution in the elliptic case), see
for instance [8, 15, 30, 31]: summarizing the results of [7, 4], we have that

µ satisfies (1.4) for some 2 ≤ ϑ ≤ N =⇒ Du ∈Mp−1+ 1
ϑ−1

loc (ΩT ,Rn),

(1.5)

where u is a solution to (1.1)-(1.2) (in the sense described after Definition 1.2) with p ≥ 2.
We recall the reader that Marcinkiewicz spacesMm(ΩT ,R`) are defined via the following
decay condition on level sets (for f : ΩT → R` a measurable map):

sup
λ>0

λm
∣∣{z ∈ ΩT : |f(z)| > λ}

∣∣ =: ‖f‖mMm(ΩT ,R`) <∞.

Their local variant is defined in the usual way.

The improvement of integrability in the case of Morrey data for the elliptic case has
been presented in [30]:

µ ∈ L1,ϑ(Ω), p ≤ ϑ ≤ n =⇒ Du ∈M
ϑ(p−1)
ϑ−1

loc (Ω,Rn).

L1,ϑ(Ω) is here the space of signed Borel measures satisfying

sup
BR(x0)⊂Ω

|µ|(BR(x0))

Rn−ϑ
≤ cd <∞, (1.6)

Note that for ϑ < p a classic result of Hedberg and Wolff states that L1,ϑ embeds into the
dual space ofW 1,p. In the case ϑ = n, the results in [30] give back the classic, sharp result

µ ∈ L1,n(Ω) ≡Mb(Ω) =⇒ Du ∈M
n(p−1)
n−1 (Ω,Rn),

for which we refer to [8, 15, 18]; notice that the class of measures satisfying (1.4) for
ϑ = n is nothing else than the full space of signed Borel measures with finite total mass
Mb(ΩT ).

In this paper we prove the following singular counterpart of the result described in (1.5):

Theorem 1.1. If u ∈ V 2,p(ΩT ) is a weak solution to (1.1) with µ ∈ L1(ΩT ) satisfying
(1.4) for some p ≤ ϑ ≤ N , then:

• if p ≤ ϑ ≤ n, then Du ∈Mm1

loc (ΩT ,Rn) with

m1 := (p− 1)
ϑ

ϑ− 1
;

• if n < ϑ ≤ N , then Du ∈Mm2

loc (ΩT ,Rn) with

m2 :=
1

2

(
p− (2− p)n

ϑ

) ϑ

ϑ− 1
.
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Moreover, there exists a constant depending on n, p, ν, L and cd such that the following
local estimate holds for any parabolic cylinder Q2R ≡ Q2R(z0) ⊂ ΩT :

R−
N
m ‖Du‖Mm(QR,Rn) ≤ c

[ ∫
Q2R

(|Du|+ 1) dz +

[
|µ|(Q2R)

|Q2R|

] 1
m
]d

; (1.7)

the scaling deficit d > 1 is defined as

d :=
2

2− n(2− p)
(1.8)

and

m :=
(
p− 1 +

[2− p
2

(
1− n

ϑ

)]
+

) ϑ

ϑ− 1
. (1.9)

Note that m = m1 if ϑ ≤ n and m = m2 in the remaining case ϑ > n.

Several remarks are now in order.

First of all, note that V 2,p(ΩT ) is the energy space for an operator satisfying (1.2) with
parabolic p-growth, see (2.5) and (2.7). As in Theorem 1.1, we are going to state every
result as a priori estimate for energy solution in view of (part of) the existence theory for
problems as (1.1). Moreover we assume that µ ∈ L1(ΩT ) for technical reasons; we will
show that this is not restrictive. In the general case of true measure data problems, one has
the following definition:

Definition 1.2. A very weak solution to (1.1), under the structural assumptions (1.2)-(1.3)
and being µ a signed Borel measure, is a function u ∈ V 1,1(ΩT ) (see the forthcoming
(2.5)) such that the distributional formulation∫

ΩT

[
−uϕt + 〈a(x, t,Du), Dϕ〉

]
dz =

∫
ΩT

ϕdµ, (1.10)

holds true for every ϕ ∈ C∞c (ΩT ).

Since the seminal works of Boccardo and Gallouet [12, 13], a solution to (1.1) (coupled
with Cauchy-Dirichlet data) is usually found using an approximation procedure: one reg-
ularizes the datum µ (usually via mollification) and considers the energy solutions to the
regularized problems (note that the Morrey condition in (1.4) remains essentially preserved
under mollification, see [33]). Finally, one proves a.e. convergence of the gradients up to
sub-sequences, and this allows to pass to the limit both in the weak formulation, obtaining
a solution of (1.1) (see Definition 1.2), and in the estimates. This strategy leads to a partic-
ular type of solution usually called Solution Obtained by Limits of Approximations, SOLA
in short. This is the reason why we can state our result in the form of a priori estimates;
needless to say, all our estimates will still hold (in a slightly different form) for SOLAs
in the case µ is a signed Borel measure satisfying (1.4), see [24, Paragraph 1.4] or [27,
Section 1.2] for the necessary adaptations.

In the general case, where µ is a signed Borel measure with finite mass, the archetypal
result is the existence of a SOLA, distributional solution (in the sense of Definition 1.2) to
(1.1), for p > 2− 1/(N − 1), such that

Du ∈ Lq(ΩT ,Rn) for all q ∈ [1,m0), m0 := p− 1 +
1

N − 1
. (1.11)

Note that in general the Cauchy-Dirichlet problem associated (1.1) does not have unique-
ness; hence the SOLA is just one solution to the problem considered. Uniqueness holds
only in special cases, as for instance p = 2 or p = n in the elliptic case; for a compre-
hensive account of several results in this field, we refer to [32]. Moreover, also in the
class of SOLA uniqueness is not guaranteed, in the sense that different approximation of
µ could lead in general to different limit solutions. We will not go into details in those
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questions and we, again, refer to [20, 26, 32] for the elliptic case and to [4, 24, 25, 27] for
the parabolic.

Note that if d = 1, then the estimate in (1.7) would be homogeneous and invariant under
parabolic scaling. The fact that d > 1 if p 6= 2 is a well-known phenomenon that follows
directly from the lack of natural homogeneous scalings for the equation. The explicit value
in (1.8) is moreover characteristic when dealing with singular parabolic equations with
measure data; for instance, observe that it also appears in [22, 25]. It is indeed naturally
dictated by the lack of scaling of the equation together with the fact that we are forced to
work below the energy level, and in particular with the L1 norm of the gradient, since we
are considering the singular case; see (5.6). This fact is in turn symptomatic of the fact that
we need to produce estimates stable when passing to the limit, in view of what described
above.

We remark here that m1 ≥ m2 if ϑ ≤ n while the inequality is reversed for ϑ > n,
since here p < 2. Moreover max{m1,m2} ≤ m0 being m0 defined in (1.11), since
p < 2 and ϑ ≤ N ; therefore the regularity of the gradient in the singular case is worse if
compared with the one in the degenerate one. It is not clear if this fact is a consequence
of the singular structure of the equation or it is a limit of the technique of our proof; this
will be object of future investigations. One can on the other hand “force” the regularity
Du ∈Mm0

loc (ΩT ,Rn) in the singular case by artificially imposing an intrinsic condition of
the type

sup
QλR(z0)⊂ΩT
R>0,λ≥1

|µ|(QλR(z0))

[Rλ]N−ϑ
≤ cd,

where the stretched cylinders QλR(z0) will be defined in (2.1); compare with (1.4). This
condition is on the other hand difficult to verify in concrete cases and therefore we leave
this remark just as a theoretical curiosity.

Note that once one takes ϑ = N , (1.4) is satisfied for every signed Borel measure with
finite mass. Thus this condition is essentially empty but we still get back (locally) the sharp
improvement of the result in (1.11), which was already obtained in [3]; we also provide a
natural local estimate.

Corollary 1.3. If u ∈ V 2,p(ΩT ) is a weak solution to equation (1.1) with µ ∈ L1(ΩT ),
then Du ∈ Mm0

loc (ΩT ,Rn). The local estimate coincides with (1.7) for ϑ = N and
m = m0.

Remark 1.4. We stress now that we restrict to the case ϑ ≥ p for simplicity. One could
consider also ϑ < p but still “close” to p (see (5.29): m should only be smaller than
p(1 + η), with η > 0 depending on the data of the problem); we refer to the results
and the discussion in [4]. Note that as soon as ϑ < p, then Du ∈ Lploc(ΩT ). The fact
that the natural lower bound from below for ϑ differs from that appearing for degenerate
equations is liked to the fact that the energy space in the singular case differs from that in
the degenerate one, see [28, Page 166]. This will be object of future investigation.

An improvement of Theorem 1.1 can be obtained once considering more regular vector
fields. In particular, if we replace the assumption of simple measurability and boundedness
with respect to the (x, t) variables with a sort nonlinear version of VMO regularity (con-
sidered for instance in [11, 10, 23]), then we can consider values of ϑ close to one and at
the same time obtain integrability of Du in any Lebesgue space. In particular, we consider
now Carathéodory vector fields a(x, t, ξ) differentiable with respect to the variable ξ and
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satisfying〈∂ξa(x, t, ξ)ξ̃, ξ̃〉 ≥ ν|ξ|p−2|ξ̃|2,

|a(x, t, ξ)|+ |∂ξa(x, t, ξ)| |ξ| ≤ L |ξ|p−1,
(1.12)

for all x ∈ Ω, t ∈ (−T, 0), ξ, ξ̃ ∈ Rn, with p as in (1.3) and structural constants 0 < ν ≤
L < ∞. For what concerns the regularity with respect to the variable x, we assume that,
denoting for R > 0 the nonlinear modulus of continuity

ω(R) = sup
t∈(−T,0)

sup
Br(x0)⊂Ω

0<r≤R

sup
ξ∈Rn
ξ 6=0

|a(x, t, ξ)− (a)Br(x0)(t, ξ)|
|ξ|p−1

,

we have

lim
R↘0

ω(R) = 0. (1.13)

(a)Br(x0) : (−T, 0)× Rn → Rn denotes the averaged vector field

(a)Br(x0)(t, ξ) :=

∫
Br(x0)

a(x, t, ξ) dx

for t ∈ (−T, 0) and ξ ∈ Rn. Note that a particular but fundamental instance of vector fields
satisfying the assumptions in (1.12)-(1.13) are those VMO regular with respect to the
space variables but only measurable and bounded with respect to time: this is to say, those
of the form a(x, t, ξ) = b(x)ã(t, ξ) with ã(·) a Carathéodory map, with (t, ξ) 7→ ∂ξã(t, ξ)
Carathéodory regular too and satisfying〈∂ξã(t, ξ)ξ̃, ξ̃〉 ≥

√
ν|ξ|p−2|ξ̃|2,

|a(t, ξ)|+ |∂ξa(t, ξ)| |ξ| ≤
√
L |ξ|p−1,

(1.14)

for all t ∈ (−T, 0), ξ, ξ̃ ∈ Rn, p as in (1.3) and with ν, L as in (1.12) and b : Ω → R
bounded from zero and infinity and VMO regular, i.e.

√
ν ≤ b(·) ≤

√
L and

lim
R↘0

ω(R) = 0, where ω(R) := sup
Br(x0)⊂Ω

0<r≤R

∫
Br(x0)

∣∣b− (b)Br(x0)

∣∣ dx.
In this case we have the following

Theorem 1.5. If u ∈ V 2,p
0 (ΩT ) is a weak solution to equation (1.1) under the assumptions

in (1.12)-(1.13), with µ ∈ L1(ΩT ) satisfying the Morrey condition (1.4) for some 1 < ϑ ≤
n, then

Du ∈Mm1

loc (ΩT ,Rn).

Splitting measures. We conclude this introduction with two results about splitting data.
For the first one we assume that µ is of the following product-type:

µ = µ1 · µ2, µ1 ∈ L∞(Ω), |µ2|
(
(τ −R2, τ +R2)

)
≤ cdR2−ϑ (1.15)

for every sub-interval (τ − R2, τ + R2) ⊂ (−T, 0) and for some 1 < ϑ < 2. In this case
we can deduce a stronger result:

Theorem 1.6 (Elliptic/singular-parabolic regularity). If u ∈ V 2,p(ΩT ) is a weak solution
to equation (1.1) under the assumptions (1.12)-(1.13) with p satisfying (1.3) and µ being
as in (1.15), then

Du ∈Mm3

loc (ΩT ,Rn), where m3 :=
p

2

ϑ

ϑ− 1
.
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Again, for any Q2R(z0) ⊂ ΩT a local estimate analogous to (1.7), with m3 replacing m,
holds true. The constant here does also depends on the Morrey constant cd of µ2 and on
‖µ1‖L∞ .

Finally, for completeness, we present the analog of Theorem 1.6 for degenerate equa-
tions, which was not included in [4]. We assume in this case

µ = µ3·µ4, µ3 ∈ L1∩L1,ϑ(Ω), p < ϑ < n; µ4 ∈ L∞(−T, 0), (1.16)

with L1,ϑ(Ω) the elliptic Morrey space defined in (1.6).

Theorem 1.7 (Elliptic/degenerate-parabolic regularity). If u ∈ V 2,p(ΩT ) is a weak solu-
tion to equation (1.1) with 2 ≤ p < n in (1.2) and µ being as in (1.16), then

Du ∈Mm4

loc (ΩT ,Rn), where m4 := (p− 1)
ϑ

ϑ− 1
= m1.

A local estimate similar to that in Theorem 1.6 holds true for any Q2R(z0) ⊂ ΩT , with the
constant also depending on the Morrey constant of µ3 and on ‖µ4‖L∞ .

Note here in both cases µ satisfies (1.15) or (1.16) in particular we have that µ satisfies
(1.4); however, m3 ≥ m1 (p < 2) and m4 ≥ m0 (p ≥ 2); thus in both cases a more
careful analysis of the geometry of the problem allows to obtain an improved integrability
for the gradient of the solution. Moreover note that in order to be able to consider non-
trivial cases, in Theorem 1.6 we chose to consider more regular vector fields as in (1.12),
to allow for ϑ < 2; however also in this case Remark 1.4 applies. Finally, we stress that
assuming (1.15) in the degenerate case and (1.16) in the singular one does not lead to any
better estimates using our approach, and this can be seen by our proofs.

2. NOTATION

This section is devoted to fix the notation we will use in the rest of the paper. Rn+1 will
always be thought as Rn × R, so a point z ∈ Rn+1 will be often also denoted as (x, t),
z0 as (x0, t0), and so on. The cylinders QλR(z0), for a scaling parameter λ ≥ 1, are the
natural cylinders associated to the equation in (1.1): they are defined as

QλR(z0) := BRλ(x0)× (t0 −R2, t0 +R2)

= BRλ(x0)×
(
t0 − λ2−p[Rλ]2, t0 + λ2−p[Rλ]2

)
(2.1)

with

Rλ := λ
p−2

2 R.

Rλ is therefore the “spatial radius” of QλR; observe that |QλR(z0)| = c(n)λ2−p[Rλ]N .

We recall the reader the different definition of the cylinders QλR(z0) for λ ≥ 1 in the
degenerate p ≥ 2 case: we set

QλR(z0) := BR(x0)×
(
t0 − λ2−pR2, t0 + λ2−pR2

)
(2.2)

and here we have |QλR(z0)| = c(n)λ2−pRN .

Note that (in both cases), since we are always going to consider scaling parameters
λ ≥ 1, then

QλR(z0) ⊂ QR(z0). (2.3)

Moreover note that for λ fixed, scaled cylinders are the balls of the metric given by the
distance

dλ(z1, z2) := max
{
λ

2−p
2 |x1 − x2|,

√
|t1 − t2|

}
. (2.4)
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When dealing with a several cylinders or Euclidean balls in the same context, if not other-
wise stated, they will all have the same “vertex”. For α > 0 we shall write

αQλR(x0, t0) := BαRλ(x0)× (t0 − (αR)2, t0 + (αR)2).

By parabolic boundary of a cylindrical set K := A × I , with A ⊂ Ω, I ⊂ (−T, 0), we
will mean ∂PK := A× {inf I} ∪ ∂A× I . Being C ∈ Rm a measurable set with positive
measure and f : C → Rk an integrable map, with m, k ≥ 1, we denote with (f)C the
averaged integral

(f)C :=

∫
C

f(ξ) dξ :=
1

|C|

∫
C

f(ξ) dξ.

Moreover for a measurable function g : K = A × I ⊂ Rn × R → Rk over a cylinder we
will use the notation

(g)A(t) :=

∫
A

g(x, t) dx for all t ∈ I .

c will denote a generic constant greater than one, possibly varying from line to line. Con-
stants we need to recall will be denoted with special symbols, such as c1, c2, c̃, c∗. Relevant
dependencies will be highlighted between parentheses or after the equations; when non es-
sential, the dependence on a parameter will be suppressed. If for a constant we will not
mention its dependencies, then it will be a numerical constant.

For a cylinder K := A× I ⊂ Rn × R, with V γ,r(K), γ, r ≥ 1, we denote the spaces

V γ,r(K) := Lr(I;W 1,r(A)) ∩ C(I;Lγ(A)). (2.5)

and

V γ,r0 (K) := Lr(I;W 1,r
0 (A)) ∩ C(I;Lγ(A)).

Note that if g ∈ Lp(I,W 1,p(A)), p ≥ 1, then x 7→ g(x, t) ∈ W 1,p(A) for a.e. t ∈ I .
Hence we will be allowed to use Poincaré’s inequality slice-wise. Finally, we introduce
the auxiliary vector field V : Rn → Rn by

V (ξ) := |ξ|
p−2

2 ξ

whenever ξ ∈ Rn; it turns out to be a bijection of Rn and to encode the monotonicity
properties of the vector field in (1.2): indeed it holds that

1

c
≤ |V (ξ1)− V (ξ2)|2

(|ξ1|+ |ξ2|)p−2|ξ1 − ξ2|2
≤ c

for c ≡ c(p) and for all ξ1, ξ2 ∈ Rn not both zero if s = 0 (see [1, Lemma 2.3]); thus

〈a(x, t, ξ1)− a(x, t, ξ2), ξ1 − ξ2〉 ≥
1

c(ν, p)

∣∣V (ξ1)− V (ξ2)
∣∣2. (2.6)

Moreover it holds

〈a(x, t, ξ), ξ〉 ≥ c−1 |ξ|p. (2.7)

3. ESTIMATES FOR HOMOGENEOUS PROBLEMS

Let us consider v ∈ C0(I;L2(A)) ∩ Lp(I;W 1,p(A)) a solution to the problem

vt − div a(x, t,Dv) = 0 in A× I ⊂ ΩT , (3.1)

being A a domain, I an interval and with a : ΩT × Rn → R the vector field appearing in
(1.1), therefore satisfying (1.2)-(1.3) and (2.7).

In this section we collect some regularity results for weak solutions to (3.1).

The next Lemma is the standard energy estimate for solutions to (3.1); for its proof see
[17, Chapter II, Proposition 3.1] or [21, Lemma 3.2].
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Lemma 3.1 (Caccioppoli’s inequality). Let v ∈ V 2,p(A × I) be a weak solution to (3.1)
and let Qρ2,σ2

≡ Qρ2,σ2
(z0) ⊂ A× I be a cylinder. Then

sup
t∈(t0−σ1,t0+σ1)

∫
Bρ1 (xo)

|v(·, t)− k|2 dx+

∫
Qρ1,σ1

|Dv|p dz

≤ c

∫
Qρ2,σ2

[
|v − k|p

(ρ2 − ρ1)p
+
|v − k|2

σ2 − σ1

]
dz (3.2)

holds for all concentric cylinders Qρ1,σ1
≡ Qρ1,σ1

(z0) b Qρ2,σ2
(z0) and for all k ∈ R;

the constant depends only on n, p, ν and L.

The following is the sup bound for solutions to singular parabolic equations. It can be
found in [34]; the local estimate we use here is in [17, Chapter V, Theorem 5.1]. Note in
particular that we have by parabolic Sobolev’s embedding and our assumption (1.3) that
w ∈ V 2,p(Q1) implies w ∈ L1(Q1); moreover (1.3) ensures that n(p−2) +p > 0. Recall
that a sub-solution is a function such that the left-hand side of the weak formulation of
(3.1) is non-positive, for every positive test function.

Proposition 3.2. Any positive sub-solution w ∈ V 2,p(A × I) to (3.1) in A × I is locally
bounded. Moreover, there exists a constant c depending only on n, p, ν, L such that the
quantitative estimate

sup
Qλ

3R/4

w ≤ c
((
Rλ

p
2

)n p−2
p

∫
QλR

|w| dz
) p
n(p−2)+p

+ cRλ
p
2

holds for every cylinder QλR ≡ QλR(z0) ⊂ A× I .

Note that the lack of time regularity of solutions to (3.1) denies the possibility of using
a standard Poincaré’s inequality on cylinders. However, an amount of regularity can be
retrieved by the equation itself; this allows to prove the following estimate. Similar esti-
mates can be found in [4, 5, 35] and many other papers; for the proof, see the forthcoming
Lemma 4.2 for µ ≡ 0.

Lemma 3.3. Let v ∈ V 2,p(A× I) be a solution to (3.1) in A× I and let QλR ≡ QλR(z0) ⊂
A× I be a parabolic cylinder as in (2.1). Then∫

QλR

∣∣∣∣v − (v)QλR
Rλ

∣∣∣∣ dz ≤ c∫
QλR

|Dv| dz + c λ2−p
(∫

QλR

|Dv| dz
)p−1

for a constant c depending only on n, p and L.

We now have the following simple corollary:

Corollary 3.4. Let v be as in Lemma 3.3 and moreover suppose that the intrinsic relation∫
QλR

|Dv| dz ≤ κλ

holds for a constant κ ≥ 1. Then we have∫
QλR

∣∣∣∣v − (v)QλR
Rλ

∣∣∣∣ dz ≤ c(n, p, L, κ)λ.

At a certain point of the proof we will need to compare the intrinsic geometry for our
solution u and the one for a certain comparison map, solution to a homogeneous equation
as the one in (3.1). For the first one, the intrinsic relation will involve the L1 norm of
the gradient, since we need estimates stables for very weak solutions. For the second
one, the natural geometry will involve the Lp norm of the gradient instead. The following
Proposition will show that the weak geometry for Dv is equivalent to the standard one
(note indeed that the equivalent implication for the bound from below is trivial in view of
Hölder’s inequality).
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Proposition 3.5 (Intrinsic reverse Hölder’s inequality). Let v be the weak solution to (3.1).
If ∫

QλR

|Dv| dz ≤ κλ (3.3)

holds for a constant κ ≥ 1, then∫
Qλ
R/2

|Dv|p dz ≤ c λp,

with c depending on n, p, ν, L and κ.

Proof. From Caccioppoli’s inequality (3.2) we have∫
Qλ
R/2

|Dv|p dz ≤ c
[∫

Qλ
3R/4

(∣∣∣∣v − (v)Qλ
3R/4

Rλ

∣∣∣∣p +

∣∣∣∣v − (v)Qλ
3R/4

R

∣∣∣∣2) dz]

= c

[∫
Qλ

3R/4

∣∣∣∣v − (v)Qλ
3R/4

Rλ

∣∣∣∣p dz
+ λp−2

∫
Qλ

3R/4

∣∣∣∣v − (v)Qλ
3R/4

Rλ

∣∣∣∣2 dz]
≤ c

[
1

[Rλ]p

[
osc
Qλ

3R/4

v
]p

+
λp−2

[Rλ]2

[
osc
Qλ

3R/4

v
]2]

,

where c ≡ c(n, p, ν, L). To estimate the oscillation we now use Proposition 3.2: indeed
both (v − (v)Qλ

3R/4
)+ and (v − (v)Qλ

3R/4
)− are positive sub-solutions to (3.1) and so

osc
Qλ

3R/4

v ≤ c
[((

Rλ
p
2

)n
p (p−2)

∫
QλR

∣∣v − (v)QλR

∣∣ dz) p
n(p−2)+p

+Rλ
p
2

]

= c

[((
Rλ

p
2

)n
p (p−2)+1

λ−1

∫
QλR

∣∣∣∣v − (v)QλR
Rλ

∣∣∣∣ dz)
p

n(p−2)+p

+Rλ
p
2

]

≤ c
[((

Rλ
p
2

)n
p (p−2)+1

) p
n(p−2)+p

+Rλ
p
2

]
= cRλ

p
2

with c ≡ c(n, p, ν, L); in the second-last line we used Poincaré’s inequality in its intrinsic
form of Corollary 3.4 (note indeed that we are assuming (3.3)2). We thus conclude with∫

Qλ
R/2

|Dv|p dz ≤ c
[

1

[Rλ]p

[
Rλ

p
2

]p
+
λp−2

[Rλ]2

[
Rλ

p
2

]2]
≤ c λp.

�

Next, a reverse-Hölder’s inequality for solutions to (3.1). We stress that the important
point in (3.5) is not the fact that the gradient is highly integrable - this fact has been proven,
in different forms, in several papers, as [9, 21, 35] just to mention only the ones including
the singular case - but the precise form of the estimate.

Proposition 3.6. Let v ∈ Lp(I;W 1,p(A)) be a weak solution to (3.1) and let QλR(z0) ⊂
A× I be a cylinder such that(λ

κ

)p
≤
∫
Qλ
R/2

|Dv|p dz and
∫
QλR

|Dv|p dz ≤ (κλ)p (3.4)
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hold for a constant κ ≥ 1. Then there exist an exponent η ≡ η(n, p, ν, L) > 0 such that
for any σ > 0 it holds(∫

Qλ
R/2

|Dv|p(1+η) dz

) 1
p(1+η)

≤ c
(∫

QλR

|Dv|σ dz
) 1
σ

, (3.5)

with the constant c depending only on n, p, ν, L, κ and σ.

Proof. We will be a bit sloppy in the following proof, in particular in the covering part,
since the whole argument is quite standard: see its minor variants, for instance, in [2, 4, 5]
and moreover the forthcoming Section 5.

We fix two intermediate radii R1 < R2, with R1, R2 ∈ [R/2, R], and two further ones
R1 ≤ r1 < r2 ≤ R2 and we fix

µ
p
d
0 := λ(1−d) pd

∫
QλR2

|Dv|p dz, B
p
d :=

(
10R2

r2 − r1

)N
with the scaling deficit at the energy scale defined as (see [2, 5, 9, 35])

d =
2p

p(n+ 2)− 2n
.

We observe that we can build, for µ > Bµ0 fixed, a covering of

E(Qλr1 , µ) = Qλr1 ∩
{
|Dv(z)| > µ, z is a Lebesgue’s point of Dv

}
consisting in a family of cylinders Qµρz̄ (z̄), z̄ ∈ E(Qλr1 , µ) so that ρz̄ ≤ (r2 − r1)/10.
Indeed, defining

CZ
(
Qµρ (z)

)
:=

∫
Qµρ (z)

|Dv|p dz,

if ρ ∈ ((r2 − r1)/10, (r2 − r1)/2) and µ > Bµ0 we estimate enlarging the domain of
integration

CZ
(
Qµρ (z)

)
≤
|QλR2

|
|Qµρ (z)|

λ(d−1) pdµ
p
d
0

<

(
R2

ρ

)N(µ
λ

) 2−p
2 n

λ(d−1) pdµ
p
dB−

p
d

≤
( 10R2

r2 − r1

)N(µ
λ

) 2−p
2 n

λ
2−p

2 nµp
n+2
n −n

(
10R2

r2 − r1

)−N
≤ µp.

On the other hand, if z̄ ∈ E(Qλr1 , µ), then |Dv(z̄)| > µ and by Lebesgue’s differentiation
Theorem we have that CZ(Qµ% (z̄)) > µp for small radii 0 < % � 1; thus, by absolute
continuity we find a critical, maximal radius %z̄ ≤ (r2 − r1)/10 such that CZ(Qµ%z̄ (z̄)) =
µp; moreover, by maximality we have

µp

c(n)
≤
∫
Qµα%z̄ (z̄)

|Dv|p dz ≤ µp

for α ∈ [1, 10]. Thus we are in position to use the reverse Hölder’s inequality of [9, Lemma
13] to infer∫

Qµ%z̄ (z̄)

|Dv|p dz ≤ c
(∫

Qµ2%z̄ (z̄)

|Dv|p̄ dz
)p/p̄

with p̄ = 2n/(n+2) < p and a constant depending only on n, p, ν, L and not on the energy
of Du. Note that the cylinders in [9] differ from ours in the singular case p < 2 but with
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a simple change of variable (% = %z̄λ
(p−2)/2 = %λz̄ , where % is appearing in [9]) we can

recover our situation. This implies, calling the constant appearing in the display above c̃p,

µp̄ ≤
(∫

Qµ%z̄ (z̄)

|Dv|p dz
)p̄/p

≤ c̃p̄

|Qµ2%z̄ (z̄)|

[ ∫
Qµ2%z̄ (z̄)∩{|Dv|≤µ/[2c̃]}

|Dv|p̄ dz

+

∫
Qµ2%z̄ (z̄)∩{|Dv|>µ/[2c̃]}

|Dv|p̄ dz
]

≤
(µ

2

)p̄
+

c

|Qµ2%z̄ (z̄)|

∫
Qµ2%z̄ (z̄)∩{|Dv|>µ/[2c̃]}

|Dv|p̄ dz;

thus

µp̄ ≤ c

|Qµ%z̄ (z̄)|

∫
Qµ2%z̄ (z̄)∩{|Dv|>µ/[2c̃]}

|Dv|p̄ dz

and as consequence, calling ς ≡ ς(n, p, ν, L) := 1/[2c̃]∫
5Qµ%z̄ (z̄)

|Dv|p dz ≤ µp ≤ c µp−p̄

|Qµ%z̄ (z̄)|

∫
E(Qµ2%z̄ (z̄),ςµ)

|Dv|p̄ dz (3.6)

for a constant c depending on n, p, ν, L. Now we extract using Vitali’s Lemma (recall
that the cylinders Qµ%z̄ (z̄) with λ fixed are the balls of the metric in (2.4)) a sub-collection
{2Qi}i∈I of {Qµ2%z̄ (z̄)}z̄∈E(Qλr1

,µ), such that the 5-times enlarged cylinders 10Qi cover
almost all E(Qλr1 , µ) and the cylinders are pairwise disjoints. Note that 10Qi ⊂ Qλr2 . We
finally have, since the cylinders 2Qi are disjoint, using (3.6)∫

E(Qλr1
,µ)

|Dv|p dz ≤
∑
i∈I

∫
10Qi

|Dv|p dz

≤ c µp−p̄
∑
i∈I

∫
E(2Qi,ςµ)

|Dv|p̄ dz

≤ c µp−p̄
∫
E(Qλr2

,ςµ)

|Dv|p̄ dz

Finally, as in the usual proof of higher integrability estimates via Fubini’s theorem, we
have for η small enough, using the estimate above and calling µ1 := Bµ0∫

Qλr1

|Dv|p(1+η) dz = pη

∫ ∞
0

µpη
∫
E(Qλr1

,µ)

|Dv|p dz dµ
µ

≤ µpη1
∫
Qλr1

|Dv|p dz + c η

∫ ∞
µ1

µpη+p−p̄
∫
E(Qλr2

,ςµ)

|Dv|p̄ dz dµ
µ

≤ µpη1
∫
Qλr1

|Dv|p dz + c̄ η

∫
Qλr2

|Dv|p(1+η) dz;

note that we changed variable µ̃ = ςµ, recalling that ς ≡ ς(n, p, ν, L), to perform the
estimate in the last line. Now we choose η small so that c̄η ≤ 1/2 and this yields, recalling
the definition of µ1∫

Qλr1

|Dv|p(1+η) dz ≤ 1

2

∫
Qλr2

|Dv|p(1+η) dz

+ c

(
R2

r2 − r1

)Ndη
µpη0

∫
Qλr2

|Dv|p dz.
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Now the standard iteration lemma [19, Lemma 6.1] allows to reabsorb the Lp(1+η) norm
on the right-hand side and to deduce∫

QλR1

|Dv|p(1+η) dz ≤ c
(

R2

R2 −R1

)Ndη ∫
QλR2

|Dv|p dz ×

× λpηλ−pdη
[∫

QλR2

|Dv|p dz
]dη

.

Note that the re-absorptions does not cause problems, since all the quantity in play are
finite; the gradient higher integrability is a well-established fact and what we are interested
in are precise local estimates. At this point notice that (3.4) implies

λp

c(n, p, κ)
≤
∫
QλR1

|Dv|p dz and
∫
QλR2

|Dv|p dz ≤ c(n, p, κ)λp

since R/2 ≤ R1 < R2 ≤ R, and this implies in turn∫
QλR1

|Dv|p(1+η) dz

|QλR|
≤ c
(

R

R2 −R1

)Ndη(∫
QλR2

|Dv|p dz

|QλR|

)1+η

.

Recall that the previous inequality holds for every R1, R2 ∈ [R/2, R] with R1 < R2.
We are now in position to precisely apply [22, Lemma 5.1] with dµ = dz/|QλR|, which
encodes the usual self-improving property of reverse-Hölder inequalities in a form fitting
our context, to infer (3.5). �

4. AUXILIARY RESULTS

In this section we approach the proof of Theorem 1.1, collecting some results: a com-
parison Lemma, a Poincaré-like inequality and a local “energy” estimate for measure data
problems.

First of all, from now on we will choose as the set A × I a cylinder QλR(z0) ⊂ ΩT
and we will introduce therein the comparison function solution to the Cauchy-Dirichlet
problem{

vt − div a(x, t,Dv) = 0 in QλR,

v = u on ∂pQλR,
(4.1)

where u is a solution to (1.1). Recall we are dealing with approximating, regular solutions
u ∈ V 2,p(ΩT ); therefore existence and uniqueness of v are well known arguments (see
[17]) and so it is the fact that v ∈ u + V 2,p

0 (QλR). The following comparison result is a
generalization of [25, Lemma 4.1].

Lemma 4.1. Let u be a weak solution to (1.1) and let v be the comparison function defined
in (4.1). Then(∫

QλR

|Du−Dv|q dz
) 1
q

≤ c
[
|µ|(QλR)

|QλR|
N−1
N

] N
(N−1)(p−1)+1

+ c
|µ|(QλR)

|QλR|
N−1
N

(∫
QλR

|Du|q dz
) 2−p

q
N−1
N

(4.2)

for every

q ∈
[
1, p− 1 +

1

N − 1

)
(4.3)

and for a constant c ≡ c(n, p, ν, q).
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Proof. For q as in the statement, we start from [24, Display (4.11)], that reads as

α :=

(∫
QλR

|u− v|q
N−1
N−2 dz

) N−2
q(N−1)

≤ c(n, q)
[
|µ|(QλR)

] 1
N−1

(∫
QλR

|Du−Dv|q dz
) N−2
q(N−1)

, (4.4)

which actually holds in the full range p > 2 − 1/(N − 1): indeed, the only ingredients
needed to prove the estimate are the equations solved by both u and v, together with the
parabolic Sobolev’s embedding (taking into account that u− v has trace zero on the lateral
boundary). Note that we can assume without loss of generality α > 0; otherwise (4.2)
would follow trivially. This implies, see again [24, Proof of Lemma 4.1, Step 2] or [25,
Proof of Lemma 4.1]∫

QλR

∣∣V (Du)−V (Dv)
∣∣ 2q
p dz

≤ c(n, p, q)
[
|µ|(QλR)

|QλR|
α

] q
p

≤ c
[

[|µ|(QλR)]
N
N−1

|QλR|

(∫
QλR

|Du−Dv|q dz
) N−2
q(N−1)

] q
p

; (4.5)

again the only things needed to deduce such an estimate are the weak formulations of the
equations for u and v and the usual monotonicity estimate in (2.6). To conclude the proof,
we pointwise bound

|Du−Dv| =
[(
|Du|+ |Dv|

)p−2|Du−Dv|2
] 1

2 (|Du|+ |Dv|) 2−p
2

≤ c(n, p)
∣∣V (Du)− V (Dv)

∣∣(|Du|+ |Dv|) 2−p
2

≤ c
∣∣V (Du)− V (Dv)

∣∣(|Du−Dv|+ |Du|) 2−p
2

≤ c
∣∣V (Du)− V (Dv)

∣∣ 2
p +

1

2
|Du−Dv|

+
∣∣V (Du)− V (Dv)

∣∣|Du| 2−p2 ,

using also Young’s inequality with conjugate exponents (2/p, 2/(2− p)). Thus, reabsorb-
ing, taking the q-power and averaging over QλR∫

QλR

|Du−Dv|q dz ≤ c(n, p, q)
[ ∫

QλR

∣∣V (Du)− V (Dv)
∣∣ 2q
p dz

+

∫
QλR

∣∣V (Du)− V (Dv)
∣∣q|Du|q 2−p

2 dz
]

≤ c(n, p, q)
[ ∫

QλR

∣∣V (Du)− V (Dv)
∣∣ 2q
p dz

+

(∫
QλR

∣∣V (Du)− V (Dv)
∣∣ 2q
p dx

) p
2
(∫

QλR

|Du|q dz
) 2−p

2
]

= c
[
I + II

]
.

If now I ≤ II , then using (4.5)∫
QλR

|Du−Dv|q dz ≤ c
∫
QλR

∣∣V (Du)− V (Dv)
∣∣ 2q
p dz
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≤ c
[

[|µ|(QλR)]
N
N−1

|QλR|

(∫
QλR

|Du−Dv|q dz
) N−2
q(N−1)

] q
p

;

and so ∫
QλR

|Du−Dv|q dz ≤ c
[

[|µ|(QλR)]
N
N−1

|QλR|

] q(N−1)
(N−1)(p−1)+1

;

on the other hand, if II ≤ I , then∫
QλR

|Du−Dv|q dz ≤ c
[

[|µ|(QλR)]
N
N−1

|QλR|

(∫
QλR

|Du−Dv|q dz
) N−2
q(N−1)

] q
2

·

·
(∫

QλR

|Du|q dz
) 2−p

2

and thus∫
QλR

|Du−Dv|q dz ≤ c
[

[|µ|(QλR)]
N
N−1

|QλR|

]qN−1
N
(∫

QλR

|Du|q dz
)(2−p)N−1

N

.

�

Now it is the time for a Poincaré-type inequality valid for solutions to (1.1).

Lemma 4.2. Let u ∈ V 2,p(ΩT ) be a solution to (1.1). Then, for every q ∈ [1, p],∫
QλR

∣∣∣∣u− (u)QλR
Rλ

∣∣∣∣q dz ≤ c∫
QλR

|Du|q dz

+ c

[
λ2−p

(∫
QλR

|Du| dz
)p−1

+ c
R2

Rλ
|µ|(QλR)

|QλR|

]q
, (4.6)

where the constant c depends only on n, p and L.

Proof. We split the integral in (4.6) as follows:∫
QλR

∣∣∣∣u− (u)QλR
Rλ

∣∣∣∣ dz ≤ ∫
QλR

∣∣∣∣u− (u)η
BλR

(t)

Rλ

∣∣∣∣ dz
+

1

Rλ

∫ t0+R2

t0−R2

∣∣∣∣(u)η
BλR

(t)−
∫ t0+R2

t0−R2

(u)η
BλR

(τ) dτ

∣∣∣∣ dt
+

1

Rλ

∣∣∣∣∫ t0+R2

t0−R2

(u)η
BλR

(τ) dτ − (u)QλR

∣∣∣∣ = I + II + III.

We used the notation

(u)η
BλR

(t) :=

∫
BλR

u(·, t)η dx,

η ∈ C∞c (BλR) being a positive weight function satisfying∫
BλR

η dx = 1, η(x) +Rλ|Dη(x)| ≤ c(n).

Using slice-wise a variant of Poincaré’s inequality (see [29, Corollary 1.64]) we infer

III ≤ I ≤ c(n)

∫
QλR

|Du| dz.
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To estimate II we use the equation solved by u: testing the weak formulation with the test
function η independent of time, we get for a.e. t1, t2 ∈ (t0 −R2, t0 +R2)∣∣(u)η

BλR
(t1)− (u)η

BλR
(t2)

∣∣
=

∣∣∣∣∫ t2

t1

∂t
[
(u)η

BλR
(t)
]
dt

∣∣∣∣ =

∣∣∣∣∫ t2

t1

∫
BλR

∂tu η dx dt

∣∣∣∣
≤ c(n,L)

Rλ

∫ t0+R2

t0−R2

∫
BλR

|Du|p−1 dz + c(n)[Rλ]−n|µ|(QλR)

= c
R2

Rλ

∫
QλR

|Du|p−1 dz + c[Rλ]−n|µ|(QλR)

≤ c R
2

Rλ

(∫
QλR

|Du| dz
)p−1

+ cR2 |µ|(QλR)

|QλR|
;

we used the growth conditions in (1.2)2 and Hölder’s inequality. Note that the previous
estimate is just formal: a precise proof can be done using a regularizing in time procedure
(recall that we assume µ ∈ L1(ΩT )); see for instance [9, Lemma 7]. �

Now a reverse Hölder’s inequality for measure data problems. The use of such in-
equalities is customary when dealing with regularity and, in particular, Calderón-Zygmund
estimates for degenerate and non-uniform elliptic problems, see for instance the use in
[2, 4, 5, 10, 11, 16, 30].

Proposition 4.3. Let u be a weak solution to (1.1) under the assumptions (1.2) with (1.3)
in force and with µ ∈ L1(ΩT ); suppose moreover that

λ

κ
≤
∫
QλR

|Du| dz and
∫
Qλ2R

|Du| dz ≤ κλ (4.7)

hold in some cylinder QλR ≡ QλR(z0) such that QλR(z0) ⊂ ΩT , for some constant κ ≥ 1.
Then for every q as in (4.3), there exists a constant c ≡ c(n, p, ν, q, κ) such that(∫

QλR

|Du|q dz
) 1
q

≤ c
∫
Qλ2R

|Du| dz + c

[
|µ|(Qλ2R)

|Qλ2R|
N−1
N

] N
(N−1)(p−1)+1

.

Proof. Many of the forthcoming estimates are true for any cylinder Q = K × I ⊂ ΩT ;
only at a certain point we will specify the estimates to the situation we are considering in
the statement of the Proposition. We test the weak formulation in (1.10) with

ϕ1 := ±min{1, u±/ε}ζ,

for ε > 0 and with ζ ∈ C∞c (Q), ‖ζ‖L∞ ≤ 1. Note that this is possible only at a formal
level, due to the lack of time regularity of u; this choice can be anyway made rigorous
by using Steklov averages - we will proceed formally. Following [24, Lemma 4.1], we
compute

Dϕ1 =
1

ε
Duχ{0<u±<ε}ζ ±min{1, u±/ε}Dζ

and thus we have (notice that ‖ϕ1‖L∞ ≤ 1 and recall (1.2))

−
∫
Q

u ∂tϕ1 dz +
1

ε

∫
Q

〈a(x, t,Du), Du〉χ{0<u±<ε}ζ dz

≤ L ‖Dζ‖L∞
∫
Q

|Du|p−1 dz + |µ|(Q).
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We have, integrating twice by parts with respect to the time variable

−
∫
Q

u ∂tϕ1 dz = ±
∫
Q

∂tu min{1, u±/ε}ζ dz

=

∫
Q

∂t

∫ u±

0

min{1, σ/ε} dσ ζ dz

= −
∫
Q

∫ u±

0

min{1, σ/ε} dσ ∂tζ dz

(see [24, (4.8)]). This leads to

−
∫
Q

∫ u±

0

min{1, σ/ε} dσ ∂tζ dz +
1

ε

∫
Q

〈a(x, t,Du), Du〉χ{0<u±<ε}ζ dz

≤ c ‖Dζ‖L∞
∫
Q

|Du|p−1 dz + |µ|(Q);

we note that by dominated convergence Theorem

−
∫
Q

∫ u±

0

min{1, σ/ε} dσ ∂tζ dz → −
∫
Q

u± ∂tζ dz

as ε↘ 0 and thus

−
∫
Q

|u| ∂tζ dz + sup
ε>0

1

ε

∫
Q

〈a(x, t,Du), Du〉χ{0<u±<ε}ζ dz

≤ c ‖Dζ‖L∞
∫
Q

|Du|p−1 dz + |µ|(Q).

Now we choose

ζ(x, t) := ζ1(x, t)ζ2,ε,τ (t) (4.8)

with ζ1 ∈ C∞c (Q) such that ζ1 ≤ 1 and, for any τ ∈ I being fixed and ε small enough
so that also τ + ε ∈ I , ζ2,ε,τ is continuous and piecewise linear, with ζ2,ε,τ ≡ 1 on
(−∞, τ) and ζ2,ε,τ ≡ 0 on (τ + ε,∞). Note that

∫
R |∂tζ2,ε,τ | dt = 1 for any τ and ε and

∂tζ2,ε,τ ≤ 0. With this choice we have∫
Q

|u|
(
− ∂t(ζ1ζ2,ε,τ )

)
dz →

∫
K
|u|(·, τ) dx+

∫
Q

|u| (−∂tζ1)χRn×(−∞,τ) dz

as ε→ 0 for τ ∈ I fixed, so

sup
τ∈I

∫
B

|u|(·, τ) dx+ sup
ε>0

1

ε

∫
Q

〈a(x, t,Du), Du〉χ{0<u±<ε}ζ dz

≤ ‖∂tζ1‖L∞
∫
Q

|u| dz + c ‖Dζ‖L∞
∫
Q

|Du|p−1 dz + c |µ|(Q) := c E . (4.9)

Now we fix two constants α > 0 and ξ > 1 and we use in (1.10) the test function

ϕ2 :=
ϕ1

(α+ u±)ξ−1
=
±min{1, u±/ε}

(α+ u±)ξ−1
ζ,

ε > 0, ζ as in (4.8); we use the weak formulation in the form

(ξ − 1)

∫
Q

〈a(x, t,Du), Du±〉
ϕ1

(α+ u±)ξ
dz

=

∫
Q

〈a(x, t,Du), Dϕ1〉
dz

(α+ u±)ξ−1
−
∫
Q

u ∂tϕ2 dz −
∫
Q

ϕ2 dµ.
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We estimate the terms on the right-hand side: firstly, using (4.9)∫
Q

〈a(x, t,Du), Dϕ1〉
dz

(α+ u±)ξ−1

=
1

ε

∫
Q

〈a(x, t,Du), Du〉
χ{0<u±<ε}ζ dz

(α+ u±)ξ−1

±
∫
Q

〈a(x, t,Du), Dζ〉min{1, u±/ε} dz
(α+ u±)ξ−1

≤ c α1−ξE + α1−ξ‖Dζ‖L∞
∫
Q

|Du|p−1 dz,

so that

sup
ε>0

∫
Q

〈a(x, t,Du), Dϕ1〉
dz

(α+ u±)ξ−1
≤ c α1−ξE .

Then we simply estimate the last term as follows:

−
∫
Q

ϕ2 dµ ≤
∫
Q

|ϕ2| d|µ| ≤ α1−ξ|µ|(Q) ≤ c α1−ξE .

To estimate the parabolic term, we again use integration by parts and we deduce

−
∫
Q

u∂tϕ2 dz =

∫
Q

∂tu
ϕ1

(α+ u±)ξ−1
dz = −

∫
Q

∫ u±

0

min{1, σ/ε}
(α+ σ)ξ−1

dσ ∂tζ dz;

again we choose ζ as above. We estimate the term containing ζ2,ε,τ :

−
∫
Q

∫ u±

0

min{1, σ/ε}
(α+ σ)ξ−1

dσ ζ1 ∂tζ2,ε,τ dz

≤ α1−ξ sup
τ∈I

∫
K

∫ u±(·,τ)

0

min{1, σ/ε} dσ dx
∫
I

|∂tζ2,ε,τ | dt

≤ α1−ξ sup
τ∈I

∫
K
u±(·, τ) dx;

thus, using (4.9),

sup
ε>0

(
−
∫
Q

∫ u±

0

min{1, σ/ε}
(α+ σ)ξ−1

dσ ζ1 ∂tζ2,ε,τ dz

)
≤ c α1−ξE

and in turn

sup
ε>0

(
−
∫
Q

u ∂tϕ2 dz

)
≤ c α1−ξE

+ sup
ε>0

(
−
∫
Q

∫ u±

0

min{1, σ/ε}
(α+ σ)ξ−1

dσ ζ2,ε,τ∂tζ1 dz

)
≤ c α1−ξE

+ sup
ε>0

(∫
Q

∫ u±

0

min{1, σ/ε}
(α+ σ)ξ−1

dσ |ζ2,ε,τ∂tζ1| dz
)

≤ c α1−ξE + α1−ξ‖∂tζ1‖L∞
∫
Q

|u| dz

≤ c α1−ξE .

Merging all these estimates we obtain

(ξ − 1)

∫
Q

〈a(x, t,Du),±Du±〉
ϕ1

(α+ u±)ξ
dz ≤ c α1−ξE ,
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that is ∫
Q

〈a(x, t,Du),±Du±〉
(α+ u±)ξ

min{1, u±/ε}ζ dz ≤ c
α1−ξ

1− ξ
E .

Letting ε↘ 0 and performing some algebraic manipulations yields∫
Q

〈a(x, t,Du), Du〉
(α+ |u|)ξ

ζ dz ≤ c α
1−ξ

1− ξ
E
|Q|

. (4.10)

Now we specialize the previous estimate: we takeQ = Qλ2R, intermediate radiiR ≤ R1 <
R2 ≤ 2R and ζ1 satisfying χQλR1

≤ ζ1 ≤ χQλR2

in such a way that

(Rλ2 −Rλ1 )‖Dζ1‖L∞ + (R2 −R1)2‖∂tζ1‖L∞ ≤ c;

moreover we notice that if u solves (1.1), so does u− (u)Qλ2R ; thus we can apply (4.9) and
(4.10) to u− (u)QλR2

. Under our assumptions, we have

‖Dζ1‖L∞
∫
Qλ2R

|Du|p−1 dz +
|µ|(Qλ2R)

|Qλ2R|

≤ cRλ

Rλ2 −Rλ1
1

Rλ

(∫
Qλ2R

|Du| dz
)p−1

+
|µ|(Qλ2R)

|Qλ2R|

and, using (4.6),

‖∂tζ1‖L∞
∫
Qλ2R

∣∣u− (u)Qλ2R

∣∣ dz
≤ c
( Rλ

Rλ2 −Rλ1

)2λp−2

Rλ

∫
Qλ2R

∣∣∣∣u− (u)Qλ2R
2Rλ

∣∣∣∣ dz
≤ c
( R

R2 −R1

)2
[
λp−2

Rλ

∫
Qλ2R

|Du| dz

+
1

Rλ

(∫
QλR

|Du| dz
)p−1

+
|µ|(Qλ2R)

|Qλ2R|

]
.

We hence come up, denotingR := R/(R2 −R1) with∫
Qλ2R

〈a(x, t,Du), Du〉
(α+ |u− (u)Qλ2R |)

ξ
ζ1 dz (4.11)

≤ c α
1−ξ

1− ξ

( R

R2 −R1

)2
[
λp−2

Rλ

∫
Qλ2R

|Du| dz

+
1

Rλ

(∫
Qλ2R

|Du| dz
)p−1

+
|µ|(Qλ2R)

|Qλ2R|

]
=: c

α1−ξ

1− ξ
R2Ẽ

and

sup
τ∈(t0−R2,t0+R2)

∫
Bλ2R

∣∣u− (u)Qλ2R

∣∣(·, τ) dx ≤ c |Qλ2R|R2Ẽ . (4.12)
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Conclusion. Now we fix q ∈ [1,m0) with m0 defined in (1.11) and we take

ξ =
N − 1

N − 2
(p− q) > 1, αq

N−1
N−2 =

∫
Qλ2R

∣∣(u− (u)Qλ2R

)
ζ1
∣∣qN−1
N−2 dz;

note that without loss of generality we can assume α 6= 0, otherwise there would be
nothing to prove. We estimate using parabolic Sobolev’s embedding (see [17, Chapter I,
Proposition 3.1] or [24, Lemma 4.1])

αq
N−1
N−2 ≤ c(n, q)

(
sup

τ∈(t0−R2,t0+R2)

∫
B
Rλ

∣∣u− (u)Qλ2R

∣∣(·, τ) dx

) q
N−2

·

·
[ ∫

QλR2

|Du|q dz +

∫
Qλ2R

∣∣u− (u)Qλ2R

∣∣q|Dζ1|q dz]

≤ c
[
|Qλ2R|R2 Ẽ

] q
N−2

[ ∫
QλR2

|Du|q dz +

∫
Qλ2R

∣∣∣∣u− (u)Qλ2R
Rλ

∣∣∣∣q dz]
≤ c

[
|Qλ2R|R2 Ẽ

] q
N−2

[ ∫
QλR2

|Du|q dz +
[
λ2−pRλẼ

]q]
,

after using (4.12). To conclude the proof, we compute using (2.7) and (4.11)(∫
QλR1

|Du|q dz
) 1
q

≤ c
(∫

QλR1

[
〈a(x, t,Du), Du〉

] q
p dz

) 1
q

(4.13)

≤ c
(∫

Qλ2R

〈a(x, t,Du), Du〉
(α+ |u− (u)Qλ2R |)

ξ
ζ1 dz

) 1
p

·

·
(∫

Qλ2R

(
α+

∣∣(u− (u)Qλ2R

)
ζ1
∣∣) qξ
p−q dz

) 1
q−

1
p

≤ c
(∫

Qλ2R

〈a(x, t,Du), Du〉
(α+ |u− (u)Qλ2R |)

ξ
ζ1 dz

) 1
p

α
ξ
p

≤ cR
2
pα

1
p Ẽ

1
p

≤ c |Qλ2R|
1
p

1
N−1R

2
p

N
N−1 Ẽ

1
p

N
N−1

(∫
QλR2

|Du|q dz
)N−2
N−1

1
pq

+ cR
2
p

N
N−1 |Qλ2R|

1
p

1
N−1

[
λ2−pRλ

] 1
p
N−2
N−1 Ẽ

2
p

≤ 1

2

(∫
QλR2

|Du|q dz
) 1
q

+ cRξ̄|Qλ2R|
1

(N−1)(p−1)+1 Ẽ
N

(N−1)(p−1)+1

+ cR
2
p

N
N−1

[
λ2−pRλ

] 1
p
N−2
N−1 |Qλ2R|

− 1
p

N−2
N(N−1) · |Qλ2R|

2
pN Ẽ

2
p

≤ 1

2

(∫
QλR2

|Du|q dz
) 1
q

+ cRξ̄|Qλ2R|
1

(N−1)(p−1)+1 Ẽ
N

(N−1)(p−1)+1 + c λ,

for some ξ̄ > 0 depending on n and p, after using Young’s inequality twice with conjugate
exponents, respectively,( p(N − 1)

(p− 1)(N − 1) + 1
,
p(N − 1)

N − 2

)
and (if p < 2)( Np

(N − 2)(2− p)
,
p

2

N

(p− 1)(N − 1) + 1

)
;
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note that this choice is admissible since 1 < p < 2. Indeed[[
λ2−pRλ

] 1
p
N−2
N−1 |Qλ2R|

− 1
p

N−2
N(N−1)

] Np
(N−2)(2−p)

=
[[
λ2−pRλ

] 1
N−1 |Qλ2R|

− 1
N(N−1)

] N
2−p

= c(n, p)
[[
λ2−pRλ

] 1
N−1

[
λ

2−p
N Rλ

]− 1
(N−1)

] N
2−p

= c(n, p)
[
λ1− 1

N

] N
N−1

= c(n, p)λ.

We conclude the proof first reabsorbing the Lq average on the right-hand side using a
standard iteration Lemma (see [19, Lemma 6.1]) and then observing that by (4.7) we have

E =
λp−2

Rλ

∫
Qλ2R

|Du| dz +
1

Rλ

(∫
Qλ2R

|Du| dz
)p−1

+
|µ|(Qλ2R)

|Qλ2R|

≤ c(p, κ)
λp−1

Rλ
+
|µ|(Qλ2R)

|Qλ2R|

and thus

|Qλ2R|
1

(N−1)(p−1)+1 E
N

(N−1)(p−1)+1

≤ c(n, p, κ)

[
|Qλ2R|

1
N
λp−1

Rλ
+ |Qλ2R|

1
N
|µ|(Qλ2R)

|Qλ2R|

] N
(N−1)(p−1)+1

≤ c
[
λ

2−p
N Rλ

λp−1

Rλ
+
|µ|(Qλ2R)

|Qλ2R|1−
1
N

] N
(N−1)(p−1)+1

≤ c λ+ c

[
|µ|(Qλ2R)

|Qλ2R|
N−1
N

] N
(N−1)(p−1)+1

≤ c
∫
QλR

|Du| dz + c

[
|µ|(Qλ2R)

|Qλ2R|
N−1
N

] N
(N−1)(p−1)+1

.

�

With exactly the same proof (except for a different use of Young inequality in the last
line of (4.13), namely with conjugate exponents (p/2, p/(p − 2))) we have the degener-
ate counterpart of Proposition 4.3. Note however that we will not employ this estimate
anywhere in this paper; we include it for completeness.

Proposition 4.4. Let u be a weak solution to (1.1) under the assumptions (1.2), with now
p ≥ 2; assume that the inequalities

λp−1

κ
≤
∫
QλR

|Du|p−1 dz and
∫
Qλ2R

|Du|p−1 dz ≤ κλp−1

hold in a cylinder QλR ≡ QλR(z0) as defined in (2.2), with QλR(z0) ⊂ ΩT , for some κ ≥ 1.
For every q as in (4.3), there exists a constant c ≡ c(n, p, ν, q, κ) such that(∫

QλR

|Du|q dz
) 1
q

≤ c
∫
Qλ2R

|Du| dz

+ c

[
|µ|(Qλ2R)

|Qλ2R|
N−1
N

] N
(N−1)(p−1)+1

+ c
|µ|(Qλ2R)

(2R)N−1
.
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Note that the two terms taking into account the measure µ have the same dimensional
character:[

|µ|(Qλ2R)

|Qλ2R|
N−1
N

] N
(N−1)(p−1)+1

. λ ⇐⇒ |µ|(Qλ2R)

RN−1
. λ.

Now, using the result in Proposition 4.3 we can deduce an improved version of Lemma
4.1:

Corollary 4.5. Let u be a weak solution to (1.1); suppose that Qλ2R ≡ Qλ2R(z0) ⊂ ΩT
and let v be the solution to (4.1) in QλR. Assume that the inequalities

λ

κ
≤
∫
QλR

|Du| dz,
∫
Qλ2R

|Du| dz ≤ κλ

hold for some κ ≥ 1. Then(∫
QλR

|Du−Dv|q dz
) 1
q

≤ c
[
|µ|(Qλ2R)

|Qλ2R|
N−1
N

] N
(N−1)(p−1)+1

+ c
|µ|(Qλ2R)

|Qλ2R|
N−1
N

(∫
Qλ2R

|Du| dz
)(2−p)N−1

N

(4.14)

for every q as in (4.3) and a constant c depending only on n, p, ν and κ.

Proof. (4.14) follows simply combining Lemma 4.1 and the reverse Hölder’s inequality
of Proposition 4.3, taking into account that

1 +
N

(N − 1)(p− 1) + 1
· (2− p)N − 1

N
=

N

(N − 1)(p− 1) + 1
. (4.15)

�

5. THE PROOF OF THEOREM 1.1

We finally have in our hands all the tools needed to prove Theorem 1.1.

As already mentioned, the proof will be based on a covering argument more-or-less
standard in the singular and degenerate parabolic setting, see [21, 2], which the reader
could have already met in the proof of Proposition 3.6; for the implementation of the argu-
ment in the context of degenerate parabolic equations with measure data see our previous
contribution in [4].

The “weighted” version we employ here (the weight is clearly represented by the large
constant M , see few lines below, which we are going to choose later) has been developed
in [2] to provide precise estimates of Calderón-Zygmund type in the setting of energy
solutions and it is, in some sense, the PDE version of the “good-λ-inequality principle”,
see for instance [14].

Fix a parabolic cylinders Q2R ≡ Q2R(z0) ⊂ ΩT , R > 0 and let M ≥ 1 be a free
parameter to be chosen. Moreover we fix arbitrarily an exponent q̄ such that

1 < q̄ < p− 1 +
1

N − 1
= m0 < p (5.1)

so that it only depends on n and p: for instance, we can choose the midpoint of the interval
[1,m0]. We then define the functional

CZ(Qλr ) :=

∫
Qλr

|Du| dz +

[
M
|µ|(Qλr )

|Qλr |

] 1
m

(5.2)
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for cylinders Qλr ≡ Qλr (z̄) ⊂ Q2R, where m ≥ m0 > 1 is as in (1.9). We fix two
intermediate radii R ≤ r1 < r2 ≤ 2R and we define

λ
1
d
0 = λ

1−n(2−p)
2

0 :=

∫
Qr2

|Du| dz +

[
M
|µ|(Qr2)

|Qr2 |

] 1
m

+ 1; (5.3)

recall the expression for d in (1.8). Moreover we take λ satisfying λ > Bλ0 with B ≥ 1
defined as

B :=

(
40r2

r2 − r1

)Nd
(5.4)

and we consider radii satisfying
r2 − r1

40
≤ r ≤ r2 − r1

2
. (5.5)

Observe that Qλr (z̄) b Qr2 for any z̄ ∈ Qr1 and for any radius r satisfying (5.5). Using
Hölder’s inequality, enlarging the domain of integration and using that |µ| is positive we
have, also taking (5.3), (5.4) and 1/m < 1 into account

CZ(Qλr (z̄)) ≤ |Qr2 |
|Qλr (z̄)|

[ ∫
Qr2

|Du| dz +

[
M
|µ|(Qr2)

|Qr2 |

] 1
m
]

≤ |Qr2 |
|Qλr (z̄)|

λ
1
d
0

< λ
2−p

2 n
(r2

r

)N
λ

1−n(2−p)
2 B

1
d

≤ λ
( 40r2

r2 − r1

)N
B−

1
d ≤ λ. (5.6)

On the other hand, for λ > 0 and radii γ ∈ [R, 2R], we define the level sets

E(λ,Qγ) :=
{
z ∈ Qγ(z0) : |Du(z)| > λ and z is a Lebesgue’s point of |Du|

}
;

then we take a point z̄ ∈ E(λ,Qr1) with λ > Bλ0. It holds

lim
r↘0

CZ(Qλr (z̄)) ≥ lim
r↘0

∫
Qλr (z̄)

|Du| dx > λ.

Hence for small radii we have CZ(Qλr (z̄)) > λ. Hence, from this consideration and (5.6),
continuity implies the existence of a maximal radius rz̄ such that∫

Qλrz̄ (z̄)

|Du| dx+

[
M
|µ|(Qλrz̄ (z̄))
|Qλrz̄ (z̄)|

] 1
m

= λ, (5.7)

that is CZ(Qλrz̄ (z̄)) = λ. The word “maximal” refers to the fact that for all radii r̃ ∈
(rz̄, (r2 − r1)/2] the inequality CZ(Qλr̃ (z̄)) ≤ λ holds. In particular we have

λ

34N
≤ λ

40N
≤
∫
Qλ̄rz̄ (z̄)

|Du| dx+

[
M
|µ|(Qλ̄rz̄ (z̄))
|Qλ̄rz̄ (z̄)|

] 1
m

≤ λ (5.8)

for every ̄ ∈ {1, . . . , 40}; note that rz̄ < (r2 − r1)/40 and hence Qλ̄rz̄ (z̄) ⊂ Qr2 .

Now we single out one of the cylinders Qλ2rz̄ (z̄) considered above and we note that one
of the following two inequalities must hold true:

λ

44N
≤
∫
Qλ2rz̄ (z̄)

|Du| dz or
( λ

44N

)m
≤M

|µ|(Qλ2rz̄ (z̄))
|Qλ2rz̄ (z̄)|

. (5.9)
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First case: A comparison map “λ-close” to u. Suppose that the first case in (5.9) holds
true. Now, thinking z̄ ∈ E(4λ,Qr1) fixed and being Qλ20rz̄ (z̄) one of the cylinders consid-
ered above, we will denote in short

20Q := Qλ20rz̄ (z̄).

We introduce in 20Q the function solution to the Cauchy-Dirichlet problem{
vt − div a(x, t,Dv) = 0 in 20Q,

v = u on ∂p(20Q);
(5.10)

we observe that (5.8)-(5.9) imply

λ

44N
≤
∫

20Q

|Du| dz,
∫

40Q

|Du| dz ≤ λ. (5.11)

Thus Corollary 4.5 implies(∫
20Q

|Du−Dv|q dz
) 1
q

≤ c
[
|µ|(40Q)

|40Q|N−1
N

] N
(N−1)(p−1)+1

+ c
|µ|(40Q)

|40Q|N−1
N

(∫
40Q

|Du| dz
)(2−p)N−1

N

(5.12)

for q as in (4.3); c ≡ c(n, p, ν).

We now distinguish the two cases considered in Theorem 1.1:

The good measure case. This is the case where p ≤ ϑ ≤ n; using (5.8) and the value for
m = m1 in this case we have

|µ|(40Q)

|40Q|
≤ λ

ϑ(p−1)
ϑ−1

M
. (5.13)

On the other hand, we notice that we can cover the cylinder 40Q with at most 2bλ2−pc
(possibly overlapping) standard parabolic cylinders with radius 40rλz̄ (this exact number of
cylinders is clearly not optimal):

40Q = B40rλz̄
(x̄)× (t̄− r2

z̄ , t̄+ r2
z̄) ⊂

2bλ2−pc⋃
j=1

Q40rλz̄
(x̄, tj)

for points tj ∈ (t̄− r2
z̄ , t̄+ r2

z̄). Thus using (1.4)

|µ|(40Q) ≤
2bλ2−pc∑
j=1

|µ|
(
Q40rλz̄

(x̄, tj)
)
≤ 2bλ2−pc cd[40rλz̄ ]N−ϑ

and in turn

|µ|(40Q)

|40Q|
≤ c(n, cd)

λ2−p[40rλz̄ ]N−ϑ

λ2−p[40rλz̄ ]N
= c(n, cd)[r

λ
z̄ ]−ϑ.

We can thus estimate, for every ε ∈ (0, 1)

|µ|(40Q)

|40Q|N−1
N

=

[
|µ|(40Q)

|40Q|

]ϑ−1
ϑ
[
|µ|(40Q)

|40Q|

] 1
ϑ

|40Q| 1
N

≤ c

M
ϑ−1
ϑ

λp−1[40rλz̄ ]−1λ
2−p
N 40rλz̄ =

c

M
ϑ−1
ϑ

λ
(N−1)(p−1)+1

N .



24 PAOLO BARONI

The bad measure case. This is the case where n < ϑ ≤ N (and thus the measure might be
more concentrated). As in (5.13) and noting that now m = m2 we infer

|µ|(40Q)

|40Q|
≤ λ

1
2 (p− (2−p)n

ϑ ) ϑ
ϑ−1

M
;

on the other hand, simply enlarging the cylinder (remember (2.3)), again using (1.4) on the
standard parabolic cylinder Q40rz̄ and taking in mind that N = n+ 2, we have

|µ|(40Q)

|40Q|
≤ |µ|(Q40rz̄ )

|40Q|
≤ c(n, cd)

[40rz̄]
N−ϑ

λ2−p[40rλz̄ ]N

= c(n, cd)
λ

2−p
2 (N−ϑ)[40rλz̄ ]N−ϑ

λ2−p[40rλz̄ ]N

= c(n, cd)λ
2−p

2 (n−ϑ)[40rλz̄ ]−ϑ.

So, similarly to above, we here have

|µ|(40Q)

|40Q|N−1
N

=

[
|µ|(40Q)

|40Q|

]ϑ−1
ϑ
[
|µ|(40Q)

|40Q|

] 1
ϑ

|40Q| 1
N

≤ c

M
ϑ−1
ϑ

λ
1
2 (p− (2−p)n

ϑ )λ
2−p

2 (nϑ−1)[40rλz̄ ]−1λ
2−p
N 40rλz̄

=
c

M
ϑ−1
ϑ

λp−1λ
2−p
N =

c

M
ϑ−1
ϑ

λ
(N−1)(p−1)+1

N .

Thus in both cases we have
|µ|(40Q)

|40Q|N−1
N

≤ c

M
ϑ−1
ϑ

λ
(N−1)(p−1)+1

N . (5.14)

If now we consider (5.12), (5.14) and (5.11)2 imply that(∫
20Q

|Du−Dv|q dx
) 1
q

≤ c̄
[
M

N
(N−1)(p−1)+1 +M

]− ϑ
ϑ−1λ

=: c̄ ζ(M)λ (5.15)

for q as in (4.3), with the obvious definition of ζ; note that we used also the computation
in (4.15). Now we fix as M1 the large constant satisfying c̄ ζ(M1) ≤ 4−8N ; note that we
can take M1 ≡M1(n, p, ν). If we take M ≥M1, we have, for q = 1 and q = q̄ as defined
in (5.1) ∫

20Q

|Du−Dv| dx ≤ λ

48N
,

(∫
20Q

|Du−Dv|q̄ dx
) 1
q̄

≤ λ

48N
. (5.16)

First we have, considering the first of the previous inequalities and (5.8)∫
20Q

|Dv| dz ≤
∫

20Q

|Du| dz +

∫
20Q

|Du−Dv| dz ≤ 2λ; (5.17)

using (5.11),∫
5Q

|Dv| dz ≥
(2

5

)N ∫
2Q

|Du| dz

− 4N
∫

20Q

|Du−Dv| dz

≥ 1

4N
· 1

45N
λ− 1

47N
λ ≥ λ

47N
(5.18)

too. Therefore, applying Proposition 3.5, we infer∫
10Q

|Dv|q̄ dz ≤ c λq̄,
∫

10Q

|Dv|p dz ≤ c λp; (5.19)
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we recall that q̄ is defined in (5.1) as a constant in (1, p] depending only on n and p. The
constant c thus depends on n, p, ν and L.

Finally, we use (5.19)2 and (5.18) that allow to apply Proposition 3.6: (3.5) reads here
as (∫

5Q

|Dv|p(1+η) dz

) 1
p(1+η)

≤ c
∫

10Q

|Dv| dz ≤ c λ (5.20)

with c ≡ c(n, p, ν, L), using (5.17). Finally, again using quasi-sub-additivity exactly as
in (5.17), using this time (5.16)2 together with (5.19)1, we finally conclude this paragraph
with the last estimate we need:∫

5Q

|Du|q̄ dz ≤ c λq̄. (5.21)

The constant still depends on n, p, ν and L.

First case: On the measure of the super-level ofDu. We briefly conclude here the study
of the case where the first inequality in (5.9) holds.

We split the integral of |Du| over 2Q and then use Hölder’s inequality as follows, for ς
to be chosen:∫

2Q

|Du| dz ≤ ςλ|2Qr E(ςλ,Qr2)|+
∫

2Q∩E(ςλ,Qr2 )

|Du| dz

≤ ςλ|2Q|+ |2Q ∩ E(ςλ,Qr2)|1−
1
q̄

(∫
2Q

|Du|q̄ dz
) 1
q̄

≤ ςλ|2Q|+
(
|2Q ∩ E(ςλ,Qr2)|

|2Q|

)1− 1
q̄
(∫

5Q

|Du|q̄ dz
) 1
q̄

.

Dividing by |2Q| and using (5.9)1 and (5.21) yields

λ

44N
≤ ςλ+

(
|2Q ∩ E(ςλ,Qr2)|

|2Q|

)1− 1
q̄

λ

Now we fix ς = 4−5N and thus we have

|2Q| ≤ c |2Q ∩ E(ςλ,Qr2)|

for a constant depending on n, p, ν, L and cd.

Second case and conclusion. Clearly, if the second alternative (5.9)2 holds, we have

|2Q| ≤ c(n)
M

λm
|µ|(2Q)

Thus merging those two cases we finally get the estimate for |2Q| we were looking for:

|20Q| ≤ c(n) |2Q| ≤ c |2Q ∩ E(λ, r2)|+ c
M

λm
|µ|(2Q). (5.22)

We recall that 2Q ≡ Qλ2rz̄ (z̄).
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Covering and iteration. Summarizing what we have done up to now, we have that once
we fix λ > Bλ0, with B and λ0 defined in (5.3)-(5.4), then for every z̄ ∈ E(λ,Qr1) we
can find a cylinder Qλrz̄ (z̄) such that (5.7) holds.

Then we consider the collection of all such cylinders Eλ := {Qλ2rz̄ (z̄)}z̄∈E(λ,Qr1 ) and,
by a Vitali-type argument, we extract a countable sub-collection Fλ ⊂ Eλ such that the 5-
times enlarged cylinders cover almost allE(λ,Qr1) and the cylinders are pairwise disjoints
- note that we are working at λ fixed; thus those cylinders are metric balls (precisely, of
the metric defined in (2.4)). This is to say, if we denote the cylinders of Fλ by Q0

i :=
Qλ2rz̄i

(z̄i), for i ∈ Iλ, being possibly Iλ = N, and with z̄i ∈ E(λ,Qr1), we have

Q0
i ∩Q0

j = ∅ whenever i 6= j and E(λ,Qr1) ⊂
⋃
i∈Iλ

Q1
i ∪N , (5.23)

with |N | = 0 and with Q1
i := 5Q0

i = Qλ10rz̄i
(z̄i); note that using (5.5) we see that

Q1
i ⊂ Qr2 for all i ∈ Iλ. We now fix H ≥ 1 to be chosen later and we estimate∣∣E(Hλ, r1)

∣∣ ≤∑
i∈Iλ

∣∣Q1
i ∩ E(2Hλ, r2)

∣∣. (5.24)

We split every term in the following way:∣∣Q1
i ∩ E(Hλ, r2)

∣∣ =
∣∣{z ∈ Q1

i : |Du(x)| > 2Hλ}
∣∣

≤
∣∣{z ∈ Q1

i : |Du(x)−Dvi(x)| > Hλ}
∣∣

+
∣∣{z ∈ Q1

i : |Dvi(x)| > Hλ}
∣∣ =: Ii + IIi. (5.25)

Here vi is the comparison function solution to (5.10) in Q2
i ≡ Qλ20rz̄i

(z̄i) = 2Q1
i . We

estimate separately the two pieces: for the first one we take ε > 0 arbitrary and we use
(5.15) and subsequently (5.22) to infer

Ii ≤
1

Hλ

∫
Q2
i

|Du−Dvi| dz ≤
c ζ(M)

Hλ
|Q2

i |λ (5.26)

≤ c ζ(M)

H

[
|Q0

i ∩ E(λ,Qr2)|+M
|µ|(Q0

i )

λm

]
,

where ζ(·) is given in (5.15) and provided M ≥M1. On the other hand we use the higher
integrability (5.20) to get

IIi ≤
( 1

Hλ

)p(1+η)

|Q1
i |
∫
Q1
i

|Dvi|p(1+η) dz

≤ c

(Hλ)p(1+η)
|Q2

i |
(∫

Q2
i

|Dvi| dz
)p(1+η)

≤ c

Hp(1+η)

[
|Q0

i ∩ E(λ,Qr2)|+M
|µ|(Q0

i )

λm

]
. (5.27)

Connecting the two estimates (5.26) and (5.27) and plugging the result into (5.25), taking
into account that H ≥ 1, gives∣∣E(2Hλ,Qr2)∩Q1

i

∣∣ ≤ [c ζ(M)

H
+

c

Hp(1+η)

]
|Q0

i ∩E(λ, r2)|+ cM
|µ|(Q0

i )

λm
.

At this point, since the {Q0
i } are disjoint, see (5.23), summing up and multiplying both

sides of the previous inequality by (2Hλ)m, see also (5.24), gives

(2Hλ)m
∣∣E(2Hλ,Qr1)

∣∣ ≤ [c∗ ζ(M)

H1−m +
c∗

Hp(1+η)−m

]
λm|E(λ,Qr2)|

+ c |µ|(Q2R) (5.28)
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with c∗ depending only on n, p, ν, L, cd but nor on H neither on M ; c instead depends also
onH,M but this is not a problem. Finally, recall that 1 < m < pχ; first chooseH so large
that

c∗
Hp(1+η)−m =

1

4
. (5.29)

At this point, being now H ≡ H(n, p, ν, L, cd) fixed, we choose M2 so large that

c∗H
m−1ζ(M2) ≤ 1

4

and this fixes the value ofM in (5.2) as max{M1,M2}. This choice makes alsoM depend
only on n, p, ν, L and cd. Having such choices at hand, after taking the supremum with
respect to λ > Bλ0, (5.28) rewrites as

sup
λ>2HBλ0

λm|E(λ,Qr1)| ≤ 1

2
sup

λ>Bλ0

λm|E(λ,Qr2)|+ c |µ|(Q2R)

≤ 1

2
‖Du‖mMm(Qr2 ) + c |µ|(Q2R) (5.30)

and therefore by the definition of Marcinkiewicz quasi-norm

‖Du‖mMm(Qr1 ) ≤
1

2
‖Du‖mMm(Qr2 ) + c

[
Bλ0

]m
RN + c |µ|(Q2R)

for all R ≤ r1 < r2 ≤ 2R, since Bλ0 ≥ 1. At this point (1.7) follows exactly as in [4],
using for the last time [19, Lemma 6.1]. Note that reabsorption is possible since u is an
approximate energy solutions, thus since Du ∈ Lpχloc(ΩT ), we have ‖Du‖Mm(Q2R) < ∞
for m < pχ.

6. PROOF OF THEOREMS 1.5, 1.6 AND 1.7

The proof of Theorem 1.5 is very similar to the proof of Theorem 1.1: the changes
concern the regularity of the reference problem, that is the integrability of the comparison
map solution to (3.1) and hence of (4.1)-(5.10). If we consider vector fields a satisfying
(1.14), then the solution is indeed such that Du ∈ Lq for every q ≥ 1; this is to say, (3.5)
holds for every η > 1 (and clearly also the constant at this point depends on η), see [2,
Theorem 1] and [10] taking into account that our right-hand side is zero, thus in Lq for
all q ≥ 1. The proof needed in order to obtain the explicit local estimate (3.5) from the
results in [2, 10] is exactly the same described in the proof of Proposition 3.6 to obtain
(3.5) starting from [9, Lemma 13]; the changes only concern the range of exponents η
considered.

We can formally follow our proof, with the only difference that here η is not a constant
depending on the data of the problem, but a free parameter; the constants will thus depend
also on η (and they all will show a critical dependence on η, in the sense that they will
blow-up as η → ∞). To conclude, given ϑ > 1, we will to follow the proof until (5.28)
and there we will choose η ≡ η(p, ϑ) such that p(1 + η) = m + 1; this will be sufficient
to prove that |Du| ∈ Mm

loc(ΩT ). Note that our choice justifies the critical dependence of
the constant upon ϑ, as ϑ → 1. The aforementioned Theorems in [2, 10] also justify the
reabsorption after (5.30): since the data of our approximating problems are regular, then
the energy solutions u we consider are as integrable as needed.

For the proofs of Theorems 1.6-1.7, the only different point is the treatment of the
second term in

|µ|(40Q)

|40Q|N−1
N

=

[ |µ|(Qλ40rz̄ (z̄))

|Qλ40rz̄
(z̄)|

]ϑ−1
ϑ
[ |µ|(Qλ40rz̄ (z̄))

|Qλ40rz̄
(z̄)|

] 1
ϑ

|Qλ40rz̄ (z̄)|
1
N ;

this will allow for a different value of the exponentm in the Calderón-Zygmund operator in
(5.2), used to estimate the first term in the quantity above if we want to mimic the algebraic
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computations leading to (5.14) (this is the real core of the proof, since this is sufficient
to give to the comparison estimates (5.15) their “homogeneous” form). The exponent m
appearing in (5.2), in view of the rest of the proof, will become the Marcinkiewicz exponent
appearing in the statements: respectively m3 for Theorem 1.6 and m4 for Theorem 1.7.

In particular for Theorem 1.6 we can estimate

|µ|(40Q) = |µ1|(B40rλz̄ (x̄))|µ2|
(
(t̄− [40rz̄]

2, t̄+ [40rz̄]
2)
)

≤ ‖µ1‖L∞ c(n)[40rλz̄ ]n cd[40rz̄]
2−ϑ

= c(n, ‖µ1‖L∞ , cd)λ
2−p

2 (2−ϑ)[40rz̄]
N−ϑ,

while for Theorem 1.7 we have

|µ|(40Q) = |µ3|(B40rλz̄ (x̄))|µ4|
(
(t̄− [40rz̄]

2, t̄+ [40rz̄]
2)
)

≤ cd[40rλz̄ ]n−ϑ ‖µ4‖L∞ 2[40rz̄]
2

= c(n, ‖µ4‖L∞ , cd)λ
2−p[40rz̄]

N−ϑ.

Now for Theorem 1.6 we have

|µ|(40Q)

|40Q|N−1
N

≤ c
[
λm3

M

]ϑ−1
ϑ
[
λ

2−p
2 (2−ϑ)[40rz̄]

N−ϑ

λ2−p[40rλz̄ ]N

] 1
ϑ

λ
2−p
N 40rλz̄

=
c

M
ϑ−1
ϑ

λ
p
2 λ

p−2
2 [40rλz̄ ]−1 λ

2−p
N 40rλz̄ =

c

M
ϑ−1
ϑ

λp−1λ
2−p
N

and (recall that here p ≥ 2 and thus the intrinsic cylinders are different, see (2.2) and
compare with [4])

|µ|(40Q)

|40Q|N−1
N

≤ c
[
λm4

M

]ϑ−1
ϑ
[
λ2−p[40rz̄]

N−ϑ

λ2−p[40rλz̄ ]N

] 1
ϑ

λ
2−p
N 40rλz̄

=
c

M
ϑ−1
ϑ

λp−1[40rλz̄ ]−1 λ
2−p
N 40rλz̄ =

c

M
ϑ−1
ϑ

λp−1λ
2−p
N

for Theorem 1.7; both these expressions lead exactly to (5.14). Now the proofs proceed
exactly as after (5.14), taking into account the first lines of this Section when dealing, if
p < 2, with vector field satisfying the assumptions in (1.12)-(1.13).
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